diff --git a/poetry.lock b/poetry.lock new file mode 100644 index 0000000..8a5d951 --- /dev/null +++ b/poetry.lock @@ -0,0 +1,1545 @@ +# This file is automatically @generated by Poetry 1.5.1 and should not be changed by hand. + +[[package]] +name = "altgraph" +version = "0.17.4" +description = "Python graph (network) package" +optional = false +python-versions = "*" +files = [ + {file = "altgraph-0.17.4-py2.py3-none-any.whl", hash = "sha256:642743b4750de17e655e6711601b077bc6598dbfa3ba5fa2b2a35ce12b508dff"}, + {file = "altgraph-0.17.4.tar.gz", hash = "sha256:1b5afbb98f6c4dcadb2e2ae6ab9fa994bbb8c1d75f4fa96d340f9437ae454406"}, +] + +[[package]] +name = "black" +version = "22.12.0" +description = "The uncompromising code formatter." +optional = false +python-versions = ">=3.7" +files = [ + {file = "black-22.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9eedd20838bd5d75b80c9f5487dbcb06836a43833a37846cf1d8c1cc01cef59d"}, + {file = "black-22.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:159a46a4947f73387b4d83e87ea006dbb2337eab6c879620a3ba52699b1f4351"}, + {file = "black-22.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d30b212bffeb1e252b31dd269dfae69dd17e06d92b87ad26e23890f3efea366f"}, + {file = "black-22.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:7412e75863aa5c5411886804678b7d083c7c28421210180d67dfd8cf1221e1f4"}, + {file = "black-22.12.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c116eed0efb9ff870ded8b62fe9f28dd61ef6e9ddd28d83d7d264a38417dcee2"}, + {file = "black-22.12.0-cp37-cp37m-win_amd64.whl", hash = "sha256:1f58cbe16dfe8c12b7434e50ff889fa479072096d79f0a7f25e4ab8e94cd8350"}, + {file = "black-22.12.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77d86c9f3db9b1bf6761244bc0b3572a546f5fe37917a044e02f3166d5aafa7d"}, + {file = "black-22.12.0-cp38-cp38-win_amd64.whl", hash = "sha256:82d9fe8fee3401e02e79767016b4907820a7dc28d70d137eb397b92ef3cc5bfc"}, + {file = "black-22.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:101c69b23df9b44247bd88e1d7e90154336ac4992502d4197bdac35dd7ee3320"}, + {file = "black-22.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:559c7a1ba9a006226f09e4916060982fd27334ae1998e7a38b3f33a37f7a2148"}, + {file = "black-22.12.0-py3-none-any.whl", hash = "sha256:436cc9167dd28040ad90d3b404aec22cedf24a6e4d7de221bec2730ec0c97bcf"}, + {file = "black-22.12.0.tar.gz", hash = "sha256:229351e5a18ca30f447bf724d007f890f97e13af070bb6ad4c0a441cd7596a2f"}, +] + +[package.dependencies] +click = ">=8.0.0" +mypy-extensions = ">=0.4.3" +pathspec = ">=0.9.0" +platformdirs = ">=2" +tomli = {version = ">=1.1.0", markers = "python_full_version < \"3.11.0a7\""} + +[package.extras] +colorama = ["colorama (>=0.4.3)"] +d = ["aiohttp (>=3.7.4)"] +jupyter = ["ipython (>=7.8.0)", "tokenize-rt (>=3.2.0)"] +uvloop = ["uvloop (>=0.15.2)"] + +[[package]] +name = "cfgv" +version = "3.4.0" +description = "Validate configuration and produce human readable error messages." +optional = false +python-versions = ">=3.8" +files = [ + {file = "cfgv-3.4.0-py2.py3-none-any.whl", hash = "sha256:b7265b1f29fd3316bfcd2b330d63d024f2bfd8bcb8b0272f8e19a504856c48f9"}, + {file = "cfgv-3.4.0.tar.gz", hash = "sha256:e52591d4c5f5dead8e0f673fb16db7949d2cfb3f7da4582893288f0ded8fe560"}, +] + +[[package]] +name = "cli-ui" +version = "0.17.2" +description = "Build Nice User Interfaces In The Terminal" +optional = false +python-versions = ">=3.7,<4.0" +files = [ + {file = "cli-ui-0.17.2.tar.gz", hash = "sha256:2f67e50cf474e76ad160c3e660bbad98bf8b8dfb8d847765f3a261b7e13c05fa"}, + {file = "cli_ui-0.17.2-py3-none-any.whl", hash = "sha256:6a1ebdbbcd83a0fa06b2f63f4434082a3ba8664aebedd91f1ff86b9e4289d53e"}, +] + +[package.dependencies] +colorama = ">=0.4.1,<0.5.0" +tabulate = ">=0.8.3,<0.9.0" +unidecode = ">=1.0.23,<2.0.0" + +[[package]] +name = "click" +version = "8.1.7" +description = "Composable command line interface toolkit" +optional = false +python-versions = ">=3.7" +files = [ + {file = "click-8.1.7-py3-none-any.whl", hash = "sha256:ae74fb96c20a0277a1d615f1e4d73c8414f5a98db8b799a7931d1582f3390c28"}, + {file = "click-8.1.7.tar.gz", hash = "sha256:ca9853ad459e787e2192211578cc907e7594e294c7ccc834310722b41b9ca6de"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[[package]] +name = "colorama" +version = "0.4.6" +description = "Cross-platform colored terminal text." +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] + +[[package]] +name = "contextlib2" +version = "21.6.0" +description = "Backports and enhancements for the contextlib module" +optional = false +python-versions = ">=3.6" +files = [ + {file = "contextlib2-21.6.0-py2.py3-none-any.whl", hash = "sha256:3fbdb64466afd23abaf6c977627b75b6139a5a3e8ce38405c5b413aed7a0471f"}, + {file = "contextlib2-21.6.0.tar.gz", hash = "sha256:ab1e2bfe1d01d968e1b7e8d9023bc51ef3509bba217bb730cee3827e1ee82869"}, +] + +[[package]] +name = "contourpy" +version = "1.2.0" +description = "Python library for calculating contours of 2D quadrilateral grids" +optional = false +python-versions = ">=3.9" +files = [ + {file = "contourpy-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:0274c1cb63625972c0c007ab14dd9ba9e199c36ae1a231ce45d725cbcbfd10a8"}, + {file = "contourpy-1.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ab459a1cbbf18e8698399c595a01f6dcc5c138220ca3ea9e7e6126232d102bb4"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fdd887f17c2f4572ce548461e4f96396681212d858cae7bd52ba3310bc6f00f"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5d16edfc3fc09968e09ddffada434b3bf989bf4911535e04eada58469873e28e"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1c203f617abc0dde5792beb586f827021069fb6d403d7f4d5c2b543d87edceb9"}, + {file = "contourpy-1.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b69303ceb2e4d4f146bf82fda78891ef7bcd80c41bf16bfca3d0d7eb545448aa"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:884c3f9d42d7218304bc74a8a7693d172685c84bd7ab2bab1ee567b769696df9"}, + {file = "contourpy-1.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4a1b1208102be6e851f20066bf0e7a96b7d48a07c9b0cfe6d0d4545c2f6cadab"}, + {file = "contourpy-1.2.0-cp310-cp310-win32.whl", hash = "sha256:34b9071c040d6fe45d9826cbbe3727d20d83f1b6110d219b83eb0e2a01d79488"}, + {file = "contourpy-1.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:bd2f1ae63998da104f16a8b788f685e55d65760cd1929518fd94cd682bf03e41"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:dd10c26b4eadae44783c45ad6655220426f971c61d9b239e6f7b16d5cdaaa727"}, + {file = "contourpy-1.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:5c6b28956b7b232ae801406e529ad7b350d3f09a4fde958dfdf3c0520cdde0dd"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ebeac59e9e1eb4b84940d076d9f9a6cec0064e241818bcb6e32124cc5c3e377a"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:139d8d2e1c1dd52d78682f505e980f592ba53c9f73bd6be102233e358b401063"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1e9dc350fb4c58adc64df3e0703ab076f60aac06e67d48b3848c23647ae4310e"}, + {file = "contourpy-1.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:18fc2b4ed8e4a8fe849d18dce4bd3c7ea637758c6343a1f2bae1e9bd4c9f4686"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:16a7380e943a6d52472096cb7ad5264ecee36ed60888e2a3d3814991a0107286"}, + {file = "contourpy-1.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8d8faf05be5ec8e02a4d86f616fc2a0322ff4a4ce26c0f09d9f7fb5330a35c95"}, + {file = "contourpy-1.2.0-cp311-cp311-win32.whl", hash = "sha256:67b7f17679fa62ec82b7e3e611c43a016b887bd64fb933b3ae8638583006c6d6"}, + {file = "contourpy-1.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:99ad97258985328b4f207a5e777c1b44a83bfe7cf1f87b99f9c11d4ee477c4de"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:575bcaf957a25d1194903a10bc9f316c136c19f24e0985a2b9b5608bdf5dbfe0"}, + {file = "contourpy-1.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:9e6c93b5b2dbcedad20a2f18ec22cae47da0d705d454308063421a3b290d9ea4"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:464b423bc2a009088f19bdf1f232299e8b6917963e2b7e1d277da5041f33a779"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:68ce4788b7d93e47f84edd3f1f95acdcd142ae60bc0e5493bfd120683d2d4316"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3d7d1f8871998cdff5d2ff6a087e5e1780139abe2838e85b0b46b7ae6cc25399"}, + {file = "contourpy-1.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6e739530c662a8d6d42c37c2ed52a6f0932c2d4a3e8c1f90692ad0ce1274abe0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:247b9d16535acaa766d03037d8e8fb20866d054d3c7fbf6fd1f993f11fc60ca0"}, + {file = "contourpy-1.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:461e3ae84cd90b30f8d533f07d87c00379644205b1d33a5ea03381edc4b69431"}, + {file = "contourpy-1.2.0-cp312-cp312-win32.whl", hash = "sha256:1c2559d6cffc94890b0529ea7eeecc20d6fadc1539273aa27faf503eb4656d8f"}, + {file = "contourpy-1.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:491b1917afdd8638a05b611a56d46587d5a632cabead889a5440f7c638bc6ed9"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5fd1810973a375ca0e097dee059c407913ba35723b111df75671a1976efa04bc"}, + {file = "contourpy-1.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:999c71939aad2780f003979b25ac5b8f2df651dac7b38fb8ce6c46ba5abe6ae9"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7caf9b241464c404613512d5594a6e2ff0cc9cb5615c9475cc1d9b514218ae8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:266270c6f6608340f6c9836a0fb9b367be61dde0c9a9a18d5ece97774105ff3e"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dbd50d0a0539ae2e96e537553aff6d02c10ed165ef40c65b0e27e744a0f10af8"}, + {file = "contourpy-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11f8d2554e52f459918f7b8e6aa20ec2a3bce35ce95c1f0ef4ba36fbda306df5"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:ce96dd400486e80ac7d195b2d800b03e3e6a787e2a522bfb83755938465a819e"}, + {file = "contourpy-1.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6d3364b999c62f539cd403f8123ae426da946e142312a514162adb2addd8d808"}, + {file = "contourpy-1.2.0-cp39-cp39-win32.whl", hash = "sha256:1c88dfb9e0c77612febebb6ac69d44a8d81e3dc60f993215425b62c1161353f4"}, + {file = "contourpy-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:78e6ad33cf2e2e80c5dfaaa0beec3d61face0fb650557100ee36db808bfa6843"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:be16975d94c320432657ad2402f6760990cb640c161ae6da1363051805fa8108"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b95a225d4948b26a28c08307a60ac00fb8671b14f2047fc5476613252a129776"}, + {file = "contourpy-1.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:0d7e03c0f9a4f90dc18d4e77e9ef4ec7b7bbb437f7f675be8e530d65ae6ef956"}, + {file = "contourpy-1.2.0.tar.gz", hash = "sha256:171f311cb758de7da13fc53af221ae47a5877be5a0843a9fe150818c51ed276a"}, +] + +[package.dependencies] +numpy = ">=1.20,<2.0" + +[package.extras] +bokeh = ["bokeh", "selenium"] +docs = ["furo", "sphinx (>=7.2)", "sphinx-copybutton"] +mypy = ["contourpy[bokeh,docs]", "docutils-stubs", "mypy (==1.6.1)", "types-Pillow"] +test = ["Pillow", "contourpy[test-no-images]", "matplotlib"] +test-no-images = ["pytest", "pytest-cov", "pytest-xdist", "wurlitzer"] + +[[package]] +name = "coverage" +version = "7.3.2" +description = "Code coverage measurement for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "coverage-7.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d872145f3a3231a5f20fd48500274d7df222e291d90baa2026cc5152b7ce86bf"}, + {file = "coverage-7.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:310b3bb9c91ea66d59c53fa4989f57d2436e08f18fb2f421a1b0b6b8cc7fffda"}, + {file = "coverage-7.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f47d39359e2c3779c5331fc740cf4bce6d9d680a7b4b4ead97056a0ae07cb49a"}, + {file = "coverage-7.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:aa72dbaf2c2068404b9870d93436e6d23addd8bbe9295f49cbca83f6e278179c"}, + {file = "coverage-7.3.2-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:beaa5c1b4777f03fc63dfd2a6bd820f73f036bfb10e925fce067b00a340d0f3f"}, + {file = "coverage-7.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:dbc1b46b92186cc8074fee9d9fbb97a9dd06c6cbbef391c2f59d80eabdf0faa6"}, + {file = "coverage-7.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:315a989e861031334d7bee1f9113c8770472db2ac484e5b8c3173428360a9148"}, + {file = "coverage-7.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:d1bc430677773397f64a5c88cb522ea43175ff16f8bfcc89d467d974cb2274f9"}, + {file = "coverage-7.3.2-cp310-cp310-win32.whl", hash = "sha256:a889ae02f43aa45032afe364c8ae84ad3c54828c2faa44f3bfcafecb5c96b02f"}, + {file = "coverage-7.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:c0ba320de3fb8c6ec16e0be17ee1d3d69adcda99406c43c0409cb5c41788a611"}, + {file = "coverage-7.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:ac8c802fa29843a72d32ec56d0ca792ad15a302b28ca6203389afe21f8fa062c"}, + {file = "coverage-7.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:89a937174104339e3a3ffcf9f446c00e3a806c28b1841c63edb2b369310fd074"}, + {file = "coverage-7.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e267e9e2b574a176ddb983399dec325a80dbe161f1a32715c780b5d14b5f583a"}, + {file = "coverage-7.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2443cbda35df0d35dcfb9bf8f3c02c57c1d6111169e3c85fc1fcc05e0c9f39a3"}, + {file = "coverage-7.3.2-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4175e10cc8dda0265653e8714b3174430b07c1dca8957f4966cbd6c2b1b8065a"}, + {file = "coverage-7.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0cbf38419fb1a347aaf63481c00f0bdc86889d9fbf3f25109cf96c26b403fda1"}, + {file = "coverage-7.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:5c913b556a116b8d5f6ef834038ba983834d887d82187c8f73dec21049abd65c"}, + {file = "coverage-7.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:1981f785239e4e39e6444c63a98da3a1db8e971cb9ceb50a945ba6296b43f312"}, + {file = "coverage-7.3.2-cp311-cp311-win32.whl", hash = "sha256:43668cabd5ca8258f5954f27a3aaf78757e6acf13c17604d89648ecc0cc66640"}, + {file = "coverage-7.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:e10c39c0452bf6e694511c901426d6b5ac005acc0f78ff265dbe36bf81f808a2"}, + {file = "coverage-7.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:4cbae1051ab791debecc4a5dcc4a1ff45fc27b91b9aee165c8a27514dd160836"}, + {file = "coverage-7.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:12d15ab5833a997716d76f2ac1e4b4d536814fc213c85ca72756c19e5a6b3d63"}, + {file = "coverage-7.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3c7bba973ebee5e56fe9251300c00f1579652587a9f4a5ed8404b15a0471f216"}, + {file = "coverage-7.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe494faa90ce6381770746077243231e0b83ff3f17069d748f645617cefe19d4"}, + {file = "coverage-7.3.2-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f6e9589bd04d0461a417562649522575d8752904d35c12907d8c9dfeba588faf"}, + {file = "coverage-7.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d51ac2a26f71da1b57f2dc81d0e108b6ab177e7d30e774db90675467c847bbdf"}, + {file = "coverage-7.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:99b89d9f76070237975b315b3d5f4d6956ae354a4c92ac2388a5695516e47c84"}, + {file = "coverage-7.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:fa28e909776dc69efb6ed975a63691bc8172b64ff357e663a1bb06ff3c9b589a"}, + {file = "coverage-7.3.2-cp312-cp312-win32.whl", hash = "sha256:289fe43bf45a575e3ab10b26d7b6f2ddb9ee2dba447499f5401cfb5ecb8196bb"}, + {file = "coverage-7.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:7dbc3ed60e8659bc59b6b304b43ff9c3ed858da2839c78b804973f613d3e92ed"}, + {file = "coverage-7.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:f94b734214ea6a36fe16e96a70d941af80ff3bfd716c141300d95ebc85339738"}, + {file = "coverage-7.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:af3d828d2c1cbae52d34bdbb22fcd94d1ce715d95f1a012354a75e5913f1bda2"}, + {file = "coverage-7.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:630b13e3036e13c7adc480ca42fa7afc2a5d938081d28e20903cf7fd687872e2"}, + {file = "coverage-7.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c9eacf273e885b02a0273bb3a2170f30e2d53a6d53b72dbe02d6701b5296101c"}, + {file = "coverage-7.3.2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d8f17966e861ff97305e0801134e69db33b143bbfb36436efb9cfff6ec7b2fd9"}, + {file = "coverage-7.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b4275802d16882cf9c8b3d057a0839acb07ee9379fa2749eca54efbce1535b82"}, + {file = "coverage-7.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:72c0cfa5250f483181e677ebc97133ea1ab3eb68645e494775deb6a7f6f83901"}, + {file = "coverage-7.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:cb536f0dcd14149425996821a168f6e269d7dcd2c273a8bff8201e79f5104e76"}, + {file = "coverage-7.3.2-cp38-cp38-win32.whl", hash = "sha256:307adb8bd3abe389a471e649038a71b4eb13bfd6b7dd9a129fa856f5c695cf92"}, + {file = "coverage-7.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:88ed2c30a49ea81ea3b7f172e0269c182a44c236eb394718f976239892c0a27a"}, + {file = "coverage-7.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:b631c92dfe601adf8f5ebc7fc13ced6bb6e9609b19d9a8cd59fa47c4186ad1ce"}, + {file = "coverage-7.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:d3d9df4051c4a7d13036524b66ecf7a7537d14c18a384043f30a303b146164e9"}, + {file = "coverage-7.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5f7363d3b6a1119ef05015959ca24a9afc0ea8a02c687fe7e2d557705375c01f"}, + {file = "coverage-7.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:2f11cc3c967a09d3695d2a6f03fb3e6236622b93be7a4b5dc09166a861be6d25"}, + {file = "coverage-7.3.2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:149de1d2401ae4655c436a3dced6dd153f4c3309f599c3d4bd97ab172eaf02d9"}, + {file = "coverage-7.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3a4006916aa6fee7cd38db3bfc95aa9c54ebb4ffbfc47c677c8bba949ceba0a6"}, + {file = "coverage-7.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9028a3871280110d6e1aa2df1afd5ef003bab5fb1ef421d6dc748ae1c8ef2ebc"}, + {file = "coverage-7.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:9f805d62aec8eb92bab5b61c0f07329275b6f41c97d80e847b03eb894f38d083"}, + {file = "coverage-7.3.2-cp39-cp39-win32.whl", hash = "sha256:d1c88ec1a7ff4ebca0219f5b1ef863451d828cccf889c173e1253aa84b1e07ce"}, + {file = "coverage-7.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b4767da59464bb593c07afceaddea61b154136300881844768037fd5e859353f"}, + {file = "coverage-7.3.2-pp38.pp39.pp310-none-any.whl", hash = "sha256:ae97af89f0fbf373400970c0a21eef5aa941ffeed90aee43650b81f7d7f47637"}, + {file = "coverage-7.3.2.tar.gz", hash = "sha256:be32ad29341b0170e795ca590e1c07e81fc061cb5b10c74ce7203491484404ef"}, +] + +[package.dependencies] +tomli = {version = "*", optional = true, markers = "python_full_version <= \"3.11.0a6\" and extra == \"toml\""} + +[package.extras] +toml = ["tomli"] + +[[package]] +name = "cycler" +version = "0.12.1" +description = "Composable style cycles" +optional = false +python-versions = ">=3.8" +files = [ + {file = "cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30"}, + {file = "cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c"}, +] + +[package.extras] +docs = ["ipython", "matplotlib", "numpydoc", "sphinx"] +tests = ["pytest", "pytest-cov", "pytest-xdist"] + +[[package]] +name = "distlib" +version = "0.3.7" +description = "Distribution utilities" +optional = false +python-versions = "*" +files = [ + {file = "distlib-0.3.7-py2.py3-none-any.whl", hash = "sha256:2e24928bc811348f0feb63014e97aaae3037f2cf48712d51ae61df7fd6075057"}, + {file = "distlib-0.3.7.tar.gz", hash = "sha256:9dafe54b34a028eafd95039d5e5d4851a13734540f1331060d31c9916e7147a8"}, +] + +[[package]] +name = "docopt" +version = "0.6.2" +description = "Pythonic argument parser, that will make you smile" +optional = false +python-versions = "*" +files = [ + {file = "docopt-0.6.2.tar.gz", hash = "sha256:49b3a825280bd66b3aa83585ef59c4a8c82f2c8a522dbe754a8bc8d08c85c491"}, +] + +[[package]] +name = "et-xmlfile" +version = "1.1.0" +description = "An implementation of lxml.xmlfile for the standard library" +optional = false +python-versions = ">=3.6" +files = [ + {file = "et_xmlfile-1.1.0-py3-none-any.whl", hash = "sha256:a2ba85d1d6a74ef63837eed693bcb89c3f752169b0e3e7ae5b16ca5e1b3deada"}, + {file = "et_xmlfile-1.1.0.tar.gz", hash = "sha256:8eb9e2bc2f8c97e37a2dc85a09ecdcdec9d8a396530a6d5a33b30b9a92da0c5c"}, +] + +[[package]] +name = "exceptiongroup" +version = "1.2.0" +description = "Backport of PEP 654 (exception groups)" +optional = false +python-versions = ">=3.7" +files = [ + {file = "exceptiongroup-1.2.0-py3-none-any.whl", hash = "sha256:4bfd3996ac73b41e9b9628b04e079f193850720ea5945fc96a08633c66912f14"}, + {file = "exceptiongroup-1.2.0.tar.gz", hash = "sha256:91f5c769735f051a4290d52edd0858999b57e5876e9f85937691bd4c9fa3ed68"}, +] + +[package.extras] +test = ["pytest (>=6)"] + +[[package]] +name = "filelock" +version = "3.13.1" +description = "A platform independent file lock." +optional = false +python-versions = ">=3.8" +files = [ + {file = "filelock-3.13.1-py3-none-any.whl", hash = "sha256:57dbda9b35157b05fb3e58ee91448612eb674172fab98ee235ccb0b5bee19a1c"}, + {file = "filelock-3.13.1.tar.gz", hash = "sha256:521f5f56c50f8426f5e03ad3b281b490a87ef15bc6c526f168290f0c7148d44e"}, +] + +[package.extras] +docs = ["furo (>=2023.9.10)", "sphinx (>=7.2.6)", "sphinx-autodoc-typehints (>=1.24)"] +testing = ["covdefaults (>=2.3)", "coverage (>=7.3.2)", "diff-cover (>=8)", "pytest (>=7.4.3)", "pytest-cov (>=4.1)", "pytest-mock (>=3.12)", "pytest-timeout (>=2.2)"] +typing = ["typing-extensions (>=4.8)"] + +[[package]] +name = "fonttools" +version = "4.46.0" +description = "Tools to manipulate font files" +optional = false +python-versions = ">=3.8" +files = [ + {file = "fonttools-4.46.