diff --git a/lib/node_modules/@stdlib/stats/base/dists/laplace/ctor/benchmark/benchmark.js b/lib/node_modules/@stdlib/stats/base/dists/laplace/ctor/benchmark/benchmark.js index a616200f1eef..cadcbcd4e334 100644 --- a/lib/node_modules/@stdlib/stats/base/dists/laplace/ctor/benchmark/benchmark.js +++ b/lib/node_modules/@stdlib/stats/base/dists/laplace/ctor/benchmark/benchmark.js @@ -21,8 +21,7 @@ // MODULES // var bench = require( '@stdlib/bench' ); -var Float64Array = require( '@stdlib/array/float64' ); -var uniform = require( '@stdlib/random/base/uniform' ); +var uniform = require( '@stdlib/random/array/uniform' ); var isnan = require( '@stdlib/math/base/assert/is-nan' ); var EPS = require( '@stdlib/constants/float64/eps' ); var pkg = require( './../package.json' ).name; @@ -33,22 +32,20 @@ var Laplace = require( './../lib' ); bench( pkg+'::instantiation', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var i; - len = 100; - mu = new Float64Array( len ); - b = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - mu[ i ] = uniform( EPS, 10.0 ); - b[ i ] = uniform( EPS, 10.0 ); - } + opts = { + 'dtype': 'float64' + }; + mu = uniform( 100, EPS, 10.0, opts ); + b = uniform( 100, EPS, 10.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist = new Laplace( mu[ i % len ], b[ i % len ] ); + dist = new Laplace( mu[ i % mu.length ], b[ i % b.length ] ); if ( !( dist instanceof Laplace ) ) { bm.fail( 'should return a distribution instance' ); } @@ -89,7 +86,7 @@ bench( pkg+'::get:mu', function benchmark( bm ) { bench( pkg+'::set:mu', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var y; @@ -97,17 +94,17 @@ bench( pkg+'::set:mu', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - y = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - y[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + y = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = y[ i % len ]; - if ( dist.mu !== y[ i % len ] ) { + dist.mu = y[ i % y.length ]; + if ( dist.mu !== y[ i % y.length ] ) { bm.fail( 'should return set value' ); } } @@ -147,7 +144,7 @@ bench( pkg+'::get:b', function benchmark( bm ) { bench( pkg+'::set:b', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var y; @@ -155,17 +152,17 @@ bench( pkg+'::set:b', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - y = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - y[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + y = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.b = y[ i % len ]; - if ( dist.b !== y[ i % len ] ) { + dist.b = y[ i % y.length ]; + if ( dist.b !== y[ i % y.length ] ) { bm.fail( 'should return set value' ); } } @@ -179,7 +176,7 @@ bench( pkg+'::set:b', function benchmark( bm ) { bench( pkg+':entropy', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -188,16 +185,16 @@ bench( pkg+':entropy', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; dist = new Laplace( mu, b ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.entropy; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -213,7 +210,7 @@ bench( pkg+':entropy', function benchmark( bm ) { bench( pkg+':kurtosis', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -222,16 +219,16 @@ bench( pkg+':kurtosis', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.kurtosis; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -247,7 +244,7 @@ bench( pkg+':kurtosis', function benchmark( bm ) { bench( pkg+':mean', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -256,16 +253,16 @@ bench( pkg+':mean', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.mean; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -281,7 +278,7 @@ bench( pkg+':mean', function benchmark( bm ) { bench( pkg+':median', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var x; var b; @@ -290,16 +287,16 @@ bench( pkg+':median', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.median; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -315,7 +312,7 @@ bench( pkg+':median', function benchmark( bm ) { bench( pkg+':mode', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -324,16 +321,16 @@ bench( pkg+':mode', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 1.0 + EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS + 1.0, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.mode; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -349,7 +346,7 @@ bench( pkg+':mode', function benchmark( bm ) { bench( pkg+':skewness', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -358,16 +355,16 @@ bench( pkg+':skewness', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.skewness; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -383,7 +380,7 @@ bench( pkg+':skewness', function benchmark( bm ) { bench( pkg+':stdev', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -392,16 +389,16 @@ bench( pkg+':stdev', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.stdev; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -417,7 +414,7 @@ bench( pkg+':stdev', function benchmark( bm ) { bench( pkg+':variance', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -426,16 +423,16 @@ bench( pkg+':variance', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( EPS, 100.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, EPS, 100.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - dist.mu = x[ i % len ]; + dist.mu = x[ i % x.length ]; y = dist.variance; if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); @@ -451,7 +448,7 @@ bench( pkg+':variance', function benchmark( bm ) { bench( pkg+':cdf', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -460,16 +457,16 @@ bench( pkg+':cdf', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; dist = new Laplace( mu, b ); - x = new Float64Array( len ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - y = dist.cdf( x[ i % len ] ); + y = dist.cdf( x[ i % x.length ] ); if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); } @@ -484,7 +481,7 @@ bench( pkg+':cdf', function benchmark( bm ) { bench( pkg+':logcdf', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -493,16 +490,16 @@ bench( pkg+':logcdf', function benchmark( bm ) { mu = 1.0; b = 2.0; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - len = 100; - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - y = dist.logcdf( x[ i % len ] ); + y = dist.logcdf( x[ i % x.length ] ); if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); } @@ -517,7 +514,7 @@ bench( pkg+':logcdf', function benchmark( bm ) { bench( pkg+':logpdf', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -526,16 +523,16 @@ bench( pkg+':logpdf', function benchmark( bm ) { mu = 1.0; b = 2.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - y = dist.logpdf( x[ i % len ] ); + y = dist.logpdf( x[ i % x.length ] ); if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); } @@ -550,7 +547,7 @@ bench( pkg+':logpdf', function benchmark( bm ) { bench( pkg+':mgf', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -559,16 +556,16 @@ bench( pkg+':mgf', function benchmark( bm ) { mu = 2.0; b = 0.2; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - y = dist.mgf( x[ i % len ] ); + y = dist.mgf( x[ i % x.length ] ); if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); } @@ -583,7 +580,7 @@ bench( pkg+':mgf', function benchmark( bm ) { bench( pkg+':pdf', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -592,16 +589,16 @@ bench( pkg+':pdf', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( -3.0, 3.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, -3.0, 3.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - y = dist.pdf( x[ i % len ] ); + y = dist.pdf( x[ i % x.length ] ); if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); } @@ -616,7 +613,7 @@ bench( pkg+':pdf', function benchmark( bm ) { bench( pkg+':quantile', function benchmark( bm ) { var dist; - var len; + var opts; var mu; var b; var x; @@ -625,16 +622,16 @@ bench( pkg+':quantile', function benchmark( bm ) { mu = 2.0; b = 3.0; - len = 100; - x = new Float64Array( len ); dist = new Laplace( mu, b ); - for ( i = 0; i < len; i++ ) { - x[ i ] = uniform( 0.0, 1.0 ); - } + + opts = { + 'dtype': 'float64' + }; + x = uniform( 100, 0.0, 1.0, opts ); bm.tic(); for ( i = 0; i < bm.iterations; i++ ) { - y = dist.quantile( x[ i % len ] ); + y = dist.quantile( x[ i % x.length ] ); if ( isnan( y ) ) { bm.fail( 'should not return NaN' ); }