Skip to content

Conversation

@jj-devhub
Copy link
Owner

@jj-devhub jj-devhub commented Sep 9, 2025

Automatic draft PR for fix/buggy_data_structures (generated).

Summary by CodeRabbit

  • New Features

    • Serialize and deserialize data in JSON and Pickle with clearer error handling.
    • Deep-merge dictionaries without mutating originals.
    • Group collections by a specified property with a fallback group for missing values.
    • Flatten deeply nested lists/tuples with an optional depth limit.
  • Documentation

    • Added usage examples illustrating serialization, merging, grouping, and flattening.
  • Tests

    • Added demos covering success paths and deserialization error scenarios.

@coderabbitai
Copy link

coderabbitai bot commented Sep 9, 2025

Warning

Rate limit exceeded

@jj-devhub has exceeded the limit for the number of commits or files that can be reviewed per hour. Please wait 22 minutes and 39 seconds before requesting another review.

⌛ How to resolve this issue?

After the wait time has elapsed, a review can be triggered using the @coderabbitai review command as a PR comment. Alternatively, push new commits to this PR.

We recommend that you space out your commits to avoid hitting the rate limit.

🚦 How do rate limits work?

CodeRabbit enforces hourly rate limits for each developer per organization.

Our paid plans have higher rate limits than the trial, open-source and free plans. In all cases, we re-allow further reviews after a brief timeout.

Please see our FAQ for further information.

📥 Commits

Reviewing files that changed from the base of the PR and between ef40a0c and edafcaf.

📒 Files selected for processing (1)
  • buggy_data_structures.py (1 hunks)

Walkthrough

Introduces new module buggy_data_structures.py with utility functions for serialization/deserialization (JSON, pickle), deep dict merging, grouping items by property, and flattening nested lists. Adds CustomClass for demos. Includes inline demo/test usage illustrating typical success and error scenarios.

Changes

Cohort / File(s) Summary of Changes
Data utilities module
buggy_data_structures.py
Added functions: serialize_data, deserialize_data, deep_merge_dicts, group_by_property, flatten_nested_list; added CustomClass with __init__ and __str__; included demo/test snippets for JSON/pickle serialization, deep merge, grouping, flattening, and error handling.

Sequence Diagram(s)

sequenceDiagram
  autonumber
  actor Caller
  participant Utils as buggy_data_structures.py
  participant JSON as json
  participant Pickle as pickle

  rect rgba(230,245,255,0.6)
  Note over Caller,Utils: Serialization flow
  Caller->>Utils: serialize_data(data, format_type)
  alt format_type == "json"
    Utils->>JSON: dumps(data, default=str)
    JSON-->>Utils: json_str or error
  else format_type == "pickle"
    Utils->>Pickle: dumps(data)
    Pickle-->>Utils: bytes or error
  else unsupported
    Utils-->>Caller: raise ValueError (unsupported format)
  end
  Utils-->>Caller: result or ValueError (wrapped)
  end

  rect rgba(240,255,230,0.6)
  Note over Caller,Utils: Deserialization flow
  Caller->>Utils: deserialize_data(data, format_type)
  alt format_type == "json"
    Utils->>JSON: loads(data)
    JSON-->>Utils: obj or JSONDecodeError
  else format_type == "pickle"
    Utils->>Pickle: loads(data)
    Pickle-->>Utils: obj or UnpicklingError
  else unsupported
    Utils-->>Caller: raise ValueError (unsupported format)
  end
  Utils-->>Caller: object or ValueError ("Deserialization failure")
  end
Loading
sequenceDiagram
  autonumber
  actor Caller
  participant Utils as buggy_data_structures.py

  rect rgba(255,245,230,0.6)
  Note over Caller,Utils: Deep merge (non-mutating)
  Caller->>Utils: deep_merge_dicts(dict1, dict2)
  Utils->>Utils: deepcopy(dict1)
  Utils->>Utils: recursive merge of dict2 into copy
  Utils-->>Caller: merged_dict
  end

  rect rgba(255,240,250,0.6)
  Note over Caller,Utils: Grouping and Flattening
  Caller->>Utils: group_by_property(items, prop, default)
  Utils-->>Caller: {group_key: [items]}

  Caller->>Utils: flatten_nested_list(nested, max_depth?)
  Utils-->>Caller: flattened_sequence
  end
Loading

Estimated code review effort

🎯 3 (Moderate) | ⏱️ ~20 minutes

Pre-merge checks (1 passed, 1 warning, 1 inconclusive)