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:d4e69e2c7f93b695d2e6f18f709d501d945f65c1d237dafaabdd23cd935a5276"}, + {file = "fonttools-4.46.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:25852f0c63df0af022f698464a4a80f7d1d5bd974bcd22f995f6b4ad198e32dd"}, + {file = "fonttools-4.46.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:adab73618d0a328b203a0e242b3eba60a2b5662d9cb2bd16ed9c52af8a7d86af"}, + {file = "fonttools-4.46.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2cf923a4a556ab4cc4c52f69a4a2db624cf5a2cf360394368b40c5152fe3321e"}, + {file = "fonttools-4.46.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:87c214197712cc14fd2a4621efce2a9c501a77041232b789568149a8a3161517"}, + {file = "fonttools-4.46.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:156ae342a1ed1fe38e180de471e98fbf5b2b6ae280fa3323138569c4ca215844"}, + {file = "fonttools-4.46.0-cp310-cp310-win32.whl", hash = "sha256:c506e3d3a9e898caee4dc094f34b49c5566870d5a2d1ca2125f0a9f35ecc2205"}, + {file = "fonttools-4.46.0-cp310-cp310-win_amd64.whl", hash = "sha256:f8bc3973ed58893c4107993e0a7ae34901cb572b5e798249cbef35d30801ffd4"}, + {file = "fonttools-4.46.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:982f69855ac258260f51048d9e0c53c5f19881138cc7ca06deb38dc4b97404b6"}, + {file = "fonttools-4.46.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:2c23c59d321d62588620f2255cf951270bf637d88070f38ed8b5e5558775b86c"}, + {file = "fonttools-4.46.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0e94244ec24a940ecfbe5b31c975c8a575d5ed2d80f9a280ce3b21fa5dc9c34"}, + {file = "fonttools-4.46.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a9f9cdd7ef63d1b8ac90db335762451452426b3207abd79f60da510cea62da5"}, + {file = "fonttools-4.46.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:ca9eceebe70035b057ce549e2054cad73e95cac3fe91a9d827253d1c14618204"}, + {file = "fonttools-4.46.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8be6adfa4e15977075278dd0a0bae74dec59be7b969b5ceed93fb86af52aa5be"}, + {file = "fonttools-4.46.0-cp311-cp311-win32.whl", hash = "sha256:7b5636f5706d49f13b6d610fe54ee662336cdf56b5a6f6683c0b803e23d826d2"}, + {file = "fonttools-4.46.0-cp311-cp311-win_amd64.whl", hash = "sha256:49ea0983e55fd7586a809787cd4644a7ae471e53ab8ddc016f9093b400e32646"}, + {file = "fonttools-4.46.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:7b460720ce81773da1a3e7cc964c48e1e11942b280619582a897fa0117b56a62"}, + {file = "fonttools-4.46.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:8bee9f4fc8c99824a424ae45c789ee8c67cb84f8e747afa7f83b7d3cef439c3b"}, + {file = "fonttools-4.46.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d3d7b96aba96e05e8c911ce2dfc5acc6a178b8f44f6aa69371ab91aa587563da"}, + {file = "fonttools-4.46.0-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e6aeb5c340416d11a3209d75c48d13e72deea9e1517837dd1522c1fd1f17c11"}, + {file = "fonttools-4.46.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:c779f8701deedf41908f287aeb775b8a6f59875ad1002b98ac6034ae4ddc1b7b"}, + {file = "fonttools-4.46.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce199227ce7921eaafdd4f96536f16b232d6b580ce74ce337de544bf06cb2752"}, + {file = "fonttools-4.46.0-cp312-cp312-win32.whl", hash = "sha256:1c9937c4dd1061afd22643389445fabda858af5e805860ec3082a4bc07c7a720"}, + {file = "fonttools-4.46.0-cp312-cp312-win_amd64.whl", hash = "sha256:a9fa52ef8fd14d7eb3d813e1451e7ace3e1eebfa9b7237d3f81fee8f3de6a114"}, + {file = "fonttools-4.46.0-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:c94564b1f3b5dd87e73577610d85115b1936edcc596deaf84a31bbe70e17456b"}, + {file = "fonttools-4.46.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:a4a50a1dfad7f7ba5ca3f99cc73bf5cdac67ceade8e4b355a877521f20ad1b63"}, + {file = "fonttools-4.46.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:89c2c520f9492844ecd6316d20c6c7a157b5c0cb73a1411b3db28ee304f30122"}, + {file = "fonttools-4.46.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e5b7905fd68eacb7cc56a13139da5c312c45baae6950dd00b02563c54508a041"}, + {file = "fonttools-4.46.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:8485cc468288e213f31afdaf1fdda3c79010f542559fbba936a54f4644df2570"}, + {file = "fonttools-4.46.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:87c3299da7da55394fb324349db0ede38114a46aafd0e7dfcabfecd28cdd94c3"}, + {file = "fonttools-4.46.0-cp38-cp38-win32.whl", hash = "sha256:f5f1423a504ccc329efb5aa79738de83d38c072be5308788dde6bd419969d7f5"}, + {file = "fonttools-4.46.0-cp38-cp38-win_amd64.whl", hash = "sha256:6d4a4ebcc76e30898ff3296ea786491c70e183f738319ae2629e0d44f17ece42"}, + {file = "fonttools-4.46.0-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c9a0e422ab79e5cb2b47913be6a4b5fd20c4c7ac34a24f3691a4e099e965e0b8"}, + {file = "fonttools-4.46.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:13ac0cba2fc63fa4b232f2a7971f35f35c6eaf10bd1271fa96d4ce6253a8acfd"}, + {file = "fonttools-4.46.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:795150d5edc595e1a2cfb3d65e8f4f3d027704fc2579f8990d381bef6b188eb6"}, + {file = "fonttools-4.46.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d00fc63131dcac6b25f50a5a129758438317e54e3ce5587163f7058de4b0e933"}, + {file = "fonttools-4.46.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:3033b55f401a622de2630b3982234d97219d89b058607b87927eccb0f922313c"}, + {file = "fonttools-4.46.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:e26e7fb908ae4f622813e7cb32cd2db6c24e3122bb3b98f25e832a2fe0e7e228"}, + {file = "fonttools-4.46.0-cp39-cp39-win32.whl", hash = "sha256:2d0eba685938c603f2f648dfc0aadbf8c6a4fe1c7ca608c2970a6ef39e00f254"}, + {file = "fonttools-4.46.0-cp39-cp39-win_amd64.whl", hash = "sha256:5200b01f463d97cc2b7ff8a1e3584151f4413e98cb8419da5f17d1dbb84cc214"}, + {file = "fonttools-4.46.0-py3-none-any.whl", hash = "sha256:5b627ed142398ea9202bd752c04311592558964d1a765fb2f78dc441a05633f4"}, + {file = "fonttools-4.46.0.tar.gz", hash = "sha256:2ae45716c27a41807d58a9f3f59983bdc8c0a46cb259e4450ab7e196253a9853"}, +] + +[package.extras] +all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=15.1.0)", "xattr", "zopfli (>=0.1.4)"] +graphite = ["lz4 (>=1.7.4.2)"] +interpolatable = ["munkres", "scipy"] +lxml = ["lxml (>=4.0,<5)"] +pathops = ["skia-pathops (>=0.5.0)"] +plot = ["matplotlib"] +repacker = ["uharfbuzz (>=0.23.0)"] +symfont = ["sympy"] +type1 = ["xattr"] +ufo = ["fs (>=2.2.0,<3)"] +unicode = ["unicodedata2 (>=15.1.0)"] +woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] + +[[package]] +name = "identify" +version = "2.5.32" +description = "File identification library for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "identify-2.5.32-py2.py3-none-any.whl", hash = "sha256:0b7656ef6cba81664b783352c73f8c24b39cf82f926f78f4550eda928e5e0545"}, + {file = "identify-2.5.32.tar.gz", hash = "sha256:5d9979348ec1a21c768ae07e0a652924538e8bce67313a73cb0f681cf08ba407"}, +] + +[package.extras] +license = ["ukkonen"] + +[[package]] +name = "iniconfig" +version = "2.0.0" +description = "brain-dead simple config-ini parsing" +optional = false +python-versions = ">=3.7" +files = [ + {file = "iniconfig-2.0.0-py3-none-any.whl", hash = "sha256:b6a85871a79d2e3b22d2d1b94ac2824226a63c6b741c88f7ae975f18b6778374"}, + {file = "iniconfig-2.0.0.tar.gz", hash = "sha256:2d91e135bf72d31a410b17c16da610a82cb55f6b0477d1a902134b24a455b8b3"}, +] + +[[package]] +name = "isort" +version = "5.12.0" +description = "A Python utility / library to sort Python imports." +optional = false +python-versions = ">=3.8.0" +files = [ + {file = "isort-5.12.0-py3-none-any.whl", hash = "sha256:f84c2818376e66cf843d497486ea8fed8700b340f308f076c6fb1229dff318b6"}, + {file = "isort-5.12.0.tar.gz", hash = "sha256:8bef7dde241278824a6d83f44a544709b065191b95b6e50894bdc722fcba0504"}, +] + +[package.extras] +colors = ["colorama (>=0.4.3)"] +pipfile-deprecated-finder = ["pip-shims (>=0.5.2)", "pipreqs", "requirementslib"] +plugins = ["setuptools"] +requirements-deprecated-finder = ["pip-api", "pipreqs"] + +[[package]] +name = "kiwisolver" +version = "1.4.5" +description = "A fast implementation of the Cassowary constraint solver" +optional = false +python-versions = ">=3.7" +files = [ + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:05703cf211d585109fcd72207a31bb170a0f22144d68298dc5e61b3c946518af"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:146d14bebb7f1dc4d5fbf74f8a6cb15ac42baadee8912eb84ac0b3b2a3dc6ac3"}, + {file = "kiwisolver-1.4.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6ef7afcd2d281494c0a9101d5c571970708ad911d028137cd558f02b851c08b4"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:9eaa8b117dc8337728e834b9c6e2611f10c79e38f65157c4c38e9400286f5cb1"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:ec20916e7b4cbfb1f12380e46486ec4bcbaa91a9c448b97023fde0d5bbf9e4ff"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:39b42c68602539407884cf70d6a480a469b93b81b7701378ba5e2328660c847a"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:aa12042de0171fad672b6c59df69106d20d5596e4f87b5e8f76df757a7c399aa"}, + {file = "kiwisolver-1.4.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2a40773c71d7ccdd3798f6489aaac9eee213d566850a9533f8d26332d626b82c"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:19df6e621f6d8b4b9c4d45f40a66839294ff2bb235e64d2178f7522d9170ac5b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:83d78376d0d4fd884e2c114d0621624b73d2aba4e2788182d286309ebdeed770"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:e391b1f0a8a5a10ab3b9bb6afcfd74f2175f24f8975fb87ecae700d1503cdee0"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:852542f9481f4a62dbb5dd99e8ab7aedfeb8fb6342349a181d4036877410f525"}, + {file = "kiwisolver-1.4.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59edc41b24031bc25108e210c0def6f6c2191210492a972d585a06ff246bb79b"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win32.whl", hash = "sha256:a6aa6315319a052b4ee378aa171959c898a6183f15c1e541821c5c59beaa0238"}, + {file = "kiwisolver-1.4.5-cp310-cp310-win_amd64.whl", hash = "sha256:d0ef46024e6a3d79c01ff13801cb19d0cad7fd859b15037aec74315540acc276"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:11863aa14a51fd6ec28688d76f1735f8f69ab1fabf388851a595d0721af042f5"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8ab3919a9997ab7ef2fbbed0cc99bb28d3c13e6d4b1ad36e97e482558a91be90"}, + {file = "kiwisolver-1.4.5-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:fcc700eadbbccbf6bc1bcb9dbe0786b4b1cb91ca0dcda336eef5c2beed37b797"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dfdd7c0b105af050eb3d64997809dc21da247cf44e63dc73ff0fd20b96be55a9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:76c6a5964640638cdeaa0c359382e5703e9293030fe730018ca06bc2010c4437"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:bbea0db94288e29afcc4c28afbf3a7ccaf2d7e027489c449cf7e8f83c6346eb9"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ceec1a6bc6cab1d6ff5d06592a91a692f90ec7505d6463a88a52cc0eb58545da"}, + {file = "kiwisolver-1.4.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:040c1aebeda72197ef477a906782b5ab0d387642e93bda547336b8957c61022e"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f91de7223d4c7b793867797bacd1ee53bfe7359bd70d27b7b58a04efbb9436c8"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:faae4860798c31530dd184046a900e652c95513796ef51a12bc086710c2eec4d"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:b0157420efcb803e71d1b28e2c287518b8808b7cf1ab8af36718fd0a2c453eb0"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:06f54715b7737c2fecdbf140d1afb11a33d59508a47bf11bb38ecf21dc9ab79f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:fdb7adb641a0d13bdcd4ef48e062363d8a9ad4a182ac7647ec88f695e719ae9f"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win32.whl", hash = "sha256:bb86433b1cfe686da83ce32a9d3a8dd308e85c76b60896d58f082136f10bffac"}, + {file = "kiwisolver-1.4.5-cp311-cp311-win_amd64.whl", hash = "sha256:6c08e1312a9cf1074d17b17728d3dfce2a5125b2d791527f33ffbe805200a355"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:32d5cf40c4f7c7b3ca500f8985eb3fb3a7dfc023215e876f207956b5ea26632a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:f846c260f483d1fd217fe5ed7c173fb109efa6b1fc8381c8b7552c5781756192"}, + {file = "kiwisolver-1.4.5-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5ff5cf3571589b6d13bfbfd6bcd7a3f659e42f96b5fd1c4830c4cf21d4f5ef45"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7269d9e5f1084a653d575c7ec012ff57f0c042258bf5db0954bf551c158466e7"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da802a19d6e15dffe4b0c24b38b3af68e6c1a68e6e1d8f30148c83864f3881db"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3aba7311af82e335dd1e36ffff68aaca609ca6290c2cb6d821a39aa075d8e3ff"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:763773d53f07244148ccac5b084da5adb90bfaee39c197554f01b286cf869228"}, + {file = "kiwisolver-1.4.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2270953c0d8cdab5d422bee7d2007f043473f9d2999631c86a223c9db56cbd16"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d099e745a512f7e3bbe7249ca835f4d357c586d78d79ae8f1dcd4d8adeb9bda9"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:74db36e14a7d1ce0986fa104f7d5637aea5c82ca6326ed0ec5694280942d1162"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:7e5bab140c309cb3a6ce373a9e71eb7e4873c70c2dda01df6820474f9889d6d4"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:0f114aa76dc1b8f636d077979c0ac22e7cd8f3493abbab152f20eb8d3cda71f3"}, + {file = "kiwisolver-1.4.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:88a2df29d4724b9237fc0c6eaf2a1adae0cdc0b3e9f4d8e7dc54b16812d2d81a"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win32.whl", hash = "sha256:72d40b33e834371fd330fb1472ca19d9b8327acb79a5821d4008391db8e29f20"}, + {file = "kiwisolver-1.4.5-cp312-cp312-win_amd64.whl", hash = "sha256:2c5674c4e74d939b9d91dda0fae10597ac7521768fec9e399c70a1f27e2ea2d9"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:3a2b053a0ab7a3960c98725cfb0bf5b48ba82f64ec95fe06f1d06c99b552e130"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3cd32d6c13807e5c66a7cbb79f90b553642f296ae4518a60d8d76243b0ad2898"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:59ec7b7c7e1a61061850d53aaf8e93db63dce0c936db1fda2658b70e4a1be709"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:da4cfb373035def307905d05041c1d06d8936452fe89d464743ae7fb8371078b"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:2400873bccc260b6ae184b2b8a4fec0e4082d30648eadb7c3d9a13405d861e89"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:1b04139c4236a0f3aff534479b58f6f849a8b351e1314826c2d230849ed48985"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:4e66e81a5779b65ac21764c295087de82235597a2293d18d943f8e9e32746265"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:7931d8f1f67c4be9ba1dd9c451fb0eeca1a25b89e4d3f89e828fe12a519b782a"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:b3f7e75f3015df442238cca659f8baa5f42ce2a8582727981cbfa15fee0ee205"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:bbf1d63eef84b2e8c89011b7f2235b1e0bf7dacc11cac9431fc6468e99ac77fb"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:4c380469bd3f970ef677bf2bcba2b6b0b4d5c75e7a020fb863ef75084efad66f"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win32.whl", hash = "sha256:9408acf3270c4b6baad483865191e3e582b638b1654a007c62e3efe96f09a9a3"}, + {file = "kiwisolver-1.4.5-cp37-cp37m-win_amd64.whl", hash = "sha256:5b94529f9b2591b7af5f3e0e730a4e0a41ea174af35a4fd067775f9bdfeee01a"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:11c7de8f692fc99816e8ac50d1d1aef4f75126eefc33ac79aac02c099fd3db71"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:53abb58632235cd154176ced1ae8f0d29a6657aa1aa9decf50b899b755bc2b93"}, + {file = "kiwisolver-1.4.5-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:88b9f257ca61b838b6f8094a62418421f87ac2a1069f7e896c36a7d86b5d4c29"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3195782b26fc03aa9c6913d5bad5aeb864bdc372924c093b0f1cebad603dd712"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fc579bf0f502e54926519451b920e875f433aceb4624a3646b3252b5caa9e0b6"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5a580c91d686376f0f7c295357595c5a026e6cbc3d77b7c36e290201e7c11ecb"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:cfe6ab8da05c01ba6fbea630377b5da2cd9bcbc6338510116b01c1bc939a2c18"}, + {file = "kiwisolver-1.4.5-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:d2e5a98f0ec99beb3c10e13b387f8db39106d53993f498b295f0c914328b1333"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:a51a263952b1429e429ff236d2f5a21c5125437861baeed77f5e1cc2d2c7c6da"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:3edd2fa14e68c9be82c5b16689e8d63d89fe927e56debd6e1dbce7a26a17f81b"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:74d1b44c6cfc897df648cc9fdaa09bc3e7679926e6f96df05775d4fb3946571c"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:76d9289ed3f7501012e05abb8358bbb129149dbd173f1f57a1bf1c22d19ab7cc"}, + {file = "kiwisolver-1.4.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:92dea1ffe3714fa8eb6a314d2b3c773208d865a0e0d35e713ec54eea08a66250"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win32.whl", hash = "sha256:5c90ae8c8d32e472be041e76f9d2f2dbff4d0b0be8bd4041770eddb18cf49a4e"}, + {file = "kiwisolver-1.4.5-cp38-cp38-win_amd64.whl", hash = "sha256:c7940c1dc63eb37a67721b10d703247552416f719c4188c54e04334321351ced"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:9407b6a5f0d675e8a827ad8742e1d6b49d9c1a1da5d952a67d50ef5f4170b18d"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:15568384086b6df3c65353820a4473575dbad192e35010f622c6ce3eebd57af9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:0dc9db8e79f0036e8173c466d21ef18e1befc02de8bf8aa8dc0813a6dc8a7046"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:cdc8a402aaee9a798b50d8b827d7ecf75edc5fb35ea0f91f213ff927c15f4ff0"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:6c3bd3cde54cafb87d74d8db50b909705c62b17c2099b8f2e25b461882e544ff"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:955e8513d07a283056b1396e9a57ceddbd272d9252c14f154d450d227606eb54"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:346f5343b9e3f00b8db8ba359350eb124b98c99efd0b408728ac6ebf38173958"}, + {file = "kiwisolver-1.4.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b9098e0049e88c6a24ff64545cdfc50807818ba6c1b739cae221bbbcbc58aad3"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:00bd361b903dc4bbf4eb165f24d1acbee754fce22ded24c3d56eec268658a5cf"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:7b8b454bac16428b22560d0a1cf0a09875339cab69df61d7805bf48919415901"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:f1d072c2eb0ad60d4c183f3fb44ac6f73fb7a8f16a2694a91f988275cbf352f9"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:31a82d498054cac9f6d0b53d02bb85811185bcb477d4b60144f915f3b3126342"}, + {file = "kiwisolver-1.4.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6512cb89e334e4700febbffaaa52761b65b4f5a3cf33f960213d5656cea36a77"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win32.whl", hash = "sha256:9db8ea4c388fdb0f780fe91346fd438657ea602d58348753d9fb265ce1bca67f"}, + {file = "kiwisolver-1.4.5-cp39-cp39-win_amd64.whl", hash = "sha256:59415f46a37f7f2efeec758353dd2eae1b07640d8ca0f0c42548ec4125492635"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:5c7b3b3a728dc6faf3fc372ef24f21d1e3cee2ac3e9596691d746e5a536de920"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:620ced262a86244e2be10a676b646f29c34537d0d9cc8eb26c08f53d98013390"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:378a214a1e3bbf5ac4a8708304318b4f890da88c9e6a07699c4ae7174c09a68d"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aaf7be1207676ac608a50cd08f102f6742dbfc70e8d60c4db1c6897f62f71523"}, + {file = "kiwisolver-1.4.5-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:ba55dce0a9b8ff59495ddd050a0225d58bd0983d09f87cfe2b6aec4f2c1234e4"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:fd32ea360bcbb92d28933fc05ed09bffcb1704ba3fc7942e81db0fd4f81a7892"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:5e7139af55d1688f8b960ee9ad5adafc4ac17c1c473fe07133ac092310d76544"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:dced8146011d2bc2e883f9bd68618b8247387f4bbec46d7392b3c3b032640126"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c9bf3325c47b11b2e51bca0824ea217c7cd84491d8ac4eefd1e409705ef092bd"}, + {file = "kiwisolver-1.4.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5794cf59533bc3f1b1c821f7206a3617999db9fbefc345360aafe2e067514929"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e368f200bbc2e4f905b8e71eb38b3c04333bddaa6a2464a6355487b02bb7fb09"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:e5d706eba36b4c4d5bc6c6377bb6568098765e990cfc21ee16d13963fab7b3e7"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:85267bd1aa8880a9c88a8cb71e18d3d64d2751a790e6ca6c27b8ccc724bcd5ad"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:210ef2c3a1f03272649aff1ef992df2e724748918c4bc2d5a90352849eb40bea"}, + {file = "kiwisolver-1.4.5-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:11d011a7574eb3b82bcc9c1a1d35c1d7075677fdd15de527d91b46bd35e935ee"}, + {file = "kiwisolver-1.4.5.tar.gz", hash = "sha256:e57e563a57fb22a142da34f38acc2fc1a5c864bc29ca1517a88abc963e60d6ec"}, +] + +[[package]] +name = "llvmlite" +version = "0.41.1" +description = "lightweight wrapper around basic LLVM functionality" +optional = false +python-versions = ">=3.8" +files = [ + {file = "llvmlite-0.41.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:c1e1029d47ee66d3a0c4d6088641882f75b93db82bd0e6178f7bd744ebce42b9"}, + {file = "llvmlite-0.41.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:150d0bc275a8ac664a705135e639178883293cf08c1a38de3bbaa2f693a0a867"}, + {file = "llvmlite-0.41.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1eee5cf17ec2b4198b509272cf300ee6577229d237c98cc6e63861b08463ddc6"}, + {file = "llvmlite-0.41.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0dd0338da625346538f1173a17cabf21d1e315cf387ca21b294ff209d176e244"}, + {file = "llvmlite-0.41.1-cp310-cp310-win32.whl", hash = "sha256:fa1469901a2e100c17eb8fe2678e34bd4255a3576d1a543421356e9c14d6e2ae"}, + {file = "llvmlite-0.41.1-cp310-cp310-win_amd64.whl", hash = "sha256:2b76acee82ea0e9304be6be9d4b3840208d050ea0dcad75b1635fa06e949a0ae"}, + {file = "llvmlite-0.41.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:210e458723436b2469d61b54b453474e09e12a94453c97ea3fbb0742ba5a83d8"}, + {file = "llvmlite-0.41.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:855f280e781d49e0640aef4c4af586831ade8f1a6c4df483fb901cbe1a48d127"}, + {file = "llvmlite-0.41.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b67340c62c93a11fae482910dc29163a50dff3dfa88bc874872d28ee604a83be"}, + {file = "llvmlite-0.41.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2181bb63ef3c607e6403813421b46982c3ac6bfc1f11fa16a13eaafb46f578e6"}, + {file = "llvmlite-0.41.1-cp311-cp311-win_amd64.whl", hash = "sha256:9564c19b31a0434f01d2025b06b44c7ed422f51e719ab5d24ff03b7560066c9a"}, + {file = "llvmlite-0.41.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5940bc901fb0325970415dbede82c0b7f3e35c2d5fd1d5e0047134c2c46b3281"}, + {file = "llvmlite-0.41.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:8b0a9a47c28f67a269bb62f6256e63cef28d3c5f13cbae4fab587c3ad506778b"}, + {file = "llvmlite-0.41.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f8afdfa6da33f0b4226af8e64cfc2b28986e005528fbf944d0a24a72acfc9432"}, + {file = "llvmlite-0.41.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8454c1133ef701e8c050a59edd85d238ee18bb9a0eb95faf2fca8b909ee3c89a"}, + {file = "llvmlite-0.41.1-cp38-cp38-win32.whl", hash = "sha256:2d92c51e6e9394d503033ffe3292f5bef1566ab73029ec853861f60ad5c925d0"}, + {file = "llvmlite-0.41.1-cp38-cp38-win_amd64.whl", hash = "sha256:df75594e5a4702b032684d5481db3af990b69c249ccb1d32687b8501f0689432"}, + {file = "llvmlite-0.41.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:04725975e5b2af416d685ea0769f4ecc33f97be541e301054c9f741003085802"}, + {file = "llvmlite-0.41.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:bf14aa0eb22b58c231243dccf7e7f42f7beec48970f2549b3a6acc737d1a4ba4"}, + {file = "llvmlite-0.41.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:92c32356f669e036eb01016e883b22add883c60739bc1ebee3a1cc0249a50828"}, + {file = "llvmlite-0.41.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:24091a6b31242bcdd56ae2dbea40007f462260bc9bdf947953acc39dffd54f8f"}, + {file = "llvmlite-0.41.1-cp39-cp39-win32.whl", hash = "sha256:880cb57ca49e862e1cd077104375b9d1dfdc0622596dfa22105f470d7bacb309"}, + {file = "llvmlite-0.41.1-cp39-cp39-win_amd64.whl", hash = "sha256:92f093986ab92e71c9ffe334c002f96defc7986efda18397d0f08534f3ebdc4d"}, + {file = "llvmlite-0.41.1.tar.gz", hash = "sha256:f19f767a018e6ec89608e1f6b13348fa2fcde657151137cb64e56d48598a92db"}, +] + +[[package]] +name = "macholib" +version = "1.16.3" +description = "Mach-O header analysis and editing" +optional = false +python-versions = "*" +files = [ + {file = "macholib-1.16.3-py2.py3-none-any.whl", hash = "sha256:0e315d7583d38b8c77e815b1ecbdbf504a8258d8b3e17b61165c6feb60d18f2c"}, + {file = "macholib-1.16.3.tar.gz", hash = "sha256:07ae9e15e8e4cd9a788013d81f5908b3609aa76f9b1421bae9c4d7606ec86a30"}, +] + +[package.dependencies] +altgraph = ">=0.17" + +[[package]] +name = "matplotlib" +version = "3.8.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.9" +files = [ + {file = "matplotlib-3.8.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:09796f89fb71a0c0e1e2f4bdaf63fb2cefc84446bb963ecdeb40dfee7dfa98c7"}, + {file = "matplotlib-3.8.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6f9c6976748a25e8b9be51ea028df49b8e561eed7809146da7a47dbecebab367"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b78e4f2cedf303869b782071b55fdde5987fda3038e9d09e58c91cc261b5ad18"}, + {file = "matplotlib-3.8.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e208f46cf6576a7624195aa047cb344a7f802e113bb1a06cfd4bee431de5e31"}, + {file = "matplotlib-3.8.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:46a569130ff53798ea5f50afce7406e91fdc471ca1e0e26ba976a8c734c9427a"}, + {file = "matplotlib-3.8.2-cp310-cp310-win_amd64.whl", hash = "sha256:830f00640c965c5b7f6bc32f0d4ce0c36dfe0379f7dd65b07a00c801713ec40a"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:d86593ccf546223eb75a39b44c32788e6f6440d13cfc4750c1c15d0fcb850b63"}, + {file = "matplotlib-3.8.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9a5430836811b7652991939012f43d2808a2db9b64ee240387e8c43e2e5578c8"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9576723858a78751d5aacd2497b8aef29ffea6d1c95981505877f7ac28215c6"}, + {file = "matplotlib-3.8.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5ba9cbd8ac6cf422f3102622b20f8552d601bf8837e49a3afed188d560152788"}, + {file = "matplotlib-3.8.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:03f9d160a29e0b65c0790bb07f4f45d6a181b1ac33eb1bb0dd225986450148f0"}, + {file = "matplotlib-3.8.2-cp311-cp311-win_amd64.whl", hash = "sha256:3773002da767f0a9323ba1a9b9b5d00d6257dbd2a93107233167cfb581f64717"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:4c318c1e95e2f5926fba326f68177dee364aa791d6df022ceb91b8221bd0a627"}, + {file = "matplotlib-3.8.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:091275d18d942cf1ee9609c830a1bc36610607d8223b1b981c37d5c9fc3e46a4"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1b0f3b8ea0e99e233a4bcc44590f01604840d833c280ebb8fe5554fd3e6cfe8d"}, + {file = "matplotlib-3.8.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d7b1704a530395aaf73912be741c04d181f82ca78084fbd80bc737be04848331"}, + {file = "matplotlib-3.8.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:533b0e3b0c6768eef8cbe4b583731ce25a91ab54a22f830db2b031e83cca9213"}, + {file = "matplotlib-3.8.2-cp312-cp312-win_amd64.whl", hash = "sha256:0f4fc5d72b75e2c18e55eb32292659cf731d9d5b312a6eb036506304f4675630"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:deaed9ad4da0b1aea77fe0aa0cebb9ef611c70b3177be936a95e5d01fa05094f"}, + {file = "matplotlib-3.8.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:172f4d0fbac3383d39164c6caafd3255ce6fa58f08fc392513a0b1d3b89c4f89"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c7d36c2209d9136cd8e02fab1c0ddc185ce79bc914c45054a9f514e44c787917"}, + {file = "matplotlib-3.8.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5864bdd7da445e4e5e011b199bb67168cdad10b501750367c496420f2ad00843"}, + {file = "matplotlib-3.8.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ef8345b48e95cee45ff25192ed1f4857273117917a4dcd48e3905619bcd9c9b8"}, + {file = "matplotlib-3.8.2-cp39-cp39-win_amd64.whl", hash = "sha256:7c48d9e221b637c017232e3760ed30b4e8d5dfd081daf327e829bf2a72c731b4"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-macosx_10_12_x86_64.whl", hash = "sha256:aa11b3c6928a1e496c1a79917d51d4cd5d04f8a2e75f21df4949eeefdf697f4b"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1095fecf99eeb7384dabad4bf44b965f929a5f6079654b681193edf7169ec20"}, + {file = "matplotlib-3.8.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:bddfb1db89bfaa855912261c805bd0e10218923cc262b9159a49c29a7a1c1afa"}, + {file = "matplotlib-3.8.2.tar.gz", hash = "sha256:01a978b871b881ee76017152f1f1a0cbf6bd5f7b8ff8c96df0df1bd57d8755a1"}, +] + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.3.1" +numpy = ">=1.21,<2" +packaging = ">=20.0" +pillow = ">=8" +pyparsing = ">=2.3.1" +python-dateutil = ">=2.7" + +[[package]] +name = "mypy-extensions" +version = "1.0.0" +description = "Type system extensions for programs checked with the mypy type checker." +optional = false +python-versions = ">=3.5" +files = [ + {file = "mypy_extensions-1.0.0-py3-none-any.whl", hash = "sha256:4392f6c0eb8a5668a69e23d168ffa70f0be9ccfd32b5cc2d26a34ae5b844552d"}, + {file = "mypy_extensions-1.0.0.tar.gz", hash = "sha256:75dbf8955dc00442a438fc4d0666508a9a97b6bd41aa2f0ffe9d2f2725af0782"}, +] + +[[package]] +name = "nodeenv" +version = "1.8.0" +description = "Node.js virtual environment builder" +optional = false +python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*" +files = [ + {file = "nodeenv-1.8.0-py2.py3-none-any.whl", hash = "sha256:df865724bb3c3adc86b3876fa209771517b0cfe596beff01a92700e0e8be4cec"}, + {file = "nodeenv-1.8.0.tar.gz", hash = "sha256:d51e0c37e64fbf47d017feac3145cdbb58836d7eee8c6f6d3b6880c5456227d2"}, +] + +[package.dependencies] +setuptools = "*" + +[[package]] +name = "numba" +version = "0.58.1" +description = "compiling Python code using LLVM" +optional = false +python-versions = ">=3.8" +files = [ + {file = "numba-0.58.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:07f2fa7e7144aa6f275f27260e73ce0d808d3c62b30cff8906ad1dec12d87bbe"}, + {file = "numba-0.58.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:7bf1ddd4f7b9c2306de0384bf3854cac3edd7b4d8dffae2ec1b925e4c436233f"}, + {file = "numba-0.58.1-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bc2d904d0319d7a5857bd65062340bed627f5bfe9ae4a495aef342f072880d50"}, + {file = "numba-0.58.1-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:4e79b6cc0d2bf064a955934a2e02bf676bc7995ab2db929dbbc62e4c16551be6"}, + {file = "numba-0.58.1-cp310-cp310-win_amd64.whl", hash = "sha256:81fe5b51532478149b5081311b0fd4206959174e660c372b94ed5364cfb37c82"}, + {file = "numba-0.58.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:bcecd3fb9df36554b342140a4d77d938a549be635d64caf8bd9ef6c47a47f8aa"}, + {file = "numba-0.58.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a1eaa744f518bbd60e1f7ccddfb8002b3d06bd865b94a5d7eac25028efe0e0ff"}, + {file = "numba-0.58.1-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:bf68df9c307fb0aa81cacd33faccd6e419496fdc621e83f1efce35cdc5e79cac"}, + {file = "numba-0.58.1-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:55a01e1881120e86d54efdff1be08381886fe9f04fc3006af309c602a72bc44d"}, + {file = "numba-0.58.1-cp311-cp311-win_amd64.whl", hash = "sha256:811305d5dc40ae43c3ace5b192c670c358a89a4d2ae4f86d1665003798ea7a1a"}, + {file = "numba-0.58.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:ea5bfcf7d641d351c6a80e8e1826eb4a145d619870016eeaf20bbd71ef5caa22"}, + {file = "numba-0.58.1-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e63d6aacaae1ba4ef3695f1c2122b30fa3d8ba039c8f517784668075856d79e2"}, + {file = "numba-0.58.1-cp38-cp38-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:6fe7a9d8e3bd996fbe5eac0683227ccef26cba98dae6e5cee2c1894d4b9f16c1"}, + {file = "numba-0.58.1-cp38-cp38-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:898af055b03f09d33a587e9425500e5be84fc90cd2f80b3fb71c6a4a17a7e354"}, + {file = "numba-0.58.1-cp38-cp38-win_amd64.whl", hash = "sha256:d3e2fe81fe9a59fcd99cc572002101119059d64d31eb6324995ee8b0f144a306"}, + {file = "numba-0.58.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5c765aef472a9406a97ea9782116335ad4f9ef5c9f93fc05fd44aab0db486954"}, + {file = "numba-0.58.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:9e9356e943617f5e35a74bf56ff6e7cc83e6b1865d5e13cee535d79bf2cae954"}, + {file = "numba-0.58.1-cp39-cp39-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:240e7a1ae80eb6b14061dc91263b99dc8d6af9ea45d310751b780888097c1aaa"}, + {file = "numba-0.58.1-cp39-cp39-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:45698b995914003f890ad839cfc909eeb9c74921849c712a05405d1a79c50f68"}, + {file = "numba-0.58.1-cp39-cp39-win_amd64.whl", hash = "sha256:bd3dda77955be03ff366eebbfdb39919ce7c2620d86c906203bed92124989032"}, + {file = "numba-0.58.1.tar.gz", hash = "sha256:487ded0633efccd9ca3a46364b40006dbdaca0f95e99b8b83e778d1195ebcbaa"}, +] + +[package.dependencies] +llvmlite = "==0.41.*" +numpy = ">=1.22,<1.27" + +[[package]] +name = "numpy" +version = "1.26.2" +description = "Fundamental package for array computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "numpy-1.26.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:3703fc9258a4a122d17043e57b35e5ef1c5a5837c3db8be396c82e04c1cf9b0f"}, + {file = "numpy-1.26.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:cc392fdcbd21d4be6ae1bb4475a03ce3b025cd49a9be5345d76d7585aea69440"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:36340109af8da8805d8851ef1d74761b3b88e81a9bd80b290bbfed61bd2b4f75"}, + {file = "numpy-1.26.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bcc008217145b3d77abd3e4d5ef586e3bdfba8fe17940769f8aa09b99e856c00"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:3ced40d4e9e18242f70dd02d739e44698df3dcb010d31f495ff00a31ef6014fe"}, + {file = "numpy-1.26.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:b272d4cecc32c9e19911891446b72e986157e6a1809b7b56518b4f3755267523"}, + {file = "numpy-1.26.2-cp310-cp310-win32.whl", hash = "sha256:22f8fc02fdbc829e7a8c578dd8d2e15a9074b630d4da29cda483337e300e3ee9"}, + {file = "numpy-1.26.2-cp310-cp310-win_amd64.whl", hash = "sha256:26c9d33f8e8b846d5a65dd068c14e04018d05533b348d9eaeef6c1bd787f9919"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b96e7b9c624ef3ae2ae0e04fa9b460f6b9f17ad8b4bec6d7756510f1f6c0c841"}, + {file = "numpy-1.26.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:aa18428111fb9a591d7a9cc1b48150097ba6a7e8299fb56bdf574df650e7d1f1"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:06fa1ed84aa60ea6ef9f91ba57b5ed963c3729534e6e54055fc151fad0423f0a"}, + {file = "numpy-1.26.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96ca5482c3dbdd051bcd1fce8034603d6ebfc125a7bd59f55b40d8f5d246832b"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:854ab91a2906ef29dc3925a064fcd365c7b4da743f84b123002f6139bcb3f8a7"}, + {file = "numpy-1.26.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:f43740ab089277d403aa07567be138fc2a89d4d9892d113b76153e0e412409f8"}, + {file = "numpy-1.26.2-cp311-cp311-win32.whl", hash = "sha256:a2bbc29fcb1771cd7b7425f98b05307776a6baf43035d3b80c4b0f29e9545186"}, + {file = "numpy-1.26.2-cp311-cp311-win_amd64.whl", hash = "sha256:2b3fca8a5b00184828d12b073af4d0fc5fdd94b1632c2477526f6bd7842d700d"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:a4cd6ed4a339c21f1d1b0fdf13426cb3b284555c27ac2f156dfdaaa7e16bfab0"}, + {file = "numpy-1.26.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:5d5244aabd6ed7f312268b9247be47343a654ebea52a60f002dc70c769048e75"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a3cdb4d9c70e6b8c0814239ead47da00934666f668426fc6e94cce869e13fd7"}, + {file = "numpy-1.26.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aa317b2325f7aa0a9471663e6093c210cb2ae9c0ad824732b307d2c51983d5b6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:174a8880739c16c925799c018f3f55b8130c1f7c8e75ab0a6fa9d41cab092fd6"}, + {file = "numpy-1.26.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:f79b231bf5c16b1f39c7f4875e1ded36abee1591e98742b05d8a0fb55d8a3eec"}, + {file = "numpy-1.26.2-cp312-cp312-win32.whl", hash = "sha256:4a06263321dfd3598cacb252f51e521a8cb4b6df471bb12a7ee5cbab20ea9167"}, + {file = "numpy-1.26.2-cp312-cp312-win_amd64.whl", hash = "sha256:b04f5dc6b3efdaab541f7857351aac359e6ae3c126e2edb376929bd3b7f92d7e"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4eb8df4bf8d3d90d091e0146f6c28492b0be84da3e409ebef54349f71ed271ef"}, + {file = "numpy-1.26.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:1a13860fdcd95de7cf58bd6f8bc5a5ef81c0b0625eb2c9a783948847abbef2c2"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:64308ebc366a8ed63fd0bf426b6a9468060962f1a4339ab1074c228fa6ade8e3"}, + {file = "numpy-1.26.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baf8aab04a2c0e859da118f0b38617e5ee65d75b83795055fb66c0d5e9e9b818"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d73a3abcac238250091b11caef9ad12413dab01669511779bc9b29261dd50210"}, + {file = "numpy-1.26.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:b361d369fc7e5e1714cf827b731ca32bff8d411212fccd29ad98ad622449cc36"}, + {file = "numpy-1.26.2-cp39-cp39-win32.whl", hash = "sha256:bd3f0091e845164a20bd5a326860c840fe2af79fa12e0469a12768a3ec578d80"}, + {file = "numpy-1.26.2-cp39-cp39-win_amd64.whl", hash = "sha256:2beef57fb031dcc0dc8fa4fe297a742027b954949cabb52a2a376c144e5e6060"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:1cc3d5029a30fb5f06704ad6b23b35e11309491c999838c31f124fee32107c79"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94cc3c222bb9fb5a12e334d0479b97bb2df446fbe622b470928f5284ffca3f8d"}, + {file = "numpy-1.26.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe6b44fb8fcdf7eda4ef4461b97b3f63c466b27ab151bec2366db8b197387841"}, + {file = "numpy-1.26.2.tar.gz", hash = "sha256:f65738447676ab5777f11e6bbbdb8ce11b785e105f690bc45966574816b6d3ea"}, +] + +[[package]] +name = "openpyxl" +version = "3.1.2" +description = "A Python library to read/write Excel 2010 xlsx/xlsm files" +optional = false +python-versions = ">=3.6" +files = [ + {file = "openpyxl-3.1.2-py2.py3-none-any.whl", hash = "sha256:f91456ead12ab3c6c2e9491cf33ba6d08357d802192379bb482f1033ade496f5"}, + {file = "openpyxl-3.1.2.tar.gz", hash = "sha256:a6f5977418eff3b2d5500d54d9db50c8277a368436f4e4f8ddb1be3422870184"}, +] + +[package.dependencies] +et-xmlfile = "*" + +[[package]] +name = "packaging" +version = "23.2" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ + {file = "packaging-23.2-py3-none-any.whl", hash = "sha256:8c491190033a9af7e1d931d0b5dacc2ef47509b34dd0de67ed209b5203fc88c7"}, + {file = "packaging-23.2.tar.gz", hash = "sha256:048fb0e9405036518eaaf48a55953c750c11e1a1b68e0dd1a9d62ed0c092cfc5"}, +] + +[[package]] +name = "pandas" +version = "1.5.3" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pandas-1.5.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:3749077d86e3a2f0ed51367f30bf5b82e131cc0f14260c4d3e499186fccc4406"}, + {file = "pandas-1.5.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:972d8a45395f2a2d26733eb8d0f629b2f90bebe8e8eddbb8829b180c09639572"}, + {file = "pandas-1.5.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:50869a35cbb0f2e0cd5ec04b191e7b12ed688874bd05dd777c19b28cbea90996"}, + {file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3ac844a0fe00bfaeb2c9b51ab1424e5c8744f89860b138434a363b1f620f354"}, + {file = "pandas-1.5.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7a0a56cef15fd1586726dace5616db75ebcfec9179a3a55e78f72c5639fa2a23"}, + {file = "pandas-1.5.3-cp310-cp310-win_amd64.whl", hash = "sha256:478ff646ca42b20376e4ed3fa2e8d7341e8a63105586efe54fa2508ee087f328"}, + {file = "pandas-1.5.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6973549c01ca91ec96199e940495219c887ea815b2083722821f1d7abfa2b4dc"}, + {file = "pandas-1.5.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c39a8da13cede5adcd3be1182883aea1c925476f4e84b2807a46e2775306305d"}, + {file = "pandas-1.5.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f76d097d12c82a535fda9dfe5e8dd4127952b45fea9b0276cb30cca5ea313fbc"}, + {file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e474390e60ed609cec869b0da796ad94f420bb057d86784191eefc62b65819ae"}, + {file = "pandas-1.5.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5f2b952406a1588ad4cad5b3f55f520e82e902388a6d5a4a91baa8d38d23c7f6"}, + {file = "pandas-1.5.3-cp311-cp311-win_amd64.whl", hash = "sha256:bc4c368f42b551bf72fac35c5128963a171b40dce866fb066540eeaf46faa003"}, + {file = "pandas-1.5.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:14e45300521902689a81f3f41386dc86f19b8ba8dd5ac5a3c7010ef8d2932813"}, + {file = "pandas-1.5.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:9842b6f4b8479e41968eced654487258ed81df7d1c9b7b870ceea24ed9459b31"}, + {file = "pandas-1.5.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:26d9c71772c7afb9d5046e6e9cf42d83dd147b5cf5bcb9d97252077118543792"}, + {file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5fbcb19d6fceb9e946b3e23258757c7b225ba450990d9ed63ccceeb8cae609f7"}, + {file = "pandas-1.5.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:565fa34a5434d38e9d250af3c12ff931abaf88050551d9fbcdfafca50d62babf"}, + {file = "pandas-1.5.3-cp38-cp38-win32.whl", hash = "sha256:87bd9c03da1ac870a6d2c8902a0e1fd4267ca00f13bc494c9e5a9020920e1d51"}, + {file = "pandas-1.5.3-cp38-cp38-win_amd64.whl", hash = "sha256:41179ce559943d83a9b4bbacb736b04c928b095b5f25dd2b7389eda08f46f373"}, + {file = "pandas-1.5.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c74a62747864ed568f5a82a49a23a8d7fe171d0c69038b38cedf0976831296fa"}, + {file = "pandas-1.5.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:c4c00e0b0597c8e4f59e8d461f797e5d70b4d025880516a8261b2817c47759ee"}, + {file = "pandas-1.5.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:a50d9a4336a9621cab7b8eb3fb11adb82de58f9b91d84c2cd526576b881a0c5a"}, + {file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dd05f7783b3274aa206a1af06f0ceed3f9b412cf665b7247eacd83be41cf7bf0"}, + {file = "pandas-1.5.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9f69c4029613de47816b1bb30ff5ac778686688751a5e9c99ad8c7031f6508e5"}, + {file = "pandas-1.5.3-cp39-cp39-win32.whl", hash = "sha256:7cec0bee9f294e5de5bbfc14d0573f65526071029d036b753ee6507d2a21480a"}, + {file = "pandas-1.5.3-cp39-cp39-win_amd64.whl", hash = "sha256:dfd681c5dc216037e0b0a2c821f5ed99ba9f03ebcf119c7dac0e9a7b960b9ec9"}, + {file = "pandas-1.5.3.tar.gz", hash = "sha256:74a3fd7e5a7ec052f183273dc7b0acd3a863edf7520f5d3a1765c04ffdb3b0b1"}, +] + +[package.dependencies] +numpy = {version = ">=1.21.0", markers = "python_version >= \"3.10\""} +python-dateutil = ">=2.8.1" +pytz = ">=2020.1" + +[package.extras] +test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] + +[[package]] +name = "pathspec" +version = "0.11.2" +description = "Utility library for gitignore style pattern matching of file paths." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pathspec-0.11.2-py3-none-any.whl", hash = "sha256:1d6ed233af05e679efb96b1851550ea95bbb64b7c490b0f5aa52996c11e92a20"}, + {file = "pathspec-0.11.2.tar.gz", hash = "sha256:e0d8d0ac2f12da61956eb2306b69f9469b42f4deb0f3cb6ed47b9cce9996ced3"}, +] + +[[package]] +name = "pefile" +version = "2023.2.7" +description = "Python PE parsing module" +optional = false +python-versions = ">=3.6.0" +files = [ + {file = "pefile-2023.2.7-py3-none-any.whl", hash = "sha256:da185cd2af68c08a6cd4481f7325ed600a88f6a813bad9dea07ab3ef73d8d8d6"}, + {file = "pefile-2023.2.7.tar.gz", hash = "sha256:82e6114004b3d6911c77c3953e3838654b04511b8b66e8583db70c65998017dc"}, +] + +[[package]] +name = "pillow" +version = "10.1.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.8" +files = [ + {file = "Pillow-10.1.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1ab05f3db77e98f93964697c8efc49c7954b08dd61cff526b7f2531a22410106"}, + {file = "Pillow-10.1.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:6932a7652464746fcb484f7fc3618e6503d2066d853f68a4bd97193a3996e273"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f63b5a68daedc54c7c3464508d8c12075e56dcfbd42f8c1bf40169061ae666"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0949b55eb607898e28eaccb525ab104b2d86542a85c74baf3a6dc24002edec2"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:ae88931f93214777c7a3aa0a8f92a683f83ecde27f65a45f95f22d289a69e593"}, + {file = "Pillow-10.1.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:b0eb01ca85b2361b09480784a7931fc648ed8b7836f01fb9241141b968feb1db"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d27b5997bdd2eb9fb199982bb7eb6164db0426904020dc38c10203187ae2ff2f"}, + {file = "Pillow-10.1.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:7df5608bc38bd37ef585ae9c38c9cd46d7c81498f086915b0f97255ea60c2818"}, + {file = "Pillow-10.1.0-cp310-cp310-win_amd64.whl", hash = "sha256:41f67248d92a5e0a2076d3517d8d4b1e41a97e2df10eb8f93106c89107f38b57"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:1fb29c07478e6c06a46b867e43b0bcdb241b44cc52be9bc25ce5944eed4648e7"}, + {file = "Pillow-10.1.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2cdc65a46e74514ce742c2013cd4a2d12e8553e3a2563c64879f7c7e4d28bce7"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50d08cd0a2ecd2a8657bd3d82c71efd5a58edb04d9308185d66c3a5a5bed9610"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:062a1610e3bc258bff2328ec43f34244fcec972ee0717200cb1425214fe5b839"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:61f1a9d247317fa08a308daaa8ee7b3f760ab1809ca2da14ecc88ae4257d6172"}, + {file = "Pillow-10.1.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a646e48de237d860c36e0db37ecaecaa3619e6f3e9d5319e527ccbc8151df061"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:47e5bf85b80abc03be7455c95b6d6e4896a62f6541c1f2ce77a7d2bb832af262"}, + {file = "Pillow-10.1.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:a92386125e9ee90381c3369f57a2a50fa9e6aa8b1cf1d9c4b200d41a7dd8e992"}, + {file = "Pillow-10.1.0-cp311-cp311-win_amd64.whl", hash = "sha256:0f7c276c05a9767e877a0b4c5050c8bee6a6d960d7f0c11ebda6b99746068c2a"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:a89b8312d51715b510a4fe9fc13686283f376cfd5abca8cd1c65e4c76e21081b"}, + {file = "Pillow-10.1.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:00f438bb841382b15d7deb9a05cc946ee0f2c352653c7aa659e75e592f6fa17d"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3d929a19f5469b3f4df33a3df2983db070ebb2088a1e145e18facbc28cae5b27"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9a92109192b360634a4489c0c756364c0c3a2992906752165ecb50544c251312"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:0248f86b3ea061e67817c47ecbe82c23f9dd5d5226200eb9090b3873d3ca32de"}, + {file = "Pillow-10.1.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:9882a7451c680c12f232a422730f986a1fcd808da0fd428f08b671237237d651"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:1c3ac5423c8c1da5928aa12c6e258921956757d976405e9467c5f39d1d577a4b"}, + {file = "Pillow-10.1.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:806abdd8249ba3953c33742506fe414880bad78ac25cc9a9b1c6ae97bedd573f"}, + {file = "Pillow-10.1.0-cp312-cp312-win_amd64.whl", hash = "sha256:eaed6977fa73408b7b8a24e8b14e59e1668cfc0f4c40193ea7ced8e210adf996"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:fe1e26e1ffc38be097f0ba1d0d07fcade2bcfd1d023cda5b29935ae8052bd793"}, + {file = "Pillow-10.1.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:7a7e3daa202beb61821c06d2517428e8e7c1aab08943e92ec9e5755c2fc9ba5e"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:24fadc71218ad2b8ffe437b54876c9382b4a29e030a05a9879f615091f42ffc2"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa1d323703cfdac2036af05191b969b910d8f115cf53093125e4058f62012c9a"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:912e3812a1dbbc834da2b32299b124b5ddcb664ed354916fd1ed6f193f0e2d01"}, + {file = "Pillow-10.1.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:7dbaa3c7de82ef37e7708521be41db5565004258ca76945ad74a8e998c30af8d"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:9d7bc666bd8c5a4225e7ac71f2f9d12466ec555e89092728ea0f5c0c2422ea80"}, + {file = "Pillow-10.1.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:baada14941c83079bf84c037e2d8b7506ce201e92e3d2fa0d1303507a8538212"}, + {file = "Pillow-10.1.0-cp38-cp38-win_amd64.whl", hash = "sha256:2ef6721c97894a7aa77723740a09547197533146fba8355e86d6d9a4a1056b14"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:0a026c188be3b443916179f5d04548092e253beb0c3e2ee0a4e2cdad72f66099"}, + {file = "Pillow-10.1.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:04f6f6149f266a100374ca3cc368b67fb27c4af9f1cc8cb6306d849dcdf12616"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bb40c011447712d2e19cc261c82655f75f32cb724788df315ed992a4d65696bb"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a8413794b4ad9719346cd9306118450b7b00d9a15846451549314a58ac42219"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:c9aeea7b63edb7884b031a35305629a7593272b54f429a9869a4f63a1bf04c34"}, + {file = "Pillow-10.1.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b4005fee46ed9be0b8fb42be0c20e79411533d1fd58edabebc0dd24626882cfd"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:4d0152565c6aa6ebbfb1e5d8624140a440f2b99bf7afaafbdbf6430426497f28"}, + {file = "Pillow-10.1.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:d921bc90b1defa55c9917ca6b6b71430e4286fc9e44c55ead78ca1a9f9eba5f2"}, + {file = "Pillow-10.1.0-cp39-cp39-win_amd64.whl", hash = "sha256:cfe96560c6ce2f4c07d6647af2d0f3c54cc33289894ebd88cfbb3bcd5391e256"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:937bdc5a7f5343d1c97dc98149a0be7eb9704e937fe3dc7140e229ae4fc572a7"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b1c25762197144e211efb5f4e8ad656f36c8d214d390585d1d21281f46d556ba"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:afc8eef765d948543a4775f00b7b8c079b3321d6b675dde0d02afa2ee23000b4"}, + {file = "Pillow-10.1.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:883f216eac8712b83a63f41b76ddfb7b2afab1b74abbb413c5df6680f071a6b9"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b920e4d028f6442bea9a75b7491c063f0b9a3972520731ed26c83e254302eb1e"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c41d960babf951e01a49c9746f92c5a7e0d939d1652d7ba30f6b3090f27e412"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:1fafabe50a6977ac70dfe829b2d5735fd54e190ab55259ec8aea4aaea412fa0b"}, + {file = "Pillow-10.1.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:3b834f4b16173e5b92ab6566f0473bfb09f939ba14b23b8da1f54fa63e4b623f"}, + {file = "Pillow-10.1.0.tar.gz", hash = "sha256:e6bf8de6c36ed96c86ea3b6e1d5273c53f46ef518a062464cd7ef5dd2cf92e38"}, +] + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "platformdirs" +version = "4.1.0" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.8" +files = [ + {file = "platformdirs-4.1.0-py3-none-any.whl", hash = "sha256:11c8f37bcca40db96d8144522d925583bdb7a31f7b0e37e3ed4318400a8e2380"}, + {file = "platformdirs-4.1.0.tar.gz", hash = "sha256:906d548203468492d432bcb294d4bc2fff751bf84971fbb2c10918cc206ee420"}, +] + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.1)", "sphinx-autodoc-typehints (>=1.24)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.3)", "pytest (>=7.4)", "pytest-cov (>=4.1)", "pytest-mock (>=3.11.1)"] + +[[package]] +name = "pluggy" +version = "1.3.0" +description = "plugin and hook calling mechanisms for python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pluggy-1.3.0-py3-none-any.whl", hash = "sha256:d89c696a773f8bd377d18e5ecda92b7a3793cbe66c87060a6fb58c7b6e1061f7"}, + {file = "pluggy-1.3.0.tar.gz", hash = "sha256:cf61ae8f126ac6f7c451172cf30e3e43d3ca77615509771b3a984a0730651e12"}, +] + +[package.extras] +dev = ["pre-commit", "tox"] +testing = ["pytest", "pytest-benchmark"] + +[[package]] +name = "ppg" +version = "1.0.3" +description = "Create cross-platform desktop applications with Python and Qt5/Qt6" +optional = false +python-versions = "*" +files = [] +develop = false + +[package.dependencies] +PyInstaller = ">=5.6" + +[package.extras] +licensing = ["rsa (>=3.4.2)"] +sentry = ["sentry-sdk (>=0.6.6)"] +upload = ["boto3"] + +[package.source] +type = "git" +url = "ssh://git@github.com/Kastakin/ppg.git" +reference = "main" +resolved_reference = "935c51c7da28c6f6869681ddc64706f0446376a2" + +[[package]] +name = "pre-commit" +version = "2.21.0" +description = "A framework for managing and maintaining multi-language pre-commit hooks." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pre_commit-2.21.0-py2.py3-none-any.whl", hash = "sha256:e2f91727039fc39a92f58a588a25b87f936de6567eed4f0e673e0507edc75bad"}, + {file = "pre_commit-2.21.0.tar.gz", hash = "sha256:31ef31af7e474a8d8995027fefdfcf509b5c913ff31f2015b4ec4beb26a6f658"}, +] + +[package.dependencies] +cfgv = ">=2.0.0" +identify = ">=1.0.0" +nodeenv = ">=0.11.1" +pyyaml = ">=5.1" +virtualenv = ">=20.10.0" + +[[package]] +name = "pyinstaller" +version = "5.13.2" +description = "PyInstaller bundles a Python application and all its dependencies into a single package." +optional = false +python-versions = "<3.13,>=3.7" +files = [ + {file = "pyinstaller-5.13.2-py3-none-macosx_10_13_universal2.whl", hash = "sha256:16cbd66b59a37f4ee59373a003608d15df180a0d9eb1a29ff3bfbfae64b23d0f"}, + {file = "pyinstaller-5.13.2-py3-none-manylinux2014_aarch64.whl", hash = "sha256:8f6dd0e797ae7efdd79226f78f35eb6a4981db16c13325e962a83395c0ec7420"}, + {file = "pyinstaller-5.13.2-py3-none-manylinux2014_i686.whl", hash = "sha256:65133ed89467edb2862036b35d7c5ebd381670412e1e4361215e289c786dd4e6"}, + {file = "pyinstaller-5.13.2-py3-none-manylinux2014_ppc64le.whl", hash = "sha256:7d51734423685ab2a4324ab2981d9781b203dcae42839161a9ee98bfeaabdade"}, + {file = "pyinstaller-5.13.2-py3-none-manylinux2014_s390x.whl", hash = "sha256:2c2fe9c52cb4577a3ac39626b84cf16cf30c2792f785502661286184f162ae0d"}, + {file = "pyinstaller-5.13.2-py3-none-manylinux2014_x86_64.whl", hash = "sha256:c63ef6133eefe36c4b2f4daf4cfea3d6412ece2ca218f77aaf967e52a95ac9b8"}, + {file = "pyinstaller-5.13.2-py3-none-musllinux_1_1_aarch64.whl", hash = "sha256:aadafb6f213549a5906829bb252e586e2cf72a7fbdb5731810695e6516f0ab30"}, + {file = "pyinstaller-5.13.2-py3-none-musllinux_1_1_x86_64.whl", hash = "sha256:b2e1c7f5cceb5e9800927ddd51acf9cc78fbaa9e79e822c48b0ee52d9ce3c892"}, + {file = "pyinstaller-5.13.2-py3-none-win32.whl", hash = "sha256:421cd24f26144f19b66d3868b49ed673176765f92fa9f7914cd2158d25b6d17e"}, + {file = "pyinstaller-5.13.2-py3-none-win_amd64.whl", hash = "sha256:ddcc2b36052a70052479a9e5da1af067b4496f43686ca3cdda99f8367d0627e4"}, + {file = "pyinstaller-5.13.2-py3-none-win_arm64.whl", hash = "sha256:27cd64e7cc6b74c5b1066cbf47d75f940b71356166031deb9778a2579bb874c6"}, + {file = "pyinstaller-5.13.2.tar.gz", hash = "sha256:c8e5d3489c3a7cc5f8401c2d1f48a70e588f9967e391c3b06ddac1f685f8d5d2"}, +] + +[package.dependencies] +altgraph = "*" +macholib = {version = ">=1.8", markers = "sys_platform == \"darwin\""} +pefile = {version = ">=2022.5.30", markers = "sys_platform == \"win32\""} +pyinstaller-hooks-contrib = ">=2021.4" +pywin32-ctypes = {version = ">=0.2.1", markers = "sys_platform == \"win32\""} +setuptools = ">=42.0.0" + +[package.extras] +encryption = ["tinyaes (>=1.0.0)"] +hook-testing = ["execnet (>=1.5.0)", "psutil", "pytest (>=2.7.3)"] + +[[package]] +name = "pyinstaller-hooks-contrib" +version = "2023.10" +description = "Community maintained hooks for PyInstaller" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyinstaller-hooks-contrib-2023.10.tar.gz", hash = "sha256:4b4a998036abb713774cb26534ca06b7e6e09e4c628196017a10deb11a48747f"}, + {file = "pyinstaller_hooks_contrib-2023.10-py2.py3-none-any.whl", hash = "sha256:6dc1786a8f452941245d5bb85893e2a33632ebdcbc4c23eea41f2ee08281b0c0"}, +] + +[[package]] +name = "pyinstrument" +version = "4.6.1" +description = "Call stack profiler for Python. Shows you why your code is slow!" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pyinstrument-4.6.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:73476e4bc6e467ac1b2c3c0dd1f0b71c9061d4de14626676adfdfbb14aa342b4"}, + {file = "pyinstrument-4.6.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:4d1da8efd974cf9df52ee03edaee2d3875105ddd00de35aa542760f7c612bdf7"}, + {file = "pyinstrument-4.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:507be1ee2f2b0c9fba74d622a272640dd6d1b0c9ec3388b2cdeb97ad1e77125f"}, + {file = "pyinstrument-4.6.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:95cee6de08eb45754ef4f602ce52b640d1c535d934a6a8733a974daa095def37"}, + {file = "pyinstrument-4.6.1-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c7873e8cec92321251fdf894a72b3c78f4c5c20afdd1fef0baf9042ec843bb04"}, + {file = "pyinstrument-4.6.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:a242f6cac40bc83e1f3002b6b53681846dfba007f366971db0bf21e02dbb1903"}, + {file = "pyinstrument-4.6.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:97c9660cdb4bd2a43cf4f3ab52cffd22f3ac9a748d913b750178fb34e5e39e64"}, + {file = "pyinstrument-4.6.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:e304cd0723e2b18ada5e63c187abf6d777949454c734f5974d64a0865859f0f4"}, + {file = "pyinstrument-4.6.1-cp310-cp310-win32.whl", hash = "sha256:cee21a2d78187dd8a80f72f5d0f1ddb767b2d9800f8bb4d94b6d11f217c22cdb"}, + {file = "pyinstrument-4.6.1-cp310-cp310-win_amd64.whl", hash = "sha256:2000712f71d693fed2f8a1c1638d37b7919124f367b37976d07128d49f1445eb"}, + {file = "pyinstrument-4.6.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:a366c6f3dfb11f1739bdc1dee75a01c1563ad0bf4047071e5e77598087df457f"}, + {file = "pyinstrument-4.6.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:c6be327be65d934796558aa9cb0f75ce62ebd207d49ad1854610c97b0579ad47"}, + {file = "pyinstrument-4.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9e160d9c5d20d3e4ef82269e4e8b246ff09bdf37af5fb8cb8ccca97936d95ad6"}, + {file = "pyinstrument-4.6.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ffbf56605ef21c2fcb60de2fa74ff81f417d8be0c5002a407e414d6ef6dee43"}, + {file = "pyinstrument-4.6.1-cp311-cp311-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c92cc4924596d6e8f30a16182bbe90893b1572d847ae12652f72b34a9a17c24a"}, + {file = "pyinstrument-4.6.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:f4b48a94d938cae981f6948d9ec603bab2087b178d2095d042d5a48aabaecaab"}, + {file = "pyinstrument-4.6.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:e7a386392275bdef4a1849712dc5b74f0023483fca14ef93d0ca27d453548982"}, + {file = "pyinstrument-4.6.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:871b131b83e9b1122f2325061c68ed1e861eebcb568c934d2fb193652f077f77"}, + {file = "pyinstrument-4.6.1-cp311-cp311-win32.whl", hash = "sha256:8d8515156dd91f5652d13b5fcc87e634f8fe1c07b68d1d0840348cdd50bf5ace"}, + {file = "pyinstrument-4.6.1-cp311-cp311-win_amd64.whl", hash = "sha256:fb868fbe089036e9f32525a249f4c78b8dc46967612393f204b8234f439c9cc4"}, + {file = "pyinstrument-4.6.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:a18cd234cce4f230f1733807f17a134e64a1f1acabf74a14d27f583cf2b183df"}, + {file = "pyinstrument-4.6.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:574cfca69150be4ce4461fb224712fbc0722a49b0dc02fa204d02807adf6b5a0"}, + {file = "pyinstrument-4.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2e02cf505e932eb8ccf561b7527550a67ec14fcae1fe0e25319b09c9c166e914"}, + {file = "pyinstrument-4.6.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:832fb2acef9d53701c1ab546564c45fb70a8770c816374f8dd11420d399103c9"}, + {file = "pyinstrument-4.6.1-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13cb57e9607545623ebe462345b3d0c4caee0125d2d02267043ece8aca8f4ea0"}, + {file = "pyinstrument-4.6.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:9be89e7419bcfe8dd6abb0d959d6d9c439c613a4a873514c43d16b48dae697c9"}, + {file = "pyinstrument-4.6.1-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:476785cfbc44e8e1b1ad447398aa3deae81a8df4d37eb2d8bbb0c404eff979cd"}, + {file = "pyinstrument-4.6.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:e9cebd90128a3d2fee36d3ccb665c1b9dce75261061b2046203e45c4a8012d54"}, + {file = "pyinstrument-4.6.1-cp312-cp312-win32.whl", hash = "sha256:1d0b76683df2ad5c40eff73607dc5c13828c92fbca36aff1ddf869a3c5a55fa6"}, + {file = "pyinstrument-4.6.1-cp312-cp312-win_amd64.whl", hash = "sha256:c4b7af1d9d6a523cfbfedebcb69202242d5bd0cb89c4e094cc73d5d6e38279bd"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:79ae152f8c6a680a188fb3be5e0f360ac05db5bbf410169a6c40851dfaebcce9"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:07cad2745964c174c65aa75f1bf68a4394d1b4d28f33894837cfd315d1e836f0"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:cb81f66f7f94045d723069cf317453d42375de9ff3c69089cf6466b078ac1db4"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0ab30ae75969da99e9a529e21ff497c18fdf958e822753db4ae7ed1e67094040"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:f36cb5b644762fb3c86289324bbef17e95f91cd710603ac19444a47f638e8e96"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:8b45075d9dbbc977dbc7007fb22bb0054c6990fbe91bf48dd80c0b96c6307ba7"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:475ac31477f6302e092463896d6a2055f3e6abcd293bad16ff94fc9185308a88"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-win32.whl", hash = "sha256:29172ab3d8609fdf821c3f2562dc61e14f1a8ff5306607c32ca743582d3a760e"}, + {file = "pyinstrument-4.6.1-cp37-cp37m-win_amd64.whl", hash = "sha256:bd176f297c99035127b264369d2bb97a65255f65f8d4e843836baf55ebb3cee4"}, + {file = "pyinstrument-4.6.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:23e9b4526978432e9999021da9a545992cf2ac3df5ee82db7beb6908fc4c978c"}, + {file = "pyinstrument-4.6.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2dbcaccc9f456ef95557ec501caeb292119c24446d768cb4fb43578b0f3d572c"}, + {file = "pyinstrument-4.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2097f63c66c2bc9678c826b9ff0c25acde3ed455590d9dcac21220673fe74fbf"}, + {file = "pyinstrument-4.6.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:205ac2e76bd65d61b9611a9ce03d5f6393e34ec5b41dd38808f25d54e6b3e067"}, + {file = "pyinstrument-4.6.1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3f414ddf1161976a40fc0a333000e6a4ad612719eac0b8c9bb73f47153187148"}, + {file = "pyinstrument-4.6.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:65e62ebfa2cd8fb57eda90006f4505ac4c70da00fc2f05b6d8337d776ea76d41"}, + {file = "pyinstrument-4.6.1-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:d96309df4df10be7b4885797c5f69bb3a89414680ebaec0722d8156fde5268c3"}, + {file = "pyinstrument-4.6.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:f3d1ad3bc8ebb4db925afa706aa865c4bfb40d52509f143491ac0df2440ee5d2"}, + {file = "pyinstrument-4.6.1-cp38-cp38-win32.whl", hash = "sha256:dc37cb988c8854eb42bda2e438aaf553536566657d157c4473cc8aad5692a779"}, + {file = "pyinstrument-4.6.1-cp38-cp38-win_amd64.whl", hash = "sha256:2cd4ce750c34a0318fc2d6c727cc255e9658d12a5cf3f2d0473f1c27157bdaeb"}, + {file = "pyinstrument-4.6.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:6ca95b21f022e995e062b371d1f42d901452bcbedd2c02f036de677119503355"}, + {file = "pyinstrument-4.6.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ac1e1d7e1f1b64054c4eb04eb4869a7a5eef2261440e73943cc1b1bc3c828c18"}, + {file = "pyinstrument-4.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0711845e953fce6ab781221aacffa2a66dbc3289f8343e5babd7b2ea34da6c90"}, + {file = "pyinstrument-4.6.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b7d28582017de35cb64eb4e4fa603e753095108ca03745f5d17295970ee631f"}, + {file = "pyinstrument-4.6.1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7be57db08bd366a37db3aa3a6187941ee21196e8b14975db337ddc7d1490649d"}, + {file = "pyinstrument-4.6.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9a0ac0f56860398d2628ce389826ce83fb3a557d0c9a2351e8a2eac6eb869983"}, + {file = "pyinstrument-4.6.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:a9045186ff13bc826fef16be53736a85029aae3c6adfe52e666cad00d7ca623b"}, + {file = "pyinstrument-4.6.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6c4c56b6eab9004e92ad8a48bb54913fdd71fc8a748ae42a27b9e26041646f8b"}, + {file = "pyinstrument-4.6.1-cp39-cp39-win32.whl", hash = "sha256:37e989c44b51839d0c97466fa2b623638b9470d56d79e329f359f0e8fa6d83db"}, + {file = "pyinstrument-4.6.1-cp39-cp39-win_amd64.whl", hash = "sha256:5494c5a84fee4309d7d973366ca6b8b9f8ba1d6b254e93b7c506264ef74f2cef"}, + {file = "pyinstrument-4.6.1.tar.gz", hash = "sha256:f4731b27121350f5a983d358d2272fe3df2f538aed058f57217eef7801a89288"}, +] + +[package.extras] +bin = ["click", "nox"] +docs = ["furo (==2021.6.18b36)", "myst-parser (==0.15.1)", "sphinx (==4.2.0)", "sphinxcontrib-programoutput (==0.17)"] +examples = ["django", "numpy"] +test = ["flaky", "greenlet (>=3.0.0a1)", "ipython", "pytest", "pytest-asyncio (==0.12.0)", "sphinx-autobuild (==2021.3.14)", "trio"] +types = ["typing-extensions"] + +[[package]] +name = "pyparsing" +version = "3.1.1" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ + {file = "pyparsing-3.1.1-py3-none-any.whl", hash = "sha256:32c7c0b711493c72ff18a981d24f28aaf9c1fb7ed5e9667c9e84e3db623bdbfb"}, + {file = "pyparsing-3.1.1.tar.gz", hash = "sha256:ede28a1a32462f5a9705e07aea48001a08f7cf81a021585011deba701581a0db"}, +] + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "pyqtgraph" +version = "0.13.3" +description = "Scientific Graphics and GUI Library for Python" +optional = false +python-versions = ">=3.8" +files = [ + {file = "pyqtgraph-0.13.3-py3-none-any.whl", hash = "sha256:fdcc04ac4b32a7bedf1bf3cf74cbb93ab3ba5687791712bbfa8d0712377d2f2b"}, + {file = "pyqtgraph-0.13.3.tar.gz", hash = "sha256:58108d8411c7054e0841d8b791ee85e101fc296b9b359c0e01dde38a98ff2ace"}, +] + +[package.dependencies] +numpy = ">=1.20.0" + +[[package]] +name = "pyside6-essentials" +version = "6.4.3" +description = "Python bindings for the Qt cross-platform application and UI framework (Essentials)" +optional = false +python-versions = "<3.12,>=3.7" +files = [ + {file = "PySide6_Essentials-6.4.3-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:62f7f80e99eaaa3b3f7014170bf01c2fa2e76955805f24c443630abc10793abb"}, + {file = "PySide6_Essentials-6.4.3-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:7983cf2152dfebf3c2d0767d12e452c4bd0809aa53777fef949a7ff4b0ef8a49"}, + {file = "PySide6_Essentials-6.4.3-cp37-abi3-win_amd64.whl", hash = "sha256:9e1964de12b6ea351c69032a6e15dcc29f48d561dfd579e67adc15bad3be1d45"}, + {file = "PySide6_Essentials-6.4.3-pp39-pypy39_pp73-macosx_10_9_universal2.whl", hash = "sha256:c41cbef7a25c67da11b6f6281e60f59c21a198c1da471821e43963e1b8f196f7"}, + {file = "PySide6_Essentials-6.4.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c07e5c425b8720fe8ecdbd46f36d7ab90ffbe27ac0258fea326dcf153484b3c7"}, + {file = "PySide6_Essentials-6.4.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:cadd2197f534f7ff55c7718ce50c61ab6d13270449dfde8e27f46b9500b9fe56"}, +] + +[package.dependencies] +shiboken6 = "6.4.3" + +[[package]] +name = "pytest" +version = "7.4.3" +description = "pytest: simple powerful testing with Python" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-7.4.3-py3-none-any.whl", hash = "sha256:0d009c083ea859a71b76adf7c1d502e4bc170b80a8ef002da5806527b9591fac"}, + {file = "pytest-7.4.3.tar.gz", hash = "sha256:d989d136982de4e3b29dabcc838ad581c64e8ed52c11fbe86ddebd9da0818cd5"}, +] + +[package.dependencies] +colorama = {version = "*", markers = "sys_platform == \"win32\""} +exceptiongroup = {version = ">=1.0.0rc8", markers = "python_version < \"3.11\""} +iniconfig = "*" +packaging = "*" +pluggy = ">=0.12,<2.0" +tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} + +[package.extras] +testing = ["argcomplete", "attrs (>=19.2.0)", "hypothesis (>=3.56)", "mock", "nose", "pygments (>=2.7.2)", "requests", "setuptools", "xmlschema"] + +[[package]] +name = "pytest-cov" +version = "4.1.0" +description = "Pytest plugin for measuring coverage." +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-cov-4.1.0.tar.gz", hash = "sha256:3904b13dfbfec47f003b8e77fd5b589cd11904a21ddf1ab38a64f204d6a10ef6"}, + {file = "pytest_cov-4.1.0-py3-none-any.whl", hash = "sha256:6ba70b9e97e69fcc3fb45bfeab2d0a138fb65c4d0d6a41ef33983ad114be8c3a"}, +] + +[package.dependencies] +coverage = {version = ">=5.2.1", extras = ["toml"]} +pytest = ">=4.6" + +[package.extras] +testing = ["fields", "hunter", "process-tests", "pytest-xdist", "six", "virtualenv"] + +[[package]] +name = "pytest-qt" +version = "4.2.0" +description = "pytest support for PyQt and PySide applications" +optional = false +python-versions = ">=3.7" +files = [ + {file = "pytest-qt-4.2.0.tar.gz", hash = "sha256:00a17b586dd530b6d7a9399923a40489ca4a9a309719011175f55dc6b5dc8f41"}, + {file = "pytest_qt-4.2.0-py2.py3-none-any.whl", hash = "sha256:a7659960a1ab2af8fc944655a157ff45d714b80ed7a6af96a4b5bb99ecf40a22"}, +] + +[package.dependencies] +pytest = ">=3.0.0" + +[package.extras] +dev = ["pre-commit", "tox"] +doc = ["sphinx", "sphinx-rtd-theme"] + +[[package]] +name = "pytest-sugar" +version = "0.9.7" +description = "pytest-sugar is a plugin for pytest that changes the default look and feel of pytest (e.g. progressbar, show tests that fail instantly)." +optional = false +python-versions = "*" +files = [ + {file = "pytest-sugar-0.9.7.tar.gz", hash = "sha256:f1e74c1abfa55f7241cf7088032b6e378566f16b938f3f08905e2cf4494edd46"}, + {file = "pytest_sugar-0.9.7-py2.py3-none-any.whl", hash = "sha256:8cb5a4e5f8bbcd834622b0235db9e50432f4cbd71fef55b467fe44e43701e062"}, +] + +[package.dependencies] +packaging = ">=21.3" +pytest = ">=6.2.0" +termcolor = ">=2.1.0" + +[package.extras] +dev = ["black", "flake8", "pre-commit"] + +[[package]] +name = "pytest-xvfb" +version = "2.0.0" +description = "A pytest plugin to run Xvfb for tests." +optional = false +python-versions = ">=3.5" +files = [ + {file = "pytest-xvfb-2.0.0.tar.gz", hash = "sha256:c4ba642de05499940db7f65ee111621939be513e3e75c3da9156b7235e2ed8cf"}, + {file = "pytest_xvfb-2.0.0-py3-none-any.whl", hash = "sha256:6d21b46f099c06d6b8b200e73341da3adb73d67e9139c55d617930881779360b"}, +] + +[package.dependencies] +pytest = ">=2.8.1" +pyvirtualdisplay = ">=1.3" + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ + {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, + {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, +] + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "pytz" +version = "2023.3.post1" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ + {file = "pytz-2023.3.post1-py2.py3-none-any.whl", hash = "sha256:ce42d816b81b68506614c11e8937d3aa9e41007ceb50bfdcb0749b921bf646c7"}, + {file = "pytz-2023.3.post1.tar.gz", hash = "sha256:7b4fddbeb94a1eba4b557da24f19fdf9db575192544270a9101d8509f9f43d7b"}, +] + +[[package]] +name = "pyvirtualdisplay" +version = "3.0" +description = "python wrapper for Xvfb, Xephyr and Xvnc" +optional = false +python-versions = "*" +files = [ + {file = "PyVirtualDisplay-3.0-py3-none-any.whl", hash = "sha256:40d4b8dfe4b8de8552e28eb367647f311f88a130bf837fe910e7f180d5477f0e"}, + {file = "PyVirtualDisplay-3.0.tar.gz", hash = "sha256:09755bc3ceb6eb725fb07eca5425f43f2358d3bf08e00d2a9b792a1aedd16159"}, +] + +[[package]] +name = "pywin32-ctypes" +version = "0.2.2" +description = "A (partial) reimplementation of pywin32 using ctypes/cffi" +optional = false +python-versions = ">=3.6" +files = [ + {file = "pywin32-ctypes-0.2.2.tar.gz", hash = "sha256:3426e063bdd5fd4df74a14fa3cf80a0b42845a87e1d1e81f6549f9daec593a60"}, + {file = "pywin32_ctypes-0.2.2-py3-none-any.whl", hash = "sha256:bf490a1a709baf35d688fe0ecf980ed4de11d2b3e37b51e5442587a75d9957e7"}, +] + +[[package]] +name = "pyyaml" +version = "6.0.1" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.6" +files = [ + {file = "PyYAML-6.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d858aa552c999bc8a8d57426ed01e40bef403cd8ccdd0fc5f6f04a00414cac2a"}, + {file = "PyYAML-6.0.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:fd66fc5d0da6d9815ba2cebeb4205f95818ff4b79c3ebe268e75d961704af52f"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:69b023b2b4daa7548bcfbd4aa3da05b3a74b772db9e23b982788168117739938"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:81e0b275a9ecc9c0c0c07b4b90ba548307583c125f54d5b6946cfee6360c733d"}, + {file = "PyYAML-6.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ba336e390cd8e4d1739f42dfe9bb83a3cc2e80f567d8805e11b46f4a943f5515"}, + {file = "PyYAML-6.0.1-cp310-cp310-win32.whl", hash = "sha256:bd4af7373a854424dabd882decdc5579653d7868b8fb26dc7d0e99f823aa5924"}, + {file = "PyYAML-6.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:fd1592b3fdf65fff2ad0004b5e363300ef59ced41c2e6b3a99d4089fa8c5435d"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:6965a7bc3cf88e5a1c3bd2e0b5c22f8d677dc88a455344035f03399034eb3007"}, + {file = "PyYAML-6.0.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:f003ed9ad21d6a4713f0a9b5a7a0a79e08dd0f221aff4525a2be4c346ee60aab"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:42f8152b8dbc4fe7d96729ec2b99c7097d656dc1213a3229ca5383f973a5ed6d"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:062582fca9fabdd2c8b54a3ef1c978d786e0f6b3a1510e0ac93ef59e0ddae2bc"}, + {file = "PyYAML-6.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d2b04aac4d386b172d5b9692e2d2da8de7bfb6c387fa4f801fbf6fb2e6ba4673"}, + {file = "PyYAML-6.0.1-cp311-cp311-win32.whl", hash = "sha256:1635fd110e8d85d55237ab316b5b011de701ea0f29d07611174a1b42f1444741"}, + {file = "PyYAML-6.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:bf07ee2fef7014951eeb99f56f39c9bb4af143d8aa3c21b1677805985307da34"}, + {file = "PyYAML-6.0.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50550eb667afee136e9a77d6dc71ae76a44df8b3e51e41b77f6de2932bfe0f47"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1fe35611261b29bd1de0070f0b2f47cb6ff71fa6595c077e42bd0c419fa27b98"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:704219a11b772aea0d8ecd7058d0082713c3562b4e271b849ad7dc4a5c90c13c"}, + {file = "PyYAML-6.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:afd7e57eddb1a54f0f1a974bc4391af8bcce0b444685d936840f125cf046d5bd"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win32.whl", hash = "sha256:fca0e3a251908a499833aa292323f32437106001d436eca0e6e7833256674585"}, + {file = "PyYAML-6.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:f22ac1c3cac4dbc50079e965eba2c1058622631e526bd9afd45fedd49ba781fa"}, + {file = "PyYAML-6.0.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:b1275ad35a5d18c62a7220633c913e1b42d44b46ee12554e5fd39c70a243d6a3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18aeb1bf9a78867dc38b259769503436b7c72f7a1f1f4c93ff9a17de54319b27"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:596106435fa6ad000c2991a98fa58eeb8656ef2325d7e158344fb33864ed87e3"}, + {file = "PyYAML-6.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:baa90d3f661d43131ca170712d903e6295d1f7a0f595074f151c0aed377c9b9c"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win32.whl", hash = "sha256:9046c58c4395dff28dd494285c82ba00b546adfc7ef001486fbf0324bc174fba"}, + {file = "PyYAML-6.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:4fb147e7a67ef577a588a0e2c17b6db51dda102c71de36f8549b6816a96e1867"}, + {file = "PyYAML-6.0.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:1d4c7e777c441b20e32f52bd377e0c409713e8bb1386e1099c2415f26e479595"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a0cd17c15d3bb3fa06978b4e8958dcdc6e0174ccea823003a106c7d4d7899ac5"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c119d996beec18c05208a8bd78cbe4007878c6dd15091efb73a30e90539696"}, + {file = "PyYAML-6.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7e07cbde391ba96ab58e532ff4803f79c4129397514e1413a7dc761ccd755735"}, + {file = "PyYAML-6.0.1-cp38-cp38-win32.whl", hash = "sha256:184c5108a2aca3c5b3d3bf9395d50893a7ab82a38004c8f61c258d4428e80206"}, + {file = "PyYAML-6.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:1e2722cc9fbb45d9b87631ac70924c11d3a401b2d7f410cc0e3bbf249f2dca62"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:9eb6caa9a297fc2c2fb8862bc5370d0303ddba53ba97e71f08023b6cd73d16a8"}, + {file = "PyYAML-6.0.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c8098ddcc2a85b61647b2590f825f3db38891662cfc2fc776415143f599bb859"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5773183b6446b2c99bb77e77595dd486303b4faab2b086e7b17bc6bef28865f6"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b786eecbdf8499b9ca1d697215862083bd6d2a99965554781d0d8d1ad31e13a0"}, + {file = "PyYAML-6.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc1bf2925a1ecd43da378f4db9e4f799775d6367bdb94671027b73b393a7c42c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win32.whl", hash = "sha256:faca3bdcf85b2fc05d06ff3fbc1f83e1391b3e724afa3feba7d13eeab355484c"}, + {file = "PyYAML-6.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:510c9deebc5c0225e8c96813043e62b680ba2f9c50a08d3724c7f28a747d1486"}, + {file = "PyYAML-6.0.1.tar.gz", hash = "sha256:bfdf460b1736c775f2ba9f6a92bca30bc2095067b8a9d77876d1fad6cc3b4a43"}, +] + +[[package]] +name = "ruff" +version = "0.0.292" +description = "An extremely fast Python linter, written in Rust." +optional = false +python-versions = ">=3.7" +files = [ + {file = "ruff-0.0.292-py3-none-macosx_10_7_x86_64.whl", hash = "sha256:02f29db018c9d474270c704e6c6b13b18ed0ecac82761e4fcf0faa3728430c96"}, + {file = "ruff-0.0.292-py3-none-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl", hash = "sha256:69654e564342f507edfa09ee6897883ca76e331d4bbc3676d8a8403838e9fade"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c3c91859a9b845c33778f11902e7b26440d64b9d5110edd4e4fa1726c41e0a4"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:f4476f1243af2d8c29da5f235c13dca52177117935e1f9393f9d90f9833f69e4"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:be8eb50eaf8648070b8e58ece8e69c9322d34afe367eec4210fdee9a555e4ca7"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:9889bac18a0c07018aac75ef6c1e6511d8411724d67cb879103b01758e110a81"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:6bdfabd4334684a4418b99b3118793f2c13bb67bf1540a769d7816410402a205"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:aa7c77c53bfcd75dbcd4d1f42d6cabf2485d2e1ee0678da850f08e1ab13081a8"}, + {file = "ruff-0.0.292-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8e087b24d0d849c5c81516ec740bf4fd48bf363cfb104545464e0fca749b6af9"}, + {file = "ruff-0.0.292-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:f160b5ec26be32362d0774964e218f3fcf0a7da299f7e220ef45ae9e3e67101a"}, + {file = "ruff-0.0.292-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:ac153eee6dd4444501c4bb92bff866491d4bfb01ce26dd2fff7ca472c8df9ad0"}, + {file = "ruff-0.0.292-py3-none-musllinux_1_2_i686.whl", hash = "sha256:87616771e72820800b8faea82edd858324b29bb99a920d6aa3d3949dd3f88fb0"}, + {file = "ruff-0.0.292-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:b76deb3bdbea2ef97db286cf953488745dd6424c122d275f05836c53f62d4016"}, + {file = "ruff-0.0.292-py3-none-win32.whl", hash = "sha256:e854b05408f7a8033a027e4b1c7f9889563dd2aca545d13d06711e5c39c3d003"}, + {file = "ruff-0.0.292-py3-none-win_amd64.whl", hash = "sha256:f27282bedfd04d4c3492e5c3398360c9d86a295be00eccc63914438b4ac8a83c"}, + {file = "ruff-0.0.292-py3-none-win_arm64.whl", hash = "sha256:7f67a69c8f12fbc8daf6ae6d36705037bde315abf8b82b6e1f4c9e74eb750f68"}, + {file = "ruff-0.0.292.tar.gz", hash = "sha256:1093449e37dd1e9b813798f6ad70932b57cf614e5c2b5c51005bf67d55db33ac"}, +] + +[[package]] +name = "schema" +version = "0.7.5" +description = "Simple data validation library" +optional = false +python-versions = "*" +files = [ + {file = "schema-0.7.5-py2.py3-none-any.whl", hash = "sha256:f3ffdeeada09ec34bf40d7d79996d9f7175db93b7a5065de0faa7f41083c1e6c"}, + {file = "schema-0.7.5.tar.gz", hash = "sha256:f06717112c61895cabc4707752b88716e8420a8819d71404501e114f91043197"}, +] + +[package.dependencies] +contextlib2 = ">=0.5.5" + +[[package]] +name = "scipy" +version = "1.11.4" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.9" +files = [ + {file = "scipy-1.11.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bc9a714581f561af0848e6b69947fda0614915f072dfd14142ed1bfe1b806710"}, + {file = "scipy-1.11.4-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:cf00bd2b1b0211888d4dc75656c0412213a8b25e80d73898083f402b50f47e41"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b9999c008ccf00e8fbcce1236f85ade5c569d13144f77a1946bef8863e8f6eb4"}, + {file = "scipy-1.11.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:933baf588daa8dc9a92c20a0be32f56d43faf3d1a60ab11b3f08c356430f6e56"}, + {file = "scipy-1.11.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:8fce70f39076a5aa62e92e69a7f62349f9574d8405c0a5de6ed3ef72de07f446"}, + {file = "scipy-1.11.4-cp310-cp310-win_amd64.whl", hash = "sha256:6550466fbeec7453d7465e74d4f4b19f905642c89a7525571ee91dd7adabb5a3"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:f313b39a7e94f296025e3cffc2c567618174c0b1dde173960cf23808f9fae4be"}, + {file = "scipy-1.11.4-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:1b7c3dca977f30a739e0409fb001056484661cb2541a01aba0bb0029f7b68db8"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:00150c5eae7b610c32589dda259eacc7c4f1665aedf25d921907f4d08a951b1c"}, + {file = "scipy-1.11.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:530f9ad26440e85766509dbf78edcfe13ffd0ab7fec2560ee5c36ff74d6269ff"}, + {file = "scipy-1.11.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:5e347b14fe01003d3b78e196e84bd3f48ffe4c8a7b8a1afbcb8f5505cb710993"}, + {file = "scipy-1.11.4-cp311-cp311-win_amd64.whl", hash = "sha256:acf8ed278cc03f5aff035e69cb511741e0418681d25fbbb86ca65429c4f4d9cd"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:028eccd22e654b3ea01ee63705681ee79933652b2d8f873e7949898dda6d11b6"}, + {file = "scipy-1.11.4-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:2c6ff6ef9cc27f9b3db93a6f8b38f97387e6e0591600369a297a50a8e96e835d"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b030c6674b9230d37c5c60ab456e2cf12f6784596d15ce8da9365e70896effc4"}, + {file = "scipy-1.11.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ad669df80528aeca5f557712102538f4f37e503f0c5b9541655016dd0932ca79"}, + {file = "scipy-1.11.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:ce7fff2e23ab2cc81ff452a9444c215c28e6305f396b2ba88343a567feec9660"}, + {file = "scipy-1.11.4-cp312-cp312-win_amd64.whl", hash = "sha256:36750b7733d960d7994888f0d148d31ea3017ac15eef664194b4ef68d36a4a97"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6e619aba2df228a9b34718efb023966da781e89dd3d21637b27f2e54db0410d7"}, + {file = "scipy-1.11.4-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:f3cd9e7b3c2c1ec26364856f9fbe78695fe631150f94cd1c22228456404cf1ec"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d10e45a6c50211fe256da61a11c34927c68f277e03138777bdebedd933712fea"}, + {file = "scipy-1.11.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:91af76a68eeae0064887a48e25c4e616fa519fa0d38602eda7e0f97d65d57937"}, + {file = "scipy-1.11.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:6df1468153a31cf55ed5ed39647279beb9cfb5d3f84369453b49e4b8502394fd"}, + {file = "scipy-1.11.4-cp39-cp39-win_amd64.whl", hash = "sha256:ee410e6de8f88fd5cf6eadd73c135020bfbbbdfcd0f6162c36a7638a1ea8cc65"}, + {file = "scipy-1.11.4.tar.gz", hash = "sha256:90a2b78e7f5733b9de748f589f09225013685f9b218275257f8a8168ededaeaa"}, +] + +[package.dependencies] +numpy = ">=1.21.6,<1.28.0" + +[package.extras] +dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"] +doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"] +test = ["asv", "gmpy2", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "setuptools" +version = "69.0.2" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.8" +files = [ + {file = "setuptools-69.0.2-py3-none-any.whl", hash = "sha256:1e8fdff6797d3865f37397be788a4e3cba233608e9b509382a2777d25ebde7f2"}, + {file = "setuptools-69.0.2.tar.gz", hash = "sha256:735896e78a4742605974de002ac60562d286fa8051a7e2299445e8e8fbb01aa6"}, +] + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.1)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "shiboken6" +version = "6.4.3" +description = "Python/C++ bindings helper module" +optional = false +python-versions = "<3.12,>=3.7" +files = [ + {file = "shiboken6-6.4.3-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:0b6d6a571131b94546aa784dc00221ba7afc90515354eaae65525753a84b6c4a"}, + {file = "shiboken6-6.4.3-cp37-abi3-manylinux_2_28_x86_64.whl", hash = "sha256:74570273004d2e481e55618150dfaee7ae253027b438066e216b339fae1e999a"}, + {file = "shiboken6-6.4.3-cp37-abi3-win_amd64.whl", hash = "sha256:0fee602ba02a0d1a6e4d4a69ddc5375ec7bed2ac5b51f06266a919d896517ee5"}, + {file = "shiboken6-6.4.3-pp39-pypy39_pp73-macosx_10_9_universal2.whl", hash = "sha256:6504ed8b01bde387cebc035687deae77a0bddcef3339e2e5b0e5bf9e6258e860"}, + {file = "shiboken6-6.4.3-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:73af15fa9f6b7305849116308923d437354ecabefc0546dc514901ec3bae4d89"}, + {file = "shiboken6-6.4.3-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4a63978b1a4ffed32776413a213a0f4e0a7fde2ebe06ac2ac70f99103fed185b"}, +] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ + {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, + {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, +] + +[[package]] +name = "tabulate" +version = "0.8.10" +description = "Pretty-print tabular data" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "tabulate-0.8.10-py3-none-any.whl", hash = "sha256:0ba055423dbaa164b9e456abe7920c5e8ed33fcc16f6d1b2f2d152c8e1e8b4fc"}, + {file = "tabulate-0.8.10.tar.gz", hash = "sha256:6c57f3f3dd7ac2782770155f3adb2db0b1a269637e42f27599925e64b114f519"}, +] + +[package.extras] +widechars = ["wcwidth"] + +[[package]] +name = "tbump" +version = "6.11.0" +description = "Bump software releases" +optional = false +python-versions = ">=3.7,<4.0" +files = [ + {file = "tbump-6.11.0-py3-none-any.whl", hash = "sha256:6b181fe6f3ae84ce0b9af8cc2009a8bca41ded34e73f623a7413b9684f1b4526"}, + {file = "tbump-6.11.0.tar.gz", hash = "sha256:385e710eedf0a8a6ff959cf1e9f3cfd17c873617132fc0ec5f629af0c355c870"}, +] + +[package.dependencies] +cli-ui = ">=0.10.3" +docopt = ">=0.6.2,<0.7.0" +schema = ">=0.7.1,<0.8.0" +tomlkit = ">=0.11,<0.12" + +[[package]] +name = "termcolor" +version = "2.4.0" +description = "ANSI color formatting for output in terminal" +optional = false +python-versions = ">=3.8" +files = [ + {file = "termcolor-2.4.0-py3-none-any.whl", hash = "sha256:9297c0df9c99445c2412e832e882a7884038a25617c60cea2ad69488d4040d63"}, + {file = "termcolor-2.4.0.tar.gz", hash = "sha256:aab9e56047c8ac41ed798fa36d892a37aca6b3e9159f3e0c24bc64a9b3ac7b7a"}, +] + +[package.extras] +tests = ["pytest", "pytest-cov"] + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, + {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, +] + +[[package]] +name = "tomlkit" +version = "0.11.8" +description = "Style preserving TOML library" +optional = false +python-versions = ">=3.7" +files = [ + {file = "tomlkit-0.11.8-py3-none-any.whl", hash = "sha256:8c726c4c202bdb148667835f68d68780b9a003a9ec34167b6c673b38eff2a171"}, + {file = "tomlkit-0.11.8.tar.gz", hash = "sha256:9330fc7faa1db67b541b28e62018c17d20be733177d290a13b24c62d1614e0c3"}, +] + +[[package]] +name = "unidecode" +version = "1.3.7" +description = "ASCII transliterations of Unicode text" +optional = false +python-versions = ">=3.5" +files = [ + {file = "Unidecode-1.3.7-py3-none-any.whl", hash = "sha256:663a537f506834ed836af26a81b210d90cbde044c47bfbdc0fbbc9f94c86a6e4"}, + {file = "Unidecode-1.3.7.tar.gz", hash = "sha256:3c90b4662aa0de0cb591884b934ead8d2225f1800d8da675a7750cbc3bd94610"}, +] + +[[package]] +name = "virtualenv" +version = "20.25.0" +description = "Virtual Python Environment builder" +optional = false +python-versions = ">=3.7" +files = [ + {file = "virtualenv-20.25.0-py3-none-any.whl", hash = "sha256:4238949c5ffe6876362d9c0180fc6c3a824a7b12b80604eeb8085f2ed7460de3"}, + {file = "virtualenv-20.25.0.tar.gz", hash = "sha256:bf51c0d9c7dd63ea8e44086fa1e4fb1093a31e963b86959257378aef020e1f1b"}, +] + +[package.dependencies] +distlib = ">=0.3.7,<1" +filelock = ">=3.12.2,<4" +platformdirs = ">=3.9.1,<5" + +[package.extras] +docs = ["furo (>=2023.7.26)", "proselint (>=0.13)", "sphinx (>=7.1.2)", "sphinx-argparse (>=0.4)", "sphinxcontrib-towncrier (>=0.2.1a0)", "towncrier (>=23.6)"] +test = ["covdefaults (>=2.3)", "coverage (>=7.2.7)", "coverage-enable-subprocess (>=1)", "flaky (>=3.7)", "packaging (>=23.1)", "pytest (>=7.4)", "pytest-env (>=0.8.2)", "pytest-freezer (>=0.4.8)", "pytest-mock (>=3.11.1)", "pytest-randomly (>=3.12)", "pytest-timeout (>=2.1)", "setuptools (>=68)", "time-machine (>=2.10)"] + +[metadata] +lock-version = "2.0" +python-versions = ">=3.10,<3.11" +content-hash = "8a2e4e955a81cc0e96ceb90d256ffdde44d5a5cfd69e80c4d7df1b43770ed68d" diff --git a/pyproject.toml b/pyproject.toml index b76fe2f..dc5a218 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -19,8 +19,15 @@ name = "pyes" version = "2.0.17beta" description = "" -[tool.run.ini_options] -pythonpath = ["src/main/python/", "../libeq/src"] +[tool.poetry.dependencies] +python = ">=3.10,<3.11" +pyinstaller = "~5" +ppg = {git = "ssh://git@github.com/Kastakin/ppg.git", rev = "main"} +pandas = "^1.5.0" +openpyxl = "^3.0.9" +pyqtgraph = "^0.13.0" +pyside6-essentials = "~6.4.0" +numba = "^0.58.1" [tool.uv.sources] libeq = { path = "../libeq", editable = true } diff --git a/src/main/python/pyes/optimizers/distribution.py b/src/main/python/pyes/optimizers/distribution.py new file mode 100644 index 0000000..2067a75 --- /dev/null +++ b/src/main/python/pyes/optimizers/distribution.py @@ -0,0 +1,1686 @@ +import logging +from collections import deque + +import numpy as np +import pandas as pd +from numba import jit, njit, prange +from numpy.typing import NDArray + + +class Distribution: + """ + Newton-Raphson method to solve iteratively mass balance equations. + """ + + def __init__(self): + # Set limit for underflow/overflow exp + self.epsl = 200 + # Set flag to report that computation is done + self.done_flag = False + + def fit(self, data): + """ + Loads the data used to optimize the system. + + :param data: data as given from the GUI. + """ + logging.info("--- START DATA LOADING ---") + # Titration or Distribution mode + if data["dmode"] == 0: + self.distribution = False + else: + self.distribution = True + + if data["emode"] == 1: + self.errors = True + else: + self.errors = False + + # Charge values of comps + self.comp_charge = pd.DataFrame(data["compModel"])["Charge"] + # Data relative to the species and solid species + species_data: pd.DataFrame = pd.DataFrame(data["speciesModel"]) + solid_data: pd.DataFrame = pd.DataFrame(data["solidSpeciesModel"]) + # Data relative to comp concentrations + conc_data = pd.DataFrame(data["concModel"]) + + if self.distribution: + # Independent comp + self.ind_comp = data["ind_comp"] + # Initial log value + initial_log = data["initialLog"] + # Final log value + final_log = data["finalLog"] + # log increments at each point + log_increments = data["logInc"] + + # Final log value should be higher than the initial one + if initial_log >= final_log: + raise Exception("Initial -log[A] should be lower then final -log[A].") + + if log_increments == 0: + raise Exception("Increment of -log[A] should be more then zero.") + # Create two arrays (log and conc. of independent component) + self.ind_comp_logs = np.arange( + initial_log, (final_log + log_increments), log_increments + ) + self.ind_comp_c = 10 ** (-self.ind_comp_logs) + + # Calculate the number of points in the interval + self.nop = len(self.ind_comp_c) + else: + self.c_added = conc_data.iloc[:, 1].copy().to_numpy(dtype="float") + # Initial volume + v0 = data["v0"] * 1e-3 + # First titration point volume + initial_volume = data["initv"] * 1e-3 + # Volume increment at each point + volume_increments = data["vinc"] * 1e-3 + # number of points + self.nop = int(data["nop"]) + + if v0 <= 0: + raise Exception("Initial volume can't be zero") + + if volume_increments <= 0: + raise Exception("Volume increments should be higher then 0.") + + if v0 > initial_volume: + raise Exception( + "Initial titration volume should be higer or equal to initial" + " volume." + ) + + self.v_added = np.array([volume_increments * x for x in range(self.nop)]) + v1_diff = initial_volume - v0 + self.v_added += v1_diff + v_tot = v0 + self.v_added + + # Check if the number of points in the range of pH is greater then 0 + if self.nop == 0: + raise Exception("Number of points in the -log[A] range shouldn't be 0.") + + # Analytical concentration of each component (including the ones that will be ignored) + self.c_tot = conc_data.iloc[:, 0].copy().to_numpy(dtype="float") + + # Check if they are all zero + if (self.c_tot == 0).all(): + raise Exception( + "Analytical concentration shouldn't be zero for all components." + ) + + # Charges of components + self.comp_charge = self.comp_charge.copy().to_numpy(dtype="int") + + # Find which components have to be ignored (c0 = 0) + ignored_comps = ( + (self.c_tot == 0) & (np.arange(len(self.c_tot)) != self.ind_comp) + if self.distribution + else (self.c_tot == 0) + ) + + # Remove the concentration and charge data relative to those + if not self.distribution: + self.c_added = np.delete(self.c_added, ignored_comps, 0) + self.c_tot = np.delete(self.c_tot, ignored_comps, 0) + self.comp_charge = np.delete(self.comp_charge, ignored_comps) + + # get number of effective components + self.nc = int(len(conc_data)) - ignored_comps.sum() + + if self.distribution: + # for every ignored comp which index is lower + # of the designated independent comp + # reduce its index by one (they "slide over") + self.ind_comp = self.ind_comp - ignored_comps[: self.ind_comp].sum() + # Assign total concentrations for each point + self.c_tot = np.delete(self.c_tot, self.ind_comp, 0) + self.c_tot = np.tile(self.c_tot, [self.nop, 1]) + else: + self.initial_c = self.c_tot + self.c_tot = ( + (np.tile(self.c_tot, [self.nop, 1]) * v0) + + (np.tile(self.v_added, [self.nc, 1]).T * self.c_added) + ) / np.tile(v_tot, [self.nc, 1]).T + self.c_tot[self.c_tot == 0] = -1e-9 + + # Store the stoichiometric coefficients for the components + # IMPORTANT: each component is considered as a species with logB = 0 + comp_model = np.identity(self.nc, dtype="int") + + # Ignore the rows relative to the flagged as ignored species and ignored solid species + species_not_ignored = species_data.loc[species_data["Ignored"] == False] + solid_not_ignored = solid_data.loc[solid_data["Ignored"] == False] + + species_duplicates = species_not_ignored.loc[ + species_not_ignored.duplicated(subset="Name", keep="first").to_list(), + "Name", + ] + if not species_duplicates.empty: + raise Exception( + f"Species {', '.join(species_duplicates.to_list())} with indices" + f" {', '.join(species_duplicates.index.astype(str).to_list())} appear" + " to be duplicates, you can and should remove them to avoid" + " ambiguities in the results." + ) + + solids_duplicates = solid_not_ignored.loc[ + solid_not_ignored.duplicated(subset="Name", keep="first").to_list(), + "Name", + ] + if not solids_duplicates.empty: + raise Exception( + f"Solids {', '.join(solids_duplicates.to_list())} with indices" + f" {', '.join(solids_duplicates.index.astype(str).to_list())} appear to" + " be duplicates, you can and should remove them to avoid ambiguities" + " in the results." + ) + + # Store the stoichiometric coefficients for the species and solid species + base_model = species_not_ignored.iloc[:, 8:-1].to_numpy(dtype="int").T + solid_model = solid_not_ignored.iloc[:, 8:-1].to_numpy(dtype="int").T + + # Stores log_betas and log_ks of not ignored species + base_log_beta = species_not_ignored.iloc[:, 2].to_numpy(dtype="float") + base_log_ks = solid_not_ignored.iloc[:, 2].to_numpy(dtype="float") + + # Store comp_names + self.comp_names = conc_data.index + ignored_comp_names = self.comp_names[ignored_comps] + self.comp_names = np.delete(self.comp_names, ignored_comps, 0) + + # Store for each species which component is used to calculate relative percentage. + self.species_perc_str = species_not_ignored.iloc[:, -1].to_numpy(dtype="str") + self.solid_perc_str = solid_not_ignored.iloc[:, -1].to_numpy(dtype="str") + + # Remove all the species and solid species that have one or more ignored comp with not null coeff. + # with their relative betas and component for percentage computation + species_to_remove = (base_model[ignored_comps, :] != 0).sum(axis=0) != 0 + solid_to_remove = (solid_model[ignored_comps, :] != 0).sum(axis=0) != 0 + base_model = np.delete(base_model, species_to_remove, axis=1) + solid_model = np.delete(solid_model, solid_to_remove, axis=1) + base_log_beta = np.delete(base_log_beta, species_to_remove, axis=0) + base_log_ks = np.delete(base_log_ks, solid_to_remove, axis=0) + self.species_perc_str = np.delete( + self.species_perc_str, species_to_remove, axis=0 + ) + self.solid_perc_str = np.delete(self.solid_perc_str, solid_to_remove, axis=0) + + # Delete the columns for the coeff relative to the ignored components + base_model = np.delete(base_model, ignored_comps, axis=0) + solid_model = np.delete(solid_model, ignored_comps, axis=0) + + # Transforms the component used to calculate percentages from string to the corresponding index + # If any of the species or solid species would use one of the ignored comps + # assign the index for computation as if the independent comp + # would be used instead (its percent value will be zero) + self.species_perc_int, self.solid_perc_int = self._percEncoder( + ignored_comp_names + ) + + # Assemble the models and betas matrix + self.model = np.concatenate((comp_model, base_model), axis=1) + self.log_beta_ris = np.concatenate( + (np.array([0 for _ in range(self.nc)]), base_log_beta), axis=0 + ) + self.solid_model = solid_model + self.log_ks_ris = base_log_ks + + # Get the number of not-ignored species/solid species + self.ns = base_model.shape[1] + self.nf = solid_model.shape[1] + + # Number of components and number of species/solids has to be > 0 + if self.nc <= 0 | (self.ns <= 0 & self.nf <= 0): + raise Exception( + "Number of components and number of not ignored species should be more" + " then zero." + ) + + if self.errors: + self.c0_sigma = conc_data.iloc[:, 2].copy().to_numpy(dtype="float") + self.c0_sigma = np.delete(self.c0_sigma, ignored_comps) + if self.distribution: + self.c0_sigma[self.ind_comp] = 0 + self.conc_sigma = np.tile(self.c0_sigma, [self.nop, 1]) + else: + self.ct_sigma = conc_data.iloc[:, 3].copy().to_numpy(dtype="float") + self.ct_sigma = np.delete(self.ct_sigma, ignored_comps) + self.conc_sigma = np.tile(self.c0_sigma, [self.nop, 1]) + ( + np.tile(self.v_added, [self.nc, 1]).T * self.ct_sigma + ) + + self.log_beta_sigma = species_not_ignored.iloc[:, 3].to_numpy(dtype="float") + self.log_ks_sigma = solid_not_ignored.iloc[:, 3].to_numpy(dtype="float") + + self.log_beta_sigma = np.delete( + self.log_beta_sigma, species_to_remove, axis=0 + ) + self.log_ks_sigma = np.delete(self.log_ks_sigma, solid_to_remove, axis=0) + + self.beta_sigma = ( + self.log_beta_sigma * np.log(10) * (10 ** self.log_beta_ris[self.nc :]) + ) + + self.ks_sigma = self.log_ks_sigma * np.log(10) * (10**self.log_ks_ris) + + # Check the ionic strength mode + # Load the required data if so + self.imode = data["imode"] + if self.imode == 1: + # Load reference ionic strength + self.species_ris = species_not_ignored.iloc[:, 4].to_numpy(dtype="float") + self.solid_ris = solid_not_ignored.iloc[:, 4].to_numpy(dtype="float") + + # Remove ionic strength for species/solids that are ignored + self.species_ris = np.delete(self.species_ris, species_to_remove, axis=0) + self.solid_ris = np.delete(self.solid_ris, solid_to_remove, axis=0) + + # If ref. ionic strength is not given for one of the species use the reference one + self.species_ris = np.where( + self.species_ris == 0, data["ris"], self.species_ris + ) + self.solid_ris = np.where(self.solid_ris == 0, data["ris"], self.solid_ris) + + # Add ref. ionic strength for components + self.species_ris = np.insert( + self.species_ris, 0, [data["ris"] for _ in range(self.nc)] + ) + # Calculate square root of reference ionic strength for species + self.species_radqris = np.sqrt(self.species_ris) + self.solid_radqris = np.sqrt(self.solid_ris) + + # Load background ions concentration + if self.distribution: + self.background_c = np.tile(data["cback"], self.nop) + else: + background_c0 = data["c0back"] + background_ct = data["ctback"] + self.background_c = np.array( + ((background_c0 * v0) + (background_ct * self.v_added)) / v_tot + ) + + a = data["a"] + self.b = data["b"] + c = [data["c0"], data["c1"]] + d = [data["d0"], data["d1"]] + e = [data["e0"], data["e1"]] + + # Check if default have to be used + if (a == 0) & (self.b == 0): + a = 0.5 + self.b = 1.5 + + # Compute p* for alla the species + species_past = self.model.sum(axis=0) - 1 + solid_past = self.solid_model.sum(axis=0) + + # Reshape charges into a column vector + comp_charge_column = np.reshape(self.comp_charge, (self.nc, 1)) + + if self.distribution: + # Same vector except missing the charge of the indipendent component, used later in the computation + self.comp_charge_no_indipendent = np.delete( + self.comp_charge, self.ind_comp + ) + + # Compute species charges + self.species_charges = (self.model * comp_charge_column).sum(axis=0) + self.solid_charges = (self.solid_model * comp_charge_column).sum(axis=0) + + # Compute z* for all the species + species_zast = (self.model * (comp_charge_column**2)).sum(axis=0) - ( + self.species_charges + ) ** 2 + solid_zast = (self.solid_model * (comp_charge_column**2)).sum(axis=0) + + # Compute A/B term of D-H equation + self.species_az = a * species_zast + self.solid_az = a * solid_zast + + self.species_fib = self.species_radqris / ( + 1 + (self.b * self.species_radqris) + ) + self.solid_fib = self.solid_radqris / (1 + (self.b * self.solid_radqris)) + + # For both species and solids sets the Debye-Huckle parameters used to update their defining constants + (self.species_cg, self.species_dg, self.species_eg) = self._setDBHParams( + species_not_ignored, + species_to_remove, + species_past, + species_zast, + c, + d, + e, + ) + + (self.solid_cg, self.solid_dg, self.solid_eg) = self._setDBHParams( + solid_not_ignored, + solid_to_remove, + solid_past, + solid_zast, + c, + d, + e, + solids=True, + ) + + # Compose species names from the model + self.species_names = ( + list(self.comp_names) + + species_not_ignored.iloc[~species_to_remove, 1].to_list() + ) + self.solid_names = solid_not_ignored.iloc[~solid_to_remove, 1].to_list() + + logging.info("--- DATA LOADED ---") + + def predict(self): + """ + Given the loaded data returns species distribution. + """ + # Calculate species distribution + # Return formatted species distribution as a nice table + logging.info("--- BEGINNING CALCULATION --- ") + ( + species, + solid, + si, + species_sigma, + solid_sigma, + log_b, + log_ks, + ionic_strength, + ) = self._compute() + + # Set the flag to signal a completed run + self.done_flag = True + + # Create the table containing the species/comp. concentration + self.species_distribution = pd.DataFrame( + species, + columns=self.species_names, + ).rename_axis(columns="Species Conc. [mol/L]") + self.species_distribution = self._setDataframeIndex(self.species_distribution) + + if self.distribution: + cans = np.insert(self.c_tot, self.ind_comp, 0, axis=1) + else: + cans = self.c_tot + + # Compute and create table with percentages of species with respect to component + # As defined with the input + species_perc_table = self._computePercTable( + cans, species, self.model, self.species_perc_int + ) + + # Percentages are rounded two the second decimal and stored in a dataframe + self.species_percentages = ( + pd.DataFrame( + species_perc_table, + columns=[self.species_names, self.species_perc_str], + ) + .rename_axis(columns=["Species", r"% relative to comp."]) + .round(2) + ) + self.species_percentages = self._setDataframeIndex(self.species_percentages) + + if self.nf > 0: + # Create the table containing the solid species "concentration" + self.solid_distribution = pd.DataFrame( + solid, columns=self.solid_names + ).rename_axis(columns="Solid Conc. [mol/L]") + check = self.solid_distribution.apply( + lambda x: pd.Series( + ["*" if i > 0 else "" for i in x], + index=["Prec." + name for name in self.solid_distribution.columns], + dtype=str, + ), + axis=1, + ) + saturation_index = pd.DataFrame( + si, columns=["SI" + name for name in self.solid_names] + ) + + self.solid_distribution = pd.merge( + self.solid_distribution, + check, + left_index=True, + right_index=True, + sort=True, + ) + + self.solid_distribution = pd.merge( + self.solid_distribution, + saturation_index, + left_index=True, + right_index=True, + sort=True, + ) + + self.solid_distribution = self.solid_distribution[ + list( + sum( + zip( + check.columns, + saturation_index, + self.solid_distribution.columns, + ), + (), + ) + ) + ] + self.solid_distribution = self._setDataframeIndex(self.solid_distribution) + + # Compute solid percentages as for species percentages + solid_perc_table = self._computePercTable( + cans, solid, self.solid_model, self.solid_perc_int, solids=True + ) + + self.solid_percentages = ( + pd.DataFrame( + solid_perc_table, + columns=[self.solid_names, self.solid_perc_str], + ) + .rename_axis(columns=["Solids", r"% relative to comp."]) + .round(2) + ) + self.solid_percentages = self._setDataframeIndex(self.solid_percentages) + + if self.errors: + # For error propagation create the corresponding tables + self.species_sigma = pd.DataFrame( + species_sigma, columns=self.species_names + ).rename_axis(columns="Species Std. Dev. [mol/L]") + self.species_sigma = self._setDataframeIndex(self.species_sigma) + + if self.nf > 0: + self.solid_sigma = pd.DataFrame( + solid_sigma, columns=self.solid_names + ).rename_axis(columns="Solid Std. Dev. [mol]") + self.solid_sigma = self._setDataframeIndex(self.solid_sigma) + + # If working at variable ionic strength + if self.imode == 1: + # Add multi index to the species distribution containing the ionic strength + self.species_distribution.insert(0, "I", ionic_strength) + self.species_distribution.set_index("I", append=True, inplace=True) + + # Create table containing adjusted LogB for each point + self.log_beta = pd.DataFrame( + log_b[:, self.nc :], + columns=self.species_names[self.nc :], + ).rename_axis(columns="Formation Constants") + self.log_beta = self._setDataframeIndex(self.log_beta) + + self.log_beta.insert(0, "I", ionic_strength) + self.log_beta.set_index("I", append=True, inplace=True) + + if self.nf > 0: + self.solid_distribution.insert(0, "I", ionic_strength) + self.solid_distribution.set_index("I", append=True, inplace=True) + # Create table containing adjusted LogKs for each point + self.log_ks = pd.DataFrame( + log_ks, + columns=self.solid_names, + ).rename_axis(columns="Solubility Products") + self.log_ks = self._setDataframeIndex(self.log_ks) + + self.log_ks.insert(0, "I", ionic_strength) + self.log_ks.set_index("I", append=True, inplace=True) + + logging.info("--- CALCULATION TERMINATED ---") + + return True + + def speciesDistribution(self): + """ + Returns the species concentration table. + """ + if self.done_flag: + return self.species_distribution + else: + return False + + def solidDistribution(self): + """ + Returns the solid species concentration table. + """ + if self.done_flag: + try: + return self.solid_distribution + except AttributeError: + return pd.DataFrame() + else: + return False + + def formationConstants(self): + """ + Returns the table containing formation constants and the ionic strength. + """ + if self.done_flag: + try: + return self.log_beta + except AttributeError: + return pd.DataFrame() + else: + return False + + def solubilityProducts(self): + """ + Returns the table containing the LogKps for the solid species present in the model. + """ + if self.done_flag: + try: + return self.log_ks + except AttributeError: + return pd.DataFrame() + else: + return False + + def speciesPercentages(self): + """ + Return percentages of species with respect to the desired component. + """ + if self.done_flag: + return self.species_percentages + else: + return False + + def solidPercentages(self): + """ + Return percentages of solids with respect to the desired component. + """ + if self.done_flag: + try: + return self.solid_percentages + except AttributeError: + return pd.DataFrame() + + else: + return False + + def speciesSigmas(self): + """ + Return percentages of species with respect to the desired component. + """ + if self.done_flag: + try: + return self.species_sigma + except AttributeError: + return pd.DataFrame() + else: + return False + + def solidSigmas(self): + """ + Return percentages of solids with respect to the desired component. + """ + if self.done_flag: + try: + return self.solid_sigma + except AttributeError: + return pd.DataFrame() + else: + return False + + def parameters(self): + """ + Returns relevant data that was used for the computation + """ + if self.done_flag: + species_info = pd.DataFrame( + { + "logB": self.log_beta_ris[self.nc :], + }, + index=self.species_names[self.nc :], + ).rename_axis(index="Species Names") + + if self.nf > 0: + solid_info = pd.DataFrame( + { + "logKs": self.log_ks_ris, + }, + index=self.solid_names, + ).rename_axis(index="Solid Names") + else: + solid_info = pd.DataFrame() + + if self.imode == 1: + species_info.insert(1, "Ref. I", self.species_ris[self.nc :]) + species_info.insert(2, "Charge", self.species_charges[self.nc :]) + species_info.insert(3, "C", self.species_cg[self.nc :]) + species_info.insert(4, "D", self.species_dg[self.nc :]) + species_info.insert(5, "E", self.species_eg[self.nc :]) + + if self.nf > 0: + solid_info.insert(1, "Ref. I", self.solid_ris) + solid_info.insert(2, "Charge", self.solid_charges) + solid_info.insert(3, "C", self.solid_cg) + solid_info.insert(4, "D", self.solid_dg) + solid_info.insert(5, "E", self.solid_eg) + + if self.errors: + species_info.insert(1, "Sigma logB", self.log_beta_sigma) + + if self.nf > 0: + solid_info.insert(1, "Sigma logKs", self.log_ks_sigma) + + comp_info = pd.DataFrame( + { + "Charge": self.comp_charge, + }, + index=self.species_names[: self.nc], + ).rename_axis(index="Components Names") + + if self.distribution: + comp_info["Tot. C."] = np.insert(self.c_tot[0], self.ind_comp, None) + if self.errors: + comp_info.insert(2, "Sigma Tot C", self.c0_sigma) + else: + comp_info["Vessel Conc."] = self.initial_c + comp_info["Titrant Conc."] = self.c_added + if self.errors: + comp_info.insert(2, "Sigma C0", self.c0_sigma) + comp_info.insert(4, "Sigma cT", self.ct_sigma) + + return species_info, solid_info, comp_info + else: + return False + + def _compute(self): + """ + Calculate species distribution. + """ + # Initialize array to contain the species concentration + # obtained from the calculations + for_estimation_c = deque(maxlen=3) + results_species_conc = np.zeros( + dtype=float, shape=(self.nop, self.ns + self.nc) + ) + results_solid_conc = np.zeros(dtype=float, shape=(self.nop, self.nf)) + results_solid_si = np.zeros(dtype=float, shape=(self.nop, self.nf)) + results_species_sigma = np.zeros( + dtype=float, shape=(self.nop, self.ns + self.nc) + ) + results_solid_sigma = np.zeros(dtype=float, shape=(self.nop, self.nf)) + results_log_b = np.zeros(dtype=float, shape=(self.nop, self.ns + self.nc)) + results_log_ks = np.zeros(dtype=float, shape=(self.nop, self.nf)) + results_ionic_strength = np.zeros(dtype=float, shape=(self.nop, 1)) + + # Cycle over each point of titration + for point in range(self.nop): + logging.debug("--> OPTIMIZATION POINT: %s", point) + + if self.distribution: + c, fixed_c = self._distributionGuess(point, for_estimation_c) + else: + fixed_c = None + c = self._titrationGuess(point, for_estimation_c) + + # Initial guess for solids concentrations should always be zero + cp = np.zeros(self.nf) + + logging.debug("INITIAL ESTIMATED FREE C: %s", c) + logging.debug("TOTAL C: %s", self.c_tot[point]) + + shifts_to_calculate = np.array( + [True for _ in range(self.nc)] + [False for _ in range(self.nf)] + ) + + shifts_to_calculate, shifts_to_skip = self._getComputableShifts( + shifts_to_calculate + ) + # Calculate species concentration for aqueous species only + ( + species_conc_calc, + solid_conc_calc, + log_b, + log_ks, + ionic_strength, + ) = self._newtonRaphson( + point, + c, + cp, + self.c_tot[point], + fixed_c, + shifts_to_calculate, + shifts_to_skip, + with_solids=False, + ) + + # Store concentrations before solid precipitation to estimate next points c + for_estimation_c.append(species_conc_calc) + + saturation_index_calc = np.zeros(self.nf) + adjust_solids = True and (self.nf > 0) + while adjust_solids: + saturation_index = self._getSaturationIndex( + species_conc_calc[: self.nc], log_ks + ) + + # Check which solids are to be considered + shifts_to_calculate, shifts_to_skip = self._getComputableShifts( + shifts_to_calculate, saturation_index, solid_conc_calc + ) + + if shifts_to_calculate[-self.nf :].any(): + ( + species_conc_calc, + solid_conc_calc, + log_b, + log_ks, + ionic_strength, + ) = self._newtonRaphson( + point, + species_conc_calc[: self.nc], + solid_conc_calc, + self.c_tot[point], + fixed_c, + shifts_to_calculate, + shifts_to_skip, + with_solids=True, + ) + else: + saturation_index_calc = saturation_index + adjust_solids = False + + if self.errors: + species_sigma, solid_sigma = self._computeErrors( + species_conc_calc, + solid_conc_calc, + saturation_index_calc, + log_b, + log_ks, + point, + ) + else: + species_sigma = np.array([None for _ in range(self.nc + self.ns)]) + solid_sigma = np.array([None for _ in range(self.nf)]) + + # Store calculated species/solid concentration into a vector + results_species_conc[point, :] = species_conc_calc + results_solid_conc[point, :] = solid_conc_calc + + results_solid_si[point, :] = saturation_index_calc + # Store uncertainty for calculated values + results_species_sigma[point, :] = species_sigma + results_solid_sigma[point, :] = solid_sigma + # Store calculated ionic strength + results_ionic_strength[point] = ionic_strength + # Store calculated LogB/LogKs + results_log_b[point, :] = log_b + results_log_ks[point, :] = log_ks + + # Stack calculated species concentration/logB/ionic strength in tabular fashion + # results_species_conc = np.stack(results_species_conc) + # results_solid_conc = np.stack(results_solid_conc) + # results_solid_si = np.stack(results_solid_si) + # results_species_sigma = np.stack(results_species_sigma) + # results_solid_sigma = np.stack(results_solid_sigma) + # results_log_b = np.stack(results_log_b) + # results_log_ks = np.stack(results_log_ks) + # results_ionic_strength = np.stack(results_ionic_strength) + + # Return distribution/logb/ionic strength + return ( + results_species_conc, + results_solid_conc, + results_solid_si, + results_species_sigma, + results_solid_sigma, + results_log_b, + results_log_ks, + results_ionic_strength, + ) + + def _newtonRaphson( + self, + point, + c, + cp, + c_tot, + fixed_c, + shifts_to_calculate, + shifts_to_skip, + with_solids=False, + ): + np.seterr(all="ignore") + iteration = 0 + + if not with_solids: + # If working with variable ionic strength compute initial guess for species concentration + if self.imode == 1: + if point == 0: + log_beta, log_ks, _ = self._updateConstants( + c_tot, + self.log_beta_ris, + self.log_ks_ris, + self.comp_charge, + point, + first_guess=True, + ) + else: + log_beta = self.previous_log_beta + log_ks = self.previous_log_ks + + logging.debug("Estimate of LogB for point %s: %s", point, log_beta) + + c, c_spec = self._damping(point, c, cp, log_beta, c_tot, fixed_c) + + log_beta, log_ks, cis = self._updateConstants( + c_spec, + self.log_beta_ris, + self.log_ks_ris, + self.species_charges, + point, + ) + + self.previous_log_beta = log_beta + self.previous_log_ks = log_ks + logging.debug("Updated LogB: %s", log_beta) + else: + log_beta = self.log_beta_ris + log_ks = self.log_ks_ris + c, c_spec = self._damping(point, c, cp, log_beta, c_tot, fixed_c) + cis = [None] + else: + if self.imode == 1: + c_tot_calc, c_spec = self._speciesConcentration( + c, cp, self.previous_log_beta + ) + log_beta, log_ks, cis = self._updateConstants( + c_spec, + self.log_beta_ris, + self.log_ks_ris, + self.species_charges, + point, + ) + + self.previous_log_beta = log_beta + self.previous_log_ks = log_ks + else: + log_beta = self.log_beta_ris + log_ks = self.log_ks_ris + cis = [None] + c, c_spec = self._damping(point, c, cp, log_beta, c_tot, fixed_c) + + # Calculate total concentration given the species concentration + c_tot_calc, c_spec = self._speciesConcentration(c, cp, log_beta) + + # Calculate saturation index for solid species if any + saturation_index = self._getSaturationIndex(c, log_ks) + + # Compute difference between total concentrations and calculated one + delta, can_delta, solid_delta = self._computeDelta( + c_tot, + c_tot_calc, + with_solids, + saturation_index, + shifts_to_calculate[-self.nf :], + ) + + while iteration < 2000: + logging.debug( + "-> BEGINNING NEWTON-RAPHSON ITERATION %s ON POINT %s", iteration, point + ) + + # Compute Jacobian + J = self._computeJacobian( + c_spec, + saturation_index, + with_solids, + shifts_to_skip[-self.nf :], + ) + + if self.distribution: + # Ignore row and column relative to the independent component + J = np.delete(J, self.ind_comp, axis=0) + J = np.delete(J, self.ind_comp, axis=1) + + # J, delta = self._scaleMatrix(J, delta) + + # Solve the equations to obtain newton step + shifts = np.linalg.solve(J, -delta) + + actual_shifts = np.zeros(self.nc + self.nf) + actual_shifts[shifts_to_calculate] = shifts + shifts = actual_shifts + + # if self.distribution: + # shifts = np.insert(shifts, self.ind_comp, 0, axis=0) + + logging.debug( + "Shifts to be applied to concentrations and precipitates: %s", shifts + ) + + # if with_solids: + # one_over_del = -shifts / (0.5 * np.append(c, cp)) + # else: + one_over_del = -shifts[: self.nc] / (0.5 * c) + + rev_del = 1 / np.where(one_over_del > 1, one_over_del, 1) + + c = c + rev_del[: self.nc] * shifts[: self.nc] + + # if with_solids: + cp = cp + shifts[self.nc :] + + logging.debug("Newton-Raphson updated free concentrations: %s", c) + logging.debug("Newton-Raphson updated precipitate concentrations: %s", cp) + + # Calculate total concentration given the updated free/precipitate concentration + c_tot_calc, c_spec = self._speciesConcentration(c, cp, log_beta) + + # Compute difference between total concentrations and convergence + saturation_index = self._getSaturationIndex(c, log_ks) + + # Compute difference between total concentrations + delta, can_delta, solid_delta = self._computeDelta( + c_tot, + c_tot_calc, + with_solids, + saturation_index, + shifts_to_calculate[-self.nf :], + ) + + comp_conv_criteria = np.sum(can_delta / c_tot) ** 2 + + logging.debug( + ( + "Convergence for analytical concentrations at Point %s iteration" + " %s: %s" + ), + point, + iteration, + comp_conv_criteria, + ) + + iteration += 1 + # If convergence criteria is met return check if any solid has to be considered + if with_solids: + if comp_conv_criteria < 1e-12 and all( + abs(i) <= 1e-9 for i in solid_delta + ): + return c_spec, cp, log_beta, log_ks, cis + else: + if comp_conv_criteria < 1e-12: + return c_spec, cp, log_beta, log_ks, cis + + # If during the first or second run you exceed the iteration limit report it + logging.error( + "Calculation terminated early, no convergence found at point {} in {}" + " iterations".format(point, iteration) + + ( + ( + " after solids were considered." + if with_solids + else " before solids were considered." + ) + if self.nf > 0 + else "" + ) + ) + raise Exception( + "Calculation of species concentration aborted, no convergence found with" + " conc {} at point {} in {} iterations".format( + str(c_spec), point, iteration + ) + + ( + ( + " after solids were considered." + if with_solids + else " before solids were considered." + ) + if self.nf > 0 + else "" + ) + ) + + def _getComputableShifts( + self, + shifts_to_calculate: NDArray, + saturation_index: NDArray = np.array([]), + solid_concentrations: NDArray = np.array([]), + ): + negative_cp = solid_concentrations < 0 + supersaturated_solid = saturation_index > 1 + 1e-9 + + if negative_cp.any(): + shifts_to_calculate[-self.nf :] = ~negative_cp + elif supersaturated_solid.any(): + shifts_to_calculate[-self.nf :][np.argmax(saturation_index)] = True + else: + shifts_to_calculate = np.array( + [True for _ in range(self.nc)] + [False for _ in range(self.nf)] + ) + + if self.distribution: + # If calculating distribution of species exclude the indipendent component from the species to consider + # shifts_to_calculate = np.delete(shifts_to_calculate, self.ind_comp, axis=0) + # shifts_to_skip = np.delete(shifts_to_skip, self.ind_comp, axis=0) + shifts_to_calculate[self.ind_comp] = False + + shifts_to_skip = ~shifts_to_calculate + + return shifts_to_calculate, shifts_to_skip + + def _computeDelta( + self, c_tot, c_tot_calc, with_solids, saturation_index, cp_to_calculate + ): + can_delta = c_tot_calc - c_tot + + if with_solids: + solid_delta = np.ones(self.nf) - saturation_index + solid_delta = solid_delta[cp_to_calculate] + else: + solid_delta = [] + + delta = np.concatenate((can_delta, solid_delta)) + + return delta, can_delta, solid_delta + + def _computeJacobian(self, c_spec, saturation_index, with_solids, to_skip): + if with_solids: + nt = self.nc + self.nf + to_skip = np.concatenate(([False for _ in range(self.nc)], to_skip)) + else: + nt = self.nc + + J = numba_jacobian( + self.nc, + nt, + c_spec, + saturation_index, + self.model, + self.solid_model, + with_solids, + ) + # print(numba_jacobian.parallel_diagnostics(level=4)) + + if with_solids: + # Remove rows and columns referring to under-saturated solids + J = np.delete(J, to_skip, axis=0) + J = np.delete(J, to_skip, axis=1) + + return J + + def _speciesConcentration(self, c, cp, log_beta): + """ + Calculate species concentration it returns c_spec and c_tot_calc: + - c_spec[0->nc] = free conc for each component. + - c_spec[nc+1->nc+ns] = species concentrations. + - c_tot_calc = estimated anaytical concentration. + """ + log_c_spec = self._checkOverUnderFlow( + np.sum(np.tile(np.log10(c), (self.ns + self.nc, 1)).T * self.model, axis=0) + + log_beta + ) + + c_spec = 10**log_c_spec + logging.debug("Species Concentrations: %s", c_spec) + + # Estimate total concentration given the species concentration + c_tot_calc = np.sum(self.model * np.tile(c_spec, (self.nc, 1)), axis=1) + + if self.nf > 0: + c_tot_calc += np.sum(self.solid_model * np.tile(cp, (self.nc, 1)), axis=1) + + if self.distribution: + # Take out the analytical concentration relative to the independent component + c_tot_calc = np.delete(c_tot_calc, self.ind_comp, 0) + + logging.debug("Calculated Total Concentration: %s", c_tot_calc) + + return c_tot_calc, c_spec + + def _distributionGuess(self, point, for_estimation_c): + """ + Return an initial guess for the first newton raphson iteration when dealing with distributions of species + """ + fixed_c = self.ind_comp_c[point] + # Initial guess of free concentration (c) is considered as follows: + # - First point as a fraction of the total concentration + # - Second and third points as estimate from previous point + # - Subsequent points are extrapolated as follows + if point > 2: + lp1 = -np.log10(for_estimation_c[-1][: self.nc]) + lp2 = -np.log10(for_estimation_c[-2][: self.nc]) + lp3 = -np.log10(for_estimation_c[-3][: self.nc]) + + # If two subsequent points present the same concentration + # avoid the issue by using simply the previous point concentration + c = np.where(lp2 == lp3, lp1, (lp1 + ((lp1 - lp2) ** 2) / (lp2 - lp3))) + # If the extrapolation returns values that would cause under/overflow adjust them accordingly + c = self._checkOverUnderFlow(c, d=2) + + if (c < 0).any(): + c = lp1 + + # Convert logs back to concentrations + c = 10 ** (-c) + # Free C of independent component is set as defined in the settings tab + c[self.ind_comp] = fixed_c + logging.debug("ESTIMATED C WITH INTERPOLATION") + elif point > 0: + c = for_estimation_c[-1][: self.nc].copy() + c[self.ind_comp] = fixed_c + logging.debug("ESTIMATED C FROM PREVIOUS POINT") + elif point == 0: + c = np.multiply(self.c_tot[0], 0.001) + c = np.insert(c, self.ind_comp, fixed_c) + logging.debug("ESTIMATED C AS FRACTION TOTAL C") + return c, fixed_c + + def _titrationGuess(self, point, for_estimation_c): + """ + Return an initial guess for the first newton raphson iteration when dealing with simulated titrations + """ + # Initial guess of free concentration (c) is considered as follows: + # - First point as a fraction of the total concentration + # - Second and third points as estimate from previous point + # - Subsequent points are extrapolated as follows + if point > 2: + v = self.v_added[point] + v1 = self.v_added[(point - 1)] + v2 = self.v_added[(point - 2)] + v3 = self.v_added[(point - 3)] + lp1 = -np.log10(for_estimation_c[-1][: self.nc]) + lp2 = -np.log10(for_estimation_c[-2][: self.nc]) + lp3 = -np.log10(for_estimation_c[-3][: self.nc]) + + # If two subsequent points present the same concentration + # avoid the issue by using simply the previous point concentration + c = np.where( + lp2 == lp3, + lp1, + ( + lp1 + + (((lp1 - lp2) / (v1 - v2)) ** 2) + * ((v2 - v3) / (lp2 - lp3)) + * (v - v1) + ), + ) + # If the extrapolation returns values that would cause under/overflow adjust them accordingly + c = self._checkOverUnderFlow(c, d=2) + + if (c < 0).any(): + c = lp1 + + # Convert logs back to concentrations + c = 10 ** (-c) + logging.debug("ESTIMATED C WITH INTERPOLATION") + elif point > 0: + c = for_estimation_c[(point - 1)][: self.nc] + logging.debug("ESTIMATED C FROM PREVIOUS POINT") + elif point == 0: + c = np.multiply(self.c_tot[0], 0.001) + logging.debug("ESTIMATED C AS FRACTION TOTAL C") + + return c + + def _checkOverUnderFlow(self, c, d=1): + """ + Given c check if any of the given log of concentrations would give overflow or underflow errors, adjust accordingly + """ + c = np.where(c > (self.epsl / d), (self.epsl / d), c) + c = np.where(c < (-self.epsl / d), (-self.epsl / d), c) + return c + + def _setDBHParams(self, species, to_remove, past, zast, c, d, e, solids=False): + # Retrive CG/DG/EG for each of the species + # Remove values that refers to ignored comps + cg = species.iloc[:, 5].to_numpy(dtype="float") + dg = species.iloc[:, 6].to_numpy(dtype="float") + eg = species.iloc[:, 7].to_numpy(dtype="float") + cg = np.delete(cg, to_remove, axis=0) + dg = np.delete(dg, to_remove, axis=0) + eg = np.delete(eg, to_remove, axis=0) + + if not solids: + # If computing solution species adds values for components + cg = np.insert(cg, 0, [0 for _ in range(self.nc)]) + dg = np.insert(dg, 0, [0 for _ in range(self.nc)]) + eg = np.insert(eg, 0, [0 for _ in range(self.nc)]) + + use_reference = (cg == 0) + (dg == 0) + (eg == 0) + + # Compute CG/DG/EG terms of D-H + reference_cg = c[0] * past + c[1] * zast + reference_dg = d[0] * past + d[1] * zast + reference_eg = e[0] * past + e[1] * zast + + cg = np.where(use_reference, reference_cg, cg) + dg = np.where(use_reference, reference_dg, dg) + eg = np.where(use_reference, reference_eg, eg) + + return cg, dg, eg + + def _damping(self, point, c, cp, log_beta, c_tot, fixed_c): + logging.debug("ENTERING DAMP ROUTINE") + + epsilon = 2.5e-1 if point > 0 else 1e-9 + model = self.model + nc = self.nc + if self.distribution: + nc -= 1 + model = np.delete(model, self.ind_comp, axis=0) + model = np.delete(model, self.ind_comp, axis=1) + + coeff = np.array([0 for _ in range(nc)]) + a0 = np.max(np.where(model == 0, 1, np.abs(model)), axis=1) + + iteration = 0 + while True: + _, c_spec = self._speciesConcentration(c, cp, log_beta) + + if self.distribution: + c_spec = np.delete(c_spec, self.ind_comp) + + c_times_model = np.tile(c_spec, [nc, 1]) * model + + sum_reac = np.where(model > 0, c_times_model, 0).sum(axis=1) + np.where( + c_tot < 0, np.abs(c_tot), 0 + ) + sum_prod = np.where(c_tot >= 0, c_tot, 0) - np.where( + model < 0, c_times_model, 0 + ).sum(axis=1) + + conv_criteria = (sum_reac - sum_prod) / (sum_reac + sum_prod) + + if all(i < epsilon for i in conv_criteria) or iteration >= 10000: + logging.debug("EXITING DAMP ROUTINE") + if self.distribution: + c_spec = np.insert(c_spec, self.ind_comp, fixed_c) + return c, c_spec + + new_coeff = ( + 0.9 + - np.where( + (sum_reac > sum_prod), (sum_prod / sum_reac), (sum_reac / sum_prod) + ) + * 0.8 + ) + + if iteration == 0: + coeff = new_coeff + coeff = np.where(new_coeff > coeff, new_coeff, coeff) + + if self.distribution: + c = np.delete(c, self.ind_comp) + c = coeff * c * (sum_prod / sum_reac) ** (1 / a0) + (1 - coeff) * c + if self.distribution: + c = np.insert(c, self.ind_comp, fixed_c) + + iteration += 1 + + # # if self.distribution: + # # c_spec = np.insert(c_spec, self.ind_comp, fixed_c) + # logging.debug("EXITING DAMP ROUTINE, MAX N ITERATIONS REACHED") + # if self.distribution: + # c_spec = np.insert(c_spec, self.ind_comp, fixed_c) + # return c, c_spec + # raise Exception( + # "Dampening routine couldn't find a solution at point {}".format(point) + # ) + + # raise Exception( + # "Dampening routine couldn't find a solution at point %s", point + # ) + + def _getSaturationIndex(self, c, log_ks): + if self.nf > 0: + saturation_index = np.prod( + np.tile(c, [self.nf, 1]).T ** self.solid_model, axis=0 + ) / (10**log_ks) + return saturation_index + else: + return np.array([]) + + def _ionicStr(self, c, charges, point, first_guess): + """ + Calculate ionic strength given concentrations of species and their charges. + """ + if first_guess: + ionic_strength = ((c * (charges**2)).sum() / 2) + self.background_c[point] + else: + ionic_strength = ((c * (charges**2)).sum() + self.background_c[point]) / 2 + + return ionic_strength + + def _updateConstants(self, c, log_beta, log_ks, charges, point, first_guess=False): + if first_guess and self.distribution: + c = np.insert(c, self.ind_comp, 0, axis=0) + + cis = self._ionicStr(c, charges, point, first_guess) + logging.debug("Current I: %s %s", cis, ("\tFIRST GUESS" if first_guess else "")) + updated_log_b = self._updateLogB(cis, log_beta) + updated_log_ks = self._updateLogKs(cis, log_ks) + return updated_log_b, updated_log_ks, cis + + def _updateLogKs(self, cis, log_ks): + cis = np.tile(cis, self.nf) + radqcis = np.sqrt(cis) + fib2 = radqcis / (1 + (self.b * radqcis)) + updated_log_ks = ( + log_ks + + self.solid_az * (fib2 - self.solid_fib) + - self.solid_cg * (cis - self.solid_ris) + - self.solid_dg * ((cis * radqcis) - (self.solid_ris * self.solid_radqris)) + - self.solid_eg * ((cis**2) - (self.solid_ris**2)) + ) + + return updated_log_ks + + def _updateLogB(self, cis, log_beta): + """ + Update formation constants of species given the current + """ + cis = np.tile(cis, self.nc + self.ns) + radqcis = np.sqrt(cis) + fib2 = radqcis / (1 + (self.b * radqcis)) + updated_log_beta = ( + log_beta + - self.species_az * (fib2 - self.species_fib) + + self.species_cg * (cis - self.species_ris) + + self.species_dg + * ((cis * radqcis) - (self.species_ris * self.species_radqris)) + + self.species_eg * ((cis**2) - (self.species_ris**2)) + ) + + return updated_log_beta + + def _computePercTable(self, cans, calculated_c, model, percent_to, solids=False): + can_to_perc = np.array( + [ + [cans[point, index] for index in percent_to] + for point in range(cans.shape[0]) + ] + ) + + if not solids: + can_to_perc = np.concatenate((cans, can_to_perc), axis=1) + adjust_factor = np.array( + [ + model[component, index + (self.nc if not solids else 0)] + for index, component in enumerate(percent_to) + ] + ) + adjust_factor = np.where(adjust_factor <= 0, 1, adjust_factor) + if not solids: + adjust_factor = np.concatenate( + ([1 for _ in range(self.nc)], adjust_factor), axis=0 + ) + + perc_table = np.where( + can_to_perc == 0, 0, (calculated_c * adjust_factor) / can_to_perc + ) + perc_table = perc_table * 100 + + return perc_table + + def _percEncoder(self, ignored_comp_names): + comp_encoder = dict(zip(self.comp_names, range(self.comp_names.shape[0]))) + invalid_comp_encoder = dict( + zip(ignored_comp_names, range(len(ignored_comp_names))) + ) + default_value = self.ind_comp if self.distribution else 0 + species_perc_int = self.species_perc_str + solid_perc_int = self.solid_perc_str + self.species_perc_str = np.concatenate( + (self.comp_names, self.species_perc_str), axis=0 + ) + for key, value in comp_encoder.items(): + species_perc_int = np.where( + species_perc_int == key, value, species_perc_int + ) + solid_perc_int = np.where(solid_perc_int == key, value, solid_perc_int) + for key, value in invalid_comp_encoder.items(): + species_perc_int = np.where( + species_perc_int == key, default_value, species_perc_int + ) + solid_perc_int = np.where( + solid_perc_int == key, default_value, solid_perc_int + ) + return species_perc_int.astype(int), solid_perc_int.astype(int) + + def _computeErrors( + self, c_all_spec, c_solid, saturation_index, log_b, log_ks, point + ): + # Get betas from log betas + beta = 10 ** log_b[self.nc :] + ks = 10**log_ks + model = self.model[:, self.nc :] + free_c = c_all_spec[: self.nc] + c_spec = c_all_spec[self.nc :] + + with_solids = any(c_solid > 0) + + to_skip = np.concatenate(([False for _ in range(self.nc)], c_solid == 0)) + if with_solids: + nt = self.nc + self.nf + else: + nt = self.nc + + # Define dimension of arrays required + M = np.zeros(shape=(nt, nt)) + + der_free_beta = np.zeros(shape=(self.nc, self.ns)) + der_free_tot = np.zeros(shape=(self.nc, self.nc)) + der_free_ks = np.zeros(shape=(self.nc, self.nf)) + + der_solid_beta = np.zeros(shape=(self.nf, self.ns)) + der_solid_tot = np.zeros(shape=(self.nf, self.nc)) + der_solid_ks = np.zeros(shape=(self.nf, self.nf)) + + b = -model * (c_spec / beta) + d = np.identity(self.nc) + f = np.zeros(shape=(self.nc, self.nf)) + + # Compute common matrix term + M[: self.nc, : self.nc] = ( + ( + np.tile(c_spec, (self.nc, self.nc, 1)) + / np.tile(free_c.reshape((self.nc, 1)), (self.nc, 1, self.ns)) + ) + * np.tile(model, (self.nc, 1, 1)) + * np.rot90(np.tile(model, (self.nc, 1, 1)), -1, axes=(0, 1)) + ).sum(axis=-1) + M[: self.nc, : self.nc] += d + + if with_solids: + M[: self.nc, self.nc : nt] = self.solid_model + M[self.nc : nt, : self.nc] = self.solid_model.T * ( + np.tile(saturation_index, (self.nc, 1)).T + / np.tile(free_c, (nt - self.nc, 1)) + ) + + f = np.concatenate((f, np.diag(saturation_index / ks)), axis=0) + b = np.concatenate( + ( + b, + [[0 for _ in range(self.ns)] for _ in range(self.nf)], + ) + ) + d = np.concatenate( + ( + d, + [[0 for _ in range(self.nc)] for _ in range(self.nf)], + ) + ) + + der_solid_beta = np.delete(der_solid_beta, c_solid == 0, axis=0) + der_solid_tot = np.delete(der_solid_tot, c_solid == 0, axis=0) + der_solid_ks = np.delete(der_solid_ks, c_solid == 0, axis=0) + + M = np.delete(M, to_skip, axis=0) + M = np.delete(M, to_skip, axis=1) + + b = np.delete(b, to_skip, axis=0) + + d = np.delete(d, to_skip, axis=0) + + f = np.delete(f, to_skip, axis=0) + + if self.distribution: + M = np.delete(M, self.ind_comp, axis=0) + M = np.delete(M, self.ind_comp, axis=1) + + b = np.delete(b, self.ind_comp, axis=0) + d = np.delete(d, self.ind_comp, axis=0) + f = np.delete(f, self.ind_comp, axis=0) + + der_free_beta = np.delete(der_free_beta, self.ind_comp, 0) + der_free_tot = np.delete(der_free_tot, self.ind_comp, 0) + der_free_ks = np.delete(der_free_ks, self.ind_comp, 0) + + # Solve the systems of equations + for i in range(self.ns): + solution = np.linalg.solve(M, b[:, i]) + der_free_beta[:, i] = solution[ + : (self.nc - 1 if self.distribution else self.nc) + ] + if with_solids: + der_solid_beta[:, i] = solution[ + (self.nc - 1 if self.distribution else self.nc) : + ] + + for r in range(self.nc): + solution = np.linalg.solve(M, d[:, r]) + der_free_tot[:, r] = solution[ + : (self.nc - 1 if self.distribution else self.nc) + ] + if with_solids: + der_solid_tot[:, r] = solution[ + (self.nc - 1 if self.distribution else self.nc) : + ] + + if with_solids: + for k, skip in enumerate(to_skip[-self.nf :]): + if skip: + continue + solution = np.linalg.solve(M, f[:, k]) + der_free_ks[:, k] = solution[ + : (self.nc - 1 if self.distribution else self.nc) + ] + der_solid_ks[:, k] = solution[ + (self.nc - 1 if self.distribution else self.nc) : + ] + + if with_solids: + null_solids_index = np.nonzero(c_solid == 0)[0] + if null_solids_index.size: + der_solid_beta = np.insert(der_solid_beta, null_solids_index, 0, axis=0) + der_solid_tot = np.insert(der_solid_tot, null_solids_index, 0, axis=0) + der_solid_ks = np.insert(der_solid_ks, null_solids_index, 0, axis=0) + + if self.distribution: + der_free_beta = np.insert(der_free_beta, self.ind_comp, 0, axis=0) + der_free_tot = np.insert(der_free_tot, self.ind_comp, 0, axis=0) + der_free_ks = np.insert(der_free_ks, self.ind_comp, 0, axis=0) + + # Compute derivatives for the species + der_spec_beta = ( + np.rot90(np.tile(model.T, (self.ns, 1, 1)), -1) + * ( + np.stack( + [np.tile(c_spec, (self.ns, 1)).T for _ in range(self.nc)], axis=-1 + ) + / free_c + ) + * np.tile(der_free_beta.T, (self.ns, 1, 1)) + ).sum(axis=-1) + np.diag(c_spec / beta) + + der_spec_tot = ( + np.rot90(np.tile(model.T, (self.nc, 1, 1)), -1) + * ( + np.stack( + [np.tile(c_spec, (self.nc, 1)).T for _ in range(self.nc)], axis=-1 + ) + / free_c + ) + * np.tile(der_free_tot.T, (self.ns, 1, 1)) + ).sum(axis=-1) + + der_spec_ks = ( + np.rot90(np.tile(model.T, (self.nf, 1, 1)), -1) + * ( + np.stack( + [np.tile(c_spec, (self.nf, 1)).T for _ in range(self.nc)], axis=-1 + ) + / free_c + ) + * np.tile(der_free_ks.T, (self.ns, 1, 1)) + ).sum(axis=-1) + + # Calculate uncertanity for components and species given the input + comp_sigma = np.sqrt( + ((der_free_beta**2) * (self.beta_sigma**2)).sum(axis=1) + + ((der_free_tot**2) * (self.conc_sigma[point] ** 2)).sum(axis=1) + + ((der_free_ks**2) * (self.ks_sigma**2)).sum(axis=1) + ) + + species_sigma = np.sqrt( + ((der_spec_beta**2) * (self.beta_sigma**2)).sum(axis=1) + + ((der_spec_tot**2) * (self.conc_sigma[point] ** 2)).sum(axis=1) + + ((der_spec_ks**2) * (self.ks_sigma**2)).sum(axis=1) + ) + species_sigma = np.concatenate((comp_sigma, species_sigma)) + + if with_solids: + solid_sigma = np.sqrt( + ((der_solid_beta**2) * (self.beta_sigma**2)).sum(axis=1) + + ((der_solid_tot**2) * (self.conc_sigma[point] ** 2)).sum(axis=1) + + ((der_solid_ks**2) * (self.ks_sigma**2)).sum(axis=1) + ) + else: + solid_sigma = np.zeros(shape=self.nf) + + return species_sigma, solid_sigma + + def _setDataframeIndex(self, dataframe): + if self.distribution: + dataframe = dataframe.set_index(self.ind_comp_logs).rename_axis( + index="p[" + self.comp_names[self.ind_comp] + "]", + ) + else: + dataframe = dataframe.set_index(self.v_added).rename_axis( + index="Added Volume [l]", + ) + + return dataframe + + def _scaleMatrix(self, J: NDArray, delta: NDArray): + d1 = np.diag(np.sqrt(J.max(axis=1))) + d2 = np.diag(np.sqrt(J.max(axis=0))) + # d1 = np.diag(np.sqrt(np.diag(J))) + # d2 = np.diag(np.sqrt(np.diag(J))) + J = d1 @ J @ d2 + delta = d1 @ delta + return J, delta + + +@njit(parallel=True, cache=True) +def numba_jacobian(nc, nt, c_spec, saturation_index, model, solid_model, with_solids): + J = np.empty(shape=(nt, nt)) + ns = len(c_spec) + # Compute Jacobian + # Jacobian for aqueous species + for j in prange(nc): + for k in prange(nc): + val = 0 + for z in prange(ns): + val += model[j, z] * model[k, z] * (c_spec[z] / c_spec[k]) + J[j, k] = val + + if with_solids: + # Jacobian for solid species + for j in range(nc): + for k in range(nc, nt): + J[j, k] = solid_model[j, (k - nc)] + + for j in range(nc, nt): + for k in range(nc): + J[j, k] = -(solid_model[k, (j - nc)]) * ( + saturation_index[(j - nc)] / c_spec[k] + ) + return J