Skip to content
Open

commit #5500

Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 30 additions & 31 deletions tests/layers/test_attention_layer.py
Original file line number Diff line number Diff line change
Expand Up @@ -66,6 +66,9 @@ def setUp(self):
paddle.set_device("gpu")
paddle.set_default_dtype("bfloat16")

# os.environ["FD_ATTENTION_BACKEND"] = "FLASH_ATTN"
# os.environ["FLAGS_flash_attn_version"] = "3"

self.model_dir = self.create_model_config_json()
self.fd_config = self.create_fd_config_from_model_path(self.model_dir, tensor_parallel_size=1)
self.fd_config.parallel_config.tp_group = [0]
Expand Down Expand Up @@ -125,7 +128,7 @@ def create_model_config_json(self) -> str:
"hidden_size": 8192,
"num_attention_heads": 64,
"num_key_value_heads": 8,
"num_hidden_layers": 2,
"num_hidden_layers": 54,
}
model_dir = tempfile.mkdtemp(prefix="tmp_model_config_")
config_path = os.path.join(model_dir, "config.json")
Expand Down Expand Up @@ -302,27 +305,21 @@ def test_decode_performance_with_prefill(self):
# Test parameters
test_steps = 100

# prefill_batch_size = 1
# prefill_seq_len = 4096

# prefill_hidden_states = paddle.randn(
# [prefill_batch_size * prefill_seq_len, self.fd_config.model_config.hidden_size],
# dtype=act_tensor_dtype,
# )
prefill_batch_size = 1
prefill_seq_len = 4096

# forward_meta = self.create_forward_meta(
# batch_size=prefill_batch_size,
# seq_len=prefill_seq_len,
# mode=ForwardMode.EXTEND,
# fd_config=self.fd_config,
# attn_backend=self.attn_backend,
# cache_quant_type_str=self.cache_quant_type_str,
# )

# self.attn_backend.init_attention_metadata(forward_meta)
# self.attn_forward(forward_meta, prefill_hidden_states)
forward_meta, prefill_hidden_states = self.create_forward_meta(
batch_size=prefill_batch_size,
seq_len=prefill_seq_len,
mode=ForwardMode.EXTEND,
fd_config=self.fd_config,
attn_backend=self.attn_backend,
cache_quant_type_str=self.cache_quant_type_str,
)

# paddle.device.synchronize()
self.attn_backend.init_attention_metadata(forward_meta)
self.attn_forward(forward_meta, prefill_hidden_states)
paddle.device.synchronize()

# import paddle.profiler as profiler
# p = profiler.Profiler(
Expand All @@ -332,22 +329,24 @@ def test_decode_performance_with_prefill(self):
# p.start()
# p.step()

# start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
# end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
# for i in range(test_steps):
# start_events[i].record()
start_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
end_events = [paddle.device.cuda.Event(enable_timing=True) for _ in range(test_steps)]
for i in range(test_steps):
start_events[i].record()

# self.attn_forward(forward_meta, prefill_hidden_states)
self.attn_forward(forward_meta, prefill_hidden_states)

# end_events[i].record()
# paddle.device.synchronize()
end_events[i].record()
paddle.device.synchronize()

# times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:]
# print(times[-5:])
# return
times = np.array([round(s.elapsed_time(e), 1) for s, e in zip(start_events, end_events)])[1:]
print(times[-5:])
del forward_meta

# p.stop()

# ----------------------decoder ---------------------#

# p = profiler.Profiler(
# targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU],
# on_trace_ready=profiler.export_chrome_tracing("./profile_log"),
Expand All @@ -359,7 +358,7 @@ def test_decode_performance_with_prefill(self):
for decode_batch_size in [32, 16, 8, 4, 2]:
forward_meta, hidden_states = self.create_forward_meta(
batch_size=decode_batch_size,
seq_len=36 * 1024,
seq_len=8 * 1024,
mode=ForwardMode.DECODE,
fd_config=self.fd_config,
attn_backend=self.attn_backend,
Expand Down
Loading