❌ Failed checks (1 warning, 1 inconclusive)
Check name Status Explanation Resolution
Docstring Coverage ⚠️ Warning Docstring coverage is 0.00% which is insufficient. The required threshold is 80.00%. You can run @coderabbitai generate docstrings to improve docstring coverage.
Title Check ❓ Inconclusive The current title “Auto PR: fix/buggy_data_structures” appears to be auto-generated and merely reflects the branch name rather than summarizing the substantive changes, which include adding serialization, deserialization, deep-merge, grouping, and flattening utilities. It does not communicate the primary purpose or content of the pull request, making it too generic for teammates to understand the main update at a glance. Consequently, it does not meet the guideline of being a concise, descriptive summary of the main change. Please rename the pull request to a more descriptive title that clearly highlights the core additions, for example: “Add serialization, merging, grouping, and flattening utilities in buggy_data_structures module.” This will help reviewers quickly grasp the primary purpose and scope of the changes.
✅ Passed checks (1 passed)
Check name Status Explanation
Description Check ✅ Passed Check skipped - CodeRabbit’s high-level summary is enabled.

Poem

I hop through lists and keys with glee,
Nesting flattens under me.
I merge two burrows, neat and deep,
Serialize my carrot heap.
If JSON balks, I try a pickle—
Then thump my foot and scamper fickle!

✨ Finishing Touches
  • 📝 Generate Docstrings
🧪 Generate unit tests
  • Create PR with unit tests
  • Post copyable unit tests in a comment
  • Commit unit tests in branch fix/buggy_data_structures

Thanks for using CodeRabbit! It's free for OSS, and your support helps us grow. If you like it, consider giving us a shout-out.

❤️ Share

Comment @coderabbitai help to get the list of available commands and usage tips.

@jj-devhub jj-devhub marked this pull request as ready for review September 10, 2025 08:13
Copy link

@coderabbitai coderabbitai bot left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Actionable comments posted: 2

Caution

Some comments are outside the diff and can’t be posted inline due to platform limitations.

⚠️ Outside diff range comments (1)
buggy_data_structures.py (1)

70-117: Eliminate import-time side effects; move demos under a main guard and tighten catches.

Library modules shouldn’t print or run code on import. Guard demos and avoid blind except Exception.

-# Test improved scenarios
-class CustomClass:
-    def __init__(self, value):
-        self.value = value
-    
-    def __str__(self):
-        return f"CustomClass({self.value})"
-
-# This will now work with JSON using default=str
-custom_obj = CustomClass(42)
-try:
-    serialized = serialize_data(custom_obj, "json")
-    print(f"Serialized: {serialized}")
-    
-    # Test with dict containing custom object
-    complex_data = {"obj": custom_obj, "number": 123}
-    serialized_complex = serialize_data(complex_data, "json")
-    print(f"Complex serialized: {serialized_complex}")
-except Exception as e:
-    print(f"Serialization error: {e}")
-
-# This won't modify original dict
-original_dict = {"a": 1, "nested": {"x": 1}}
-other_dict = {"b": 2, "nested": {"y": 2}}
-merged = deep_merge_dicts(original_dict, other_dict)
-print(f"Original unchanged: {original_dict}")
-print(f"Merged result: {merged}")
-
-# This will handle missing property gracefully
-items = [{"name": "Alice", "age": 30}, {"name": "Bob"}]
-try:
-    grouped = group_by_property(items, "age", "unknown_age")
-    print(f"Grouped with defaults: {grouped}")
-except Exception as e:
-    print(f"Grouping error: {e}")
-
-# This will handle deep nesting properly
-nested = [1, [2, [3, 4]], 5]
-print(f"Fully flattened: {flatten_nested_list(nested)}")
-print(f"Limited depth flattened: {flatten_nested_list(nested, max_depth=2)}")
-
-# Test error handling
-try:
-    bad_json = '{"incomplete": '
-    deserialize_data(bad_json, "json")
-except ValueError as e:
-    print(f"Deserialization error handled: {e}")
+if __name__ == "__main__":
+    # Test improved scenarios
+    class CustomClass:
+        def __init__(self, value):
+            self.value = value
+        def __str__(self):
+            return f"CustomClass({self.value})"
+
+    # This will now work with JSON using default=str
+    custom_obj = CustomClass(42)
+    try:
+        serialized = serialize_data(custom_obj, "json")
+        print(f"Serialized: {serialized}")
+        # Test with dict containing custom object
+        complex_data = {"obj": custom_obj, "number": 123}
+        serialized_complex = serialize_data(complex_data, "json")
+        print(f"Complex serialized: {serialized_complex}")
+    except ValueError as e:
+        print(f"Serialization error: {e}")
+
+    # This won't modify original dict
+    original_dict = {"a": 1, "nested": {"x": 1}}
+    other_dict = {"b": 2, "nested": {"y": 2}}
+    merged = deep_merge_dicts(original_dict, other_dict)
+    print(f"Original unchanged: {original_dict}")
+    print(f"Merged result: {merged}")
+
+    # This will handle missing property gracefully
+    items = [{"name": "Alice", "age": 30}, {"name": "Bob"}]
+    grouped = group_by_property(items, "age", "unknown_age")
+    print(f"Grouped with defaults: {grouped}")
+
+    # This will handle deep nesting properly
+    nested = [1, [2, [3, 4]], 5]
+    print(f"Fully flattened: {flatten_nested_list(nested)}")
+    print(f"Limited depth flattened: {flatten_nested_list(nested, max_depth=2)}")
+
+    # Test error handling
+    try:
+        bad_json = '{"incomplete": '
+        deserialize_data(bad_json, "json")
+    except ValueError as e:
+        print(f"Deserialization error handled: {e}")
🧹 Nitpick comments (3)
buggy_data_structures.py (3)

