- State Space Models, Convolution, SSA, SSM (Spectral Submanifolds)
- Neural and Controlled ODE, Neural PDE, Geometric Learning
- Operator Learning, Physics-informed learning, and multimodeling
- Spatial-Temporal Graph Modeling: Graph convolution and metric tensors
- Riemmannian models; time series generation
- AI for science: mathematical modelling principles
| Student | Title | Links |
|---|---|---|
| Dorin Daniil | Применение римановой геометрии для классификации пространственно-временных рядов | Slides, Code |
| Nikita Kiselev | Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion | Slides, Code |
| Petr Babkin | Modern State Space Models: S4, S5, MAMBA, HIPPO | Slides, Code |
| Student | Title | Links |
|---|---|---|
| Dorin Daniil | Решение двумерных задач Римана в газовой динамике | Slides |
| Nikita Kiselev | Rayleigh–Bénard Convection | Slides, Code |
| Petr Babkin | Модели с лагранжианом и гамильтонианом | Slides, Code |