diff --git a/asyncflow_queue_limit/asyncflow_mm1.ipynb b/asyncflow_queue_limit/asyncflow_mm1.ipynb index 5642ee4..15a84f6 100644 --- a/asyncflow_queue_limit/asyncflow_mm1.ipynb +++ b/asyncflow_queue_limit/asyncflow_mm1.ipynb @@ -19,7 +19,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "id": "c3a69413", "metadata": {}, "outputs": [ @@ -29,20 +29,32 @@ "" ] }, - "execution_count": 1, + "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ - "import importlib, asyncflow, asyncflow.analysis\n", - "importlib.reload(asyncflow)\n", - "importlib.reload(asyncflow.analysis)" + "import sys, importlib\n", + "\n", + "# 1) Svuota tutto ciò che inizia con 'asyncflow' da sys.modules\n", + "for m in list(sys.modules):\n", + " if m.startswith(\"asyncflow\"):\n", + " del sys.modules[m]\n", + "\n", + "from asyncflow import AsyncFlow, SimulationRunner\n", + "from asyncflow.analysis import MMc, ResultsAnalyzer, SweepAnalyzer\n", + "from asyncflow.components import (\n", + " Client, Server, Edge, Endpoint, LoadBalancer, ArrivalsGenerator\n", + ")\n", + "from asyncflow.settings import SimulationSettings\n", + "\n", + "import simpy" ] }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 26, "metadata": { "tags": [ "imports" @@ -63,10 +75,10 @@ "\n", "# Public AsyncFlow API\n", "from asyncflow import AsyncFlow, SimulationRunner, Sweep\n", - "from asyncflow.components import Client, Server, Edge, Endpoint\n", + "from asyncflow.components import Client, Server, Edge, Endpoint, ArrivalsGenerator\n", "from asyncflow.settings import SimulationSettings\n", - "from asyncflow.workload import RqsGenerator\n", - "from asyncflow.analysis import MM1, ResultsAnalyzer, SweepAnalyzer\n", + "from asyncflow.analysis import MMc, ResultsAnalyzer, SweepAnalyzer\n", + "from asyncflow.enums import Distribution\n", "\n", "print(\"Imports OK.\")" ] @@ -86,14 +98,12 @@ "* **Deterministic, very small network latency**\n", " All edges use a **fixed latency** $\\ll 1\\,\\mathrm{ms}$ so queueing is dominated by CPU service (closer to textbook M/M/1).\n", "\n", - "* **“Poisson arrivals” via the generator (what we actually sample)**\n", - " We use a **two-stage, windowed sampler**: every user-sampling window $\\Delta$ we draw the active users $U$ (Poisson or Normal, per config). **Within that window**, arrivals are a **homogeneous Poisson process** with rate $\\Lambda = U \\cdot \\lambda_r/60$ (where $\\lambda_r$ is requests/min/user). If $U$ changes between windows, the overall process becomes a **piecewise-constant (mixed/Cox) Poisson** rather than one global Poisson.\n", - " *Implications:* with **small $\\Delta$**, **Poisson users**, **long runs**, and **tiny edge latency**, this closely matches M/M/1. Larger $\\Delta$, Normal users, or short horizons can introduce small, expected deviations in $\\lambda, W, L$ (especially during warm-up).\n", - "\n", + "* **“Poisson arrivals” via the generator**\n", + " \n", "\n", "```mermaid\n", "graph LR;\n", - " rqs1[\"RqsGenerator
id: rqs-1\"]\n", + " rqs1[\"ArrivalsGenerator
id: rqs-1\"]\n", " client1[\"Client
id: client-1\"]\n", " app1[\"Server
id: app-1
Endpoint: /api\"]\n", "\n", @@ -104,7 +114,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 27, "metadata": { "tags": [ "build" @@ -113,11 +123,10 @@ "outputs": [], "source": [ "def build_payload():\n", - " generator = RqsGenerator(\n", + " generator = ArrivalsGenerator(\n", " id=\"rqs-1\",\n", - " avg_active_users={\"mean\": 100},\n", - " avg_request_per_minute_per_user={\"mean\": 20},\n", - " user_sampling_window=60,\n", + " lambda_rps=30,\n", + " model=Distribution.POISSON\n", " )\n", "\n", " client = Client(id=\"client-1\")\n", @@ -152,7 +161,7 @@ "\n", " payload = (\n", " AsyncFlow()\n", - " .add_generator(generator)\n", + " .add_arrivals_generator(generator)\n", " .add_client(client)\n", " .add_servers(server)\n", " .add_edges(e_gen_client, e_client_app, e_app_client)\n", @@ -170,7 +179,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, "metadata": { "tags": [ "run" @@ -221,7 +230,7 @@ "\n", "$$\n", "\\lambda_{\\text{Theory}} \\;=\\; \n", - "\\frac{\\texttt{avg\\_active\\_users.mean}\\times \\texttt{avg\\_request\\_per\\_minute\\_per\\_user.mean}}{60}\n", + "\\ input data\n", "$$\n", "\n", "2. **Predicted service rate** (from the **CPU exponential step** with mean $E[S]$)\n", @@ -303,7 +312,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 29, "metadata": { "tags": [ "mm1" @@ -314,26 +323,27 @@ "name": "stdout", "output_type": "stream", "text": [ - "====================================================================\n", - "MM1 - Theory vs Observed\n", - "--------------------------------------------------------------------\n", - "sym metric theory observed abs rel%\n", - "--------------------------------------------------------------------\n", - "λ Arrival rate (1/s) 33.333333 33.150833 -0.182500 -0.55\n", - "μ Service rate (1/s) 66.666667 66.556885 -0.109782 -0.16\n", - "rho Utilization 0.500000 0.498083 -0.001917 -0.38\n", - "L Mean items in system 1.000000 1.012994 0.012994 1.30\n", - "Lq Mean items in queue 0.500000 0.504967 0.004967 0.99\n", - "W Mean time in system (s) 0.030000 0.030557 0.000557 1.86\n", - "Wq Mean waiting time (s) 0.015000 0.015232 0.000232 1.55\n", - "====================================================================\n" + "=================================================================\n", + "MMc (RR) — Theory vs Observed\n", + "-----------------------------------------------------------------\n", + "sym metric theory observed abs rel%\n", + "-----------------------------------------------------------------\n", + "λ Arrival rate (1/s) 30.000000 30.065417 0.065417 0.22\n", + "μ Service rate (1/s) 66.666667 66.967513 0.300847 0.45\n", + "c Servers 1.000000 1.000000 0.000000 0.00\n", + "rho Utilization 0.450000 0.448955 -0.001045 -0.23\n", + "L Mean items in sys 0.818182 0.819000 0.000819 0.10\n", + "Lq Mean items in queue 0.368182 0.361020 -0.007162 -1.95\n", + "W Mean time in sys (s) 0.027273 0.027241 -0.000032 -0.12\n", + "Wq Mean waiting (s) 0.012273 0.012008 -0.000265 -2.16\n", + "=================================================================\n" ] } ], "source": [ - "mm1 = MM1()\n", + "mm1 = MMc()\n", "if mm1.is_compatible(payload):\n", - " mm1.print_comparison(payload, results) # ✅ metodo esistente\n", + " mm1.print_comparison(payload, results) \n", "else:\n", " print(\"Payload is not compatible with M/M/1:\")\n", " for reason in mm1.explain_incompatibilities(payload):\n", @@ -379,7 +389,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 30, "metadata": { "tags": [ "plots" @@ -388,7 +398,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAJnCAYAAABYl/qlAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAViAAAFYgBxNdAoAABAABJREFUeJzs3Xd0FFUbwOHf7Gaz6QklgQRIQg299xKQrqIo0pGmFFERBEQEpAkIAoKfSEcpUhQEKRaKQCgivXcQQu8hIaTvzvdH3CWbbJJNgRTe55wc2Zk7d94p686d2xRVVVWEEEIIIYQQQgghhBBCCCFErqLJ6gCEEEIIIYQQQgghhBBCCCFE5pNKICGEEEIIIYQQQgghhBBCiFxIKoGEEEIIIYQQQgghhBBCCCFyIakEEkIIIYQQQgghhBBCCCGEyIWkEkgIIYQQQgghhBBCCCGEECIXkkogIYQQQgghhBBCCCGEEEKIXEgqgYQQQgghhBBCCCGEEEIIIXIhqQQSQgghhBBCCCGEEEIIIYTIhaQSSAghhBBCCCGEEEIIIYQQIheSSiAhhBBCCCGEEEIIIYQQQohcSCqBhBBCCCGEEEIIIYQQQgghciGpBBJCCCGEEEIIIYQQQgghhMiFpBJICCGEEEIIIYQQQgghhBAiF5JKICGEEEIkq1GjRiiKwqJFi7I6FAuKoqAoCleuXLFYPmbMGBRFoUePHlkSV0qyc2xCCCGEENmZPEdZetHPxw8//ICiKHz55ZdZHUqGbdu2DUVReO+997I6FCFELiaVQEKIHMf0Ujrhn1arxcPDg5o1azJ27FhCQkKyOswcZ8yYMYwZM4ZHjx6la/tFixahKAr+/v6ZGpc1V65cYcyYMcyYMeOZ7yun6tGjR5LviV6vx9PTk7Jly9KpUydmzZr1XL8rGb3HsrNFixYxZswYjh49mtWhCCGEEEJkO4mfS239y24NkUT6zZgxgzFjxiRpxJVW4eHhDB8+nAIFCjBgwACLdVeuXLF6H+n1egoVKsRrr73GqlWrUszf398/yfZ2dnZ4enrSuHFj5syZQ1xcnNVtg4OD+eSTT6hcuTJubm7Y29vj7e1NpUqV6N69OwsWLODevXsW2zRu3JhGjRqxYMECTpw4kaFzI4QQybHL6gCEECK9ihQpgq+vLwCxsbFcvXqVAwcOcODAAebNm0dQUBAlSpTI4ihzjrFjxwLxlQceHh5ZG0wqrly5wtixY/Hz82PgwIFZHU625uXlRcmSJQEwGo2EhoZy7do1zpw5w8qVKxk8eDCfffYZw4cPx84u6WOBr68vAQEBuLu7ZziWzLzHAgICANDpdBkNK1MsWrSIoKAg/P39qVy5stU0+fPnJyAgAG9v7+cbnBBCCCFEFqtXr57V5Xv27AGgZMmSeHl5JVlfoECBZxqXeH5mzJhBcHAwjRo1ylDDwUmTJnH79m2mTZuGk5NTsumqV6+OXq8HICwsjEuXLrFx40Y2btxIx44dWbZsGRpN8m3jE96TUVFRXLp0ie3bt7N9+3YWL17M5s2bcXV1Nadft24dnTt3JiIiAkVRKFSoEKVLlyYyMpJz585x/PhxlixZgoODA2+//bbFvsaOHUvDhg355JNP+PPPP9N9boQQIjlSCSSEyLHeeecdxowZY7Fsy5YtdOjQgZs3b9K3b1/++uuvrAlOiGzi5ZdfTtKC0mg0cuTIEb799lsWL17M6NGjOXbsGKtWrUpSEFqyZMlzjNZ2Z8+ezeoQ0uzDDz/kww8/zOowhBBCCCGeu927d1tdrigKAMOHD39hhzYTtouKimL27NnY29vTvXv3FNOuWrXKorIpMjKS0aNHM2XKFFauXMkrr7xC165dk90+8T1pNBqZN28eH3zwAf/88w8jR47km2++AeDatWvmCqBXXnmFadOmUbp0afO2cXFx7Nq1i2XLllmtuAoMDKRUqVJs2rSJ06dPU7ZsWRvPiBBC2EaGgxNC5CrNmjVj/PjxAGzfvp27d+9mcURCZD8ajYZq1aqxaNEili1bhqIorFmzRobXE0IIIYQQQmRbK1eu5OHDh7z66qvky5cvTds6Ojry1VdfUbNmTXNeaaHRaHjvvffo06cPAMuWLUNVVQBWrFhBREQE+fLlY/Xq1RYVQAB2dna89NJLLFiwgDZt2ljNv1u3bgDMnj07TXEJIYQtpBJICJHr1K1bFwBVVbl8+bLVNIcPH6Z79+74+/vj4OCAh4cHgYGBLFq0CKPRmGzeO3bsoHnz5nh4eODq6kqNGjX4/vvvgadjB+/YscNiG9PcLIl7LSWU3CT3GYn38OHDdOnSBT8/P/R6PS4uLvj7+9OyZUumTZtmfmA1TSpqUrRoUYvxj1OKO6PCw8P58ccf6dSpE2XKlMHd3R1HR0dKlizJ+++/b/X6NWrUiJdeegmIH3M58XjNic9/ZGQkM2bMoF69euTJkwe9Xk/RokXp27dvsveHad6pRYsW8fDhQwYOHIi/v795LOnevXtz+/btZI9LVVV+/fVXWrdujY+PD3q9ngIFClC7dm2++OILbt26BcCBAwdQFAUnJydCQ0OTze/7779HURTKlSuX2ilNs86dO/POO+8AMHnyZKKjoy3WJzwXiT2Leyzh9+jcuXN0796dwoULo9PpLFripfadgfiWgqNGjSIgIABHR0e8vLzo1KkT586ds5o+pWMFyzHGTXbs2IGiKAQFBQHQs2dPi2Nr1KiROW1qE/g+ePCA4cOHU758eZydnXFxcaFixYqMHj062fsjo/eqEEIIIUROYzAYmD59OhUrVsTJyYk8efLQqlUrDh06ZDV9wvJYaGgon376qfn5MPGwZP/88w8dOnSgUKFC6PV68ufPT4sWLfjll1+s5m16FkxpeLPUyoNbt26lWbNmuLu74+rqSq1atVi8eDGQfBkzs85HSEgIAwYMoGjRoubnxz59+nDz5k2r26YWj7XzYZo7Njg4GICXXnrJ4nk5LT3Ali1bBkDr1q1t3iaxOnXqAPDvv/+ma/smTZoA8c/u9+/fB+DSpUsAlChRAkdHx3Tl+8YbbwCwfPnyFN9JCCFEeshwcEKIXCciIsL8b2dn5yTrp0yZwqeffoqqqri6ulK6dGkePHjArl272LVrF+vWrWP16tVotVqL7RYsWECfPn1QVRV3d3dKly7NjRs3ePfdd5/pBI7piffPP//k9ddfJzY2FhcXF0qVKoVOp+P69ets2rSJTZs2MWDAAOzs7PD19aVevXrm8bgTjp0MmOddehZ27NhB165dsbOzo0CBApQsWZInT54QHBzM7NmzWb58OZs3bza31gKoUKECDx484OTJk+j1eqpXr26RZ8K5a65evcrLL7/M6dOn0Wg0FC5cGD8/Py5cuMC8efNYsWIF69evt3hRn9D169epXLkyt27dokyZMuj1ei5evMiCBQvYtm0bR44cwc3NzWKbyMhIOnXqxLp16wDIly8fFStWJCQkhMOHD7Nv3z6KFClCjx49qFGjBlWqVOHIkSMsX76cfv36WY1j/vz5APTu3TvN59gWAwYMYOHChdy9e5d9+/YRGBiY6jbP+h7bu3cv48ePx2AwULZsWfLkyZPimN2JxcTE0LhxY/bu3UuJEiUoW7Ysp06dYuXKlWzYsIE//viDBg0a2Jxfctzd3alXrx4nTpwgLCwsyXj2FSpUsCmf06dP07x5c27cuIFWq6VcuXIYjUZOnTrFiRMnWLJkCVu2bEl2nrP03KtCCCGEEDlNXFwcr7zyCps3b6ZEiRKUKlWKs2fP8ttvv7Ft2zaCgoKoUaOG1W0fPHhA9erVuXTpEqVLl6Zs2bJERkaa10+fPp3Bgwejqip58uShYsWK3Lx5k82bN7N582a6devGDz/8kKZn0tTMmjWLDz74AAAPDw8CAgK4fv06PXr0sKmMmZHzERISQs2aNbl06RJlypShTJkynDx5kvnz57Nu3TqCgoKS9GhJjwIFClCvXj0OHjxIdHQ05cuXtyizlSpVyqZ8YmJi+PvvvwGoXbt2uuMxvS+w9q7AFqaGbgmZnrPPnDnDgwcP0txLCaBs2bK4u7vz8OFDjh8/nuw8o0IIkS6qEELkMA0bNlQBdfTo0VbXDxkyRAVUNzc3NSIiwmLdypUrVUD18PBQFy9erBoMBvO6/fv3qyVKlFABddy4cRbbnT59WrW3t1cB9aOPPlKjoqJUVVVVo9Gozp07V9VqtaqdnZ0KqNu3b7fYtnv37inGq6qqCqiAevny5UyJt1KlSiqgDh06NMk5CA4OVidPnmyRV0ox2OqHH35QAdXPz8/mbc6ePauuXr1affz4scXysLAw9fPPP1cBtUyZMqrRaLRYv3379lT3FR0dbT4PrVu3Vq9cuWJeFxUVpX766acqoObPn1998OCBxbame0yn06nNmzdXb968aV53+PBhtUCBAiqgjho1Ksl+Tdfbw8NDXbVqlcV5joiIUJcsWaLu2rXLvGzOnDkqoFatWtXqcZw8eVIFVL1er96/fz/Z400uju7du6ea1mg0qnny5FEBddKkSRbrTOfihx9+sFj+rO4xPz8/FVC1Wq3auXNnNSQkxLwu4X6Sy2v06NHma5c/f3519+7d5nUPHjxQX331VRVQvb291UePHtl0rCaXL1827zex1LZNGFviaxIVFaUGBASogFqrVi01ODjYvO7ixYvmc12pUiU1Li7O6n7Tc68KIYQQQmQ107NVSs9Qqmr5jOfv768ePHjQvO7evXtq3bp1VUANDAxMsq3puVir1aqVKlVSz58/b15ner7ctm2bqiiK+bkpJibGnGbZsmXmsuCUKVMs8ralXJJcefDYsWPmMuQnn3yiRkdHm9ctWrRItbOzU3U6ndUyZmacD51Op5YoUUI9efKked3Vq1fVmjVrqoBasWLFJM+epmf1xPHYcj5S2zY1e/bsUQHV3d09SfnQJOHzurUyR3h4uOrv768Cau/eva3mYYozuXvyvffeUwE1b9685jh27Nhh3m/FihXVpUuXqnfu3EnzMTZt2lQF1OnTp6d5WyGESIkMByeEyBXi4uK4dOkSI0eOZPr06QB88sknFl2x4+Li+PTTT4H44bW6detm0YqrRo0arFy5EkVR+Prrr4mJiTGvmzp1KjExMVSpUoVvvvnG3ItBURT69OnDO++8Q1xcXKYfU3rjPXv2LBA/mWXi7ui+vr4MHTo0U1uwpVdAQABvvfUWLi4uFstdXV0ZN24c9erV48yZM+zfvz/NeS9ZsoRjx45RvXp1Vq1ahZ+fn3mdXq9n0qRJvPbaa9y/f58FCxZYzcPd3Z2ffvoJb29v87IqVaowdOhQADZs2GCR/vjx4+ahG3755Rfatm1rcZ4dHR3p2rUr9evXNy/r3LkzLi4uHD58mKNHjyaJwRRbmzZt0tWizBaKoph749y5c8embZ71PRYQEMDixYvx8PAwL0vL0AqxsbF888031KtXz7wsb968rFy5kjx58nDr1i0WLlyY7vgy088//8y5c+ewt7dn9erVFj2jihcvzs8//4xWq+XYsWP8+uuvVvNI670qhBBCCJETxcbGsmTJEqpVq2Zelj9/fr799lsAdu3alewwulqtll9//ZWSJUual5meL8ePH4+qqrzyyiuMHTsWnU5nTtO5c2fzM5W14ZPTa9q0acTFxdGkSRO++uor7O3tzeu6d+/O4MGDiY2NTTGPjJyP2NhYFi9ebDHkdJEiRfj555+xs7Pj+PHj5tENsgPTUN7e3t4WwzPbIiwsjD179tCqVSuuXLmCi4sLgwYNSlMeRqOROXPmMG/ePADefvttcxwNGzZkyJAhQHyZsGvXrhQoUABfX1/efPNNpk+fzo0bN1Ldh4+PD0Cyw5YLIUR6Zf0bQCGESKexY8eaxxHW6XSUKFGCCRMmkCdPHr766itGjhxpkX7fvn0EBwdTsGBB3nzzTat5VqtWDT8/Px49emQxhvLvv/8OQP/+/a1uN3DgwMw5qEyK11ThsXz58kyPK7MZDAbWrVtH//79efXVVwkMDKR+/frUr1+fCxcuAHDkyJE05/vTTz8B8O6771oU4hJ66623APjrr7+sru/cubNFJYSJaRzpixcvWixfs2aNeX3jxo1titPV1ZXOnTsDT4d9M4mOjmbp0qUA9OrVy6b80stUEff48WOb0j/re6x79+7Y2aV/1NqCBQvSoUOHJMtdXFzM5/K3335Ld/6ZyRRH+/btKVy4cJL1pUqV4vXXX7dIm1ha71UhhBBCiJyoYsWKVof0rVKlCnq9HlVVzfOzJNakSROrc/c8efLEPL9jchUDH3/8MVqtlvv377Nv3770H0ACf/75J5D8c36fPn1SzSMj56NGjRrm+XQT8vPzM5c/s8vzMsC9e/eA+IZdtkg4D6m7uzv169dnx44d1KpVi61bt6Y61N3EiRPN5dLq1auTL18++vXrh9FopFatWowfP94i/ZQpU9i6dSuvv/46Dg4OAFy7do1ff/2VQYMGUbRoUYYOHZpi41FTo7+7d+/adIxCCGErmRNICJFjFSlSxNxiPiwsjIsXLxIZGYmHhwcvvfRSkvTHjh0D4udsSdgTI7EHDx4A8Q9sderUITQ01DyxesJWUgkFBARgZ2eXqb2B0hsvwKeffsq7777L+++/z7Rp02jWrBl16tShYcOGFj1istqtW7d49dVXU63kMR1jWpjO36xZs/jxxx+tpnn06BEQf+6sSW586gIFCgBJK0xM43ZbK0ylpG/fvsybN4/ly5czbdo0c6Fh7dq1PHjwgOLFi1u9pzOT6VgSjs+dkmd9jyX3XbNVmTJlkszrlTjvM2fOZGgfmeXcuXMAlC9fPtk0FSpUYO3ateYeWIml9V4VQgghhMiJknvmURQFLy8vrl27luxzT3LPlxcvXsRgMADJP4/lzZuXQoUKcfXqVc6ePWvTHJopefTokflFf3JzvxQrVgw3NzfCwsKSzScj5yOlZ89y5cqxatWqbPO8DJjnbzKVlVJjmodUVVVu377Nv//+C8RXDlWsWDHV7S9cuGBulKjVavHw8KBRo0a0b9+eXr16WW1o2KRJE5o0aUJMTAxHjx7l8OHD/PXXX/z555+Eh4czZcoUIiIimDlzptV9mo4t4VxVQgiRGaQSSAiRY73zzjuMGTPG/PnRo0cMHjyY77//nubNm3P06FGLYZVCQkIACA0NNU9QnxLThJEJH5pNL1QT02q15MuXz+ahtGyR3ngh/tzkyZOHqVOn8s8//zBnzhzmzJkDQK1atZg0aRKNGjXKtFjTq2fPnhw5coRixYoxYcIE6tatS4ECBczD7XXr1o2lS5emOgyCNabzZ8uEqgnPXULJTRaa3DBnpgKatR4ZKalatSrVq1fn4MGDrF69mrfffht4OhRcr1690jzkQVqoqsrVq1eB5O/xxJ71PZbeiVpNUjqO7FYxYoqjYMGCyaYxDfOWXMxpvVeFEEIIIXKilJ4RTc89qqqmaVvT85VGo8HLyyvZ/L29vbl69WqmPEOGh4eb/+3q6ppsOldX1xQrgTJyPnLS8zLED3MH8PDhQ5vSr1q1yqLn19GjR2nbti0rV64kLi6OVatWpbj9Dz/8QI8ePdIVq729PTVr1qRmzZq899573L59m7Zt27Jnzx7mzJnDZ599RqFChZJsZzo207EKIURmkTcDQohcw8PDg/nz51O3bl1CQkJ4//33LdabhrsKDAxEVdVU/0wPfAkfypOr5DEYDMn2VjG9vE/u4fvJkydWl6c3XpM333yTPXv28PDhQ37//XeGDRtG8eLF2bdvHy1atDD3lMkqt2/fZtOmTQCsX7+ejh074uvra64AgvT1ADIxnb9t27aleu6uXLmSoWMxcXNzA572MEqLvn37Ak8rfi5fvsy2bduws7NLd+HDVsePHzfHbOpNZovsfI+lVCFrWpe4wJ3e72pGmeIw9Ti05tatWxZphRBCCCFE5jA9XxmNxhSH4bL2PJba8yNYf4ZMOCdqShUtz7ISJic9L8PTiqn0lhErV67M2rVr0el0rF69mtWrV2dmeCkqWLAgs2fPBuLfHRw4cMBqOlMlkK0N84QQwlZSCSSEyFU0Gg0zZswA4scv3rFjh3ldhQoVADh16hRGo9HmPN3d3c0t9E+fPm01zblz55IdCs7UOiu5h+zz589bXZ7eeBNzd3fn5Zdf5ssvv+Ts2bPUrl2bmJgYc2VDVjFNdpk3b16rQzPExcVx8OBBq9va0ivGdP6OHz+egSjTxjSswN9//53mbTt16oSbmxtBQUFcvHiRhQsXoqoqrVq1SrGHSGb43//+B8QXTmrWrJnm7bPjPXb27FnzsB6JnTp1CogfMi6h9H5XwbZ7Mjmm8chPnjyZbBpTj7bEMQshhBBCiIwpUaKEeS7K5J7HQkJCuHHjBmD5PGZ6fkyp8sjaM6SHh4e511FyDacuX76cYi+gjDI9E6e0Lrs8L0P86AkA169fJzQ0NF15VKhQwTzX0rBhwzJ1OPfUlCxZ0vzvmJgYq2lMz/zVq1d/LjEJIV4cUgkkhMh1atSoQatWrQAYPXq0eXn9+vXx8fHhwYMHLFy4ME15vvzyywB8++23Vtd/8803yW5retj7559/rK6fNWuW1eUZiTc5dnZ21KpVC8BciDFxcnICkh8aLbOZ9hcWFmZ1n0uWLEm2MGVLrO3btwfgu+++e27H9NZbb6EoCnv37rWogLSFs7MzXbp0AWDu3LksWrQIgN69e2dylJaWL1/O999/D8Bnn32Gvb19hvLLLvfYrVu3rA7xEB4ebv4+vfrqqxbrTN/VvXv3Ws3T1HrPmowcmymOn3/+mevXrydZf/HiRdavX281ZiGEEEIIkTHOzs40bNgQgK+//tpqmhkzZmAwGMifP79Fo6kSJUqgKApRUVFW5znds2dPso3SWrZsCZBsWW/+/PlpOo602r9/v9Uy6tWrV/n111+BtD0vx8XFpRhzRssChQsXpnjx4qiqyr59+9KVB8Dw4cPR6/VcunSJJUuWpDufhFKqBDTZtWuX+d/W5nJ69OgR586dQ1EU8/0ohBCZRSqBhBC5kqnyZ+fOnWzbtg2IH5d3ypQpAPTv358ZM2YkmXAxPDycX375hV69elksHzx4MDqdjsOHDzNo0CBzyx1VVVm4cCELFy40tx5LrFWrViiKwrFjx8z7h/hu4N9++y0//vij1e3SG29YWBjt2rVj06ZNSVoYHTp0iJ9++gmIryxLqESJEgBs3brVajyZrVy5cuTPn5+4uDg+/PBDoqKizOtWr15N//79k530s3jx4iiKwr1795ItVPXu3ZsKFSpw4cIFmjdvbjXdqVOn+Pzzz9mwYUOmHFP58uXNQ7e99dZbrF271mKohKioKH788Ud2795tdXvTkHAzZszgxo0bFClSxFw4zExGo5FDhw7Rs2dPc8VTu3bt6N+/v03b54R7TKfTMWDAAIsCakhICF26dOHhw4cULFiQd955x2Kb119/HYANGzawcuVK8/KoqCiGDx+eYsWe6di2b9+e5p577du3JyAggJiYGNq1a2eenwng33//pX379hgMBipVqkTr1q3TlLcQQgghhEjdiBEjUBSF33//nTFjxljMSfrTTz8xefJkIL73SMLhqz08PGjQoAEAAwYMsBiq7MiRI3Tr1g2dTmd1n4MHD8bOzo4tW7bw2WefWexz6dKlTJ06NdltM4NOp6N79+6cOXPGvOz69et06NCB2NhYypcvb34+NjF9XrhwIdu3bzcvDwsLo3fv3ly8eDHZ/Zmel//66690x/zKK68AEBQUlO48fHx8zA3tJkyYkCm9gb766itq1qzJwoULuXfvnsU60/xD3bp1A+LnT61cuXKSPHbt2oWqqtSuXZu8efNmOCYhhLCgCiFEDtOwYUMVUEePHp1iuldffVUF1AYNGlgsnzFjhmpnZ6cCqoODg1qpUiW1Vq1aavHixVWNRqMCqp+fX5L85syZoyqKogKqh4eHWqNGDdXHx0cF1IEDB6p+fn4qoG7fvj3JtoMGDVIBFVA9PT3V6tWrq3nz5lU1Go36ww8/mNddvnw5ybZpjTckJMScn729vVq2bFm1Zs2aqr+/v3l5rVq11CdPnljsZ+rUqeb1pUuXVgMDA9WGDRuqP/zwQ4rn2cR0HBqNRs2XL1+Kf7t371ZVVVUXLlxo3qe7u7tarVo1tVChQiqgtmjRQn377beTvdatWrUyH2OVKlXUhg0bqg0bNlSPHDliTnP16lW1SpUq5n0UKVJErVWrllq5cmXVw8PDvDzxMZruseSO/fLly+ZtE4uIiFBff/118/p8+fKpNWrUUEuUKKHqdLoU81VVVa1Vq5Z529Tu8ZR0795dBVQvLy+1Xr16ar169dQ6deqo5cqVU11dXc37cHR0VMePH6/GxcVZzcfauXiW91hK36OEkvvOjB49WgXUTp06qXXq1FEBtWTJkmq1atVUBwcHFVCdnJySzb9NmzbmvAsVKqRWr15ddXV1VR0cHNR58+Yle9337dtn/j4WKlRIrVevntqwYUN1wIABSWLr3r17ku1Pnjxp/v+JVqtVK1asqFaoUMGcp7+/v3rhwoUk22XkXhVCCCGEyGrJPY8nltJzlElyz5Gm5+LUnq2nTZtmLu/lyZNHrVGjhrlsAqhdu3ZVDQZDku327dtnfs40lddKlixpLtN06dIl2f3PnDnTnH/ifQ4aNMh8TDt37sz08/HRRx+pJUqUUBVFUcuVK6dWrlzZXO709PRUT548mSTP2NhYc3lFURS1aNGiatWqVVUHBwfVw8ND/eabb5ItT69evdp8rMWKFVMbNGigNmzYUP3yyy+TPYbETp06ZX42NhqNSdYnfPa1VrY2uX79uqrX61VAXbBggcU603mztRysqqo6ZMgQ834B1dfXV61Ro4ZatmxZi7JX6dKl1StXrljNo3379iqgLl682Ob9CiGEraQnkBAi1xozZgwQ36ImYWujAQMGcOLECT744AOKFi3KxYsXOXToEOHh4QQGBjJ58mS2bNmSJL++ffuydetWmjZtisFg4PTp0/j4+LBgwQKmT5+eYixTp05l5syZVKxYkbCwMC5evEiNGjXYtm2buedIctIar6urK8uWLePdd9+lVKlS3Llzh0OHDhEaGkqDBg349ttv2blzp7k7vsnHH3/M1KlTqVSpElevXmXnzp0EBQVx5cqVlE90IkajkQcPHqT4Z2rl9s4777B27Vrq1KlDTEwMZ8+eJX/+/EyZMoWNGzei1WqT3c+SJUv48MMPKVy4MKdOnSIoKIigoCAePXpkTlOkSBH++ecfFi5cSPPmzYmKiuLQoUNcuHDB3BNk3bp1dOzYMU3HmBJHR0d+/fVXfv75Z15++WW0Wi1Hjx7l8ePHVKtWjfHjx6fYu8fUKk2j0STpqZIed+/eZc+ePezZs4eDBw9y+/ZtChcuTMeOHZk1axY3b95kxIgRKZ7rxLL6HrOFvb0927ZtY+TIkSiKwsmTJ3FxcaF9+/YcPHiQRo0aWd1uxYoVfPHFF5QqVYp79+5x5coVmjVrxr59+2jWrFmy+6tZsya//vorjRo14smTJ+zdu5egoCCOHj1qU7zlypXj+PHjfPbZZwQEBHDhwgUuXbpE2bJl+fzzzzly5Ii59aQQQgghhMh8gwYN4u+//6Zdu3Y4ODhw9OhRIiMjadasGatWrWLJkiVoNElfo9WsWZPdu3fz6quv4uDgwLlz57C3t+err75i48aNyY4YAfDBBx+wefNmmjRpQlxcHKdPn8bb25uFCxcybdo0wsPDAXBzc8v0482TJw/79++nf//+hIeHc/r0aTw9PXn33Xc5fPiw1Xlb7ezs2Lx5M4MHD8bX15fr169z8+ZNOnTowJEjR8xzpFrz1ltv8f3331OrVi3u3bvH7t27CQoK4uzZszbHXLZsWV566SWuXLnCzp0703XcAIUKFTKPppEZvYG++OILNm/ezJAhQ6hduzaRkZEcOXKES5cu4ebmxssvv8zcuXM5duwYfn5+SbYPDQ1l/fr15MuXzzysuRBCZCZFVROMUyOEECLd/P39CQ4OZvv27cm+YBYiNRMnTmTEiBG0bNmSP/74I6vDEUIIIYQQQmSBe/fu4eXlhaIohISE4O7unin59ujRg8WLFzN69Ghzw8mcZPfu3TRo0IDXXnvNPG9mTjdhwgRGjhzJtGnTGDRoUFaHI4TIhaQnkBBCCJFNGAwGFixYAECfPn2yOBohhBBCCCFEVjGVCypWrJhpFUC5Qf369WnXrh0bNmxg3759WR1Ohj169IipU6dSokQJPvzww6wORwiRSyXfJ1UIIYQQz9W3337L5cuXKVasWJJJWIUQQgghhBC5y/Lly8mTJw/Nmzc3D89sMBhYuHAhY8eOBaB///5ZGWK2NHXqVMqWLcvdu3ezOpQMu3z5MgMGDKB58+bY29tndThCiFxKKoGEEEKILHT06FEGDhzIvXv3OH36NACTJ09O0xw9QgghhBBCiJzn8OHDTJs2DRcXF0qWLIlWq+X8+fOEhYUB0Llz50yZJzS38fX1zZFD2VlTpUoVqlSpktVhCCFyOakEEkIIIbLQo0ePCAoKQqfTUbZsWT799FPatm2b1WEJIYQQQgghnrH27dvz6NEjdu/ezeXLlwkPD8fDw4PmzZvTs2dPOnTogKIoWR2mEEKIHE5RVVXN6iCEEEIIIYQQQgghhBBCCCFE5tJkdQBCCCGEEEIIIYQQQgghhBAi80klkBBCCCGEEEIIIYQQQgghRC4klUBCCCGEEEIIkQusXbuWZs2akS9fPhwcHChatCidOnXi2rVrFunCwsIYNGgQfn5+6PV6/P39+eSTTwgPD8+iyIUQQgghhBDPiswJJIQQQgghhBA5mKqqvPfee8ybN4/ixYvTokULXF1duXnzJkFBQSxbtoz69esD8OTJE+rXr8/Ro0dp3rw5VapU4ciRI2zevJkaNWqwc+dOHBwcsviIhBBCCCGEEJnFLqsDEMkrXbo0ISEhFCtWLKtDEUIIIYQQIlf5999/yZMnD2fPns3qUDLsf//7H/PmzeP999/nf//7H1qt1mJ9XFyc+d9fffUVR48e5dNPP2XSpEnm5cOGDWPy5MlMnz6dzz77LN2xSBlGCCGEEEKIZyO9ZRjpCZSNFShQgIiICMqXL58l+w8LCwPAzc0tS/afHnaKSjvfh+bPq67mJU5VsjCi5yMnXqsXiapRiS0fS1R0FACuF1xRjLn/vszJstt3SqNoCchf2/z53P1/MKqGLIwo+8hu10pYJ9cp53iRrtXJkydxcnLizp07WR1KhkRGRlKoUCHy5MnDuXPnsLNLvp2fqqoULlyYsLAwbt++jbOzs3ndkydPKFiwIF5eXly6dCnd8UgZRuQmcj+JzCT3k8hMcj+JzCT3U86R3jKM9ATKxkyt5/bu3Zsl+9+5cycAgYGBWbL/dIl+DN9WN3/8aPEW0LtmYUDPR468Vi+QJ7FPeG3tazjGOAKwaf4mnHXOqWwlslJ2+07FRMWxbPQ/5s9zxk7C3kF+wiH7XSthnVynnONFulZ16tTJ6hAyxebNmwkJCaFnz54YDAbWr1/P+fPn8fDwoGnTppQoUcKc9sKFC9y8eZMWLVpYVAABODs7U69ePTZt2sS1a9coUqRIivtN7vxFRETg6+vL5MmTM35w6SAvMURmkvtJZCa5n0RmkvtJZCa5n3KOfv36pes6yRskIYQQQgghhMihDh06BIBWq6VixYqcP3/evE6j0fDxxx8zdepUIL4SCKBkyZJW8ypZsiSbNm3iwoULqVYCCSGEEEIIIXIGqQQSwkaG8HAwjaduZ4fWxSVrAxJCCCGEEC+8u3fvAvD1119TtWpV9u/fT5kyZThy5Ah9+vRh2rRpFC9enH79+hEaGgqAu7u71bxMrQpN6VKS3GgFph5CWdWb7EXqzSaePbmfRGaS+0lkJrmfRGaS+ynnSG9vLakEErmLooF8JSw/Z5IbgwYReegwAI7VquI7b16m5S1yNwUFPzc/8wsVBZkPSKSNoih4eDlZfBZCCCEAjEYjAPb29vz666/4+PgA0KBBA1atWkWlSpWYNm0a/fr1y8owhRBCCCGEEFlEKoFE7mLvDD1/y+oohLDgpHPih5Y/mFtWOOmcUtlCCEs6vZY3B1fN6jCEEEJkQ6ZePdWrVzdXAJmUL1+eYsWKcfHiRR49emROm1xPH9N48Mn1FBJCCCGEEELkPJnXTUIIIYQQQgghxHMVEBAAgIeHh9X1puWRkZHmuYBMcwMlltqcQUIIIYQQQoicR3oCCWGjPB074tq4CQB2Xp5ZHI0QQgghhBDw0ksvAXDmzJkk62JjY7l48SLOzs54enpSsGBBfHx82LNnD0+ePMHZ2dmc9smTJ+zZs4eiRYtSpEiR5xa/EEIIIYQQ4tmSnkBC2Mi1cWPydOxAno4dcG3cOKvDEUIIIYQQguLFi9O8eXMuXrzIggULLNZNmjSJR48e8eabb2JnZ4eiKPTq1Yvw8HC++OILi7RffPEF4eHh9O7d+3mGL4QQQgghhHjGpCeQyF2MBrh//unn/KVAo826eIQADEYDl0MvczPmpvmzVu5LkQZGo0rI7Sfmz3kKOqPRKFkYkcgsMTExXLt2jaioKPPk7rmRo6MjACdOnMjiSERqcsK10mg06HQ63Nzc8PLyQqORdm2zZs2ibt269O7dm19//ZXSpUtz5MgRtm3bhp+fH1OmTDGnHTp0KOvWrWPy5MkcOXKEqlWrcvjwYTZv3kyNGjUYOHBg1h2IEEIIIZ47o9HI3bt3CQsLIzY2NleXS4R1OaEMkBtoNBocHBwoUqQI9vb2z3XfUgkkcpfYCFjyxtPP/Q+C3jXLwhECIMoQRZ8tfYiJiQHgNcNrOGucU9lKiKfiYgys/+ao+XOXsbWxd5Cf8JwuJiaGS5cuERsbC4Ci5N6KPb1en9UhCBvlhGtlMBgwGAxERUUREhJC0aJFcXBwyOqwslTx4sU5ePAgo0aN4s8//2Tz5s0ULFiQDz74gFGjRuHl5WVO6+zsTFBQEGPGjOGXX35h+/bteHt7M3jwYEaPHm1+CSCEEEKI3C8qKorLly+byySQu8slwrqcUAbIDQwGA0+ePOHSpUsUL178uVYEyRskIYQQQogscO3aNWJjY3FxccHPzw+tNvf2EIyOjgakcJET5IRrZTQaiYqK4ubNm0RERHD37l18fX2zOqwsV6RIEX744Qeb0rq7uzN9+nSmT5/+jKMSQgghRHZ29+5dYmNjcXJywsfHBwcHB+ll/QLKCWWA3MBgMBAcHEx4eDjXrl2jePHiz23f8q0WuYwCjh5P/5DWC0IIIbKnqKgogFxfASREZtNoNDg5OeHv7w9AWFhY1gYkhBBCCJFDmZ6j/P39cXJykgogIZ4hrVaLn58f8PR9wPMiPYFE7qJ3gQ/2PZOsb4+fQNSZMwA4lClDwZEjnsl+hBBCvBiMRiOKokgFkBDpZGdnh6IoqKqa1aEIIYQQQuRIqqqiKAp2dvKKWIjnQavVoijKc597S77hQtgo5mow0WfPAqBxdsriaIQQQgghhBBCCCGEEEKIlEklkBBCCCGEEEIIIYTIlaJiDZy6GUp4tAEXvZZyPu446KQnthBCiBeHVAIJYSPHChXRODkDoH+OE3cJIYQQQgghhBAibe6ERbFk7xXWHL7Bo4hYVFQUFDycdLSpWojudfzxcnPI6jCFEEKIZ04qgUTuYjRCxP2nn53yQyZNaufZ/8NMyUcIIYQQQgghhBDPzplbYfRdeojbYVHEGoxoUFCU+PlPbodFMX/XZTYcu8XcrtUo4+2W1eEKIYQQz1TmvB0XIruIfQJzGjz9i32S1REJIYQQQgghhBDiObkTFkXfpYe4+SgSo1HF0U6Lo70WB138fx3ttBiNKjcfRdJ36SHuhkVldchCCCHEMyWVQEIIIYQQQuRS8+fPp1KlSjg6OuLp6Unnzp0JDg5OUx4PHjygX79++Pj4oNfrCQgIYPLkycTFxSVJO3DgQGrXrk2BAgXQ6/X4+PjQpEkT1q5dmyTthQsXGDNmDPXq1aNgwYI4OztTtmxZPvroI27dupXuYxZCCPFiW7L3Crf/q9jR22nQaBSL9RqNgt4u/nXY7bAoluxN2++iEEII2504cYJOnTpRunRpPDw8cHR0pFSpUvTp04cLFy4kSb9mzRpatWqFn58fzs7OuLu7U7FiRcaNG8ejR49s3m9cXBxfffUV5cuXx8HBgTx58vDqq69y8ODBZLextezk7++PoijJ/jVr1szmOJ8XGQ5OCCGEEEKIXOjzzz9n/Pjx1KtXjxkzZnDv3j1mzJjBjh072L9/P4ULF041j8ePHxMYGMi5c+d4//33qVixIjt37mTYsGGcPHmSpUuXWqTfu3cvVapUoV27duTJk4f79++zatUq2rRpw4gRIxg/frw57cKFC5k5cyavvfYa7du3x9HRkX/++YdZs2bx448/8vfff1O6dOlMPy/i2dMoWmKiklYSJken16IoT1/SqqpKbLTB5u21dhq0dpbtGw2xRgwGo8152DtYFo0lhv9iMKrExmQshrhYA0aD+vxi0GnQanNfDEajSlxGY4gxYDTaFoOiKOj02hwXQ1SsgfUHb0CcEWetFhUFI/HfJxRQUNCqoFEV7BQNkXEG1h+6Tp+6/jjotEnye1bnITbGgJqR82AwEhdr+3fbTqdBk5EYNAo6+1waQ7Qh/v5IZwwGgxFDWmKw1yapmExLDBqNgt0ziMHW/Zsk/N1Oz/aZkYfEkHkxJJaZMVy+fJl79+7x5ptvUqhQIezt7Tl37hyLFi1i+fLl7Nq1i8qVK5vzOHr0KPb29rz77rsULFiQmJgYDh48yBdffMHy5cs5cOAALi4uKcagqipvvvkmGzdupFGjRvTp04eIiAjmz59P/fr12bx5Mw0aNLDY/vPPP2fChAlWy0779u2zKDtNnz6d8PDwJDEsW7aMTZs28frrr6d6HlVVTfK8nPiZGEiSxk5jT5wxJtl8kyOVQEII8YzZa+0ZU3cMJ0+eNH8WIi20Og0vvV3a4rMQQqTk/PnzfPnll1StWpUdO3ZgZxf/2N+yZUtq1qzJ8OHDWbJkSar5TJkyhdOnTzNt2jQGDRoEQK9evXB3d2fmzJn07NmTxo0bm9Pv27cvSR6DBg2iWrVqTJ06lREjRuDo6AhA27ZtGTZsGB4eHua0ffr0oXbt2vTt25dRo0bx888/Z+Q0iCwSkL82y0b/Y3P67l/WI2F5V1VJ0/aVm/pSpZmvxbKjf13l+PbrNm2vKAo9JtWzWGaIM6Yphqot/KjUuIjFssObgzm584ZN22vtNHSbUNdiWWy0IU0xVH/ZnwqNLCt3D/5xhdN7btq0vU6v5e1xdSyWRUfGsWJc0u91cmq9Voyy9X0slh3YeJmz/9y2aXu9k47Oo2tZLIsMj+WnCfttjqHOG8UpXcfbYtk/6/7lwoE7Nm3v5GZPhxE1LZY9CY1m1aTkWw4nVu+tEpSqWdBi2d9rLnHp8F2btnfx0NPusxoWy8IfRvHLlEM2x9CgfSlKVPOyWLZ71QUuH7+fzBaW3PI58NbQ6hbLQu9G8Ov0IzbH0LBTAMUqe1os27nyPMGnHti0vYeXE28OrmqxLOT2E9Z/czTZbWINRl6LAFV1QFFgh5uBf+0MRMUZUQBHey2Nw+woHBP/Px1V1aGEwcqx+9Bpkz5j5/V2pvXAKhbLHlwPZ+N3x2w6BoCm3ctSpGxei2Xbl5zhxoVHNm2fv7Arr/WvZLHs3tVwfp9z3OYYmr9TjkIBeSyW/fXDaW79G2rT9l5+brz6fkWLZXcuh/Hn/JM2x9Cyd3m8S3hYLNu84BR3g8Ns2t67mDst+1awWHbrYiibvz9lcwyvvFeRAkUt54D6c95J7l9/bNP2hUp60LxXeYtlN889Yuvi0zbH0OqDSnj6ulos+332cR7esm06gyJl8tK0R1mLZddOP2T7j2dtjuH1AZXJ52P5Ej3qSazNFXJaOw16J53FMkOckZhI2xuAODjrULSWL7szHEOsMU2NUByc7VES1f1GhcfaXAGi1WnRO1q+Wk9zDC72JHrnn+EY4mKNxKYxhsQiw2PjH8hsYKfTYp84hhgjsdHxMTRt1IKmjVok2a51qzdp2LgBU6dM48cfl8J/52HcuHEARITFAPExvNOtNyWKleLz0SNYtnQF3d7ubhmDvdai8cT69evZuHEjzZo2Z+3qdeaKlW6de1KlRiV69+rN4QPHzMsvXLzApEmTkpSdGtVvQmDjenw6dBgL5n5vzr9Fk1eSHI/GTuHzzz/H0dGRrl27JjkPCRmNKhGh0Ume87qOr4NdogYJy8fss7gfXi/9MWtOT06SZ2rkLZIQNnq0Zi33Zn7HvZnf8WhN0iFNhEiOTqMjsHAg5Z3KU96pPDqNLvWNhEhAq9XgXyG/+S9xS0IhcqNFixahKArbtm3jq6++omTJkjg4OFCmTBlWrFgBwM2bN3n77bfx9PTE0dGR5s2bc/HiRav5LV68mDp16uDi4oKTkxPVqlVj0aJFSdJt3ryZTp06Ubx4cRwdHXFzcyMwMJANGzYkSdujRw8UReHx48d8/PHH5uHSypcvn+WVF8uXL8dgMPDRRx+ZCzEA1atXJzAwkNWrVxMZGZlqPkuWLMHJyYl+/fpZLB88eLB5fWrs7Ozw8fEhOjraYp/Vq1e3qAAy6dixIwDHj9v+cksIIYSA+HeWiV9bRsXF95BQgZi4pL0lVGx+1ymEeAEtXbYEZ3cHdgRt5+sZ06hYpRx5vdypVKVCknKJd6GC5CvgwWtvvMqlS5es5vfj8qW81LQhXj75cHFxTrZcsvWvLXR/pyvlK5UhXwEPChb2pPnLTfj9j9+SpE1YLhkyZBDFA4qSx9ON6rWr8sua1Zl6PjJLkSLxDXhsHeLNNw3pt23bBkCXTm9b9Kzx8PCg1SutOH/hPHv/+du8/OdVK62WnapWrUb9evX5dd3aVMtOW7ZuITg4mLZt21ot42Q16QkkUrV839U0b9O5lm/qiXKYsD//IPLQYQAcq1XFo82bWRyREEKI3OzhsmWE/FeoMCny3XfY+/lZTR976xZXe/e2WObxVlvy9eyR7D5ufDKUqDNPWy7a5cmL39LkX+qH/fkn92bOtFjm/cUXOFWpkswWGffZZ58RHh7Ou+++i6OjI/PmzaNLly5otVqGDh1K3bp1GTduHMHBwcyYMYM33niD48ePo9E8rSzt27cv8+bN49VXX+WLL75Ap9Pxxx9/0LNnTy5cuMCECRPMaRctWsSdO3d4++23KVy4MPfu3WPx4sW8/vrrrFy5kg4dOiSJsUWLFjg5OTF06FAMBgOzZs2iQ4cOFC1alBo1aiRJn1h4eDhRUbZPSp0/f/5U05h65NStWzfJurp16xIUFMSJEyeoWbNmkvUmd+7cITg4mLp165p775j4+/vj7e3N/v3WW+ffv38fVVW5e/cuP//8M5s2baJOnTrkzZvXavqEbtyI7zlRoECBVNMKIYQQCSlKfGPy5Op0rLWuV/7bTghh3eNVK3m8OkEDJ0XBd3by5ZK4O7e5+9H7FstcXn8Tty5dk93HjU+GEnnqlPnLq8mTh4JzFiabPnzLZq7Pn22xzGv0WLQB5ZPZIuNGjx3FkyfhdOvaA0dHR35Y/H2ScsnoUWO4/O8Vvpv9LR26tGP/3wctyiX9B3zA94sW0rLFy3w+YjROLg78+eefVsslPy5fyt27d+nYoROFfApx//59lq34kXYd32Lx90tp+1a7JDG2aNECRwdHPh4wCIPBwPwFc+nW8238/fypVq16kvSJmcolEeExNtWO58+XernEJCoqivAn4cTGxHDx0kUmToo/1pdbvGw1/ePHj4mOieJJeDhHjh5h5Ojh2NnZ0bRJ6vPtREdHA+Dk5JRkneN/y/Yf2E/dOvE9wQ8cPABYLzvVqlmbXbt3cer0SapXS75s98MP8T2Feicqk2cXUgkkhBBCCJENGR6GEHPRsvWYGpP82L9qXFyS9IYHKQ/5EnvjhsU2Rs+Uh+MwhIYljcmG3iQZERERwaFDh3BwcACgffv2+Pv707FjRyZMmMBnn31mTuvl5cXgwYP566+/zJNxbty4kXnz5jFp0iQ+/fRTc9oPP/yQ999/n8mTJ9OrVy+KFi0KxE8G6uzsbBHDwIEDqVy5MuPGjbNaCVS6dGm+//7p8ABt27alZMmSzJgxg2XLlqV6jB9++CGLFy+2+ZzYMjzE9evxw2BZm/fHtOz69espVgKllIdp+dmzSYceCQ8Px9Pz6fA/Op2Ot956i5mJKhCT8/nnnwPQs2dPm9KL7Ofc/X+YM3aSzekTv3xVFOgytrbN2yeegwagchPfJEOjpYXWTpPhGKo296NSkyJWUttGp9dmOIbqL/tTpXn6G+jpHe0yHEONVkWp9rJ/umNwdNGlLQYrw+bWbl2Mmq2KpjsGZ3d9hmOo26Y4tVsXS3cMLnkdMhxD/XYlqftWCZu2TzwnAYC7l1OGYwjsWCpNcwIllqegc4oxRMUaePV/u7nzOApHrRZVq0CCxycVCHIzoFHjh+OJNBgo6ObAxv61kp0TKLF8hV0yfB5e6lYmTXMCJebpm7YY7KzE0KRn2TTNx5NYgaJuGY6hea9yGYrBu4R7hmNo2ad8muYESswnwCNtMdgnvc9e6VcxTXMCJVakbN4Mx+DgnPyIJeERYcRe/tdiWeJyidZOg6Nr/LBiMY+UJOmV8Efm9dbE3rhB7L9Pt7EL90wxfXRUeJJyiRITleI2tnBwSXoeTMOMRUVHcujw03JJl66dKFq0qEW5xHQdfQoXZMiQIfy9f5dFueT7RQv58ssvLcol/fv3tyiX+Pv7A/D9DwuTlEuGfDqYKlWqMHnql3Tt0SVJrKVLl2bhwqeVZ526dKBUqVLMWTCLHxv9mOrxp7VcYjRan4vKzl6Dnb3ltVi4eB4fffSR+XPBggX56quveL9/P/NQcAl9MKAvv/zyi/lz+fLlmTNnDtVqVk41rnLlygGwe+9O2nZoY16uqip/790NwK07N8z3y63b8UPnJi73OLrq8C8WX9l57+GdZO+vu3fvsvG3DZQuXdpiriFr5wHiv8fOHnq6jLVsTGntOarzGMthcps0aWI1htRIJZAQNlK0dij/dQlUtPLVEUIIIZ6H/v37mwtaAN7e3gQEBHDq1Ck+/vhji7SNGjUC4Ny5c+bC1uLFi9Hr9XTp0oX79y0rxd58801mz57N1q1bzS22Eha0njx5QlRUFKqq0rhxY+bOncvjx49xdbUcxz1hIQ7Az8+PUqVKcf78eZuOcejQobz99ts2pbVVREQEAHq9Psk60/k0pUlPHqZ8rOXh6OjIli1bMBgMXLt2jZUrVxIVFcXjx49T7d0zceJEfvnlF9544w26d++eYlqRfRlVQ5JJ7dNCUZQMbQ//TcSegTn0JIb/YtBkPAY7nRYyMBqyxBBPkxkxWHnxm9tisHew4/XqhZi/6zJPjEb0VmZBMCgQh0q0akRjp+H1aoVxc7X+W5eeGGyhy+h50Gqwz+AQ0RLDfzHoMxaDVqvJ8HDd2SEGa5WN5nXW3tCnsL21vBQl5X2kNSZrtQaKoqR5H7bs07Ssf//+Fr3jfXx8kpRLTGlfeuklIH6ezubNmwPxwyjr9XrefvttHjywnBvNWrnExeXpvE3WyiXh4eFWyyUJj8Hf399cLrHl3KS1XJJcntaWv/nmm5QpU4YnT55w4sQJfv75Z0JDQzEYDOh0SX8gR48ezXvvvceDBw/YvXs3e/bs4eHDhzYdR9euXZk4cSKzZ8+mUKFCtGnThoiICL7++mtOnYqfRywyMtKcV3LlHkVRzNc8YfrEFi9eTGxsbJJeQCl+r2x8zkucJs6YfMPQlMibbCFsVGT2rKwOQeRQUXFRfPHPF9y5Fz8Zbc24mjjYOaSylRBPxcUY2LH8nPlzo84BGS5AC5FTFC9ePMmyvHnz4uPjY1E5ZFoOWBSqTp8+TXR0NEWKJN8a//btpxOWX7lyhc8//5zff/+dhw8fJkkbEhKSpLBlLcb8+fMTHByc7D4TKlu2LGXLlk09YRqYhj6Ijo5OMpSbaeg5a8MjJJeHNVFRUVbz0Gq1NG3a1Py5V69evP7669SrV48zZ84kOyTcN998w4gRI2jUqBHLli3LcCFeCCHEi6l7HX82HLvFzUeRRFuZA8hoVIkxxC/3dnegWx3rQ1oJIURCUi7JmMKFC5t72rRu3ZouXbpQqVIlbt++zYIFC5Kkr1ChAhUqVACgQ4cO/PLLL7Rt2xYg1YoqDw8Ptm7dSo8ePfj000/NjfaqVKnC5MmT+fjjj3FzczOnz2jZaeHChej1erp165ZiXFlJKoGEEOIZM6gG9t7cS8x/3aUNqiGLIxI5jdGocu3MQ4vPIvfT5s2DfQnLh3jFSldy8zo7uyTptamM0awrVAhDWKj5s12elOdr0bq7JY0p0UNyZtNqrVd4JrccLIdLMxqNuLi4sHbt2mTTFysWPzxPeHg4gYGBhIaGMmDAACpWrIibmxsajYbvv/+eFStWWB3yIOHkocnFkZLQ0NBUJxpNqGDBgqmmKVy4MCdPnuT69euULFnSYl1qw7wlzCNh+sSuX7+eah4m3bp1Y8OGDaxZs4ZevXolWf/1118zePBgmjRpwvr161OtoBJCCCGS4+XmwNyu1ei79BC3w6IgwbOzUYXIOAM6rQZv9/h0Xm7SQE+IlEi55L99SrkkCVvKJckpWrQogYGBLFq0iO+++y7Z0QdM2rRpg6urK3PmzLGpt1K5cuU4cOAA//77L9evX8fT05MyZcowa1Z8I/8yZcqY02ak7BQUFMT58+fp2LGjTXO3ZhWpBBJCCCGEyIbydulC3i5Jx3lOjs7bm+IbN6ZpH4WmfJWm9G4tW+LWsmWatslqpUqV4uzZs1SoUCHVoci2bdvGtWvXWLhwIe+8847Fuvnz5z+zGAcMGJDpcwLVrFmTP//8k7179yYpyOzduxdHR0fKl0954twCBQrg6+vL0aNHiYyMtGgVFxwczK1bt8zDW6TGVJgMCQlJsm7y5MkMGzaMli1bsnbt2iQtKYUQQoi0KuPtxur36rBkbzDfbb9ommsejQIF3R1oU6Uw3er4SQWQEDaQcknmeFHLJSmJjIzEYDAQFhZmMaeoNQaDgZiYGKvliZQUK1bMXLkG8Pvvv6PVamnRooV5WUbKTqbrkXgouOxGKoGEEEIIIUSu1aNHD9avX8+QIUNYvHgxGo3leOmhoaE4ODig1+vNrfgSF2aOHz/Or7/++sxifBZzAnXu3JkJEybwzTff0LlzZ3OrwIMHDxIUFESXLl0setuEhoZy69YtXF1dLVqwde3alQkTJjB79mwGDRpkXj5t2jTzepMHDx7g7u6epAViTEyMucVd3bp1LdZNnDiRESNG0KpVK1avXp1qC0AhhBDCVl5uDgxpEcAPey5jVEFFpWg+Z9Z+UA8HnQytLIR4vl7Ucsnt27et9hg6ePAge/bsoUSJEhYVQMmlnz17NtHR0UnKE7du3SI0NBRfX99URxNYv349v/32Gz179sTX19e8PK1lJ5OQkBB++eUXSpQoYZ4HKruSSiAhhBBCCJFrvfnmm7z33nvMmTOHEydO0KZNG3x8fLhz5w7Hjx9n/fr1nDlzBn9/f+rVq4e3tzeDBw/m33//xd/fnzNnzjB//nwqVKjAoUOHnkmMz2Ls7YCAAIYOHcqXX35Jo0aN6Nq1K/fv32f69Ol4eXkxceJEi/Rr166lZ8+ejBgxgs8//9y8fOjQoaxevZqhQ4dy5coVKlWqRFBQEEuXLqVTp040adLEnHbDhg0MHz6cNm3aULx4cVxcXAgODmb58uVcvnyZXr16Ua9ePXP67777jhEjRlCgQAHatGnDqlWrkhxHZhdChRBCvHgURUGrACi4OuikAkgIkSVe1HJJp06diI2NpWHDhvj6+hIdHc3Ro0dZsWIFiqIwZ84ci/S+vr689tprVK5cGR8fHx48eMD27dv5888/8fPzY8yYMRbpP/vsMxYvXsz27dtp1KiReXn79u3x8PCgQoUK6PV6du3axYoVK6hduzYzZsywyCOtZSeTH3/8kaioKHr16pXt5zOVSiAhbBR17hzGx48B0Li64hAQkMURCSGEEMIWs2fPpnHjxsydO5fp06fz5MkTvLy8CAgIYOLEieaWZh4eHmzevJlPP/3U3NKsYsWKLFu2jMOHDz+zwtazMmHCBPz8/Pjuu+8YMGAALi4uNGvWjIkTJ6Y4IW1Cbm5u7Nq1i5EjR7Jq1Srmzp2Ln58fEydOZMiQIRZpa9SoQYsWLdi6dStLly4lIiKCvHnzUrVqVSZPnky7du0s0h84cACAO3fuJBnmwkQqgYQQQmQmFZlbUwiRdV7Eckn37t356aefWLx4Mffv3wfiK3q6devGoEGDCEj0fnXw4MHs3LmTb7/9lpCQEBwcHChZsiSjRo3i448/xsPDw6b91q5dm8WLF7Ny5Uri4uIoWbIkEydOZMCAAVZHH0hP2WnBggXodDp69OiRpnOSFRQ1o4P3iWemTp06QPzYg1lh586dAFzX+6d52861fFNP9CxEP4Zvqz/93P8g6F0zJeurffoQeegwAI7VquI7b16m5JsZTNcqMDAwiyMR1jyJfcJra18jJiYGgE0dNuGsc87iqERKstt3KiYqjmWj/zF/7jK2NvYO0o4Dst+1SosTJ04AUKFChSyO5NmLjo4GkKG+coCcdq0y8j3K6mft3Cqrz2tO/l0Q2Y/cT7lD+dGbzP8u4+3KqvfqppD62ZH7SWSmzLqfXqQyiUheTisD5HRZUYbRpJ5ECCGEEEIIIYQQQgghhBBC5DRSCSSEEEIIIYQQQgghhBBCCJELyVgyQtjIa/BgizmBhBBCCCGEEEIIIYQQQojsTCqBhLCRQ6KJyoQQQgghhBBCCJFzyKzYQgghXkRSCSRyF0UDngGWn4XIYgoKxTyK8SjkkfmzEGmhKAp5vZ0tPgshhBBCCCGEEEIIkRqpBBK5i70zdF+f1VEIYcFJ58SC5gvYuXOn+bMQaaHTa2k9sEpWhyGEEEIIIYQQQgghchjpJiGEEEIIIYQQQgghcj0ZDU4IIcSLSCqBhBBCCCGEEEIIIYQQQgghciEZDk4IG13r9z6Rhw8D4Fi1KkVmz8riiIQQQgghhBBCCCGEEEKI5EklkMhdjAa4c/Lp5wLlQaPNlKxVQxxqXJz530LYymA0cD7kPNeir5k/azPpvhQvBqNR5cH1cPPnfIVd0GiULIxICCGEEEKInEdVZUA4IYQQLx6pBBK5S2wELGv/9HP/g6B3zbp4hACiDFF88NcHxMTEAPCG4Q2cNc5ZHJXISeJiDGz87pj5c5extbF3kJ9wIYQQQgghhBBCCJEyeYMkhI3cWr6MY8VKAOh8fLI4GiGEEEIIIYQQQgghhBAiZVIJJHIZBVw8LT9nEo82b2ZaXkIIIYQQQgghhHi+ZDA4IYQQLyJNVgcgRKbSu8B7u5/+6V2yOiIhhBBCpMOVK1dQFMXiz8HBgYCAAD755BNCQkIs0vv7+ydJb/rbuHGj1X3Mnz+fSpUq4ejoiKenJ507dyY4OPh5HF66ZUbMDx48oF+/fvj4+KDX6wkICGDy5MnExVnOeRgSEsK3337LK6+8gp+fHw4ODhQtWpS2bdty5MiRJPneuHGDyZMn07hxYwoVKoSjoyOlSpWiZ8+eXLx4MUPHLYQQQmQGmRJICJFWaS2XPHnyhOHDh1OyZEn0ej2enp506NCBCxcuJMl7x44dyZZh8ufP/7wOMUNu3ryJh4cHiqIwZsyYZNPt2rWLN954Ay8vL/R6PYULF6Z169ZcuXLF5n3t3LmTxo0b4+rqiqurK40bN2bnzp3Jpk9L2SkiIoJhw4bh7++PXq/H39+fYcOGERERYXN82Zn0BBJCCCGEENlWgwYN6NOnDxBfebFx40amTp3K5s2bOXDgAPb29ua0pUuXZsSIEUnyqFKlSpJln3/+OePHj6devXrMmDGDe/fuMWPGDHbs2MH+/fspXLjwszuodMqMmB8/fkxgYCDnzp3j/fffp2LFiuzcuZNhw4Zx8uRJFixYYE67b98+Bg4cSOPGjXnvvffw8vLiwoULzJkzhzVr1rB8+XI6duxoTr9hwwZGjRpFy5Yt+fjjj/Hw8OD48ePMnz+fFStWsHnzZgIDA5/JuRFCCCGEEOJZsqVcEhkZSaNGjTh48CBvvPEGH3/8Mffu3WPWrFnUrl2bv//+m4CAgCR59+nThwYNGlgsc3BweC7HlVH9+vXDYDCkmGb69OkMGjSIBg0aMHToUPLmzcudO3fYv38/Dx8+xN/fP9X9bNq0iVatWlGoUCFGjx6NXq9n3rx5NGnShI0bN9KiRQuL9GkpOxkMBl555RWCgoLo2rUrgYGBHDt2jKlTp7Jv3z62bt2KVqtN1/nJLqQSSAghhBBCZFvFihXj7bffNn8eMGAArVq14rfffmPdunW0a9fOvK5AgQIWaZNz/vx5vvzyS6pWrcqOHTuws4t/JG7ZsiU1a9Zk+PDhLFmyJPMPJgMyK+YpU6Zw+vRppk2bxqBBgwDo1asX7u7uzJw5ky5duvDSSy8B8ZVq586do0SJEhZ5vP3221StWpWBAwfSvn17NJr4wQUaNGjAlStX8Pb2tkjfqlUrWrRowZAhQ9i/f3+Gz4UQQgghhBDPmy3lknnz5nHw4EH69OnD3LlzzWm7du1K+fLl6d+/P5s3b06Sd506dWwqx2Q3K1eu5LfffuOrr75i8ODBVtPs2rWLwYMH8+mnnzJp0qR07cdgMPDee++h1+vZuXMnvr6+AHTr1o1y5crRr18/Lly4YK6oSWvZafHixQQFBdG/f3/+97//mZf7+/szZMgQFi9ezDvvvJOu2LMLGQ5OCCGEEELkKC1btgSwOsRYXFwcYWFhqCmM97J8+XIMBgMfffSRuUAAUL16dQIDA1m9ejWRkZGZH3gGZFbMS5YswcnJiX79+lksNxXali1bZl7m7++fpAIIoHz58pQvX547d+5w9+5d8/Jy5colqQACaN68OXny5OH48eOpH6gQQgjxDMlocEKIzJS4XLJt2zYAevbsaZGuWLFiNGjQgK1bt3Lt2jWreUVERGS7MkhK7t+/z0cffcSAAQOoWrVqsunGjx9Pvnz5GDduHBA/XF7iYahTs2vXLq5cuUK7du3MFUAA7u7u9OrVi8uXL7Nr1y7z8rSWnUwVQokrst5//30cHR2zXQPB9JCeQCJ3MRrh8a2nn129QZM5dZ33vp1J9KVLAOiLF8ez/4eZkq8QQghh1f75cGBB6ukyW5NRUPpV6+seXIKVnS2X1egFNXs/+7gSOH/+PECScbL37duHk5MTsbGxODk50bRpU8aNG0elSpWSpAOoW7dukrzr1q1LUFAQJ06coGbNmumKLzw8nKioKJvT2zLed2bEfOfOHYKDg6lbty6Ojo4W6/z9/fH29ubgwYOpxmI0Grl9+zb29vZ4eHikmj40NJTw8HCrFURCCCGEECJ7W3F2BT+d/SlDeZTOV5pJDZLvBTJs1zDOPjiboX10KN2BTqU7ZSiPtEpcLomOjgbAyckpSVonJydUVWXfvn0UKVLEYt2AAQPMFUeFCxfm7bff5vPPP7eaT1qEhoYSGxubarro6Gi0Wi0FCxa0Oe8BAwbg7OzMuHHjOHDggNU0ERERbNu2jZYtW7J8+XLGjRvH5cuX0Wq11K1bl0mTJlkt3ySWWlkIYP/+/TRq1Mim9AnLTqqqcuDAAXx8fPDz87NI6+joSOXKlTl48CCqqqIoSqqxZldSCSRyl9gnML/x08/9D4LeNVOyjjxxnMhDhwEwRjzJlDyFEEKIZD25D/cyVhBKl6iw5NcZYpLG9OT+Mw0nOjqa+/fj9/Hw4UPWr1/P7NmzcXd3p3Xr1uZ0ZcuWpWfPnpQpUwaNRsOBAweYOXMmmzdvZvPmzRZjbF+/fh3A6hw6pmXXr19PdyXQhx9+yOLFi21On1KvJZPMiDmlPEzLz55N/Z777rvvuHXrFt27d7dprPJx48YRGxubpEWkEEIIIYTI/kKiQrgUeilDebjp3VJcfzP8Zob3ERIVkqHtU2NLuaRcuXJs2rSJbdu2UbFiRfO2ERER5oqJq1evmpfrdDpeffVVXnnlFYoUKcLdu3dZs2YNkyZNYuvWrQQFBWWoIqh169YEBQXZlNbX15fg4GCb0v7+++8sX76cP/74A2dn52TTXbhwgbi4OPbv38+ff/7JoEGDqFOnDmfOnGHixIk0atSIHTt2pFoRZGtZKK3pa9asycOHD4mIiKB8+fJW9124cGH27t1LSEgIefPmTTHO7EwqgYQQQgghRLa1cuVKVq5cabGscuXKzJ07Fy8vL/Oy33//3SJN27Zt6dChA7Vr16ZPnz6cOXPGvC4iIgIAvV6fZH+mSg1TmvQYOnRopo/pnRkxp5SHKZ/U8tixYwdDhgyhaNGifP3116nGvWzZMr7++mtq1qzJZ599lmp6IYQQQgghsiNbyiXvv/8+c+fOZdSoUTg7O9O0aVPu37/P6NGjefDgAWD5zF6vXj02btxokee7777LkCFDmDZtGv/73/8YNmxYumOeNm0aISGpV47FxMQkGSkgOWFhYfTt25dOnTqZh8NLzuPHjwG4e/cu33zzDR999BEAb7zxBtWqVaNFixYMHTqU3bt3p5hPWstCaUlvSxnJlE4qgYR4Adj7+mF8EmH+txBCCCGevebNm/PJJ5+gKAp6vR4/P78kwyckp2rVqrz++uv88ssvXLx40Ty/jak1XXR0dJLCjmkYt4y0uCtbtixly5ZN9/bWZEbMCfOwJioqKsU89uzZw2uvvYanpyebN29OtRD0yy+/0KNHD8qXL8/GjRuTLVgJIYQQz40NvW+FEMIaW8olxYsX548//qBXr1706dPHvLxx48YMGzaMcePG4eaWcq8ogNGjR/P111+zcePGDFUCVatWzaZ0yZUPrBk6dCgRERHMmDEj1bQJyxbvvvuuxbrmzZtTpEgR9u7dS0RERIrlkJTKMdbKQmkpO9lSRkqcf04klUBC2KjgyBFZHYLIoey19oyvP54TJ06YPwuRFlqdhqbdy1p8Fi8A5/zgWfr579chhUKJ1j5pTM6pz2eTEd7e3jRt2jTd2xctWhSIb31mqgQqXLgwJ0+e5Pr165QsWdIifWpDptkiNDQ0TZO62jL2dmbEbG2ohMT5FCpUyOq6nTt38uqrr5InTx62bdtmPpfJ+fnnn+nSpQtly5Zl69ateHp6ppheCCGEeB6kCkiItMvjkIfi7sUzlIePi0+q68OiUxiW2gZ5HPJkaPvU2FouadCgAWfPnuXcuXPcvXuXwoULU6xYMYYOHQpAmTJlUs3D1dWVfPnycffu3QzF/PDhQ2JiYlJNZ5oTKLXyxOHDh5k3bx4jR44kLCyMsLD4a3bjxg3z/i5evIinpyfu7u7mSjJ3d3erw8Z5e3tz7do1Hj16lGIlS0rlGGtlobSUnfLmzYuTk1OKZSRnZ2fy5Hm299ezJpVAQgjxjOk0Our61CXuYpz5sxBpodVqKFI253Y7FulUs3f8X3aSrzh8sC+ro0gT02StCStaatasyZ9//snevXuTFAr27t2Lo6NjsmNC22LAgAGZPidQZsRcoEABfH19OXr0KJGRkRat4oKDg7l16xZNmjRJst327dtp1aoVXl5ebNu2zVyxlpzly5fTrVs3KlWqxJYtW3L0sAlCCCGEEC+6TqU70al0p2e6j0kNJj3T/J83RVEoXbo0pUs/bUD3xx9/4O7uTr169VLd/uHDh9y/f9+mCqOUtGnTJlPnBLp69SqqqvLFF1/wxRdfJFn/7bffmv8+/PBDPD09KV68OJcuXSIsLCxJL6hr165hZ2eXannBNO/p3r176d3bsoy8d+9eizSmf9tadlIUherVq7Nz506Cg4Px83s6+lNkZCRHjx6lZs2aKIqSYozZnVQCCSGEEEKIHO3Bgwfky5cvyfIdO3awceNGKlSoQLFixczLO3fuzIQJE/jmm2/o3Lkzdnbxj8QHDx4kKCiILl26ZKi7/7OYEyitMYeGhnLr1i3y589P/vxPe2t17dqVCRMmMHv2bAYNGmRePm3aNPN+Evrrr7947bXX8PHxYdu2bfj6+qYY548//kj37t2pXr06mzZtwsPDI6OHLoQQQmQaGQ1OCJEV/ve//3Hy5EnGjh1r8cyesByjqiqxBhWjamTIkE+A+LlzMiKz5wSqWbMmq1atSrL81KlTjBkzhnbt2tG+fXuqVKliXvfOO+8wYsQIvv32W0aMeDrK0urVq7l16xYvv/yyed4diK9oioiIoHjx4uh08Y2oAwMD8fPz4+eff2bs2LHmHkZhYWEsWLAAPz8/GjRoYM4jrWWnrl27snPnTvM8TCazZ88mMjKSrl27pnpusjupBBJCCCGEEDna0qVLmTdvHi1btqRo0aJoNBoOHjzIjz/+iLOzMwsXLrRIHxAQwNChQ/nyyy9p1KgRXbt25f79+0yfPh0vLy8mTpyYoXiexZxAaY157dq19OzZk9GjRzNmzBjz8qFDh7J69WqGDh3KlStXqFSpEkFBQSxdupROnTrRuHFjc9qDBw/y2muvERsbS+/evdm5c2eSuJo1a0aBAgUA2LBhA927d8fJyYnu3bsnmeQW4M0337Q6FIQQQgghhBC5QWBgIFWqVKF06dKoqsqmTZtYv349rVu3Zvjw4RZpW7ZsiZdXASpVqYJnQR/u37vPH7+t58ihg9SpV5/u7/bBYFTRatLXCyWz5wTy8fGhbdu2SZabGp2VLVs2yfpBgwaxdu1aPv/8cy5cuEDt2rU5d+4cs2bNIk+ePHz99dcW6bt160ZQUBCXL1/G398fAK1Wy6xZs3j99ddp0KABH330Efb29sydO5dbt26xYcMGtFqtOY+0lp169uzJkiVL+PbbbwkNDSUwMJBjx44xa9YsGjRoQI8ePWw6P9mZVAIJIYQQQogcrUaNGuzYsYM1a9Zw79494uLiKFSoEO+88w7Dhg2zOnzZhAkT8PPz47vvvmPAgAG4uLjQrFkzJk6cmGSC1+wiM2J2c3Nj165djBw5klWrVjF37lz8/PyYOHEiQ4YMwWg0mtOePHnSPLdRchPSbt++3VwJdOjQIYxGI+Hh4XzwwQdW01++fFkqgYQQQgghRK5Vp04d1q9fz4IFC1AUhXLlyjF37lx69eqFRmM5v++bbd5i3fr1zJ83j9BHIdjr9ZQsFcC4L7+iZ+/3iFPsCImIwd1Rh06bM+cGdnBwYNu2bYwfP56ff/6Z5cuX4+HhQbt27Rg7dizFi9s239Qrr7zCli1bGDduHKNGjQLiy4FbtmzhpZdeSpI+LWUnrVbL77//zrhx4/jpp59YsWIF3t7eDBo0iFGjRllUMOVUimrLIOQiS9SpUwd4Orbh82Zq7Xld75/mbTvXSnmokGcm+jF8W/3p5/4HQe+aKVk/3raNuLv3ALDz8sQ1QUvZrGa6VoGBgVkcibAmMi6S0XtGc/de/IR+s9+YjaNd6t1sRdbJbt+p2BgD25ecMX9+qVsZdPY5/yEkM2S3a5UWJ06cAKBChQpZHMmzZ2pZptfrszgSkZqcdq0y8j3K6mft3Cqrz2tO/l0Q2Y/cT7lD+dGbzP8umt+ZDf3rZ0kccj+JzJRZ99OLVCbJbgxGlZCIGAzG+Ffz1vr6mF7aazUKeZzs090jKDU5rQyQ02VFGUZ6Aglho5CVK4k8dBgAx2pVs1UlkMjejKqRg3cOEhMTY/4sRFqoRpUbFx5ZfBZCCCGEEEKkjYo8RwshsofImLgUK4BMy1XiK4wiYwy4OMirfJE+ObMfmRBCCCGEEEIIIYQQQgiRw6iqSmRsfAPhhBVA1qqpTesjYw3IgF4ivaQSSAghhBBCCCGEEEIIIYR4DmINapIKHTXRfxNTVZVYg1QCifSRPmRC2KjQ119DXFz8Bzv56gghhBBCCCGEEEIIIdImvUNTypCWIr3kTbYQNtK6uGR1CEIIIYQQQgghhEgnGUlJCJEdKMnOAvRsthNChoMTQgghhBBCCCGEELmeVAIJIbIDnVZBUdJWoaMoCjqtVAKJ9JGeQEIIIYQQQgghXmhRsQZO3QwlPNqAi15LOR93HHTarA5LCCGESFaMQeVQ8EP57cqBFEXBUafhSYwBFVLs32Oqu3bUadNccSSEiVQCCSGEEEIIIYR4Id0Ji2LJ3iusOXyDRxGxqKgoKHg46WhTtRDd6/jj5eaQ1WEKITKJdAQSucGdsChWnYtmz41YIrftl9+uHMrR3o6oOCMGY/Iz/ZiWazUKjvZSwSfSTyqBhLBR7O3bqNHRACh6PbqCBbM4IiGEEEIIIUR6nbkVRt+lh7gdFkWswYgGBUUBVVW5HRbF/F2X2XDsFnO7VqOMt1tWhyuEEEKYf7tuPorBYASNYpTfrhxKq1Fwd9QRGhmLwWhZDaRaSafVSC8gkX4yJ5AQNro1ahSX27zF5TZvcWvUqKwORwghhBBCCJFOd8Ki/nuJFonRqOJop8XRXouDLv6/jnZajEaVm48i6bv0EHfDorI6ZCGEEC84i98uFXRa5Lcrh9NpNeRxsscpUS8fBdAoCs72duRxskenlVf4ImPkDhK5i6KBghWe/ilyi4usp6AQkDeAQvaFKGRfCCXF0V6FSEpRFPIXdjX/yTjAQgghRMYs2XuF2/+9HNPbadAkal2r0Sjo7eLLErfDoliyN/i5xyiEEEIklPC3S6eBxB1D5LcrZ9JqFJz1dihg/nN10JHfxR4XBzvpASQyhQwHJ3IXe2d4e3VWRyGEBSedE7Obzmbnzp3mz0KkhU6v5bX+lbI6DCGEECJXiIo1sObwDWINRhzt4idZVlGJiTOiqmBvp0GjKCiKgr1WQ2ScgTVHrvNh4xIy4bYQOZyqyqxAImdK/NtlVA2gQnScQX67ciE7rSKNP0WmkkogIWyU7513MbRpA4DWI08WRyOEEEIIIYRIj1M3Q3kUEYsGxdwDKM6gEmuIfzlsjDXgZB9fVNZoFDQohDyJ5dTNMKr5STlACCHE85f4t8toAIMKsUb57coVpH5aPGNSCSSEjZxr18rqEIQQQgghhBAZFB5tQEUlYQPbOMPTty+J5maOn3AblfDouOcUoRBCCGHJ2m9Xgp8u+e0SQqQoR02Y4u/vj/Jf18bEf40aNUqSPjo6mnHjxlGyZEkcHBzw8fGhT58+3L17N9l9LFu2jJo1a+Ls7EyePHlo1aoVhw8fTjb9gQMHeOWVV/Dw8MDZ2ZnatWvz888/Z8bhCiGEEEK8sK5cuZLkec/BwYGAgAA++eQTQkJCLNI/efKE4cOHU7JkSfR6PZ6ennTo0IELFy4kyXvHjh3JPlPmz5//eR1imsXFxTF58mQCAgLQ6/X4+PjQr18/Hjx4kKZ8goOD6dy5M56enjg6OlKpUiXmz59vNW1azivAsWPHaNOmDfnz50ev1xMQEMAXX3xBdHR0mo9XiGfFRa9FQcHWUaFUNX6ORxe9tKEUQgiRNeS3S2R3ixYtSraMVb16davbbNiwgSZNmlCwYEGcnJwoWbIk77//PleuXEnTvtesWUPt2rXN7/Nfe+01jh8/bjVtWstUDx48oF+/fvj4+JjLN5MnTyYuLmdVsOa4/xO4u7szcODAJMv9/f0tPhuNRlq3bs2mTZuoXbs2b731FhcuXGDBggX89ddf/PPPP3h6elpsM2HCBEaOHImfnx/vvfcejx8/ZuXKldStW5e//vqLevXqWaTfvn07LVq0wMHBgY4dO+Lq6sovv/xChw4duHbtGoMHD87swxepMcTBrWNPP3tXAm2Ou81FLhNnjOPMgzNcib4CQF1jXew0cl8K2xkNRu5dDTd/9vR1QaPNUe04hEi3Bg0a0KdPHyD+AXzjxo1MnTqVzZs3c+DAAezt7YmMjKRRo0YcPHiQN954g48//ph79+4xa9Ysateuzd9//01AQECSvPv06UODBg0sljk4ODyX40qPnj178uOPP9KqVSuGDBnC5cuXmTFjBjt37uSff/7B1dU11TyuX79O7dq1CQ0NZeDAgRQtWpR169bRp08frl69ysiRI81p03ped+/eTdOmTdHpdHzwwQcULVqUvXv3Mnr0aPbt28eGDRtkbHORLZTzccfDScftsCiMRvW/IeGsv1UzGlWMqORx1lHOx+35BiqEyHQyJZDIqRL/dqVEfrtEVho+fDhlypSxWJYvX74k6b755hsGDhxIlSpV+OSTT3Bzc+Po0aMsXLiQVatWcezYMXx8fFLd38KFC+nVqxfly5dn8uTJREVF8e2331KvXj12795NpUqW8yunpUz1+PFjAgMDOXfuHO+//z4VK1Zk586dDBs2jJMnT7J06dJ0nqXnL8e9hfTw8GDMmDGpplu8eDGbNm2iU6dOLFu2zFzgnDNnDv369WPkyJHMnTvXnP7ChQuMGTOGUqVKsX//ftzd3QF4//33qV27Nr179+bkyZNoNPEv3eLi4ujduzcajYadO3dSuXJlAEaNGkXNmjUZPnw4bdu2xc/PL3NPgEhZXCSs7Pz0c/+DoE39hYgQz1K0IZoB2wcQExMDwFuGt6QSSKRJXKyR3+c8bcXSZWxt7KUSSLwgihUrxttvv23+PGDAAFq1asVvv/3GunXraNeuHfPmzePgwYP06dPH4vmua9eulC9fnv79+7N58+YkedepU8ci7+xs27Zt/Pjjj7z++uusW7fOvLxatWq0bduWKVOmMG7cuFTzGT58OLdv3+aXX36hzX9zHfbu3ZvXX3+dL7/8ko4dO1KiRAmANJ/X/v37ExMTw7Zt26hbty4Affv2JSAggOHDh7NixQo6d07wnCZEFnHQaWlTtRDzd10mxmBEr1j/TVVVlRiDEZ1WQ5sqhWVibZEuUbEGTt0MJTzagIteSzkfd7mXhBBplvi3S5tMuxr57RJZrVmzZlZH7EpsypQpeHt7s2fPHhwdHc3LixcvzuDBg1m1ahUDBgxIMY+QkBAGDRpE4cKF2bNnD25u8ZWe7du3p2zZsvTv35+dO3ea06e1TDVlyhROnz7NtGnTGDRoEAC9evXC3d2dmTNn0rNnTxo3bmzTeclqufYtpGlIiy+//NKixWHfvn2ZMmUKy5YtY8aMGeab7IcffiAuLo4RI0aYK4AAKleuTKdOnVi0aBG7d+8mMDAQiL9pLl26RM+ePc0VQBDfU2n48OH06NGDxYsXM2rUqOdwtEIIIYTIbVacXcFPZ3/KUB6l85VmUoNJya4ftmsYZx+czdA+OpTuQKfSnTKUR1q1bNmS3377jYsXLwLxz2UQ36oroWLFitGgQQO2bNnCtWvXKFKkSJK8IiIiUBTFouCRHS1ZsgTAXPgweeutt/D392fJkiWpVgJFRESwevVqihYtaq4AMhk0aBAbNmxgxYoVfP7550DazmtISAhHjx4lICDAXAFk0qNHD4YPH873338vlUAi2+hex58Nx25x81Ek0XHGJHMpGI3xL9EAvN0d6FZHGveJtLkTFsWSvVdYc/gGjyJi4+fyQMHDSUebqoXoXscfL7fs2/tUCJH9JPztijUm7dn2rH67Tuy4zomgGxnKw7OIC83eKZfs+i3fn+LetfBk19uiQsNCVGhUOEN5WLNo0SJ69uzJX3/9xcGDB5k/fz7Xrl2jaNGijBo1ik6dOnHz5k2GDh3Kpk2bCA8Pp0GDBsyaNcvcuAriR62aNGkSmzdv5ty5czx48ABPT0+aNm3K2LHjcMpbwJx2yZLF9HrnHT744ANmzpxpXh4TE0P9+vU5ceIEe/futXgnnZ2Eh4ej0+nQ6/XJpgkNDaVIkSJJymGFChUCwMnJKdX9rFu3jrCwMAYNGmSuAALw9fWlbdu2LF68mCtXrphHEEtrmWrJkiU4OTnRr18/i/SDBw9m5syZLFmyRCqBnpXo6GgWLVrEzZs3cXNzo0aNGtSqVcsiTVRUFPv27SMgICBJTxxFUWjWrBlz587l4MGD5iFAduzYAUDz5s2T7LNFixYsWrSIoKAgcyVQaukBgoKCMnSsIj0UcPO2/JxJbn42nMgT8S3xHStUxOfLiZmWtxBCCJFYSFQIl0IvZSgPN33Kwz/cDL+Z4X2ERIWkniiTnT9/HsA8f49pvhlrBQUnJydUVWXfvn1JKoEGDBhgruAoXLgwb7/9Np9//rlNBY6UhIaGEhsba1NarVZLnjx5Uk23b98+NBoNtWvXTrKuTp06rFixgrt37+Ll5ZVsHidOnCAyMpI6depYzUNRFA4ePGhelpbzmlpa0zGoqipDwolswcvNgbldq9F36SFuh0URl6gWKDLOgE6rwds9Pp28rBdpceZWmPneijUY0aDET9KuqtwOi2L+rstsOHaLuV2rUcZbhmp6ntRkhn4UIidI+Nt181EEcYlu52f12xX5OIaQW08ylIeDU8qvoB8/iMrwPiIfx2Ro+9R89tlnhIeH8+677+Lo6Mi8efPo0qULWq2WoUOHUrduXcaNG0dwcDAzZszgjTfe4Pjx4+ZRpWJiYpg8eTJt2rTh1Vdfxd3dnePHj/P999/z119/8dfu/eTJmxeAbt26s2fXLr777jsaNmxIu3btABg6dCgHDhxg7ty5GaoACgkJwWAwmD+bnuWtVdrodDqLDhOpad26NWFhYQCUKFGC3r17M2jQIOzsLO+Bl19+mVWrVjFw4ED69OmDm5sbR44cYdiwYZQvX96mxmP79u0DSNIIzbRs8eLF7N+/31wJlJYy1Z07dwgODqZu3bpJKqr8/f3x9vZm//79Np2T7CDHVQLdvn07SWvEGjVqsGLFCooXLw7ApUuXMBqNlCxZ0moepuUXLlwwVwJduHABFxcXChYsmGJ6E9O/re2jYMGCuLi4JDthbmLWCuIAJ0+exNfX16Lb2vNk+sI6aM6ledudO69kcjRpUDpBK9h9hzMtW7cLF9Bdj2/58NjBkYtZdF2sMV2rrLpXRMqijFHExMRgNMa3yNmzZw8OGnmRkJ1lt++UIVYlJubpA9qePXvQ6uQlKmS/a5UWjo6O6PV68wN3Ypkx0aTRaEw2f9P6jIqLi0txHxD/0gtINV1CprQRERHcuBH/+xsSEsLGjRuZPXs27u7utGzZkujoaEqXLs2mTZvYvHmzxRw1ERER5oLBv//+a85TVVVefvllWrZsSeHChbl79y7r1q1j0qRJbNmyhS1btmSoIui1115j165dNqX19fU1V2ql5Pr160kqvUy8veMbwPz7778pFtAuX75sTm/tWuTPn58bN26gqmqaz6uHhwf58+fnzJkzBAcHWzxTm4aMCw8P5/bt2+T9r3CbGUyxpuf/AWFhYRYtBsWLp4y3G6vfq8OSvcHM2/mvufU0xLegblOlMN3q+EkFkEiTO2FR/72gjQTA0U7737xT8Uwt9W8+iqTv0kOsfq+O3GNCCJuZfrvG/7SLPy7HEJvgcV5+u56tiIgIDh06ZJ5DtH379vj7+9OxY0cmTJjAZ599Zk7r5eXF4MGD+euvv2jWrBkQX8Fy69atJOWMN954g2bNmrF86SI+GPC0h8rMmTM5cOAAvXr1okqVKpw8eZJvvvmGzp07m+dMTa8qVaoQHBxsU9qGDRuaO0OkxMnJifbt29O0aVO8vb25ceMGixcv5tNPP2XXrl2sW7fOXCEG8VO2GI1GZs6cyTfffGNe/sYbb7BkyRKcnZ1T3ef169eB+AZ9iZmWmdKY/p0/f36rlV0J03t5eaWYt2n52bMZG1XjecpRlUA9e/akQYMGlC9fHhcXF86fP8/XX3/N0qVLadKkCSdOnMDV1ZXQ0FCAZAvBpsKeKZ3p38m1nEwufWr7SJheCCGEEEKk3apVq1i1apXFskqVKjFz5kzzs1ufPn1YsGAB48aNw8nJicaNG/PgwQO++OILHjx4AMQX2kzq1q3L2rVrLfLs2bMnw4YNY8aMGXz33Xd88skn6Y558uTJhITY1kPK1mHoIiIi8PDwsLrOVIhJeIzJ5QFgb2+fbD4J80jLeVUUhQEDBvD555/Trl07JkyYgJ+fHwcOHGDIkCHY29sTExNDREREplYCCZFRXm4ODGkRwD//PuDUzTDzkF3bBjeSeRREuizZe4XbYVEA6O00SXo/ajQKekVDdJyR22FRLNkbzJAWAdayEkIIq7zcHGgboOdyaBwXQxX57XpO+vfvb64AgviGVQEBAZw6dYqPP/7YIq1pTpxz586ZK4EURTFXABmNRsLCwoiLi6Ny5cq4u7tz+OABizycnJxYtWoV1atX58033+T69esEBARYzNWZXsuWLSMyMtL82TSHtbVygi2jFkB8pVj79u0tlvXp04f27duzevVqfv75Zzp27Ghep9fr8fPzo0GDBnTu3BkvLy8OHTrE9OnTefnll/ntt99S7YFkKotYq9QxXauE5ZuIiIhkjydx+pTyNqVPrfyVneSoSqDRo0dbfK5cubJ5LL+lS5cyf/78JGP65QR79+61utzUQ8g0BN3zZmpReV3vn+ZtA2v5ZnI0We/BpX+JuXIFAHt/f/Jl0XWxxnStsupeESl7EvsE+7X25h/VevXq4axLvUWDyDrZ7TsVExXHlc3/mD/Xq1cbe4cc9RP+zGS3a5UWJ06cAJJ/qPR08aS4e/EM7aOwW+EUx2Eu7FaY8NiMjb3t6eKZ4j4g5eEFkmNK27x5cz755BMURTEXFBIP61a2bFn++OMPevXqxQcffGBe3rhxY4YNG8a4cePImzdvqvsfN24c33zzDX/++ScjR460OdbEkuvlnRFOTk7ExMRYPQZTrzEPD48Uj9FUiDIYDFbTmXr0mM51Ws/riBEjMBgMTJkyxTxksl6vZ+TIkaxfv54DBw7g6Zn6/ZIWiqLg4OBAjRo10ryt9AISCWk0ClqNgmk4aXmJJtIjKtbAmsM3iDUYcbTToijxL2dj4uKb6tvbaVBQUBQFe62GyDgDa45c58PGJeSeE0KkmUZ5Pr9djq725PHO2DsM13wp90xyzedAVETGRkJwdLXe0CmzmEagSihv3rz4+PhYVA6ZlgPmhlMmv/76K1999RWHDh0yvyMysdaIrHTp0nz99df07dsXnU7Hzz//jIuLS0YPhXr16ll8Tk95zRaKojB69GhWr17Nxo0bzZVARqOR5s2bc/PmTU6ePGnu9dO6dWtq1apFq1atmDBhAl999VWK+Zsq1ayNchAVFWWRxvTv5EanSJw+pbxN6TM6jPjzlCveIPXt25elS5eyZ88eBg0aZC7gJtcTxzR0TMLaRHd39zSnT20fttaUipwhX88eWR2CEEKIF0in0p3oVLrTM93HpAaTnmn+mcHb25umTZummq5BgwacPXuWc+fOcffuXQoXLkyxYsUYOnQoAGXKlEk1D1dXV/Lly8fdu3czFPPDhw+TFOqSo9Vq8fT0TDVd4cKFOX/+PNHR0UkKZ6kNVZAwj4TpE4qOjub+/ftUrVrVYnlazqupkDd06FBOnDhBXFwc5cqVw93dnf/973/4+PhIxYvIvmSaEJEJTt0M5VFELBoU8xBwMXFGYg3xN5iCir1d/HKNRkGDQsiTWE7dDKOan7w/eB5U+a4LkWYVGhWmQqOUnzMzqtk75Z5p/plBq7VeyZbccng6LDbAunXrePPNN6levTpff/01vr6+5lEBOnbsiKomHapbVVXWr18PQGxsLCdPnqRixYoZOQwA7t27Z/OcQPb29hnqyV+0aFEAizLW7t27+fvvv/nwww+TDPv2yiuv4OLiwtatW1PNO2H5JnF5z1oZKS1lqpTKTqblqZW/spNcUQlkGh/9yZP4CcSKFSuGRqNJdk4ea/P5lCxZkr1793L79u0k8wIll960rlq1ahbpb9++TXh4ODVr1szIYYn0MBog9NrTz+5FQCMtqoQQQogXgaIolC5dmtKlS5uX/fHHH7i7uydp7WbNw4cPuX//vk0VRilp06YNQUFBNqX18/Pjyn89jVNSs2ZNzp49y759+5L0fNu7dy9+fn7JDm1sUqFCBRwcHKz2Qv/nn39QVZXq1asnWZfW8+ro6GjxHHzw4EHu3btHr169Uj1OIYTIycKjDfHDMiUYAc5UAQQQYzBib/d0PgRFARWV8OiMzwMobCN1QCI3kfs5Z1m8eDEODg4EBQVZ9CB58uRJskNJT5kyhd9++41PP/2UjRs30rdvX6pXr06pUqUyFEuNGjUyfU6g5JjmP034vv3mzZsAFhVRJqqqYjQaiY2NTTXvmjVrMmfOHPbu3Wseds/EVOZJOGJAWspUBQoUwNfXl6NHjxIZGWkxjHdwcDC3bt0yj36QE2hST5L9mSam9ff3B54WPM+dO5fkhlZVlS1btuDs7GxRyG3YsCHwdOLahDZt2mSRJj3pxXMSGwELWzz9i805YzMKIYQQInP973//4+TJkwwaNMiioJV4WAaIf0Y09W554403MrTfadOmsWXLFpv+li1bZlOeXbt2Need0Jo1a7hy5Yp5vcn9+/c5e/asRa91Jycn3nrrLS5fvsyaNWuSxKzVaunQoUOqsSR3Xq2JjIxk4MCBODg4ZGieJSGeNVVepYlM4KLXoqDY3NtEVUFBwUWfK9rnCiGESIFWGz9MqNFo2ePniy++SLIMYM+ePYwYMYImTZowceJEVq1ahaqqtG/f3jx0WXotW7bMokzy22+/8dtvv1ktryQufyTHWhkrNjaWzz77DLAsY5UrF9/za+3atTx8+NBim+XLlxMREUHt2rUtll+6dImzZ89aLHvjjTdwdXVl/vz55pG8AK5evcqqVauoX7++uScSpL1M1bVrVyIiIpg9e7bFctP2idNnZznmSePs2bP4+vomKWiePXuWTz/9FIDOnTubl/fp04d//vmHzz77jGXLlpknY5w7dy7//vsvffr0sajB69mzJ1OnTmXChAm0bt3aPNzb0aNHWbFiBWXKlKF+/frm9E2aNKFYsWIsX76cjz76iMqVKwPxw8NNnDgRe3t7unXr9kzOhRBCCCGEsBQYGEiVKlUoXbo0qqqyadMm1q9fT+vWrRk+fLhF2pYtW1KgQAGqV69O4cKFuXfvHr/++iv79+8nMDDQYv6b9EjcSzwzNG3alE6dOrFixQpee+01WrduzeXLl5k+fTqlS5dOUsEyc+ZMxo4dyw8//ECPHj3MyydOnMjWrVvp2rUrhw4domjRoqxbt46NGzfy2WefJWlVmJbzumfPHoYOHUrLli0pVKgQt27dYtGiRVy5coUlS5ZkuMWiEEJkd+V83PFw0nE7LAqjUTUPCWeN0ahiRCWPs45yPjJUphBC5Hbt2rVj9erVNGzYkB49epifrU+fPm0e5crk/v0HdOzYkfz587Ns2TI0Gg1lypRh9uzZdOvWjYEDBzJnzpx0x/Is5gSqUKEC9evXp0KFCnh7e3Pz5k1WrFjB2bNn6dixI2+++aZF2o4dO7Jy5UqqVKlC79698fT05ODBgyxatIh8+fIlKWs0adKE4OBgiyH28uTJw5QpU3jvvfeoV68effv2JTo6mm+//RaIb7yWUFrLVEOHDmX16tUMHTqUK1euUKlSJYKCgli6dCmdOnWiSZMm6T5fz1uOqQRauXIlX3/9NYGBgfj5+eHs7Mz58+f5/fffzbWKCbtxde/enZ9++okVK1Zw+fJlGjZsyMWLF1mzZg1FixZl/PjxFvmXKlWKMWPGMHLkSCpVqsRbb73F48ePWblyJQDz589Ho3naccrOzo4FCxbQokULAgMD6dixI66urvzyyy8EBwczdepUc88kIYQQQgjxbNWpU4f169ezYMECFEWhXLlyzJ07l169elk8wwG0bduWDRs2MHv2bEJCQtDr9ZQpU4bp06fzwQcfoNPpsugoUrZ48WIqVKjADz/8wAcffEDevHnp2rUr48ePt3muHV9fX/bu3cvw4cOZO3cu4eHhlCpVijlz5tCnT58kcxml5bwWKlSIvHnzMnv2bO7fv0+ePHkIDAzkp59+SjLXkBAvgqhYA6duhhIebcBFr6Wcj/szm7RbZI7E1yzGoGKvTb4iJzEHnZY2VQsxf9dlYgxG9Ir1wVdUVSXGYESn1dCmSmG5L4QQIodQVZVYgxo/9Ce2/z4AtG/fnvDwcKZPn87QoUNxdXWlWbNm7Nq1y6Ljgaqq9OzRjZs3b7JlyxYKFChgXte1a1eCgoKYO3cujRo1omPHjpl2bBnVuXNngoKC2LZtG6GhoTg7O1OxYkU+/fRTunfvbu6gYbJ06VJq167N0qVLmTRpEtHR0RQsWJCuXbsyatQom9+r9+3bl3z58jFlyhSGDh2Kvb099evXZ8KECVSqVClJ+rSUqdzc3Ni1axcjR45k1apVzJ07Fz8/PyZOnMiQIUPSfa6ygqKqOWNavKCgIGbNmsWRI0e4c+cOERER5M+fn1q1avH+++9bHYMvOjqaSZMmsXTpUq5du0bevHlp1aoV48ePt/gCJbRs2TJmzJjBqVOnsLe3p169enzxxRfJFlz379/P6NGj+fvvv4mNjaVChQoMGjTIpqE0UlOnTh0Aq+O2Pw87d+4E4LreP83bdq7lm8nR2Cj6MXybYCz7/gdB75opWT9cspSYq1cBsPf1JW+37NPlz3StEo9nKbKHOGMcR+4e4dixYwD0aNYDO02OqYN/IWW375TRYOTWxadDOnmXcEejzRUjumZYdrtWaXHixAkgvhVUbpcZLcvE85HTrlVGvkdZ/aydW2X1eU3v70K7OX9z5tZj8+eTY1ukO4Y7YVEs2XuFNYdv8Cgi1vyiyMNJR5uqhehexx8vN4d05y8yX3LXzFFrpF4hHZ93aGDzNbsbFkXbOXu5+SgSgDij5SsXJ52WGEP8sD+F8jiyqm8duR+esfKjN5n/XdDdga2Dsmbo/pz83Cqyn507dzJlfwSXHz99sZ6e364XqUySEQajSmRMHJGxRoueKIqi4KjT4GhvhzaF3p+25P8gPNr82cPJ3mIOuWctp5UBcrqsKMPkmLeQDRs2TPMcO3q9ntGjRzN69Gibt+nSpQtdunSxOX3NmjX5448/0hSXyJnCd+8i8tBhAByrVc1WlUAie7PT2FGjYA0iz0eaPwuRFhqthkIBebI6DCGEECLXyqymkWduhdF36SFuh0URazCiQUFR4lv13g6LYv6uy2w4dou5XatRxluGAMsOUrpmUbEqf1yO4dicvTZfMy83B+Z2rWbOk0SVQJFxBnRaDd7u8emkAkgIIbK3WIOR0MhYDMakDwuqqvIkxkBUnBF3Rx06aawpsim5M4UQQgghhBBCiAy6ExZF36WHuPkoEqNRxdFOi6O9Fgdd/H8d7bQYjSo3H0XSd+kh7oZlbFJnkXGpXTOdNr4OJ63XrIy3G6vfq0OfBsWSDBbk7e5AnwbFWNW3DqULSkXg85ZDBsMRQmQTBqNqUQGkWPmzli7t5P9N4tmSSiAhbKR198Auf37s8udH6+6R1eEIIYQQQgghspEle6/E9/wA9HYaNImGhdFoFPT/De1yOyyKJXuDn3uMwlKq10wB3X9vTdJ6zbzcHBjSIgAney2OOi0OOg2OOi3bBjdiSIsA6QEkhMgwqTZ49iJj4iwqgKxJWBEUGWN4LnEJkVYyJpEQNio05ausDkEIIYQQQgjxDGT0RVpUrIE1h28QazDiaKdFURTz5NGKgnl4GEVRsNdqiIwzsObIdT5sXAIHnTbjByDSzNo1A4gzGDGoaoJrBvaa9F8zRVHQKmB6TSjXWwghcgZVVYmMjZ/DLXEFkJpomfLfsshYA876p78pGdh7BrcXwpJUAgkhxDMWGRfJiN0juHfvHgA14mrgaOeYxVGJnCQ2xsBfP5w2f27Ssyw6e3mBIIQQQmQXp26G8igiFg2KuTdJdJyROFPrYQXsNPGVChqNggaFkCexnLoZRjU/mfcvK1i7ZkZVJSou/oWf0WjEVF8j1yz3kNeqQghbxRpUq0NIqgn+m6Ry6L8GIPZ2aasEkv83iWdNKoGEEOIZM6pGjt49SkxMjPmzEGmhGlVu/Rtq8VkIIYQQmSej84SERxtQie/1YxKX4Pc6Js6Inf3T0dgVBVRUwqPjMrRfkX7Wrlms4elzukFV0SVIL9csl5DHaCEsKIqC0WhEVdVM6L2Su6jp/B9GerezzEPkVqbvm1b7fBv2ypxAQgghhBBCCCFEBrjotSgo2FqXpKqgoOCil3aZWUWumRBCgIND/Pxk4eHhWRxJ9qMkOwvQs9lOvBiiouLnItTpdKmkzFxSCSSEEEIIIYQQ4oWW0Ra35Xzc8XDSYUTFmEqPXaNRxYhKHmcd5XzcMrhnkV5yzYQQOV0GO7EC4O7uDsD169d5/PhxhnvG5iY6rZLm3lGKoqDTpqMSSE77CyEuLo6bN28CT797z4s0YRHCRhGHDmF49AgArYcHTtWqZW1AQgghhBBCiGzBQaelTdVCzN91mRiDEb1ivb2lqqrEGIzotBraVCmMg07m+HteomINnLoZSni0ARe9lnI+7hbXzF6x3itIVSHGmPSaWcsvo9czM/J8FnFltcw8JnnPKnKTzLif8+XLx+PHjwkPD+fy5csA5oqPhBVCL+JQcaqqoqppO8+KArdtOFeJz62qqiRsj3Bbeb7n3BTPi3idnyfTedbpdHh6ej7XfUslkBA2uj93LpGHDgPgWK0qvvPmZXFEQgghhBBCgL+/P8HBwVbXNWzYkB07dlgsi46OZvLkySxdupRr166RN29eWrVqxfjx4/Hy8noOEWc/mdHwuXsdfzYcu8XNR5FExyWdA9JojK8AAvB2d6BbHb+M71Sk6k5YFEv2XmHN4Rs8ioiNnwcIBQ8nHS3KFSCvkz13HkcREZP0JoiNA1UBjfL0mqWUX5uqhehexx8vN4dMi9HWPJ9FXFktNx6TENmNRqPB39+fBw8eEBoaypOISB5HxhIRY8CY4MdRoyg42Wtx1tuh1eTeigKDUeVJdJz5+FVIsRZIUZ4+Q2i1Cp4uepIbDS5x3iYaRcFBpyEixmBeltfZ/rlW4EdHRwNPhwcUz4ZGo8HNzQ0vLy80muc7QJtUAgkhhBBCCCFEDufu7s7AgQOTLPf397f4bDQaad26NZs2baJ27dq89dZbXLhwgQULFvDXX3/xzz//PPeWidlBZrSm9nJzYG7XavRdeojbYVEkbNJrVCEyzoBOq8HbPT6dvLx+9s7cCjNfj1iDEQ3Kfy/sVG6HRfHjvquoRjXZSkADgAoF3PTM7VqNB09iUsxv/q7LbDh2i7ldq1HG27Zh41KL0ZY8MyOP7CY3HpMQ2ZVGo8HT05P7cXr6r7H2vQMjKjqthoL//dblxu/dmVthfGDl/zvxQ4JapyhY/LaXLpj8/6et5W06t3YahTiDioNOi1ajMKNDZWqULfDsDjaRnTt3AlCjRo3ntk/xfEklkBBCCCGEEELkcB4eHowZMybVdIsXL2bTpk106tSJZcuWmYf9mDNnDv369WPkyJHMnTv3GUebe5XxdmP1e3VYsjeY77ZfNFcuKf/1JGlTpTDd6vhJBdBzcCcsir5LD3HzUSQAjnZaNAlar8cZjEQl6LFlpwErHbiA+FbaBoNKv2WHk83P1NPr5qNI+i49xOr36tjUeyelGG3JMzPyyG6e5THJfCdCWJcb/1+SFqkdv+G/34zE/wex5bfdlnMbbYjPOyrWgKO91qKnkBCZ4fn2OxIiBys4ajT+K1fgv3IFBUeNzupwhBBCCCGESLP58+cD8OWXX1qM+963b1+KFSvGsmXLiIyMzKrwcgUvNweGtAjAyV6Lo06Lg06Dfz4ntg1uxJAWAbnqpVl2tmTvlfgeWYDeTmPxwg3AkOgFm6Io2CV6Q2KviR8K7l54NKPWn0oxP41GQf9fBrfDoliy1/oQjWmJ0ZY8MyOP7CY3HpMQ2d2L/r1L7fi1Wg1O9lrzSG9aDTjqtDb9tttybu21/83DBMQaklY2CZFRUgkkhI3sCxdCX7Ik+pIlsS9cKKvDEUIIIXK1K1euoCiKxZ+DgwMBAQF88sknhISEWKR/8uQJw4cPp2TJkuj1ejw9PenQoQMXLlywmv+xY8do06YN+fPnR6/XExAQwBdffGEeDzs7ioiIYNiwYfj7+6PX6/H392fYsGFERETYnMeqVat49913qVKlCvb29iiKkmS+mMTCw8MZO3Ys5cuXx8nJCXd3d6pUqcL06dMt0jVq1CjJNUv4V7JkyfQctrBRdHQ0ixYtYuLEicycOZN9+/YlSRMVFcW+ffsICAjAz89yPhpFUWjWrBlPnjzh4MGDzyvsXE1RFLQaBTuNBme93XMd2/9FFxVrYM3hG8QajNhrNeZJt2PijBiMKqqqEmewfMUWZ1CT9ATSaOJ7CMXEGTlyNcQiP4if3yEmzmhusa0oCvZaDbEGI2uOXCcq1kByrMUI8S//4l8App5nZuSR3SR3TKZzrabjXAuRW2VWRUFy37u4HPz/krRI7f87Cf8fb/dfZY3RGN9IILXfdmt5GxP8HpkkbJgTZ1CJziXnVmQfMhycEEIIIYTItho0aECfPn0AePDgARs3bmTq1Kls3ryZAwcOYG9vT2RkJI0aNeLgwYO88cYbfPzxx9y7d49Zs2ZRu3Zt/v77bwICAsx57t69m6ZNm6LT6fjggw8oWrQoe/fuZfTo0ezbt48NGzZYFMSyA4PBwCuvvEJQUBBdu3YlMDCQY8eOMXXqVPbt28fWrVvRalN/wfzdd9/xzz//UKFCBUqXLs2JEydSTH/r1i2aNGnCzZs36d69OwMHDiQ6OppLly5x+fJli7QjRoygV69eSfL4888/WbZsGa+//nraDlqkye3bt+nZs6fFsho1arBixQqKFy8OwKVLlzAajclWyJmWX7hwgQYNGqS4vzp16lhdfvLkSXx9fc1jyz9vYWFhAGne/+OwJ8QZntYAZEb8cYY487/DH4dn2Tl5EV0IMfyfvTePk6Mq9/8/p6p6m5nMZCEDM1kJIIGwZAFkRAKIEMQLSASvXoWgYgIq6BUE4YqgyP0CF+UniBCCLAkoCASEC1wWWYJx2LIACQEC2UhmJvtMZ2Z6qapzfn9UV3et3dXbbHner1eUrq46deqc5zzV8zzneR7s7E6CAeBCB9eBtJ4p06QbET5O46mnMVUISAAYGLiArT0IIJmx0WkcCFtUMAOwY08SDz27xCYHQE62vPrIOZDOiKHOYYtMsrZ50Ai5Ym0MNLyeSQggFWCs/Z7JOgeJhD7o9BNBeBGPx6FpgKbnfrOWKltDUZcUg9fzW3W8qgMR04Iucv+n6oX1ief7SINRY0gHojKATG0gEwHgteUfYHj808o9ZAFIPw0e4vE46uuLr8lFTiBiaMFkYMx0+2eC6GckJmHKPlOwc+fO7GeCKAYmMTROqLd9Joi9hUmTJuE73/lO9vNPfvIT/Nu//RueeeYZ/P3vf8e5556Lu+++G++88w7mzp1rq2Vy3nnn4bDDDsMll1yCF154IXv8kksuQTqdxssvv4wvfOELAIxUWAcffDCuvvpq/PWvf8V//Md/9N1DBuCBBx7Aa6+9hksuuQS33XZb9vjEiRNx+eWX44EHHsD3vve9QO00NzcjFArhuuuuK+gEOv/887Fr1y6sXLkSEydOzHvuKaec4nncnJMf/OAHBftHlMZ3v/tdHH/88TjssMNQV1eHjz/+GL///e+xaNEinHzyyXj//fcxbNgwdHV1AQAaGho82zH/oDTPI4jBSkITQMZpY2LZcA2txO3z1vasgUTcqz2R6UcRfUxbIpE0h9HVq81KtDHQ8HqmcsfacSpBEA681p06yHVJMXi+Myz/7feUQcr2FGqbCyOiyElaHxpjSwwcyAlEDC3CNcC3/trfvSAIGzElhtu/dHt2R0VMifVzj4jBRigs46s/PKK/u0H0Me+/uhnvv7alrDZGj6vDKd+b4vv9i/euxvbPusu6x+EnjMHhJ44tq41iOe200/DMM8/gk08+AQC8/PLLAOCKgpg0aRKOP/54vPjii/jss88wbtw47N69GytXrsTBBx+cdQCZXHDBBbj66qtx7733Djgn0MKFCwEAl112me34D3/4Q1xzzTVYuHBhICeQMwVYPlpbW/HSSy/h97//PSZOnAhd19Hb24thw4YFbuPDDz/EP//5Txx//PGYPHly4OuI4rj2Wnu9yqlTp2ZlZtGiRViwYAF+9rOfVfSera2tnsfNCKGZM2dW9H5BMX9vFXv/uvf+CSXZk/1cif4r/3g++9/DhtVi5swvlt0mEYzajbtwx8q3oGscihklqeWiQSSJgQcxsGWiQhkyRkAGKLJpRuFQec6Ulztu7A6XZQktR03DXe+9ZWvSlC2vPjJNsxkb/dqcMWFExdoYaHg9ExccVrNpsc9kXYvRaHjQ6SeC8GLJkiVQ5N5sejKgdNnyWncpXbN5PwabLikGr+fXuQD0XEo28/kFuBEmBUCR5YJjXvB9JEtQJMlIOWe530GT9sfMmX2XSpn00+ChlCgggJxABBEYnkzmFLIsQ4pSQVeCIAiieiT2pLG7vafwiXmI1uT/qbdnZ7LseyT2pMu6vhQ+/vhjAMA+++wDANk6PjU1Na5za2pqIITAm2++iXHjxhU8FwDefPNNCCFKTgm3e/du6HqwPN6hUMg3KsNECIG3334bzc3NLidOLBbD1KlT8c4775TVZy+efvppAMCBBx6Ic889F0899RTS6TQaGxtxwQUX4De/+Q0ikUjeNu655x4AFAXUX8ybNw+LFi3C0qVL8bOf/Swra36RPmYqkEIyORQJspuXGDxMaW7A8JoQOuJJcC5cRbgZLI6dAnBhuB8kZpyfbc9H3XIuwCEwojaEKc3+hppCfQzSZiXaGGgMxWciiIHO3r7uinp+sz4QvCN4ymnbhAFoHk6bh4nKQjmJCCIgmy+9FGtnnoC1M0/A5ksv7e/uEARBEMReQSqVwo4dO7Bjxw58/PHHuOWWW3DnnXeioaEBZ511FgBgyhQj2smMCDLp7e3Fm2++CQDYtGkTAGDffffFPvvsgzVr1qCjo8N2/iuvvAIA6O7uxu7du0vu87Rp0zB69OhA/8xnyMeuXbvQ29uLsWO9I67Gjh2Lnp6esvrsxZo1awAAF154IT799FPcdddd+Mtf/oKpU6fi5ptvxte//vW816fTaTzwwAMYMWIEzj333Ir2jQiG6Sjt6TGcvZMmTYIkSVi7dq3n+eZxv5pBBDFYiIZkzJ4+BiFZQlrnEA4vnxCAHMAQJ0SmBo0iYdr4Eb7t5c4XSGk6ZIlhxvgRWN3W5XtuoT5a20zrHCFZwuxpY21FyCvRRqVIqjqWbdyF1z7ejmUbd5VcMH4gPRNBDHQqtX+hnHVXqbXfnxTz/HomJ6UiM9vmq6Sq41+fbsc9r6/DPa+vw78+3YGkqufaliSkNA7VZ6MYt9xTkRlCcv53VGdvGg+9uRF/fHktHnpzIzp7+35jXrEMBVkZzFAkEEEQBEEQBDFgefjhh/Hwww/bjk2dOhXz589HY2MjACMl2vz58/GrX/0KtbW1+PKXv4wdO3bg2muvzdZj6+3tBQAwxnDZZZfhqquuwllnnYWbb74ZEydOxJtvvomf/OQnCIfDSKfT6O3txciRI0vq80MPPYREIhHo3BEjCqfQMPvuF3UTzUQnl9NnL/bs2QMACIfD+Oc//5mNlPrmN7+J448/Hs888wxeeuklfPnLX/a8/sknn8SOHTtwySWXZPtI9C2mE9Ss5xSLxXDMMcfgjTfewMaNG22RZUIIvPjii6itrcVRRx3VH93tVwRVChlyzGmZiKffbUdbZ8JlaNI8C8u4MWtiNDVEcf1ZU3DRg8vR1plASuOQHFtqNV1HSjMkiekCL3ywFS+t2YakqmcMehIkR7SmtY8pjbukkHPD4Gr24fwWd0rPSrRRDlvjSSxs3YDFy7egs1eFgAADw/CaEGZPH4M5LRPRWF/cO8D5TE5TaDnPRGudGEpUUppdusTRuHPdfeWw/fA/z39Y0bXfnzif37lRwPr8DEBINl4CW+NJ3PnqJ3h02Wb0pHLvGgagNiLj9MObAAA659AFoGu2ZiGE0baqCVvbfhHKq7Z04dqnVmHFpk5bjbRrnlyFaeOH4/qzDsOhzQMrorsa7wmieMgJRAwtdA3Y8k7u85ijAJnEnOhfNK7h/R3v49PkpwCAL/AvQJFILongcJ1j6/p49vO++9dDkimYd6gTGxbGiKbastoYNir/j+lho6JI9mp5zylEbFi4rOsLceqpp+LnP/85GGOIRCKYMGECxo0bZzvngAMOwHPPPYcLL7wQc+fOzR7/0pe+hF/84hf4zW9+Y8udfOWVVyKVSuF//ud/cOKJJwIwHCy//OUv8dRTT+Htt98uOdcyABx33HElX+uF6XwxU9k5SSaTtvMqfd9vfetbtrYZY/je976HpUuX5nUCUSq4vuHDDz/E+PHjXfP/4Ycf4sorrwQAW42ruXPn4o033sBVV12Fhx56KLuLdf78+Vi3bh3mzp2LWIxSkBCDn8b6KOafNwPfve9tdMSTJbUhMWBklGH+eTMweb96zD9vBuYtWoaOeBKqxm3nJi0F0hkz6klownA5qLqApuuuaBWzj2abcDinEpqOkCyhqcE4z8tIVok2SmVNezw3HjqHBAbGDKdyRzyJBa+vx9PvtmP+eTNwSFPw96rzmdKOsa7mMxHE3koxuuTK0ybj4oeWV3zt9ydB9U59WEFC5ZAYg84FzvrjUs93jADQndLxt3c2572v6ehWZAauG1FJEmO2yCCTZ99rx6UPr/DcyMAFsGxjJ87841Lc9s1pOP2IpqKev1pU6z1BFA9ZIYmhhZYA/jYn9/mSdwA5ePHifAz/+jmoO94okKZkdh4TRBBSegqXvXoZ0mkjPPcb+jfICUQUhaZy/N+CVdnP3/71sQiTE2jIc/iJY3H4id7pvyrFKd+bUtX2K0FTU5Ovk8HK8ccfjw8//BAfffQRtm3bhrFjx2LSpEm44oorAACHHHJI9lzGGK699lpcccUVeP/996FpGqZMmYKGhgbcdtttaG5uLssJtH379sA1gcLhcMHonZEjR6KmpgabN3v/Ebl582bU1tYGiioqBtPZ1tzc7Pquqcn4w3LXrl2e165fvx4vvfQSjj32WBx++OEV7Rdh5+GHH8bvf/97zJw5ExMmTEBtbS0+/vhjPPvss1BVFVdddZWtyO+cOXPwyCOP4K9//SvWr1+PE044AZ988gkWL16M/fffH7/97W/78WkIorKMrA1DlkyDk/07BkCWDMOZEO4d9QzA6fuH8eUJIUzez3gnHNJUj8cuasHC1o3461ubsLPHnn6HMSCqSJAtYULdKWOzhYCRCmdbPGlzWljb/NOrn9jsrk0NUcyeNhbnt0zI6+iwtnHna59m0xUV00axbI0nMW/RMrR1GpGvMUW21bowd823dSYwb9EyPHZRS1H3tz7TwtYNiCdzm1aq9UwEsbdjXXd3vfapzdlgrruvHLYfLn5oedXWfn9i0/Fvb8LO7pyOb6qPYvb0sQgrDHcvWQ8uBBKqjkQRKc1iIQkaF1B1+xtHkhi+clgTXlqzNRsx6vTzrNrS5esAsqJxgUsfXoGJ+9T0e0RQtd8TRHGQFZIgAlI/69T+7gJBEARBEHlgjGHy5MmYPHly9thzzz2HhoYGz+gcMzWWyTvvvIPt27fjwgsvLKsfRx99NDZu3Bjo3BNOOAGvvvpq3nMYYzjqqKOwZMkSVwqvRCKBlStX4phjjrHlJa8ELS0t+NOf/pStp2Tls88+A2DUWPLiz3/+M4QQFAXUB5x00klYs2YNVqxYgddffx29vb3YZ599cPrpp+OHP/whTj3V/htWkiT8/e9/x4033ohFixbh1ltvxciRI/H9738fv/3tbzF69Oh+ehKCqDwLWzdge3cKMmPQrPUWJIZISAIDy9Tx4dC4gCwZaXgYGCQGnHOwOw1nY30Ul886GDMmjMAPH1qOtK5D50aNoagi5dXFAsDC1o24fNbBnm3+5c2NSKg8myrn5ctODFzrxmzjf99vw9auVEltFMPC1g3Z3e8Rj+eWJIYIM2pgdMSTns9dCPOZwoqEO1/9tCLP5JdiiSAGJVWQZ3PdPbeqHW2dSde6+5/nP6z62u9PzOc/Zv+RmLdoWfb5n//PmRgWDeG+pesBAKrOC7TkRuMCEUWGaskJx2BEncYyEUAmzkiga59aFTiVqcYFfvX31Xjs4i8U3cdK0hfvCSI45AQihhZMAoaPt38mCIIgCGKv5LbbbsOqVavw61//umCqtEQigZ/+9KeIRqP4+c9/XtZ9K10TCADOO+88LFmyBL/73e9w2223ZY/feeedSCQSOO+882znt7e3o6uryzNNWFDOOussjBo1Cg8++CCuueaabF9VVcVdd90FADjjjDNc1+m6jvvvvx/19fX493//95LuTQTnhBNOwAknnFDUNZFIBNdeey2uvfbaKvVq8FFtw3CFfbREAJKqjsXLt0DVOWKKDI3ndmtbjWuMMYRlCRrXwTkgKyyQUz0SkiAxgGfsgGFLkXCeKR6ueBT2XrxiM378pQM9nRiMsUwdCuO6UhwdiiSV3UYhnGPrem7JGAtzbBOanve5CxGSq/9MBDEYqearS5bc+shr7QsIaLqAlNVfqNja70+ceiei5PovhDuaJwjGONmdRyGFQdUFXv5wG4QQufePpfnO3jRWbOos6l4rNu1GZ28aw2uqm7rbj71JVgYL5AQihhbhWuDCF/u7FwRBEARB9DEzZ87EtGnTMHnyZAgh8Pzzz+Opp57CWWedhauvvtp27tKlS3HFFVfgtNNOw5gxY9De3o77778fGzZswMKFC/G5z32urL5UuiYQAHz3u9/FwoULcfvtt6OrqwszZ87Eu+++iz/96U84/vjjccEFF9jOv+qqq/DAAw/glVdeydY9AoAlS5ZgyZIl2f8GgEWLFuGf//wnAOAb3/hGNtJo2LBh+NOf/oRvfvObOOqoozB37lxEIhE89NBDWLFiBS666CJbJJXJs88+iy1btuCiiy5CbW15da0IgiBKZXVbFzp7VUhgtvQzgJFmR9UEwopx3PxeZL7z8N24kBkzUsllPpuGOyEEEmkdAoDO3Q3t7lGxui2OGRMqm8LTpC/8jV5jK5B7bk1iiGWMeJLEIIFV/bkJgqgszEObeK39lMqzESq14ZxTeKitfZHR9kK4U7UFb8OoAWRFYgwSgHhSNZwjmWG3blZ45v32ou+pC+DZ9zvwH58fX/jkKrA3y8pAhZxABEEQBEEQxKCnpaUFTz31FO655x4wxjBlyhTMnz8fF154ISTJHhk8ZswYjBw5EnfeeSd27NiBESNGYObMmXjkkUcwffr0fnqC/MiyjGeffRa/+c1vsvVcmpqa8LOf/Qy/+tWvIMvBdsy9/PLL+PWvf207du+992b/+5hjjrGlm/vGN76BUaNG4b//+79xww03IJ1O45BDDsFdd92FuXPnet5jwYIFAECp4IhBBaWIGnp0p3QjjY+PVyStc4QVd+YIw9AXzJUiPPbhp3WePeqVukdAZOsEVQOpD8LOvMZW57nR0B3PzVj1nzsotNYJIhheqsRr7Vv1XFrntoiZgbT2y8WqO7x0fzkY42R//1jV6G5H/bmg7OpJld+5EikkK6qe24gBDC1ZGaiQE4ggCIIgCIIYcEycOBGiCEvNTTfdhJtuuilw208//XSpXes36urqcPPNN+Pmm28ueO7999+P+++/33X8uuuuw3XXXed7XSrl/mPx5JNPxsknnxy4n0899VTgcwlioEB24aFHXUTO1vwpBq/d715w4X1uodsxMNRFvE0xlZDDvkg9WOzYCpH/uQmCGBzQ2jcI+p4IhDDHyb/dEbWlpXQbWeuua9dXFJIVpyNtqMrKQIIKphBEQLbeeBM2fve72Pjd72LrjcGMTARBEARBEARBEETfM6W5AcNrQuAQ4AXy6JjfmwW6gyAgILFczJCziLcfI2pDmNJcH+wmJdAXkUDFji2HqPpzEwRRffbmtW+qeIHg74kgcGGM07CoYmvX+k756uFNRd9TZsDph+9XoV4Wz94sKwMVcgIRQwuuAzvW5v5Zin+WS2rdp0i+9z6S772P1LpPK9YuQRAEQRAEQRD9S7HRIqWQVHUs27gLr328Hf/6dDv+9ekOvPbxdizbuAtJtXJ/txAG0ZCM2dPHICRLSOvc9zwhRPZ7RWa5otzwloukquNfn27HM++1Q9VF1jCn6gJCiIKRQLOnjfUtel0JOZT6wMrjHFvfnd6ZsQ3JUt7nJiqPVd+QjiFKgXk4lPfmtW+NXGGMIRSkeFwANC4QkiWcdHCj7/tneE0Y08YPL6rdaeNHYHhNaRFElWBvlpWBCsVYEVXhL29uKvqaihQrU3uB+/8t9/mSd4DIsPLbJQiCIAiCIAiCKAEuBDq6kjjpllexuycNlXPo3IggkSUGRWYYURPG7OljMKdlIhrro/3d5SHDnJaJePrddrR1Jjy/5zznAGIAQrLdg2KtDrQ1nsSdr36CR5dtRk/KbVDnXKBX1fM6gRiA81sm+J9QAfoiEgiwj21K465d6taxbWqIVv25g9IXDt/+ZGs8iYWtG7B4+RZ09qpGTQ4wDK8JkY4ZgvSHNDvXvpOBuvaLxStdmZWQLEHVK+NcbWqI4rTD9sNzqzqyx5zBM9efdRjO/ONSz1pzThSJ4TdnTalI38phb5GVwQJFAhFEQKKHHIqaz38eNZ//PKKHHNrf3SEIgiAIgiAIYoCjc4FEWsf2PSm0dyWR1AwHEGAY7zQukFQ5OrqSWPD6epxzVyvWtMf7tc9Dicb6KOafNwPNw2Oe3yc0HZLEMGZEDNGQ7OtAWdMex1l/XIr7/7XR0wEEZIp6F7DNhRUprwHea+d9sVSijSBYx1aSGFTd/vDWsZ1/3gxyPPQBa9rjOPeuVix4fT064kmkNQ5NF0hrHB1x0jFDk+q5gfw0iXPtW9F0MWTXvjnSpiNZYgyxkIx9h5VXd2dUbQTzz5vhqvvjdFgf2tyA2745DUqBvHCKxHD7f0zDoc0NZfWrEuytsjJQIScQQQSk8T9/inF/ugPj/nQHGv/zp/3dHYIgCIIgCIIgBjBcCCRV3XAOwN+ghsz3Ohdo60xg3qJl2BZP9k0n9wIOaarHYxe1ICS7S243NUQx9/hJeHReC2QPwxoXwO4kx/cfeBsdFZiTtMbzzm1F0sH1jQ8IQG5s5x4/CcNrQrbvrGM7eT+q8VBttsaTmLdoGdo6E+BcIKbIiIVlREPG/8cUGZx0DFEE+fzJ1rVvPU2W2JBd+176WZYYHr24BWce2ex7ncyAUB7FfOHx+2PyfvWuTQReAT+nH9GEp358HI6aMMLzPkdNGIGnfnwcvnJYk/+D9DF7o6wMVCgdHEEQRJWJyBH87sTfYeXKldnPBFEMSkjCaT84zPaZGPxIkgRd18E5h9QXCfwJYohh1N4QtH6IAYuqc9se7ULmfZZxFXXEk1jYuhGXzzq4ir3bu2isjyKiyAjLAlwgmyLr5ctORDQk+xatFgJ4aaOKjq50RfohgKrPbV+lgzNprI/i8lkH48DGOly1+H3X2BJ9w8LWDVlHZUSRXBFhksQQYRJSmagg0jFEIQqpEnPt37d0fVavfuWwJvy/2YcPybXvl4VtdF0U3//i/vjHmq3QM+nNzHNrwhIkZvxOlXQdKc3dyIpNnZn/sn/HfTYFHNrcgMcu/gIOveY5aDz3Pnvrv07u1xpA+fCSlX87ogm//drQlJWBCv3FRBAEUWUUScG0xmk4IHoADogeAEUi/ztRHJIsoenA4dl/kkyv76FAKGTsmE0maScmQZRCd3c3ACAapdQRRPlUukxIUtWh6cU1qnMgJDOoOsfiFZupkHsVYIwZdZgkCbLEssYn3UcAUrrAPzenfY1/pZBvbitxm76MBLISViTPsR1oDMWKQElVx+LlW6DqHGE55wDiQkDjuTocjDGEZYl0DBEId+ykz3kWvbpfQ3TArv2y8VEeAobjxxwH6+vEdABxIXzfI2+u31nSWpQkCWFFMjY4KNKAdQBZsclKfWzoysoAhaxIBEEQBEEQ/UB9vRHy3tbWBk3T+rk3BDF4EEJgz5492Lx5MwCgoaH/c54ThJPVbV1FG5uN8xkkMOzuUbG6jep29BW6j3VuU5xjj1rZe1V7boMabitNpR2p1WKw9LMYVrd1obNXhQSWrbvBhUBvWkdS5UhbCrJLEumYoUQ15bmUoMKhuL5MhM9bnQsj8tf8b+dZ5lp01k0z6UnpWN0W90gH5z+YlUgdSux90HZ0giAIgiCIfqCxsRG7d+9Gb28vPvjggz4r5NwfmH+oDOVnHCoMhrmy/uFbV1eHUaNG9WNviKGCn3GnVLpTpe2wFxBgzPj/7hRtEOgr/JxACc3Dolcm1Z7b/lLflV5DlWJvMJZ2p/Ss7jCxOn7SOkdYye0BJx0zdKimdA/cX4L9g6lKnCpFCJF18HjpwZRlLXq2m1mLNWF7VEy+CFQvtSaEGNC/34n+h5xABBGQrqefhtrWDgAINTeh4Ywz+rlHBEEQxGBGkiTsv//+2LZtG+Lx+JA2UqRSKQCUtmswMBjmSpIkRKNRNDQ0YNSoUVQTiBiQ1EVKS3HCwAxDDhjqIvTnel/hlw4uojDDElrBV3S157avawKZeBlGq2WQLKbtIfzzKktdRM7qDpN8jy1E9eWQIIYafmtKAFAzjp5SIjHNtejcjJAvEsjrO50LKPLgcQIN1I0DQxnS+AQRkK6nn0Zi2XIAQGzGdHICEYFJaAlcseQK7Ny5EwBwtHY0Ykqsn3tFDCbUtI4X7lmd/XzqhVMQClP+3KFANBrF+PHj+7sbVWfJkiUAgKOPPrqfe0IUguaK2FuptKF4SnND0b4Dw3QjwCEwojaEKc31le0U4Yvuk6ZnXJ2EYSFgd6py98o3t5WQw4HiFxeielFJxbTtHNKhaHic0tyA4TUhdMST4FxkU8J5wTnpGCIgFFViw2/DnuBGtB1g1GQr9t1fG5Expbke737W6bhfnr54HKtk7TpiaEJOIIIgiCrDBcfqHauRTqeznwmiGAQX2LYxbvtMEARBEMTAJRqSocjMtwaAF7JkpHCSJYYZ40dgdVsXpjQ3UOHkPkDz+W2lyAxfHBvGM+vSFTOwnXlEM1a3daE7pcOYWkNO6iJyRaKC+y0SqMBnAEiqevbZ6yIypjQbNd2cxwrJPP0SthMNyZg9fQwWvL4eaZ0jwrw9gZxzpDQOmTG0TDJSqXrNCekcAqhMOrihJF/mO8DpSE6oGj7eugca52BgUCQGNXNyEJ1+zP4jEQ3JRek1r0igfJFDQ5mhJGPVhpxABEEQBEEQBEEQxF5NNUwnIVmCpuuB29a50Q+mC7zwwVa8tGYbhteEMHv6GMxpmYjG+oGbpnGw41cTSAjglAkhLN8pY0tnoiL3emLlFtz/rw1QOYfODUOrLDEoMkNK5VBkhpAslezM6a+aEE5jp/HZ6MvWeBILWzdg8fIt6OxVDSOqAGTZSJ5kOuEYWCCZ50JADmiiHsrpdq3MaZmIp99tR1tnAimNu547qeq5cRYC//teG/5vdUdJ408QfpgOEq81P9jly+n84UJA1TnOumMpdvWkPTd9eK1FKwzAzM+NNtp3nMbz7Dzwrgnk3/ehyFCUsWpDTiCCCMj4u+/u7y4QBEEQBEEQBDFIkBhDNCQjqeoACjuazO8ZM5wSmhDoiCex4PX1ePrddsw/bwYOaaL0TdXAbwe1ADA8KuGeOdPx3fveRkc8Wfa9tsbtueUEDCO8aYhXdQFN10veyZwnE1ifYo7omvY45i1aho54EqrOIWWSJekCgJY7X5YYEFDmi9nx7opQGqKG0sb6KOafNyM71ppmf1BrtBtjQEoTSGl69lgx408MHKopz6X6k73WPGOGQ3ZQy5dlrHUukFSNTR7b9vjnC2UM4D6JYBiMKL6GWCjTvMORXmT3BlskUDndHbIyVmUGSLZYgiAIgiAIgiAIghhayBJDLCxjZF24YNwCY0AsJKEmrCAakhELy4gpMjgXaOtMYN6iZdhWASfE3kihaBD/SCDj+CFN9Xjqx8fhu1+YiLBP4e2jJozAeceOLzzPBXtrGP+Sql7SfPdXOjgnQhg7tectWoa2zgQ4F4gpMiIhyTO1HucC0ZAUSOaLMR4OMrtoWRzSVI/HLmrB3OMnIaK4zX2KZOgYrzEpZvyJvYNSNElPSnOt+VhYHpzvNOH9MZ5Qsw4gAIgqEsKyt3k9FpIRdqxFBiAkG78N5Hz1u/IoL881PMiUXam99XqvDFoZ62PICUQQBEEQBEEQBEEQVUJiDKPrIqgJy4iFZERDEqKK8U+WAEVikCWGmpAMWbL/iS5JLGvM7YgnsbB1Y388wqCnkG3MryaQ9WhjfRTXnjkFP/7SQRmjH0NYNuaxNizjrKnNuOr0Q2zzHAvJCDmMfEENXwIoab4HTiSQwMLWDdnoqYgiQZIYVJ17joGAUVydZL48GuujuHzWwTh64kgoFmGoCUuIhhRo3BlvYEDjTzgpJbXk6ra4a81bGczyZb5Hlm/qtK0hiTFfvZ7UOPYdFrG9E2rCMiKKnHXYZ99PznRweV4WnjWB9pLS017vFSuDWcaqDTmBCIIgCIIgCIIgCKKKCGEY1GSJQZEkKLIEWWLg3IhCichS1uDGhbBFpjBmOBtUnWPxis3Z9HJEcAo5XnQf65nXdUb9HglhxdjhrWTmTtUFuGOeJebvYApCafPdXzWB7J8TaR2Ll2+BqnOEM2PEBfesm2Gi6cKo6+CQeVW3z09RkUBVqfg18BGwR7hJTCp5/EnnEEEQQuDjrXtsax4YvO80VypJGCng3t/S5T7XRympOse2PSlIDFAk470f1LmWL4LV0wk0yCKBSiGput8rwOCVsb6GnEAEQRAEQRAEQRDEXk21i8d7GaK5MIxMjCG7k5ULgURaR0LVkbYYviWJQQLD7h4Vq9viVe3rUKSQcUz32UHtlzbLuw3hkiNzjkullPnur0ggp4x/0B5HZ68KCSwr30k1/1Z1gdxudqvMb3PUUSqqJpBPSqehTndSdT1rqsTxJ52zd1KsKuHCkDHrmteFQG/mnaYOsneaS3cIYHVbFxJpu0NBF8LXuSrBiH4MshegmPplXl8NNidQKd1d3dbleq9YfzcNNhnra5T+7gBBDBZSn3wC3tMDAJBqaxE58MB+7hFBEARBEARBEIMBLwOQaTS37gpOa7lUWWmN2+oMMGZc053SqtnVIUkhY5N/TSCPc/12fHO3oa/cKJRS5ru/agI5h6UnqWWiSjLfQwQ0hAqY5mdT5lOa7jincv0cqmgeRuk8QUBZvMafdM7ApZriXKwqEab0WK5LWxyPKY0jNIjeaU6nigDQnXJHlORzrjJm6BzruvLDqZvy1gTyuKXfu2ko0Z3Sbe8VwJArYfnvwSRjfQ05gQgiIFtvvhmJZcsBALEZ0zH+7rv7uUcEQRAEQRAEQVSC/jCdMJj1AHJ3z9cPIYxr6iL0Z3yxFHLG+DqBPI75RgLp7rAfVmZqtlLmW+qnfC9O+2NNRAYDKzrKzjpipsxHFNl2zmDb8d4flCoHVpklnTPwGUhLgRkr3tYn7wpgBgNdvtyROQJ1EbngefZrjP/P9y7IlQRyR5L6X+P+ciDJQrWo83iv5HvHDHQZ62soHRxBEARBEARBEARBVBEvo7XEDIO3EP6Ohez1XIBDYERtCFOa66vUy6FLIeOYVkRNIL8aPxoXrnk257hUSpnvUoq5VwLnqEzerx7Da0LgEAXl20q2xoNF5hvrI/Z7lVUAfS+wlAKIhZSSZM90HpHOIYpFYkAkJAVa84NBvpzOBSGAKc0NiIXdjiA/OATCspQ3Tad5H3fqynw1gbyODX3dNqW5IfB7ZTDIWF9DrjBiaMFkYNwx9s8E0c9ITMLUxqnYvn179jNBFAOTGJomNdg+EwRBEARRQYqwnSRVHavbutCd0lEXkTGluQHRUIG/OzzaZ4xBkY13ekrnCAnvqAkhBNK6keJk9rSxhe9FFI2f8axQOjghRKbuj8Bnu3uRcBSfNufYr15EIUqZ70qkgytJxh2EFQmzp4/BgtfXI61zhAP2S+cCOgQ0nUORGGZPG2tL7wPkCrQH6WO17aKVGKtqwBhsshckIosxZHfZk84hio1kZIzhoMY6rG6PI61zRHzsHoNFvryWTDQkY0pzPd5Ytyt7jMH/J0RIlrBfQww7ulM+Z1juF+D+ue+86wxWmmrqt1LSpUZDsu29MthlrK8hJxAxtAjXAP++qCpNj/7JT8D37AEASMOGVeUexNAkpsTw+xN/jyVLlmQ/E0QxhMIyTpt3eH93gyAIgiCGLF5pX5wRFVvjSSxs3YDFy7egs1c18tKDYXhNCLOnj8GclolorI96tu/nZFAko7hxT0r3TEmmc5414jY1RHF+y4TiH44oiFf9FMA/HRwXAqrOoek5M9ZTK9uw9JMdSGk6QrKUdcaEZAmarhdt7mJASfPt3CvkJct+lCPjTgSAOS0T8fS77WjrTCClBRuBlGYJ8xFAd0qzp5cSArf94xM8t6q97D6WQyXHqhoI2GXPNq4+SDDkO50prk46hyiWKc312NmTzqx57q5zM4jky52ezfh85NjheHPdLksaN39GD4tg/MiATiBX5FGRkUAV9AINZP1mf68Mbhnra2g7OkEEJDZlCmqPPRa1xx6L2JQp/d0dgiAIgiAIgiCqhNOosKY9jnPvasWC19ejI55EWjMcAGmNoyOexILX1+Ocu1qxpj3u3Z7HMZ0LJFWOlOouNG2SUDkYA8aMiGH+eTP61ag8mCmUJsevoLbX4R3daSTSOlTdbiLUucC2PSmoukAinXPqSYwhGpKL2lPPYOx4LmW+nZFAQe2CZcu4R+qkxvoo5p83A83DY5BLiFDiXOAvb23CQ29uNCKEuDG2D76xMXAfS9ltXohyx6pPEHbZkwJkEtAFkNB0SBIjnUOglKDC2oiSXfNeMjeY5MuVni3zuTaiBI4s4dzYMBDofs5r+6km0EDXb9b3iiQx10gMJhnra8gJRBAEQRAEQRAEQRAWrEaFrfEk5i1ahrbOBDgXiCkyYmEZ0ZDx/zFFBucCbZ0JzFu0DNviSXd7zp2qwkhnJQAIwRBTJIRkb4tbLCTjzm9Px+T9KKd9qRQyjnlFYQFuo9zWeBIvfbDV062gyAxRRcpel1T1rPNJlhhiYRkh2T/BkvldSDbOlUtM/+s03AapE1ERGfc5cEhTPR67qAVzWibYnj0sM9SEJdd4mGNQG5YRCxn3jSdVJFQ9u2Z0EbyPlU4HV4mx6gtMI7Epe3OPn2Qb65DEXEXuJWbsnJ97/CQ8Oq+FdM4goJrZDktxAgnk1vzc4ye59Nhgki/na0Fkj4tM6sTCbN+TwsrPuoLV6/FxOnmeWiBVaansTvJBod+sMub87TSYZKyvIScQQRAEQRAEQRAEQViwRjUsbN2AjoyhI6JIrt3NksQQyRj/O+JJLGzd6G7PYd1RdZ49EpIZZFlCRJHh9APJDEhqHM++31HmE+3dFDKN+TqBHIcXtm5AT1rzPdeadk0Ath3gEmOIKDJqMs6NaEhCVMn8C0n44YkHoDYsI6LIZdX1cV7r92xWKiHjLgOm5UBjfRQ/POlA27Nf/7XDcN6xE7N1sUwiIWMtMMZs97XeIiKzwH2stJG8ImPVB1hlV2IMl8862Db+l5x8EN755SlZZ1s0JGHquOF4+bITcfmsg2n3PFF0TSArjfVRXD7rYIwbGcvKVywkDyr58kvPxoX9HV7IX5/S9MDRQFbyOY68vgvkaCrASxvVvtNvZXbXlLEpTfWDVsb6GqoJRAwtdA3Y1Jr7PL4FkEnMif5F4xpWbFuBjxMfAwC+wL8ARSK5JILDdY72T7qyn5sObIAk0z4OgiAIYmAiJIEetSfw+TVKjd14LgR6td7A14elMEJyyHYsraehcjVwG05jDxfGMyRVHY+v+BSqSCGmSGAZg4gQhonbNLgzKAjLMhKajsUrNuPHXzoQgAYww2HAoQNMzV6rCZ7dkskkCWAMnEeMrdfZvghEQhoSOsfjKz/Bd49vypuCphLjUBuqdYwDR0JLBL7eqw8pPQWNeztOnDAw1IRqyuuDHEZIsvchqSUB5t6xbMppj9pj+Z4BImLcG6bRj2N3ohuPr/gUnKW8t4AzZvyTOMAVADI0XSAsZ2ryMBWADsYAr1lsGsHApFTmjrk+mOhcR1IvvOtaFwnjWUQIgGxzBiS1JHRhTz/oL+MMQoRzMs4YwjKQ4AlPeUzqPbYx7kn3oDbKsnPBM7WJZMkYh8YG4NZ/rIMmUrbtyQIMgrGMAZqBIWLUqsmewQFJNdaMEMZZ2T4CYUXY1ozM7LLgNw5+WGUyqepYvHwLVF1DLKTnxgoi4wQ0znf246ITJ6AuYjdIJrQEuAhmGPZaFxrXkNL964zosMu8xjVj/JnR4qTRtRAsDSalsvJYF9OgI4keD5UhMclV27ZQH5xE5Ijr7+BixqFafehVewOnDfTqg8pVpPV04D5E5Shkya4FiumDzGREFUOeclcY75ig794gfXDKkLVtax9guULlCXsfpBRkOWU5IydflRwHk0rORULvtT1/r9aDHpWhN90NTSQNvSUkMBZ27BjQAUkDAxBWJPRm6taEIXnWZzPl3/bcLIU07/Wdz141YembDIiQ7XdMseMQU2JI6wJLt6hQdSMCiElpACKQnq2LRBCR7e8sVVeR5o4+WMbTKSsxJQaJ2W0cgeTZlDGhALCn6vPsQx6cv0cD9yFDSAohLIdtx6rRBxESYGrxTlqyQhJDCy0BPH5h7vMl7wDysP7rD0HA+MP3yiVXIp02FP+39G+RE4goCk3leOHe1dnP3/71sQiTE4ggCIIYoKiHqTjjiTMCn//iOS9CZrk/2rngRV0/Z8oczJkyx3Zs4QcL8Zc1fwl0vfHH9i9tx1J6Gmf9/QyoOkf3aBU1+wj7H+UZo0j2fzpPghQ/HhIYdveoWN0WB4a/AtQbG9T2MGStdQxAjcVYwxgDhIzeT660d0xKQ5rwO9QIgT2M4Wt/DyGU5/0/94i5+Obkb9qOzX9vPp5Y+0SgcagJ1eB/z/5f27E96T04++9nB7oeAH409Uf4+ue+bjv2p5V/wtOfPh3o+vpwPZ782pO2Y7uSu/CNp78RuA8/mf4TnHXgWbZj89+7Axj3lOvcM574AwBjpzbGZRxVeh2w5WfGf2emaVvvNpz71DfRPVpF7T7eBkqWkYVaIZDa9lVo8akQMHaNywzAyGeA2vd8+33bR0quD1o90PZT2/ftPe04/7nz8zy5QTypAuM4sPMsoOdI2+7wm9++Ga9+9qrtfD8ZF+nh6N34Q0RDEhTJkDspshM1+93pKY8J1TKGAL79/P+HX7Vcgy+N/5LRnvnFqCeAmg9x9dsKukdrqPEZTzAGqPsA7T+0OUel8HZI4/8MQIAJy7kZJMC2Zn75+WttzQoBXP/G9Whta0UQJg2fhHtOvQcAsLqtC529KuRIB6Rx91tbNfqSUwq2fjz+QQhzpp1qa/fapdfina3vBOrDwSMPxp1fvtN2bM3ONfjJKz/xvWZXNA2My43tim3Ntu8ZGP7rn/8FjHsze2wVYzjjCbsB02TKPlNw+5dutx17f8f7uOzVywI9AwD87sTfYVrjNNuxK5ZcgdU7VvtcYWdq41T8/sTf246t2LYCVy650ucKN3846Q84fPThtmOXvXYZPtr1UaDrj9r3KNx8ws22Y293vI1f/vOXPle4uePkO3DIqENsxy595VKs61wX6PqW5hbc8MUb7AdjHwOjH83qtELcfcrdOHDEgbZjP/rHj7Axnovs2B22y5C17S+O+SJ+c9xv7I3WrMEzu2/Ea0/kbB27h6eAhtwp1jb+POvP2L9hf1sTc1+ci7butkDPcOK4E/Grll/Zjr286WXc9NZNga4HgIVfWYixw8bajn3v+e9hW+82+3sBwA9fC0ORGOIJFTWTDCeytudwaNvt7xul/n1EGp8BYLzfazO6y8sBBADx9B0Axtn9SM134MV4L954wu3EBjIRnuMyjoXuqcCuM2ENNnp23bP4w/JgsgAAfzvjb9gY5+hWBSRkIi3H3AZIvYH07OzPnYX/nPGftjaf+vQp3LHyDvuNxuUcgv+7W8arFll54qwn0BBpsJ3+7//77+hV828K2hXLyOmeY4Ddp9m+e3zt47j7vbsLPH2Op89+2rUZ5utPfT2wQ+0bB38DFx15ke3Y3z7+G/78/p8D9+G5rz/ncqid+eSZNidf7zd7Ubuo1nlpQcgKSRAB2XzJJehduRIAUDN1Ksbefnv+CwiCIAiCIAiCGBQ4zdAiGwFifLLbbnJnm7v/TRgzru1O5Yt8Ka6gs9G+yFskmshPoaHz+9563JSF4u+d9Q70C4XqRHjJuNXYlFQ56iI5Z0+p8uhMVWTcI18j+W9gb84+xtY+utd26XSndAiXPrA06phqsx8JNVjUUTVxRjuWkXGQIPYKgrwX8p7oeaX/wnOq6mJ1Vbnp4BKaoTAd+10cPfLWs8TggJxAxNCCScCoA+2fKwRPpSB6E9n/JgiCIAiCIAhiaGIaPqTMzn4hPAy/PtcxMNRF8v2pbQkLCtgXxljBugNEPgqMt8/XVuOWKQt+J/uZ94qpq1ENWxovYKErScZLkEe3fZKh2LVQzL2qsWbqIjIYWF6nrVc/YnnSOPYVZKgdotC89jtB09cV2gxQ7lSWWxIopjAjE2nA8kX022TwQU4gYmgRrgW++0x/94IgCIIgCIIg9lpCq0J4+o/B0n8BcOWAl5iEp88Ofn1YcqcvOv/Q8/Gtyd8K3MZXbn3L1ebTZz+NpKrjq7e9jq17UojJRpHkpMqhWawtdWEZEAo4F+AQGFEbwpTmeqDzJKDreABANCKjN2VEAwgh0KvmikrHFAkJzcPqwsPgG3+OhM6xX30ET15yfMGaQE7mHTEP3zvse4HHwcmw8LCy5+KHU3+IuUfMDXS9l8NkZHRkcX2Q3X24cMqP8PDzh7iOP/1fXwYAPPNeG37z9AfZXjhprGnEk2c9ha/e9jo64t4bAmXGEFEYelWzJpDRUtZAtuurwK7TPK8FgJ+ecWjePjTVNgUah9/872o88257piaQ3fh/xdFX4LKj7Om7vGS8N61DCI/aFalRSKy/3FMeH33nM9zyfC6l1v2XfhFjhtfnrjXXzM6zgZ06fv2Nqbj2qVXYGk95Gj+jCoNi1uqwrDeeHg2+6efGOGcIWYqVcy5sa8aoE/G6re1rjr2mqJpAJlOaGzC8JoSO+H7gG38OSTLqEln7Uhsy6n5Y+/H1Q2e62v31cb8uqiaQk0NGHZJXHr5xVys27szVkThy9FQAr1jaBG744g144dUXsscOHT8c888+yrM9p54GgMP3ObyotelMcQQAN8+8uaiaQE6mNU4ruw+/O+F3RdUEcnL0fkcX1Yeo7C5Yf9tJtxVVC8cke0Xic8BnV2R1Wil9uOPkO2x9uPCBd/D+5s7sZ2vb1j5k6T0Epw8/ET8/bXL20Fdvex079uR0prUNrz7cfcrdJY2DyZfGfwlfHPPFQNf79eHeWfdCQOD5VR341d9XZY/fduHncdC+w3DT/63BotZNRi+FBKdEaPHDoXUfAgbj/d6rcSMNbMi7JtCwaaMAOKL12n6Ekw7fF9edeZhnvz/b1Ytz7vxX5pMxDtZIoNMnnY4vTwgmC4BRj2dCvYS6EMPulADnAtKWS9GTzkU159OzdRH3ujrzgDNx2v72d97nb3gp+99fPWocLp91sK0PTh75t0cK9v0/FryBT7d1Z3S9na8f9HWccUDw9MI1So3r2ONnPh74emc9QgD4xue+ga8d+LXAbXj9jnrqa/Z0tieffHLg9qyQE4ggAjLsy19GdLLxh0No7Jh+7g1BEARBEARBDEwYZ66c6kVdz8q7HjAcAV7OAD/cRiejD7Uh4OvTDsCC19cjrQnDACK43bIuFAghkNY5QrKE2dPGZozjCgSXwQWQSkvQdQ6JGc+nMB2qbrQhuARwLyMoQ1oLIyQxfH3qJIyqqfc4x5ukqmN1Wxe6UzrqIjKmNDfkdSD5ITGp7LmIyO6C0X3dh7AcAUTO2CeEkcLmX2u7sW1PEh+1J5FWw2AMkBiDlCmCsDGuozMlULupE1OaG/D1aQfgzlc/9YyqEAyAkAGecy4oMssZ/UQIgHd9BwCIyDW2PjqRJRm1UuFxiEj2dnRLZ92F3OEt49ztIDFkHAhJMU95DDvuW6PUehrEzHGoC9fi69MOwN1L1mXXghWuM2jC2JZu/1qC4Ip9zWTqagkhkNZ4ds3Uhmrx5rpd0DgHg7FjXQjhOQ5BiIZkzJ4+JjNWctYgahsvIUMI2PpRF3Hfz8vgWQyKpOStM8sQASyOLslhMGcs0werzPEoPmxLBdYbhfoQhGqPQxBqQm7DbzGEpJC3rPdhHwAZEHJZutLZB4VFbfJRuG0ZISlmO08S0YxyDNbGQJqLsGxfH1GlBrWhWkTlWigsmnuHu1qQAS5DAEipABOAJMF4P3g4dM13RDarpBDgPIxtXcCHbSnXOkyqOj7p6IKmh7N6jTG7E6iUcQjLDMeNCeH5jRrSOkeEhQFuWf8+etbvt0lIDiEkO/pgGU+FRQvKQxB5lhAFhHcKXs8+FEm5vz+q0QemlhZ+RU4gggjIiG8EL0ZKEARBEARBEMTgxeoUmtMyEU+/2462zgRSGnfV1uDccAABQFNDFOe3TMDWeBIpTYemGy2ZNUEYDMeAIrHsd14GcCtmm0HYGk9iYesGLF6+BZ29qlG/BAzDa0KYPX0M5rRMRGN9aQbwwYw5Z1wIqDrPjvkPFr6T97r7VumQANyx8i0Mrwlh1pR9EVEkJFTvyAWrEY4BCMmVS08eFMmx0zxInQiXjDu+95LxQrjacBzQucDphzfhvqUboOpup1NaF3B4f7LJ49JeTiNLH0cPC6M7peGkW17F7t40kpn5Ypn7bosnS14HzrFSZPd4m/JVzNqtNK76Ip7p+AzMdfH2hl34zj1vkd4gCPivISEEQrIETddRqLKZqap0DvSmdSgyQ0iWbHrabHd3T9r2u+Gfa3firfW7s+vw9MOa8OyqdixevgW7etJIaTm9psgMO7rTZT/zKRNCeHe3ktVvTkp5F1SbctPg7U30/S8SgiAIgiAIgiAIghjAWI0KjfVRzD9vBpqHxyBJzGmXRkLTIUkMY0bEMP+8GdjZk8a5d7VC1d3xRabTJ6lyhBXJqIqSZ0PnmOFGm0EMsGva4zj3rlYseH09OuJJpDUOTTd27HbEk1jw+nqcc1cr1rTHgw7DkEHAMP4n0npBp5sVjQNaJqqjI57EX976DFx4V3bgAkhZnA3RkOxyyOTDK01QJQjiBHLKuBOnjHvJo1Panfd11ibasKMH37//HfSmg6VlM+7hSLGXQdNFto+jh0XAOfCXtzZl14H1+qTGy1oHzrFKORyCSY0XHKu+wOl0c4qBOYbWdZHSOOkNoiicmyKGEk4dlnMCGc72aEjOVjbLh/m9+f5PpHVbhKYQxvv7lhc+sv1u4CK3DucvWYez7liKu5esQ0c8CVW36zVVF7hq8Xtlr9PhUcn3XWDVs/2t34jSICcQMbTgOrBtTe6fRxg7QRAEQRAEQRBEPpxmrUOa6vHYRS2Ye/wkV5H3poYo5h4/CY/Oa8GImjDmLVqGts6E7RynkUjAcCxEQxL+7Ygm1/dGFAnDoguPweT9CqeB2xpPZu/LuUBMkRELy4iGjP+PKTI4F2jrTGDeomXYFk8GGYYhw7Z4CklVL6nwthBANCRlxzCdiZRRJHulFgZg9LAIQjJDLCxDLrJadrVqa3ulrvPCKuPOrltl3E8ei7EFcyHw/720Fh0lyKEAcOaRzbbxkiSGpoYo/uOY8ZAYw/Y9qdw68EhnVu46sI7V6GH2VIf7Dis8Vn2BK2LR8Zkxhq3xpG1dSAykN4gsQRzTQ9gH5MJ0z5g6VZYMXT+yNuyrv2s93gUCRko3c012JlTMW7QMu3rskTxm+xFZgqYLaNyIMowqkmeaxh170hVZp1b95qVnB4J+I0qDnEDE0ELtBRZ+LfdP7e3nDhEEQRAEQRAEMdBxp31xW7Ya66O4fNbBOOFzoxELyYZjICTj5ctOxOWzDkZjfRQLWzcENmwLABoXOPeocagJy7Y2a8IyIoqMfeqC1dKx3jeiSK4dvJKloHNHPImFrRsDtTtU+Ns7n5XkAALM9GPcNoaAEcFlnbcRNWHc/92jEVGKiwCqNs4InHyYMj48FvKVcT+ca8a5hKxOCFXn2N1beuqiaGaNmH380uRGvHzZiaiNyNjebRSh91oHVspdB+ZYPfT9z9vG6rGLWwqOVV/gdProTicQDL1hPeo0+u/temMwUE0nTBAtVuj2g9lH5JcOzrq2JMYwsjaMmrAMxaFvjEhf71E0oneMaJ6ln+zI+7vBuXa1PDq9UuvU1G9WPXvqofsGehcQAxdyAhEEQRAEQRAEQRCEhXyGKwEBWWJQJAmyxLI7cpOqjsXLt0DVOcKOWjB+7Wm6QFLVwRiztWkajoKkLnPeN1tkWghbii7GGMKyBFXnWLxiM5Lq3pE1IanqeG5Ve1ltGDUaBBhj2fR9WmZuzHkTEAgrA8/EohfhBDJxyqPXrnMnrvRjPt+LTM2ccozDL36wFUBu7E1nqec68Li+kusgHJJsYxVRCo9VX+AyYDvKe6g6x+LlWzyuI71BBGdvSgdn4nxm00njpWuN9eSNpgtwzrFs426oOnc5kUTmes3xO0DThafzT5FZxdep9V3QOCwS6F1ADFwG3i8Ughig7LjrLmz5+RXY8vMrsOOuu/q7OwRBEARBEARBVIjCRdRz6O5ayQCA1W1d6OxVIYHljUCw3QfAhp09vt9rfjcrcF+dc/SkdfSmdPuuZYlBAsPuHhWr2/aOGh+r27rQlVDLakMA4JmpsDoXrDY/NZOup1QqFTxUKA1YoDZKuK+7foZ3P8oYoixdCdXRjvBdf17G0EquA5fuGCCxD24nnP3IZ7t70dlrXxc6F+hJ60ikddv87Y16gwimkwaGtFcHv98FzmfWuQAX7uMCQK+j/o/ze40DvWnN0FuOAde5gMq9awsmvPQaw6Bap0PYfzhgUfq7AwQxWOhdvhyJZcsBAHpXZ/92hhhUROQI/nDSH7Bi5YrsZ4IoBiUk4fSLjrB9JgiCIAiieuTb3exnVO9O6ZlokeLu1ZP237EbxKngdd9Epli9AJDSuK0uCmOGobo7pRXX0UFKd0qviLHJMMUxm6UveyxDUi3stKs2hYz/gdoo6ZpgnyvlJHGOvdc60Dj3dTpVah24mh8ghs1CzsCkyn3nggvDqRlWcoO5t+mNwYLLQSBEoFo+QQiUDm6AyHs1cDtfTEe2IxKIC9+1VDhdnnGG35SpWvB3isDeuU6HsAhWHHICEQRBVBlFUnD46MOxO7I7+5kgikGSJey7PxVeJAiCIIi+Ip9hy88xUxeRwcCKNqDH8qSPCpLKq9B9nTVhhAAYGOoie8dv0rqIXJEoG+ZhEnUe602Xbnjzar8SBAgmc1GZSCBHm5kDlXpOaztCeK+DfEuxWutgoBgk/dLxmURDUt658JrPvUlvDFaEqFxUobttt4NpoES+VQPnGjDXkHMt6VyUrNcYGAS807sBxesTWqdEPmgrMUEEJNTcjPCBByB84AEINTf3d3cIgiAIgiAIgqgQrqL2ec51OlVMpjQ3YHhNCBzC9xwnDMDYETHf7521AEq5r/UI5wIcAiNqQ5jSvHdsMJnS3ID6aKjsdqSM9YRnnRlG+h0r5dRhqFw6OPvn0iKByr+v0zhsimbATIl5qY+FXO0Us/4quQ5cumOA2MT9nHAmE0fVYnhNsHWxN+oNAq70ZF7LaqDIe1XwWUPOZ9a4gMSCRU5ZYQAUCagJK4be8hnMoO1yMbDX6VCuHzVYINcgQQSk6brr+rsLBEEQBEEQBEH0AfmMFRr3D61oOWAUnlrZhqQWzBmgyAyK7L83U83cK6nqWN3Whe6UjrqIjCnNDdkCzdGQjNnTx2DBkvVIaRxegUVCCOhcIK1zyBLDmUc0l1TgOV8/SjmvL4iGZMw6bD8sat1YVjtmlIkpGYrMwJhxzKgHIbC6LV7RdEyl4Ha+9E06OK/IEasc7OxOZccmJDOjuHnRdzH40uRGPPNee/azqnOsbuvCURNG4P9WdyClc0SZ5Nt+WucIyRJmTxtbtlz6pYzqb3jWYG3I578+3QndNFYzhkhGb9zxyqd52xFCVHS8BjPV0muVbLeS0udUY1wIyFWKWByIuHSa+f8e9c8YY1AkBrWIomeKzCBJEqaOG47WdTt9awDKErNFIDN4z7OqCcgyw4zxI7C6ravi791yZcu9UaBCVNi5NJB+v1QacgIRBEEQBEEQBEEQhIX8kUD2z1vjSSxs3YBH39mMnd0pBAjeAWAYckKylNdIvy2exOLlm7F4+RZ09qpGzRMwDK8JYfb0MZjTMhECQE9Kg845dAHoHhnJetN6zoClCzyxcgtkmWFOy0Q01kcL9tV8xnz9aKyPBj6vr5k9bQwebN1YltGJZ5xogDF3ssSQ0nSbM+O2f6yFpgsoMkNIllw76fuDPD5LX0pLB2f9b4EFr6/Dyx9uy8qBEEBa44bhkwFhhSGlFX8nBuCrhzfhmffawYWAqnM8+34Hnn2/A1zw7Hz0qjrkPMPf1BDF+S0Tir6/k0K1kPoLVec2+bzy8feQ0rgRfSAzdPamMadlIv70yqe+822V+UqN12CkWnqtEu161QQqPibFD2ckkEekacFaYANkQZSAe2yN/3eOQ1oz1loxDiDz/Q8Ax04aifU7erB5d6/nuUFqA5r91XWBFz7YipfWbOv3965X/wYyA/X3SyUZ9OngbrrpJjBm7MB54403XN/H43H87Gc/w4QJExCJRDBx4kT8/Oc/R3d3t2d7nHPcfvvtOPzwwxGLxTB69Gh861vfwrp163z78Pzzz+OEE07AsGHDUF9fj5NOOgn/+Mc/KvaMBEEMbnrVXlz80sW4o+MO3NFxB3pV75c7QfihpnQ8ffu72X9qqvRUIwRBEARBFCaf3Uq3fKlzgXPvasX8JeuwbU9xDqBoSIbE/Gv56FzgZ397FwteX4+OeBJpzTBwpzWOjngSC15fjzP/uBRfu2Mp/vLWZ3nvbf2KMWDbnhQWvL4e59zVijXt8bx9XdMex7l3tebtxzl3teLZ99oDnVfoftVgn7oIoqHy9rAnVB2SxBCWJYQVCSmVQ3VEs2jc+KzqAom0HqimU6WpRDq4UjDvo3Pj2f/2zmc2OVB1nh2blCaglugAioZkjKwNZ++j6gIJVUda49B5zmwtBOBXU33MiBjmnzejIga9YlJJ9hVr2uPYGk/Z5NM0JJtzcMMza7CzJ+27LnQukNAMma/keA02guq/YvVatdqtpvx5qZKBEvlWDdzP604Hp3OBPUkNatCXP+zvfwCoi4Yw/7wZGBYNFqeR706MGX0aCO9dJwPZIVit9TjQGNROoFWrVuHaa69FbW2t5/c9PT044YQTcOutt2Ly5Mn4z//8Txx88MG45ZZb8KUvfQnJZNJ1zbx583DppZdCCIFLL70Up512GhYvXoyjjz4aa9eudZ3/4IMP4rTTTsOaNWtwwQUXYM6cOVi9ejVOOeUUPPbYYxV/ZoIgBh8CAh/t+ghb0luwJb1lSP9QIqqDEAI7Nu/J/hvIP6AIgiAIYjBSTEon07DPhUBS1bFld2+g2j0misQQC8uQM0VNvPwEZtvb4ilwLhBTZMTCMqIh4/9jigxdN4wT7V1J6FygJiSjJiwj5BP+EJIZasMyasIKYooMzgXaOhOYt2gZtsXdfxsDxs7YeYuWoa0z4dsPzgW27O7FpQ+vwJYC5xW6X7UQwojcieUZn0JIEsO3jxmPcSOjSGvcU0JCltR+AkZamb5ywljva0Uv5f4ldtmUWwFDrq1yEHHkKeQAogorWCOIAajNzJu5brbvSWbvAwAyQ/Y+NREFMUXydGwwAGGZ4dF5LZi8X2VqZjjXb3//TjfXrNMBGVHs5r8d3SnMW7QMLDN2Idle2l6SGJoaoph7/KSKjtdgIqj+K1avVatdoO8j0Zz3GwDBjxXDr66ZyH4WNj1UCCP6x/7+BwydMbI27Bs5atYOKlR3KCQz1ISVir13nbXVyp3agWrBqOZ6HGgMWieQqqqYM2cOpk6dirPPPtvznJtvvhkrV67ElVdeieeffx433ngjnn/+eVx55ZV4++23ceutt9rOf+WVV3DPPfdg5syZWL58OW666SYsWrQITz75JHbt2oUf//jHtvN3796NSy65BPvssw+WL1+O22+/HbfffjuWL1+OUaNG4eKLL8aePXuqNgYEQRAEQRAEQRBEFcgXCZQxjJiRDcUGezBmL7jtZbQz2wYM463ksJRLErO1wSCyx5zGdvu9WfZ60yjcEU9ioU+9nIWtG9CRMXj49SOiSODCiDTgQuQ9r9D9qoVpzDPHpzYsIxaS86YLcyIxoDaioLNX8xcPj5oHqk+dByfVsp06DXlBKCkdHBc2uQ3LzCUHTnQBhBV/s5QsAeNH1uDsaWMQUXI75595v8MR3Wa/jyxLqAnLtnZiGSdpRJErGtHiVQupP7Gu2UJ0xJNQdZ5dFzWZdRENSTh5ciNevuxEXD7r4L0yAggIrv+A4vRatdqtNF41gZwMNPmvJH6p7sxntuq7IMgSbHrM2u7C1g3Yk/TI5QqgJiIjGlKMd1ZGVmTJ+Gdrn1VWjkraQFAEA0VWBst6rASD1gl0ww03YPXq1bj33nshy+4fuUII3HPPPairq8M111xj++6aa65BXV0d7rnnHtvxBQsWAACuv/56hMPh7PGvfOUrOPHEE/HCCy9g06ZN2eOPPvooOjs7cckll2Ds2LHZ42PHjsWPf/xj7NixA0888URFnpfof7qXLEHn44vR+fhidC9Z0t/dIQiCIAiCIAiiQhRTsFjjAkKIoqJ/bNfrwhYt4Dai5dpWZGYzcJvODCGErU6Azu3f+d7X8mSMGanNVJ1j8YrNSKr2dLNJVcfi5Vug6hxhWXIZ2r1wlqMo5n7VxL1b3YhAKcY/onGBx5d/hq6E6n8fD8lxzrcfldpB704HV5l2C5HWuW1NmPKSTy6NsfFvk3MgEpKgWCOshMCrH23zPN8pb6Z/ifPMLnrGKr4bfaAYMgH7mi2EIjOomTkz54YxBlliUCQJ+9ZHh0wx9FLIp//K0WuVbtf97qqeQHqngytwTVV60je4awLl0sGV8htA5956MK0ZMuGVPpQBMGP0TJkw2/Kr91ap926l05kOJF1pUq11PlAZlE6g5cuX44YbbsC1116LQw891POctWvXoq2tDccdd5wrXVxtbS2OO+44rFu3Dp999ln2+Kuvvpr9zsmsWbMAAK+99prtfAA49dRTA51PDG52Pfggtv73f2Prf/83dj34YH93hyAIgiAIgiCICuE0nOU3TAtwkTMQFWvXcEYPOa+3tm1uSBVCoDetoTdTZ8Z6jtmGpgv0pDT0pH2MhQCSabvVSJIYJDDs7lGxus2e6351Wxc6e1VIyEV08Ew/elKaJS2evS+mYSqp6uhJ6Uhpuf7ku1818d7BXtzcSWDY2a0WbRgrJVqsPOw366u6RFvjSdd4apyjN6WjN615F5UHkPIr3GN+r3LbtVzAc8e8l7zlHFHVm4OBFAlhXbNOn2LCoRckZqxFv7EZSmm9SsFL/wmY+k+HZrHAF6PXvNoFcvKb1kpr16SS8ucUAc81PAAN+5XCr96XEO53cKD24L3W2ruS6OxVPcNBnTrSKjNevx2yvxMsfS/1vVvpua2Wg7KcVvP9zulN2ev69dfvl0oSrOrUACKVSuH888/H1KlTccUVV/ieZ9bvOeiggzy/P+igg/D8889j7dq1GDduHHp6etDe3o7DDjvMM7LIbMdaFyjfPbzO96OlpcXz+KpVqzB+/Hgs6aeok3jcEOqo9FGf3G/Jkg1ltyFrvTgqnc5+fmfpUuhKTdntAkD9rt0I6cYPp127dmPDAIoGMueqv2SFyE+SJ5FOp8EzPxSXLl2KqLR3htQPFgbamtJVgbTlD7elS5dCDu3lf5llGGhzRXhD8zR42JvmKh6Po75+76txQHhTzG5qXYiyjRnG9RnDosvQJCz/bZDSeNZ4lFR1RELu/Zx+dWqs6EJA58JWj4Ax457dKbthvTulQ0DYjMFpSz8Sqo66iOJ2oEFk08MBRhH6iMXy4He/auI1LsXOodnvfFf5Gc2s810MQohAEViF2ugLvJw5SZVn+oCSI+c47OMq4I4e4hmjLOCWN+t11jVX7rj69rcfreK2NRsgutE8z0s+9/a/NLz0n6oJix7mqIvk9HBQvebVrs5zkZ1pndtSJPaHvrTe24qnI7WAnA1mOfJPB1e6Q8NrrSVVbsgEvNepqnOEFebh2rWTtkQAplQdNeGcIixFjpzp4MrVbH0ZtRaUoL9zTPpzPVaCQecE+tWvfoW1a9di2bJlns4ak66uLgBAQ0OD5/fmH3zmecWeX+gar/MJgiAIgiAIgiCIgYc77Yv/uToXBY0xhbBe7zQae7VtTf0mfM4Jak4RjpxtQhjt1Tks53URGQzM5kTwTlfjNB6zvOPnd79q4tWfYudQCLOWU/GGq2D38phTUXxEhvNZq13XwSTkKLDk2qVeYrsys68RBgbGijdOMqfMV8g67YoEqkyzJeG1ZvNhnuYln9Vykg0WvMYyn4MvqF7zajefMbw/9KV/X7yi+fLLWv+b+UvHb4MGF6X/BvC6LiQbDp68Y1XkPgLnq7oUOap2FOlAiCLz/J1TgXU+UBlUvW5tbcUtt9yC6667Docddlh/d6ditLa2eh43I4RmzpzZl93JYu4A3RyZ2Cf3m/n58eU3ktoDLM/VczruuOOAyLDy2wWgHX44hGrkf2ahEJQRIyrSbiUw56q/ZIXIT4/ag/ATYaQzUWrHHXccakO1Ba4i+pOBtqbSSQ0bXngj+/m4445FODqoXuFVY6DNFeENzdPgYW+aK4oCIqz4pX3xQufCqC+CnF2mGFsGQy7NG+DO629t28/oaD3HbLMUewrnAhwCI2pDmNJsXxNTmhswvCaEjngSnAtXsWS/vkiSf62CfPerLu7Rcfa7EBwCjXVhbIunUExQi3O+fc/zOIcLAakEZ5W9jaIuL5lRtWH7eFbgvgxANCTbmpIYUBNWkNLSfpdldtUz8MzDO+egkkPiNrb2n2XTumYL9YILYy36yede7gMKrP+A4vRatdo1qWw6OIdj16NtV721yt2+33HpTpH7P7/3R1SRkPRJcem31vZriBoy0eVfZ8b8rcEtnQr6/ir1vdtXqUTLpRyZr/Z6HGgMmppAmqZhzpw5OOKII/CLX/yi4PlmdI5fJI6Z6sI8r9jzC13jdT4xuFFGjECosRGhxsYB5QAiCIIgCIIgCKKy5DPk6txIJaXIpZm7FJnZdtm7IoEsbVuLtrvOsRgr5BL+shdCIK1zhGQJs6eNdRWBj4ZkzJ4+BiFZQlrngYzbfoEyRgqv/PerJp6RQEXOYUiW8PXp4xALF9dv53wXQyVscLyPDHmSJNnGsxLOEEVmkJh9lzZjDMcftE/Ba826HWY7toLfFbSUD6RIIOuaLYSmC4RkyVc+y412HOwE1X/F6rVKt1vNlFrudHDuew0k+a80Pj6gbDpJz/dHnmXjt9YUScLs6WNsaVo9+5ORCQYjeijI+6uc926lnUADIfLHSbXW+UBl0DiBuru7sXbtWqxcuRLhcBiMsey/Bx54AIAROcMYw5NPPlmwJo+znk9tbS2ampqwfv166Lrb++pV/yffPQrVJCIIgiAIgiAIgiCqQ1LVsWzjLrz28XYs27gLSVV3fffiB1vx0Jsb8eIHHUhp9j/+vewA5nW9aQ06F1AkFjjKw4rEGHRuOEWEEFi/owca57ZjssVQ5LWrmHNhM76JIgy2InO9WcOlqSGK81smeD7r5/YdhuGxEIQQSKi6O8VXph2JAYpkGOyN+kXCdV5S1SGEwPBYCFPHNdjmpNp4RWtoOi/KKrVvfQTnt0xANCT7jrazNcNYF8zs4tVmKQZe0+Fm1Bnh+KhjT8ljbbbjtY6ccGE4FcznUEusAWRiHTtnZNkpU/a1jZcr+ski315zUElbpCuKsA8NnV56bk7LROxXH6z+bFND1Fc+nbbqfDp1qGIdS+c7AiisR4O266UvS2kXCKYzgs5lkJpAA9CuXzHsvwkEPurYg9c+3o6d3WkIh74rRL53ARcCc1omoj4W8r2ei5xMhGQp+y/f/cuRI/Oezmcoh6Dvs77WNe51bv++3HEcSAyaXDKRSATf//73Pb9bsmQJ1q5dizPPPBOjR4/GxIkTcdBBB6G5uRlLly5FT08PamtzqZd6enqwdOlS7L///hg3blz2+AknnICHH34YS5cudaXAeP755wHYU2OccMIJ+Otf/4oXXngBxx57rOf5J5xwQnkPThAEQRAEQRAEQQRid5LjpY0qrlz6Kjp71WxaqOE1Icyasi8Ahmffb8eunrStzg5gGDgUmbkMNVvjSSxs3YDFy7egs1dFImOQYDAicPatj2HrnmTgwvcph1NnwZJ1UH123HIBT6tyQtMRkiU01hqpsHf2pAPv2jWLR4dkCU0NUcw/bwYaMwYQ67Pu7klD5Rx6nmIuZj+aGmK48rTJuPG5D9ERTyLteMaEmjPIdyZUXPLXlRheE8Ls6WMwp2Vi9v7VwlrLIa3p8MnWk5dkmuOB1g3g3Ng9nPRwiumOVD3RkJypI1Riv4u0sG6NJ/He5i70pnN9+/2LH+OB1g1FjTUXAqrOjUg0APMWvZNdR37tmDWTzLGRJMBjf20gnGPnNB6OqAn7zgFgOE5DsoSIIoELuOagko4a97KrvlncqZOsem729DH4f7MPw3l/fitvJNmo2gjmnzcD59zpXZ7AHLFC9+qL9dtfNNYb+nHeomUZvWYf0Jz+s+vRYttVnfqyxHaB/LJd7lx6GfELraWBGP0RFCHsuvDG//sQEgPSGUeBIjNEFMlwHGSucb77gMLvApH5d+A+dXirZ5fnOSmVI6QYMhFRJLR1JgH4v4uA8uQIcDuByg0MKiQL/aVrnOvR+aDljuNAYtA4gWKxGO655x7P7y644AKsXbsWV111lc0Zc+GFF+I3v/kNrr/+etx4443Z49dffz26u7tx9dVX29qZO3cuHn74YVxzzTV48cUXEQ4bP6ife+45vPrqqzj11FMxYULO4/eNb3wDV155JW6//XZ873vfw9ixYwEAmzdvxh//+Efss88+OPvssys2BkQAmAxMPM7+mSD6GYlJOGrfo7Bt+7bsZ4IoBiYxjDlouO0zQRAEQRB21rTHccMbvdiVFNAFIIGBMWMHb3tXEvf/a2Pe6wWM6AVN1/HJ1m6MG1mDNe3xnKFO57b6LALIOhPOmT4Wi5dvRrqE6Ac/B1A+mhqimD1tbHZH6sLWjbjjlU9shiDTSQVkIo8yxxWJYfSwSPZ606BhfVYvQ5YX+9RF8O9Hjcu2c9SEEVjYuhEPv70JO7rdNVsYM3bV6kKgI57EgtfX4+l32zH/vBk4pKl6OfaFMBw0iTJ2FO/oSWHB6+uh6RwRRUYsLNscJYARFWYaB0OyVJQDqNSUcSbm/G3e3WuTA43zosZ6TXscibTdqGimJczXjrlrXpYYYmEZZxzRjL+981nRLhFFYggr9rFzGg+FyN1H1Q2DrNWpu199FF+fPhZr2uN4c73bqFrJFFrOdHvVzr7npZNMPWedn1hYRlqzyyeQc3b/7NTPYfJ+/nLAWPB7VXv99ieHNNXjsYtasLB1I+755zok1ZxutOrhYg3D1nb/+tYm7OzJ6UtTfoO061obPueVMpeBagIN4VigrfGETRdqOofEWHaNq7qABoGIIkEXApouoMhS9v1p3ViS712wNZ7EuXe1oq0z4XsOY8DsaWPws1M+hx8sfCd73KoHnWu9HPkE3Ong9DI9evmu7m9dY12Pd772qe3Zyx3HgcSgcQKVwhVXXIG///3vuOmmm7BixQpMnz4dy5cvxwsvvICjjz4aP/3pT23nn3TSSbjwwgtxzz33YPr06fjqV7+K9vZ2PPLIIxg5ciRuv/122/kjRozAH//4R5x33nmYPn06/v3f/x0A8Mgjj2Dnzp145JFHMGzYsL56XAIAwjXAOfdWpWltxw6ItPFiZuEwlH0K5yEmCACIKTHcfMLN2WLbMSXWzz0iBhuhsIxTLzysv7tBEARBEAOWrfEk5i1ahh0J4w/3mCJnC/xyIVxG7XwIAP/19/exoP4oXPzQ8qxhxmyzO6W57v2vT3fiyHHDsWpLHFxwCGEUx1H18kxkYVmCIjH0WpwXEUXCy5edaMtJf/msg3Hf0vXgAtndsxLLORbM+igCAvNmTsLFJx5ou94cv7bOhFHvAMHiGSKKZDOMNNZHcfmsg/GFA0fie/e9k01lJ0sMEVmyFV3m3Mix39aZwLxFy/DYRS1VM7Ds2JMqywEEGPOf1jm4MNLVxMIyIoqMsJwb2wNG12LDjt6SHDpeV3jV4PDCPn/278IZA2SQsTbbcd7VlJV8c2a9r8QYvn3sePzve23gAuCCI63Z14IiMVc0HuBdh8JVm0Pk7hNRZDTWR9DemczK/tOXfBH71EUw12Is9bq+ErhTDVaubSfWeQbseg6wz4/OBWJhGWEZnnqhIU/qKQDoTeuB71Xt9dvfmHrtk+3deO2j7dmxdOrhUts9euJIXPTgsmy7z1z6RYysjZTUpldNk2LkJt9ceuqjAvJepm+739gaT+KxZVtsjxdWJCiShISqZ/WUgBHda661K78yGf/97BrXO9gPLgSeWL4F3Sktr74XAvjXpzvxs1PgGlRTD1rfRZWQT2caznLry/nV2ylXPivliDTX49PvtWFbPFWxcRxIDOnt6LW1tXjttdfw05/+FGvWrMHvfvc7fPjhh7jsssvwj3/8A7GY2xA7f/58/OEPfwAA/OEPf8Czzz6Ls88+G2+99RY+97nPuc7/zne+g+eeew6TJ0/Gfffdh/vvvx+HHnooXnjhBZx77rlVf0ai72i7+mqsO+NMrDvjTLQ5osgIgiAIgiAIgug/FrZuMNJ4AAhJsBkQVJ0XbSLYvieFXz21OttmRLE7MJx0xJPoiKcgSwwhWUZYkbIpXspBF8J1Xy6Ep0GCMQZZYlAkCbJkL0Bt/W78yFrX9dbxkxgL3O9te1JY2OqOsArLsm3XcERhrueQJCOVDmCMn1c7leJ/32svuw1rf42oscxub8vYxkJKyRE9XmMe1KFgnz/390HH2tqOF/na8XKGmGNjGCaDYR3bXNvOaBt3Kker7Iczfax0YXMvnAbIakZGWOfHSyd5yaifXigkWx+0xQPfq9rrd6AgO8ayUobhSEiytRu0jlhQipEb61wGkeVCZwzWdHALWzdgj2PDhx/WtXZIUz1Csvsd7Ieq8+x9lDy/MRgrvM6ca71c+XRG/pSrT93OfONIqfJZLZzvk6HiAAKGiBPo/vvvhxDCVZcHABoaGnDrrbdi06ZNSKfT2LhxI2655RbfCB1JknDppZdi1apVSCaT2LFjBx5++GEccMABvvc/7bTTsGTJEnR3d2PPnj149dVX8eUvf7liz0cQBEEQBEEQBEF4k1R1LF6+BarOoUi5TbJJVUd3SiupQL2qC6zYtBuqzhGWJTDGwIVAb9ptFArLElSdY1s8mTVqiExqmHIx0rjZ29F0UVahZGevrOMX8onO8EPVORav2OzqT0rTbc/PmJGSrietoTetZceJMZYdP692KkFS1fHSmo6KtGU16pkp0qyUktrPxGuXdJBIIOv8mbJqazfz/4XG2tqOk56UBs3i9PJqx9lX85PfWsgnZ9axZR5haQUNzzz/PSpqmO6jSCCvedY5R09aQ0LVs3rCnB/AW0Zz3c4XdSDw8bY9tnuJTERlT1rLGoP7Yv0OJKrl4HOmCnNGYOTDZVh3fPaSG41z9KS85SbfXHotJ9e6H6ROHyvmmDmdHinVGDcvZ4i51iTGAqcBNXWjzoWn7rYiSyw7N+VG5ASl4ungPC73kk9VN8Y5peVkcG/TNdViSDiBCIIgCIIgCIIgiL2T1W1d6OxVIWXSrwCAznlRzgwvuDB2hJq7UtMa9zSCSRKDBMNwYX5fTORDwX44DIICwOq2eOntOSwx1vFDEVFAgFF3aXeP6urP+h29nsZIo9A2kLY4Gszx82qnEqxu60I8GWxHdzEIuI2imocDpZj2ghxzYpP/AnUj8421TQ48+pHU8s+Z09lgfi5lLTjHtlAkkPt643vNx5pe0ZpAfeQE8prnhMqz9a5ULXdj83svGQ3STy4Mg7f1Xqpu1PISArbUitVevwOJas2t0/ZfjrHdeamX3CRVIzpW53YHrXMunW0FcT4MhRpB5pg5NWG+6F5zrUnMcNgEwdSN1t8ZfkgsNzd95QBxOoHKdj55XO4lnymNZ2s0WnV9X+mawS/B/gzpmkDEXoiuAhtez32eeDwg5891G5RRF1wA7YwzAADKqFEVaZPYO1C5irc73saaxBoAQAtvQUiqjFwSewe6ztH2UWf2c/PBwyFXOE0AQRAEQQxWulPGbmarIa1cW4UZfGA1y+RzKhkFjE0DGKuoIcyrLWddoiIbdLSVG79i+21e4+xPb9ptpLK2rHEBa8ULv3YqQXdKr4jx1mtshENKyon+8iy3EcCn5CX/+fAba1s7AR7D2Y7LGZL9/9LGxDq2rqVXIDLIWrjds+0KWvmC1m0ql0Lz7Oc4cMpo7rg/uegQS/uF9F+V1u9AolpT7bT/l5V2K49+90LnAtZsV9a5dD6vp47qIydoX2J7JxbxPAICssQ8U3L6nQ8Er5tkzk25G1yC4o4EKq89798y+eWTZ6KrTLx0TaVlbijIsB/kBCKGFloSeOLi3OdL3qmYE6j2C1+oSDvE3kdaT+OX//wl0uk0AOA7+nfICUQUha5yvPTAB9nP3/71seQEIgiCIIgMdREZDMw37VEpCMf/Fzw/cyLLGFuZh9G1VJxtMQB1kdL/lHcaYqzjV2y/hTD65+xPVCnud4pfO5WgLiJXrTi5c7z8Ik9KJYiDoVj59xvrctvxSwtV6lrIriXm5eTJ30fzez9jeiVtfMVGKZVKqXrOb/zztcMybnDbKXmcg9VcvwOJas2tMw1YOU6gfPo90PWWuQxS72oo2stzY1bcdQxGKrigdeHMtRnkPkLk5iZopFG5uHRbuTWBPJz3heTTFY21l+iaakEWJIIgCIIgCIIgCGLQMqW5AcNrQuAQZUcAWZEyxudChg/OBTgEQrKU3QEsMa+99yX2Q3J+ZpjSXF9ye87HsY4fhCiq3xwCI2pDrv5M3Kc2cDvm+Hm1UwmmNDegPlp5gxGDewd/KfWncpRmYLXJf0BZ9RprmxwUwKsdd1o040Apa8E5tm5HS4H+Zc73rwlUQYdxH1nBi51nwFtGgyAxIBqSy5YpojQq6WwqRz+40sF5RgL1jRO0LzHHrJgnMdcaY8HXnKkbg/zOECI3NzXW0K0q4pzLsiLUfKjU+6uSDIWUhn6QE4gYWjAJGH1w7h8jEScIgiAIgiCIoUw0JGP29DEIyRI0XhmjbEhmmDZ+BEKyhLTO8xqNU5qOkCxhv/podgcwYwyKXL4bSPbYfV8flRG1GIGSqo5lG3dB4xw69y8Eb+L82jp+KhdQirAah2QJs6eNtfUHAMKKZHt+V59E7nha577tVIJoSMZJk/etSFvcVssod1wIo7h3d1L1nQPzHK95EkLgk23dru+CGFSt85dPVguNtbWdfPi344waMChlLZjn61xgT1LDru607bnMcTHHtDetZcdNCIF3P+vEax9vR2dvCprOXeNazUigatnAi51nwBhHv6iEfP1kjGHyfsPKlqmhhnMUTN372sfbsWzjrpJrtTiH1zS2B2m/UDq2cvRDkAi8QvcfjAZ1c8yKibgx15rEGOSgkUAZ3SgzhpTGoeeJJDXfzbOnjfWsH+T1filXPt3p4ILPpde9nVdrOsfqti4cNWEEFIkhRbqm6lD8FDG0CNcCc57q714QBEEQBEEQBNGHzGmZiKffbcfm3b1QOSBLdkNCwDInWUbXRXD9WVNw0YPL0daZQErzN87oAqgNSWisj2BnTzp7PCRL0HS34aMYBIAeR32dPUkd//P8hzj9sCY8u6odi5dvQWeviqRq9JHBMEgZkUnBjFHm+LV1Jorayd3UEMX5LRPc/Rb2509p7jY5zxmr/dqpBFvjSfSmy69VklJ1WMVA58bcSNl6UEAiY2SzzgEAqDqHptvNoQyA8TWDzgVu+8cn2fEwr98eT2GfOmv1JG/s8+f+PuhYm+1s2tXr+X2+dpz2S6sYKRIrKkpKCKOulACwaWcvPtvVCyFyY7q7J4WUpmfHNNllX2c/emg5dCGgO/pkjuu2eAr10cqk53bXQqqe0ds6z146yTo/DMjr0CvUzyPHDce2PansvVwRH320fgcS5hBwIaDqHCfd8io6e1WjpgkYhteEMHv6GMxpmYjG+mgxLds+bduTxMNvb8rq9mLa95rVYuTGOpcl1QQahE4fL+a0TMSDb2xCV0IteK51rRWTDo5nnNY88/4oNHRcGPUAVYtiM2XR+X4BgKN++2I2GrIU+SwlHdzWeBILWzd4yu5XDtsv26aqczy5sg1PrGgDF7n+93o4qvZGXVMtKEyCIAiCIAiCIAiCGNQ01kcx/7wZ2CdmFGXWHAbnYtO6XHPGoTi0uQHzz5uB5uGxgvmsEmkd72/psu2clRhDNCSXlRbOy+aicYH5S9bhrDuW4u4l69ARTyJtMewJGGnJEmndM32Ll5PHHL/m4bHAdQcZgPnnzfA0JgkI2/M7d0YLAAlNhyQxjBkR822nXNa0x3HuXa148YOtZbfl5wfMGvAsmHPQm9aRSOtQPQx0ItOmxkXmv91zeOHCd7CmPV6wb9b5c9of0zoPPNZmO34ym68dd0SM8VnnIuugDAJDbkyATKokYR/TG//vI9uYOsc2rbsdQOZ5qi5wwX1vBRrXIDidI9XMhmWdZ2c0gM6FbX6iITmvE7hQP+siiu1eTlXSF+t3IKJzkV3Tpu7VdIG0xtERT2LB6+txzl2tRcmXdWx1LnDJX1ZgwevrS2rfK5KiGLnJN5eeEY6O1VeFjGH9QmN9FF89vKng+5sBtrUmMQSKIDLlSOPBf59wLvCXtzZh7bZu6FzYZNGrje6UjqTKoZYon04dWigSyHzf+snug29ssr0Te9M60hqHznM/sZy3SGmF319DIANhn0FOIIIISNsvf4l1Z8/GurNno+2Xv+zv7hAEQRAEQRAEYeGQpnr88tganL5/GPUxe9KL5uFRfPcLE/HdL0z0vd7YzcsQC8uYOKo22+ad356eNwd/LCRBCCClciRV3WYMlyWjvZDsV569eBgMJ5fGBVRdIKpIiIXd/ROAqz+Afz2UQ5rq8dhFLZh7/CQMy1NDxzpOk/fLn5fffP45X5hge34GY0fv3OMn4dF5LQXbKYWt8STmLVpmRMcE9EEoEsMh+w3znS+lBAtKUPuUV9RGR+YZtsWTBa835+/Axjpb3xWJFTXWhzTV+8psvna8nFw8k5Io6BiYdbicx5xG1c7ewrvz89HeFXxcC+E0ele7Jop1nVpHRWL2+SlkiC7UTYkx272iIbt8Vnv9DkRSqmaT55giIxY20nPGwjJiigzOBdo6E0XJlzXCKKnq2LonBc5FwfY7k+4KXn7T6i83+fRDYQdPkGihwco+dWFfXWh9D1rXmiSxgjWBnHpRkYCasJzXQC9LDLGQMf9pjSOh6oF1K+cC0ZBUtHxqjhdnvppA9vett+ya7Vmf2zynJqIgpkiucVZkqc91zVCSYSeUDo4gAqJt2wZ10yYAgDJ6n37uDUEQBEEQBEEQToZHJZxzcASHHTwGt764NpuK5OXLTszmkP/bO5+BC4ALDiFYppAzyxR1NkwQViPAs6vakcyTDk6WJEhMZNNXqTpHRMk5ZSTGEFFkhGUz7YvRJ9NQ5DyW1jjUjLFFZkAkJKM37Z/LX+MCfsE7Xv3JZ99orI/i8lkHIxqScMcrnxq7vM0LGLJ9DJruxnz+S04+CH95c1P2WWtCim1OqsHC1g3oyBi5QjKD7pGSzooiGTu6G2pC2flKqHrW8BkLSWCMQcszF+Wg+RjYOuJJLGzdiMtnHVywjcb6KA5pqseW3YnsWH//uP1xyckHFTXWfjKbb85cqYMyaYqKsaf1ZRRBMeOaD1ckUFmtBcNcp/ctXZ+dn0Ob6vGXHxwbeJ4L9dNc4ua91u/owcsfbgskC0OVz3YnbOPmjKqRJIYIk5DKRD4ElS9riiyz/YgiufSss/2XNrpNuvkM2F5yc+TY4Xjge8d4zqWzLc+aQK5rho4FXSD/+9vrPSgx5lmzx4pTL5q1hPLlrWXIzb/5Dgo60gJGRGhEkYuSzyDzb2J93/rJrsTsOt55jixLiElAb9r4vSVLwNWnT8Y3jx6/1+maakGRQMTQgutA+7u5f7w6P9AJgiAIgiAIghi4KJIEWWLZ/7caEBhjkCWGkCwjrEgIycY5VoOEmVwlqepYvHyLLQe/F4yxrNFU04WnIcy8r9knlqkdYD0G2J0BkuT+k93ZspluxQ9nf4LY6OoiSrZfipz5J7nHyReP3eHWZ1VkVlWjjnXewrLbIOWFzg0DpjUiJ5/BqtJ47bIOyQyqzrF4xebARb2dYz1+VE3JY+2Uz3ztOOUqrXJXWsZS4CL/DvRSKGVc/XAbwctqriis81MfCxU1z4WM9U5pjyj+OnVvIKnqaO+yR05wIdCb1pBQ9ex4MsYQlqWi5EsIYz7M9aJk9Kyqc/SmNZt+t7a/dItaktMlqNwEke2+TIfY1wiH/ne+v72QMptK/NsULr2o6QI9KS2vEzy7F6PE95BRc0cUJZ9Oveunh73etzo31oYRrWT8BnH+jBLC2PTSm9agmbXMLM/HOTBxVG2f65qhJMNOKBKIGFqovcBD38h9vuQdIDKsIk3XHH00lH1GAwDC+0+sSJsEQRAEQRAEQVSecv+GN40Aq9u60NmrQgIDZyKvcYAxBgiRrWEil2CrcdeXERCiQFonIFs02e97a3+CpKsKK+UZXVx3cO0oLqv5gljnTZJYICeCOU7hjBNoINS2kBiDBIbdPSpWt8UxY8KIgtf0l1PCKVefbO8e0CXiix1XP9zrqX+euth5LnS6V5TL3szqti7XZoCkGSkoRDbSAshEPRQhXwLCpvtNJ0Iq4/xJ6xyKzHJ1ZzLt71EFYjJsHjvv6jB57p1HcNxRbgEigQb0qi+OUlI7mlHF/m16p84shHUu8gQM+V8Pw6kiS8Hl01kDyC+tqvN9CwCJjHOJCwFZN2oEOvvMhchueklqHHWOkGYBYMPOnkDPRgSDnEAEEZB9fvCD/u4CQRAEQRAEQRB9SHdKz+yeRVGWBsMQVrzRtFoGNGt/gjg3yg16KWw7q67ZxjZvRSCQiwQaKMZMxoy+dKe0/u5KXpxy1TOA+2tES1VmXJ3P3V+7yIu+bZEX7OU+IHSn3BET1rnXdIGIxcJalHyJwvpGmEJraR8i0wfr3BQ5r0GiT3J98OlXnnMGc1RFKV030p7liQTqx/eK9XdAEPnkDuHwc4oVet/qXIB57CsJ8lskUaX0q3srlA6OIAiCIAiCIAiCGFKUW5fAvLwuIoOBGUbjIq53l5Gu7nXFtBtkbMo13DkNXa7PVbaDWeetGBgYQoqU/W8n/WHQNGSPoS4SbA9vf9So8bqv4leoagCQCdoralz96K/xLpdijdGyR2rKvYm6SHHRkcXIFxdBdL/9e5Gx5zsN78XKX74oySAOHdc5Rd5/IFOKvi+UDq5a7/gg2H8HFJZPp2z41a0L8r4t9blrwn0fuzKU6lo5oUggYsDwlzc3lXTdf3x+fIV7QhCVJSpHccfJd2D58uXZzwRRDEpYxr/96EjbZ4IgCIIggiOEKCqXvmkgndLcgOE1IaPgcQG7QLYmBErfNS/lrw3tSaHzy+lPpXDaVJxpZiqNdd6M3cyF72eOUyiTN6+/xwwwdl5zCIyoDWFKc32ga/orHZzzPs0NsZLSFvUVxY6rbzuulEkD9YntFJILp7ocwD69PmFKcwNCspRN0ZYPzotbtwLCpvu5EJDzGM3N9oeHGIQQSFvbKjoSKI8TKMC5hfRNlUupVZVSnAESY8jnLy3lHe+k1GvNfgWVT5du8xkP5/vWK3Vk4Oe2nMAA7L9PbaEriCIgJxBBEESVkSUZh4w6BNsj27OfCaIYJIlh9PjK1DcjCIIgiL0RRyYdx3dmPQYBBiOfvxBGvYfVbV04asII/N/qDqh5itwLkasXpMj+RaO97sVsKX4YFJll78W5gM7ym02s53shScZOcylTFDpInQOzkHO+vua9vsDu8GobyqMhGbOnj8GC19cb9TQCGLDNcTKfkDEGmQHm0Go673OLZlrjkBlDy6RRfXrfUnDKlSQVls3+Iq1xKBLD7Gljyy46Xu1ICFMPdad01EVkTGlu8OxzsQbrQkvQuXNftsi+EALLNu4q2KehRDQko3FYBJ/tTuQ9T2TqA4VkKbB8Ge+nnO7XdAFF8p4ga/vHjVHwzy1qWUJnXbemrO3qUbFtTxLb9ySNVF6Zt8CyjbugcW6bb3e0kLDJbFLVbZswit2Q0Z+UMqws4+zQufB8dzrf8YH7IgCN85Ln2nDCMJd8Asiu5U9265hQn3tZOnWEX9SY830bYe4XLmMMsgTk86FqnENY7iFLwPodPRCATc84dWIptZv2VsgJRBAEQRAEQRAEQQxpuBCQHEZNLgRUnUPT3YmRrnz8PezuTSOe0MCFcY5v29wwqgCG8SfksWXe714MhqE8JEvZFDKKlDMQ6QLQC+w8lwoULNI5kOB69l57EvlrVGyNJ/HC6q3oTesF++pHIZNMX5hs5rRMxNPvtqOtMxHI4GaO03OrOqDqHLJkT2+T1oNFFFUSLgyj6TPvt+Nfn+7E7OljMKdlIhrr82QWcDkl+qbPTkOcqhv1lTRd7+NRKwwXABNAd0rDtngy/3gGaMtKpeyRW+NJLGzdgMXLt6CzV80alIfXhLJyUE3ckUCSTY995563PPtUzlgOdJqHx7B5d8JXnq3vgqaGKM5vmRCoXXPtmOsFEEh66H1n+1+ewAwnkIVi17vORVbWHn1nM3b1pH3Tfv2/5z6EIkm2+bbejwuBVW1dOOmWV7Mym1KN/prvjnwbMgYaxTtWBe569VN82LHH9s5xvjut7/jAfQGQVAtHofkhMWaTn9HDwuhOaba54pyjLsTwrfSHmNMy0SUH+VIHWt+3XtFynIuCjmfn82kcuOHZNVkH1rCognEjjTUYT2hZ/aPqHIwh0G+TvR1yAhFEQHb/9a9Ib/oMABAePw4jvvWtfu4RQRAEQRAEQRBeOG03Xjtak6q/cfrDjj0Acvn987lZEpqOkCxlnT9OI0S+ewkgs/Nbz+6sDmLoMRG7oOkAAQAASURBVCJbGBgzohqCYN5r0RsbcfoRTTikyZ0GZk17HPMWLcOWTreh09lXOU++NHexcOfnQF0ui8b6KOafNwPzFi1DW2ci8E17M4WoB0oEiyQxqJpARzyJBa+vx9PvtmP+eTM85w/ov8LjzjWm6RwSY4iGZCTUyhb3rg3L6CmzYDjnAn95axNe/nBb3vEs2I6rJlD542+uw454EqrOIWXWuhB2OdC5yK7DYtdUsf3sTKSRsDiG0xr37FM5YznQCclSNhLBSz+a74KmBkP3BHWImW2Z62VYVEFnrwrrXVKa8cna/raPV5atS/ckVZx7VyvauhJ5NzsAhk7UuY6OuJ6d7ytPmwwg9577ZFs3BJCTWcu1mq5jTXscU8Y0lNfpPqKYsTWf/8E3NrneHdZ3Z1iRAr+zK4nGjbkLKRJG1YbBOfCXtzbZ9AsXwO6kyM7tN48eZ2sjX8SN9X3bEU/aXgg6F0gIHYrEwHVRVDo8VTeiYTnnSKg6tu1JAcj9NhNCZNPLmr9Nyo02Gxhv/uqwl2f1JIjg7HnlFXT+7W/o/NvfsOeVV/q7OwRBEARBEARB+OA0cFqNF1zkdwDZ2hFARJFQk6d4clN9FHOPn4SjJoxwOUaC3ksASKi661w/P0tNWMH93z0a82YegNHDIgGeJEc8qWLeomXYFk/ajm+NJ7MOk3w7oI0dyXpRtST6y6hySFM9HruoBV89vClQWWoGQPY5USmzSJDzagbDmadI/iWzYyEJsZCMWFhGTJHBuUBbZ8Jz/vzor5pApmHOTI9UCRSJIRqSyp6LWEhGLFTaeDqpdBFx6zrkXCCmGPMf9ZCDQuswf7+Df781nsRLH2y1reNoWPLsUzljOdARMJxusbCMkOxet00Nxrvg0XktmLxfcEeYVYZkieGXXz0E3/viRFv7pvPH2b5L1xYhDlwIfLKtB1t29xZ0AFnbjypSdr5/+8wH0DjPvruEgE1mrc8gAFz80OCRj6BDaX3P60L46jsBIKXxkt+H5jujVCSJ4eypzZAYw/Y9KZd+CctASEZ2bv/8z/WO30752zfft3OPn2QbA4kZa+Nbx4xHTVhGJFTEQwijTp+XnEcUCbFwTsbM3yZbu8qTr6GcXY6cQARBEFWmV+3FhS9ciNvab8Nt7behV+3t7y4Rgww1pePv/9+K7D81VdndlARBEASxN6HqwY0wAsimT3HanWXJMCY//58zcfmsgxENu2s/FHMv8372ezBEFLdJKalxvLFuFy6fdTDuveAoxEJyUYXbO+JJLGzdaDu2sHWDsYMXhR0exs7m4LuZ+9Oo0lgfxddnjEVNWA40Tn5dDckSwn4eogCY8hLNOHZqwjKiIQXRzH97jbl1N7MkMUQyFkCv+cv235UOrnLkdQ46vjONysWugXwwZuwq7y4zCoix4ONZCJdhtMyHta7DiCK5iqxb+21dh8VG9hR2TOfOWNi6AT15/v6o1FgOdEwRlxhDRJGzOiUakjCiJoSXLzsRl886uOiUeM5lNSwawk9O/pyt/V/926Ge7ZcjfqrOkdZ4QeO+s32Ni+x87+hOIW1xbEiZteVHR1dq0MhH0PeWVcdFZFaVdHeMATURuawIF4kBn2zvwfZuI5rGU78wZOe2K6Ha3vNBavk11kdx+ayDbbL7+f1H4eXLTsQPjp8EiTHftHIhD7nxc5xZf5tZh0QAWPjG4JCv/oCcQAQREKm2FlJDvfGvtra/u0MMIgQE1nWuQ4fagQ61o99SNBCDFyEEdrX3ZP9VeschQRAEQQw13OngjANJVQ+849lE1XMFnm1tcsNgEvbZmiuEKPpeXvdOafY2GAyj0+IVm5FUdSiyBIkZ/QmCzJjtesAYl8XLt0DVOcKyFMjQpOkie70LlyOif3+7CBgOlULjJOC/2zmh6r61MoKgZ+RFkSTIEnONsZdhLJmJDuPZqBqGsCy55s/2DOWEBhQg3+O7awLxiqwBe5tGe/lqUxRDkPEsRKHUk8XgtQ4FBFKajoSHHADGOizpb4MC15hfm33SHeenVO7Zp3LGcqDjHDKj2D2DIkkIK1I2pWexeKUr5ZmUVmb7B+83zLt9p64NKAvm2ixFXDVdAAyZ+bbXenHKrLN9lQ8e+QgSZefUcSxPZGc5CAEk0nrJaUoVydCfKzbtdr3n0xpHIq1n343mWta5sOmXYt5/VtkdXhvKym6+d4Lq077fbVVdeG5GeXLFlrLkq79/r1QTcgIRREDG3norDnr5ZRz08ssYe+ut/d0dgiAIgiAIgiB8cP4JbxoRVrd1lfTnve5htDAdBqadyGn44aI6adAYM+ot7O5RsbotDs6LuxdjzHY9YIxLZ68KCQyS5E694oUAste7vxtYRhTTiFXunJRj4M/nYPLrFxeG4c1aQ0KS3PPXVxSTAtA0DldaEgQql14OKH88K1kTyLkOAcPgrmYcX1bDpvm9Uw8BwRwBQXtp9sk55kaNEYGUo0/9JZt9QbX0mnO+dCFccuXnly+1R9a1WWwbAplNED4OD6vMOmHAkJIPbx1XDTdQee8f471vtMGQ0x9cCKR1Dl0IpC3+FEky8nha31vlOt+FqPzvopRHfaXdvUNHvioNOYEIgiAIgiAIgiCIIY1pUOsuMaUqF8LTrpPPKFhNR4hRcFugO6WBC1H0vazXA8a4CIii09iY1ztxR6MU126lyRk783ekOqY7az+871+oX84d2M75y9dWJYc+nxPIHc3Aq7YGKp1uKd94FsJpwC8n8MprHdrSMfm07ZrzAH0I2s9CusHpHy9nLAc6+casnPgP57xyLjzm2rv9UgP/yl2b5vVevcqXKlTKRAoNBvkI5kz1OKfaL5ISEBbvubV7+Rw7uVo75iaK0mTGXBsCxf9WCYL750Z58jWUk66QE4ggCIIgCIIgCIIYUrjqomRsUnWR0tL1+Fl1rIY/p5G0OklhDAyfFENdRIHO3anqirkeMMaFgRVt/DCvL3i/4pqtPNlorf61zvndv9z5c36X73M55GvLVROoBLmsRD9Kbc9vPAteW+BzMRSzDq3GVOc1QdNYBfm+WN1QzljuvdgH14jsqq7WLHdt5gz7dgr1mgsxaOQjSOBLf79TikLY/i/o6dlnLDUSyNRVpm6oNgzBf5vsbZATiCAIgiAIgiAIghhSOHebmkbRKc0NJZkgvHbBMxg1XvxsdZlsKhVHCIBDYERtCFOa66ELUdS9hBC26wFjXIbXhMAhAhV/Boz7mdd79THf577GnP9qzUkQTHnxoph+ce6ev3xU0picPxLI4QTSi5PLoDBUOLqpyPH0ut5KOeNdzDo0v8/qIcuoOOv3eFHYWG/vU5CnKncsBzrVUmPO6TLSwdmP+aaDK1HXWtdmsWvUSCdmzLfX7fK1J4BBIx9Bolb6851SDMZ739QVbr3lhGfytlnfW6VGAmX7gL4Zr+E14bLkq983rVQRco0RBEEQBEEQBEEQQxrTeBENyVBkVnRxZS+jhSKzbBFsz2sYK+lehRAwCnLPnjYW0ZAMzkVR99KEQMhyPWCMy+zpY7Dg9fVI6RxBqgIpMvMthN7fRpSkqmN1Wxe6UzrqIjJSqhEKVmicWMbDUI3+m/LifV8GRWK+hbFNRKZ+g3P+bOcU+FwO+brHHRmgVM4rvgZCMsveK4ijww9N54ZRVBjPJEnAmUc0+8pzPpxj4tUrUx7f264hpjAco+qe97Kuw7TOEWGSRy0eDgggnUm5ldVDlhsn0jp0bqReYmCG4dUhe4WGz/ze7NNdr63zjQTQOIfgAumM42/8yBo8/PYmjBkew8jaMKY0N5Q0tv2FU39k+58vHVwZlm1ns0Y6OEcKSN9rhe075/vI61mM/hprUythbTIAmsahcQFFQnYdAYaOYnlctSHJX3cNNPzWiKk7zPVl0939/fLzQReAIjEcMLoW63f0ZvWLF5xzW62dtM7BjHhAJH10Vz6yUWOiuN8qpXLmkc0AgGUbd7nk3nNdZzDXSlrj0Lnw1JuDHXICEURAEu++C72rCwAgNzQgduSR/dwjgiAIgiAIgvDmpptuwi9+8QsAQGtrK4499ljb9/F4HNdddx0ef/xxdHR0oKmpCeeeey6uvfZa1NXV9UeXq4rVYBySJWi6XrytxtIGy7RjPeyV5qTYewWNcmhqiOL8lgkAcilairmX9XqT0w9vwqLWjYgnC+fStz6/F646KX1kGdsaT2Jh6wYsXr4Fnb1q1kgXDUlIaTpCspR3nMqse+1LvvHiQkDVeUEHEOcia/j3mj+TakZdFRsJBJSx3hxYx1AJsUBy6kfaYYDUOfBA60YkNY4fnngAGuujgdtyPrdV9p3yqOs6wIB7PngVs6ePwZyWia57zWmZiKffbUdbZwIpjbtkMqnavW2KlEvLZd7v8WVbkFBz9c8YDGdRSJYgMe80Xk6sa3ZOy0Q8+MYmdCVUz3OtfdIF8Ma6XXhj3S4AgCwx7FMXxjkzxno+70DCT38Mrwlh9vQxSGml1ZQrhCsSiLsjwfyM0T7l6vI+i1UXCmE4RIuxyXMAqcwFEoz7m+8u41n8G9u3IeKruwYarlpNGV2t6f5vtKSqFzWWfYnOBTbs7DHkC0BS467o1LQOcGHXMYbDRiCtA0f99kWcM2Nc0XoSyEmFIlXWCeRcPz1pDSfd8mpW7iEAWTZ+oZn19azr+vTDmvDsqvbsWjF1p6k3t8WTA1pvFQM5gQgiINvvuAOJZcsBALEZ0zH+7rv7uUcEQRAEQRAE4WbVqlW49tprUVtbi56eHtf3PT09OOGEE7By5Uqceuqp+Na3voUVK1bglltuwWuvvYYlS5YgGh3cf/DmS5EjMYawItl2uhYireeMsQzG7vggxlSJGdEySTW/EdxsE0DBcxWJYf55M7JGCdPBFfRe9VHFdj0ArGmP4+IHl6NXLWzkdD6/F/1hA1vTHse8RcvQEU9C1TkkMKNIvRDZMdF0YxdzkHGqFPnGS+cicD8SGcNtU0PUNX/5qGhNoDxLxsuQDQSXy3w4x/DkQ/bFkyu2VHT+EqqO+/+1Ac+v7sC9FxyNQ5qCpRPy0zVe8mh+3xFPYsHr6/H0u+2Yf94M270a6435nbdoGdq6EgWfMalyREMMvWkN597Vmr2frU8wDLmm/MsSC1ATKPffjfVRfPXwJvz1rU1Fj7nOBbbGU7h7yTrP5x0o5NMf5nwZqbEYZL+8jiXidCTq3CMdXMC2hCj8LELkdOE+dRGEFQltXYmSooKs/WQwIqL8/NkMwO/PPXIQGdRzDxJUVw9UBxAASBKDpuf6qAsB5xu/0EaI7lRpehIwZNMYx+C/vYqFAfjb25uhclPnZhyclj0DciaPb0c8iflL1mH+a+vAmOEgssZemnrznLtaB6zeKhaqCUQQBEEQBEEQBDFEUFUVc+bMwdSpU3H22Wd7nnPzzTdj5cqVuPLKK/H888/jxhtvxPPPP48rr7wSb7/9Nm699dY+7nX1sRrZuBBIF+EAAgzHSywkIyQzxMKyzQhoGlP9fCKyZFwTkt2xQkZ0Q67NIOc2D49i8n45Y4Q1DVeQ6888cozt+q3xpGFw7kwAAogpkm/tGgCIhqSCRlBXJFCVDWPWZ+BcIKbIiIUNZ08sLCOk5Bx2SVUHY8iOU7Vwzq0TLoI7gABg32ERzD1+Eh6d12Kbv0JUNh2cf2vOvfFWR0QhuVQkY40Niyqu77zGcHhNyLe9cmnvSuLCB97Btngy0PnuSCB/eQzJQFgGYoqRxrGtM4F5i5a57nVIUz3u/PZ01HikXTLHJBrKRCLCcGB93NGdvV9U8Tb1mfIfpLaH84x96sKIhEo3Iaq6wBaf5+1vCukPc75SGg88fsXgbE0XwrWe/O7oPL69O1XwWczrTF342EUtuGjmAaiLlJeiTQAYMzyGiEP+rOv4wMZhZd2jLzGnuVhdPRAxf8PEwjJqQjJklr9OXSGK0ZOmLO/oTpY8jhID9q2P4KgJIzCiJmT7TpYYFCkXjaYLQ+4jIcnTqcW5QDQkISJL0HQBjQuouqE3Y2HZ9U7x09ODEXICEQRBEARBEARBVJH3338f9957L+LxePZYIpHAxRdfjDFjxuDAAw/EXXfdVZF73XDDDVi9ejXuvfdeyLJHvRAhcM8996Curg7XXHON7btrrrkGdXV1uOeeeyrSl/7EXaw999+qzgsaISJKzgwgS8DFJx6IU6fsi4jijugIYtCQGENEkVETlhELyYiGJMRCxmdnm8WcC7hroxS6Pha2y8XC1g3oyBg3IooEWZag5En1phXaKgyP6IiCV5SH8xkkh2XLOmbG7l6eHadQhXf1m8gSPOfLJIgcWvna1DG4fNbBAXbR+6cnK5e8TiDHV86ognxyGQ0piIZkzJs5KZDMcy5c7eUR2aLp6EpiYevGQOd61QQqKI8SyxrKO+Le93p2VTuSGncZJGsixpjIjjExUwVGFKlglJ6q88KOWVdKR/jWBAoKz+y+Dzq2fUUx82WOXyVxrlEu3JFAfmvPefTJFVsKPov12j1JFY31UVw+62BceLyx/srxjcsSw1ETR/qu40o70KqJ2ddidfVAR5JYNiIQCB5l5qQYPQkAf1/ZVtQ4KhKycnRoUz1e+/lJeOziL+DWf59qk6/9GiKZ+owGEZlBkpjvvAkY+tL52ynfb5uBqLdKgZxAxNBCUoADTsr9kyqX8XC/q6/GhAcXYcKDi7Df1VdXrF1i6CMzGS3NLZgcm4zJscmQ2cAvgkgMLCSJYdwhI7P/nD/mCYIgiIHNb3/7W1xzzTUYNiy3A/bqq6/G/PnzsWfPHnz22Wf40Y9+hBdffLGs+yxfvhw33HADrr32Whx66KGe56xduxZtbW047rjjUFtba/uutrYWxx13HNatW4fPPvusrL70N84/7k1jTlLVA6W8sdZf4NyowaJIPrvruXlN4X6xTCohRTKiafIVHfY719l7p8Or4PWWsUmqOhYv3wJV5wjLEhhj0Hn+SClNF4VTSeX9trJ4PYPGjR37mhkm5eGgEML4V6gWT6no3N8BI4QoOvXSU++1IRkgXV81yTdUrppARcolAMTCSqD1YV3fjDFIzB4RVy66EHh8+eZA4+187pSHPAKGIdmot5Hrd1iWoOoci1fY72WVaecQpFSjaLnX6Ibk/DrFRNMF0nr+Z3O2n9aC6c68bQp4Pm9/4qU/AMNInFT1rOOLsVzUmZcOLOevM6ea4B41gbxUiTviUuCFD7a69Lnx3vNeIL1p3TYXEisvpVl7VxIM8F3H1aq7Vg2EKE1XD0Q0LpDS9GxUjql/uCj9fR1UTzIwJFUdL32wrbj2uSGPiiShNqJkU+aGZMkmXxD2TQeMGeku89UdMtJjOt5ZunfEl5+eHoxUtCZQKpVCJBKpZJMEURyhGHB2ZXZROglPnFiVdomhT1SJ4oYv3oAlS5ZkPxNEMShhGV++wNuYRxAEQQx83nrrLZx00klZQ4imabjvvvtwzDHH4NVXX8WuXbswffp0/OEPf8App5xS0j1SqRTOP/98TJ06FVdccYXveWvXrgUAHHTQQZ7fH3TQQXj++eexdu1ajBs3zredlpYWz+OrVq3C+PHjs797+hoz2mp9RwqanksC/+abb2FdjYS1u4OlIuEWg5kA0PruR9iR5LY2TZb+61+oCzNs357w/L7S9PbqtvF9b6tW1H03fbYZS5bsAACs3a1jZ7dhtONCB9eBZIGmjJ3wOiQG33n+oF11jP+brj5WSkZcz6AByYydRuMCUZm7jJrmMxTGvLB4E691nJyUYnjbsSeJh55dgoNG5N9QtmNnLzTLs3366TosEZuLupefPLW2tmJ41NsZ2hXvsRma2zo6il4PG9Z9GuiaLVvabeeVY8j0I+h4b1hv1zWvLVuNnd1p25oSAkjpgFlcXWK585nHvawy7UTjAjrXEfbols45hOAFB0MAWP7heiyR233He+PGTViyZGv286pPC9cnCoQIPrZ9gZcOFAJIZ3WIDkeWQs+1nUzpJeu0NVvs+vKjtZ8g1rXBdmzlypXo2Wgfr674nowB3DiPC6CzR/fU5xoXiHoU9eIC2bn4dH0qoF70J61xtO/Y5et0an2jFcMjgyMeoWNrAqo+uNPAWVF1ASF0+GSLRCnvO7+1bJXdbdu346Fnl6CzN1VUf63rrLOzK7u+Vm23/+bZ06vZ5kjX9UCOTOcpAt6bF7jQPfV0fxKPx1FfX3yNooquvObmZvzkJz/B+++/X8lmCYIgCIIgCIIgBi3bt2+3OVTefvttxONxXHTRRYhGo2hubsZZZ52Fd999t+R7/OpXv8LatWtx3333eaaBM+nq6gIANDQ0eH5v/lFpnjdYce2sznxOaKWZc1Jc+KZP6msDkSsSqMj0OlYbR0IzrOfFujgK3dKVIquKg+R8Bi/DjhfGLu/q9cu8RzHH8zcWTH6r+Uz5gm2c9y0lY1bQYPe+kC+BgOPt+Jzi7jVVMPrBMbeF1qVvc6LA9xby7ZL3aqNSG+BZpvFSdXGl8RrrQAbkCnbf633lPhZ87Wefxec96MScCy3Pe64Y8sn7IMoG1yfviL6myHKIBQmqJ0td79m6TJZjzkfwrPtTjXkbQHqrVCoaCTRs2DDcfvvt+OMf/4hjjjkGP/jBD/DNb34TNTU1lbwNQRAEQRAEQRDEoEFRFKRSuR2Qr776KhhjOOmkk7LHRo0ahR07dpTUfmtrK2655RZcd911OOyww8rub9B7emFGCM2cObNP+uHE3Ck6RmmEsjmXv/2oo4/G/vvUonbjLuBt775bkSTJll/qgAnjsaUzAWWnO51JS0sLRtaG8chny6Hs3l6Bp8hPJBKyjW/P++1QVr8X+Pr9mpoxc6YhJ7Ubd+GOlW9B1zgU03moFY7EUGSjnoDfPHe+2wZlTW5z6DHHHAOl9XXbOZWSEeczcCEAy252WZbBuIDqyBdmPq/K81m3y0vBa46Tq1UmCtzXjSzLaDlqGmZMGJH3vPvXvQ0lviv7ef9J+2PmzAOKupfyj+c9jx9zzOfRPDzm+V3tu/+EkuzJfh4+chSU3TuLuu+BBx4I5ZOPCp7XuO++ULZ3ZD+XMp6FkCUp0HivVNdC2bgu+/lzk/bHixs/ta0pAZ7RJ4YsKHLOFKfqOmTZfi+rTDMGT0u0LMs2OTePyZKRAsz5nZPxY8Zg5szDfOd63LhxmDlzcvbz420rgI62vG0GggWX5b7ASwdywWE1NZvzlda17FQ413YsGipZp21bthnKR6uzn/fffxJmHNII5Y2l2WNHHjkVx+w/0nbdy6++BrDubP8YE0Y9IV1AkWUj9ZdDF0oSXLJhzsXLnauhbP6srLXEGDBqeAO2J/d4fv/5zx+L/RoGR2aUJztWQtnWUXHd0p8w2PWP/X1f/PvOT09a9Urj6NFoOWoibl/xZtF5O811VjesDjNnHgcA0D/aBuW9FdlzIoqEbjWd65MsQweHXqE0foqseOrp/qSUKCCgwpFA69evx3PPPYfZs2djxYoV+MEPfoCmpiZcdNFFeOeddyp5K4IgCIIgCIIgiEHBxIkT8corr2Q/P/roo9h///0xYcKE7LEtW7Zg1KhRRbetaRrmzJmDI444Ar/4xS8Knm9GAPlF+pjp1PwihQYLznoK5i7qKc0NRZs5GID9GqJ5Ikr6dmeoc0d4sTterddPaW7A8JoQONw1KPxgKByx4a5VUVwfi8H5DEHm13yGapZZzDdOEive3DaiNoQpzYUNP9Uc+3zRCM7v9BK2Yge9wlnzq5TxLMTI2nCg8XY+99gRNYHXFOcCHMI1t1aZLk6/iMz/5r+GARhdH87fN0cT+9SGKzLGAsFluS8oRgdaI20qqTtca0cIj2i3wnIgMaA+anmWAKLDgOxcpDRe9nOFZAnDoiHf7wvJ5oBCVEe39CuWhwn6zs9HED0pIDCluSGvXHhhXWfWrjrXgiIx1xwF/R0QBD89PRipaCQQYwyzZs3CrFmzsGPHDjzwwAP485//jLvvvhsLFizAEUccgblz5+Lb3/52yV4rgsiLrgKf5v7AxgEnAXJxisYPoaqWtz4DC1WmXWLoo3IVrW2tWNW7CgDQwlsQkkh+iODoOsdnH+R2dI47dCRkeXDkUiYIgiCA8847Dz//+c/x+c9/HpFIBO+++y7+67/+y3bOe++951unJx/d3d3ZOj/hsLdRz4zOeeKJJ3DooUaNOfMaJ4VqBg100rrAxjjHxj090LkwDDiZIsEmssR8i9abWM9XZAZZkrJFog3bmgCDUZA+e2YfWYqcBkOtyJ211uujIRmzp4/BgtfXI61zRFjh3xdKgOLzxaao86KzN41n3m/H7p40RtSG8dXDmzC8xi3jzmcIy4UnwvoMIZkVTI1VCvnGiTEGpcj7zp42NlsYOx9eLSZVHavburCrR8W2PUkMj4XQmVDROCySMeI1BGvb0rjZZndKR11ERlrn0LkAFxxCMGzpTCCdiWSRGMuuxVxb7rUU1CjpPK+U8cyHzBi+Pt0Yb+dzWscqqerYsjsBjfPsMwBAywGj8NTKNqQ0jkjIWwaEEEjrHCFZcs2tVaZVn/xNXktM1QUkVjillyIzCAEs27jL1nfb/EDYnn17dxqyVH46KZkxtEwqfsNDtQiqAznn2bUl+ajJpKpj+aZd+KDNiII5tLke08ePKLy2XKkU3c4/r6XhnGfGGL58aCMeX74lI1vM8b27DeuzJFUdXACyVFo6RwBoHBbxjH7063Ox5FuPlYYLUXHd0t8YgYUCOjf0j8Qyae9KaMuqJwsRDck4eXIjHnnns8DtW9+hOudYtnEXulM6Pu7ohsjMjflQ1jlKaToK/SCTmPFbMMi8+unpwUhFnUBW9tlnH1x22WW47LLLsHTpUvz5z3/Go48+ih//+Mf4+c9/jnPPPRcXX3wxjjnmmGp1gdgb0ZLAU5fkPl/yTsWcQJ/96EdILFsOAIjNmI7xd99dkXaJoU9aT+O6f12HdNoIUZ2jzyEnEFEUusrxyoMfZj9/+9fHkhOIIAhiEPHjH/8Yb731Fh577DEIIXD66afj6quvzn6/evVqvPvuu/j1r39ddNuRSATf//73Pb9bsmQJ1q5dizPPPBOjR4/GxIkTcdBBB6G5uRlLly5FT08Pamtrs+f39PRg6dKl2H///W01jAYDW+NJLGzdgL+29qBbFdBFAnomKkSRGT7q2IMnVmzB4uVbCjqAAEDNnMNg7GzuSqTxQXsXetP2ItEMwB0vf4KLTywu3VY5lFIrwoozQmNOy0Q8/W472joTSBWw8JrjUWwfi9n9vWpLF659ahVWbOq0GT6veXIVpo0fjuvPOgyHNtsj1WzP4GHUsUaOOJ8hJEtlF0P3QghjbiQfR1BIlqAFLDrOAJzfMqHgeU64EHj14+348z/XY1dP2lP2FYlhVF0Y58wYizktE9FY75+qiQuRXWuLl29BZ68KLjh07iyoLfBhhz0dlLkWzXRlmi5ca+mlNdvyjpmJl92umPEsRNPwKL5y2H74n+c/zD6n6awaXhPCrCn7AmB4fnUHtu9J2Z79F4+/BwGRPdabFq7oCp4xwAJAU0PUc25Nmf5sV69nHxOOIj2KxCAA9Kp6QUO7EMCf/7ke819bh6Rq9MOcH3NtvLVuF0665dXsHKe1ysRw6Fzgmffb8a9Pd2L29DEFZa4vcOpAp/QlVd02xzoHetO6bbx296Yx47cvoieVmxcGoDYi45wZ4/DDEw/wfU5XdCf3iATyGH2v+TjjyGYs/WQn2joTSOvudp2bBnQOzLz5FYwbGcOqLfGC74B8MAD71kfzRhOVukHAqXes67FacmT2VAnoLBgMcAH0pCvzvmsa7q27nJhxOmcc2Yy/vfNZYD0ihLHJRecCH7bvwXfueQsCApwDqs6z6y+tcmiW+TFEuFA0JIPCGNQAvdG5wL4+enqwUTUnkJVhw4ahpqYGiqIYHkddxwMPPICFCxfitNNOw3333YfGxsa+6ApBEARBEARBEESfEolE8MgjjyAej4MxhmHDhtm+33fffbFixQpMnDix6LZjsRjuuecez+8uuOACrF27FldddRWOPfbY7PELL7wQv/nNb3D99dfjxhtvzB6//vrr0d3dbXNQDQbWtMcxb9EydMSTUDUBxnIGMwFjd/ylf10BKUAEkImUiR6KhmQIAdy9ZD26EmmXuUAAePDNjfjHh9swcVTf1MJ1PkKxO7adNrjG+ijmnzcjO4Z++eUYjN28hQz0Xn0Mavd79r12XPrwCs954gJYtrETZ/5xKW775jScfkST5zO0dyVhdQUkLUZxr2eQGEMsJLuM6uWicQE9rSMa8q4LJDGWjTTJNzxmn4MaOM1n1bkRyfHmup15UwZqXGBrPIW7l6zD0++2Y/55M3zPXbutG795+gNjrekcTLiLdPv2C8Za9DOmCgCt63aCc+E7ZiZeEUNBx7MQzQ1RXH36Ibj4oeXZ55TADL0iBNq7krj/X0a9Ma8eJjNGdInl1oGzuwlNR0iW0NRgyK3X3DbWR/GL0ybjh39ZXrDPEUVCQyyEXT3pQGtN4wJ7khpkW+SPOT86GIB3N3dCAEXNcRAkiUHVBDriSSx4fX1W5g5p6r9sQU4dmHY4Qrz0kXW8/BAAulM67v/XBjy/ugP3XnC053M6WzfSwbm8QIEYVRux6MIErL1L+jh4tu1JYduelOd3QTH1VEiWPCOOTErxAdne8Y71WE054sLUo5VcAQMLBrtoSQi23psborhnzlGB3kvm77ERtaGidLTGhW3tCWFElnIhbOuvF8W/u3UhkNSEERXJhefGglz/jXfOzp50vzusy6Vq24i7u7tx991345hjjsG0adPwpz/9CZ/73Ofw5z//Gbt27cJbb72Fc845B8899xzmzZtXrW4QextMAvY7PPcvQDoDgiAIgiAIgqg0V1xxBVpbW23H6uvrXQ4gwMiicOSRR/ZZHZ4rrrgCRx55JG666SbMmjULV111FWbNmoWbbroJRx99NH7605/2ST8qwdZ4EvMWLUNbZwKcC4RkICwbO3et6MIwGESUwn8fMAAzPzcasbAMxgwnQlfC37jKBdDWmcA7G3dXJA1aYdy7u4vBWU8FAA5pqsdjF7Vg7vGTPHPrh2SGWDi/Yd7WQ2ddmgDXrNrS5esAsqJxgUsfXoEP2ux1rcxn+M6x423PEJIlDK8J5X0GWWKoCcs4qLEOdRHvdC8MxWf8EzBTLHk/kywZfQrJ3jUNih13855ciKyhLah4qLrAls4E5i1a5tlfLgR+9eSq7FqLyFLFq3uIjHEv35gB/vWG8o0nkH/+asMyvvuFiVhw/lG48bkPs88ZU2TEwjKiIRmRkGRrQ8BIneX9LEAsJLl0EWBE/8w9fhIendeCyft5G623xpO48f8+9PzOSUrj2NmTNlIkBboCCGXGyrPvmf5Xco4VyRjjWMgYz5gig3OBtozMbYsnK3Sn0rDqwGER9355RSqvDlB7VxIXPvCO53O6oju52wnkNQ/ex0T2Wb42dUzVs5Q2xOy61YzQ8aPYV6TzHW9dj9WWo0RaK8qpzADEAvzG8LvW+bkYvV/qPZ2RvdECoSKmnnzyR8f56i6/3yRC5HR0KcNkznu4QhlRJInh69PGoLE+mtdxKUsM2/ekBoSeKpeKRwK98cYbWLBgAR599FF0d3ejrq4Oc+fOxbx58zB16tTseUcddRQeeeQRhMNhPPXUU5XuBrG3Eq4FvvNYVZoe/rWvofbzxg7KUNN+VbkHQRAEQRAEMTT4/e9/j9/97ncYPXo0zjjjDJx11lk45ZRTEIlE+rtrqK2txWuvvYbrrrsOjz/+OF555RU0NTXhsssuw7XXXotYLNbfXQzMwtYNRvQKjN3wOs+/I7RQsXpZAqKKjFMP3Rdvrd+FlGYYgMwCxV67RcOZXPRJVYcsMUSU6uaMd0UCFWlV8zPQNNZHcfmsg3Hf0vWuWi2FagA5KcUXdu1TqwJHamlc4Fd/X43HLv6C7XhjfRQXnXAA/vb2Z9lnuPmcI5BI67j+f9fkbVNiDEfvPxK/+rdDsXzTbqz5/9k78zg5qnLv/86pql5mJjOZLJNMEpKwhBBCQJIohB0VgqAiICpiQEFA7kW8Cl64KgooyhVfd5HtCgZREQwICgQRSGIIYBa2EBIgG8nMZJ2ZzizdXVXnvH9UV3XtXdVTs8Xz5TNMurvqrM851fM853me1hzue3492noYUrJk5ZZiHCjqOgiM17JEUNCC222cWGaBckGJITMpyZsjJ+64A4YhRdVZVcp7VjpZzzn3tFfVGXZ1Gd4CaZmiWGUdYUiUgOm84piFyXyl8TTzYeiMWepqiRKsuuE0ZBQJty1+y7Gn2OfAb1yDomdxGHKaUSQUVA2mMwEF8Ow1p1TMLWHube6T+iYZmTo8O3TGIVOCGoUir+qhJ9uBaLKl82RCwJn12euklCBNKAoaQ1suj4UrtuDa+dMTqq06zD1QZwx3L9tk7Uc1KQpKKHqKWp/Kb+v076d7lHXuzevkK/I+75nXNdVncO7sSXji9VYUNAatlCMvLVP0JuTZQglwwiFjsGTDLus9xoNzJhmfx5Mo9zPeLbf9KUeb9nTHkn8OQJIoZMZi586SKKBIkrVffXruJBxz0Gh89U+vgBhPG3CUjWyazqywtdXC4d1Li8wweCqSBMYZGANAYO2hT37lREweXetbnol7jt1GQWrtBYMbYo8S4J1d3djTXYRECLQA2czIQ2uf6guJuknMmjULxx9/PO69915MmzYNd9xxB1paWvDrX//aYQCyM3PmTOzbt8/3M4FgKFF/5pkYfeklGH3pJag/88zBbo5AIBAIBAKBYAjT2tpqRUb4/e9/j7PPPhtjxozBeeedh4ULF2LPnj393ob77rsPnHNHKDiThoYG/OQnP8HWrVtRLBaxZcsW/OhHP/L1VBqq5FUdi1Zvh6ozpCRDOcQYUNQRGHJKq6AZNdMlMG4o083rJUOD7HsPIQQpiYJxo3y3F0zSeBOGxzQCRVAOS5RAphQSJdUZIlzKnUpj0tFTxJqtHbHqWLO1HR09RW/d3NmHw5vrI+UxAgwPsowi4biDx+DSEw5C8wgKiZYV5oQYijDGDKV7WpagSJWNflHkIolxB2Dl26kGzg1Dh7u95lrQdG6dwq62jjDsfQ4bsyhrLGg8jUTvFGlFLnn3SJAlaoUpcu8pgJGXIq9qsfts5D3ioDateBTdsL0dQWLgJx+KmUg9guwYeYuCW8OR7BxrJUO5aotfae6dqs6waM025BMOyVgtrGQoNKGEgnFvnp646Jzjz6u9/fQL8enJE+TnnedTh/2ygqaXyjPeVCQaKZxnVDgHXty4x7keuVfp77gnRvl+65GDo6gx44BGqd7+kKO8qmN7e2/s+6o1m+rMMEqY+1U2LePIA0Zar2npt0wpKHGGKOzLlLoPxuis3BZFMvbHtCwhJVPIEkUqwiGXoHxWppjYv1vFoaA594++QInxPXHN1nabfPlfO1T3qWpI1Ai0ceNGfOELX8BLL72EVatW4fLLL0ddXV3oPRdeeCGee+65JJshEAgEAoFAIBAIBIPK2LFjcemll+Kxxx7D7t278fDDD+O8887D0qVL8fnPfx7Nzc045ZRT8NOf/hQbN24c7OYOS9a2dKKjRwUFAS2FTakU/qqS2sG8X+emF4FBJYU8pcQ6sd9XRWEl3OUnEQ4uabxKoHD+9npr7HHTOfDE622e991KOMOgF61Md/gdP4WJKReEwJK7SgyEXJh0F7Q+na/2k2N3n+1ro78IG7NKHn3V4renGKH1jJP9cWvlKBuWnfXkIrcjnjGwtA9GEHjGUTHXSZKjbHpGFTTmMGhQSkBB0N6tVhyXgWLnPm/+t0JCit+93UVvP30MPpH20AoTlFeZY60maQAy2VfQHG3l4KFGiTiHFvzWo6ZzFHUGtfTbJGk5WtvS6ckNFQVWxT4BePe7sPCj7v03yVmt9D0mipEraI7Ne6t9fqi6sX8k8R2GEGLkP+IlT+8Kz/KhuE9VQ6Lh4FpbW1FfHy8J1wEHHIADDjggyWYIBAKBQCAQCAQCwZAhm83inHPOwTnnnAPGGP75z3/i0UcfxWOPPYavfe1ruOaaa3D44YfjnHPOwcc//nHMnTt3sJs8LOgq6BUVTtXAwUu5Sar0prACyPUPbgVL1BBq1v0DYI2IFMrIRnu316MnCnu7vcnM3XXpPvk1gpDcoYZ8ptGUC7tyXqak4jz0t1yYJOW9YW+v1WfX6/4maMziynxU/PaUvhqc/MaqqxAeVszejuDavZ/EkbH+MqRFQdM5UnK5nUY/ecVxGSiKPt4GSTlFce6df3fRvjmBfPawSk0ywpn24zyXLAac2PYKHn5oIo7+3m89FmyGGSPPn605CcpRV6E6o19fxtu+fsMc+vzqkChJZk2bcxqwl0SpImiOLU+gPspkkKd3bEp9tXpZodihtk9VQ6KeQLW1tcjlcmABLqWMMeRyOej68HWdEgxxdA3Ytqr8ow/fxSkQCAQCgUAg2P+glOKkk07Cj3/8Y7zzzjt4/fXXcfPNNyObzeKWW27BMcccIw7JRaQuLZXysiRbLoGhTHGEtIlRR1gonETwMXLEIW74uGrwKnnC62ysTVVVz6hab44td/90Fl3l5PEE8plKyxBiqyet0IrJqvtdLkoklUzc3l638aff+uKaqKB6+kuE+2NP8etDXTr8PHaUdvh9NFAyljScG22vNC4DhZzQGvKDEO/8uw3zGvOGQvSTBT8ZsO92eVX3yESiS6dUmL2OSmbIOOFS467HJOWoLl1dbr++rEH3nhvkueVXR0ahSEkJyK3PnNqJcogk2BMovOwBhcNqUFSJHGr7VDUkagS66aab0NTUFBjfes+ePRg3bhxuueWWJKsVCMpovcAfP1v+0eLH8BQIBAKBQCAQCAaKmTNn4pvf/CZefvllvPfee/jlL3+JI444YrCbNSyYOaEBI2sUMPDEvFsIDMW/XkqibaoqKimuGCufm+1H/aHRFld74hp1wkLqJzWOcYs5a1Zz7HGTCHDmrPGe993DwXj02DNuA4qfDs6UC87L40VAQo0vAyEXJjVpqU8qNj85dvd5IPoSNmb95cXSH3sK9dG6zZwQHkHH3o54OcYGz7unWhjjYOBorFUqjstAMbo21W9q6lG1KU8/PZ5AvuHgfDyB/AxDtvfyKnM8xxhPJp9KuU1AXUZ2rFPOw/eHOMsqznpMWo5mTmiInEvODqXV+Xv67XdBnkD2OS3fT6pqr5skvscEhWsz9zK/9g80jHOwUls4yt/hAq8fgvtUNSRqBPrrX/+KD33oQxg7dqzv52PHjsWHP/xh/OUvf0myWoFgQNj5ox9h6+WXY+vll2Pnj3402M0RCAQCgUAgEAxzOOd4++238d577wEAJkyYgCuvvBJPPvnkILdseJBRJJw7eyIUiaKos5jKUn/kUmJ1xnkpgbyhqtB5sDKWMSNJtRFXPlo9vJR4XGPM8FSJ2HbzviXrd2HVlr3Iq3qoUSeoDDd5VceqLXvx/IadsdoTUknYSw8ja1I4evLIWFUcPbkRI2u8HkR+4eCi+gK5PQA4N4xmRU1HUWPQSoMtS4ZsRJU7Ss3cRH6KXKcssNLvuLJh1WWT27gQYiSPN9dB+X3i6HN/oduiytjbYCQSZyioGnqLGt7ZuQ8FVYeW0Lo3ce8pjLM+e84ZngzlMiRi1OOHuQ5f2rQX8w4eDYXSWF5JBY1B1fVEPJnCcpIkBedGXhdFojj36EmB4zKQ5FUdu7sKjr08KRmTCMF5s739NPcGc923deaRLzojKPk1oaAbxqKgvWJfXgXj5eeSqiewt9sgAD4wdZRjr2DcP/eQ2b9/bd5rPbsqEfUZX60cmettyYZdnjZlFAnNDdlI5ZgYa6a6VePdc8vj6H5GmNebmMNCCOmzgV6i3rbYibIfBtkaLU+gPjyjkoIDSMkUR09utOQr8NohuE9VS6I+TBs3bsSpp54aes306dOxfPnyJKsVCAaE/IYN6F21erCbIRAIBAKBQCAYZixatAiPPvoofvazn6GxsREAsHnzZnzsYx/Dm2++CQA4//zz8cADD0CShu8fl4PBxfOm4vFXW9HS0WvkCuijfss0Apg5RxSJQiuFMw/SfeS18gc6A3qKOmTJOJXrVoYxzqHqDJruNEsQIPAev/u+9MAqEBCMrFEwZXQNGOeRk37blTg7cnksXLEZi1ZvR0ePCs458hqr2J7KdThfR5mW7559BD7+y+WR8r3IlODms2cG1M09r6PqPc3k0Dtyefz6+XewokUr5QKxxY6Bochvqs9g174CChpDSqKhual0BvQy3TGuAHxlwY15z85cHk31mUj9kCmpLm8CB8aOSPvmaFIkivqMjN1dRUdejiSxN1mmhjG2qOlwV7ery2ifaipEKUFKrk5WAeeJ+4vnTcWja1rQ0tmLnmLfFeaMcUumCQDZx1DsWYdGUg7ojAXKhu6jtGQcKGh9bzNQOaxXX2GMW4rX5oYMLpo3pR9rq4x9DnbtKziM6z0RDBZRaB7p7eeOXB7PrtuBnqJuzfU/3tqJVVvaUdB0aw+2b4tmW3//Qg+KOiz3TgLgty9sxuePm4on3mjFwhe2oNfWdsaBXjW5tcsBrNi4x9FObjbEqtP57Lr5r29CIsaz69zZE3HxvKmh+5rnGe+iGjnyW2/m89TepgMaM9iypzvy1wpCzHxOEW8w7wM8XjwEwJ6uAgqa7vt9QaJWShvLk4VSwwgUp36zDJNRaYIuPfg0S5SyA8PB2d42v1sNpu/i2BFpfPfsmfjS71Zje0dwFClT7obCPtVXEjUCqaoKWuHoEyEE+Xw+yWoFAoFgSJORMrjrtLuwctVK67VAEAc5JeHjX3mf47VAIBAIhg+//vWvsWPHDssABABf/epXsXbtWnzwgx/Enj178NBDD+FDH/oQLrvsskFs6fCjqT6DOxfMwRX3r0JbLo9iHxWgeZUho5RzEFBCkFEkpCSCXEELtWbYFTKqzqHpOjKKZIUJ0xlHXvVXegTdE3SfVjrR3ZbLY+e+AhjjnvuCMBXt61pz1ripOgMFsZThYe2JQpR8Fm4On9CAn3/maFz9xzWhhiCZEvzis0fj8AkN/nW7XusxbIMyJVjXmsMX7v0X2nLBegudAwVVx9gRaezpLqK35AlWCXNcVV33KN8q3fPJO1bgzgVzMKM5PBRNV15DvkpFrxUWx8cCQAnB1884DD975m1jbPopJJtJHGW1xjj0YnWyCjjDAO7pLpa8KmIX40uvpkMihjeQIpWSi5c8DYHgdci50yjmJkFdfiD9NcOqzqAyQxHc3GDs4VENnP2Bew7cHU9CFsbWpXHPxXMd/TTr3d7R66iSMY693UVwwNqDzT3V0VbX844DeGTNNjyyZjsIQXWG4JjkelVHO8HL+fT8nl26zqHDeHbdvWwTHn+1NXRfcz/j3ftOb8kAFVWOgtebt00FLXo+OaBkZNN0UEJAOEdKpihqwYZcwNhmM4rkMWDv7iri0t+u9J1DDliGcfOuXk0HBUHcbcFtXPqPozP40So18PoonkBB4eDstZnfrXoTMrBWA2PGPnzngjm4fOFKvNfubwiilAyJfSoJEg0Hd8ghh+DZZ58NvebZZ5/FgQcemGS1AsGAkDn0UGTnzEZ2zmxkDj10sJsjGEZIVMIhjYdgQmoCJqQmQKJCgS+IB6UEoyfUWT90IAKxCwQCgSAx3nzzTXzgAx+wXu/btw9/+9vf8OlPfxrPPPMMXn75ZcyYMQO/+c1vBrGVw5cZzfV4+EvzcPmJB6FO6VtZHEaImM7eshJEogSfOHoiDmis8VX0yxSoTUme57NZlpHfIdgAFHQPgMD70gpFNiUhKxvKQfd9YTDGsSOXxxX3r0JLRy8Y48jKErIpCWmXm0Kcch11VKl7PPPIZjx21fGYO6XR8xklwNwpjXjsquPxkSOaQ+p2Vh5Hod9d1HHpb8MNQCZ7e1RwDlz4gclobsjEzscQd4haOnpxxf2rsDOkbTtyeazfsc9RdpSvjaaHikQJdu0rBM75lFE1ePhL8/DZD0yO2XrztDtBRg5uUF8iBFUrq0A57JK5LnZ3FSARb3hAOyPSciTDX3NDBidOG4NsSrLmwmxi0DrMKMbvmmEcdsiE+oyjVFKqXn7iQXjoink4bPzg5djwmwN3qCq/eTbXTBQZIDBCT42yha+01+s2mkuUQCmtE1OuO3pUT1sVny1HY4ZRVNV5n9ZTFPzaWdCY4RET8OxKyeVnF2M80r5mf8a7uxRHjiqtN3ubLv3tv/Dato5Y40GJ0Z73T2lENiVBkWjptzdInLkfZlNewzXjHH97vRWtnZWfQxzAmBEpNDdkPN6Qfrl3/LY0sy0pCZhQF77nRAknGMUTCDAM4tWKqNnmmpSErEKrCoO3a18BV9y/CqNrU7j38x8InKehsE8lRaJGoHPPPRevvPIKvv3tb0PXndY8Xddxww034JVXXsH555+fZLUCwYDQdO21mHzXXZh8111ouvbawW6OQCAQCAQCgWCYsHfvXowfX05g/89//hOapuGCCy4AACiKgtNOOw3vvvvuYDVx2NNUn8G186fjwsPTSElARqEOxWMcZRgHsGZru+O9jCLhwDG1qElJHoVmSpYC4+cbXhwMqh5+GtjvHpR+h91nhn9x3xcG4xwLV2y2DB1pmYYeMIlarvse52seWdlz+IQGPHzlcRhTqyAl0ZJyimLpf5+Kh688LtADyKrLc4o/ek6gV9/rQFsExZvJrn0F1KZlPHvNKfjxp45CAnm5Q2nL5bFwxZbAzxeu2IyiK2SSTCsryAxFqIxMyQgYNOeMG2utNh3POCFRoCYlIS1Lod4tUtSkWgFUI6tAWTFqXxcZRbK8AO3UlPaWgs4gUSCrSMgoFFlFQm3K+LG/9+w1p+D0meMdyllzCCqtQ0qJY++SKPpdxkzsLTH76RfKrmI5pRP/dg4bPwLPXnMKrp0/fdBP1kfZC2tsURjMsahJGfu+w+Dquo/CkBeJEuzqKjjWrr1eyef54ZaX59bv9LS1UvTDJPyAiOu3G3c793QXAER7dpmHDirta0D5GV/js76iylGU9Wa1qTOPfIywlxIF3j+1Ec9ecwpOPHSsNS6UEKRlydNucz/0C2Gp6gxdBS163YTg2WtOwe++eAzOOGK8tRfVpGRPvYc1j3DsUQ1ZxWoLIfCE3nQT5YBHkJ3I/Xac70WAMcZ+4ydRavRVoUhJ0QxC5iWm7NXXyIHzNBT2qaRI9PFxzTXX4NBDD8Utt9yCGTNm4IorrsDNN9+MK664AjNmzMD3v/99zJgxA9cKBbpAIBAIBAKBQCD4N6G+vh579uyxXj/33HOglOLEE0+03lMUBd3d3YPRvP0KpWQUkQixEigD4WGV/HirdZ/jxKvOymYE3aUF4dxQZrjfNzHCqsVrgKZzMMYC72M2RY3dAKVFSPytagyLVm+Hqpu5bIxQVUWNBYZhi1KuHb9wcHHTtVBKkZIp0rKElGwoq6qpW4+YE4hzjte3dcTyYtI5x59XbwMATB83wjEvSZOSKFSdYdGabb5J1fOqjkWrt/sq2qL2iRDD4Ab4z7l5un/R6u2x2m6OC+fx10Jc4soqUEpbUOqXY12AW3mHTCil1lzozPR0MRT9hBg/EiXWe35JxLltHN31FS2jMbfaZqIz9KuMOdqIsnGMMYCAowr7mq8lYuvenr40LTF854BzTwgu+xwwVh4XuywT639lKCUOeTHXrl+9lVjx7m78eVW8e5KI2GgW4Wd85Jx75rejR0Ve1QPXeVFnlqeIud+E7WtuoqwvP4LGXGPMCNlma5NCSeyxYwxorE37hnbza3fgwZHSHqkz7jFAB7GnlMNtzpRGTB1d4yjfXS9jzvdkV1uCQ7mV+lmFJ5D50v52Nc8CxozvdkHjR6lxaCTK9k+I85nanddK70ebp+FKojmB6urqsHTpUlx55ZV45JFH8M4771ifUUrxyU9+Erfffjvq6uqSrFYgEAgEAoFAIBAIhiyHHXYYHn/8cXzve9+DJEn4/e9/jzlz5jhyBG3ZsgXjxo0bxFbuH5h/rzOvbioWvaqRZ8DUwRiGBO5brsZYxdwLcdtixvwPuq9X1VGbluAOXsJh9D1Md7SvoKGjRwUFsU5CF0IMQFHLteOnBKKUgPXBABBVKee+TmPR/IAYB/Ja/PwEe7uLWNuSw+59hX5Nck0pAQVBe7eKtS05zHGFzFvb0omOHm8uhyhtsucAMmXCb84Z54H1hJaP8rz0rwkovqwChlLf7Jd9XRjKYZ/rS3Ohg8euC6X2+dWn6tzmyWUoNP36N9BU2o/C7/Xe1VPUfWV4oPGd8wqWrjBZDlI+u9cuwJ31Rtjcugo6elXmaOtAYijDK7dTYxzv7e0JvFJnHAVVRzZlqKMr7WtJ4TfXhlHbmG+dE2RNg1IVin8OoLvkvdOX6TG/YxAg8jxrjFtj52eAcl9rx230qfSIjmKEdouzeUDGbpyv5jtalL09Trl22XuzNRezNcOTRI1AADB27Fg8/PDD2LFjB1auXInOzk6MHDkSc+fORVNTU9LVCQQCwZCnR+3Bf/7jP9HZ2QkAmKvORY1SM8itEgwn1IKOv/7yVev1R686CkrMMBwCgUAgGDyuvvpqnH/++Zg0aZLl8fO9733Pcc2LL76I2bNnD1IL9x/KodH6pirlVhlGgWZeGb9y+yv5dqU+6Iz75iyxtzvoPg7u0HOFGYCiluu41qe4PqstIw6ze9wY45Eyu3NEzx3kuI8DXQVtQBJcE2K00y9UUFdB77Pcu/HMOa++nij3KBJBMYFhjCOrgHG63OyXfV2ErW1TJx6lLk+IQnDf+uyh/Aoai51nqj+pVraC7ooT7qq/iDvnJtWMhXvtuuuNUifnpBr7xMDCgUKFvdA9xGH7WlL4zbXdE8XuyVutrJtFuHP8xKHsARjvPnPsKnmuuD2W3a+T8B5jEcqsfj8J32+jlmteZcpeLh/vYMNwJXEjkMm4ceNw1lln9VfxAoFAMGzg4NiS24KiWrReCwRx4JyjY2eP47VAIBAIhg/nnXcefvWrX+H//u//AACf+cxn8PnPf976fMmSJcjlcjjjjDMGqYX7D7SkHPCm940HcZWhmYaTvpsyYrShwsnrgI8qtpEY18QOmRWj735KHxrxJHlwmdHudZ9U1hmPpNgiIKimiYQAdWkZqt7/RiDOjXbWpb2qnDofz7DI5doUa/a/VdzlMV59PUH3KBIBJcZPUqF34raPUmL1K+q6MC+rZiy4bRyHy/f6ivtR4H3++MnwQFPtHATNucczyP5vx9rlofX6vWvuT3yAwgH2BSVm8qiwfS0p4sx1tfuomVOtL/uYWXfcbcEcu0r2J3fONHc9lXMCVW6Y9xpu+79BtWNc6b645Zqyl5L+PQ7YDv6uKxAME3JPPAG1tQ0AoDSPR/2ZZw5yiwQCgUAgEAgEw4Urr7wSV155pe9nJ598Mtrb2we4RfsnpgKEElSpsjRIK9Rxs64bXiLVlhv3HgJApoCqB9/nryisrATKyBQjaxS05fJgjEcKOROlXGfbuOd1XxX81c4l49FyxFAC1KZk5PLxTqOPqk1h5oR67Okq9EnmKsEYBwNHY62CmRPqPZ/PnNCAkTUKejv7ZowyT3H7zbnOeVX12MvyG6MkPV7iyipgnNw3+xVlXZhzUU1dJnHqs9OfMubBMnRV3o/iUJOSfGV4oIk6B07DaLgs++G3du31RqEuLSGjyNixL568JEVUQ5lECcbVZ/DG9lzVY9Mf+M11YPuqMMwSAKNHpADEDw9px/4dI6psyJRYY1cpHFxQ7sKon0cZmuBwcOX3qvkuFWW/jVOuXfYOGJWN0ZLhS+K+pW+++Sb+4z/+A+9///sxbdo0HHTQQZ6fgw8+OOlqBYJ+p+PRR7H79tux+/bb0fHoo4PdHIFAIBAIBALBMOHmm2/G0qVLQ6/55z//iZtvvnmAWrT/Yuo/CCGQbZqYuEqZg8fWWUnCdcbR0tGLXK8RLkSOWZgikdj3yJKRUDzsPjNPkV05J0v+3hRmPzTG0F3Q8fGjJkCRKAo6gxYh23tQuUF4wl9xb3gbt1Ixr+pYtWUvlmzYhVVb9no+j6qEdJ9CzqsMW/f2QGPM8Aoq/TZf2xOCz50yKpZSXyIE582ehIwioS6txJ7nOPSoOgiAOQeM9P08o0g4d/bEPvmqcc5RLIVIcs855xzr23J4adNezDt4dKxyKTHklXF4Qhi6wyz2dQTNOfCb4+D2EWv8FImiqLNgLw3OUdSNUG1R1kVe1bFlTzc0xmBGJuQcseozqWYv6QvmziBRVNyP4jBzQgMyyuCfvK9mDsw5dz9jAo31Nnn5+JETsLal01pDCjX2YD1CopUPHDga582p3FY7ScyWuVz9ouRxePudUSj25TXfUKWe+21jc+7Rk/pVJuxzbT73/MaQcw6V8SoMyUBWNtofZqCzP4v9nkeAIWMSJdZeXAm7B1VlT6AKRqAKVUbxBAoKMefY50n8vYxGsGBELZdzOGRP1f2/F+xvJOoJtGTJEpxxxhkoFAqQZRnjxo2DLHur2F8HUyAQCAQCgUAgEAjc3Hjjjbjxxhtx0kknBV6zZMkS3HTTTfj2t789gC3b/7DrCBSJQtN1cFRWbLgZOyKFda05aLqhtnjh3d2Gwosbyp6oJ00Jyl4OZlvi3GPvgxtN59Btn9nvM2GcQ9WZ1Q8A2LSnGw+v2gYCQ1lT6eSvX7nV4PEqYRyyRLAjl8fCFZuxaPV2dPSoVti9gqZDogSKREEJiZ2rwOz7jY+vRXdBC1R+ERhKN0WiOP6Q0Vi/Yx+2d/RGqqN5ZAYXzZti9I+Gz1cSMA48/nobnnpzMc49eiKuOX06muoz1ucXz5uKe5ZtQqFSTB+/spmhkAWcc26XoR8t3mAo4mJ2UOeArvq3SWMcekGHLBGkJNrnseOco6fonAP7HPudlDdl8+J5U/H4q61o6egNHEPz/eaGDHZ3FQLbYY7bqT96Hru7Cg75+8kzG/DFEw6sWB+zhTI054Rz3m95yILQGZBXtapyZjFu3GtCAMye3Jhc4/pItDkve8fZ98JK651zjoJmGBsyioRHXtmO367YYuT3YcY8+t3LOIfdNk8AnDBtDM6YOd7R1kqq7iSkJCURq/9+uA1Y3QUd/9q8t+J+bd9vmhvK+2h/cuasZty/Ygtyec33uaczZq2t5pFZ7NpXcOTpCkNnwCvvdWBnLu+7x/g9i/0gML5j1KZk9ERMkNbRo+LUHz2Pc2dPrDjulQyOFectSn491zVB98R9XuoM6CnqoXt53HLHjkihq6Dh6j+84sjrZ39m7E8k2pvrr78emqbhnnvuQW9vL9577z1s2rTJ90cgEAgEAoFAIBAIBAbFYhHSv0lM8v7EbmgwT/dXw7PrdjkUdIwbPxxGzHyOyqesCYzTx2a+k4wixbrH7EMqJL+CXcmRkp1KEZ1x9BZ1j6KRc2BPdzGSocDdnqj4hbFxl6FzjnWtOZx/xwrcvWwT2nJ5FDVDSVbUDK8JVTf6oJdyMkWqu3TS2ux7Z48aqjTnKNfTU9Rxz8VzMd5mWAmiuSGDey6eaxlhJBp9nvuKqnM8uHIbzvz5MqxrzVnvN9VncPDY2tj1FzWGXk0HpQQTR2asOXfLkMaM+UnaCGHOQXdEpWcY5vr0K9+UJTembDbVZ3DngjmYMDIbeJqfUoKJjVncuWAOpIB1YR+3tlwemqvO+5ZvxifvWIE93cXQ+no1HYSU1yHnhmfbQGPue9VOu7nVmP2oywydzBRR5lwixHcvrLTeWelBQQhBb1HHzpJRQdUYCiHGAM7LHhtmvfUZxdPWgRCFgsaRkilG+OTr4dybQ4ajsiEBQHm/Ka2lpgh7bl9Y15rDlb9bjR41eI/pVRkIASY2ZvF/F8/F9HF1kfdSDuD17Z345B0rsCOXd3wW9CwOKkdjxtiOHZGOXHdbLo+7l23CH17aGnqwQ6uwiCvnBKrcHvc1lhHI9X41z8tKe3mccseOSIMx4Pcvb8Xe7mJgPfZn7HAnUSPQq6++is985jO45JJLxB8wgv2OA371Kxy64gUcuuIFHPCrXw12cwQCgUAgEAgEw4iwkEHFYhHLli1DU1PTALZo/8Q9zKYCNS5u1YKh4PdeI1NvGmLjtDhBNiVBst0kUeM9RYp+D+M88klkw3DCrfvyat89UjIKdbQnKh4lPPfOQ1tnHlfcvwotHb1gjCMrS8imJGQU47e9rLyqY9e+YK8LO7u7Co6+Rz3IywHc98JmjK5N4bGrjscXjpuKbIBaQ6EEf/nP43HY+HIOC1M5bJ/n/mZ3VxGX3Pcv7LQpHWtScqicydQrtzIlaG7I4PITD8LCS46BRImvDKVk6pmf4YQpS+6T6XbF/ozmejz8pXm4/MSDfMfvshMOxENXzMNh4+t9jQbuccvKElIuIdS5EWLyivtXYXRtKrC+5oYMDhxTi2xKAiFwyvXApoRJBA7vHj0UqDTnFx472bM3m4Tt62mJoEaRLC/SrCwhrdBYXo3mHmzKrNnWz35gsu+zTaYEWYX6hmNryCr42JHNkUK1mXAYz5aPHDHet49uCIHvOPnJ9uUnHmStpf5kR678rAEHsjIN3J+zioRfXzgbh42vR1aRY+3lHEBLRy8eeGlrn5/F3UUNlBDf7xhuKDFkizGOXF713ePsbQxDr+DpEyWylyccHAuuO2z9hLYD/nt5lHINw6pxaGbXvgIY41Bk/9o5gCvuX+V4xg5nEjUC1dbWij9cBPstRFFAUinjR1EGuzkCgUAgEAgEgiGMPScqAPzkJz/xzZc6ZcoUNDY2YsmSJfjoRz86yK0e/rgVjKrOEgmJE1QGIUaS86wiIaNQZBUJNSkJadnfe4YSgrQsRb4nrP0SIahNS5YymJeur3RfHNweDFFxK2Y4uMcQ+sBLW9FWUqykZepRqNtfcQAPrdwWqe6/vdbq8XyKSmevioUrtqCpPoPvfHwmfvHhOlz/gSwOHluLlESRkSlqUxJq0rLn5LrbQyAtS1BiGtDMUINxaOvMY+GKLdZrjnA5yygyMorzs8tPPhjPXnMKrp0/HaPrjOTmSclQJQgMxWtapgNi2LCvExO37DXVZ3Dt/Om+4/c1Wwg+vzXuHjc/Q1G61NG2XN6SN7/6nr3mFExrGgFKSKRyKyFRWGWHOBgmCgFQo5Qrc4/9UCFszi878aBQb8ig9TauIYt8KWybucdFWVcE5X3A3IPt+1hTfQa1ack3/4siUUiUerxgJQr814en4dITD0JGibc3cQDv7up29NG0a0YtRqLwyPa186f3uwcQACxcsdnxrJEkirTsXQMSAfIawxOvtwEwnltx9nLTMzDXqybyLN7VVQAtfceoZLijlCBd6pDfHheVyjmBKpfh9ncyDUtBz2L7+olroAzrZ9hzkMAYX6C0NkOevOY+vT+Q6LZ/5plnYtmyZUkWKRAIBAKBQCAQCATDDsaMPACcG8pv89/uH0VRMHPmTHz961/H//t//2+wmz3ssf+ByzmvGPokKkFhR8zyJUogU+PEdqVE8YDhGVbpnortJwCB815NNxJNJ9VvTa8uQbJ7uIxcSsT2muOxV7ZD1RlSErX6oOksUKnz5ButyIeE8gGMk8HPb9jleC/OUOiMY9GabVY9KYng8DEypo6uRUqmkEtt9dNTuU+/c85jG9F0n1BmleAAHl5VbrN9vsLkzP7ZAY1ZS2nMeLDsqRqPlBMibvvNfEpuj5n+wi3XQdX6jZ+9/24x8Bs3Du6RaUKM/Eeqzhzy5q4vo0hgpWeFu1y/kIuVYMxQVFMCDJgthgDUltHdCCc4NA1BgP+cR91P7fdSYnig2Pc4xlmkUIqUlpPbm7Jqvyuv6li0eruvQl7VmSXbdvlkzDDOW/IUU37Wt+2zvs9QUvbu8O57/t4iOjMMRnbZHgjMsfI8axjzrIG0LHnWJBB9L6elda0z3udnsVQy/Kql+a+Uuw8oyx/Qh2d3haUZpUz3JeY9UUK6RumnnSj9dK9pwDD22WUirAQ/mRiuJPqEve2229DR0YGrr74aPT09SRYtEAgEAoFAIBAIBMOGzZs3W/lQOef46le/6psr9Z133sHLL7+MW2+9FbW1tYPd7GGP/bS2mcMnKfx0E1HzH1RbX1jRfooPK59AQm2oun8eTyCnlxbjQEevCgpieTSoOkNeYyho/oagzl4Va1vCY/OvbelEV14LvSYMQoD2bm89biOdv5eX83XS8hfGnu5CxbEJw6Hg5MFt163QRsn2zFI8DlCsMLdcx8l5ZRdt921+42YYzrzlUEpAQXzlzV1mUrJk9nsgZdOvDTtz0UI7DhXUSppxH4ycZsyxxxWiJvHhZZksz1l5xta2dKKjR/W9VWMceZ8QohzA9vZecM6rmv9eVbfk2H6/39qJ8qysxkBRDeZY2edBYwx51euh416Tfv2tBKVGDNq+PosJMdoStxzikpu4aAl4ArkNOVZKoAhlV3MIIm4/jYMOcMhEGFH26eFCotnYPvOZz6Curg6/+tWvcN999+HQQw9Ffb03tiMhBP/4xz+SrFogEAgEAoFAIBAIhiSbNm3CyJEjB7sZ/xbY/55PWlEdhFFP8srratufdL+r6Z+v0tumLOTgRp4gW7EFm+KyUAqh5GgHB7oK4QaeroIeK/ybHxzcU48315RPzgvXewMlf4BzbKqp1X5anXEe2nZTgZYkpowN6JjZ5DqK957zPpPKc14M8XohxF/evDX6G3yrYSDHOIiCNrxO1FfjuWSOs120qnXQ5HBqx7sKeinEpv9aNJXw7o/yKisp2vvybKl+ndrXnM645e3Un9jHyiTMGGdfk3E8WIyby794nPtC2oII85UOiO1YzbO7kidOlD65vUWtcHAV7ktCrqJfH/3MQbR9eniQqBHo+eeft/7d1dWF1atX+14X5wErEMSCysC0DztfJ0Rx82aw3l6j2GwWqalTEytbsH8jEQknTDwBbW1t1muBIA6UEkyZOdrxWiAQCATDhylTpvi+v3nzZvz9739HJpPBOeecg7q6ugFu2f6H/U/NeGmG+1BnP9VTqVzu+u28LzlFbzX9cytzjDBCrjIJj2VMIADq0uF/39WlpT47kxAQTz2SxxMoWjkDBSHlsanGQGP3BGKcV5a9hO0IZn0DOmZV1hXmCRS3TM795c0O4/7lVjtSAzHGEiWhyuS0PLz+Hq4mpJc5zkmsFeIyvNSlJeO9mGUrEgFjldd3WDvsv6u9HzAMA4kqpAMoj1W0wbKvSfOO2OvacV+VAkAAziqXk5aNHFC222z/jj9PlUQ9yjC6l775umLYtgTkKs71UddPlH16uJBoD1gVLpICQaIoWeDsX/VL0W3f/z56VxmGzeyc2Zh81139Uo9g/yMjZ3Dz8Tdj6dKl1muBIA5ySsIHL5ox2M0QCAQCQZV8//vfx913343Vq1ejsbERgHGA7qMf/Sh6S4eMvvvd7+LFF1/EqFGjBrOpwx67cr4UlaVfz70TRDMIVEM17ScAZAqoejL9rrZ/npxAcCqnKAHqMgp27iuAMe57wMXd/oasgpkTvJFG7Myc0IC6tIyCVozfaBjKnsZabz3UddA6SviwgZA/k9G16YpjE4Zm83RgvHLbk/QmIbCNb8LWJZkS31webrmuNjSV+744c84YBwP3lTfHdZz7lltNi+397k/ZTEkUvazk7eOqhABoqk/3U839QzWeQJQYea6KOgvc44LgKIcQNOfMLsYzJzRgZI2Cts5gjyr3GiUAxoxIR1rffmRTkpWHyn5/1Bxh3jUXo/I+YI1VLl9xHtxr0hzzqONFSmWA9/1ZzLnRFiOPUnA5iiuhmTkfST27vZ/H9wTiET2Bqv3OE7efZj0MPNLajLJPDxcGJuueQCAQCAQCgUAgEPyb8uijj2Lq1KmWAQgArrvuOjDGcNNNN+HKK6/EO++8g5/+9KeD18j9BPNPeTPvgVt5nzSyZCQONxM3G8mmq0vIbCdO++0J4klJWSgnZJky+xcXb2JoOMZJ5xxHTRoJiRDkNd1hhAji9JnjQpOJ51Uda1s6cei4EbHba0IJ8PEjJ3jqcY+BOxm6H4SQ2OGOFInEVmgRAJ943wSsbenEkg27HGGMTCrJp91Q0qtqFWWPVdIUxkCWiHVSX+2vBFsuCAFUnUPVmTUudvKqjlVb9vqOFyvlRVq1ZS/yqiG7ms6gMRZ57XHOUdQZFIni3KMnhco14/6yVM26pHTg9kY7jJfHV5aIR3E91HEbEt3riTHmWV+EEDSNSFuGoDjPBM7LYbnKz5jy5xlFwrmzJ4bvFa7qZIlAoqQUGi3+3jRrYoMlc/b7/YysfrjbWinsWF8x1+hLm/Zi3sGjodDK8+Bek+a86pxH2vPNdS1RY3wopVWHvNMZhyJRpGQaWo7d2GfKJeB9dvs9A7xyDGzbx0K/xwRNmzneSzbswrqWnONea64rTHk1chn2HSWoz+b+J1OCQoS1GWWfHi70my9TV1cXNmzYgO7ubpx44on9VY1AIBAIBAKBQCAQDGk2b96M888/33rd0tKCf/3rX7jmmmvwrW99CwCwfv16PPLII7j55psHq5n7BV1FBlU3ck70tzqZwDAGFDQdmu7NFGIqO+MknWfcUEy7y/ODc6C3qDmuYxy+ScGrgcB7yjgqbqXK3u4C9nQV0FMsz8vTb+6wPo/S5k+8b6Lv+ztyeSxcsRmLVm9HR48ayaAUhM6BR17ZDkkiuHjeVOt9dzi4qFMqUwI1RigpmRLIlKA3agJ5ADVpCY+8sh2/XbEFHNzIrcTLSl+d8YryqTNujePDq7ahVw3P2VL06VO1niUypWCMo6DpFU+hJwXjzlw9G9q6cNvit3DmEc144o1WS5bypXkwx0uiBD/9+9t4/LUWtHcXq15rBZ2DAGhuyOCief7hQk3MtaRIFJpeXj+8isHSGdAzABF87OuDAyhoZe+E4WYAAsqeQFH3Z1NeRtXWghCClo5eR86zSpiek2HjdfG8qXjghY3oKPi3xO6NYZbDOaxF6panMAiAuVMa8dq2Tqtsy7sjohjqHOgu6pApQUqmVp6YpHE/D8x8SjpjYDCeNWE1Nzdk8JEjxuO2xW/hrbZ9sfZvjXFQQtBYk0J30cgfE2ec/drS3lMEY8HPkp6CDlkijs/tchPnOwUAPP5u0RbOzvs9xu3l4zfejAOqxqx7yzagyi2IK5d+6yNqn1mpRT2qDjnkoR5lnx4uJG4E2rx5M77yla/giSeeAGMMhBBomiH8y5cvx2WXXYbbb78dp5xyStJVCwT9ytj//E/oncZDT2poGOTWCAQCgUAgEAiGC7lcDiNHjrReL126FIQQfOxjH7Pemz17Nu64445BaN3+w7rWHO56rVB18u04EAApmaKg+iuUOAxPA03XkVGkSKeIdWZ4GMRpfn/1lcA4bR7HgGWHuU4Bf+vRN0oKourbs7fHG+JtXWsOV9y/Cm25PFSdgfYxyBUhwM59Bdy9bBMef7UVlx8OTK6XPKfYo4yLMZ/xFO55lSGjSEjLNJLSmBKgqDHsLBZAQRyJ4g1PF/+xcMtnW2cvzr9jhTGOVRg2zMTkcRTdJpUMTn0hqqJZYxx3LnkXdy7ZCEJKylxbAENzvFSd494XNsVSDPshEaB5ZBZ3LpiDpvrwUOHmWqKEIKNI1h4xlJMx5F1zKhECBt6nPWUwUXUea3825eWttn34yafeh1ufegttuXzlWFslCICRNSn0FvVA5XtTfQbnTkvhN28UfMuwGzDNcddZOcwc59F2SvP++qwCoLrnlB2NcehFHetacjjmoNGVb4iB3/PA3BPNJRu2J0xszOK6Mw7DlQ+sLpURr5eUEExszOLieVPx479vsN6zr9uoNGQV3LlgDj5954vQGQt8ltj3JkUiaMym0FOSm2rmirv+7f4eYz/gETTejHPHvb0lg1iU7TjqeAV9R4nTZ/PbAueAGtA4AkTap4cLiZrgt27dimOPPRZPPPEEzj77bMybN88hIMcccwx2796NP/zhD0lWKxCU0VXgrb+Vf3Q1saKzRx2FupNOQt1JJyF71FGJlSvY/1GZime3PotXu1/Fq92vQmXJyaXg3wNdZ9j4yi7rR+/DCVeBQCAQDDzjxo3Dli1brNd///vfkU6nccwxx1jv5fP5qsL7CAx25PK44v5Vgaei5YQPn3MYyveK3jowFKKV4uibIaYGyBECgH9ieeNkLUE2Fc1wVQmzX7v3FfvUNw7gO39Zi525vPWeOectHb1gjCMrS8imJCh9mOy0TJGVjdwXLR29+PnqXnTkmUfRVGlsqp1PU14kSpBVqO8cAYBCgdq0ZIWJMvtuKMXi1der6njs1VZrHNNK/PEraAzFPnqgEWKMa6Xmy7Sc08Fxf+kz2VZGHAnWmKGgVnWOjEyRTfmH/lFLXjxR8bv2wmOm4KEr5uGw8ZVzTNjDZknUWJtJ72dJIlHn6XxKgEtOmJrYnjIY7NqXr2o9FzWGW596C3d8bjYuP/EghywQAHVpr4yZOZMuPWGqY7z86h5TQ5GWjD3bPbJjR6Q9eznj3PpxG+qC4DDWJiXEd19TqphTDuC/HnzFsZ/3laDnQUYxftcoEiSffQMoP/du/+xs3PrkW1YZcdf5Bw9rwkNXzMOU0TWOz8x16zdPQW35/HFTcdj4+pIBKJrsZRUJFx4zGRL1n6tqsX+PMb/KhI13yrZBcQDb23tjzXXYeIV9R4nb52xKQlb2f87a64myTw8XEn10fOc730F7ezuWLFmChx9+GKeddprjc1mWceKJJ2L58uVJVisQlNHywF+/Vv7RknuoCATVUtSL+N6L38ODex7Eg3seRFGvLlGt4N8XXWVY8of11o8e81SpQCAQCAaX97///fjLX/6Cv/71r3jmmWfw4IMP4tRTT0U6XU6OvWnTJkyYMGEQWzm8Wbhis3HSOgDJlQDjhENG45RDx0KmRg6WtFxZOeMmqqLBOBEb/uxW9coGpSSpKSlr3EgUSMt9P61v6q2T7NeurgIWrigbU+1znpZpxeTOEjWUZIc3j7By72R8tOmUEsuzZW+e45ktqqfsSsPTl36b8iJRitq0jBqFQqEEUsnA8cHDxuCSEw6yjBFR+l6J7oJxUjstRwtf6KfMj9NfSoy5SLsUcBmZho6tRIDRtWnUpGTUpCRkFQlZhSKrSCWZlpEp/TurSJg8qia4sBAq5TmJ01dT7jIKRUoC0hJwxckHRz5Z7m4KJUYOjKFqTqlLy7jt/CORKc3LqNoU/uvDhw5LDyCTZ9btrHo9t+XyeOL1Nlw7f7ollxmF4n2TR2Llt05Dre09U47HN2RRm3IFbgrIz0KIsWfXuMr55WeP9uzljHErVFac/qg6AyX++1q1h1eMMGJbKl8YkUrPA0qJwytXonCMeVqW8MQbrY4yKnXNXcYnjp6IpvqMr6xTQnznqab0290W0/Oq0mGTjEKRkSkkYoS6e6MlByD57xTmc8ncj+I8fzXGsXDFlsihA4GQ8SqNj98Yx+1zUWeQJIqalGTtp+Z+ba+nrzkehxKJGoEWL16Mc845B8cdd1zgNVOmTMH27dtjl53P5/G1r30NJ510EiZMmIBMJoPx48fj+OOPx7333gtV9Z6sz+Vy+NrXvoYpU6YgnU5j6tSp+PrXv46uri7fOhhj+MUvfoFZs2Yhm81i7NixuOCCC7Bx48bQPp988skYMWIE6uvrceqpp+If//hH7P4JBAKBQCAQCASC/ZNvfOMb0DQNZ599NubPn498Po9vfOMb1ueFQgFLly51eAYJopNXdSxavd1QnAfoIcwcCyZvte3DW237oHOOjCxBprRfjTCa7p9kGTByfmgDEcPORpBnks68+XyqgXNnv5JIA6LpHIvWbENe1R1znpKopYhkIWPJGEDAsWVPDzRWmveAhhFCkJIodAYs366CuTTxYQrtJObTLi+UUqQVCdmSgaOpPoPHXm3x9N1MgF3N9HGUvAkIGRBjpD0xt9UG9yINuK+9pwjOjeT2EiVIlxS7dmU0IYaRb+c+/1BZldB0XtFwGxWdGUYvmVLDg4lEy41h4l6PpnwNVbVkd0HHoU0jIFNqKdyHsw6Vc44XN+6p+n5VZ9a+ZcqsTClqU8Z6tr9nyTHnHuOfn13SPq7ucvyu1zlHQWWx9ydN51buO7/+VQPjwJ9Xb4vskRSG3/OAg0PTmTM3UmlfB4zngVQaM1JS9Ps9U0L74CrDfC6EGUTc80RLvx3zb+tXWEg6w/uRQpYo0rIEVWdYvbUdjMWf4yhoOg99/prPIDccwKI126oKF+q7Pnyo5rlr7KPGs8R8FrHSfm2vZ6By1Q0EieYE2rt3L6ZOnRp6DecchUL8B3FXVxd+/etf4wMf+ADOOussjB07Fu3t7XjyySdxySWX4I9//COefPJJ0NIJr+7ubpx88sl45ZVXcPrpp+OCCy7AmjVr8KMf/QhLlizB0qVLkck4T15cccUVuOeeezBz5kxcffXVaGlpwZ/+9Cc8/fTTePHFFzFt2jTH9b/73e+wYMECjB07Fp///OcBAA8++CBOO+00/OlPf8InP/nJ2P0U9BEiARNnO18LBAKBQCAQCASDyOzZs/Hiiy/i/vvvBwB86lOfwgc+8AHr8zVr1uDUU0/FZz/72cFq4rBmbUsnOnpUUBBQEu2v9c5eFZQQ4x5KHCGX+gMOQ5HgZ6RiEXMzJEleZZa3i52wdsaBlZSYNvUb+tpLQoD2bhVrW3IAeHnOLUUzR08xWKHIYYT8Ypw57guCUiO/wT6VI5d3HjoNuzWJ+Qybhz1dqqfvOuMJ5NYxyipEKCcJQ6GpK+Q+7wVh5uuRaHlsZEp8lX+MV6+g5qguv1FQWe65jDN87msHY7+Ig8443t1VPnjNeLDReTjAeNlTLi6EAATEtm+VCZNNvzHzW3Nhjy0/+WUc2Lynu6owlWtb9gXmv6uWvd1FrG3JYc6Uxj6U4voOQM19jEErhXSrSUswfees5wWc65JxeMqohLsMpfSPJKIeMm70K+r4Ump8n+kuaCDoH2M+B/De3m7f8bY/g/w8Rdu7VWzd290PrTKoZl/kKBnyqGn04QH7dYQTCsOERI1A48aNw9tvvx16zeuvv47JkyfHLnvUqFHo7OxEKpVyvK9pGk477TQ8/fTTePLJJ3HWWWcBAH74wx/ilVdewXXXXYdbb73Vuv7666/H//7v/+InP/kJ/ud//sd6/7nnnsM999yDk046CX//+9+tej772c/izDPPxFVXXYXFixdb17e3t+PLX/4yxowZg9WrV2PSpEkAgOuuuw5HH300rrzySsyfPx8jRoyI3VdBH0jVABeInFMCgUAgEAgEgqHFUUcdhaMC8koee+yxeOSRRwa4RfsPXQW9dJozxk28nOvAeNn/Skru8UcauLr9CFJyB7UzLkn3yzzd3VVSyLrnPEoSb272znaf3Twl+QkRh8fIEOoJlFC/g+ZB1bzyXtD6fprerC+KPTSJHvqNEwdHSqaBSdAN5SZ3jE3gyfBBW1le3HMZp10eY8CQ6VUwdoOkmYNmuNLX8TY9v7pchqSwgwf23CvldvhcF9K2Xh+DOGPhhvIw/MrrK5zDMy7V4PcdwAzpyGHs34qPRd2+Ls15jhvdzl6G6Vnq+xyJCeccXYV4Yz4Q32d6isx3vO3PID/Z5kjioEIw1fbZ7znbl/16qJNoOLjTTjsNf/3rX/Haa6/5fr5s2TI8++yzOPPMM2OXTSn1GIAAI8/QOeecAwB45513ABiL5Z577kFdXR1uuOEGx/U33HAD6urqcM899zjev/vuuwEA3/3udx31fOQjH8Epp5yCp59+Glu3brXef+ihh9DR0YEvf/nLlgEIACZNmoSrrroKu3fvFn/I7Wds++pX8fYHP4i3P/hBbPvqVwe7OQKBQCAQCASCYUhXVxdWr16NZcuWDXZT9hvqSqd8Y+kZzbBM3HzZ/6c8g+oYatk9kmgP4zzxfvFSmXVpubo5R7lv9vvMBNRZJSAEEIEj0TUQbgRKqt9B5UiUVtX3auvrL0jpP/d7MqW+XmqATVFruy9I4eotffBwtySOJ5Vbnzp0ehUAMfICmTA2HMxWwfR1vDmHtW/ZUUONQEboNvd7ftcF4RdmjXEeuLYqUZdOPsoOcclKXEyHk74+D8x/u8uIUpy9DCu8ZSKeQDz2mBuy1r97RFqmvuNdaewJCDJy/0VqqrbPfvd59+uqih6SJOoJ9K1vfQsPP/wwTjrpJHz961+3jDJPPvkkXnjhBfz4xz/GmDFj8PWvfz2xOhljeOqppwAARxxxBADg7bffRktLC+bPn4/a2lrH9bW1tTj++OOxePFivPfeezjggAMAAM8//7z1mZv58+fj+eefx5IlS7BgwQLregA4/fTTfa+/8cYbsWTJElx00UUV+zBv3jzf99944w1MnjwZS5curVhGf5DLGe6qGbp+UOqPytKlmweknvr3tkHZ2w4A6H5vGzYO0rz4Yc7VYMmKIJw8y6NYLIKV4hssX74cGRotEahgcBhqa0pXOYq201fLly+HpAzxPwAHiKE2VwJ/xDwNH/6d5iqXy6G+vn7A6tu8eTO+8pWv4IknngBjDIQQaJpxAnb58uW47LLLcPvtt+OUU04ZsDbtL8yc0ICRNQracvngP9ZdoUJGZhVIlGLHvjwY44mEbwmDIDhEDCVJBEtLhrB2xoFzd7/63jvOgcZaBTMnGOvWnHPGeKTwPUb+BEAmFL2qbt1nJqB2w5hxGn+EQjCmznkglYboUZOYz7B5aMgqsfsejYFV1lMKgDvHyhxXRaK+nmqcGwY5e5f9Qg8BxvilFQot5mn6pPGby3jh4NxeaENnv/BDpgTTx5Uj4nAO8GQi6w0KlBiJ4lU9vscK5wAn3LFvmWgh4eC4j/eUn+EwTI78vC4YByY11sSWHwLgqANG4tFXWhKVu1G1Kc+4xMHc++zfASrtiWZ+N/e6pASoz8Z/pvjtRUl4AjFu9CvqXDHGwcBRn1ZQUHWoevJ7BAEwYWQ21nibNNYqmNSYTbhFZarZFwnKzxxzffnu10N2t41Pop5AU6dOxeLFi9HY2IgbbrgBv//978E5x0c/+lHccsstGDt2LJ544gk0NzdXXUexWMSNN96I73znO7jqqqswc+ZMPPnkk/jCF76AD33oQwBghaRz5/AxMd83r+vu7kZraysOPPBASJL3y5/7+kp1+F0vEAgEAoFAIBAI/j3ZunUrjj32WDzxxBM4++yzMW/ePIdC55hjjsHu3bvxhz+IsMbVkFEknDt7IhSJQov4t/pHZjXjvDnGPcWSMq4/DUESNZQ6GmPQGXfMPyEEcl+T8CQELbWzrzlfGOeOfiWRc0mWCM49ehIyiuSY86LOIrVXlowk3JNH1VS8j3OOos4gUeD4iQpSLiNRkCcQL+VC6qssyVJwAmxCSOy+V4LACKfHBygDtkx9vIAiaPBkiaC5IeMYmyCDHCEEhzYNfnh+v7k0pyyv6li1ZS+WbNiFVVv2BuZ94ZxbSdcZt3kcDEFG1qSQSZXXi5FjI5pcucfDz5tloCGEYNakkVXdy2EYNM19y05YEnu/cHBB5Vv/tsmIzjjauwuO1+bnihT/eUOpYXxN8jlFCXD2UROwtqWz6vk29+GozwNzXwe865IQgnOOjrevEmIY84qajqLG8FZbJ/KqHsko4p4vd32cG/2KMuZmvxSJ4pgDR4PSZOfKRC7JTjXP348fOQFb9/YE9jcO9rHTdONH5zzwQEAQsmR6f3HL8y7Ofj0U9qe4JOoJBBh/wLz99tt4/PHH8dJLL2Hv3r2or6/HMcccg7PPPts3pFscisUibrrpJus1IQTXXnstfvCDH1jvdXZ2AgAaGhp8yzBP/JnXxb2+0j1+14exYsUK3/dND6GTTjopUjlJY54A3ZaeOij1R+WkY2w5pnQN2L6y/HriXEBKRszbt29Hcet7AIDU5APQOEjz4oc5V4MlK4JwutVupB5JoVgsAgCOP/541Cq1Fe4SDCZDbU0V8xo2P/2i9fr4449FKpP4I3xYMtTmSuCPmKfhw7/TXA2kF9B3vvMdtLe3Y8mSJTjuuONw0003Of4GkGUZJ554IpYvXz5gbdrfuHjeVDz+aiu2tff4fu4wugA4d/ZETGjI4vFXW9HS0YuCxvo1yJLOAI2VFQYEhrJBkSgoMX5ruj7o5011BvQy3dO+uJi2BLNfSTCmLo2L5k2xXptzbs1fSDNJqS0AcOCYWvQUdeu+lEQdSjvGyorCURmCD09RsKbgLM89JjtyeSxcsRndCeTNsLfVD865p+99tQNlFIqixtCrRizI57I4p7A5AJ0xqLrhhWfkezLyVMmUeEJhmaRlinEjMtjdVbTek0PcsmZOrMcr73UM2roKmstdXXk8uHIrFq3ejo4e1civAYK8qjvW3Y5cHq2dvegpDv7eYCdorgmAsSPSHk+IoPk0MdePezxG1ig4d/ZEXDxvKprqByeSBuO8T8resSOc+5ZJ2Jj4GeL9DGnGdUY+Fk13+ivctniD4zUBsGrLXkwfPyL280ZnwA+fWl8KyZmMh4lECB5evQ2/XbGl6vm26/zte2Le5UVI4NzXCfFflxcdOwV/fS36vso4ULCMeRw3PrYOP1q8AScdOhaMc99nJ+Mcqs488+V+5przHTpXxNmv5oYMTp4+Fv98Z3e/fKewj5nnGVTh3kde2Y72brU8B4j/HSNo7KpFptQpF/CXix25PP608r0huT/FpV80SGaeHjNXT5LU1dUZp2sYQ0tLCx5//HF84xvfwIoVK/DEE08M6B9zgqHB718q52qStW58dOnnrNd/PelxaLJX2f5Zu+EoIo0XXFBdAwUCgUAgEAgE/9YsXrwY55xzDo477rjAa6ZMmYJnn312AFu1f9FUn8GdC+ZgwV3/xO5er3pAtYWAySgSmkZkrHuuuH8V2nJ5FKO6EVWBu2QOw/NC03VkFAkSNU7X5tWhoez1a1/8EgxjSUaRMCIjY+e+QoV7giEAvvGRGQ5Fi3v+VJ/wYea9GUWyFE2yRB339Wo6KIiVI4qBQ5EomhsyuHwGMDJDIRWd/bcPx7rWHK64fxVaOnur7l9QW/1gnHv6rlXpwWPWN62pFm+27ot8OtutvDS9HKLKr844ekteCRMba3DdGYfh1iffQkunV4FrJ68yvLbdOGxrymSYaI7IKJHXlZEqxZADNcRLIypBc8k48OXfr8Hu7iJUndlkjzvWXUqmOP+OFdjTVRyQPYHA8PYoRlDo+lkCzP6mZW9uLRYin+b6acvlPePRlsvj7mWb8PirrbhzwRzMaB5YfZ/ODAPQK+91VF0GYxx7uoseJXHlcHDu97zX7e5hMKId+oSK83m9tiWH//f0esvLJM7zprNXta5NwhCkMo7dXUVQYjwnosy3V47KcubYEzvzsPesqDPLK6u5IYNduYLvHjvWta+GJl0KoKug44nX26z1YH92mvLkV6r7mWtiPkP97uMc6NV0q193LpiDzbu7K95XLZyXjZHuZ1Clsdq5r+A4aBP3O0bY2FVLQdMtuahVZBQ15pELnXF87p6XsGNfYcjtT9WQaDi4gYRSikmTJuHKK6/EXXfdheXLl+OWW24BUPbOCfLEMWOdm9fFvb7SPX7XCwQCgUAgEAgEgn9P9u7di6lTp4ZewzlHoVC9klwAzGiux39/IAuJePMyj8jIUCSCbMpQNph/589orsfDX5qHy088CCP6kKC6WjgMxTkrhTLJpiRUmbe7X7C3Lw7Mpt+UKMF3PnY4RmTkQG8rJSikF2DN2+TRNZ7P7fNXn1UC77UrmFSNOe5rbshYoY5Scsn4c+JBeOiKeTig3lDGufWFpqJoRy6PK+5fhe3tPaHhnaLCfepyY+ra7H1IuU4vW31XKBTJm/raPjaEAG/v7KpKuSbT8vhWI79ZRcKvL5yNM2c149cXzkaNEp443JRHu0yGKQ9J6fNsSoISEh6JEuBLJx+Cx646HlecdLDveMm0lHQ9oj00o1BP2zgHijqwY18BjHFkZQnZlBHeMOsKoVbQGLZ39EZMTu/fXiPsXuV7TVlQJGqNld99Zt4NxeZ95V5nlBCPYS7I68VcPy0dvb7jkZUlMMbR0tGLK+5fhZ25fIXeJIfpAcTRt/CYO/cVfNseZmj0C6HnvnpHLo/Fm4uIA+fA3u4i8qoOQhA6127s4cWSVMRzbnj4RZlvtxy5nTbMPfGzx0x29EmWnPt60J7BOHfsq32JqOZ+dtrlKcp9+/Kq9Z59D7M3iQCOfh02vt5hgA26r1ryqo6O7nK77GNVqfysLHmeU0C07xhRxy4uik0uPvG+CR65MOtt6cwPuf2pWhL9lnvzzTdHuo4QghtuuCGxek8//XQAwPPPPw+gck4edz6f2tpaNDc3Y9OmTdB13ZMXyC//z7Rp07By5Uq8/fbbGD16dMXrBQKBQCAQCAQCwb8n48aNq5gv9PXXX8fkyfG91QVOGjMUigRIVDJC5ZTCdiw4ZjIWvliOIGA/7dlUn8G186eDEOCeZZtQ1HWEHNJOHONELENaNrwGSJTkKH3A1MNE7aO9fVFxB2sZWZNCfUYxkleX5sV+rPy/50/H/3t6AwA45s0MFWa2ww9z/sbVp/H9J97yvdeO6TVj3nfVBw/B2pYcugoa6tIyZk6ot05iv1W6x3062Hy9cMVmIzl2gtNVaaztyjKzD//avBevbev07btEgZTEA8e1oOnQGIdECCQCxLFlEeIcG7f8pmWCgo+HXUoixslujeGJ19tw+IQGPPFGK/Iag0QJFEp8PYJSEkGecc+aCcL8jBKCtCxZ48A4w8wJDVjbkgMlBDUpimvnTwcAHD6hAfcu3+QZL8ObwBinSuHNAEPO3DpPe5f8PGbcsIjhtyQKKJLkv264c+5J6V9B68Q9Vu7rOOf48oem4afPbAi437teggyk5voJGg9KCdKEoqAxtOXyWLhiizVP/Y2qlz2iKKnKKQSAMYdm2+1oLMwTyFufW0m+cMVmdKmIBSWGLNnXjznXBY2FehRKhECtKInx4TDWVlqWKs63O7ec39pvqs/gC8dPxUMr37Pk9/ozDsNnPjDZk5fJjd3L5dr507Fo9Tbs3Feo2tPSPs52eYpy35qtHY73/NblmLo0nvnayR7PoUr3WXuaxiwv6ajt+uc7u/GFEw603jPHyr1narqzbEoJWMA+UOk7Rpyxc2PsjdTqM1D+jnHLJ2bhrCObkVEk/ODJdaH1DrX9qVoSNQLdeOONoZ+bD4ykjUAtLS0AAEUxTv5MmzYNEyZMwPLly9Hd3Y3a2nI4sO7ubixfvhwHHnggDjjgAOv9k08+GX/84x+xfPlyTwz0xYsXA3DGRj/55JPxhz/8AU8//TSOPfZY3+tPPvnkxPooEAiGLxkpg/+b/39Y+a+V1muBIA5ySsInvnq047VAIBAIhg+nnXYa7r//frz22ms48sgjPZ8vW7YMzz77LP7rv/5r4Bu3n2H+iU5KCm3rHdcf7366VyN0U3TjSJJoOkdK4ta/+xOdeT0HKmG2r5LS2iRIR+6ZlxKHNI0oGy18PgcqJ5fPpuTSSd7wNrqVrxlFwpwpjaH3uBN9E2KcXl60ejuKCeeTqjTWfsOQkmlo34PGnXNu5VdQJILemCER3W01yzNRJAkFTfPcJ1EKmRqhjBat2YYvnnggFq3eDlVnyJaUwfAxApGSl4nOy3WHJUB3D6E5DhIkTB8/Aht2dJmf+F5nvm/vl1IyYFXCb2zMoVFsyccZ52Cc++Y24rzUhwrV6QxIywAh3jK8c+/+7U+QzBBCcOi4usBcTIay1Xui3o25fsw5N/JCGQnfJVIeH0IIUhK1ZOWqDx5SUZnfV9xy3BfDPOeGMnnRmm2WPhTwGjTsMM493kf2l+bYxbVNmOuH6dwjn1Fkur/QdI6UXDJShsx3FCMQYISNtMvvIU0jHDIT1FO3mDLO+zwums6hUBb7uf5ma843F5W9X3Vp2bMWgla1354WxwBksnJLO/Kq7q3XVj7n3NdwFlZd0HPPvRbjwhggycRRrtnOQ8eV5cI99/Z6U7b92pQH02toMPanvpCoo/lzzz3n+/Poo4/i29/+NhoaGvDJT36yqljXb775Jnp6vEk+e3p68LWvfQ0AcOaZZwIwJuGLX/wiurq68N3vftdx/Xe/+110dXXhsssuc7x/+eWXAwBuuOEGK3k7ADz55JN4/vnncfrpp2PKlCnW+5/61KfQ0NCAX/ziF9i2bZv1/rZt2/DLX/4SY8aM6ZecSAKBYPghUQkHNhyIcalxGJcaB4kO3YeCYGhCKUHj+Frrx62IEAgEAsHQ5lvf+hay2SxOOukk3HLLLXjnnXcAGH9r3HDDDTjjjDMwZswYfP3rXx/klg5/gh6RUZRHMiWJenTEwQj/Y55QHZj64l4fZ2zcl/YhmlLkMsLCfdmpRqHklitKCNa2dKKjRwVFwuGRED7Wfgr1qIm1vWXZ2l5FGe62xpFfSgkoCNq7Vfzt9dbSWJKK33PtnmGMGx4Kla71w54AvJKB0d6vqGPtNzYmZhmcc/QWdeRVhoLmVfhaBcWsq78JG1dCALctyk8hXF4/5TnPqwx5laHXpfy2y8rallzfO1CBpPdhAqC9W3XMUTEk95VpGAzCHLu4K5bDJnsoy8xAPXeC4HA+o4Pm2+2BFySGbuOJ2zM1KoUo+bEqwGHYs+OW01vUK8q63zoMsM16qHa/6C5oFdvlJ0+McxTD8mAFtKmvshm2N6q2AyFuo6vfnq8xY2/qVXXHYZKB3p/6QqKeQGGeLx//+Mdx4YUXYvbs2TjvvPNil/2nP/0JP/7xj3HCCSdg6tSpqK+vx/bt2/Hkk09iz549OPHEE/HVr37Vuv6///u/8Ze//AX/+7//izVr1mD27NlYvXo1nn76abz//e/3nLI79dRT8cUvfhH33HMPZs+ejbPOOgutra148MEHMWrUKPziF79wXN/Y2Ihf/vKXWLBgAWbPno1Pf/rTAIAHH3wQe/bswYMPPogRI0bE7qdg6LL77rtR3LQZAJA6cCrGuAyJAoFAIBAIBAKBH1OnTsXixYvxmc98BjfccIMVIeGjH/0oOOeYPHkyHn74YTQ3Nw92U4c9fTICSbRqZVESDGbdUTDaF03t6M1n4T3Z7vw8WgvCqJRY2kStwtXLLS8SJegq6MaYVO8kEEjYWPsph6P23b8e77/jl0Fs/44OIcY97d1FI4xQhW64P+bgoUajsGGxe7LYtwc/Oe2vsVH18rthOWLi1tXfVArB55dc3Q4Ht9aP/VLzOsaNf9vl2pSVroLXsyxp+mMvLpdpeoAFX8uY93O7XFp7T/xG+LSJRCurn0VL1bkjn5jffOuuNRLsCeQyAkUcKvfempRhtVp5qiTrPil2onvrVr2nVW6X/15X+bnrt4clsRaD9kb7gRB38/zqLajli/IqQ13alhttAPenvjCgmS+nTZuGc845B7feeqtlNInKRz/6UbS0tOCFF17AihUr0NXVhYaGBhx55JH4zGc+g0suuQSyXO5ObW0tlixZghtvvBF//vOf8dxzz6G5uRnXXHMNvvOd7yCbzXrquPPOOzFr1izcdddd+NnPfoa6ujqcc845uOWWW3DwwQd7rv/c5z6HMWPG4Pvf/z7uvfdeEEIwZ84cfOtb38KHP/zh+AMkGNL0/Otf6F21GgCQnTMbEEYggUAgEAgEAkFEjjnmGLz99tt4/PHH8dJLL2Hv3r2or6/HMcccg7PPPhupVGqwm7hfEKT+cJ9E91MOG8mTB8/bdjDrjkKc9nlDq4TbSaIkXq+kkIvqoVFNeB932YQAdWnJGJN+sN2FjbVf86v1BLLXU638VSojq0gezw6zuZwb9zTWpoxsNTY58LvPr+5QT6CQPtk9x+zKXz9R7K+xSdLYMJD7R1hNlHr3V7f3Hefl9RNl7Zv3kFIIrP7GPZZJeDLG2z+9nkD2l9bek1CbhuKzx2++ozzHAXjyiUWdPu88J7M+SYWTAkE5pyrJut/eF/VZUP2eVrldvntdJDuj974k5dyN3ZvHvd789+tgBnJ/6gsD3rqmpiasX78+9n1z587F3LlzY93T0NCAn/zkJ/jJT34S6XpKKa6++mpcffXVkes444wzcMYZZ8Rql0AgEAgEAoFAIPj3Q5ZlnHPOOSJsdD8SdArW4wnkoz2SKAn1HOhPCMoKrX5wLPGtL04d9vZFwZPPAn1XpCahiAVQVR4Ev2TbMyc0YGSNgtZOPdE5qzTW/uNQXe2U2GShigF2t9VRXokgLyXGOBg4GmsVnDWrGb989h205fJgzPDukUo/Hi+SUjvNusO9UoLbbg8HZ++6O+SUu19RjYh+Y2PCOK/KcBckZ3HXZ18Ja7qfJ5Cf95q5fuxzHoRdVmZOqK+63VHxk+O+wAE01iro7FEjXc+4jyHd9m/73hMLUp4Lu8wk3d9qsM9+0HxHzwnk9gSK1jO3nFJSyXxTGQJApoCq+5ejSASce+vOKFJFWfdbM1H3gWr3i9p0hHZVIU9Be1hfZTNsb7TLk1tG7PUyzkMPGwz0/tQXBtQIVCgU8NRTT2HkyJEDWa1AkAhyUxOUyZOtfwsEUelRe3D53y9HLmfEB52rzkWNUjPIrRIMJ9SCjsd+tsZ6/fGvHA0lLXJLCQQCgUAQhnGa2jht39rZ60jKHZQTiBAChZKqDAV9QbYlHpYl0ufQUGFI1Dix6penIwh7+0w451i1ZS+6Cjrq0hJmTmiwEiL7FR3m9VDUGHTGjfBQMIxx7voq5W2xf2yfe8O/y/gXB0eut+ib2DoMd9gdiRJkFAnnzp6Iu5dtghqS3yMufmNtx0+hWdCYp89+Y2i/BhylNWGMXVFnoADi9MTdVkKIQ37NNedW4nHOoeocikRx7tGTMLImZY1lUWdIE+o7Bhzcap9Zt2lk8u9/cNsV16SabTUVg+7y5NK+EDWnlN/YSATQuRH6SiKVy4mq/JRoeBiosPUQRVbc14QZsPza4VbeM8Yd68ec86C2F3VmyUqldZtXdaxt6fTdlyphX1sSLe+RUY0IfhACq+33Lt/k2OfcxgoTxjmYS0G9eU837lm2EQBw+IR6fPyoCbh72cZ4udoYhxmsijpCr5F+f+5EJWy+e4uaNX7gQE9Rw5INuzzzvC+vOcbZHsYrDE8IPsBa99VCSl4+lHpDjoVx6Lg6j9y616Tf5hDFuGyWI8VsEwDMmtgQur4459BZ+blivV+hXEpL4wQe+kyJS9DeyBjDk6+34InXW5GWKba0dzu+I9rrLeocmYD9Ou7+NNgkagRauHCh7/uapmH79u344x//iLfeeiuWp41AMFSY8L3vDXYTBMMUDo6WrhYUtaL1WiCIA+ccuT15x2uBQCAQDB9uvvnmSNcRQnDDDTf0c2v2fzgHCpoOzZZv47n1u8AYhywRKBL1PRnaXdBR0PQBNwAROBXSikSh6Xq/fWM0lD7xSpdtA8Y4h6ozaDrH5+552VJIjaxRcO7sibh43lRP6ZxzX0cTs6zrF73uCP1FANtcmUr+8DaaydTNtgVdvnl3D0790fNWW5vqMxX771YimcNx8bypePzVVmxv70ES+lO3LPjh9lTZkcvj3V1d6Ck6ZcY+hgAqjks17fdrq11+CxpDyueaos5BADQ3ZHDRvCkAymPZ0tEbeF9BK3sxmHVrjHnWu3nNP9/Z7VDs2ZEl53t6aX/Ykcv7lmcS5W+5oHmUKaDrZl+i5MgIf22iM2PPs68XAJHWg9neSrJivyZMzeznneWWWfOVfc7dIbwAw1hkJpO3y4ofO3J5LFyxGYtWb0dHj+q7L1Va622d/nPfl7VNCcHYESl0FTTPGj31R8/7zpvhfWDMX1HToTFg0ertWITtAIy5yKYoJBIvb419hHUG9BR1a05lGq5odxvy+sNzKGi+zbl9aOU2x3OiLVfApff9C7JE0FiTwvyZ4wAQPLJmu+O6/1n0Gl7b3lFZBmwd2pHLo6eg9fn7AOPe8HSVIAAOby57lASt47Utnbht8VuOfoXZgKLuB2Gsea/D97mvMQZNZwjqaiUPSp0BvUz3ffb35TuRe2/UGENBZeAAfv/yNs/1MgVSsgRKiFUv4L9fx9mfhgqJGoE+//nP+5/WMN0NCcEFF1yAW2+9NclqBQKBQCAQCAQCgWDIcuONN4Z+TgixFJXCCNQ3tuZ0FHTArZ5izFB6qDqHput4e0cXjjpgpPX5utYcfvX8OwN+EprACPtiVwBSYniZ5NX+MwTFJa8yZBRS+ne5XUWNlU78crTl8rh72SY8/morpox2er379UNn3Cqrvbvoud6cq4wiQaKVk5dva+9Fb7HymHHA0dY7F8zBjObwEC5uNYep92iqz+DOBXNwxf2r0NLZG9lLxLcOeGXBD7subV1rDlfcvwqtHXlfg4Gqc6h6suHq7O3lHJ4EMXb5pZSgV/POCSXAhJFZ3LlgjqW8tI9lWy5v3Oe6USIENSkJmm6EU9MZx+vbO33XLQfwr83tlteJOyyd28jEuDGely9c2ad9IGweCQFSEjCqLo293UUUE/Ig81sv9vUV9f4wWbHXsXVvT2BZRjg453seT6DSxDrmvDMPe2sLJblRJIrmhoxDVtyY66Atl4eqM1AQ330pbK0bZfRt7v1oGpEGY8DvX97qGde2XB6cwzFvgNHu3V0F9BT9PYU4gJ5i32XHPe9hmONiyjeARJ9ROuPo5bpnvu1z67deNMahMY7Wzjzue2GLb9ntPapDBoIw5dKsszgA3wc0w7XHwhzfmlJumbB1XNS5R7aD8t/E2Q/C6C7olqHXXF93Lt3Yp2efHb+9rC/fiezlRfEo0higFXVkS3VnFAmj61LYua/gsbj2al55HeokagS69957fd+nlKKxsRFz5sxBc3NzklUKBAKBQCAQCAQCwZDmueee832/s7MTq1evxs9//nN8+MMfxn/+538OcMv2L3bk8vj56l7fzxyhfQBc9fvV+POVx6GpPoMduTyuuH+VxxDRn/iddnW3N5uS+nxqNyk4gF7VqyDOpsqhT8xTsS0dvdjdVQBg8whw6rnAuFMhpcgERc1fkZ9XdaOekEHYkcvjnn9ujDxOGZlC1TlaOnpxxf2r8PCX5oUqcNz5AOxK7hnN9Xj4S/OwcMUWPLTqPezpKlYMtZeSqaXQrCQLbsxDtqbctnT0RjJ8JY19btztNuX3kuMPxKI12xxGKgLgc8dMwZWnHOwZc/tYLlqzDW2deUvvRgBcdtKBaO8u4rFXWy0ZCm0j54HtVFyeQK2dvSVjXh5hcFt7gjxlKuUp+uF5R+LlTXvx2xc2Y19BC7w2LmZf0wq1TrtXU0alz3/89w2BeY2oLUSfiVtBbF8e5pz/Zvkm3LmkvIYViWJ0XQrnHj0JF82bErg+7esAALKy5MiVYt+Xgta6Wcb2jvC5j0tDRgYlhneZH1lZQk9pH7TLqK5z/GPdjkTbUonIe6dCrfk1n1FhinVaCgvmvuLgsbXYuKvbep9SgnH1acd8O/a4PkTCUGQCxsr7fZDscnjlqb+hxEg+4/RUNgwsO3L5UMMHBRz9evhL83y9nN3P277COZBWjJCdms5iezpFqgPONdHX70SmMSgqZt0SJbjnorn462ut+NVz7zjqbW7IVNyfhhqJGoEuvvjiJIsTCAQCgUAgEAgEgmHPySefHPjZxz/+cVx44YWYPXs2zjvvvAFs1f7HwhWbsTcf7Y/8HbkCFq7YgmvnT8fCFZvRFqCkA2Dl8bC/HlmTQl7VkVf1qkIFSRRIy+Gx4ykhSMsSUpIRv7+o67Hj9ydNWFcpJUgTioLGkFd1SJQ4+mjX4am6U0FtKOT8S+el68PsKgtXbI6cdB0wTl+nZaOtbbm8JQtBuBWG7tdN9RlcO386rvrgIVjbksMjq7fhTyu3lVpveCXYPSRuPvsIfPPR1wPzsYRhnla3y21/ePpEwZwbP1mmhFhjctwPnkWPqln9veqDh2B0Xdq3TPtYfuauF/FWW8667+vzD8P3n1gHoCxDYSMnEQLGuW87FdnpCfT7l7aG7gMmZq4LiQKKJIXm1QliVG0K186fDgLg10vejZWfqxIchodef8pDe49hMPebdxKQX8j1huNlU30G//XhQ3H/ii1WzpNvnDkDn5p7QMUcG/Z1kJa9uaTs+1LQWq/0DKgGmRp17yoZxNMyheby7LEbq+wy2qvq/aJY7wtmvjCNcStHmvsZxTgD5879zvR0dueXuub06fj6Q69a7594yBj84rOzHfNtnxdKiCesYOS2EwJFJpYMcM59ZZdxXlEWCIy5LOqGF+yZRzRjb08RL27cC5RyrMWZuimjsjhobB1WvLvHIbuMG/0P6zEhxPMcO3n6WM917udtX+EwcsilZanqOYlaj33fdssbB4eqsURCsYbVPboujWvnT8e9yzc55PjZa04Z8jmA3IQHmxUIBAKBQCAQCAQCQb8ybdo0nHPOOSJsdh/IqzoWrd4eaCRx6whUxrBozTZ09BSxaPV2qDrz5AgxMRPbmzBe9gSpVvmgs+g5/khJmcaGlk4QgJlgutwPQghSEgXjxul/s4+GGp5b98QNHaPpHAXN3+ujPPfRy9R0DhAjJJiqG7IQ5lXi1u1Tv+PWMML4zJnSiCMnjURKpkjJElIyhSIZp+cJMX5mTqyHTMvvxYGxcp9VvZQ7J14RiWKfZz8yigRFJo7+uj1Fgu4bkZE94yRR4pChsOEjtnrc7bTnueKc4y+vtJTGM7xtZtt1ZuwD1cyj1QxSOVdGNfR3WjNN54Hzbg6rfTjcRq6g9pmyIVOKQ8eNqKhgda8DQoywkTrjjvCR5r7kt9adZSS3kDQG5PKao20V79E5GOsfz4q+YhpN/ebdnDdF8u539s/ta0Vn3PH+mBEZx3zb50WxefJWi10GgmS3p6iV6wz8PgDIEkVGlsA4sHLLXry7sxuMc6QkGvugxo59BTTWpjzyUdSM/od3yivbqu58jlXzvI2CpnMwHu4FllQ9QfJmGPn7v25zL3HL8XAzAAEJewItXbq06ntPOumkBFsiECRP9wsvQNuzBwAgjx6N2uOOG+QWCQQCgUAgEAj2F5qamrB+/frBbkYi/Ne+Lmy9/HIAQMPHPoaGj33Mc83On/wU+XVvAgDSBx2Mcddf57kmt/hpdPz5Yev1pJ//HDTjDLlR3LYdbTffhFyviv98rxN/nPZBvDH6QE9Z1/zrAdQVjTwWK5um42+HnIT2bhV/e70VHT0qKAg+8fYSHNG2AQDQnq7DT2Z/plxAydXiyF3v4JPvPA9FotAZx0+POg+7syMdddWoeVy/8nfW679NnYeXmmc6ruEAvrB6EZq7dwMA3hk1GQ8d8RFPu0/Z9BLmvfcKOAdUENx07CWea6Z2tuCSN5+wXv/m8DOxuWGC57rvvPgbSNzQUC2dcBSemfJ+zzUXrluM6R3vAQBaasfgjiM/4bnmmNa1OGvzCuv1rXM/B62mBjI1lISUEozp7cDVrzwMSoxT4crMywEYChN7CoSvrv4jGgtdAIA1Y6fhkUO8XnMff3cZ5u5cj+w7f8T2A5sx8bYfOj5f29KJ8VvX48o3/26998sjz8XO2lGO61K6im+9/Fvr9XMHHYt/TX4fKAjau1WsbclhzpRG7Lj1f1HY+C4AoKa2Dj3nfMJjtJj++nJsvfwO6/Xku+5yfE4pwaTONix49S/We3884kxsGnWA8blN4XftP38DhRleTC9PPBL/OHieZwzOffNpTN+9CQCgjx2HtfMPteTWNEjN3bEOH9+43LrntjkXYF+q1lHOyPw+fG3Ng9brRQefhFeaDvXU95U1f8LofA4A8Prog/DQoR/0XHPWphdwTJuxhotKBj89/vOea3pffRW7fvUrfPWdPdA5x71Hn4u2EWMd48lVFe/ZQmGO/MQnUH/mmQDgMDBe+Opj2Hr5n3Hsrm7obCTummFcQ0vePgBw0rZX8OH3Vlr3/OD4S2FayDgM2ZvYtQtfWLMIB71Vh//Z2YWHZs7H+sYp6OgtGuNZmpvr/3U/ajTDi+Ol8YfjbwceZ9VnmjXPXvcPzNxtyEp7pgF3fMC2Z5SY1bYeH93wvNEGzvGLuZ+22rtrXwEcwIhiN76+6g/WPY8ddDxWjpvhKeuqV/6Mpt52AMCbo6bij9M/7LnmjM0v4rjWNwAARSrje8d83nPNwR3bcPG6p6zX98z8KLbWj/dcd/OKe6x/PzdpNp47YDYAQxFueH4An3v9b5jaYSRY3z5iHDZN+6I1TqaXgLz8efzP0nL/2uZ+x1NXcdt2/M/SO63XdI4CHOSVu+1f/2/onR0AgPaZc9DRM8WxDgoqw8c2PI+jd70NiRJ0pkfg9mM+C0qJY60f1roBe37zf9az4+fv+yS6G5x7RpS9HAC+9NqjmFDay9ePPAAPzJgPwAjVRYnRtlM2vYQPbFkDANAJxU3HXuLJczalswWXvvmE9e5g7OU9ivMZa9/LGed4+JBT8PaE6XDbSP7jpd+jobAPAPD6uEPx1+mneur7yIYleF/bWwCApu0TgIne7wY9q1Zh9513WvPyqyPPRUfDGMdIuffyxZM/gOUTj/SU9cXXH8Pkrp2gBNjSeAD+cORZoCDQYXiSSAQ4YfNKnLh1FQBgz9t/QMfBn3HIEwBMzrXhi2v/ar1+6MizsGnUAaAg2NOlGp5PIPjvFfdC0oy9/IXmI/DU1GM9bfrM+mdw+N7NAICd2UbcMfuT6HB5sb6v9U0ct/JeTO8ugnEeuJdfs+ZBq51/PugkrJMPw5Y9zjB2X/rXH9HQ0wkg2l7eI6dx6/sXeK6ZvncLLlxffsbeMets7Kh3eh1JTMd3XrrXev3MAXOxdNL7PGVdsvavmJprAwBsrh+P38z8qOca+15OCcFtJ34ROnUaXcblduHzaxZZrx+YfhrWj5riKStoL7dz/oZnMWvPRgDAnkw9fnb0p6xnhil89r0cALTdcyCPGeMoR2tvR8t15e+zoz73OdT52Dtab7wRaksLAKBm9myM+dKXPNe0/+lP2PfMM8YYpNOY9ItfeK6JS6JGoFNOOSX2KRYTXQ+P5SoQDDZ77rsPvatWAwCyc2YLI5BAIBAIBAKBIBEKhQKeeuopjBw5crCbkgjTNM363lwzZ67vNYW337au4ap/GC9t507rGgCAz9+MvLcHvatWgzCOGaqO+inH+JZ1aPtWNOYNBVVL7RgjpBM42ruLRmgPAkzYtwsz9xiK9l0uw45JfbEbM/dsssJvKbo3nwflzCoHAFaM9yoNAeDAjm2Y2mEoAfKyf2isMd3tOGyXoZjQiP+p01o176ivVvUPZXP4ns2QuTGGbzVO9r1m8r4dVlnZktLEzah8zlEf5Qw9KkNduhxoJKVrjmt6c50ADAWrXfE5vf09jO3tAADsDBjzCd17MHPPJqQ6KfL7dnk+7yroGFHodtSX0b35ndzz8kqzoWQ3ZaGrlJslv/4t5F97HQAgH3KIca9Lz1Gf2+OUTRcyJchoeWvuAKBWLSvn7DalQ/dsRro01ptHTvQtb2Juh1XWHl5AV0G35BYAwIHG/D5H/2TmXS8Kc87Lc5Nm+9Y3rWMbmruNA5Dt6RG+1zSX5gUAulI1vtfonZ3oXbUahxZ1cM6RKfXTNBgabeeOsaw9pqw4tXu/Te5sRe97WzFKZ5g80qvoA4CxvR2O/hFXwDgOow2H7dqITIeEw1QddcUecHBwbsqCwWF7t2BEac62jhjnW9+EfTutedlRN8b3mob8PoccKEyz6lBLbgMy0x3tXjbBq9AGgIM7t2PyPiNXzD7Ff8zH9ey1yspLKd9r6tReR31Ba91+jd24TmAawjgO6Gy1+iczHVtKQkkJYEog2b3bMQatPm6NrLfHcQ3Ldfq2Kf/aa9B2GwYXrb4JPDvZ43U0sau8l++paSy327bW9Y52x7MjzTR0u7wKou7lB3dux0Gdxl7eaxtzjrJH1Jjudqssay931Ver5nH4IO/lbhTXXv705PeX9nDnnnjI3q0Y3WMYKHfbxtzO+K6yHEg852sE0js6HPOSZUW0uwbKPS8rmw7zre+gXCumt28FADBqqL/NyKNmH8b0lJ+xSocEfvCnPd6FWa3gqO+J0r5gyhNKIfAO3bMZGc149rzrY7wDgAP27bTKGjGiBxyA5nIfGtm7D83vrUdTyc0laC+3y0rjxKPB4c2TdlD7NozvMtZLlL18n5L1vWaE2uN8xmpFj9cTAXdc8+qYQ3zLmpprc1znh2cv9/HcSunOeRmh9viWFWUvn2TbM1prR1vv230K3Xs5L3q/Z3BVdTzPtPln+NaXX7cOxXeMAwRSw0jfa9Rt262ySI3/vMQlUSPQt7/9bbz00ktYvHgxpk2bhuOPPx7jxo3Djh078MILL2DDhg2YP38+jj3Waw0VCAQCgUAgEAgEgv2RhQsX+r6vaRq2b9+OP/7xj3jrrbdw9dVXD3DL9h/inkXk3FBkNtamQEDiJ50erCQswwS/oTGHmKC6g6NB1KWrC8li2U9KslCXDlaPuKOXVepBpXBn1R6eNalLS9XJbT8Rtzc0YmKC4PTf1Y1fkOwREIBwd6qagDb1HXPeKuUFG6pY4ZF8xtMUbXueL+YaWL9xrkaUFYnEWgd+a91sb38tpbByh8bqdSJRI/xoWJivpPdwwPsMt89LkvWFPYdI6f048mR6u3JW3a5EAKTkZDK1EBDUpobnnlIN/SGHfnUMkcdsIiRqBPrQhz6EW2+9FXfddRcuvfRSxxcbzjnuvvtufOUrX8E3v/lNnHDCCUlWLRAIBAKBQCAQCARDks9//vO+Sl9T0UAIwQUXXLDf5AR6W5Yxb47hYaBMaPa9Jj1tGngpbEr6oIN9r5GbmpCdY/NUkHySkGdrkJ0zG4wBr2/ag05XyBSTDY2TrXBwLbWjwcDRWKvgrFnN+OWz76Atl8f2urFYWzrt3p6uc9YDQ2GXS9Vi7egDkVEoVI1Dlbx/UjNCrXIAYG+m3ttuAJtHTkK+FHpnW73/6dTdtY14a+xBAAeKAQqPbiXjqK/bFc7H5M3RU60QQjuz/ie1t44Yh2zJi6al1t+zYW+m3lEfI04FFmPGuKwdfSAkQgACHDCiAbzV+JyS8niubzwAO0unxrfXeRNaG+0YjbWjD8QRE+qRmeQdp5kTGoD6Bkeb/Dwg3PPSXtMAxrglCzMnGPOUmX4YiKIAAPbVGnLgzgHUPXKsUzZdSJQgL2eMuTPvsZ2wtnsWbRg91QoHt9N2AtnO9vpxlvyqY8bhpAkNGFmjoC2XB2OGSr49M8LRP41614tKZecYuOTc5O2Rkyy53RYwL62leQGAYspf5qSGBmTnzMaaUjg40+NNsu+HhDjGUmkuhyWz53vY2tCME6eNwc49PXhPa7BkyK6w3ZUd6egft60ZAkP28nIab409CIc31+Ot1hy6UjWgBKjLKNi5r2AZLN4aNcUKIeQ4Gc64VV7riCZrjtszDb5j0JkZYV3DOYdKZUv531SfBoExV455yfif2H+3YSL2lbyu3hvR5HvNjppR5Xmh/iq/LiXrqK83wBPRfs0u255hKOaN8XyvoRlSyStl+4hxlmzbp1htHI3NtrXA/BTw2axjvRxS7z+emSOPtMLBjZxxCEa2lteBuU7NvZwSIFeSY/da11sbHc+OvCR5jFVR9nLAmBdzDO2eBhIBGDgY49hd22iVpZf2TLdyuUfJ4K0xB1q55gZjL6fEME7qTAPjsPZyWgoBuC9V6zGKA0ZI0121RltaR/jvGW11Y6w5PvBA/+8G0siRjnnpkRSAc8e5C/e87AmYl431zdCoZMmpKQOm7AKG15LZprlTGh37qkmvnHY9Y7NWWU11KXBOsGNfHutHTYWkG3v5jhpnaEGT90Y0WR4rO7ONSMsUo2qdz6uO7AjsmnoY9nYXUdBY4F7+5ugDDZnnwN50HRprFRzc5NzTNzZOwp6SB1CUvbwnYC/Yp9Q4n7Gy9xnLQVx7xkjfsjbbQk9u9glDad5rliURAu7zHboopxz1BXlHBu3ldrbZvv+Z8mTKiWn0tu/lAHBUyjsGRFEczzN5rP/ay8yYAanB2OPSBx/ke40yaaJVFk37z0tcCE/w6Mgpp5yC0aNH489//nPgNeeeey7a29vx3HPPJVXtfsu8eUYs4BUrVlS4sn8wczxtS08dlPqrQda68dGlZZfSv570ODTZ+4fgZ4/xd5kNQ9u923L3I6mUJ/bjYGLOlcitNTTpVrvxsUc+hmJJfhZ/ejFqFX8FhWBoMNTWVDGv4YHvvGi9vvCmY5HKJHqOY9gy1OZK4I+Yp+HDv9NcDeR37d/+9re+71NK0djYiDlz5qC52V8hMtwYzL9hblv8Fu5c8i78cmq7HXdSMsXlJx6Ea+dPx22L38LdyzZB17mVw8KOIhEjQbDt9aTGGuzaV0BB06tKjKxIRjJnVgpLQ2Ccvg7zECmoOtT+zvjeB+rSMjjnKGgMOueQabmPl590IH7zz01g3Ohj3HFTJII7PjcHH5rhNALlVR1rWzpx3/LNeOL1VkQt0hz/gsZAKbFkwY25J26SJ+PWJ9+y5uojR4zHjz/9vsDyn3qjDdc+9Grg53+7+gSc+bNlsebfZNq4OjzyH8eX5ZZx6IMoF4pELI8WzrmjT2u+fRoyioS533vGEabo9RtPj9TX8+94Aeta91mv37hpPn713Du4/bl3DOUo4561bSclERRLQmFvJwD86sLZ+M8HymF7PjV3En730tbI4ylRICVJkecNALRS+MgHLpuHOVNG4VfPvYOfPrMh8eTq/e2oqJQSwvh5Mn14RhN++pmj8f5bnkFv0Zjz7587C99Y9Lp1zQUfOADfPOtwx325vIrjfvCs9fquBXNw3CGVdS7mOmCMIy1TdBfLcpZRKGRKrX0paK33x1qSKYw9ppRcPiUR5DVn2Xb5BMoyWu1zJQnMNvQWNcd+KpVyPLmfXZagEcNrgpRWv99npuGFceDT7z8AD/7rPWv9fPx9E/D9c2Y52mKfWwJU/fzLyBQSJZYMcM59Zfep/zoRf3h5a6gsUAJkFckhTxy86nYeOakB7ztgJBat3u7YP084ZCwOHluLO5duDLxXogQZ2fkc+8is8fj0nYbewCyvqOue0G1JoUikX2U1bJ/l3Ah/11/Vm2vh7187CY01KRx9898dz+u1N/uHehsIqv2unagGadWqVfjKV74Ses2MGTPw85//PMlqBQILTiRsbzrF8TophpLRRzC8kIiEUw44Ba2trdZrgSAOlBIceOQYx2uBQCAQDB8uvvjiwW7CvwUXz5uKh17aiJ09Xo2A+52MQnHmrPHWfY+/2ort7b2e+wBD0WDTZUGRqKXMUiQKtYr8tprOoem6o10EgCyRUvnlZz3jHKrOhrQBCDBO2hdLmqaURKAzoKdo9PH259+FqnOrjzJ1GtbCMMfc3v0duTwWrtiMRau3o6NHhc6iK4IIMXL2FErWwuaGDC6aN8X32vY8wzNbVCxt2YBemxHjyTfa0DzyLVw8byqa6r2n9eWQ72qMc9yzbJM1NvZ++s2/937j95mzmnH/ii3I5b15qQYSzgGNMeiMe+b01B89j3NnT3ScqgeiG03cNtkduTz++c5ux9iFTbtm89pRJKfHmuLKbH/+nAPwzLqd2N7hvw+40RnQy/TI82bH3i9Fop69oK/0904xui6NXK9/LjdzDOxLwD3/frjnOmofzP27paMXeZ8TAPZ9KWitW8+AiHMfBY0Z68LEbQAC4DAAAeY+x6sK85iU4a9ct3+JnMOzd1XDAy9ugcrKz4R80fsctc+t20srDoxzaKXxb27IYNc+/xxJnFeWBc7h++ywtzPqXBAA08fVIa/qKGi6Y/98bv1OvLbNP6eXvTHutuzuKlrfGaI+Y/tCfxsr/fZZAChquu+Bn6Qof+/g+PXz7+Lvb+5wfAcgMIyUQd8BhirJBB4skUqlsGbNmtBr1qxZg5SPy5RAkAS6lMG/jvi29aNLw2cxCvZfMnIG3573bVww5gJcMOYCZGQhl4J4yCkJp1x4mPUj/xvF+hUIBAKBICpN9RlcPTta8tzeoo4v/W411rXm0FSfwZ0L5qCp3j/chsbMXAFARpFKOQBMRSdBVon/XObwKok4DIVKb1G3TiDrzHg9WKfC49Cr6aCUYOyINAACjZUVUKYS2OqjyiIrycwxN5WT61pzOP+OFbh72Sa05fIoqDp89IehZeZLJ6cnNmZLc+/9fr6uNYdbXuzBk5uKHoV3r6rj7mWb8Mk7VmBda85zryT5GwPM+fzjv7ZGmn8/OOdY15rDlb9bjR41vgEyaTTGkVcZVB+FY1suj7uXbUJHb7EqDwu74ldnHOffsQIvb9obWbFJiHFi25QhO26j0Oi6FO5cMAfjRsQLuxN13tz3AMb+QQlBRpEGILtFNCq1gwD4xkcOCzR42fdGE801Lr7D5DYCRZxkc/+eMDLrDDMIoKgxa18KW+tmGeMHUZlLUN4f4iq30zJNTIY0Zjwf3UaXxlrFCF3IkjEsaNz5THj6zR2evdQxt1L16mtV5w4ZCJJdzst1Njf4ywIHPPLkbmecZ1teZXjy9TbP/skYx64uf2OVic69bdm8p9v6zjD0vzVEx5STnqKOnirWSFwyigTOjbXwh5e3oi2X97Qn7DvAUCVRI9Dpp5+Op556CrfeeqsV9sikWCziBz/4ARYvXoz58+cnWa1AIBAIBAKBQCAQDFmWLl1a9Y8gHpPrJaQi/JXLOdDS0Ysr7l+Fnbk8ZjTX46efPqqUaNxJbUpCU30a2ZQEiXpPuUuUoCYlIaHczuAwwpxpjCGvJush0J80N2Tw2Q9MBiUERZeGRqlycDhsCcJheIJccf8q48Q140hHVLiZyNQI79LckMHlJx6Eh66Yh8PGe/NJmPXs7jXC6cguo45EDCWdXYbc9dgx8mlwaz7DbAXm/AedfM+rujUG4EBGDlf9ZuSBSJ/tT1aWjNwZPLxPQZjjZI5dS0evx0siSLQIgBOnjcHIrGKtW+d9zvd0zjGjuR4/CdgHTALsexXnzXFt6RJTtiVKkE1JofUmQdhYKZKxjwW1w7wmm5Jw4Bj/XFJAeW90eDO6BN5viNwq6zgq7BnN9Xj4S/NwyQlTHe2WKa241u1l3HXRnH6fgyA4DA8Tux9OVIoaAyFANoHnUG1KQkqmlmwSGHJDCUnWW81VWHdB891Lzbm9/MSD0JANDmY1YWQGXzhuKr5w3FRkXQcmR9YokWTAXLszmuvxfxe/31cWzFCy7rLs7ZwwMlMKQWd8RgBrD7KvI0KA59bvQlfR680pUYKsK2Sduy1ZRXK0ZUcuj+/+9c1E5mmoGKUHg6xiyL/9ee2eCyD8O8BQJdFwcLfddhuWLVuGb37zm/jZz36GuXPnoqmpCTt37sTKlSuxc+dOTJgwAT/84Q+TrFYgEAgEAoFAIBAIhiynnHJK5PBHbvQqQo39u+PnNGMPz0JgnJwuaAxtuTwWrtiCa+dPx7j6LNKyhJTkzGty3uxJWNuaw/q2cm4S90li4zS/bMWoBwCG6KfZ3XAYir04t7vzS0RBooYynHNjhKaNq8ObLfsi1ytRw6OCgODZa07BL559u+Lp5bioOkNalsA5x8IVm60TuWmZoqjHG6OjDmjAN848HDMn1CMT4sFlr0ehKGnryzVRWs4pZJchE7dHQkqm6O1VrRJSEkFvmLePrd9u9nQVsa9gKA3TlsY3eJ8oxjwRbiouk8ghQSlBmlBopfBRQX0KwjT4qLZ5lqlTzolrbgCjDxlZwumHj8cb23OAzz4qU0PRZ65R83djbdqxD7jzaRD7Te72Ruyjn6GIEuLZf8xuqYxBZ30P+XXUASPxZss+R94Wv3xUfvug/Zqwx5n5GbUZI7yeQN5euJdD3L2zqT6D//rwobh/xRar3V/50DR84fgDQ9e6nVG1Kd++28dL07mnP9ViGIeru1emAGOl5wzKcue3HuJw6Lg6fOujM3Hz42uxYUcXKAGKOkN7T7HyzX2BwHcvBYy5vXb+dKRkil8//65vvqFnrznFmue9PUU8vXaHNX/fOHMGzp97QMUm2EdtdJ2/LBw9eaRv/jh7O6/64CFY25JDV0GzDEk79xVw/Z9fd6yjghbuPegOAW88byWrLafPHOdoy8IVm7E7oeev8Rwgicl6UB3GQQ7Sr3mL4mL0ufzcTEnENxy/3/fIoU6iRqBJkyZh5cqVuP766/GnP/0Jf/vb36zPMpkMFixYgFtvvRXjx49PslqBYEDQ2tvBVSMMAFEUyI2Ng9wigUAgEAgEAsFw4Nvf/jZeeuklLF68GNOmTcPxxx+PcePGYceOHXjhhRewYcMGzJ8/H8cee+xgN3XYU9R5pNwwhBhK/F5Nx6I123DVBw+xvD0IIaXT/sbrlEzh/vs/Ss6WrCL1KVxXXN1LXAMQYCgRZZmClMKttXUWYqkPGQMkuRweb9Hq7VB15lFW9yGdAzSdIyVxFFRmlW+eytVi9nnjru6KBqC8qlv1KNRQavvV4idDZrluhZFSyoFkv7cSZr/t13LO0dmrQucc2ZLCt5LnSVQ5MufMNDYkhb39Zp+iwrjRZ3PsUhKFzjkqKbnNVCyEBBssJGqEYtNL42eOo6mUJYSAgoPFVEz6zZsbyxPI5zP3/sM5R8nmB0r8jdxR2biru6SENi00wW10t8P5WXAdZW9JmydQJO8otydQfBjnjnYfOKY2sgHIaIPx29t3Yn1eiCsQoe0NaUuFe3VW8roqXajpHAplsfdEN2/vNPbIsSMyeHdXt2P99ScSMQxZ7r3UDuO8JF9eAbRfTwlxXJeK6B5ll1Pz325ZkCOEpcsoEuZMceoLd+0rODwSzXHlMAx6PimjPOgMSMvl9ZuytcV8biU1V0YY3P6dd8YAUvJUTXBZ9Rkzf6FJ0F4e9h1gqJKoEQgAxo8fj/vuuw9333031q9fj87OTjQ0NODQQw8VuYAE/Q5hKibteNZ6vW3cB8GpkkjZLdddh95VqwEA2TmzMfmuuxIpV7D/ozIVz259Fuu61wEA5rF5UBKSS8G/B7rOsOmV3dbrA983pk9xkQUCgUAwsHzoQx/CrbfeirvuuguXXnqpR6l799134ytf+Qq++c1v4oQTThjElg5/tuT8NQl+qgxKCSgI2rtVrG3JYcJI/xwApHTS2I5feCmgpLSGoZzzOzk61DBDnUilE+ldBS2Wt4H9/rUtnejoUUGNo9kOy0+hDwH8zTq2tvdY5VNKoFeRm6K7oGNtS86joLNj7wcl4TW4Zcgs1x1qzJQLkyiSYR9bezk640YumYTly+EVk2jJZcw+RYVx7hg7Sgn0CEpOs56wETKMQGUfKrPvTkWwf+6uKHUHhY0zrjEVzBUKc7UhzAspCt0FHRIloW2LQljANL+cQG5vBz+jkGecq+in+5a4hvQoBtX+N4dEw20K5TAU931tX1419khz+uzPtL4Y8ytBCAHl8OyldnojHqpwz2PUdttlLuieardd933muBL4ezP6tg/OvcW+f5jPrT5uEZ76+hP782CorCsTd3sKmr/sBX0HGKokbgQyURQFRxxxRH8VLxD4IrEi5qz7X+t169gToAllu2CQKepF/O/L/2vlSrtMv0wYgQSx0FWGZX/aYL2ePHOUMAIJBALBMOKGG27AWWedhS9+8YuezwghuPzyy/HUU0/hhhtuwHPPPTcILdx/6I1ynNaG4eXB0VXQIFP/ZyslxKNNDlIEmcrdME+hoQYvqaK42fqY0YTM+7sKuhGmhlSnwK1UR77IrPLL9cYvp6vgzb9gx94Pk7DZtMuQidtISHxEK0ooKHNsna+jGQ8Gm0prJAqcVzfPZj1h61Ci5jp1egLZRbcvdUcx9UXJPpNkendelqDEynRDfRTUbiOQb06gBLrpVv6Hhdryvb+CrTrJuegPkmpfV0GzQlqW95x+tgLBfy+1U1CjHSZwT3vUXGT2y4LucYf6jIp7L6o0V0EHTex7i/2a8nOr/+cpSYb6mjJRQw4fVJLboUS/aJDa2tpw++234+qrr3b8obNr1y68/PLL6O3t7Y9qBQKBQCAQCAQCgWDIsWrVKsyYMSP0mhkzZmDlypUD1KL9l6wcT0HDuaGIrUvLUAKOxxPikyQ9KDxI6cqoSqe4VKuACsNsMzH/FbPp5v11acnIntEPp+UJCFIyscq31xu3nLp0+FlYez+s+8K8Ori3XLcCT/ExMEYJG+Puo/naaaioDqmU1yhpCDHKDupfnHljnFe8PuhzAgIf+62FVMoJVK7L+G03HFQjY1HuK4cd63tZcSDlVd4nAuzlxmc+nkCay7ri6wmUSDg49+uYRqAK1/uNXVqm/aNYrYKkZKUuLVt7WHnP6X9lvd9eaiffz55AdvkJuqfa/I5uI1DYXFECKzytp37bffYyy8+t4WFUMUlqT+pPKg1pJbkdSiTewttvvx3XXHMNCgUjGRUhBPfccw8AYOfOnZg3bx7uuOMOXHbZZUlXLRCAE4rdI9/neJ0Uoz73OWjzzwAAyGPHJFauQCAQCAQCgWD/JpVKYc2aNaHXrFmzRoTPToAp9RG+/5thbhgHA0djrYKZE+oDEyBT4lXgBJ3SpWYktFL5SZNNSegpalUnE3dDUD65TwkwIqNg577oiaXt98+c0ICRNQracvlErUBmHRMba6zyGeNVheWpy8iYOaE+9Bp7Pxg3+xcQ/s8lQyZu+ahNyx4HK0oIUjJFMSBUnn1sy/cY4WcY58YYUFL1WGcVyVDOl/SqDqMXqp/CjCwFrg+/PoXBeeU15aeTNeshhAQaWmRKHApdKyeQbSDsdUclSh/j6GntbeirgrcuLfUpNKNJuALbNB6Uce+tfvuX560quuoen7j5USoZgfzkQaIEckpCd7H6/G/VQOAcYwIjt4yq9237zaYkzJxQb4WbtPrcz7YFzjkY4NlL7USV3WoNin45gdxUew7DbTgNW9dpWfJdY+69xf69xHpudXrlMIrXqR99eQ5ELd/yHOznuuJib0+Yt1LQd4ChSqIG68cffxxXXXUVZs2ahcceewxXXnml4/OZM2fiyCOPxKOPPppktQKBhS5l8c/ZP7Z+dCmbWNl1J52Ekeedi5HnnYu6k05KrFyBQCAQCAQCwf7N6aefjqeeegq33nqrFR7WpFgs4gc/+AEWL16M+fPnD1IL9x9SUrR8F5xzFHUGRaI49+hJyCgSZGqcotUZh8aYkXPGSg7tvD9IyUsIgSwRKJSiqLNI9wThd3mYMsKdhyYqqs6g6gyMAx85YnwsbyNZKivSM4qEc2dPhCLRRJU5Zh2cc8w7eDQkQlDQWFVhZI4/eHRFDxx7PzRWOuXrGhLDCMM8MmTi8QSSqOO9KB4K9rF1tE+m1hgwXlkpGlUszBYpEgk8hR4Fd5PtCs6gPgWhMUMuTQVqQWeRDCFmPbSkyfNb02ZOIJN8UcOqLXuxeku7dZ25np0dqlw34F8nYMjTGy0duGfZRry4cQ80nYGVrjOvN1+rug5VLxs8+2r8Peag0VV7MtgJK8L8jJLyfrpxV7drHPw8gVyvqwn32GdPoPDPfeWh9H6QJ2l/QamzvQ6Z7wMzJ9Qjo0i2vDNGn/uyJ0RB53DspXlVx6ote7Fkwy6s2rIXeVVHd0ELXFf26/d2F8E5t+TvrdYcXnh3F154dzeWbNjludeE83I5L767x/e6pMLBmeNKidH3SGW4NPj2Z4r53AqSz7hy0dfnQBRMmQ1aV4OFRJxjrekBuSZ9vkcOdRL1BLrtttswefJkPPfcc6itrcWqVas818yaNQvLli1LslqBQCAQCAQCgUAgGLLcdtttWLZsGb75zW/iZz/7GebOnYumpibs3LkTK1euxM6dOzFhwgT88Ic/HOymDmt25PJ4aH2hokKF8/KJ4uaGDC6aNwU7cnnct3wzeoq6Q/VIAKx4dw8UV9issJPwikTRkC15xNiIq8D1u7ynEHzaXCJA3Ij0HEBR51Ztf32tFbJEoEfIrUQAz7icOasZ96/YEujdEhcCQ9FV0HTc8rd1yKu65VXQU4w3oATAaYePi3TtxfOm4vFXW7GtvQdFHZC4c9x1BvQwBgJgXEmG7JgGOcY5VJ1hfVvO4Q3RqzLIlIEGRK5wj61ZjqY7VeM9RR5q9CQwwlXlVeYrT+5bKSnXq+l6Vca8osaQlikIIWCMW8ZQP3kJYkcuj4UrNmPLnh7HuOmMw70C3LJm1sM4xxOvt2JXV8Gx9ggM5ePe7iIoIdbYfv7elegqKZmLOrOukylxjHslwwLn8N1HJGrknGEAbn1yfaRxKJXo86/4EACnTm/Csrd396EUgzCFMiUEO3J57O4qWOPw6Jrt0Bi3xrQ7793H3EafajxP3HMT1wgUxcCoSNSxNhg3ck8pEoWqD5w3kFsvzRhHdwL1FzWGnbm85QkEGH1urFGwvSMfcmffaW7I4CNHjMdti9/CotXb0dGjGnLBAUkiyBeZw1PPXFcAwak/et66vuDa736zfBPu+ecm63lil0VFotY+cN8Lm7Ds7d3o6FHBOEdBY57rwkIhhuGXn0yRKFIS0OMT5o5x7tnbdGbsLfb22DlzVjMWvrAFqq657ovnOWvfq6t9DkTB/jyQKQnNuzOQ2L4SAQCCvs7kS/LR7PMdYKiSqBHolVdewYIFC1BbWxt4zcSJE7Fjx44kqxUIBAKBQCAQCASCIcukSZOwcuVKXH/99fjTn/6Ev/3tb9ZnmUwGCxYswK233orx48cPYiuHN+tac7ji/lVo6ShWvhhGSK3mhgzuXDAHe7qLuOL+VWjrzHuUHRzAq9s6kJIpCEg5T0KIQoWXPA/6I3xOUJEEQCEBBcqe7mKk6PwExsljuxJqXWsOV/5uta9CK6iMsBYTACmZWgq9zl4VlBieXnG7arZ3dF060vVN9YZsXHjnMuzNByuBzBBle7qLaKrPWO9TQqAzjrwarEAzyvQW7B5bv3LsYxA0FmY5Rn4e4ikjr+oOJXlKIsikJJjpW8zT+HGlSmMcWlGHGalOkSgI58jIkq8i1I25ltty+cAQjXbcxpaMIlkn+p9fv8tjfOUwknxfcf8qFFQdvSVDxe6ugqN95nWazq2wfS7doAcCb+gzs6yE7KJVYY7LyBolwRL9ae8p4vw7VhjeGKX3TMW9Oab/WL8D61pzmNFcDp/k9eKJ3yr3PQEH+CPf7wclxLE2ChqDCg5CjFBL1U6zud+ZchaXpPTnr27rxCfvWIHp4+qs9yghuPW8I3HR/73cbwaBrCLhujMOw5UPrEZbLg9VZ6Clp4TO4XvCobyuONo686X16/UhM+fVuN4pi5quW+P+SMlYSUEsEbdfl1H8w7RFwW/ro4Rg7tRGrN7Sjly+3MGCqgfKkb097T3l7zvm87dX9T8KEnU9uZ8/1T4HotTDufEP4xk3iBtkleiMW98j7c//oUyi4eAYY1CU8IfKzp07kU5H++IlEAgEAoFAIBAIBPsD48ePx3333YfOzk689tprWLZsGV577TV0dHTgvvvuEwagPrAjly8ZgHojKTpkSnD5iQfhoSvmobEmZbvX/2YOoKAyh9I8KOcJ44bCfk93MVJYur4i+eSo6CtupTpcrxWJIJuSPOHNzHGM0pisQpFNSVAkr0rNrCOtOBWicqnebEpGTUqCHDH9k729cSL5jKpNgYao/GRqyMGufQVccf8q7LR5fnX0qA7FmVtc/NruN7amPLnnpDwG/nkj3OVIlHjG2zxNbl4/eVSNQxFvv8doczyB5hwYNyKNy088CDWp4DxBdhxruQorgGGkKY9ZmCdIa2cv9vao1timZEMmU7KznRyGd0RGoVAkb9gvAmM+k16HUTHDU5k5Rux45T+ZTSmoGMY5nnlzB1o6eh1j4ZadnoLuWTNexX018983T6Co19vXxrgRaaRkClkiSCsSxtSmYpkJ7HOkSMH7ot99/QHnHC0dvXhh4x7HeEwfNyJy26qBcYZb/rbOWvtZWUJaoZGNFxxASiZVedwWSs8ZxoCsLCGbkpB2bdIchmG5pxjX39YgaM2MyCil8KPlcY1iDuEA/rFuB3bm8o59k0eYHXO/crQPxveJlOT8fuP37HDfVw3meGqM9YuRaSAgMAx5o2qGTz7PRD2Bpk+fHhrqTdM0LF26FLNmzUqyWoHAgjANY9vXWK93NR4NThMVc4FAIBAIBAKBoGoURcERRxwx2M3Yr1i4YrMVek2hQEjENABAfUbGtfOnAwBuW/yWdW9aptCLXmWE6XVhnMBlSId4NKh62WiRUfo/WXiYZ4Kp6OnLAVuJAookgYODwMgr4KdIVnXmGEem6qHKOI1xpGWKtCwhJXEwDk8dBc05F/Yxp8RQuGq2yW4akUZXXgUHCWxvFE8Uk4UrNqOjaJzwzyoUPcXyQFICZBQZvBQyqC2Xx8IVWyy5evSV7U7DDSEOV4e0IiHFOHpLXk4SBTKy5Blbuzy5MT0SipoGU8yCyjGvt4/3HQvm4L29PfjBE+usvAxuHbj9noWXHoP/WfQaNuzoCh23lGSEW6KU4BPvm4hr50/Hb1dsjuQZZ1/LaZlCV/WK92UU6jhFbjccKpSgqPtnl/HrK+C/nkwPgrQsYfLoLDbt6nHIWFGvLkdVX0nLFO+fOgprtrZbebP81pJJUsr7sP2voBq5lCoZxdxrxh2KLUpoNjd9zQkU53JzbTzyH8ejpTOProKGurSMhoyMT9z+gpWPhpXcHSiBzbgbPEfudVrUdV+PpmxKQk8/PF8kauwDvUUdEjXaAph5ZYhnz7YmmQDTmurw7s4ucJDAdgeRVw1vHkJghZN0PwMqUajSi8pEkYgjDJ4bDmDLnp6qyg7KJcQ5R11ascbV6gMH0gpxPHfcdBd0LFyxBRy8vG9KBD2uhy8lxo/pjUgIQU2KeuRQZ/7yZJ/3gsYc3o7ZlASdMRQihJD19B2o2vPNTUNWRldBB+cccmnf73cIsKur4NjHhjqJegJdeOGFWLNmDW666SbPZ7qu49prr8XGjRtx0UUXJVmtQGAhsQKOe/U660dihcTKbr3xRmz69Kex6dOfRuuNNyZWrkAgEAgEAoHg34O2tjbcfvvtuPrqq/HFL37Ren/Xrl14+eWX0dvbO4itG57kVR2LVm+HqjOkJBrJ0yOX15BXdZ97g24ue5Boupkw3nsV50boKMBQhCd16j6MMEMLISSS90UYOjOURzKlgZ4EZr8rj2MZcxzt7bTXYR9LT30BKqPOXtW3LDtRx8OUDZ0ZxrTA3D2EICVRqDrDojXbLLl66o22inVQSq1k2MxHzxd1DKgtSYVfOX5tlijByYeOxYzmEdYYqSEaW0IIZk6oR2tn5ZwgskSRkSXojOOx11qQjxge0G89RlHKu+fUkf8nRBb9jT3BFZoyyxgcMmZ+NhhoOsPIGsXqZyX5r2ZLinr635RXnaPiXkwJHGvGuN95TXXh4Jw3xZ2XaryPatIy5kxpxMmHjsWcKY3IpMpGE1miSMlSyVOIWsbWsDkyMYwuwWu6GiNZFMw9jXHnPm1fZvY+yFLph1KMqUuDUloyKMSvW+fc8Dip8AwIohqZsWOfi6Dhbenojbyn2QkynHLuXJc642ClQxJBzx3rWs7x59Xv4c+rwr/HUEIg2Z4T5rhGkUNPna5BLj3FI93rR1/nzCTXq4GVwo7KEXPP9RXOvfvYUCdRF4kvf/nLePzxx3HzzTfjgQceQCZjxMT71Kc+hZUrV2Lz5s04/fTTcemllyZZrUAwIKgtLSi+8y4AQGpoGOTWCAQCgUAgEAiGE7fffjuuueYaFArGISVCCO655x4ARsjsefPm4Y477sBll102mM0cdqxt6URHjwoK4wRvwEFWBzrjWNuSA8Ad94ZhenIYIab8jQnMdii6UnkDBeN9C1Jl9TekO2a/pQjjGLVc+1ja7+kpauAcSCvUMweqzkCJFNrWqJ5AplwR4g3lBjgVhJQSUBC0d6uWXOXyaqR67Dks3OPhNwZAaRwKOtKKoXh1f1Zpvrz1G1RKyr22pRP5iJ4HnjGJIILutRyVKIavKKg6g6YGN9QcW7cSNGieBgLGEVnWgOqMQJJEPMp4v3LMcSDw7n9u2SKEgHJY8jFnSmOfvXj8cM9VJaqp0r0PxfE2rESYbPX2Yw4VSsueXOZ+EsWArpSU731T7Bv16GzgfesY55BASmHK/Gsv6syS2TiEhVC0wsCV5puSaN8hCIA9XaXnVGnfjGIcjPucKLfVK4864ygOZsKzEhyGlwulZEC9Mgmc+9hQJ1HzmKIoWLx4Ma6//nrs2bMHb7zxBjjnePjhh7F3715cd911eOyxxwbkRJRAIBAIBAKBQCAQDAUef/xxXHXVVZg1axYee+wxXHnllY7PZ86ciSOPPBKPPvro4DRwGNNV0I1wJvZTypHu03zvjXIzB/cN7TIY4aDC6KsXkEmlfpmfx/0zP6xcv8+KGrOUUEFJpCu1NeqQWLIRcK/szgtDjLotuXI1I0q17raHj0/1Y2DHrrAuVFDkGWMSHfuYRLnPbz1GOdBdqb/uuQoiSOnrrkt3hy0b5HWvx/CWqCabi18uKD9DhzUOEauwy4fj/hLVeQI5X6sxLYTVGJ7cw5OkunNQZYs42xBFdlKlPDp9abd5b9y5SwLDOMIr7gWmzMYhSA9uRAs0Q1Fyz7VBYeSA8hpyexNFoZo5CnouDxWI9XtgbQ72fWyok3iylFQqhVtuuQXf+973sH79euzduxf19fWYMWMGJElKujqBYMComT0bUsNIAED64IMGtzGCYUVGymDhRxbi5Zdftl4LBHGQUxLO+/ocx2uBQCAQDB9uu+02TJ48Gc899xxqa2uxatUqzzWzZs0Kza8q8KcuLYHAefo1JRl5cML0OHVpGSjFwrffG8VvhsA/dIqf4kGRSEUPiyTJKBRFjVlhXooJKNIqKVTMz+PqT8PKjaTE8amv0n1RDWOWXNneyygS8qpuhUtyNIUbdVty5aMYTkkUKmNQJOrbTvd71Sqy4tzn9AQKl5W6tBRL0egck8r4rWWFUugVZDi0vwRIUQrGWWyvkKC63OUMtMLRTVQjF4CqojZF9WyxxiHiMLvlw71/VBPujLnmJo6BDIDHwBeFJD1/3AyGbFk1Wja9UqjBCAZZ0wjUl3ab9w6CDShyq6PuaVGwewKVn6VlOUwr1HjuwAi1aTfWm2uIEIBXGC9336qZo8He6yphX71pmSaWb6gScZ5zg02irTzooIPwkY98BL/61a9ACMFhhx2WZPECwaAy5ktfGuwmCIYpEpUwacQkbFQ2Wq8FgjhQSlA/JjvYzRAIBAJBlbzyyitYsGABamtrA6+ZOHEiduzYMYCt2j+YOaEBI2sUtOXylgKQEKAmJUNnHL0+cdopNfKbAHDcS824+D6KQCt/DVBK5O1tCyVlIxJjHBI1jAWaHs+Doi/IlEJOlbV1fXUGMvsbhtlvBm6NY1/LtY9lVGSJRmhrtAGx5KpTt4yJlBDUpLwqFMY4GDgaa5WyXGVTaFOd+XNSMkXKFYyFueTK2daIY2C7IMp82XHnoghj5oQGZBUJql75xLPfmFTCvZYpNfKOhI2BEXosvFxCSKndzKFAjStf5ti6Q6NVI6tJIVGCUbXpyNdXY7Dw8wSKsv+FwTkHAxzy4b6jGq8c9y1q7HBwfTcCJakoHyzZYqVQbPb9JEqvTON43547Rs2D0e8oy0ORaOQ9LQqMl2XImm8Oaw+0P3c0l2WMAxhdp4Bzgh37jH0zirEu7nPCZDD3ukrY9x5KCRSJQqYE3RFDmFYLB2I95wabRMPB7d69G/X1w6PjAoFAIBAIBAKBQDAQMMagKEroNTt37kQ6HV2ZJzDIKBLOnT0RikRR1Fkkb5S6tISMIvncy30NQDrjliFALiWtditQODeuMRXSxVJCbSM5eLC2pa8h29x3u8O19DU3kdnf0DaU+qhQ2zhWgNJSfoGAayuNmx9NdemKbY2qBDdlQ6KAxoLbyTlHUTe8e849epIlV2e/b0LFOjjnluHFb5yjjoFdWR5lvuzEMQpkFAlHTRpZ8Tq/MTH7qjHDI8cvibbfeqw0BrJEQpXu3GYEqEbB76mL+HgCVSGrSVGfkX2NNEFU00pC4Jg7zjkoIZ45BYwxkihBUWehmmLG4ZAP4z1XOLgqPEHc+18lLzK/dnnKdPXTLUd+xtsoZXDOoekMRU1HQdVR1HSouvE5K12nc55YWM+omOtXIs79JMq+YnkCEQKlijVBCVDUOBhng5JGJMoe0TQibclsNeX7yZLZVXMvkSUS6VkqUYLzZh+A8+a4vsf41Y3qnxNm2+3fcZIiKfGeOqbGMwaEkFj7Y1wI8e5jQ51Ep+/II4/Ehg0bkixSIBAIBAKBQCAQCIY106dPDw31pmkali5dilmzZg1gq/YfLp43FePrjXC7lcLAEQB16bJBzryXc46eog6/6EH2t0yFgqmYY5yjoOnoKeroVXWYEbV0xtGj6tCt8F8+bSH+p+zj4G5ud0FHQdMtJUhfkqsTlBN9V0KRKMbVG0bMQil3Txg6A3pVY9wKmu7bzqBxMyloZUMCATCuvnLI5TgKrIvnTcWoDCnVxTzeDYxxy7OkuSGDi+ZNsT5bMG+Ko+1uxZz93rBxrjQGjJXzV8SZL5MgPWCQ4vnYg0dVNCQUS4uouSGDjxwxHrctfstaH3mVoVfVceqPnsdti9/CzpzTW8q+ls0xr7R+/AxKJgWdo7eoGUp21+KOuzI4D84XUmme+otcXsMb2zsjr/M4el9zb2vLFRxz113UccX9Kz1z2lM09p3aUtjqSi1yrxl3F6rZu9xT4/baqni/rQD33m7vp33P8qwV28ugMrqLxk9eYyjqHCrjKOrGntCr6ugpXZdXWaRcVUli1leblh37SZRHlT1MpiJRpGIaghg3QvL1FFlVofn6SkHjKITsJwRA04j4of135PK++2BPUcc7O/eh25ZPRpEoxtbZnqUh8z8iI+OieVNc+6a/J7MZltb+nIgyp0HfcZKAwAjblsTeecYR4z3PDiD4O1YSdVJCPPvYUCdRI9B1112Hxx9/HM8991ySxQoEAoFAIBAIBALBsOXCCy/EmjVrcNNNN3k+03Ud1157LTZu3IiLLrpoEFo3/Gmqz+DOBXMwYWQWlACqDvQWdU/CYgJ4Tms21Wdw/RmHgRASSSmcV40TvKZHQG9Rh6r7p1jmHOhVGfKq7qtsoYQ4wlMlhapzdBd19BQ1FNT45ZshXzKKFNlThBKC//epo4w5iGHY4qX29hZ1j4cF5+GKZHPozLYqcuV6w5Jsu2mqz+Dq2VmMyRJQStCr6egt6sirxu9eTQelBBMbs7hzwRw02YxQExqyyCiSpWjSGHzvHVmTCh1nSoijHDe9mg5KSOz5spfvR5DirD6bCm0PAEgEmNiYxXVnHIYrH1iNu5dt8sxjWy6Pu5dtwifvWIF1rTnrfcdaLo15QWW+64fAWF+VlOQ6jx8WzA+ttN7txkcTc54GGo1xrN+xz3f9+BE1VJl9b/Mr9/XtOc+ccphec8DYEelQLWs2JXnWjHu1V2MDcBuO4hpQzMvD9nb3nuXx4Ct1vNLzYajgniZCjD3tzFnNjv0hiuwost1oRDB9/AhLMR+lHYPkUOcgyG5o7rFxvf7WteZw/h0rfPdBDmDL3h788V/vWeuMEoKbP3GEYw80nx1FVzjLT86eiKb6jGPf9HvG6aWQc+7nhFzh0EB/yrDZFonSis+UKDy0chuuP+Mwz7gF5WRMoj+TfJ79Q51EcwK1t7fj9NNPx+mnn45PfOITeP/7349x48b5upmJP3AEAsG/Cz1qDy5ZfAn27dsHAJirzkWNUjPIrRIMJ4p5DX/5yRrr9dlfPRqpzPBIPigQCAQC4Mtf/jIef/xx3HzzzXjggQeQyRh/MH7q/7P35nF2FWX+/6eqzrlLd6c7HZIm3QkkrAEjKgmiEVlnBJXRUdzGBaKOAs6XccaBGUZ/+nWfEWG+OMPMCMKMGhzGBVBxRMK4BBAakCQghIQ1e6ezJzfdfZdzTtXvj3PPuWeps92+3be7rbevSG73OXXqVD311M3z1PM8730vnnjiCWzZsgUXXngh/vzP/7zNPZ2+nNrfjTuvXIGv/OAhPLzTwJhFYQkByxT1gsp2jnhKiM9QuLtUwdfu25T61LkAUDEslMoGKkZ0rZ+iRlGpFyUWwjaO6XCKuBOYnNdTw6R/R40S9HboOFQ2Ig0b3nz9QgBHdeVwuGy4J39PnNcpNeA67c/tyuH4eV14cvuhzA6F4+Z24c4rV2DV4FZ884GXUhmlHZxxLeaYO0dxER7BewmJjwBzyJoC59huhs++vgPPi37cvX4HDo4aEBAgIOjt1HHJ6Qtx2YpFISOQU8+mmLNr0eQ0Cs4RundWQcNNv34xtg/edsyAMa6/p4BT5s/Coy8faKreS5S/LioSiJL4/hAAH3z9Irx72UJ84r/WYehQWdpOUWOoWRxDh8q44va1uPPKFe4YOmt51eBW35jrorF+DMuSnnifaASAkYrpyqmXNmSvcuuHBNdP5PUpT/57dVvWGiCjNRPdRR393QXsOlwJyYfGCM5cPAenzPeXkgiu31bUBMqigwB7fQbfP/pae8z3lCq+9W/ronRtTBYaJSGHGCVAb0cOpYrhixI556S5uO5dr8L3Ht3quz6N7OQ1v1Ohu6jjP1a+Ft9c8xJ+tHY7RqrROl1jBHmN2ZEnhjwqN/JeakeXjne8qWQfCX5/yCKWu0sVXHH72kg9CAAQwJGKASHgrt8T53VJdaAQBDWTu/2Z39OoGezozW8/sgU3r3nJNxYdOYY/PvVo/HLjbp9+iEs12AoZdg4TeGUvOJ5OP7x7Str93MuB0Rq+dt8m3PyhZbj36WF33CwuYFmOgy17uzLsaCqCH12xYlo5gIAWO4E+/OEP2yeohMBdd92Fu+66C4D/i5aT11U5gRTTjYM//CGMHTsBAPrCBeh973vb3CPFdEFAYM/YHtSsmvtZocjKyKFqu7ugUCgUiibRdR2rV6/GF7/4Rdx88804ePAgAODOO+9Ed3c3rr32Wnzxi19sSw78mURfdwHvXpLH20/Moff4V+HZoRL+4d6NdmSLZ2y9xsVVg1swXKpkMuwIABuGDsd+o2OMoqOeqopQggtfcTQ+fNZxbvHgDUMlfOfhzbj3meFIQ2VBo3b6Kcsu9vynrxnA3K48bn3o5cjnduQYLG7XdKCU4C1L5+PHTw65vz/rpHk4MGZg35EquBAQAnjDCUfhQysWYU5nHksHunH74Fb8fsfh9ANSx+Qc/T1FXHPREvzkyZ3YP1JDzUqfPsY+Yc+R12xjUNKUFDSCSt0RYKS0ADZTX2N2geKac5bgqgtOxIahEkaqJrryGpYOdCdGf1BiGzbfs3wB/uTVC0L3fv/xban64LSTY3ZdBseZ9Ourz8Pd63bi8c0HM78XEO0Us52GYYOtEw0Q1R9KgP9z/on49sObMVxP9ZbXKMxAcW5KCfKEompyDJcqWDW4FddctMT9fV93AddcJB9zAPjMj5/GPU8O2XU1mnrz5vHKqRejlXmSUkLqUXuWiO6X7/oUbQbXHiHZo3L2jlRxdHcBHTkWkg9CiFs7xks4HVy2Z9pt+G/KOidChN8/9nogJLuUkExtTCSM2NEW73vtMfjvx7eH5uF7f34mfvzkEFYNbnF//pZX9qOvu9BUPblgOkpKCPq6C/j825fi2recgnXbDuLff/MiHnlpf+T8UmJHXloBL1BnjmG0JnciEULQkaMhWQPg/gz1uY1zLuU0Cgjh7iuMAgWNRX5/SML5fgHI9aDdd/u/3vXrjFtQB+44MIZ/uHej25/gftbXXcDVbzoZqx7Z4huLt7xyPi5ZthC/3rTHd31UxKfGCEar43diEgIsPqoTOw6WQ7IXxLunnHT0LGwaLoHUHf4CxK1JFMdwqYJ7nx72jdv6bQfxT/c/7z63algwuAAldvrCiiQaO8cAZ6qc2lhCEBBSl8/6YYjp5gACWuAEKpVKKBQKyOVy+Pa3v92KPikUU5Ijv/wlymvXAQCKy5cpJ5BCoVAoFAqFIjW5XA5f/epX8ZWvfAXPPfccDhw4gO7ubpx66qlgjGHz5s344he/iO985zvt7uq0J8cIli/qRWeeSY3+jl2wYli4e91O1EyeORXJgVEj8RpSN2qUTQtrtx3E9e95tes0WDrQjSe2HozN988ogUYoNCpQNi088tI+CEHiax7VC0tTYqdD+d+Ne9yDmADcGiveNDCnL+rFm14x39NG4qtJ8TqzhKifus1oFzctAZ3yxFoehACUNhwVpiVSFYHPkg4uSEFnWL6ot6l7KaXSe7N2hxBST5lE3D6lee/IfjURCRTXHwCo1teVYXEUAwbU4L05RlE2Ldy9fgeuuuDEkFNNNuYVw8LgS/thctGWOjyALW851lhX3pobkw3xeGmC/QpfHN+WqDudxwOjthNkT6kCrR4RF3ywTIcF3XnNuPfGWxOoYliZ7wnKbrWJNlqNTgkM3jCad+Y16TzMKupYdFQHNE+xNEd0groyja7KBZxAXj1S0BnecMJcPPzCPjz84v7INpqRQVvuIX1HRz8JIeApvROJd1+Rqda0TqBKBj1I6+021m/j914duH7bQV87sqg/SkhIL+uMSucvSs8zkn3tyDAtARahA6IgxI541ij1REsLFHWGsZjoYK2ud7zrcfmiXhDSeE/hqelW0Jjt6JQ4gTTGULPqMiAAjdJw2sdpemhr3E6g3t5efOELX8DnPvc5rFy5EgDw2GOP4bHHHsMnP/nJcXdQoZgI7ngs3YkrL2+cgH4oFAqFQqFQKP6wIITglFNOcT9v27YNX/7yl7Fq1SqYpqmcQC0kKi2Sc1p8w9BhHBozbAPMRPWBElAQHBw1sGGo5BpznGenOWXvtLF/xHBP/ieZZ5x7DpVrICBurQW7hoX/2vE4Rrx4jUbOqd2sZiSBel2RhOuCPRYARiJOifvua5PdppnUVmkZT+H4yJpAEXUv0kQHPL97pL6uSOL1UesjjslYt0kI2MZBZ5jaafL3TmGwX1lpZs2G+2MbtQ2LgxKWui+tiAQKrjMr47rbvG80le7xXhOU3ed2H2l7FJBtoBauPATTtDnojIZq/Tg6Ibh209QEyusBJ5BEv+wfrUnHx64/ZUJnVPr7sRj9nkbum92Pgu2mlcuGnkrQgwIg1D9fUXiddYBcH8tUuu0UCv8iKhKoFXoAqO/nTURIOjLo9IMS+13jvvtQSkB5eD169zjve6WNdIuSrWnqA0J8FagUCCFCIZf33XcfPvWpT423aYViSkHzeZCOIkhHETSfb3d3FAqFQqFQKBRTnN/+9rc4//zz0d3djTlz5uBP//RP8dxzzwEAxsbG8Dd/8zc4+eST8R//8R+YN28e/uVf/qXNPZ5ZRBm4HUPhSNWyzS4t+Md8XBOE2OadEc8xZOfZaR/ttCFE9MOkJ7edVDh1LCFC4xIy9jVp3TA9x6Z54LlZaPY+Q3KiN0gz6eBaQZQtOo1hNQ6Li8x1T7xEOoEiI4GS+1uumbZsey71jns4mii8PuJo5bodD145bZdBUCY/cesnSd5alVyvkeJK3l7Qhmj/zP85LkoyimAbWQ3QcZEGkc8MyO5YTN2bdiAgpOn3ANTrsvh/5vgZQvtEChkPpoOT7SVxTmsuolP4JUlDkuy2aj9K69B39/iMukFARDoogvuXzLFDSHiVO+nLgmhMLhfN1JeLpIm23AjL+tin3Sdle4n3tWUykEau5fdNTy+QqiqtUKRk4U03tbsLCoVCoVAoFIppwtq1a/HHf/zHqNVq7s9+9rOf4YknnsBDDz2Et7/97Xj22WcxMDCAa6+9Fpdffjny6qBRS4ky+DtG8648s40LLbB7UmrniTcsEUqJI4RtxOjKN/757Tw7de0J4aR5gbS/lIRPYQvh2F88J2G5SEzz06xpw2vcs4Ro2sERf9435r4Uj5tyhptxdsew+PicQBHHglnEL9IYzDrzui3bHmNpXqNukfFgzRrZ+oijlet2PHjlu21yJTv1HyNUSd2U3Zt1PRI0nDFRfZG11qyxPa4NI+PayEcYxeMI6fbCFDCzEu9fSWSdKJ2RkEw4shwcijSHA4JOINlwRkUlOTSrzpL2m7T7UfDxwfvSyqW7xwf0YDVwWMGW2cYzSExPg2o5Sh8HI4y9KdG8xNUEahW5cbTljERaB55sLyGBsQ1S0FlslFnUfW06TzJuxh0JpFAoFAqFQqFQKBQKP1//+tdRq9Xwj//4j9izZw/27NmDr371q9i1axfOPvtsbNq0CZ/97Gfx4osv4i//8i+VA2gCiPpHumNkWjrQg9kdOjiy2+Jl1+c1hq685jt1zbkAh0Bvp+4Wtfc+O409yWnjqC4dvR25kDlEZwQdOc2f9sR5bkfONw5minRwzdqzg+ngKGluXDXa3H1Rp929tMtwE2U4HG93DItPSDo4PSodXArhOHVgVn1dCTeagxJbRjtzms8YGbU+4hjPum0VBH5ZGo+hs5UE+yX7fRzSNZvx1biw55TVHeNR1wRpRTq48UYCLeztyCxTQdk9tX9Wu4PUXMeDIw9B54yDXStGHgkaXOtp3ino4JE5Hvp7ColtNaP/k3R76v3I6zyRtJu2BFtDTzX0oM6o1NndiHip9zOio0GnTZQ+DkYSUUKkcxF1UKaYYy2RYQKgp5hLdZ3vc/0HzpwJkRwZ6Oid4Hr0DpFXBrx7U9R+5/Rtujp8ZCgnkEKhUCgUCoVCoVC0mIcffhgXXHABrr32WsydOxdz587Fpz/9aZx//vkYHh7G17/+dXzpS19CoVBod1dnLEkG64LOcMmyBamcB0GO6kw2bAghULM4dEZxyekLfUXvnWcnpSfztvGuZcfgXcsXJBokvPe8c9kCn5HP4iL0zGaMfTK8zgg7ColkPlGsMQJKaar7vCesNUZSOdTS1gFoNZHp4MYZQVIzeVNpsxrPl/886oR4mu4W67KtM4qaxaWpv4D49RHHeNZtq6ZfY8Q3d4zSWEPiRBJcB3EylSRvsjWb1WBvcQGdUfQU9cjnpVmrUXITf0+wL9nu11h2nRWU3WJOa2kkRTM40YGOPMTXBPLjrJHgPpFm7QedTbI9uKCzxPFpZt9oRrZlJK2ntJFAhdR6MDxfUbFAwQjNqP1MtqfL5iJKz+sp9+AkNEZCEcoywtFozs+JuyZrFo+NBzItId1LvO/tlYGkvcn7DnLZmp6eIeUEUigUCoVCoVAoFIoWs2fPHixfvjz0c+dnK1eunOwu/cGRpv7LyhWLMb+7kMk4TACcsbjXZwIIGhM4F27al/6eAi5bsUj67NkdeuRzuAi3sXLFYnTmotMNBZ+7csVi3++lTqCYz0LYNWdMzmFa9T+evxuWhZrJYVgc67cdxCMv7cMDz+9F1bQghJAaGeNwjFJJ9wkB1KzG6Wmd0Yjogkb/LS5S1Q1qFd5n7y5VUJHUG8kyNrK5eOiFfdh+cMyVv+D7OjWcgz9z8BrIvNeVa5bvOiK5PgpKiLuuAKAqcVSlWR9xNLNuATtSoRWmu7CxW16fY6IRQsAJwHPWQdL1ke3U554FaorEOWOIJGpBCODo7jxmF+N1m0PFsLB26wE8seWATz6bSQfHA/K+f7QqXXdRpNFZ3l4RICS7zjy000QshF8eHEN8SB9aXOIwsD/zwLWhNGYSvZLT/G3JnAyMksTx0TKspTRy75D0XJNz1Dzv6bTrfdfRqplappL0IGDLU3C+0jrno16bEn+f9x6pYqRqhOZLY9R3HRd2XzRGxy3DzvtoUTlHfe8RfTBFZxRzu9JFysv2kuBYet8rak6C3y1kTLXMsmlpSbLK733ve3j00Ufdzy+++CIA4K1vfav0ekIIfv7zn7fi0QqFQqFQKBQKhUIx5TBNE52dnaGfOz876qijWvKcSqWCz3zmM3jiiSfw4osv4sCBA5g9ezZOOOEEfOxjH8OHPvQh6LrfGFcqlfCFL3wBd911F4aHh9Hf34/3vOc9+PznP4+urq6W9GsqkMZg3dddwC2XLscVt6/F0OGyL6WZDAL7hG9vZx4Fnbl1TrgAyjXLzcXPYRsT+3vs9vu6wxFffd0FXHnuCfjqzzdKT7hWTO5rQwBYNbgFZiAfjWEJmNx0K3fEPZeL8LgED/wS2AZAw+IwrTTZ+O0rvvizZwHYhionKoiSbKVbKgaHxuyx846v7ImUABz2fFBCfLVxovr/jn9/GO9evhArVyyWzkkr2F2qYNXgFozVGn3/1aY9OP+GNbhk2YLMz46bi6t/9BQI7CgsWpe9pPEmsE837ylVQIi8/ed2H6kbA22DrWOkS7OmCPGvq+FSBWXTAgXJtD7iyLpunfeumfY4pbg8FqMeweT8vVwzx91mGpw17mCvZ/vvzjqII2jvTLPOY99L2Gsw8CNUahwj3AQXQtonIRrr5O51O3FozIAlBGomd+WzVDZD98UhW3dPbT+Uad05+rGgM5RTGPoLOgu1SQlx24jSX81CYKe9rJnxUREIOCXHqiaqphWa5/NvWIOlA92+eTpcruH61Ztw+6PbfGNw/g1rUDUtMGrr2mBbBMBP1w/52pJFqthpAuPHp2LxVJWonP04bU2upOeagSmvmRYA+32d63ccLKeWqaAeHDMsuWMlMF9RbyNL8xZkd6mC0arle8dfPDOM+zYMh9b/puGSb7047DtSBVCv5dbEwQnvvERFG4Xfw3PogPh/96U/XYov/89GbDswFtnGvK68dC+R1bwq6AzzZuXdvSk4AMHvFlHvOB1piRPoxRdfdB0/Xu677z7p9eMNeVYo2kF5wwbwI0cAAHTWLBSXLm1zjxQKhUKhUCgUf+iMjIzgm9/8Js4880xcfPHFmDdvHg4ePIhf/OIX+OhHP4rvf//7+MUvfgFaP405OjqKc889F08++SQuvPBCvP/978f69etxww034IEHHsCDDz44Y1LUpY0SOLW/G3deuQKrBrfiR2u3Y/9IzZfaTKN2zniznuaIEuIWWi7mGAyrfnqeEAgIEBD0duq45PSFuGzFolgj0TFzOtw2gka1+d0FvGuZ3cb+0Rrec/MghksV30llB+fQ/NxZebzvjGMin2txHhqXoGFpuFS1I0GSh06K6XPGZLtXoO7UsiwUdBY5NholeNfyhbjnySHXSOM8y+Ii0si350gVtz60GT97ahduuXQ5Tu1PV4cmLRt3lVyDn89YzwWGS5XQs5NMI3Hv4vzefUbKsXbG+N03D+IvzjtBOtdOW85cdNbrWKQx5Tjz4V1Xd6/fgYOjRub1EYe3/Tse34oDo0ZMn+qpgKi9TvW6g6tscN8YpsWwBAzLSmWoDvUF9przGpa9/Qw68gjsujN/+uoF+OlTQzgwWnN/V9ApTpk/C8/vHkllCPc+MUm2HDpy4cLppx8zG1sPjOKgZMwJAfaNVt3ohoLOQif9R6qGq88Mi8Mbc+DI5/ce3YqLX9Wfao06627X4XLISSZbd1F4g4+S5jZqtJ1p8O4P6ZzpyeQ1Cq3ulK2ZFqLs80IAphCwahZyGsUN9z8PQ+LNGy5VsPdIFRYXbgqt//e/z6NUMUNRk8OlCoSAtB3AHqt7n9kF0xLunMui4xw5jRuf/p4Ccoxhd6kMM8Lh5Dio0zqAHLzPlb2Ld97tIfBfI5BNphw99f/+93n8aO12aYpC73wVdBZpMw/X7/N/dtZB0IHpRBsFGa3KHZ37RqoQaM7RoVGCnNaYF5YirVxUXSqHU+bbY3jhNx7E4TFDKgv/922vwCnzw/Mgkw9GiW9v2lOqut9bCIAPvW4RfvDE9ljZmq5ujXE7gTZv3tyKfigULYETDdvnv8n3uVXs/ed/RnntOgBAcfkyHPutb7WsbcXMRqMa3rToTdg5tNP9rFBkgTKCE5b1+T4rFAqFYuoTzJgAxGdNaCZjwpw5c3D48GHkcv4aNaZp4k1vehPuv/9+/OIXv8DFF18MAPj617+OJ598Etdeey2+9rWvudf//d//Pa677jrceOON+PSnP52pD1OVLPVf+roLuOaiJbjqghOxYaiEA6M17D1SxbxZOczpzOOOx7Zi9YbdjbaJ81+CvMbw+uPn4BPnnYiRqomuvIalA92papwQTxs5Jux0LHVD+c8/+UbM6cxjd6liRzwcKgMANAqf8Y/Vo20IbCNhnGHdEvGpV3aXKvjvx7a19PR6MwjYaaKKOSYdm2PmFHHZ6xfjf57a5d5jcQEu4g3bBY3CsASGDpVxxe1rceeVK1oWERScJy+MEuTqtSG8z44zJCW9y3jZeXAM/99PnpG275z2B+y5GKuZ2FOqZE6/FlxXWddHmvYvXbEIP31yJw6PmRAQPmdYQaegIG79h9nFHD5z8alY2NuBpQPd+D//tQ6PvLTflStSv985/Z7kCEg7Nzq1C7MLwUEIoDEGIfwy7TiqhLBTNtYs7v786O4iPv/2pTj35Hn4xH+tc+85b8k8HDOnAy/uGU3XkXqHs8iWRu2aMoTA7c+N73s1Lv2Px3F4zIQVsC7nGAUjBGP19p113HDWCmzcdcSVr6LGXKeY13hdqhip1qh33QUN3ZQABY2F1l1Ue1wk6xAH5932lCqR7UXpdmcdWVzA4hxGymCLqsndfS2u3pHOCIy646RqcuwbqUqvK2oMFdN+13I9SqVqWnYER70NhzxLjgrhHNI59+L9mWx8uvIafn31efjL/16PfSNVMArp+I0nuIAS24FkWv55ztedF3FRYITY45ZWpgB7TB55aT8AAkbgWzO0fqDEma+KYWH/SBXzZoVToMWluI3bf7IiAv9NQqOARm3nZHBe9FSRQP7PwTsYJejrLmBuVx6GyaWy0BtRpzHq8d696as/34gfrd3utvcX55+IH63dkdDn6WmPGbclctGiRa3oh0LREjjLY+0rZsY/WhUzhzzL49Ov+zQefPBB97NCkQVNZzjnfSe3uxsKhUKhyEhUxgRAnjWhGaMGpTTkAAIATdPwzne+E2vWrHH7IITAbbfdhq6uLnzuc5/zXf+5z30O//Zv/4bbbrttxjiBmqnRUdAZli/qDf38R09s930OFm7WGZXel4R3zgkh9dRs9s+Kuv3P9VWDWzBcqgCwjVQ1i8NrnnGK0ldNjj1Hqlg1uBXXXLRE+jzORUjOvMaMVYNbcLgSHVExmdgRARx5jYXGxv6930TlpLaKM1xRSpAn9lgNlyqxY5WV4DyZgegJ+9nU9+wT+6LTLya9y3ix6z+kewIXwKrBrThtYU9Tz4paV61g1eAW7D5SBSH2uI/V/IZq77gfLBt4YfcI/vQ1CwDYqbVsw6ojVwSGJydU2tRxTpq76AvsOhumx3Ivk2nn5zmN+pxZTt2Kjrzm628uY42jRoRXetkarVmgBMizhtPuvx/f7o45EWFjsa+uGBrr2Hm2admOLtu5FP0Gadaod93pjMAy/b2RrbtI/ZhCh3gRQKg92etEzbXGSN0hINzfJDkdjboMxeq5QHqtKNmk1I6Oc2qgeA8T2JERnsixFLrCGX+nn/J0cOH7vOPTldfsaJiI37cK2Tynal1kkymgIaMEdn2m0cDeQDzzJWB/3/jc28KZh4Kp1bz627sOJhtCCLSI2jlRP/cSdG4F58V5b8fhI5OFaKdM/KwWdIZFR3X4ahelqSc5PV1AdiSqQqFQKBQKhUKhUChayObNmzP/efnll1v2fM6562h65StfCQB44YUXMDQ0hLPOOitUr6izsxNnnXUWXn75ZWzfvj3U3nSklSc1g00lfU7dbsIzK4aFu9fthGFx5JhtMA06oOxr7UgTw+K4e/2OyMLVpiwdXP2z8yxZoeR2YVpC6qhwClh7serG5STSjlUWZPOU5tlGxHF+IUSqd5lM7l6/I1WfJvOEdHDcKfGbuBwZiZrzoJE6OO6tKmUQJcdRBJ/L6/fqgWwAThrKtAiIzLLFnXRc9T4IIfDTJ4c8sh7xDp6/O/c7zxaAb51UDCsUfcEISVyjza67qPaqRjod4iXYnkw/R+GdC9vAnXyPnaIxWx+THUYNNEk0B4B0a9+znux5Duu3JP3gOA0mUo1ErYGKyVENFgaKIK1MpZVRLz9/eljaXlhfyZ8x2cTpt6DOkhGUieB3EEcm4mQn6ndpolfD0dHJ90zXMjcqJ5FCkZKj/+7vwEftMGsqKfKrUCgUCoVCoVA4THbGhFqthn/4h3+AEAL79+/Hr371K2zatAkf+chH8Ed/9EcAbCcQAJx00knSNk466SSsXr0aL7zwAo455pjY561YsUL682eeeQbHHnusGwE92ZRKJQDAgw8+iLIhYFry4uJZ+ze8q+Jra2hoyPd53759Tb3zht1mZB9/+9vfYmuJY/+IfYKYCwvckhV3526EAQGw70gF/3Xvgzip1z55721/z979qNbrvDi8+MILeLCyBS8ctLB/pD0niaOwT5RbIaPM6OgYnli7zvduI2Uz8QS/ZVqudVo2VkG88hSHM3beeQq+ibevzrMffnKTdP65JLqi1cRGHEgMevuOVPDQumci5dXht799KFUx8FaQNO6Cc5geQ3RwzvfvLfveJzjuPK3jJuEyV47rFyaNoVGzfEbq0bExPPjgg9hasnz37t2zG7XDNLE9h6d+/zQMK3uKQe865AI4MGK5Yx5sjNfHXEjud/4O+PWZLMuYqEfHxK3R0PwH2hEC0nUX1d7Dz1czj01I3/LofSdIUN6yi5vzN2+KNXsO0mBaZiitHBd2/0VwLFO0Z3n2FQHgxW278OCDh33XvLjTiB2fWtmW9f37yqnHMStx+jXpDAQh2WQqSUcRhOfrwIi8vYrpl62NmzZhzpGXQs9onrA8pb1Ltk8DwJ7h4cR5rFb9+m7P3n2+ex57dBCdOkF5bNQXTenl9089icr2sItj9yiXPt+7p2/eWvNdMzg4mKrP7fqeC9jfTbq7s9c0VE4ghSIl+RNPbHcXFAqFQqFQKBQKKbVaDV/84hfdz4QQXHPNNfjHf/xH92eHD9vGmJ4eeUon5x+UznXTnVbaoUORP8FntajdIGXTtlb5UuMkNSrq90ngQkRGAjnPmmoIJ0eRBy7ChdabCpyJGassyOZJp4DB64WrZZMmACPC4pghaGRCkMqYANIETU2S/wdA/LhTEtEXz5wHfy8b92ANrmaRyXEUQb3gOKOCh+opIZkiJoQkgs7XHiCJ3WjcC0/au6zTHPXcyP6Ixn+j1qhs/pM7Et1eNUGJOLIV116WvrR6nRPYfUwTzKknbFrO+uGi8d+syO5JGh8nkGViI4Gav1c6bhllNEeBmrM30PDeJSBvL0q3NrUOMsBI8sGEKP2WJjAp+F5BuXH2z/jI6agowOTnh/Vq8j3TFeUEUswoCDdw7PD97udt8y+EoHobe6RQAAY3cP+W+7FpZBMAYAVfAV3JpSIDlsXx0to97ucTlveBtSHUW6FQKBRTl66uLrvQOOcYGhrCz372M3zmM5/B4OAg7r333qZODMYxODgo/bkTIXTOOee09HlpcU5mnnPOOagYFrQHfim9Lmv//vfAM9B273Q/L1iwANpwo3Dw0Uf34ZxzTs/cX2vTHmhPr5f38eyz0bvzEP7tycdhmRxavSaHAIf3yDuj1E2XYlgWGKNYccbpbg0W7Ver3Wtn99o/23LkoPuzV5x6Cs45fQE6tx7Avz35OAzJ6f52ojEWStdSKObwqle/Btrax92fEQLAjD+9q2kNE4hsrIJ45SkOZ+y886QxIFcfyGCKKOfZJ59wHB7YGU4DSYiAEQ4nmjSIpMgNYwyvWHICVm97Ifbec84+R1oLZCKIG3dZWq7gnP90+Clo+4fd3wfHnRCCgs5QNixYcVZwgsQ1ozEGUT+lr7F4U1wxr8EQDVkuFHI455xzsHnfKLTHf+v+fGCgH0d15qDt2BL/8DqvfOUroT21LlK2CjmGsVC9ElsUnHVIiAAgUDMFNMZgWKbv3V19FFiLzvw4z3bGIKjP3OdSAsIRu0aD82+RQFvEP9ZJa/7RsU3A5pekY0MIkNc1GFX/ezHGfO1xLqD95n5ZE5I2G/Jmp/oUGR0UDRnvzDGA2LrGsORj6qBRgrzuRJlwGJ5rqWc/0WBHZHGOULo+wE6j5V0XjDHAEw20cH4fzjlnme+e0u+HoG16OrJvvT1dOOecs/D97WuhHdwXed14aFa/FvXwXpQkUzIdBQbonr1BmBxe92tUe4bFoa35X/fzyScvwTnLF4afkbAPRhORUo0SFDUGw+KoRnjEZfs0ACw6ZiG0XfEphjuKOYxZNfdz75w50A4fcD+fc84bkdcYep5+GPuqI9I2lp3+Gpx+bHj8tx8Ygzb4UOjn3j191++2QXtho/v57DeeBe2BXyX2uV3fcwE0/Z1eOYEUMwrGazh90z+5n3f2nQdTGdsVbaZm1fBPT/wTajV7Y7vSulI5gRSZsAyOh+9qFBZf/Kq5ygmkUCgUCimUUixcuBCf+MQnMHfuXLz3ve/FV7/6VVx33XVuBFBUpI+T+ioqUmi60cqTxIk1gZpuOP6ZSwd6MLtDx3CpAs4FKI0++c+5AIdAb6eOpQNyA4HFBXKa/zuE0577rMPtcz4EIZCfyrV4uAYBQSpbPIB0Y5UF2TzZfQp33vvshbOL0vYoSf8uzZK1/d5OHYuPSk6LPpmlEpodd2fOg1+nQ+OeMuolaSwdOU4brRY81W5F1QSi2cbbiQTMMvdC+NchJUB3MeeOeZrWvPc7V3vnS/5cu6JM3BoNzn+oF54fpFnz/T2FyLeJ6mmwvSzz4Z2LTDWjZH0k6esR+foYuiWoVwkoEdJnUgJE7RYEwLyufOjnqWsCTVhcS3P6lQCgAX2RRqay6CiH3o6ctD0WGDun/8FntJqk+jdR+zTQmM84gnog6HDX6gMfV15I5oACUkYCBSY2TV27aVoSqOmodYVCoVAoFAqFQqFQTGEuvPBCAMCaNWsANGoBObWBgiTVDJpuOAYTuwg0R820UDPt+jlRRZyjCP5737IELC5gcl53SDTXR2+7QvjbrBoWCjrDJcsWQGcUNYtDiHCEA69HgNUsDp1RXHL6QhR0Jm330Fgt1FfHeOI8K8qY0g40Ji9SLkQjZYzzfobFU/VdCBE5Vs0im6c0z857cgsF538KTQMApB6rySyY3ey4O+8RlBdCiK+ekZ12MHlxJxmsWT1Fl2nZqeUMi4ccmd75NywLvC4HJuco1yxUDCtU9J0gvD6CcuR9RtXgdnqvDJZAjRFQAhiWQNW0YFgCb3nl/OgxlwwFdVN8EXtNA7HzBdgOs6Q1mjT/AnB1Q9W0oFES2x4X0cbkKILtEc++EzUP3mu1umWbJ6Tqc2BUPn9eGQw5yGNeKXitaUkc7J5+etsMXuetbaMxgpxknIMG9uA4Oft2M2okzZhHvU8Sttz6xzjNPpJWR3l526sHpO1RSnzvuHnvCCqS7wmthgT+G8TVb5Jx9+rTqPkJyoSjH53rjPo7xTlnon5HI9aj9zsg54HvXqantlXKPk8XVCSQYkYhCMWeOWf4PisUCoVCoVAoFH+IDA0NAQB03Y5APumkkzAwMICHH34Yo6Oj6OxsnOofHR3Fww8/jOOOOw7HHHNMW/rbavYeqaJimIF6HvY/4M/4yv/i3cuPwV+cdwL6uguJbTmGPS5sg8Rd63b40uPc/+xuXL96E1auWJyqPW+7Tpum5Tc3v+nGB3HJsgW4+LR+/OypXRg6VLYNFwHbg2EJGJZ9UvvongIuW7EIALC7VMGqwS0YqzUKwT+7qwR9zwi4ENAZBSXEZ8xYuWIxvv/4duwfraHdENhGYBlcCOwbqaJqWqFxi4Nz4RrJ+j1j1QpWrljszlPV5Mgx6jvhLHv277YcjJz/iSYuhsMMnMRmBLhsxSK8uFeeiqedNDPuDl7Zd+bBW6dJABitWokG6aSZMzlgOumn6sZSwB5/W8TttFpOKxXDv/6qRg3n37AGb31lfz2ax+6QJYSrDqLkyPuM/+8nT0vTeiVhCTs9tfMC3354C3IatSNYAtcKIUJOdosDYzULGrOdbAS23quaPHZs06xR7/wbklAr3/sKYKRqYk+p4tPTjq783qPbQrLvwAV8xmHAHttg/3aXKlK9RGA7Ehy966AzCtNKPydxNn5XhgPjEOV34Fz4rnWiKWXrSCMEhueNhACCZWsqnh/ojIYiV4CGky1KXtdtO4jrV2+KTDsmfY8Y2ZeNudM/07JS61yvAzbrPpKko7xOEwLgg687NtSGbD//1kMv4+71O0PfE1qNU5MsygtkefUb/OOuUZo4P47z0LnuiS0Hfc6s829Yg0uWLYAZE0oZpUeiviecf8MaXLT0aAAEP3lyp09PvPkbD6FimAjqZW+frZh0i1MZZSFXzCgsVsQjr/m6+8di8vD6Zth2+eV4bvkZeG75Gdh2+eUta1ehUCgUCoVCoWiWZ599FmNjY6Gfj42N4W/+5m8AAG9961sB2A6Hj33sYxgZGcGXv/xl3/Vf/vKXMTIygo9//OMT3+lJYOOuEt75749EFnQfqVr4ziNb8Kf/9jA27ioltkeJbQwo1+yT8KOBuhllw8KtD23Gu28eTNWew/YDY26bQfPGcKmCWx/ajCu/tw5//+ZTMLcrbxtjI97JSbG0f7SGjbtKeM/Ng7j1oc2+dm1Dpm0kLNesUMRJX3cBK9+weAIT8aSDwD5BHXXatmpY+MI9G6TjFkfZtEApwYLeIm65dHkmh10Sfd0F3HLpcgzMLoJSgrJpuREc5ZolffbOg9HzPxmkeSYB0NuZQ193YUJTNDVLM+Pu4BikvWtbRpQRveGAaa7vAo6DKH7+BWx9cPujW911C9gRiUHdFHLKeJ5xaMyI7Y/M8C4bE1G/VlYnqWoKqSNF1NuqGBzze/LufEUZdmfltVRr1Df/Cd46zgXueHybT097deXhcvz4BB0mBZ35+ue0FTUPXr3rQOt1pzrz4zujP1o1MRYjw17Mej/KpgVK7FVd1BkKOsNRXXnpOqpkiDAhqKcRlEwHo4iV16rJcetDm/Hwi/vi63DVSZJ92ZgDjXFPq9EqBk+lU2Qk6ShnvbgyNcvfXtR+bnIR+p4wMLvYci3tjGEt4gtV3Li/uPdI4vxsP1iGYXH3umA0k/OOG4dLkTIh25s27irhE99bJ332rsMVfOeRrfjOI1tCenHX4UqkXnb6PHSokum73lRBOYEUCoVCoVAoFAqFYprywx/+EPPnz8db3/pW/MVf/AX+/u//HpdeeimOPfZY3HfffTj77LPxqU99yr3+7/7u7/DqV78a1113HS666CJ8+tOfxkUXXYTrrrsOr33ta/HXf/3X7XuZFnGwwvHn3/0dhkuVxGt3Ha7gY999AnsSrh2rmagYjRO4gbI6YMQ2MA4dKuOK29cmtgfYJ3v/5VcvRBp/ixpz2/zKvc+CkOjTrhq1Ddp7j1Tx59/9HT723ScwdKgcqg9ASSOvvgBQMSyUyv4i0gtmF1HMsdA7NkMzKc00SlDMyYtMA/Zp4UNlA/tGqpnb7u8p4PKzj8ePrliBU+aPvxZQkFP7u3HnlStw+dnHo7+ngJxG7bRIGg09e3epgm899HJbnD9A+jpWAo3UilMtRZ1DlnH3QuuReN61HST4ynaEGkFHjqGYY9AZQUGfeNNaQaOwhHDXLRcCXAiMVs3Y/ntJuqaZVJBZ5VcAGD5cwc0fWobLzz4eswp+54czvn/yqv7Ua9SZ//OWzAv9zmmvM8dQ1JlPT2/YeRhX3L4WQ4fKnkindBR06huv3aWK21Yc3vlzYJTgrafNx4Le5g34cfNQ1II1T+CujTe/cr6rbxkl+NKfLo1cRxqN1xvOY5x3HKuaoWsOl43E9cbrjp3gOAVJWrsOsjEH7HF31rBsnWvU3o8KOk2tU6KI01GzChp01tj3vPu8V66C+3mOUd/3hK/dtwk3f2gZ5nTmxuUICqoBSgBdI25tnrQIAD///a7E+bFTTXL3umDfnXesmTxSJoJdc8Yt6ntg3PikGTuTi9Tf9aYSKh2cQqFQKBQKhUKhUExT/uRP/gRDQ0N45JFHMDg4iJGREfT09OBVr3oV/uzP/gwf/ehHoWmNf/Z1dnbigQcewBe+8AXcdddd+M1vfoP+/n5cffXV+PznP49isXWR9O3il1sNDB9On85s+HAFqwa34pqLlkRes3FXyZ8ShPgTaRFCkNcoqibHcCm5PQBYNbgFB2LSrlFKkCf1Ng9XQEDACEFOJxirNQyWOiPIawyinl7JuZYQIK9RmIGoJWIXcwDqb/DA83vx3tce4/m9bRx33pGSdJEOlNRT5hCnmLj9rKph+VJsJeE8PwrDqtc1SWnlYtRO/ZNjFL+++ryW1ACKo6+7gGsuWoKrLjgRG4ZKGKma6MprWDrQ7Xv2qsHwCeRW4LyvackjMhziZoQROwWYw1hdhoIFvKcSacfdC6MEhsVjDdIdOYZyzQJ37wHyWqO9vMZw7snz8OtNeyBg1+wyA2nlWoHJBQoaxWg9HZSzDp7acahljsTzTpqHh17ch6rReN802CnnCMx6ZGFBpz4dFcSwBO59ehjXXLQEnXmGf/nVi+7YOXqjoGczV/Z1F5CXeK478syNEiAEDZ1aquD/3rPBNRJTQmAl1GvxrguTC3izVa4a3JLq4AEAd/68ctSZ13Dc3E4cHK3Z9YEgEtdwEAJb5zuRWm6/GYU3LHZBbwdufN9rsHSgG4Mv78ea5/a6vzuqKx+5jk77wmo39aEzT97IjLzG3P1GAPj9jsOhPv5m055YeXX2rTGPnHvHyUvc2g0S1RYl9v6ZY8Idd68cAsA5J8/Dn7/xuFQ6JY4oHfXIS/twywMvS+/xypVsP/d9TyhVcO/Twzi6u4CKYaFqcphc1CO9KGop5YlRAh6Ierv4tH4cN7cT//ablzLpt2bUoOcrCoDGO8bJRPA7Q9J6TIq8TEPa73pTCeUEUihS0vO2t6FjuV1vSB/ob3NvFAqFQqFQKBQK4IwzzsAZZ5yRfKGHnp4e3HjjjbjxxhsnqFfto2YJ/HZHLZPhwRICd63bgasuOFFq2KkYVqpaKIQQ5BhF2bRw9/ro9pw27163MzHdDSEEOiUomwKAQFGjoIQCHhOtm65fcm2waLyMwZf3u8Wl7XbsGgVOmiadUdfgHIcQqJ9i9tc6yGLEBOxURTkmpH339ktjBLVgUQoJnANMs09cT7QDyEtBZ1i+qFf6u7Tz3wycA5RhXG1TSmB5jIBOJNwU9gG5xI17EM55bJ0JwF5XlBL3FL7FbTn0ymdBdyLXSFMynwbTEshp/s8Vw8KzLUxJ9PudhwHBMzmAANto6sibzkhIR8mud3SkRqk7dl7iIkBkVAwLj7y0P/Tzcs2CzqhbX8zR02OGhfXbDkIAKDCKSooaNN5pdfSU8+y71+2EYXEUNearjxJFUM85jndCCFjdCF7NWHdEAGAsOsWew76RquvICC5pZ40H11HFsHztEpKcHHLT8BHf3lIxLDz8YniOghBiO2EsEb0fePeCtMTtLc64y+JAdEZS65Q0BMf2d1sOBPqPwlqpAADOk0lEQVRi/zcoV1H7efC7x+wOuw6ksyY1SkApBRW8Ka8MF/b3hD951QAoCdeMmwzstVGvRSWZR+/e5B23gkZRnqD+GhZP/K431VBOIMWMgnADRx/4nft595zXQlC9JW33vO1tLWlHoVAoFAqFQqFQTAxbSxxHmgiuODBaw4ahktTQs2HoMKpGOmMcpQQUBAdHjcj2nDYPjRmhE69SfIafsBHIdwI2y7V1Rqqmr6920fbGadikOhsOAraxiHku97aTFlk7svZoIBorqb30CdAmnkzznxEB+9B/K5vlAtgwVEotC9OFA2NG7DjJIp9k8pnTGh+akfk0CNgOPu/nbfWaYq3iULkWWUctica6dJwt8bLt6Mioakgi48LYMHQYo9XwWDh10DSPg9rW02hEFBKSOZ1eQ6801jMFSR0tF5QjSvyG7GbliPPotKEOVZO7Oj+8puU3bxg6HOpPkg4uG5Zvb9kwdBhHJCnipNQFKGo/aPXeEsdk6z3HvZYkV95ueb97FHXmGx9Sv7fptyD2et12YGzC9JvvcRHKg8TIhNch5Bu3CZo7Wo94TvquN9VQTiDFjILxGl7/+8+6n//nnJ/BbJETSKFQKBQKhUKhUExtymZzFgohbGeIjJFqunobDoTYKWWi2mu0KSKNMrrHuuE1ktp/b6SeI/Vc/XHXFnSKisFBYNeBCBV3Dry70/9mcJ4p68942mlFe1PJf5E0/+NFNk75+tw3a8AbqZqYXZxZ/7YO1tgIIksvBoTlU/fkBWtWRtMQbLtqhp0ehbpuSOqFzgiMQCSFEK3rf0FjKBvRDipHR0b5erIe3nfWVPTzAhql7r8gGK+e8qznjAvaK0d29EtrdKdGKSixozd1mcfDo/ODfY7yYY1IHGw6IzC4LTdRa8W7t4xUreb2Z8l+0Oq9JY7J3jucOZDJlROZS0m4hpezd/MWrmOgsUZsvTLxUUAatSMquainmJUQnEfv2ml2PWYlzXe9qYZyAikUCoVCoVAoFAqFYkZQ1Ihr3MsCIUBXXv7P4658OGWO7H4HIewTolHtNdoMnz4nAIo55jNoeJPuOH/XGYVmH0WV/t77d41SdOYahsZw58PvnpzoR07wvla104r2plIqs6j5bxVEsggoIejIMVhcpEp9FaQrr824SKCCHl3oPKfRyPcNyqHXCdSsjKYh2LYmEWpGk+e5oFNolMKw/MZLQuSy0wyMEqmjyX1WXUdGPSlrOrgut/ZPyvtE4z/j1VPues7YZ5++DkQCkSZnwmmzmGMQIiKKxaPzg7+PkvmufDjdFanrFOc5MgeBd2/pyrOmDPOy+Wn13hLHpEcCkWi5ymsUOiOetdrA+e6hMxIxZimfL5E8AoLOHIscv7i1LutH0pWx8ovwu3vXTtx6zDGCWkQ/434nI813valG9I6nUCgUCoVCoVAoFArFNGJRN8WsJoIV5nTmsHSgW/q7pQM9IWNxlCGEcwEOgd5OPbI9p83ZHbr0FHzI6OG7qPF3uyZDhmsjjCmz6oWuvdfW/Uv2O6U0bBKET5F720mLrB1Ze1n7NZUcGHHzP14IAI3Kx50QYtdtytgmpQRLB7qnVDRVKzi6uxA5FnE/D8qn5om2aEbm00AAUOr/PG9WAcWc3DgfjBLw3hf1u9nFHGL8Yon9A/zrMk7SHB3ZqkigpQM96JQ4KqRtcwEOe64EAIh0UXkk8HdnGJ31zCESo8tk9wOOfvLLUdQ8xeHIiO34lt+fY9TV+cErou5ZOtAj1ykxzynmmG9vWTrQg1mFdAZzx4AftR+0em9Jum8ycZ4XJVdUsvd7v3t05jTf+LjOkCZfRAh7vS6e2xE57mnqDzauTXGNRK7iZMJ7rW/cAgqGRtSyIrD1eNq3EAKpvutNNZQTSKFQKCaYolbEHRffgb8d+Fv87cDfoqgV290lxTRDzzG85+/PcP/okn/sKRQKhUKhsE9yvnFhLpOhhxGCdy1bGFnYt6AznNTXldiOEAI1i0NnFJecHt2e0+YlyxYkGvmEEDC4sA2CxD5pG3XaPMu1Xs49eZ6vr5TYBh3HsG1aIpWzQmNhR5O3nbQE27ELgHPUTAuGJdy5TVsUnJC6QXkiPC5Nknb+m4FRgFIaHvf6x2bmZFZeQ0FnU8qR1gryGks1Ft51JJNzb8qiZsY3DRojvuPzlAIjFROnzJ8lvT7KKKtFRAkAwJ+8qh+U0uxOQoKAvkg2Oi8/tteutxZIaSeEgMUFdh4cwyMv7cUjL+3DA8/vxdqtB1DxpJerGBbWbj2AB57fi0de2ot12w7i+LnRetpp17A4qqYFnRGcfmwvdEpR8+iVOLyZqbxy4KxnnVHUrHRRdkE5oqTRR5Pbqdy6i9kiDFKWScO8rrznJkkbEgq6f62k2Vte0d/t21sKOsP5S/pi7+ECMCzuOgEZtX9mcg6LN2SrFXuLF+/Ye58DTPwBguBQOo8LylXc3u/97uG8pzM+wfdJJPC6jBJccvpCdy+lE+xJkKWlFKLxPUT+XaPxd/+4BdoBpHKjMQJKJPtmVB+BVN/1phrTJ2ZJoWgze278BqovvAAAyJ90Evo+9dft7ZBi2kAJxfzO+ejVet3PCkUWCCXo6i20uxsKhUKhUEwL3rRIx7r9DDsPlVNd3z+7gMtWLJL+bnepglWDW/Dc7hHfz4OGPiHsfPkA0N8T3Z6XlSsW4861O7C7VJX+nnPhPqd/dhEQdn+qJkeOUV+h6CzX+iKEALz1tPm+53pTzpmWFbgjGiHsKICgwcxpJ00bBI3UWlwI1EwrUKjeU/MopU2LC7tAedW0cP3qTVi5YjH6utv/vWrlisX44e92YO+IfP6bxeR2rRiNEtsgX/+5EMK1lCXNiddgSAD01I3RM8wHBEpJ4lhwLlyDtFc+vXh/xkVGg2sKCLGLoI/VGk4QiwPrtx8MRQJxIcBiJiqqxgZgtz9Wy1gDDXaKKkKIrS8IUDV5Xf6iHSKrn92NX27cA40RVE0LjBLbCF+X2Yde2IcHX9jnRi5pjKC3I4eLlh4NgGD1hmEcHK3B4BwWTw5yqBj+OkmCC4xVTdfhkgZRT2Qlk4OVKxbjZ0/twlDKfceueWLrSy4EHnv5AJ7ZediXwi+uplIQx6Ec1Pm2HvXPw45DYzj/hjW4ZNkCvHJBj+93cQ4P71oRwl4bwX3IgQB4zTGzQ228/TUDuHPtjlgZq3r6a3LA5I1xcCI2dEab3lu8cGE7Br26MvgcOgHO+ji8Dg6vXCXu/fXvHo9vPgDAv4dXTZ7aeRN82+6ijpGqib/87ycjZdKKWOsp/ZI+ahaHYdnjn2MUQjS+c0XNY/BAxcoVi/GT9UMYOuxfj9WIFJmOXswiU2m/600llCVSoUhJZeOzGHvsMYw99hgqG59td3cUCoVCoVAoFAqFhNkFittWnoH5KQz9Az0F3LbyDKlTYOOuEt5z8yBufWizz/gqw+S2QXlBbxG3XLo8lZOhr7uAay5c4jO4CNgn3Ms1C2XTctv8j5Vn4LaVZ2BgdhGUEpRN+5pmrnVsIAT2idk53lPhaBj6KSEo6AzzuvOpIgNMLlCuWbACFlWnnaQ2nP5QYhuDx2pBB5CfrIYlLoBvPfgy3n3zIDbuKmW8u/X0dRfwF+efMCGphgxLoGJw5LRGVEfV4K4cVAMG8SBBGdE129Ew0yKBKCGR8mlY3F1bhPjlM4j3xH05QW6bQgAVM1xxhQtgtOrXTRWzMc9BCGxniKMLgr9LMs4H0SjBqxZ2g1HqjmPfrDxA7H7EOVdqph2Rc6RiuvJqeJ2Wnv+a3P79rsMVfOeRrfjOI1uw63AFFdN2ADnXxfVdNnYbh49kSjvnpFKUyUFfdwG3XLocA7PTZf0wOVCuWa6crd92qKlaXQ69HTr6ZuV9Or9cM+t6NBhVAQyXKrj1oc34wj0bfDo7bol71wohCO0tTv+dMZLVSpnblU+1H0QhYOu3cs2CEMi8t3hx1qthhdeW9zmHy7Ume5sOWS0lB69cJe39zneP4B4+uyMHSgkMM52wyw653PH4NhwYiR6HqMBcmTylWXPO+I/WLJQN+x07cixSBwejG/eP1uoRUMnP8urFpL3RIcdI6u96UwnlBFIoFAqFQqFQKBQKxYzi1P5u3HPVWdAk/+IlsItVf+QNi/GT/3MWTpkfzue+u1TBFbevxdChMjgX0gLsXjpyDJeffTx+dMUKaXtRLJ7biWKO1Qs522iMIKdR9PcUfG2e2t+NO69cgcvPPh79PQXkNNrUtZ315xVzDIyS2KgBRgmuf/er0J22jgNsJ1YwDz+jJPSeDvbJ3kZ/uBCZTsBnwbAEdh4q44rb12JPqTIhz8jCMb0dvnFpth6LDAHb0F7Q7ULi82blfXIwMLuAj7xhMQp6OP1XV17zzYnDJB+In3CcA+Uy+WS0sbZO7e8OjYWXHKPgQqBiZIuiSYvTZnCpMkKgB/o0r6sxz0CjRpRGCfpn+3WB8zvntL4lsZjK3pgR4IxFvbjnqrMwMLuj8XNK8H//5FR0pEyPJITd1mThfd+sFHVbx8fJwan93fjmB5elblPAjkywHVhiXAbaQ2MGKCH44JnHor+nAJ2RSMM8owRFjYFzgX1Haj6dneToddbKoqM6pfuQV2/ImmKUuG3I9ue0OHsNIUi9t3hJu14FgAef39fW/SLL3g/455BRgk+cezwuP/t4zOnM+dot6gwfecNiu96b5+d63dnprJXDZQOcC+TGM2ForLus+wiltlyfc/K8yLXn/bHz/W3fSDXxWbPyGvq6w3ujozOjZOr4eV2ZvutNFVQ6OIUiJfnjT4AwDPfvCoVCoVAoFAqFYurS111AQdfcXP9cCPzdm0/B0oFunH5sb2we91WDWzBcN/rkNQrD8p8zzzHiyzV/4rxOXHPRksx9JLANNnmNIcdsI8s3/ux0dOU1LB3oDvWxr7uAay5agqsuOBEbhkoYqZqZr73nyZ24a91O97qgUSVo9DiqMw+SwWpjn+DlyGv+/njfk9dz/tvFn/3pb4yUNTWahQuB4VIFqwa3NjVnrYQQ/7icdeJc/HrTntDJ/WZxoijyGsN/fvgMVE0Rkpmf/X4IjFi+Obn09cfi9ke3Nfrp9ndmeYG8xtKgfH7s7ONw3pI+LB3oxpf+51ls3T8W2Q6jBIYVfYJcZ7Zz0yvaSWmSOnIUnKMRXUGADp1h1BfBI0AI9bV08Wnz8SevXoCRqokrb1/rW1+/vvo8ny647D8es2uN1O/PawRjNX+vOvIM3OKomgIgwDknzcU3/ux0zO7Iuf3y8tsX96Ni8nrUjEiM5ktZ2mvcFDQKxghqJo+NvIhiVoHhmouW4DuPbIm97t5ndjXVP0YIzCbTCDrqee9IFZ15Db+++jx85sdP454nhyAEkNcJxmr+iaCUIE+omybP0dlpljglBCf2deGm958e2ofO+Mov3etk+sLZbyhx6ro0LwDefqfZW7zErdcgYzVzQveLqBpdXrLs/cG0bz0dOXz8nBNw5nFzcMXta93xueCUPnz+7UvxD/duxJZ9ozAsO7rqk390Er655iVXNzgpH5vZlnKMujqMUUBnDMfP7cRzu4+4+1xQCnKMgFHbsW5aHJQAnXkNHbloF4Z3nr3f3wo69cl+jlFXN9UsgarF8cHXHIs3LZ0vlWM7bWNYpvLjdIi1C+UEUihScvTfX9vuLiimKWPGGFbetxIjI3Yu+TOMM9ChdyTcpVA0qFVM/Pif1rmf33n1MuRSnshVKBQKheIPHW+B5I+dfXzi9RXDwt3rdsKwOIoakxqqgj97ed8oKoaVuUCw1z5F6kboc0+el3hfQWdYvqg31TOC194XMFIGbWTBz07KpiyYlkCOCakBjhBSP/0f/p0Qou5wmziEsA2Ad6/fgasuOLGtRZ2Dw7N++yFpNMZ4cOaioDO8csGs0O8tLkJzogcceI30Qi3tWtuRRfg5Y/GqhbPddZP03nZB+eh5I4SAAvDGHSTNMiUUhArXQCoEQktG1sZ9G3bj2recioIejn6Q6Q3Ts96iDOaMMRSIQNm08PyeEd+a8RqwhRD432d3u7rT5DzFm04OhBBUjeZT9e09UsOhsfi0YBXDwl1rdzT3ADQ/UoTYtVPKpoW71+/Ax84+DoMv7YclBIqakz4r/OLO3miZwtUTWdZ4ln3IwYk8FUL4ZK9ZvHtN3N7iJeuzucCE7hdZnJJpxjwYzeWMeSMiyv7sjRYkxHZwgNiRR0BDN2is7rBrYm/y6hSLA3kNmNOVg7XLn4LQ2zQhdrQYgx2p7Mj16487Kuad7f+Gv7/5r3Mi0QCCHGydds/vh/DXbzpZOreRMjVND0RMT9eVQqFQTCMEBPaX9+OIdQRHrCNNnTxSKMZKNfePQqFQKBSKiWPD0GE7tQ6IW4A56d/7FYNjw1AzdWYCUTiTYFcIGojC6X/8n1/eO+or+J0GgXR5/4O0KAAmEQLg4KjR5Jy1sh+NseYCKJVtuWulGDhzEWXgl4150BDsyMhMqwkUlVoI8DuIkmZkd6kSax9tdtTsE+iezwE7vmw+Do7VUst1sP04KCWgIKF14+2CV4YpJVPqX72GxcdVq0kAuPfp4dhrNgwdxoFRo6n2gyk0syCE8M3Pz5/eFdrDvHjnzJGhJD3RKpw1l0X24mhmr8n67KmyX6QlOIfUk/bSd13oLzZ5jfnGyJGR8YqGM1flWnwaPp98euT6cDl6bTl9lH1/S9N21rmdrjuhcgIpFAqFQqFQKBQKhWLGk9aAMVK17NQfnuvtk7D233VJEQsBYKSaLVomS59aSdAwEjIMBfpUbrLOSTMHnybzsJSAaGrOWopnrJ13nwiZcFL6yJA5+KKcPXFOk+mIzEjo4H3XpDmpxngXKGmcuE+LU3sjuB4EhJuGiHiuC5JWrrOuN0LC68ZrcBb1Ft0fTSEvUCsi7A6MVmN/7+wdzdCKoXLm5+BoLbSHeeVGZ3K5ERAtdfTKmnLWXCt1fda2Mj9bIvdTmSgnfjDyMcq5rzPiGyPiuX68W4BwtYQfp2+UyL+TCNhpfaNw3iH4/Y2A+NoOvqtMp6Vhup6HmDZOoJ07d+Ib3/gGLrzwQhx77LHI5XKYP38+3vWud+Gxxx6T3lMqlfA3f/M3WLRoEfL5PBYvXoy//du/dVMyBeGc46abbsJpp52GYrGIefPm4f3vfz9efvnlyH6tXr0a5557LmbNmoXu7m6cf/75+NWvftWSd1YoFAqFQqFQKBQKRWvIRRi+gnTlGQiIPz0JCDp0hqLOQrVu7N8DXfnsqVrjY3AmBhY8JRzMchK4viPHmupXM/EsrY2BSX5WM3M2UZD62wvRejkgIJEn/GVmtZBMtOgk+FQjzuDtNUQmGcYLunyNFHWGYo5lkuuOHHN1VfA+AgKdUXTkGDpyTNqvLLoo63qzZdO/boTwGouJP7XTDJOXOZ352N87e0czjGdtOevTmZ/ezlxoD0uSGwBuzZOJxGm/lbo+a1uZny2R+6lMVLRvyIlf/xiMQsvrQTlu/L2Ys78HRX2dCn6/CGVRA0GOhb9DFerfr2T60pHrvB79HY7UfyX7/pbXqdt2EJlOS0OLs7ZOGtPGCXTTTTfhU5/6FF5++WVceOGFuPrqq/HGN74RP/3pT/GGN7wBP/jBD3zXj46O4txzz8WNN96IU045BZ/61KewZMkS3HDDDbjgggtQqVRCz7jiiivwyU9+EkIIfPKTn8Sb3/xm3H333Xjta1+LF154IXT99773Pbz5zW/Gxo0b8eEPfxgrV67Ehg0b8KY3vQl33nnnhI2FQqFQKBQKhUKhUCiyEXX6OcjSgR7M7tDBIXxREk6eehkFnWHpQHfmPgUN8xOdigcIRz8kpYc76eiuzAZKgubqx0xWoIkA0NupNzVnrcT7upQA3UVb7lppX3LmIsvQhuSy/t8Zlw4u5n2yvOuC2UVpVBGl2Q3O3ucG581J60RJtFNvdkcutVwH24/rK+cCHCK0bryySgnQU2zozqkkLePtCwHw1tPmx16zdKAHczr1ptqn4+ghgX9+Lj6tX7qHyeTGcQA4eqKlkUCSd3LWXFadFP2M7PtG1mdPlf0iLWnTeTrzYwXqI+UY9Y0RDzh6GZVrCoKGjvL+zPd7AhzVlZPeb7cbkE+PXB/VmZPcBd+7yb6/Nfoc3XbWuZ2mPqDp4wQ688wzsWbNGrz44ou47bbb8I//+I+488478Zvf/AaMMXziE59AtdoIzfz617+OJ598Etdeey1Wr16Nr33ta1i9ejWuvfZa/O53v8ONN97oa/83v/kNbrvtNpxzzjlYt24drrvuOtx+++34yU9+ggMHDuCqq67yXX/w4EH85V/+JebOnYt169bhpptuwk033YR169bhqKOOwic+8QkcOXJkUsZGMTmUVt+PA7d/Dwdu/x5Kq+9vd3cUCoVCoVAoFApFAkKIetF2DiEEKoaVeE9BZ7hk2QLojKJmcd9Jd4egAePU+bOaKhjdDiNp0ECUlA6uoMmjn+JwC0mnxJknS4hQyppWQ4jtELzk9IUTUuQ7W1+I7+8XvXJ+amdlWpy5yGLblaXM8f53puCmpvLoCYsLCCF8KdyS3ltnFN0FyUnyGEthlJhHuQAJiW/P4R2nL0gt14QQ33vKdR2BEAI1i0vXjS8SiBBcfNqAqzunEuM12s7u0FHQWUhWvHtKQWd41/KFzT2AABmzBrpYXKBqWu78zO7IJe5hgD13Zt0B0IyeiGrTGZ+dh8ZCey6ltjxxEXYYNEPWNpp5NgXw9lcNtH2/SI9cfwf3VufnZiDNWk6jPt1gWiIkQ7L9XWNhR4v3PkfGGPUfqImKqgnqnVzM9xCnuTTf32RtB+fWXhscNdNCzeQwg21N01CgaeMEuuSSS3DuueeGfn722Wfj/PPPx8GDB/H0008DsCfrtttuQ1dXFz73uc/5rv/c5z6Hrq4u3Hbbbb6f33rrrQCAL3/5y8jlGt7Ft7zlLTjvvPNw//33Y9u2be7Pf/SjH+HQoUP4y7/8Syxc2FDyCxcuxFVXXYV9+/bhxz/+8fhfXDFlOHTXndj7jW9g7ze+gUN3qUgvhUKhUCgUCoViqrK7VMH1qzdhrGahbFioGBx7jlRx/g1rcP3qTdhTCmeG8LJyxWLM7y4AsOt9BOum+E/GAq8+ZnZT/QxlTpkEI3s4HVy8E4gQoKBlO6cuRLpC51zYxkvvPAUNUq2GEoL+ngIuW7FoQp+ThuCYXrCkDwWNtuyUMUEjAi5LRErak+TTnZGqEZK/smF//v7j21w9kfTeIxVDahMcq1momhaE8BtR7XmRtzlWte+xOEfV5HZNIUpACZHqomC7l70+m1zrrLG2ZbWNOBfuz2Xrhgdu+cCZx7q607CSJXmyjJLjtdkeHjOw/Cv/i9GArAT3lJUrFjfVvmnZzolmEAAsYRvvnWilxD3MmVfi1xPNrnHZnvv9x7f7xmd3qYJv/uYl95pW+Akt3lhncXtOcK/J8mwO4MdP7kz13aEZWu1PCE5hVDo455MZWMRO/aigbvBFRkv2E9kBjprViDRjlKBqWrh/w27fPi8AVAzTp8tkeidONL1ym1r2EdZpu0sVfOGeZzBas1AxOWqW7SyqmNz+mREvZ1Od6ZHQMAFdt8MtNc1+nRdeeAFDQ0O46KKL0NnZ6bu2s7MTZ511FlavXo3t27fjmGOOAQCsWbPG/V2Qiy66CGvWrMEDDzyASy+91L0eAC688ELp9V/4whfwwAMP4LLLLkvs/4oVK6Q/f+aZZ3DsscfiwQcfTGxjIiiVSgCAAn2uLc9vBs0qg/BGQa/CgRdgsmJL2j5w4CB0y3L/vqVN8yLDmat2yYoingqvoFargdc314cffhgFWmhzrxRxTLU1ZRkCtVrjFNXDDz8Mps+sf4Q3y1SbK4UcNU/Thz+kuSqVSujunh6pPRTZ2Fay8NmbBzFcqviM6QLAcKmCWx/ajJ89tQu3XLocp/bLZaCvu4BbLl2OK25fi+FSBWXTAvXUu/Cm0CnoDF2yKIAUhGp+TML2HkoHFzIMBTtBIIj9nhXDSuWgMLmAVbNQ0FlkCj3nFP1kmlN0RjAwu4hbLl2Ovu72fx/3zrfFBT77k6cxliJaLVXbsOfMMY6NJxLIreMxg75+btxVwk2/flHqqBAA7nlqCL/bchC3XLo81n1mcYGbH3wZh8uGtB3DEjCsxpwS2Mb6msTh4r9HQGcEC3o7cO2bT8HXfrFJqousgC6a35NNrikh7tqmlCDoiSjXI0z6ewrSdROMXDq6J49bLl2Oj3z7dxhOYTCfWvFC0XAAo9Xw2pTtKUWdoZxiHTuyUDV5S/TgSMXEn3/3Cfznh1+LU/u74/cwCOiM4qjOHA6NGU3pCYeNu0ruc7zvYXHhjs9da3eCEGD/SK3lOt9ZM6Yl33PGu9cQAHuOVFN9d5gKhJ349n+1QPiTM9eGGY4Esu+zdUN3UcPBMcMnQ1ZATzBKUDF5KOSOEkDUo2+rBq/PVXhtmBwwa5Y9dx759OqdtL6XxO9vkrYBW46T9Jbz3Was1pp9erKZNpFAUWzbtg2//OUv0d/fj9NOOw0A3Po9J510kvQe5+fOdaOjo9i1axeOO+44MEmBquD1Sc+QXa9QKBQKhUKhUCgUionlYIXjX9aVMXSoHDr9SQlQ1Bg4Fxg6VMYVt6+NPdV7an837rxyBS4/+3j09xSQ0yg0RpDTKHo7c9AZQTFnG5yaPT3dDqN6+JRw8ILw9RYXYNR+Xy2lFcE+3Ss/NcvF+B1AcVnjZL/TKMEV55yAH12xAqfMnxoGPMfh5ozHcKkKiGRDTZzYOFEmjmw21a+QTMysSKDdpQquuH0tDo7WIq/hHK6eKBum/Jr6vB0aSzZsE9jpvnQK1FIa/Ys6wzc/uAxvPa0/UhfNKmi++W6mrpizti8/+/iQbPX3FHD52cdHrptg9IpGKebE1O6IoqCRyOioqYxsT2GUoKOuK6PeSKOeOUPrUoPuOlzBx777BPaUKrF7mDOv17/71T49kbWGlbOWZHuurlEUNQbL4hguVbDrcMV1Wk4Esj2nFXuNxmim7w7tJqrOX7heTz3dW2DevLczSvDVd54WkiFHbnVGUNQp3rx0Pvp7CgFZAj7wumPRldd8Oi/uOwTnArpGEvVOkOBel0b2vW3vLlXw599N57gWALbsH53SMhDFtI4EMgwDl156KarVKq677jrXgXP48GEAQE9Pj/Q+58Sfc13W65PukV0fx+DgoPTnToTQOeeck6qdVuOcAN2RX9yW5zeDZo5C0IZYV+acBFPrjLkjPa/63u2A47FmDLTQ/pNjDs5ctUtWFPGMGqPI/TiHWs3+R8ZZZ52FTr01cqmYGKbamqpVTGy5/1H381lnvR65Jk8czzSm2lwp5Kh5mj78Ic2VigKamfxyq4EDFQGAIK9RmLVwPYI8sU9eD5cqWDW4FddctCSyvb7uAq65aAmuuuBEbBgqYaRqoiuvYd9IFVf/8KlGuy2y4GU1wLXiGcH0cDKfkGNTaxQWT2dSs0/98lBNIcMa/8l3Rgm4JIpDo8Cn/vhkPLd7BPc9MwxC7H4fN68jdq7bgRNF4R2PvGbXMvC+W0GnENyODqGUYPmi2Xh6x2EIEHDBIYR9yvnEvk5s2TcmdQSMqyZQxM+nK6sGtyQa+3SNwLTsSIZnh+T1np15c4z4QWks6BRCAKbFXWeJJeJXT0GngLDbrpgc9z49jFcM9ETqogee24P/fHhLuhePgRKCay5agm8/vBlc2LJJQPDrq8+LrYUStOkTYo/vniPZDKSWgK0nhAWjybxojAI5xmBavOk2HDRqRyckIdtTACeKQkNfdx5feccr8eH/fBwAASXwOeuqpu2goPW0m2Wj8dC8ZtdYqXnkJw3Dhxt7W5TcLB3oRkFneHao5H+fjEvcu5ai9lxKiCdibWJjP4N7Tiv2GoLs3x3aSVBPOw6SqPp/ViAdXPD+uV35kAyt3jCMn67f6crxu89YiH9676vx1Z9vxI/Wbgepy/qV556AH/5uu28Ogt8hGCHIa3a6S7uuWD+++s7TMtVgku1NSbLvZdXgFgwfTq+zDEtMaRmIYtpGAnHO8eEPfxgPPvggPv7xj7tp2hSKiYIWCqCdnfafKeQAUigUCoVCoVAoFPYJ4Id3GrA4kGM0ZAh3nB+EEOQYhWFx3L1+R6hwtYyCzrB8US/OPXkeli/qRUfOb0Bo5vS9fV/858kgNE4xn72FxNMSLCrdTBsyouqNWBw4Zk4HTurrQk6j0BkFoySUCmeq4B2PHJNHcmiUQtcYCjqDJQSe3z3iFtjWGUNOo8hpFHM685GymMWBEzQEO7e2ytnZTiqGhbvX7YRhcbfwuQzq0RMv7DkSKjDunTfbqB9uw54firzG3LotSaKvUQqtfo9MRwV1kcZaK9eOXGnUXjdJhtjguBgWx11rd2Sub2NaApyPz3nDue1kaEVdsbQ1YwREaE/xjgklBG84YS5yGqtHIzT2pqAMhVJz1uci6+tYQuCudfFyEzWvWfYy71qS7blA/R09L9CKOkBJOHtOq/Yax1nfzHeHdhD1vSLoBHLENLjmooKDvTJ07JwO33yzeuq4hb1FV3cQQlAzubTWWBBKbZ1nCYHBl/cnXh+6P0Zsk2S/YlhN6azgGpsOTM1vQQlwzvHRj34Ud9xxBz70oQ/h5ptv9v3eic6JisRxcp0712W9Puke2fWKyYETDVv73+L+4USdlFe0H41qeMtxb8HyzuVY3rkcGlVyqcgGZQQnvfZo9w+dhqkSFAqFQqGYaDYMHcaIIezID4lFwGsYoZSAguDgqIENgZPQaWg2zVaoT8GaQC1pNRtRxaJln3lCFIMMAX/KqGbayPq8HYfKklpHUxPveDTqckQ4cupyO1q1QgarKCOsQ6ZIoGDdqIR+TSc2DB22a6AgOY2jM94VIxyJEZy3uCg+SrPH+I1XR00WwXSPm3YdwYHRcH2kJATSRd6kaaMV+iVtG04QhXe+0hqT08hQs/6sA6O1puQmy9bmW0uyPRdhfT8ZNeCcPadVe41XxKfDuoxKBxc8COGsXSOw8NLo+XDdIfk9tgM9sTm7jXGM7Xj2pg1Dh5vSWc2usXYy7SyRnHN85CMfwapVq/D+978f3/nOd0ADgpxUkydYz6ezsxP9/f3YvHkzLMsK1QWS1f856aST8MQTT+CFF17AUUcdlXi9YnLgLI/1p/5tu7uhUPjIszz+9rV/iwfLD7qfFYosaDrDG9+t9hSFQqFQKOIYqVqA8Bv7vQXYc4FE9ITYJ3xHqvJ6H3FEGVnGSzuM7KF0cDHRScEi8GkRbtKs5tvIQtWwkNNaE601kQghHw+dERimbcAM1klxXsM7pgCgsdYlEwxH0dm0yvnZTkaqVj16I931tp4Ij3do3iT54LLOSEFvnY5qFqd4elqCTooxwxqnnhgfrdQvlCQ7Ybxy4cyXDfH8f9y9fjRKYHJbPhklsJr0AgmBluxtccjWktt/2Dqp2f6Pl4ncZ9qxLrMQVNNuOrjA3Dop+oJzFBUJ6r8m8B0oIsSkXEvh2fU0FTe2wajDVuHIcVaaXWPtZFpFAnkdQO973/tw++23hxw2gO18GRgYwMMPP4zR0VHf70ZHR/Hwww/juOOOwzHHHOP+/Nxzz3V/F2T16tUA/LnRzz33XADA/fffH3m9c41CoVAoFAqFQqFQKCaWrjwDiN8Om2MURZ2hI8dCRgshbCNtVz772UgtFCnRTI/bk/4t1IeIYtGyz826GdK0UdRbZ54o5rQpkWovDbLxILALyxd1FqqnJOo25+B9GqWxcphl7mZyOriuPAMBSe3oEMKp+RO9LlqBzsIpC9PoqFbbRbM6+oKPd8a3GVoxpq2clzQpJL3Pc+bLp+8yrsm8TlHUKTp0FmorC4Qg1d4WNH5ncQLJ1lJepyjoFMXc+Po/Xlr57OCQjOe7w2QQqunmpIMLHChw5i2YPjGNrgvqiSi5kY1R3Ly0Y2yb1Vlp19hUYto4gZwUcKtWrcJ73vMefO9735M6gAD71MrHPvYxjIyM4Mtf/rLvd1/+8pcxMjKCj3/8476fX3755QCAz33uc27xdgD4xS9+gTVr1uDCCy/EokWL3J+/973vRU9PD2666Sbs2LHD/fmOHTvwr//6r5g7dy7e+c53jvu9FVOH2o6dqL7wAqovvIDajp3t7o5CoVAoFAqFQqHwsHSgB126bZDiHqMGo+G0T5wLcAj0dupYOtCd+VlRBZazEnJUNNfMuAieDo47BUxJ9j6SQJtRbaSJ1EnzbAJg0ZyOCYvWaiVOQXinZ97UWk49EC+O3M7Ka1KHTNw7Znn9KIPYVBzDrCwd6MHsDh0cIpTKLIgz3gWdSdIfyefNwXs558nnzFuto5ol6OBOIng6f+lAD+Z06pmfSwBo47RQOm20QkrtSJb4tggaERDe+fIOYWyaQIkMERAw2kjt2KzjdU5nrim5CR4KiMO3lnij/7ZDutF/7ytMhgZx9pxm9it5e41W2rUusxBVDzG4th2ZM3kgWqeZSKCIveHU/lnSVIEyksZ2omK7mtVZza6xdjJtXFZf+tKX8N3vfhddXV04+eST8ZWvfCV0zTve8Q685jWvAQD83d/9HX7605/iuuuuw/r167Fs2TKsW7cO999/P1772tfir//6r333nn/++fjYxz6G2267DcuWLcPFF1+MXbt24Qc/+AHmzJmDm266yXd9b28v/vVf/xWXXnopli1bhve9730AgB/84AfYv38/fvCDH2DWrFkTMhaK9rDubz6Nruc3AABGTl6Kl68Oy6CMD7zu2InslkKhUCgUCoVCoYBd/PesBTp+sbmGmsWRJ9GFqmsWh84oLjl9YWLhcxnBE+LNGsdDBsI22NhDJ//jTq4TAo0RGBmKbWuM+OahmTYc0tyhMYK8Ho6KmYpRLEII33jULIECEYly+8aT5uL+DbshBAcBcd8tPuogPZTYz+P1dHUjFdMtgC2EgMUdB4r9bKcI+HSgoDNcsmwBbn1oM6yYKvWCcxgc0BnFKfNnYdPwEd+Y2MZuAoOL2JRXzrx5DdJJot8KHeW04+1vxbAS28o6j0EHWEFneNfyhfjmmpcy1bNx9ISTTqwZNEZAKYVGRajYfVYYBSih0JiI1FV2CkYSmq/vPLIl1TO8a9/iwtUHwWv0upyl7jsheNeydHJTNS372XUZqRoWUJAbxL3ydGjMPjzvrKWoPdeZU6f/jI6/9lMSjDbkWMs4djLcFJwtWpdBDIv75iDNOo0jKh1c8HuKo7eqNfv5FrfftWZavrneuKuEE/u6fH0KOnZYhPOwmNPQmWMoVRpp02Qu8Yka2zQ0q7PSrrGpxLRxAm3ZsgUAMDIygq9+9avSaxYvXuw6gTo7O/HAAw/gC1/4Au666y785je/QX9/P66++mp8/vOfR7FYDN1/yy234LTTTsO3vvUt/PM//zO6urrwzne+E1/96ldxwgknhK7/0Ic+hLlz5+If/uEf8O1vfxuEECxfvhyf/exn8cd//Mcte3dFegg3sHjoXvfzloG3QtDsHl2FopUY3MC9L9+L5448BwBYwVdAV3KpyIBlcbzw+G7380lnHg0W9U1LoVAoFIo/YN60SMdjuwwcqABVkyPHqM9YwbltaACA/p4CLluxKKqpWIJZgpo1gE+FSKCs6IzCtKzUp3JlkQWyNpKiMtJA6m0TEo7+mso44wHEy60QdlTKg8/vRbnulAHq6cqIgaoRY11NORxcCNz/7G6M1Rrz89zuIzjn679B36w8RmuW5+rGnGmUhOpuTVVWrliMnz21CzsPjkVeUzbtuiZH9xRw4rxOPLXjEExLHtEjJAXoBYCKYdbNurah0arPMbfC17sRIS3QUbtLFawa3OKbQwA4/4Y1uGTZAqxcsRh93QXpvcHIwCRky3blisX4yfoh7DxUTt2OaYlMeiUIgW3srprWuI3+ACBAwLmI1HeE2OlGZfPldQIlDWeatZ9VN/bPTpYbR0Z+8LvtPl3ytpsexruW+2VEJk9rtx7E+TeswUVLj8a8rjx2lyqp+m+vqomtE2Tx+toTyQ7XtLTqu4MXZ1xXDW71zUGadRpHUOac6Qge+Birmbh+9SY8tfOQz9F53vVrfHr+sz95Bv/vf5/39SkcQRwWdJNzXPafj/kcQABCTlUhBKpm8thOUEkgAM3prJGqiT2lSlNz1C6mjRPoO9/5Dr7zne9kuqenpwc33ngjbrzxxlTXU0rxyU9+Ep/85CdTP+PNb34z3vzmN2fql2LiYLyGVz//z+7n7fP/GKYytivaTM2q4Z/X/bObavL/WP9HOYEUmbAMjsGfvOR+Pv70ecoJpFAoFAqFhNkFik8uK+JbzwLDpQrKpgUK4hY757CNev09Bdxy6fKm//EeSgfXZH+D97UjmiL8LvGp7ighKOgMFSOdwbZicBR0f2ozWRuVOAdGChxDOyWk7hQJn0ifqjjjcVRXDnuOVKVyy6gddVCuWTCDRjTYBqknth4EIK/rkqbmgcUFKoaFB5/fG3DQAXuOVLHnSDXyXpMLWDULG3eVcGr/1E6R09dtr/8P3vYoDowakdcJAFXDwv88PRwbuRb1G9uuKdDfU8CJfV343eZ9ACBdPzWLw7BEZh0VdEtt3FXCFbevxXCpEurXcKmCWx/ajJ89tQu3XLpc2l7WmkAyB0VfdwG3rTwjcXy9jMe+SwDkNIqqwVviXmD1VGLOOqQk7EyghKBi8HHvKc7a78gzHKmYkXtWX2cOhsWxb6QW295Ajz32cf3wyogRCMvZfSQsIzJ54sKWpzse3445HTnMm5XH/tFabP8BYP9oLTZyrhUItDbayHH+tOK7g4N3DmqBzgbXaVZ9Gq4JFE4taHGBwZcO4Lcv7g/pNr+j345UCvZJ9r0geE/V5Hhq++HE/nJhR9W1amybwdFZH/n27zBcqqS6547Ht+HXm/Y0NUftYto4gRSKdrP7bX+G/SMlAIDZNT0WuEKhUCgUCoVC8YfGsd0Md155JlYNbsXd63fg4Kjhplnp7dRxyekLcdmKReMyNASjW5pNNTYV/BLBE72h6CRJJxm1U66lcdzYEREWijnmMxQxSlDMMdRMa1wGO7t2B4HOvHUoSGhOpsBQh/Ca3hglWPXRM3H3up0hue0uaijXLNs4J+oGb8mgOSnbgmMNJMsaF8J1TDQblSUAfOy7T+DHf/GGKX86ek5nDiwY0udBo7ZxMsnonoRdn4TAW5PdkX3D4m50EaN2LZXx6CguBK64fS2GIk6zFzWGmsUxdKiMK25fCy5EuLZHxnNmUfb8U/u7cf27X40rbn9iQtN/adROqdYqB5BDUWco5hhKZRMCAnrdUA0Qt4ZKmj0ljfOZUYJP/fHJGD5cid2zAOCba17Cj9Zux0jVHwnYmdfwnuUL8YnzToiVm92lik9GgrqkoFEYlsDQoTL+/Lu/AwHBbolRnFGCPKOoWRz7Rqo4uruAD555LFY/Oxzb/1WDW/Hva17MlHZrsqHEH92nUYJ5s/It+e4AhOcgmO4vuE7vvHJFpmcGZc5x7Do/d3S987uk2KycRkFBfH267PX+aB2v89jkXLo/RbbPCC4/+/iWjO14OLW/G/dcdRa+ueYl/OCJbRirRb8DgR0d1uwctQvlBFLMKARhGJ67wve5VYye/MqWtaVQKBQKhUKhUCgmjr7uAq65aAmuuuBEbBgqYaRqoiuvYelAd0tyuAeNx2kLH4dpv2si2PdQdFLEfVlOcwvYJ4Pzmn/sKXFqyTRnEWQUKGhMEvWTvnB1Wwm8dpTc3r9hGN9+ZAsIgLxGYw2oUWOd9PaGxX1Gz1qTeZSGD1ewanArrrloSVP3TxarBre4dU1k5HWGmsGbdogRAEWdomYJ7B2pQmfhOmJ5jSHH7NobH3vjcTjvlL5x6SjnxD5gy4kZONFPKUGe2Eb/4VIFQoiQnGRPBxc9PvNm5VHQNVSN1qRo87JgdgGHxgwQYqeAa2XrhBBUTI4PnHks3rR0vm//AJBpT0k7mr0dOXzo9YsS96zPv30prn3LKVi37SD+57frARC87Y2vwenH9qaSm1WDW3wyEpwWW0aILSOHKyD1qJ4kedo7UkVnXsOvrz4vtv/XXLQEP/jdNhwcMzLVfprIJHKM1tOI1qO+CCG+mjhXnnsCrjz3hJbVfwnOgR2J03i74DrNqk+T6uE5ut7ZT8qGFZtqzbQECjr19Wlw8/7AMxoPCUY2JVHQaar3kyfjbC193QV8/u1LkdMo/uO3m8GFHYUrBHzy6qyJZueoXSgnkGJGYbECHn2VvGaUQqFQKBQKhUKh+MOioDMsX9Tb8nbD0TMzpyaQzKESRAgRSkmWhGkJ5Ji/8LkQ0UXX08AjbE3SSKCpMLgJOF30ym3FsHDVHetgWBxFx+ElsdjZESd22irZWMc5wYLzOR7HnCUE7lq3A1ddcOKULZpdMSzcvW5nrAwLITIZqYMQYpccyEGgbFrYdbgMCHmkHSPA0gXd49JV7hwS0ZATab8IcoyibNajygJykjUdXJzxmNaN6eMZxyj2j9bAnPZbVfiljs5sJ9A9vx/CX7/p5JAcZ5mntHrHGfY0e1ZBZ3jDCXNh7swDAFacMDfVMxy5T9QlhECnBGXTdk4UNZpKnu5eb6/7pP5TQjKnhJtI8z/nANOI7x2ddQkQnHz0rJbpMukcSN5ONq5p+xB3AMK7Xkjd4ZU0FRYXdmSXp09rtx6EEA3d4TxirGZmjvIqVSwcGqthdkcu240TRMWwcM9TQ7CErUtpvdaYF4HxzVG7UAUFFAqFQqFQKBQKhUKhyABjfiNL62oCNdlQC0nTB+5JlZO2zwLh1FHjtQ3L2gTq4zoNIoGCJ5tlfdwwdBiHxgy7NkmCgd4xyMnGJe71vfMJjN8ZeWC0hg1DpXG2MnE4Y5plTLLi1GCilICC+CKtou5oBseG7/Q3Sk68P3H6JJOTrOskLlKK1g3ME2HAr5kcXIx/nmRwYY/jwVFj3HKcdjgno2ZZFl3i73g6eUo7XrZTYeoQtY84ZHWMxiGdg4jms46re19MvR7/3k3iHu8i0Dhw4fRprOp39jhjtGn4SOp+ern36eGm7psIZHMUVVOv2TlqF8oJpFAoFAqFQqFQKBQKRQaypkyKIhR1MwmxQEnmt3A6uHCfvG1k6XHw2a0wBUrbIGFD2BT0AYWQ9XGkatVPYTd+xmg40ilIcFziZEs2hjnWvLlICGCkajZ9/0TTGNMIw14rZMXThvOY+KiZ8T3OmUPvK+W1xhzmdf98un0KzH3mSKCY31E6sSmcRP1/LW+3HrElIMYtx2l1egv9DJFE6RLnMyWN/nrH1fm77jn8kNPC8pR2vKaSA8ghTo6CNQDHg2wOdNqQkuCzmpHDuGhe2XsGU1XK8O35xJ5D788cR1M5kDIwLQdGq8l9mCTBkc4Ri5aBVumKyUClg1MoFAqFQqFQKBQKhSIDQUNps7aJqRgJFETWp2adVcH7WuH0krVB6v/z/WwqDm4KuvIMBCRUe6WoM4zGGNxC4xLz+rIxtI28oqnaQIQAXfmpa25qjGk4n6BGSWLdpaw4UxcnguOVT9d47+m3zqid8gkkrLOE/z6HrE6guHGiJLwOW8lEtU0IILjd/mTJ8WREKsbpEosLnwPCO7bO33MaBaOiXjsnLE9px2sc/uUJI06WtBZ2WDYHhBAUcwyci1CUcZZxdQjODYuYV+eLC6MESPDdeO8TIry2nUcUc82lQ5vTmU+8ZrKch1Fz5NQACvWriTlqF1O/hwpFBgg30L9v0P28a+4KCKq3pO1FN1+HjpefAwCMHb8EW6+8tiXtKhQKhUKhUCgUiulF0FDKm7QYt8MvkdVwKrvaPjFePw2c8tUJkgtWZ0XWJlCvx9LiZ00EwbGTycPSgR7M7tAxXKqAc9FITyO52DFaycYlTta88+k2ANuJULOyn+ye05nD0oHuzPdNFu6YHg6/m+04IaAQ4ypG7ww35wIcAjqlIIgumN6sfDr9c+aQQ/jkRKNhA7bTJ5mcZK8JFJ8OLiRbLUKj1O17q9unxB7H3k593HKcuibQJDhGonQJJQQ0GOngm1cBx7Uui4px5CnteOV1NiEy0SxR+4iD3sLNI8scZB1Xh7i9z793i9DPZBA05NPpU3deQ83jEHH0xinzZ2H1ht2p++rw1tPmZ75nooiboyDNzlG7mIL+V4WieRiv4cxnvuD+YbzWurZHj0A/fBD64YNgo83luVQoFAqFQqFQKBTTn5ATqMk8JZOR/i1IzbJgcQGTc1hcoGL4DeEhO4fUyUKgMSdtUDo05i+8LYQAF+M7Fe60KYTwvZNp8ZDBZgr6gMJOIEkvCzrDJcsW1B0yPNLoLgA4QTvBsbbbjuqDPQ9eI7TrTCIkNg2ODArgXcsWTukC2c6YarEpfuQG7ywIIVCzOHRGMadDhwBgWnY9G8OyZbUx1s09w6y3YwkBRgl0miAnnj7J5CRrREqc6jMtHpKtVnFUZw6EEJ8uahWGJaAziktOH78cp+3ZZEQqptYlQsDgApTYqU8NS6SSp7TjpVGaec4m0okvWwdeWlkTKMscZB1Xh+CreN/Nu154/TlJa0hjxI2Mcfr0+uOP8rXr6I2OnJZ5rnqKOmZ35BKvc3Sms8/HOaDHw2TMUbtQTiCFQqFQKBQKhUKhUCgyEDQON2uLiDPWtJrdpQquX70Jtz20GWXDQsXgKBsWzr9hDa5fvQl7ShV5HyPMmDqj6Q2caNQd4EKgaloYq1koGxas6OCIxDYZJb62nHf6q+8/ifs2DPucc5ORbmm8RHVx5YrFmN9dAABUTQ7T4qia0RE6MudFULYceZDNQ80UsOqVwNPUiwi+w0jVjJSnqcDuUgWjVROWJILPqBv9OBfS36dFCIGqabdV0Cn2jlRRswBTADWLo2rasjpWs1A1LRwuG5nf4frVm7BqcKsr+ya3580SAhWThyIUORduOqP+noK07lNWg7dsjJy+Xfafj49rjUdBAPR2NYzGWXRRWvp7CrhsxaLxN5RS70yWfgrqklgZmV3E/J6U12YYL0KyzxkXfodaK0crydnbaidjpjloQg5D6eACn71j7zw/Ss8TYteHC/bpglP6/M/0jGFey7ZnvKJ/VuzvHX3y89/v8u3zju5s9hBOHElzJATGNUftQjmBFIqUHDntDOw/+03Yf/abcOS0M9rdHYVCoVAoFAqFQtEmWhUJFGSizIAbd5XwnpsHcetDm3Gk4i9ePFyq4NaHNuPdNw9i465SuE8RnaKEoKCzRIMPgX2ylhICiwuUa5Z9srzZl6m3mdMoqgaXtnVgtIYHn9+Lcs1yjdRT0QcU7HeUIbivu4BbLl2OgdlFgAAV037vKCoGDxnnvS175UHWigBQNjjGaiZqJs9kOOICuOPxbZHy1G6cd7/j8e3SejYmFxitWRgzrJjkbclYdgYtEEIwVjURNV0CduTJP967KfV4eecvWIzcEraB0uICZcNCuWahUv9v2bRAKcGC3iJuuXS5z3DrEDQYJxHUfd6+7T2SXOw9K44+8fbS0UWtWOIEcMenr24EngwmK12lV5dQSlA2o2XkP1aegdtWnpHq2izjZacJzD5njqS1OpWcTF96kaVUHA9Z5qAZOUyK7vPu3c7zqwaPSP1KbKdLoE9zOnOB6xp/Z5SmdgTlNYqeYnQUkFefjAVq4Dm6s1yzWr7XyOYoePBiPHPULlRNIIUiJXsvfEe7u6CYphS1In74th/i0UcfdT8rFFnQcwzv+//O9H1WKBQKhULRPoJGlZY5gSbAELi7VMEVt6/F0KEyALu+geExeBU1hprFMXSojCtuX4v/+yen+vsU0zajBEvnd+OpHYdgBpwxBPYJap1RUELAhZ16LmqkihpFWVJ02UGjthNJY3aR+6rBI9vKadSO6ABQMax6seop6AUKENfDU/u78c0PLsP7b30UJcuUXsNI3QmAxns7surIVlAe4hACYPU57C5qOHpWAb/feTj2nqLul6c7r1wxZQxkwXcv6BQVozVhKpTA51Qq6hQ6oxipmlJnU5B9I9VU4xV8B40SmJ4HdOisfjreNlI66fwICHo7dVxy+kJctmJR5DPGY+/mQvj6ls8wvpTY8hZXl8SrT4xAeBGjBMUcg2FxqS5y5iduKgjselY/uqJ1MptW60xmpOKp/d2488oVWDW4FXev34GDowYERKSMZLk2Dc6bMkoyyYjDUV055DSK4cMV6dqyo0QBzpHKkSvTl15aHQkEZJ+DLKSpB8cowQlzO3HeyX3u8y3L3p/zur1fmvVoUFmfgvuHLNqIEru+zvptB31OcKd/eY2CURr5vSeo65z9LYgAJmSvCc7R/pGaG/3DKMHlZx/f9By1C+UEUigUigmGEoq5xbnoZt3uZ4UiC4QSdHQn58lVKBQKhUIxOQTTxzSbNSqcDq7JDsWwanALhuupufIarUeQeNKkUYI8oaiaHMOlCn7xzHCgT/GdKuYY8hpDjom6kdU2ZFHiv9dxykTBGAU8TqD5s/JYedZidOQYBmYXMaczj8v+4zEQYqeAi2uL1uu51OrGYMPik3bSfjwkzf+9z+xCxeT12i8EFc94EdTHu+6QdN47r9mHhxzjZlAezFo4rVxeIzAtAUIJLnzF0fjwWcdh6UA3CjrDSZ+51+dEDBKUp1WDW3HNRUsyjMLEEXx3GXnWkJu0EDQMz3aqJYKT+jqxafdI6lSRQiDVeAXfoSZZzwWdoWpyEAJcfFo/3v6aBejKa+4cxpE1HZzXAW5Y3Ne3pFdnFMgx5uoKpz6VgPCFfcj0iSmRQUpIoi7inMPkjWdQYv9by7mur7vQUqNuWp0+2ZGKfd0FXHPRElx1wYnYMFTCSNWMlJEs16bB62hpJuVixbDw22svwF99fz0eeH5vpKxUTQs8JmLSS1BfemllTSAvrR5Xh1A6uIj+M0p9zx98Yj2KGsEH33oOAGTqk+x7AqMUd37iDTg0VsO9Tw/jwGgVczrzmN+Txyf/+0nPvfI2g7quavLI3LsTtdd45+hnTw3hcz99BgQER3Xlpsy+lgXlBFIoFAqFQqFQKBQKhSIDwTRKzdcEmljLX8WwcPe6nTAsjqLG6s8Ld5YQghyjKJsWHnh+r1ssGkg+ye4YmAghsA9Mh+8QQsBMaYxzKFVNfOSs43yGJ8dQnKYt77ualpiQugHjJVhwOk4egnNJKfE5zWSYlkCONeZSLg9hCCHIa7Y8rN12ENe/59Uo6AwVw5Ia32X3O/J09/oduOqCE9teNFv27rKC34xGHDePQaDuCBYA0+wxfXnfKGqmPMVSVBuGxWPHSz5/YRnwjv/gy/vx1XeeJm1Ppg2yRqQ44uCuSyJix9d3Lweo1pD7OB0SJE4HxLVDKUVuEs9kph3NqNprE01BZ1i+qLfl18bh7J9CiNi0llGMVO3UaUd3FyJTtTWz5wT1pUOr08EFadW4OqQ9XOKsT+f5o1s19zOATH2Kc5TN7sjhA6871v28duvBxPbS7lUOSbpzvBR0hlcMdLuyMBXTy6ZBHUdXKBQKhUKhUCgUCoViHDTrYAjaEVptCNwwdBiHxgxQEGn9Dy+UElAQHKn401clGTuSimoDyWmYZFRNjg1D4Tz/advy9koAodopU4EsY5I4l5Ifuc6JtG14cOTh4KjhzsOGocOp+yy7v52kfXeOJuuNkMZ4c2HXGaEZ2yJA7HjJ3iFKZ6QZf/np/eZ0kLMu08iWQ1A+sxBMBzdVSevonw6Riq3Ceddm5x4A7n16ONZh2cyeEyWP+gSkg5tIgr2NGqdmorCiyFJLLJSuTqLDsuxVACZlr/H2cwqeKUmFcgIpFAqFQqFQKBQKhUIxDpJOvEcx0engRqqWnRLJ067XoBV04DjZxLzJsJIcU2kiB5KSa0U5kmSOm2yJuhq00uDVDmRz6U1pVpCkMQIa40WIvI2cJC2a82tC7PudeRiphlPHeQkaS4P3txPZu0c5zprBaUrU/xfVfhJx4yV7By1pPWcc/zROXS/cTT/YkDMHSoj7mRL5cDS7npuJIGkHaUdzolKOTUWcPaPZuQeAA6PV2N8327bsvuk2N2mj+1q5J2YJlgqNp6R7afcqt4lJ3mumqxNIpYNTKFIy7767UBjeAQCozF+IvW9+V5t7pJgujBlj+MDPP4DRsVEAwE+Nn6JD72hzrxTTiVrFxJ3XrXU/v/va5cgV1BauUCgUCsVUoVW2lFabmrryDAT+tEyEEBR1Bi5EyOArBEBotoikNEWzk9qLqs/SlQ9/32k2WkpnU+8MbBZDkmwu7bG3C2szSqTZ4ZzxIiDSNnRGYJhBw6GTrsm5T3P7EEfQSBe8v51I14IsXViT8tUoS+KMdxOhCIgfL9k70KT1nHH8s6aoFK6/i/g+OxR1BpPbfStL6k81u54tPl0igdJeN70cDePBEdPxRL7O6czjwKgR+ftm25bdN9Hp4CaaKB9WKx0ZWdJIBq+V3Zmk60wufE6sydhrZsISnd6SrFBMIrM2rEfv4Br0Dq7BrA3r290dxTRCQKBUK6HMyyjz8rhOvCj+cKmOGe4fhUKhUCgUU4vm08EFjLat6IyHpQM9mN2hg0OAewwmjBK7gL3HqsG5AIfArILmNxolGD7SGH+iogAAO/JAZgDNaxRLB7ozteWD+P/aU9TT3DVlkc0lgT2PUUZKAo/BlcS3EcSRh95O3Z2HpQM98fOIsDx5728nUWshSGr5CiIa400JUMwxcGRrSwCx49XMes46/lnSOgEN3eeMW7BvtF6fSKYnvPKZlYmKBGo2qnO8TLNgk3HhyOl43vmtp82Pvb+ZdRwlj2kOOkxlovboVtbJyxItFXICSfqXqOsC10+lvWYqo5xACoVCoVAoFAqFQqFQZEQI+ySqyTl2HiyjYsSnypJRNS23DYuLlhplALuY8SXLFkBnFDWLRxo4hRCoWRw6ozhvSZ/PKGOniBO+fvqiUULRB+FrCSGZDWlHd+el/eQiXeqZYMTMVIwEqpncN1ZxMpR2Lr1orOFgIxna8MrDJacvdAttF3SWKl1Y1P3tJMu7Z4XAjjRj1I4KtITA4qM6kcsgc04bceM13vmTXCmVv7QyCcC9zhLCNtDSbPIZfJ4Q9h/T4qiZFmomhxloL6hjOOeR+ikN3vbGalZTujyqvSMVM1V7WSIppjuUNHR5M2q5K8cwuyMHqz7fhmXLiWHZsmJa3JXHLETJoz7NIoGC4u+tqeOX9XSyKSO4d1VNux3DSt7TQmlwJe0n6brgZ42SCd9rvP1ul7N4vLQ/JlehmCaY3bNRmzPX/btCoVAoFAqFQqH4w2N3qYJVg1swVrPcyJ0fr9+J3764D5csW4CVKxajr7uQqo071+5A2WMkeW74CK5fvSlVG2lZuWIxfvbULgwdKqNqcvtUvscoxLltMAaA/p4C3vzK+bjvmWH7d0Lgpl+94HtXwDbaOI4VVjeQcSHqRjghvVajJPQ7tw9CoBbIZbbtQBnn37AGlyxbgLe+sh/3PrMr1I8oOIQbKeAY16fSSXtn/u94bJtv/p33jZr/pLn0pzrzp8BznEGyNoIYll2Lob+ngMtWLPL12UjIfRiUJ+f+qYD33SuGJT2BPmbYfWeUuIbqNBR0iiMVDpPb8/nsrsP1+lrpCI53mndIs55l7TlzWaqYPoPx8q/8L6oGh+l56SiZdNoYPlSBNyiHEQEOoGJy5IPyGeiHEEixpj1RAMSWY4vH59bw6qc454pMZ20/OJa4DqOQ7Q3P7z6C829Yg6ppxfbnD8UJtLtUwdChSmpdLmN+TwHXr96E7z+xHWXD2TfGb5SXySMB8K+/eREfP/u4lu3Jkw0lctkcOlTxyXoanHb+O7B3ven/PYhj5hTx3PBI4p4WdM5Fib50ryJ1R1NgurmwawjuKVUmbJ68ka7T0wWknEAKRWq2ffyadndBoVAoFAqFQqFQtJGNu0q44va1GC5VfEYAiwsMlyq49aHN+NlTu3DLpctxar88LYm3DcPyOz4MS6RqIwt93QXcculy95ll0wIFqUf42A4TnVH099jXjdUa0QAVw8J3H9kaNt7W+2paFo5Uau61MsNI41qBnEZRM7nvOpMLmJJaIbw+prc8+DJueeDleuHndNQM7hrxCzqrF6ifGkZW3/wHHF9JMpQ0l45hzIn68RqWSUwbwYGlFBiYXcQtly5HX3fB1+coTC4wVjMhAJ88TSXDqfPuH/n27+x3iTnN3duhQ2cUe0eqMBNSj1EClAPyb/FshsK+WenGK+t6Drbn02GBDo5Ww+tQJpPeNoJD43y2hECZW/W1Fx5qAvicTWmwBFIVMvHqp4LOpBEhUTpLiOR1KCNqb+D19oRAbH+miHqaUJwx2h0YoyzojGD7wTJuefDlxHWZFZk8CgDffWQLVm8YbtmePNm8sHsEf/2DJ0OyKeCX9ctfARzbHR1JE7d37TlSxZ4j1dA9srUUFP8o0Q/qurGYqCXOBe54fBt+vWnPhM2TPxKo5c1PCtMrpk2hUCgUCoVCoVAoFIo2sLtUwRW3r8XQoXKopojGCIoaA+cCQ4fKuOL2tdgjMZgH2yho/n+SEyCxjWY4tb8bd165ApeffTz6ewrIaRQaI8hptrH48rOPx4+uWIFT5tuGEy4aBlIrxtohAPz2xX2RDqDgtTWTo6BT6Cy5bDejBHlGYVp2EegsNUAIAc5bMg/FXMPgOhWMrMH51wMp8tLIUNxcduYZdEZ87+3gff9gG95UfQTAO16zwJWHOLkPIgRw9Kx8SJ6mEnM6c2CURMqDRm3ZOzRmgBKCS1+3CHM64utJyXwTOqPo0JkdvYJ6rSDJvXbEFsFX3vHK1OOVdT07ZJlLh6BMbth5OLYN3ztTAl0jbt8YJdDsw/yTcpJeAKgYVijNple/BaEk3Tr0EjeuTntx/bGvmwIKagLxjlEzc08AFDQ7mrRq8pY7gOKwROv35InEGyfHhcBffX+9VDYJ/LL+L+vKOFThkBHau7R08ipbS2lqAjk4uu4DZx4bmzqwqGdbs83g7eV0rfOtIoEUCoVCoVAoFAqFQqFIYNXgFjcSIq/RUPQKpQR5QlE1OYZLFawa3IprLloS20YQQuyfx7XRLH3dBVxz0RJcdcGJ2DBUwkjVRFdew9KB7lAefcNqROvkNYKxWrTBY6wmNxrJELBPW+c1hhyzjXmWEKAgyOsk1FacAyoOSmSRMO03sgbn3+ICXnN4GhkCoufyf57aiR+t3Sl9dtDQ5m3ja7/YiO//bjsICCgBLvOk7kmSey+MEbzjNQtaJrMTwarBLdg7UgUjBDmdoGJwX8q3gq5BCFs2945U0ZnX8J2Pnon33fIouOAQwnYgUUJgWhwGFyAgkTqhoDNUTQ5CgNfNZ1g+X8PRx56EsmHihtXP2wXsCcGcrlym98iynr3vnnYuve/glcn/e88GvwwH0mcF3/ni0/rx9tcsQFdew6d+sB67Dlcm1YBqRwVx5LXGmHj1m4y069Ahzd4Q1x9gajipJxLvGFEASbuG4zh1fD0aI7AypFdsJYUJ2pMnA8Pi2F2yI3SSvrccqAj8cquBt0vaCe1dwr93RSFbS+9evtB3TZLo93UX0JlnYIQCREBjdqSfV29nXbPNoCKBFAqFQqFQKBQKhUKhmOFUDAt3r9sJw7Lz0kedXCWEIMcoDIvj7vU7fEWRW9FGKyjoDMsX9eLck+dh+aLekMG4alq+U9atTqNmWo3C7XbhbduoRInfPGEXh2/O0mJxYPCl/b4aOe2uCTQR8x+cS12TG//jXr2gMxw7pxMapfUImUaUTNo+A3YEjcUF7vn9UMtltlUE34cS+TsF56Co2ZFVOmPIaRSzChooaaSP0lh0ukGnLZMLbNxv4bS5Gj7wumOx4vi57ngDzUeCJK3nqHdPu64FhPsONZNj/baDqWXY5AKDL+/H646bg+WLeuuOs8m3nnp1Tlq9knYdJo2rbIS8/XGYyZFAwTFKSyHHoNcVt5NStB1M9J7cahzRcmTd4OnWq8WBh3caofdrVncE23fGz7TSHxzxPZ9z5DUKnbFUerv18