6-16: Chain exceptions and include PicklingError; use highest pickle protocol.

Wrap PicklingError and preserve the original traceback; also prefer HIGHEST_PROTOCOL.

@@
-        elif format_type == "pickle":
-            return pickle.dumps(data)
+        elif format_type == "pickle":
+            return pickle.dumps(data, protocol=pickle.HIGHEST_PROTOCOL)
@@
-    except (TypeError, ValueError) as e:
-        raise ValueError(f"Serialization failed: {e}")
+    except (TypeError, ValueError, pickle.PicklingError) as e:
+        raise ValueError(f"Serialization failed: {e}") from e

30-38: Avoid sharing references from dict2 during merge.

If value is a dict/list (or any mutable), the merged result will alias dict2’s objects. Deepcopy on assignment to keep the result independent.

@@
-        else:
-            result[key] = value
+        else:
+            result[key] = copy.deepcopy(value)

40-52: Handle unhashable group keys.

Grouping by a property that is a list/dict raises TypeError when used as a dict key. Fallback to default group.

@@
-            groups[group_key].append(item)
-        except (KeyError, AttributeError):
+            groups[group_key].append(item)
+        except (KeyError, AttributeError, TypeError):
             groups[default_group].append(item)
📜 Review details

Configuration used: CodeRabbit UI

Review profile: CHILL

Plan: Pro

📥 Commits

Reviewing files that changed from the base of the PR and between 8be3567 and ef40a0c.

📒 Files selected for processing (1)
  • buggy_data_structures.py (1 hunks)
🧰 Additional context used
🪛 Ruff (0.12.2)
buggy_data_structures.py

14-14: Abstract raise to an inner function

(TRY301)


14-14: Avoid specifying long messages outside the exception class

(TRY003)


16-16: Within an except clause, raise exceptions with raise ... from err or raise ... from None to distinguish them from errors in exception handling

(B904)


16-16: Avoid specifying long messages outside the exception class

(TRY003)


24-24: pickle and modules that wrap it can be unsafe when used to deserialize untrusted data, possible security issue

(S301)


26-26: Abstract raise to an inner function

(TRY301)


26-26: Avoid specifying long messages outside the exception class

(TRY003)


28-28: Within an except clause, raise exceptions with raise ... from err or raise ... from None to distinguish them from errors in exception handling

(B904)


28-28: Avoid specifying long messages outside the exception class

(TRY003)


88-88: Do not catch blind exception: Exception

(BLE001)


103-103: Do not catch blind exception: Exception

(BLE001)

Comment on lines +18 to +28
def deserialize_data(data, format_type):
# Bug fixed: add error handling for corrupted data
try:
if format_type == "json":
return json.loads(data)
elif format_type == "pickle":
return pickle.loads(data)
else:
raise ValueError(f"Unsupported format: {format_type}")
except (json.JSONDecodeError, pickle.UnpicklingError, ValueError) as e:
raise ValueError(f"Deserialization failed: {e}")
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

Block insecure pickle deserialization by default; improve error chaining and type checks.

Unpickling untrusted data is RCE-prone. Require an explicit flag and tighten exception handling.

-def deserialize_data(data, format_type):
+def deserialize_data(data, format_type, *, allow_pickle=False):
@@
-        elif format_type == "pickle":
-            return pickle.loads(data)
+        elif format_type == "pickle":
+            if not allow_pickle:
+                raise ValueError("Pickle deserialization is disabled by default for security.")
+            if not isinstance(data, (bytes, bytearray, memoryview)):
+                raise TypeError("Pickle deserialization requires a bytes-like object.")
+            return pickle.loads(data)
@@
-    except (json.JSONDecodeError, pickle.UnpicklingError, ValueError) as e:
-        raise ValueError(f"Deserialization failed: {e}")
+    except (json.JSONDecodeError, UnicodeDecodeError, pickle.UnpicklingError, AttributeError, ValueError, TypeError) as e:
+        raise ValueError(f"Deserialization failed: {e}") from e
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def deserialize_data(data, format_type):
# Bug fixed: add error handling for corrupted data
try:
if format_type == "json":
return json.loads(data)
elif format_type == "pickle":
return pickle.loads(data)
else:
raise ValueError(f"Unsupported format: {format_type}")
except (json.JSONDecodeError, pickle.UnpicklingError, ValueError) as e:
raise ValueError(f"Deserialization failed: {e}")
def deserialize_data(data, format_type, *, allow_pickle=False):
# Bug fixed: add error handling for corrupted data
try:
if format_type == "json":
return json.loads(data)
elif format_type == "pickle":
if not allow_pickle:
raise ValueError("Pickle deserialization is disabled by default for security.")
if not isinstance(data, (bytes, bytearray, memoryview)):
raise TypeError("Pickle deserialization requires a bytes-like object.")
return pickle.loads(data)
else:
raise ValueError(f"Unsupported format: {format_type}")
except (json.JSONDecodeError, UnicodeDecodeError, pickle.UnpicklingError, AttributeError, ValueError, TypeError) as e:
raise ValueError(f"Deserialization failed: {e}") from e
🧰 Tools
🪛 Ruff (0.12.2)

24-24: pickle and modules that wrap it can be unsafe when used to deserialize untrusted data, possible security issue

(S301)


26-26: Abstract raise to an inner function

(TRY301)


26-26: Avoid specifying long messages outside the exception class

(TRY003)


28-28: Within an except clause, raise exceptions with raise ... from err or raise ... from None to distinguish them from errors in exception handling

(B904)


28-28: Avoid specifying long messages outside the exception class

(TRY003)

Comment on lines +54 to +69
def flatten_nested_list(nested_list, max_depth=None):
# Bug fixed: handle deeply nested structures and non-list items
def _flatten_recursive(item, current_depth=0):
if max_depth is not None and current_depth >= max_depth:
return [item]

if isinstance(item, (list, tuple)):
flattened = []
for sub_item in item:
flattened.extend(_flatten_recursive(sub_item, current_depth + 1))
return flattened
else:
return [item]

return _flatten_recursive(nested_list)

Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

⚠️ Potential issue

max_depth=0 returns an extra wrapper; fix flatten semantics.

Current implementation returns [nested_list] when max_depth=0. Adjust recursion depth and return shape.

-def flatten_nested_list(nested_list, max_depth=None):
-    # Bug fixed: handle deeply nested structures and non-list items
-    def _flatten_recursive(item, current_depth=0):
-        if max_depth is not None and current_depth >= max_depth:
-            return [item]
-        
-        if isinstance(item, (list, tuple)):
-            flattened = []
-            for sub_item in item:
-                flattened.extend(_flatten_recursive(sub_item, current_depth + 1))
-            return flattened
-        else:
-            return [item]
-    
-    return _flatten_recursive(nested_list)
+def flatten_nested_list(nested_list, max_depth=None):
+    # Flattens nested sequences up to max_depth levels; max_depth=0 returns a shallow copy.
+    def _flatten_recursive(item, current_depth=-1):
+        if isinstance(item, (list, tuple)) and (max_depth is None or current_depth < max_depth):
+            for sub in item:
+                yield from _flatten_recursive(sub, current_depth + 1)
+        else:
+            yield item
+    if max_depth == 0 and isinstance(nested_list, (list, tuple)):
+        return list(nested_list)
+    return list(_flatten_recursive(nested_list))
📝 Committable suggestion

‼️ IMPORTANT
Carefully review the code before committing. Ensure that it accurately replaces the highlighted code, contains no missing lines, and has no issues with indentation. Thoroughly test & benchmark the code to ensure it meets the requirements.

Suggested change
def flatten_nested_list(nested_list, max_depth=None):
# Bug fixed: handle deeply nested structures and non-list items
def _flatten_recursive(item, current_depth=0):
if max_depth is not None and current_depth >= max_depth:
return [item]
if isinstance(item, (list, tuple)):
flattened = []
for sub_item in item:
flattened.extend(_flatten_recursive(sub_item, current_depth + 1))
return flattened
else:
return [item]
return _flatten_recursive(nested_list)
def flatten_nested_list(nested_list, max_depth=None):
# Flattens nested sequences up to max_depth levels; max_depth=0 returns a shallow copy.
def _flatten_recursive(item, current_depth=-1):
if isinstance(item, (list, tuple)) and (max_depth is None or current_depth < max_depth):
for sub in item:
yield from _flatten_recursive(sub, current_depth + 1)
else:
yield item
if max_depth == 0 and isinstance(nested_list, (list, tuple)):
return list(nested_list)
return list(_flatten_recursive(nested_list))

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants