Skip to content

Simulation and analysis of laser reflection patterns from vibrating circular membranes using Bessel function solutions. Models membrane oscillations, computes laser trajectories, and visualizes resulting patterns for theoretical and experimental comparison.

Notifications You must be signed in to change notification settings

fercho111/laser-vibration-mapping

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Laser Reflection Pattern from a Vibrating Circular Membrane

Physical System

Consider a circular membrane of radius $$R$$ vibrating under tension. A laser reflects off a point $$(r_0, \theta_0)$$ on the membrane and projects onto a screen at distance $$L$$. We derive the pattern traced by the laser during vibration.

Governance Equation

The transverse displacement $$z(r,\theta,t)$$ satisfies the wave equation in polar coordinates: $$ \nabla^2 z = \frac{1}{v^2} \frac{\partial^2 z}{\partial t^2} $$ For time-harmonic solutions, this reduces to the Helmholtz equation: $$ \left(\nabla^2 + k^2\right) z = 0 $$

General Solution

The complete solution is a linear combination of normal modes: $$ z(r,\theta,t) = \sum_{m=0}^\infty \sum_{n=1}^\infty A_{mn} J_m\left(\frac{\alpha_{mn}r}{R}\right) \cos(m\theta + \phi_{mn}) \cos(\omega_{mn}t + \psi_{mn}) $$

Where:

  • $$J_m$$: Bessel function of first kind, order $$m$$
  • $$\alpha_{mn}$$: $$n$$-th positive root of $$J_m$$
  • $$\omega_{mn} = c\frac{\alpha_{mn}}{R}$$: Mode frequency
  • $$A_{mn}$$: Mode amplitude
  • $$\phi_{mn}, \psi_{mn}$$: Phase constants

Reflection Geometry

The surface normal vector $$\mathbf{n}$$ determines reflection direction. For small displacements ($$|\nabla z| \ll 1$$): $$ \mathbf{n} \approx \left(-\frac{\partial z}{\partial x}, -\frac{\partial z}{\partial y}, 1\right) $$

Incident Laser

Assume vertical incidence (along $$\hat{z}$$): $$ \mathbf{v}_i = (0,0,1) $$

Reflected Direction

Using the law of reflection: $$ \mathbf{v}_r = \mathbf{v}_i - 2\frac{\mathbf{v}_i \cdot \mathbf{n}}{|\mathbf{n}|^2}\mathbf{n} \approx (-2\frac{\partial z}{\partial x}, -2\frac{\partial z}{\partial y}, 1) $$

Screen Projection

At screen distance $$L$$, coordinates become: $$ x_{\text{screen}} = -2L \frac{\partial z}{\partial x}\bigg|{\substack{r=r_0\ \theta=\theta_0}},\quad y{\text{screen}} = -2L \frac{\partial z}{\partial y}\bigg|_{\substack{r=r_0\ \theta=\theta_0}} $$

Gradient Calculation

We need $$\partial z/\partial x$$ and $$\partial z/\partial y$$ at $$(r_0, \theta_0)$$.

Polar Gradient Components

First compute polar derivatives:

Radial derivative: $$ \begin{aligned} \frac{\partial z}{\partial r} &= \sum_{m,n} A_{mn} \frac{\alpha_{mn}}{R} J_m'\left(\frac{\alpha_{mn}r_0}{R}\right) \cos(m\theta_0 + \phi_{mn}) \cos(\omega_{mn}t + \psi_{mn}) \ J_m'(x) &= \frac{1}{2}[J_{m-1}(x) - J_{m+1}(x)] \quad \text{(Bessel derivative identity)} \end{aligned} $$

Angular derivative: $$ \frac{\partial z}{\partial \theta} = -\sum_{m,n} A_{mn} m J_m\left(\frac{\alpha_{mn}r_0}{R}\right) \sin(m\theta_0 + \phi_{mn}) \cos(\omega_{mn}t + \psi_{mn}) $$

Cartesian Conversion

Transform to Cartesian coordinates: $$ \begin{aligned} \frac{\partial z}{\partial x} &= \frac{\partial z}{\partial r}\cos\theta_0 - \frac{1}{r_0}\frac{\partial z}{\partial \theta}\sin\theta_0 \ \frac{\partial z}{\partial y} &= \frac{\partial z}{\partial r}\sin\theta_0 + \frac{1}{r_0}\frac{\partial z}{\partial \theta}\cos\theta_0 \end{aligned} $$

Final Parametric Equations

Substitute into screen coordinates:

X-coordinate: $$ \begin{aligned} x_{\text{screen}}(t) &= -2L \sum_{m,n} A_{mn} \cos(\omega_{mn}t + \psi_{mn}) \Biggl[ \frac{\alpha_{mn}}{R} J_m'\left(\frac{\alpha_{mn}r_0}{R}\right) \cos\theta_0 \cos(m\theta_0 + \phi_{mn}) \ &\quad + \frac{m}{r_0} J_m\left(\frac{\alpha_{mn}r_0}{R}\right) \sin\theta_0 \sin(m\theta_0 + \phi_{mn}) \Biggr] \end{aligned} $$

Y-coordinate: $$ \begin{aligned} y_{\text{screen}}(t) &= -2L \sum_{m,n} A_{mn} \cos(\omega_{mn}t + \psi_{mn}) \Biggl[ \frac{\alpha_{mn}}{R} J_m'\left(\frac{\alpha_{mn}r_0}{R}\right) \sin\theta_0 \cos(m\theta_0 + \phi_{mn}) \ &\quad - \frac{m}{r_0} J_m\left(\frac{\alpha_{mn}r_0}{R}\right) \cos\theta_0 \sin(m\theta_0 + \phi_{mn}) \Biggr] \end{aligned} $$

We introduce the following constants to group the constant terms:

$$ B_{mn}^x = \frac{\alpha_{mn}}{R} J_m'!\left(\frac{\alpha_{mn}r_0}{R}\right) \cos\theta_0,\quad C_{mn}^x = \frac{m}{r_0} J_m!\left(\frac{\alpha_{mn}r_0}{R}\right) \sin\theta_0, $$ $$ B_{mn}^y = \frac{\alpha_{mn}}{R} J_m'!\left(\frac{\alpha_{mn}r_0}{R}\right) \sin\theta_0,\quad C_{mn}^y = \frac{m}{r_0} J_m!\left(\frac{\alpha_{mn}r_0}{R}\right) \cos\theta_0. $$

With these definitions, the equations can be rewritten as:

$$ \begin{aligned} x_{\text{screen}}(t) &= -2L \sum_{m,n} A_{mn} \cos(\omega_{mn}t + \psi_{mn}) \Bigl[ B_{mn}^x \cos(m\theta_0 + \phi_{mn}) + C_{mn}^x \sin(m\theta_0 + \phi_{mn}) \Bigr], \\ y_{\text{screen}}(t) &= -2L \sum_{m,n} A_{mn} \cos(\omega_{mn}t + \psi_{mn}) \Bigl[ B_{mn}^y \cos(m\theta_0 + \phi_{mn}) - C_{mn}^y \sin(m\theta_0 + \phi_{mn}) \Bigr]. \end{aligned} $$

We define the following constants that group all time-independent terms:

$$ D_{mn}^x = A_{mn} \bigl[ B_{mn}^x \cos(m\theta_0 + \phi_{mn}) + C_{mn}^x \sin(m\theta_0 + \phi_{mn}) \bigr], $$ $$ D_{mn}^y = A_{mn} \bigl[ B_{mn}^y \cos(m\theta_0 + \phi_{mn}) - C_{mn}^y \sin(m\theta_0 + \phi_{mn}) \bigr]. $$

Substituting these constants into the original equations:

$$ x_{\text{screen}}(t) = -2L \sum_{m,n} D_{mn}^x \cos(\omega_{mn}t + \psi_{mn}), $$

$$ y_{\text{screen}}(t) = -2L \sum_{m,n} D_{mn}^y \cos(\omega_{mn}t + \psi_{mn}). $$

These equations show that the trajectory of the laser point on the screen is a combination of oscillations in $$x$$ and $$y$$, where the coefficients $$D_{mn}^x$$ and $$D_{mn}^y$$ encapsulate all spatial and modal dependencies, leaving the temporal evolution governed solely by the terms $$\cos(\omega_{mn}t + \psi_{mn})$$.

Key Observations

  1. Mode Coupling: Each mode contributes terms proportional to $$\omega_{mn}t + \psi_{mn}$$
  2. Time Dependence: $$\cos(\omega_{mn}t + \psi_{mn})$$ creates time modulation
  3. Frequency Mixing: For multiple modes, cross terms generate: $$ \cos(\omega_{pq}t)\cos(\omega_{rs}t) \propto \cos[(\omega_{pq} \pm \omega_{rs})t] $$
  4. Lissajous Figures: When $$\omega_{pq}/\omega_{rs}$$ is rational, curves close; irrational ratios produce non-repeating patterns

Special Case: Single Mode

For a single $$(m,n)$$ mode: $$ \begin{cases} x_{\text{screen}}(t) = C_x \cos(\omega t + \psi) \ y_{\text{screen}}(t) = C_y \cos(\omega t + \psi) \end{cases} $$ This traces an ellipse. Adding modes breaks this symmetry.

About

Simulation and analysis of laser reflection patterns from vibrating circular membranes using Bessel function solutions. Models membrane oscillations, computes laser trajectories, and visualizes resulting patterns for theoretical and experimental comparison.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages