@@ -1391,8 +1391,7 @@ apply: cvgeM.
13911391- apply: mule_def_fin => //.
13921392 apply: integral_fune_fin_num => //.
13931393 exact: integrableS _ _ _ f_int.
1394- - suff: semi_sigma_additive nu; first exact.
1395- exact: nu_sigma_additive.
1394+ - exact: nu_sigma_additive.
13961395- exact: cvg_cst.
13971396Qed .
13981397
@@ -1416,3 +1415,29 @@ HB.instance Definition _ :=
14161415 @Measure_isProbability.Build _ _ R wgt wgt_setT.
14171416
14181417End weighted.
1418+
1419+ From mathcomp Require Import matrix.
1420+
1421+ Section vector_expectation.
1422+ Context d (T : measurableType d) (R : realType).
1423+
1424+ Local Open Scope ereal_scope.
1425+
1426+ Definition matrix_expectation m n (P : probability T R) (X : 'M[{RV P >-> R}]_(m, n)) :=
1427+ \matrix_(i < m, j < n) 'E_P[X i j].
1428+
1429+ Notation "'mE_ P [ X ]" := (@matrix_expectation _ _ P X).
1430+
1431+
1432+ Definition mulmxfun {m n p} (A : 'M[{mfun T >-> R}]_(m, n)) (B : 'M[{mfun T >-> R}]_(n, p)) F G z : 'M[{mfun T >-> R}]_(m, p) :=
1433+ \matrix_(i, k) \big[F/z]_j (G (A i j) (B j k))%R.
1434+
1435+
1436+ Context m n (P : probability T R) (X : 'M[{RV P >-> R}]_(m, n)) (Y : 'M[{RV P >-> R}]_(m, n)).
1437+ (* Definition x : {RV P >-> R} := [the {RV P >-> R} of (X 0%O 0%O \-cst (fine 'E_P[X 0%O 0%O]))%R]. *)
1438+ Definition A : 'M[{RV P >-> R}]_(m,n) := (\matrix_(i, j) [the {RV P >-> R} of (X i j \-cst (fine 'E_P[X i j]))])%R.
1439+ Definition B : 'M[{RV P >-> R}]_(m,n) := (\matrix_(i, j) [the {RV P >-> R} of (Y i j \-cst (fine 'E_P[Y i j]))])%R.
1440+ Definition matrix_covariance :=
1441+ 'mE_P[ mulmxfun A B^T (GRing.add_fun) (GRing.mul_fun) (cst 0) ]%R.
1442+
1443+ End vector_expectation.
0 commit comments