Consider a circular membrane of radius
The transverse displacement
The complete solution is a linear combination of normal modes: $$ z(r,\theta,t) = \sum_{m=0}^\infty \sum_{n=1}^\infty A_{mn} J_m\left(\frac{\alpha_{mn}r}{R}\right) \cos(m\theta + \phi_{mn}) \cos(\omega_{mn}t + \psi_{mn}) $$
Where:
-
$$J_m$$ : Bessel function of first kind, order$$m$$ -
$$\alpha_{mn}$$ :$$n$$ -th positive root of$$J_m$$ -
$$\omega_{mn} = c\frac{\alpha_{mn}}{R}$$ : Mode frequency -
$$A_{mn}$$ : Mode amplitude -
$$\phi_{mn}, \psi_{mn}$$ : Phase constants
The surface normal vector
Assume vertical incidence (along
Using the law of reflection: $$ \mathbf{v}_r = \mathbf{v}_i - 2\frac{\mathbf{v}_i \cdot \mathbf{n}}{|\mathbf{n}|^2}\mathbf{n} \approx (-2\frac{\partial z}{\partial x}, -2\frac{\partial z}{\partial y}, 1) $$
At screen distance
We need
First compute polar derivatives:
Radial derivative: $$ \begin{aligned} \frac{\partial z}{\partial r} &= \sum_{m,n} A_{mn} \frac{\alpha_{mn}}{R} J_m'\left(\frac{\alpha_{mn}r_0}{R}\right) \cos(m\theta_0 + \phi_{mn}) \cos(\omega_{mn}t + \psi_{mn}) \ J_m'(x) &= \frac{1}{2}[J_{m-1}(x) - J_{m+1}(x)] \quad \text{(Bessel derivative identity)} \end{aligned} $$
Angular derivative: $$ \frac{\partial z}{\partial \theta} = -\sum_{m,n} A_{mn} m J_m\left(\frac{\alpha_{mn}r_0}{R}\right) \sin(m\theta_0 + \phi_{mn}) \cos(\omega_{mn}t + \psi_{mn}) $$
Transform to Cartesian coordinates: $$ \begin{aligned} \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial r}\cos\theta_0 - \frac{1}{r_0}\frac{\partial z}{\partial \theta}\sin\theta_0 \ \frac{\partial z}{\partial y} &= \frac{\partial z}{\partial r}\sin\theta_0 + \frac{1}{r_0}\frac{\partial z}{\partial \theta}\cos\theta_0 \end{aligned} $$
Substitute into screen coordinates:
X-coordinate: $$ \begin{aligned} x_{\text{screen}}(t) &= -2L \sum_{m,n} A_{mn} \cos(\omega_{mn}t + \psi_{mn}) \Biggl[ \frac{\alpha_{mn}}{R} J_m'\left(\frac{\alpha_{mn}r_0}{R}\right) \cos\theta_0 \cos(m\theta_0 + \phi_{mn}) \ &\quad + \frac{m}{r_0} J_m\left(\frac{\alpha_{mn}r_0}{R}\right) \sin\theta_0 \sin(m\theta_0 + \phi_{mn}) \Biggr] \end{aligned} $$
Y-coordinate: $$ \begin{aligned} y_{\text{screen}}(t) &= -2L \sum_{m,n} A_{mn} \cos(\omega_{mn}t + \psi_{mn}) \Biggl[ \frac{\alpha_{mn}}{R} J_m'\left(\frac{\alpha_{mn}r_0}{R}\right) \sin\theta_0 \cos(m\theta_0 + \phi_{mn}) \ &\quad - \frac{m}{r_0} J_m\left(\frac{\alpha_{mn}r_0}{R}\right) \cos\theta_0 \sin(m\theta_0 + \phi_{mn}) \Biggr] \end{aligned} $$
We introduce the following constants to group the constant terms:
With these definitions, the equations can be rewritten as:
We define the following constants that group all time-independent terms:
Substituting these constants into the original equations:
These equations show that the trajectory of the laser point on the screen is a combination of oscillations in
-
Mode Coupling: Each mode contributes terms proportional to
$$\omega_{mn}t + \psi_{mn}$$ -
Time Dependence:
$$\cos(\omega_{mn}t + \psi_{mn})$$ creates time modulation - Frequency Mixing: For multiple modes, cross terms generate: $$ \cos(\omega_{pq}t)\cos(\omega_{rs}t) \propto \cos[(\omega_{pq} \pm \omega_{rs})t] $$
-
Lissajous Figures: When
$$\omega_{pq}/\omega_{rs}$$ is rational, curves close; irrational ratios produce non-repeating patterns
For a single