zT916hyAikUCoVCoVAoFAqFQhHDhqHDdnooEN+pbhmUElAQHBw1sGGo1NI2JoPNe0cn9LS1gF0ng9dPdTtpo6KubQZCgCNVEykzXk0KkzH/kba5BNtVsDuOQTpLnwlpn8ymRfY+UW/lnYOtB8Z8v8sx6sovIDfgB6NjKAiOGAJbS7z+M//1E21ezDKXXnjdXmu/g71u49asg0yGkyJwJgpH5wDwzVsSadZh8rjKZSOom9rtpJ5IQmOU4l0FbNnzGvvbqc7buSc3iyPrafccQoAjhgi9X7O6I9i+M34v7h3x/zKhyan43WkKfbXIhEoHp1CkpGvjk9CO2ErEnNWNkVNfk+q+Ox7blvlZH3jdsZnvUSgUCoVCoVAoFBPDSNWqn4hv/IxRUk/nZdf/8EKIfYJ+pGrGthFn/JC1MRmUJadndUYy1eRJIiodlEaJJ7qCwjKznRh2IPbgQRDHzdT+k/ZRMuQQKpbdxPxHpbxLevOgYc3po6zP3jkKPadNMpsW2fvkPCmSgjWanPepBeSQUiKVYe/YyNqCAMqm/fugPE60fMreXacERlKdJzTWkFPMx9vTvEZRqY9PMMojKA/tdMo675GUik6Wpi1OpqXj6tGXuYjaKb5xResjLqcS0r0vBVOt7spU129BnPHz6TtGUatH4shS0kIg9H5Je1cUUXta8DtGUqpWqd5mFGVut6NJ9q+JmKeZkA5OOYEUipT03Xsnup7fAAAYOXlpaieQQqFQKBQKhUKhmN505RkIiC+FT0GjMCwBSsMGXCFsw0ZXXottI2j88BoWZG1MBkVJOqmcRkGIAAFQbdIx4yXK6JPXKGh9TMdTw0cIAVDiayMYeTHZSOefEBR1BpOLkNOgmfmPssslGZijHBKyPrtzROAa/8fT58lE9j6UEBR0Cs7DjhvnfXo7dd/PCZHLpzM2LEIngAJFzXFK+u+daB+A7N01RmHw+JRJvvcUvv+4beTrP0uS4aCxdjJx3iNOrxQ0GjJuJ8m0bFxzGgWpG61ZhOIJ9mMmRwLJxigNxPE6tpicRkOO3TRMdf3m4IyYI2PeYdc1AhAKAnvthiAIvV/UdxevQ0lGTgumeLXvm5XXI+6QI3s+owQFzY7IbMXemYbAU1ra9mQxtSVXocgIJxo2L3ib77NC0W40quFtJ7wN27dvdz8rFFmgjOCU18/3fVYoFAqFQjF5LB3owewOHcOlCjgX9dQpRHrKm3MBDoHeTh1LB7pj2wgiEtqYDI6f1xkyvdkGH7u/43UCETQMns5zZGMqhGjaBCgEMCuvBWoCtPf7U9T8M0pChudm5z8qmiTJwRB2AkX32ZmjoEFXCAEOtEVm0xI1BxqloWIJ3jl4zTGzfb8jIHCyWtmpvQQYknXCbJ1gUbf9oOCYT7QTSPbu3neQYad9s/9uv4MtG941C4QjIRvX+2W4mGMTZNaPx6tzot6ZERIyiqdZh9I1ArkcyPrjPn8Ge4GCY5QGR/a8UYetkh2dEtQy3tPOPTkrjmp2ZJ1D+GVTYkvg9fp8s3QSer8ovWlHvMnnhMAv097xO3l+l7+/CbMaqbdT6p1WMROi9VRNIMWMgrM8nlryKfcPZ/l2d0mhQJ7l8anln8I75rwD75jzDuSVXCoyoukMK955ovtHiyj4qlAoFAqFYmIo6AyXLFsAvX7yNepEsxACNYtDZxSXnL7QV6Q9bRuc88g2Jguv8UYkGO2ymkU0ZhvLCSHQmG2Ilo2H8/tmoBQ468S5PqNNu22srZChJKJsVEmvHrzPGbe0fQYAS6CtMpuGZuegmNMghIDFBUzOUTPraYjq8mlaIlVbZy3QXQNsyAk0wU5K2bsnrTGNEfcEfs3iyGkUpx/b27QMa5Q2vabHg+PIEkKAi3RRgWnXYZY14kAIXFmyuC077U5XOZEExygNGrO9jU7KVY220FGWsZmpsCc3g7O+065XRoGzFuih94uS8Tj94egOb/vO+HXm/Ieik5bMZOydafC+6XRNB6ecQApFSrZ/5K+w6Uv/ik1f+lds/8hftbs7CoVCoVAoFAqFYhJZuWIx5ncXANjRMMETzZwLN0qmv6eAy1Ysim2jYliBSBWbMcM2DM6blZe2MVHsLlVw/epNuOqO9b7T12MGR8UwIw0vswpaapsagT9qQGfUTT8nG1MtZChPB+fAQy/sRdW0wF2DVcqbJ5BWyFAcUSeVk04ws4hIoNg+S5psps+TTdY5eMsr5+P61ZswVrNQNixUDI7dpSrGapYbrQaSrq0/XtRIgzTZkUCA/N11RqXrihC77kbwHb78p0ublmFKEfm8icTiwGjNwmh9DqV+CE+nsq7DOJniQoT0PBd2KsWKwVE2LIzVLHzroZexp1Rp7gWnAd4xSjKgE2KnDqya3L3W4oisRZaVsWp8CsTQ9W3ak5vFG1mjM5p6vc4pEJ+O8hIl47L17OiOYPvOWgqnykye14neO9PgqwnU8tYnB+UEUihSYsyZh9rRC1A7egGMOfPa3R2FQqFQKBQKhUIxifR1F3DLpcsxMLsISgnKpoVyzXbklGsWyqYFSgkW9BZxy6XL0Vc3WMjamNuVhyWijVpOuqX9o1mT1jTHxl0lvOfmQdz60GbsHwk/06wbUYMFnSkBLllmn7hNjDaBfaKX+qJzCF53/FGRY1qxODRGoFECnZHUhhdCgENjBgxLoFyzYPGpcdK+FTIUR9RB+aQD9MGh8Y5VVJ+rht+S3pXXmurzZJNlDq598yn4xH+tw60PbfbJnqj/Mbn9394OPdV8zi40THDh6Kv2vHvV4FL5oITYTorAO7xioKdpGaaE1GswJeuLycbioul1GCVT5ZqJsZqV6LwQAL7/+Da8++ZBbNxVauFbTR28Y5Qk6wT1emOksS5aaXRvKsUoJndPbhWUkNTr9a+WFX06ykuUjNdMHnYCwXbURK2lYCrcNL69id470zDR0ZqTgXICKRQKhUKhUCgUCoVCkYJT+7tx55UrcPnZx6O/p4CcZqc3ymkU/T0FXH728fjRFStwyvzoXPRzOnNglEQawpy0N3uPVHHF7Wsn/HT47lIFV9y+FkOHyuBchIo5e4u5O6dv7YgegtlFHfN7CmCUoJhj0FnYTOJcW8wxaTqf7oIWO6ZXnnMC7rnqLFxxzgkYmF1AmmxSBZ257yGAuqHIzDAqE0crZCiKZo1UwXkJfpb2uX6NM79veeX8pvrcDtLMwb9/YBm+9otN7rrwIkuf98Ezj800n0FD6GQZGGXvrmsUBY2iK8/QlddQ0Cn0mHdoVoadiLQ4fQFEOy1ZPUJkokaK0ebXYXBMdEZgZfA2cA4MHSpPis5vF84YLT6qUzqHjAB5jSKvMfTNyqNjktKuMRIfZTrZe3KrSbtej+mOH++odvI6w9HdeZyxqBdHd+eR11isPgiub54yt9pE7p1ZSRO9NBVR1ckVMwrKDRy38x738+YFbwen8nBGhWKyMCwD97x0D54/8jwAYIW1AjpTcqlIj2VyPPfosPt5yevng2nqHIdCoVAoFO2gr7uAay5agqsuOBEbhkoYqZroymtYOtCdKgf9qsEt2DtSBSMEOZ2gXOO+k8kF3a4/UjU5hksVrBrcimsuWjJh77NqcAuG60atvEZDp3ILOgPnHFWTgxACAYGCxkAIAaXUTSVGCUFeY8gxu+6GgABBvfh8wtHvNGP6ioEeXHXBifjcT57Gz36/C4bJY42s3mgWAeC53SPZB2eCGK8MRREd8RM//mlSkwX7vH+kir/6/pPu/Hbkppd5KWkOrl+9ybcuzFp0CqlDYzV05jX8+urzUs9ncK4ms2ZV3LsDSPUOzciw9xXj9MVlKxbh7JPn4dfP7sGqR7eCEtQd540aI1WTtyw9mMOFrzgaHz7ruKbXoXdMPvPjp3HPk0MQAiBEwEwohUOIAEAmRee3k77uAk7pn4XdpYpv3gkErvqjk7B0oAddeQ33bxjGtx/ZMiF9KOrMF9XqRPZFMdl78riRvEya9bopRdNJ7VQMK1EfBA8ZZPGnTNTemYaZkA5ueu3SCkUClNdw2gv/5n7e2v9m5QRStJ0ar+Hfnvw31Gp26PAn+SeVE0iRCcvkeOxnL7ufTzyjTzmBFAqFQqFoMwWdYfmi3kz3VAwLd6/bCcPiKGp2ajRCeMgIQghBjlGUTQt3r9+Bqy44cUIMHMH+EEKkFhlKKfKanYLFa/1wjLPBvjOnUEoK/A6w+DEt6AwLejvACEE1oxXmpT0jqBjWlCrq3YwMxRGMLnFITL8Ukw4uiNPncs1qXaH2NiKbA+m6iMG0hLtO087nVEgtFCV/WWQyiwzLhlGmL3RG8YYT5qK7oOP7T2yXttVqBxAArN12ENe/59Ut0RGDL+2HJQQKjKJiJvfV4kBBJ6iYfEJ1/lSAECKZd4KT+mbh3JPnoWJYuOqOdTAsDo0S8CwhVSkI6q00ojRZe/JE06o9J6qdNO2HagI14VJp9d6ZlWkaCKTSwSkUaaHlUbCREthICbQ82u7uKBQKhUKhUCgUimnGhqHDODRmgIK4BvsoAzOlBBQEB0cNbBiamDoRsv5E4fRHoGE0o4RAS5OfLYasxhRKSP0EeTaqJp+wcZzqJM1Q2JGXos021LSZLJLWhawQetZ1OgP8ZxMG8UQXypgA/w+A7HMYhVd+QNLVMnMSbU60zp8KsKg9r/5j3/qbQoplMvbkPwSCU8oTouSmCr5IoGnqBVKRQIoZhSAMu+a90fe5VSz+939E1/MbAAAjJy/Fy1d/pWVtKxQKhUKhUCgUipnPSNWy0994jAk5RlHmdmoaTWKMFxAYqU5MPRtZf2jMUVFCAAjn5C6RRgJlJasphVGSeHJYFtAkgAkbx6lClME0uRC7/4JmDK9TIbKlVcjWhUaJG32SY9QuXF/HTmaVbZ0Gnb/T06Q4MThDEyWGzUQOJD4TrdO1XvnJ0lfvPTNZV0VtGY7eka2/VpG1SZmDfKrPz1TXJa2IBGoHXp09PXocRjmBFDMKixXw2Glfanc3FAqFQqFQKBQKhSJEV57ZBmOPh4JRUq/FI6AzvwdGCNvA3JWfmH+6y/pDQFDQKSwuoNFwf5xrANsoMt6T2llP1BIS7XDQKIHOaP33/nYJMGHjOFWImoqsDpopdPi+LcjWRV6jIBYHJSRc0wICBDSTfKlIoGgceY10ak6Aw1GgdbrWKz9Z+uq9ZybrqiRntWz9jZecRiEke2wcOiOTvif/IRCMBJuoyL5W4+v1NOlzEJUOTqFQKBQKhUKhUCgUiklg6UAPZnfo4BDgHsuHzijy9RpBDpwLcAj0dupuwfbJ6o9G7f54jd1OfwgaBmzShkggSuwIJNlT8zqN7E9BpxM2jlOFqKloZU2gtG1OZ2TrghCCvMakRmQhkHmdhk7DT1Oj4kTgDE10xMjEPLdVutYrPxAilRvIvmbidf5UIDIFav3nvvUnws58aZsJz9QoCe2xSbRjT24FUz1VWXAKpnh3XWbCnqecQApFSvadfzF2/tnHsPPPPoZ951/c7u4oFAqFQqFQKBSKaUZBZ7hk2QLojKJm8UhjjRACNYtDZxSXnL5wwgpQN9MfjRHXiMcoAecCFhcwOYdp1f9wDouLdMaojAYgVi8qnlSLKGiwOenoWdOykHcWLM9ceMc/yXYVnKZUTqBAqzPBQOaQuC6CTjMKvP1VA5nkixI70sGZrw1Dh1ExrBb0furiHTbvuwd1RcPJHBYqIQS4ADIEdKSCErRM13rlx+AilOYz6vmGJSZc508FktLBecfPCoSJROn98dSmi+qPN03ZZO3JrcC0uG9tTTW9El7X08QL5GH69dhGOYEUipSUlq3A/vMvxv7zL0Zp2Yp2d0ehUCgUCoVCoVBMQ1auWIz53QUAQNXkvggcwD5tXK3XG+nvKeCyFYumVH+cSAguBA6N1fC1+zahbFioGBwVs/7H4CgbFsZqFqqmFTrN7SVrPQBat9jZad+i4b4Ud8BpC3oyPWc6sbtUwfWrN+Gba15y58I7/kFDahJpIi1mktNHRtS64EKgZvormXMO/PjJnbh+9SbsKVUS295dquBff/MCxmqWO1+fvvtpnH/DmtRtTEcIIeBCoGpavncP6grHSOyVw+B9VouLyRd01lJd65UfniIayBK2E3ferPyE6/x2E6U7vNlHvePnRWPhBHuE2HW60uLd4wjstG8yxqqO/uSTuic3i7MP/HDtDt/amup6ZbpEAs0ElBNIMaMg3MCC3b92/xButLtLCoVCoVAoFAqFQuHS113ALZcux8DsIiglKJsWyjULFcP+b9m0QCnBgt4ibrl0OfokhrB29ocSAosLlGsWDpdNHBqL/jeXgH26vVyLdkRkNQA5hmFKCAo68xkEvf2uGrbRjsA28M4qzMwaDht3lfCemwdx60ObcaTiL1bujP++0Ro27ipFthE0ykala/Jdk/B5uiNbF2NVE2M1C4YVSFFFgD1Hqrj1oc14982DsWO9rWThPTcP4ruPbPW5Pw2LY7hUSdXGdGWsZqJcH7/gsvfqij1HbGO1Exni6BvZfa2AAHjt4jkt1bVe+WGMpuq3gO2g2D9aa1k/piJpaj054ze7I+e7xjDDDjUCuE4aB436dVLF8O9pzn05jaJmRuxNqMukwUEIJm1PbgbvPjBa9Uf+THW9EndIZCoRdD9O9bR7MpQTSDGjYLyG1274ivuH8Zm9eSoUCoVCoVAoFIrpx6n93bjzyhW4/Ozj0d9TQE6z06zlNIr+ngIuP/t4/OiKFThl/uTUHcjSHy7s9DJZzB8CthFOZuzJakfx1vxhlKCYY9Drp8PzGnP7PW9WHjqzf88omZBi8u1md6mCK25fi6FDZXAuIlMiWVzgitvXpj4JnqbOUxpH0XTHuy76ZuUjZT6vMRQ1Bs4Fhg6VI8f6YIXjX9aVMXSoDCsg+GnbmK7sLlXw8t7RRL0hAPx0/RD2lCogBE3pm7Q4USDFHMPsDr3l7Xvl5+jufOy1GrXX3d4j1Rk390GiawL5P5/a342/OPcEV78DdiRQXmc4ujuPMxb14ujuvKv3gcacntDX5dsbgnuazgjyOkXN5Klkq6gzfPODyyZtT85CaB8IWPqnul7JGKjaNqZrLSMvM/MojEKhUCgUCoVCoVAoFFOYvu4CrrloCa664ERsGCphpGqiK69h6UB3W+oNpO2PYaUzmgUR9XvzGgv8PGuqMhL6nNcYckxg1UfPxEjNQldeQ2eO4d03D3qua6LTU5xVg1swXDfo5TUKkwtEVSsYLlWwanArrrloSWK7M3GsmsVZF4bF8Z8Pb4bFBXKMoBKIHqCUIE8oqiaPHOtfbjVwoCIAEOQ1grFa9jamK6sGt4TS6EVxpGpi1eBWvO+1x2TSNwTAG044Cuef0oeT+rqwesMw7l6/EwTElWkubJ3j/KyRem5ihD5KfgSIL3olrzNAYEbOfZDImkCSX3R36K5+5wK46QOvQW9H3t2XKobl7ldX3r7WndO8xnx7w43vew3yOnP3tDO+8ktUzXjnYkGngLD3rYrJce/Tw3jFwNRLKxrcB2oWh3cfmOp6ZfpEAvmZHr32oyKBFAqFQqFQKBQKhUKhaBMFnWH5ol6ce/I8LF/U2/aC03H9qRgWTKt504dpiVAKlezp4CJSCRGC5YvnuP0u5ljwgmwPmuJUDAt3r9sJw+LIMZoYmWNYHHev35GqSHgag7isLsdMpWJYuOepIZhcoKAxsIj6I4QQ5BiVjnXFsPDwTgMWR+x8xbUxXXFkNe1S51zg7vU7cKRcy6RvBIDN+0fxodcvwrlL+nDc3C5olNqRgMT+wyjx/cxhIuU3KD8aY9I1NhPnXkaUfpE5h5wfOXN37sl9vn3Ju19559Q/twSnLezx7WlCiETZ0iiFxijyGpuyc5J2H/hDka0JJRQJNP3cQCoSSKFIyYLv/Ts6tr4IABhbdCJ2fugv2twjxXShqBXx4z/9MR555BH3s0KRBT3H8P7/+zrfZ4VCoVAoFIrJZsPQ4XGdfhWwT+JHZC1LRdoolWD6t5kW3bJh6DAOjRmgINIT9F4IAAqCg6MGNgyVsHxR77ifP5OdPkGCYx0XvUYpkY71hqHDGDEECEHTbUxXnPHLwsFRA2ue35dJ35D6fc6YZZHRiYoEAtKtVUdfzbS5lxGlrmQOjODPmp2n4H12RFjKe6fwnGTZB6bqe0yfSKDpv+kpJ5BCkZL87iEUt20GAFiFjjb3RjGdoISiJ9+DTtbpflYoskAoQaGz9XmqFQqFQqFQKLIwUh3/6WHb+E08n7ORZOhyCNoKZ4IBx8tI1bLTWnleK66WDyH22I9UzcS2U0UC/QF5gYJjneRglI31SNUChCeyoYk2pivO+KXFeffDZX+NZ4J4fREcs7iIk2AdkomUZtlajVNjM2nuZUTpcGl0VOiadM8IRSoGPifJox44qTBV50QmWxqlMCx7rw7tg1PwPaaJDyjEdOy2cgIpFFOQOx7blun6wkgVc7viCw0qFAqFQqFQKBQKxXjoyo8/Gjlo/G5VOrjQdTTeyD7d6cozEBBfShq7BoZdG8ji4bR7BARd+bAZqFlDq6+NGewUko11QacwLQEtkFYMkI91V54BxC/vWduYrjjjlxbbTUzQ25HNxhEcsyg51hgN1SeaSPGVyQ8hBIX6WtXYzJ17GVnSwQVJq2fCzo+AUydGHnVGkNP8B3en6pzIZItRu/+ci2nxHtMmEiiUDq49/RgP6ji6QpGSseOXoHTacpROW46x46dOETWFQqFQKBQKhUKhmAyWDvSM68Q8wfidMRHlWEIEn5M2gmi6sHSgB7M7dHAIcI/DR2cUhaDhDwCHQG+njqUD3YltT2RqrOmIbKw1SlHQGbSAQHIupGO9dKAHXTqBEGi6jemKM36pEUBvp44/OnVeJn0jAN+YZYk4mUiZj1qrGqvPP23M/0ybexlRqlheJ6k1zwy2Q4k8+kujBHnN77ScynMSJVu5umx5x3Sqvsd0caZkjSabiignkEKRkuF3XootV30WW676LIbfeWm7u6NQKBQKhUKhUCgUk4ptsGzeKqexcMRD1qQqXqOWEHbEi8k5LC58xa5nWvq3IAWd4ZJlC6AziprFE4tUa5TgktMXugXVvdRM7hvHqqmKhntJO9ZCCNQsDp3R0FgXdIazFuhgFE23MV1xxi/tiqR1We3tzPuiZJI0BSXA21814I6Zo2uCekKTWEInMpKtFfIzk4gaa9mPDYtH6vgg3nkeqZqhKMlgH4IRWFFtTuU5mQmyNW2cQJJozenG1In/UigUihnKqDGK9/3P+1AeKwMA7jHuQafe2eZeKaYTtYqJH/7D79zP7/3Ma5ErqC1coVAoFArF5LG7VMGqwS0wgsU0UkJgR6kEaSYdHBcChsVhWv6zuOffsAaXLFuAlSsWz7j0bzJWrliMnz21C0OHyqiaHDlGAQIYgVRXgF0DZaRqYk+pgr7uAoDGnN7x2DaUPcbVC/7pAXccnWuTmOnDLRtrb6QJ57aRFQD6ewq4bMWiUBtvWqTjsV0GDlTQdBvTlZUrFuO2hzajKpHNIN0FDZetWARKCHRGYVpWKlcxF8Cd63aAMYKVKxZjpGKgalohPVEzLVBqt+04ByZaX7RCfmYKUf42r+Pe0U3/9ahfN3l1fFCPjdUacvLSnhEIYR880BmV6qck2ZouczLdZWu6RNTMhD1ORQIpFArFJDBmjKEqqqiKaru7opimGFXL/aNQKBQKhUIxmWzcVcJ7bh7ErQ9tbup+AoRS0zhkNf/sOlxGuWbBsMKmo+FSBbc+tBnvvnkQL+4Zaaqv04m+7gJuuXQ5BmYXQSnBmGFhrGZJHXWcC9zx+Da8++ZBbNxV8s3poTHDd613HDfuKk3W60xpgmNdNi2UaxYqhv3fct2xsKC3iFsuXS51ns0uUHxyWXFcbUxX+roLOGFeZ6IhlQD4s9ceg77uQj19JEFBZ6kNsPtGavjWgy/j7f/6ML655iWpnrAEYFgC5Zrl1s6a6BSIrZCfmUJkTaC6hdqrmw6X43WT91rvPHNh7y3OPMv2A5lsOdFG02lOprtsTZeImpmQJVUdI1YoFAqFQqFQKBQKhUIhZXepgituX4uhQ+Wm2yjoFCziqH1SGrNgX7714MuRjqOixlCzOIYOlfF3d/0eXIgZX9/m1P5u3HnlCvz7mpdw+6NbYEkCLQiAot4Ymz//7u9AQLC7VAFgF0KvWY1R9Y7jFbevxZ1XrphyhsN24Iz1qsGtuHv9DhwcNSAgQEDQ26njktMX4rIVi2LH6thuhjuvPHNcbUxXOvMaijkmjeIjaERtzO8pAmg4CxglyOsUNZMjTSCiYQkM12U7DgGgYlgo5tikRA62Qn5mAlFjzQgJ7TcaIzAidFNQjwWf4ciKAPCpHz6Juz/xhtDYMkp8MkmpnSZuus3JdJYtPk28QDMhxaxyAikUCoVCoVAoFAqFQqGQsmpwi2tQzWsUZi05KrmgU1QN7hp5TS4gyQQHIFsk0KrBLaGoFS+UEuQJRdXk2FOqQkAgr9m1D7I4m6Ybfd0FdOYZGKEAsWueVC3/+3rHZvhwBQQEhNhzaglhh0fIri1VsGpwK665aEl8J6a/fSwVfd0FXHPRElx1wYnYMFTCSNVEV17D0oHu1HU2WtHGdIUSgrzGkGOiHq1hG6opadTccPy2xKMzLC5aFjEQdBAYFp/QmkBe/pDn3iHKMU8ICe83XMC7S8Tpsbi9aU+pGqnHvDL5+uOPwmVvWDwt52S6ylaTGWbbznT8SqGcQApFSuY8dD9y+/YAAGpz+3Dg7Avb3COFQqFQKBQKhUKhmDgqhoW71+2EYXEUNZbaUMooAaXETbVkWgI5JqT3pzWkOH2xEixGhBDkGEXZtACByOfOJNx54s48AVUrbBAlhECnBGXTNqwWNWqPjWQSvON49/oduOqCE2MNiTPhlHQWCjrD8kW9bW9jukIIASOAzHvo/MRxFgghQpFDrcS0BPgkW6L/0OdeRs2U7Tdy3STVYzEYnCfqMUII5s3K49yT52V9pSnFdJOtaeNLCYjYdKll5EXVBFIoUjL78QfRd99d6LvvLsx+/MF2d0ehUCgUCoVCoVAoJpQNQ4dxaMwABfEVmk6CB1KSCUSf9k1rRnH6ksafQ6ntkvA+dyY7gjLNk28c4q+llPz/7d15fBT1/T/w18zslTuRQxIgCSAgICo3KULAI6FqWwQVoVxWEKxoi6iolcOz0lLRL+1PEKocFk8QtQoBRUAxIJdWEeUMV7hUkiXHZndnPr8/ll2zV7KbbLJHXk8eeZCd8zPz+cxM9vOez+cDGRLOl9uwt5hjA1HjcF6rzqLsHN+loQgAP1dYG3APVJ2/W9TBs2Ve9zG/d6gg7mPOJQK5j8XycyJSRUsrXc+iESXJdsMgEBERERERERF5KatSHd01Vav8CKSKzNcbsvV9a9aVlgCXd7UiuLjfaKloqgtf+eSm2vTq+eD8vaZxkyTJsVxZlb3GNLDulELFWZY8r+GGZPeMXFODUfzcLCpt3vcxf0FtX/cxt314rCdLEu9jESpaHs2eRSNKku2GQSCiQMkKhOL4gRy5/WkSERERERGFQqJRgQTJrZLGoKu9GsFX12D+ugsLNDjjSouPeYosIc6jix/nYNNNoZsyr3zyOGT3d+Ylr99lSYJBJ0ORJJj07vkrhGO5RCNHE6DG4XnNhvIaNvm5fznHDqOG5y+wE2/QeT1v/N2bfN3H4vQKFFmCXpGgk93zWRMioPtY7D8tIo8WJVEgz1Zi0fhiCZ/iRAE6PO2JcCeBiIiIiIio0XTLSEFqvB6nzRZomoAsS9DJEqzw/xasBECWAage0+pZu+ZKS6n7WDcS4B0A0hzvhlffbxTW1wTMM5+kmuJ0bifCeZYAgyIDHvXgmiagQSAtQY9uGcmhTjZRjeRq3cL5Hh0mOJIE6BQZVtW91Y8EoHmioZ5bp/rq1DLR63kD+L43+bqPKbKEuIsvbHuOHSeAgO5jbAnU+KLl2cyWQEREREREREQUk0x6BcN7tob+YsWpEAKSJEGn+K8p0ykSJEhuA61LkqNSzq5pUDUB7eL/dk1DaYUNFpvqd3ueafHs5seTEAJWVYNelh1paQK1er7yyRchBGyagCw5umSyqaLGZa2qBr0iY3iPNn4HU3eK/bNMDUUIAbuqwWpXYbVrOPJjGSw21VUh77znNFQZ0ykSDGwJ1Giqdz8phHA9Cw6eK8Nvr8oIyX3M87NOkgK6j9XUNSY1jOhpCRTuFNQfg0BERERERERE5NP4nGy0SjYBAKrsGjRNQK/IPitkJQnQyRIsNtXtLVlNABa7BotNQ6VNRcXF/y02Dd8Wl2LIvE34e8H3OGu2+E3HGbMF5VV2rwojAaDKrkIIAU0TqLI73vJvlWKCXpHdlotl7vnkfrTOoJzz3KSnxqFVinueVue2bIoJ43KyGjr51ARpQsBis6PcqsJi12BVHYHHxZ8dQe+nN+Dp/34HTQhowlHJX99rWAjnveKXaRIAvSLXu6UiBU6WHHlfZVdRYVVdz4Lpb32Nd/echEknX7yv13Jv8nEfc27XYndv7aUJoKzKXuMzBmAwmwIXJbErNwwCUUzRJD0Ot7nF9aNJ+nAniQh6WY9bOt6CnKQc5CTlQC+zXFJwFEVG1wEZrh9F4eObiIgcTp48iRdeeAF5eXnIzMyEwWBAq1atMGLECGzfvt3nOmazGQ888ACysrJgNBqRnZ2Nhx56CGVlZY2ceooGLZNNWDS2FzJS4yDLEirtKqpsms9KUwlApU2DXQu8dkQTwGmzBYs/O4JbFxZi3ymz1zL7Tplx28JCrPzyOHxt2qYKlF+sTJRlCa3T4vCv0T2b1Fvd1fPJc+B1VQhU2n85N/8e3xtLxvd2y9NKqwqLzfF/9WUXje2FlheDS0ShomoCFVYVHnX1LmVVKpYVHnUECWpYLlg29ZdgkgRHKzpZkprUvSLczl2oQqVVdcsLALCqGs6VVaHCpkKC46WCmu5NnvexCpsjqGRTvR8SmhBY+eUxv88Yp6bQcjTSRE1LIM8QYXQk2w3HBKKYoikG/K/TfeFOBpEbg2LAfT3uw5YLW1yfiYKh6GX0+237cCeDiIgi0IIFCzB37lx06NABeXl5aNGiBQ4cOIA1a9ZgzZo1WLlyJUaOHOlavry8HLm5ufjqq6+Ql5eHUaNGYc+ePZg3bx42b96MLVu2wGRihS+565KejHem5GB54VGs3nMC58ttEBDQC1zsGk6CTVW9WqAEyqSTYVMFiksqMXnFLrwzJccVeDhjtmDyil0oLqkEABh1sutNcE+yLOH3fTNxz+AOuCSh6f3N7cynV7YewaLNh111VIok4dIUI4b3aINxOVmuc+srTyVISEvQey1bG9adUqA0IVAZQBeQTtWDNsHcYXQyagwemfSyq3tJVv43jjNmC1btPuEzH016BRBwdQUXb9AhzqDAXGmv8d70zpQc/L9Nh7BiWxFUP/kdp1dgVTXXM0YTgoG/CBHEOyNh5Vlc6t82sfExCEQUINOxw1AqywEAalwCLJmskCUiIiKi8Orbty82bdqE3Nxct+mfffYZrrvuOtxzzz0YNmwYjEYjAOBvf/sbvvrqK8yYMQPPPfeca/lHHnkEc+fOxfz58/Hoo4826jFQdGiZbMKD+Z0x9drLsLfYjLIqOxKNOtdA24+9+w3e/6oYQgCSJIJ6c9+uCVdw57TZguWFR/FgfmcAwPLCIpy+2IWPUSd7VRhJAAw6GXbV0TopwahDy2STVzdCTUXLZBP+fH0nrCg8Ck04Kqr6tbsEi8b29hoPo6Y8rW3sDE8NN2ILxQpnGbH5q6mv9/Y9g0TuUyQ47iHOrsLsmoCzgwWW3saxvLAIZovd73xZlmCUHM8Ci13D6L6ZuKFbqxrvTS2TTUgwKlAkGZAEHMM7SW4vC1Tf7mmzBUIIGH2MA8XAUOPzN/ZTpIvGZLM/GaIAZbz9Cjo8Pwsdnp+FjLdfCXdyiIiIiIgwfPhwrwAQAAwcOBBDhgzB+fPn8c033wBwfNFesmQJEhMTMXPmTLflZ86cicTERCxZsqRR0k3Ry6RX0CsrDbmdWqBXVpqrQq7w0E9QhYBBkfy+je2PXRWABBgUGTZVw+o9J2CxOboAWr37JGyqBoMi+3xbX5IcY3oYdQrsmnCt29Tr8iRJgiJL0Mky0lPiagzq+MtTopCSHM8hX911BaK2tTzne3ZLKUmArtp4ZnZVuCqgWfnf8Jz389oC9JIkuZ4F7/+vGN0ykmu8N7meE5oGo06GXlF85mf17VbPe/dl6n58VDdRGEsBEJ3pZksgIiIiIiKiGKTXO8Yh1OkcX/sOHDiA4uJi5OfnIyEhwW3ZhIQEDBgwAAUFBTh+/Djatm1b47ZzcnJ8Tv/222+RmZmJLVu2hOAIgmc2O/r6D9f+m6oD51X8VGaBBEAVWtCVIwKAza5Clhxv5P94wYL/fOTIQ+d2NaFCU73fvhUCsKuON8urr9sxTXFNB4CioiJs2XIqqHRFa3myqcLt2H86expbtpSEfD/V93Hs+DFs2XIm5PuIJdFankKltLQCNjXwbuBCzXmvcLYPEgBsquO+c+xY8PeHcIu28uR8Tvijqiq0akEYz/t5bdut/pzQPF5EqH6vkgBo+CXvqztx4gS2bPkx4GOKJY1ZnqrnR3m5GhVl2PO5+sUXXyDZGJ62NWazGcnJyUGvxyAQxRRZs6HD8VWuz4fajoAm68OYIiLAptqw6sAqHDQfBADkqDnQKyyXFDjVruG7z4tdn7tekwFFx8a8RETk37Fjx/Dxxx8jPT0d3bt3B+AIAgFAx44dfa7TsWNHFBQU4MCBA7UGgYiqq7QLQFzsfKmur8cK/NInk7i4zYu/1/Rytte86usSAIANeyhSRFoXSuLifYcNQBqe8znhj888COB+Xv3549pWABkqqj9ziJoABoEopsiaFd0Ovez6fKT1b0IWBCq+7Q9uYwIRBcqqWfHy/16G1WoFAEzTpjEIREFR7Rp2ri1yfe7cvxWDQERE5JfNZsPYsWNRVVWFuXPnQlEcNcClpaUAgJSUFJ/rOd8qdC5Xk8LCQp/TnS2EBg0aFHS6Q8H5Nmm49t9UJRz9Gf/66kuodg06RYZNC/5tf0VRoMgSbKoKRZGR07sHAFFtu45yrAkBVG9NIAE6xVG1UX3dXllp0H1S4FosMysLgwZ1CipN0VqerHYNuk0bXJ8vy87CoEGdQ76f6uc3KzOzQfYRS6K1PIXKP/cVQnehtE73h1CQLt4rrKrdFYzQXbzvtGvXDoMGXRaWdNVVtJUn53PCJlS3YJAEQK+ToVPcv9963s9r22715wQACGiwaxr0ivu2Ha3RhCvvq2vTpg0GDepar+OMVo1Znqo/O4wmQ1SUYc/nav+cHDRPNIYlLXVpBQQwCEQUMEtm+3AnoUY/llVh5fZjQa83ul9mA6SGiIiIiMJB0zRMmDABW7ZswaRJkzB27NhwJ4magG4ZKUiN1+O02QII4WOA9ppJAGQZ0DQBDQJpCXp0y3BUcji3q2kCsiz5fcPb17pNlec5MjZCUyC+UE+B8Ox+qyH5uw85WyNJ1dLDMYEanus5UeoeBIw3KF7jvQVzP6/+/HE+JwDAoJNhgHtgybnd6nlP4SWiZHQdz1tEpLVqDARfI6aYIiQFJ1sOdv0Iie3eiYiIiKhp0DQNf/jDH7By5UqMGTMGCxcudJvvbAHkr6WPsz94fy2FiPwx6RUM79kaekWGTRPQBVm7plMkQABW1fHW9vAebWDSK27btaoahBCQPMINmnCUfc91mzJHt3wCqiZg1zScNVtgsYVvLBYiJ0mSoFfqVvte223Fc75nKw/AcV046251iuQKPjAg0PCc93PZ82R7Va6LoO7nvp4TvlTfbvW8d18mqEOiOqr+fKq0qlHxfPIsLdESvKouqoJAr732GiZPnozevXvDaDRCkiQsXbrU7/JmsxkPPPAAsrKyYDQakZ2djYceeghlZWU+l9c0DQsWLED37t0RFxeHFi1aYNSoUTh8+LDffRQUFCA3NxdJSUlITk7GkCFD8Mknn9T3UKmOVMWEHVfMcv2oiincSSIiIiIianCapuHOO+/EsmXLMGrUKCxduhSy7P51zzkWkHNsIE+1jRlEVJPxOdlolez4/qVdbA0UCEkCdLKEKrtjJO/0FBPG5WT53K7F5ruyqMKmQdUEWiQZ3dZtis6YLfjH+v2osKqotKmw2DSs/PIYhszbhL8XfI+zZv8DsxM1Br1St6pICf5bnEkSYPAILnk8AiEEXPcZySMdbAnUOMbnZCPJ5L9TKk0Tfp8FtW3X+ZyosmvQNPcKes/t+iuD0VixH03OmC34e8H3bs+nn8qsUfF88goaRmFRiaog0OOPP46XX34ZR48eRXp6eo3LlpeXIzc3F/Pnz8fll1+OadOmoXPnzpg3bx6uvfZaWCzeBWvy5Mm4//77IYTA/fffj6FDh2L16tXo06ePzy9Kr732GoYOHYp9+/ZhwoQJGD9+PPbu3YsbbrgB77zzTsiOm4iIiIiIyB9nAGj58uUYOXIkVqxY4RoHqLqOHTsiIyMDW7duRXl5udu88vJybN26Fe3atUPbtm0bK+kUQ1omm7BobC9kpMZBUeSA60ckABa7BlmW0DotDovG9kLL5F9e5nNut3miEaoA7Jqft7zhqOj7qdxa72OJVvtOmXHbwkL8+/MjbuffrgmcNluw+LMjuHVhIfadMod+56xEp1o4S4gsSYgLorWecz1V1BAEAlClCugUCTrZ0drIZne/VwgAsizBqJNh0itugR8W38bRMtmEW3u2dstHZ0uQSquKSrvq91lQ23adzx9ZllBpV2vcLoN+jc/5fFr8mfvzSQAN/3wKAe+WQNEnqoJAS5YsQVFREc6dO4cpU6bUuOzf/vY3fPXVV5gxYwYKCgrw3HPPoaCgADNmzMCOHTswf/58t+U//fRTLFmyBIMGDcLu3bsxd+5crFixAmvWrMHPP/+MqVOnui1//vx53HfffWjevDl2796NBQsWYMGCBdi9ezeaNWuGe+65BxcuXAj5OSAiIiIiInJydgG3fPly3HbbbXjttdd8BoAAx1uMEydORFlZGZ566im3eU899RTKysowadKkxkg2xagu6cl4Z0oO7h7YHhmpJph07lUOEgBFBpSLrX+MOhlGnYL0FBPuHtgeb0/OweWtvMd/uCTBAKWG8YB0sqPrp3MXqjB5xS6fbxPHejc/Z8wWTF6xC8UlldA8DtagyIjTKdA0geKSSr/niKixKLKEeIMCnY9aSQlAolGHO3+VjXiDgjiDAr0iIcGgwKhXYNQ5Aj2+7iNTBnXA+1MHYPKgDmie5D5ou0GRcffA9uianuzVVZyvrsGoYbRIMrnyVAJg1CnQKRIMOrnWZ0FNqj9/0lNMMOjkkGyX6s/t+eTxIocERMXzKRZuEf7b4EWg66+/PqDlhBBYsmQJEhMTMXPmTLd5M2fOxL/+9S8sWbIEjz76qGv64sWLATi+/BgMBtf0X//61xg8eDDWr1+PY8eOITMzEwDw9ttvo6SkBE888QTatGnjWr5NmzaYOnUq5syZg3fffRfjxo2r8/FSZGk/fzYSDuwFAJR37IbD054Ic4qIiIiIqKl78sknsWzZMiQmJqJTp054+umnvZYZNmwYrr76agDAww8/jPfeew9z587Fnj170LNnT+zevRvr169Hnz598Oc//7lxD4BiTstkEx7M74yp116GvcVm/H7JNtcrs8N7tsGIXm3QoUUCDp0rR1mVHYlGHbplJNc47sPywiKcK6uCIkkw6CVUWDW3+Sa9DkI4uvs5bbZgeeFRPJjfuSEPM+IsLyzC6YsVZ0adDLv1l27zJOliCwhJbrBzFAP1Y9TIZElyXbvZzeMxvGcbCAF0y0hGj8w0mPQK3t51AoAjUHBLjwwM69HGdd+o6T7SNSMFv77iUty6cBsEHGOJXdkmBQ/md8bOoz/7SEujHnqTJuDIe6NOgUERWP6HviizqgE9C2rj+fwJ9BnjSluMvywQLjU9n4CGfz41hGgsK1EVBArUgQMHUFxcjPz8fCQkJLjNS0hIwIABA1BQUIDjx4+7ujrYtGmTa56n/Px8bNq0CZs3b8bYsWNdywNAXl6ez+XnzJmDzZs3MwjUyCTNhjZnNro+n7j0WghZH5qNayokVXX9TkREREQUbkVFRQCAsrIyPPPMMz6Xyc7OdgWBEhISsHnzZsyZMwerVq3Cp59+ivT0dEyfPh2zZ89GXFxcI6WcYp1Jr6BXVhp01QbmuKxlInplpQEAemUZ/K3qxmJTsXr3SdhUDXE6ZxdOmtdykiTBoMiotKtYvecEpl57mdv8KKyvCZjnOfLXqsHXOapPhav7tkOyGWqCJEnCJQlG3HVN+xqX0ymy6/7hVNN9JMGov9jiR7q4vv9Cyu7BGk/1ynNJktAr+5KQ78P5/KHwi4TnUyh4pjsax4+K2SAQ4H9A044dO6KgoAAHDhxA27ZtUV5ejlOnTuGKK67w23d29e3Wto/aBlz1lJOT43P6t99+i8zMTGzZsiWg7YSa2ezoh9Ek/xCW/deFTq1E772/fPk9r1wKuxKaL7KKtRwQqut300+Rc15kuyOiXpc0bdlSFOLUkCeLZoHVaoWmOb6sbt26FSY5sL5tKTyc979w3X89qTYBa7W3ZbZu3QpFzy8qQOTlFfnGfIoeTSmvzGYzkpOjv0uQpUuXYunSpUGtk5KSgvnz53t1kU0UifYWl6KkwgYZEuSLr+tL8B3UkWUJMiScL7dhb3FkjivQEHydo+qqT/E8R6wopUjQEN2xeQZ9agr0MAbUeDy7q6TYVtvzqTo+nxpWTAaBSktLATi+3Pji/LLnXC7Y5Wtbx9fyFP3MV/dAZVYWAMCWFvo3FYiIiIiIiGJZXSpay6pUR3dO1dbVKRJsqqMi0bNOSZIcb+iWVdnrkdLo4uscVedZwd4UzxGFX03Xfw2NdH5ZP8hOB6u3Qqx920TUEHw9n2QJcA4N5D0+V+Q+n6q/gBKNscyYDAJFm8LCQp/TnS2EBg0a1JjJcXG+AXrCmB2W/deFzl4OIf9SrC2XdIRdl1DDGoGz/Dpy+6N0tgCyNAs+jYP6ZYY6OeSh3FYOw7sGWK1WAMCAAQOQoA9NuaSG4bz/hev+68lqsaNo/TbX5wED+sNg4iMciLy8It+YT9GjKeVVLLQCImoKEo0KJEgQ1WpcDDoZmtAghIBR596bhxCOyuJEo8ffStFYYxMgX+fIqJNhVTXoZdmrBYTfc1QPwVbQEzU0z8rlGL4FEEUsX88nk16Bxebo6cSgcw/WNsTzKWSqRYGi8XYSgWe0/pytc/y1xHF2c+FcLtjlPddp1qxZrcsTUdMVr4vHB7d8gK1bt7o+EwVDb1Tw+yf6u30mIiIiagq6ZaQgNV6P02YLNE1AliVIkBDnY6wATRPQIJCWoEe3jKYT6PV1jvSKDL3i3RKiqZ4jimwNUaGq92hepGrRWG1LjUkwUhhyvp5PsiQh3uAdkoj055N7S6DoKyuBt42MIrWNyeM5nk9CQgLS09Nx5MgRqKpa6/K17aO2MYmIqGmRJAkJ+gSYZBNMsqlB+jum2CZJEgwmneuHZYiIiIiiUV3+gjHpFQzv2Rp6xdGyxV/FixDC0fJFkTG8R5uIGlC6ofEcUTSoqbVYIPWpwX4F0nkEQZ1BILZaC69orDynuoul51O018PEbBAoIyMDW7duRXl5udu88vJybN26Fe3atUPbtm1d03Nzc13zPBUUFABw7xYjNzcXALB+/Xq/yzuXISIiIiIiImqKhBBQNQG7puHYzxWuLmCCMT4nG62STQCAKrsGzeONfk0TqLJrAID0FBPG5WR57ftUaWWd9h0t6nqO6qMpnV+qP1VzlBebqsJq12BTNaiaqDEoUL2MnTFbgipjOo/u4DQGHyKC1a658lTVBO8bTUA4nk8NLRpvJzEZBJIkCRMnTkRZWRmeeuopt3lPPfUUysrKMGnSJLfpd999NwBg5syZrnE7AGDt2rXYtGkT8vLykJX1SyG8/fbbkZKSggULFuDEiROu6SdOnMA///lPNG/eHLfccktDHB4RERERERFRRDtjtuDvBd+jwqqi0qbCYtOwYttRDJm3CX8v+B5nzZaAt9Uy2YRFY3shIzUOsiyh0q6i0qrCYnP8X2lXIcsSWqfFYdHYXhCA177f3VNcp31Hi2DPUcuLFXJ14Stv39l1IqbPL9Wds7zsOXYelTYVVXbHG/9Vdg2VNhUVVhWHfyx3Kze+yti6b08HVcY8xwRSo7HWNoY48/TVrUWuPK20qRF132AJaRiN+XxqSFHeECi6xgRasmQJPv/8cwDAN99845q2adMmAMA111yDiRMnAgAefvhhvPfee5g7dy727NmDnj17Yvfu3Vi/fj369OmDP//5z27bHjJkCCZOnIglS5agZ8+euOmmm3Dq1Cm8+eabuOSSS7BgwQK35dPS0vDPf/4TY8eORc+ePTFy5EgAwJtvvomffvoJb775JpKSkhrwbFBja/XuCphOHgUAWFpn4fQtY8OcIiIiIiIiosiz75QZk1fswmmzxa1Sza4JnDZbsPizI/jg61NYNLYXuqQH1u9/l/RkvDMlB8sLj2L1nhM4X26DgIAECWkJegzv0QbjcrLwU7kVty0s9Nq3Wo99R4tAz1F9Ktj85W1TOL8UPGd5KS6thN3PmDwCwImfK3DrwkIsGtsLAEJSxrxaAtU0JlC01+5GuOr3DevFFh9OvG80DY3xfGpo1e8S0RhTjqog0Oeff45ly5a5Tdu6datbF27OIFBCQgI2b96MOXPmYNWqVfj000+Rnp6O6dOnY/bs2YiLi/Pa/qJFi9C9e3e8/PLLePHFF5GYmIhbbrkFzzzzDDp06OC1/JgxY9C8eXM8++yzePXVVyFJEnr16oXHH38c119/fYiPnsIt/vAPSNy/FwAgV4X/DQWKHuW2cox4fwQsFke5+dD2IRL0CWFOFUUTq8WON5760vX5jpl9YTBF1SOciIiImogzZouj0rek0mueQZGhSBKsqobikkpMXrEL70zJCbjSp2WyCQ/md8bUay/D3mIzyqrsSDTq0C0jGSa9UuO+dYoEvSzXed/RorZzVB81nV+9IkMn1z1vKfY4y8vJ8xVQa6kwFQBOllTirmU7IEHCGR+tQoK9hj3H72BLoPDwvG/oZQm2agG5OJ3C+0YT0ZDPp8bguKc4yq6IwnZjUVWDtHTpUixdujTg5VNSUjB//nzMnz8/oOVlWcb999+P+++/P+B9DB06FEOHDg14eSJqmqyqFXZhD3cyKIqpHm9MEREREUWi5YVFOH2xAteok2G3uo/3IMsSjJKMKruG02YLlhcexYP5nYPah0mvoFdWWlj2HS38naP64PmlYDjLS00NcKrThMDpUgskSJCk0JcxjV+nwsLzvmFVBap3vBZJ9w3GCRtHQzyfGkO0twSKyTGBiBpC1aUZqMxsh8rMdqi6NCPcySEiIiIiIoooFpuK1btPwqZqMCiy15v4TpIkwaDIsKkaVu85EZKBwcO576aA55eC4Swvnl1/1UQIQBOOFjt6RQp5GdOisdY2yvm+b3jnA+8bFA2q35Ki8W4SVS2BiMLp5Jg/hjsJREREREREEWtvcSlKKmyQIUGWvStwq1egyLIEGRLOl9uwt9hc77eCa9u3XG3nod53U1D7+a32O89vk/dLeQHq1gAn9Newc0wiX7EljgjUMHzdN2Q/gaBIuG9EYxdfRIFiEIioiVu5/VjQ64zul9kAKSEiIiIiomhWVqU6BnquVqNq1Dm6+VFkCTrZvTMSSXJUupVV1b/b5Br3LUnQKe7VvKHcd1NQW94qPL9UjbO8wHd9f60clfGSq4zJEup9DTtbAvlqEMSq/4bh676hUyTYVQmqEDDqGu6ZQNSQRBS2LGQQiIiIiIiIiIjqLdGoQILkVjmiV2ToFd890QsBSJCQaKx/1UQ4990U8PxSMJzlpa7RFeli25xQljEt0MGJKGR83TckSIgzKD6X532DItsv0cxovJtwTCAiIiIiIiIiqrduGSlIjddDg6i1wlXTBDQIpCXo0S0jOar33RTw/FIwfikvde1qLfRlTBXsDq6xRdt9Iwobd1AjchsTKArLCoNARERERERERFRvJr2C4T1bQ6/IsKqa3+5ShBCwqhr0iozhPdrApPf9Vni07Lsp4PmlYDjLi0EXeLWjJDnGllIkCTZVhLyMaXUbnIjqgfcNiiXuweLoiwIxCEQUoOTdhWj26Ydo9umHSN5dGO7kEBERERERRZzxOdlolWwCAFTZNa+3vzVNoMruqI1NTzFhXE5WTOy7KeD5pWA4y4scYDMbWZKQnhqHVikNU8ZUdgcXFrxvUKxgSyCiJqL5px+i9RtL0PqNJWj+6YfhTg4REREREVHEaZlswqKxvZCRGgdZllBpV1FpVWGxOf6vtKuQZQmt0+KwaGwvtLxYORjt+24KeH4pGM7y0jotHjql5kiQBKBNWhz+Pb43lozv3SBlTK2h1tZXF3EUGtF034jCen1qRFKUjwnEkbaIiIiIiIiIKGS6pCfjnSk5WF54FKv3nMD5chsEBCRISEvQY3iPNhiXk9UglX3h3HdTwPNLwaheXt7edRw/lVlh92gJIgHISDXh7ck5rnLTEGVM1DAmEDUs3jcoFkT7vYNBIIopmqTHwczb3T4ThZte1uP2zrfjaNFR12eiYCiKjCsGtXb7TERERBTJWiab8GB+Z0y99jLsLTajrMqORKMO3TKSG3y8h3Duuyng+aVgeJaXn8utOHehCk98sBeyJEGWgDZp8W4BgIYoY+wOLryi4b4RjV18UXhEY1lhEIhiiqYY8O1lUxpk20V/fBSSqgIAhBIZDyiKDgbFgClXTcGW0i2uz0TBUPQy+tzULtzJICIiIgqaSa+gV1Zak9t3U8DzS8HwLC/PfrTP9bu/+tRQljEGgSID7xsUrao3BBJR2CEcg0BEAdLiEsKdBCIiIiIiIiIiChJjQERUH1K1/uCisSUQ+5MhIiIiIiIiIiKi8IjCClWKRSyIFBgGgYiIiIiIiIiIiIgCFI1dKxFR0yJJtS8TydgdHMUUWbPhsmNvuT4fzLwdmqwPY4qIAJtqw1v738LB0oMAgBw1B3qF5ZICp9o1fLvlpOvzFYNaQ9HxPQ4iIiIiIqL6khDltbtE1OCqB4GiMXDNIBDFFFmzouvhf7s+H24zLGRBIP3P5yDZrAAAoTfAdkmLkGw3Gq3cfizodUb3y2yAlEQHq2bFv7/5N6xWR/l5UHuQQSAKimrXsLvgqOtzl1+lMwhERERERERUAyEENOGosJUgwWJTXQGf6vOO/lQOi02FSa+EOcXUGDzLhSw5xnuJxi6+qPFEe7CYQSCiALV99UUk7t8LACjr1A2Hpz8d5hQREREREREREVF1Z8wWLC8sQoVVdXtff8i8TQAAi02Fqv3yLv8rW4/g/a+LMbxna4zPyUbLZFNjJ5kagb9yIQHQKRIqrWq4kkZRJhoDhgwCUUzRJB2Ot7rB7TMREREREREREcW+fafMmLxiF06bLV4dNp0qtfhcx64JnDZbsPizI/jg61NYNLYXuqQnN3xiqdHUVC4EAJsq8PH3Z7DvlJl5Tz5F+5hA7EuGYoqmGLGr66OuH00xhjtJRERERERERETkR6jeqj9jtmDyil0oLqmEpnlv1F8drkGREadToGkCxSWVmLxiF86afQeMKPrUVi6cKqpU5j35Vf3+EY0tgRgEIgrQ2RtvxbG7puHYXdNw9sZbw50cIiIiIiIiIqKoF6r61OWFRTh9sQLf6GMM1Zr2I8uSa53TZguWFx6tYWmKJrWVi+qY9+SPVK0pkAjZXavxMAhEFKCyLlejpO8glPQdhLIuV4c7OUREREREREREUU+E4LV6i03F6t0nYVM1GBTZrcI2UJIkwaDIsKkaVu85AYuNY8REu2DKhSyBeU9+sSUQERERERERERERUZjsLS5FSYUNMiTIsqO6NtAwUPXlZFmCDAnny23YW2wOeTqpcfkqF/5IEvOealCt+ERhDAi6cCeAKJQkzYbM0+tdn4+1yoOQ9WFMERERERERERER+ROKCtWyKhUCwm3wdpNeQWUtLTokAIriHhyQJEd3T2VV9hCkjMLJV7kw6mRU2TVI8C57zHvyJ/i2hZGFQSCKKYpmRY/v/+H6fLLlYNgZBIoIK7cfC3qd0f0yGyAlRERERERERBQpQtG1UqJRgQTJrWs5RZYQb1CgagJVds3neia9DMmjelcIQIKERCOrTaOdr3KhV2QosiPXy63uQULmPQUiFF1YNjZ2B0dERERERERERERRq1tGClLj9dAgoGm/VNDKkgSd7Bnm+YVnF2GaJqBBIC1Bj24ZyQ2YYmoMNZULz/GBhGDek3/Vy0v0hYAYBCIKWObiebj80Um4/NFJyFw8L9zJISIiIiIiIiKKSkIIqJqAXdNQVmWHpZZu22pj0isY3rM19IoMq6q5vakvSRJ0Su2dOQkhYFU16BUZw3u0gUmv1CtNFH41lQtPqgB0ssS8p1pFYUMgdgdHFCiduQSGn38EAFibXxrm1FA0idfFY+2Itfj8s89dn4mCoTcqGPt0juuzouM7HEREREREFH3OmC1YXliECqvqepv+0LkyDJm3CcN7tsb4nGy0TDbVadvjc7LxwdenUFxSiSq7BoMiu1r66GQJNtW75raiSoVOkdzmp6eYMC4nq05poMjjq1xAAmyqdxeBmgDKquw4a7bUuRxSbPJoNxamVNQda5GIiBqYJEkwKkboZT30st6ryTFRbSRJgk6vuH5YhoiIiIiIKNrsO2XGbQsLsfizI25VqEIAp80WLP7sCG5dWIh9p8x12n7LZBMWje2FjNQ4yLKESruKSquKSqsdlTbfYwIJADZVoNKmQZKA1mlxWDS2FwMAMcSzXFTYVFRYVZ9BQU0TWPnlsXqVQ4pN1athorElEINARAG60K0HzucMxvmcwbjQrUe4k0NEREREREREFBXOmC2YvGIXiksq3cZmAQBZAuJ0CjRNoLikEpNX7MJZs6VO++mSnox3puTg7oHtkZ5igl6R4KOu36c4vYKXft8Tl7fieDCxxlkuRvfNhOKnNlwnS4jTh6YcUuypPrJYFMaAGAQiCtS5oSNwfMKfcHzCn3Bu6IhwJ4eIiIiIiIiIKCosLyzC6YsV6kYf3VvLsuSaftpswfLCo3XeV8tkEx7M74yN0wfjxivToZMlKJKEeIMMRXbvVcGkl2HSyVAkwGLX8NE3p+u8X4psLZNNSDAqUCQZiiTBqPPuYSOU5ZBiS7R3yMIgEBERERERERERETUIi03F6t0nYVMd47H4695akiQYFBk2VcPqPSdgsan13nfhoZ+gCgGjToYseVeD6mQZOkWGUaeEdL8UeVzlUNNg1MnQK4rP5RqiHFJsicbu4HThTgARUawrt5Xjt2t+C2uVFQCwzrYOCfqEMKeKoonVYsfKOdtdn0fP6QeDiY9wIiIiIiKKfHuLS1FSYYMMCbLsHQCqHhSSZQkyJJwvt2FvsRm9stJCul9/L/OHcr8UmWovh7/8zvJANRFRGAViSyAiokYghIDzH1FdCCFcP0RERERERNGirEqFgHCrZK/eJZxn93CSBAgIlFXZQ75fg052BYIMDbRfikw+y8PFAYKkar87sTxQddWD1dFYK8PXiImIiIiIiIiIiKhBJBoVSJDcXmjTKzJkSYIkAbJH93BCOAZhTzTWr9rS135lSUKcQYEQ8BofKFT7pcjkqzwYdI5xoiQJXt0UsjxQddVLRzS+m8tSTBSgFuvXwHC2GABgbZmBc3nDwpsgIiIiIiIiIqII1y0jBanxepw2W6BpwtUVl2cQBgA0TUCDQFqCHt0ykhtkv7IkefULF8r9UmQKVzmk2FA9RhiNvfywOziiACV9sxPNPtuAZp9tQNI3O8OdHCIiIiIiIiKiiGfSKxjeszX0igyrqvnt4loIAauqQa/IGN6jDUx6JSr3S5GJ5YHqQ/I3oFiUYBCIiIiIiIiIiIiIGsz4nGy0SjYBAKrsGjTNvQJe0wSq7BoAID3FhHE5WVG9X4pMLA9UV5Jn88Eow+7giAKkJiTBlpLm+p0a3srtx+q03uh+mSFOCRERERERERHVVctkExaN7YXJK3bhtNmCSrsKGY6xWIQANAjoFRnpKY7lWl6sqI/W/VJkYnmgkIi+3uAYBCIK1NEpM8KdBCIiIiIiIiKiqNQlPRnvTMnB8sKjWL3nBM6X2yAgIEFCWoIew3u0wbicrJBXvIdrvxSZWB6oLtzHBIo+DAIRERERERERERFRg2uZbMKD+Z0x9drLsLfYjLIqOxKNOnTLSG7QsVfCtV+KTCwPFKzqncH5GU4qojEIRERERERERERERI3GpFfQKyutyeyXIhPLAwWsWlMgEYVtgeRwJ4CIiIiIiIiIiIiIiCgSsSUQUQTRJD32Z412+0xNz8rtx4JeZ3S/zAZIiYNe1mN0l9E4cuSI6zNRMBRFxpVD2rh9JiIiIiIiIiKihscxgYgiiKYY8F2HiQ2y7YT930JXZgYA2BOTUd7pigbZD8Ueg2LAxO4TseX8FtdnomAoehm9hmaHOxlERERERERERE2OVPsiEY1BIKIAXfrBG0jcvxcAUNapGw5PfzrMKSIiIiIiIiIiIiKixiKisD849idDRERERERERERERETkgxCAqgnYNQ37z1yAxaaGO0lBYUsgIiIiIiIiIiIiIiKias6YLVheWIRvi0thUx0tgOYV7MerW4swvGdrjM/JRstkU5hTWTsGgSimyJoNnY6udH3enzUamqwPybZPjJsKucoCANCMkX9xU3BWbj8W9Dqj+2UGtJxNtWHl9ytxqPQQACBHzYFeCU25pKZBtWv436cnXJ+vHNIGio6NeYmIiIiIiIiIGsK+U2ZMXrELp80WVwAIAOyahtNmCxZ/dgQffH0Ki8b2Qpf05DCmtHYMAlFMkTUrLj+yzPX5YNtbQxYEsrZoFZLtUOwINHBUpVbg5SOvQNLsAIAZ2gwGgSgoql3DVx//Ut66DcxgEIiIiIiIiIiIqAGcMVswecUuFJdUAgAkAM4wkEEnQ4YEq6qhuKQSk1fswjtTciK6RRBrkIiIiIiIiIiIiIiIiAAsLyzCabOjRyijToYkuc+XZQnGiy/nnjZbsLzwaGMnMShsCUQxRZN0OJr+a7fPRERERERERERERES1sdhUrN59EjZVQ5xOgeQZAbpIkiQYFBmVdhWr95zA1Gsvg0mvNHJqA8MacoopmmLEni4PhTsZRERERERERERERBRl9haXoqTCBhkSZNl3AMhJliXIkHC+3Ia9xWb0ykprpFQGh0EgogBJ1ipImgYAELIMYTCGOUVEREREREREREREFCplVSoEhFcXcP5IEiAgUFZlb9iE1QODQEQBarfgKSTu3wsAKOvUDYenPx3mFBERERERERERERFRqCQaFUiQIIRwTdMrMpwfZY/okBCABAmJxsgNtURuyoiIYtRbO47DqMQHtc7ofpkNlBoiIiIiIiIiIiICgG4ZKUiN1+O02QJNE5BlCXpF9rmspgloEEhL0KNbRnIjpzRwvlNPFKUkzYZ2J95z/UiaLdxJIiIiIiIiIiIiIqIoYNIrGN6zNfSKDKuqubUIqk4IAauqQa/IGN6jDUx6pZFTGji2BKKYomhWXLX/Rdfn462uh13Wh2TbPw3Kh/nKPgAAW+olIdkmEREREREREREREUWO8TnZ+ODrUyguqUSVXYNBkSHLv3QDp2mOABAApKeYMC4nK1xJDQiDQEQBKu0zMNxJICIiIiIiIiIiIqIG1DLZhEVje2Hyil04bbag0q5ChgRJcowBpEFAr8hIT3Es1zLZFO4k14hBICIiIiIiIiIiIiIioou6pCfjnSk5WF54FKv3nMD5chsEBCRISEvQY3iPNhiXkxXxASCAQSAiogZnkONwb4elMP20HwBQJccFvY2V248Fvc7ofplBr0ORSW9UMP6vA1yfJamGhYmIiIiIiIiIqN5aJpvwYH5nTL32MuwtNqOsyo5Eow7dMpIjegwgTwwCERE1MEmSIEGBLMmuz42BgaPYIUkSAz9ERERERERERGFg0ivolZUW7mTUmRzuBBAREREREREREREREVHosSUQUYBav74IcccOAwAqM9vj5KjJYU4REREREREREREREZF/DAIRBchYfBzxhx1jumg6fZhTQ9FECAEBDZrQXJ8bq0s4ig1CCAjxy2dJarxuBYmIiIiIiIiIKHoxCERE1MCsWiVePjIZkmYHAExK+zeMSnyYU0XRxFal4j+zt7k+//6J/jCY+AgnIiIiIiIiIqKasQaJKECVWR0gFAUAYGmTHd7EEDWQlduP1Wm90f0yQ5wSIiIiIiIiIiIiqi8GgYgCdOrWO8OdBKKIVdfgUbAYbCIiIiIiIiIiIgocg0BERBQ12FKJiIiIiIiIiIgocHK4E0BEREREREREREREREShxyBQCOzYsQM33ngjUlNTkZCQgP79++Ott94Kd7KIiIiIiIiIiIiIiKgJY3dw9fTpp58iPz8fJpMJd9xxB5KSkrBq1SqMHDkSx48fx/Tp08OdRCKiJi/YbuRMZVV1Wo/dzhERERERERERUSRhEKge7HY7Jk2aBFmWsWXLFlx99dUAgFmzZqFv37547LHHcOuttyIrKyu8CaWQSPtiIww/nQUAWJu1xPlfXRvmFBFRpKnLmEWNGTiK9PQREREREREREVFoMQhUDxs3bsShQ4dw5513ugJAAJCSkoLHHnsMEyZMwLJlyzBr1qzwJZJCJq1wIxL37wUAlHXqxiAQEYVEIIEZYdNQaVVdn9/eeQKSvnF6dK1L4AioW/CoLvtqE/QaRERERERERERNB4NA9bBp0yYAQF5ente8/Px8AMDmzZsbM0lEREQRoa7Bo2D9WMeu++qisQJbbH1FRERERERERKEiCSFEuBMRrW677Ta888472LlzJ3r16uU1PykpCWlpaTh2rOYKoJycHJ/Td+7cCb1ej3bt2oUkvcFSVcdb50JqnLfNQyFBp2HdjWdcn4d+dCnK7aFJ/0wh0OXi7/sAPCVJIdluSAjN8X8U5VWTYgD0k37JG9tiDbCGMT1Uuwi7pvSKEWP7/NKqdMWOJ2FTq8KYoggSYXlFfjCfooZ0Ma8URQl4HbtWt68TOjm8f0sdOXIESUlJOHPmTO0LU8AuvfRSVFRU4IorrgjL/s1mMwAgOTk5LPun2MLyRKHE8kShxPJEocTyFD2+/fZbxMfHB/0dhi2B6qG0tBSAo/s3X5KTk13L1IVOp0NSUlLYLsBvv/0WAML2Ba6ufrclzfW7MREwhmi7//L4fEmIthsK0ZpXTcp/PPIpPszpoRpF4jW15vu/uX5PSjIBMIUvMREkEvOKvDGfokdTyivnC1sUWuE+p84X8JpCGaaGx/JEocTyRKHE8kShxPIUPeLj4+v09zaDQBGgsLAw3EnwydlCKVLTR79gXkUH5lP0YF5FD+ZVdGA+RQ/mFdXX999/H9b9swxTKLE8USixPFEosTxRKLE8xT72yVEPzhZA/lr7mM1mv62EiIiIiIiIiIiIiIiIGhKDQPXQsWNHAMCBAwe85p0+fRplZWWuZYiIiIiIiIiIiIiIiBoTg0D1kJubCwBYv36917yCggK3ZYiIiIiIiIiIiIiIiBoTg0D1cN1116F9+/ZYuXIlvvrqK9f00tJSPPvsszAYDBg3blz4EkhERERERERERERERE2WLtwJiGY6nQ5LlixBfn4+Bg0ahDvuuANJSUlYtWoVjh49innz5iE7OzvcySQiIiIiIiIiIiIioiZIEkKIcCci2n355ZeYPXs2vvjiC9hsNnTv3h0PPPAARo4cGe6kERERERERERERERFRE8UgEBERERERERERERERUQzimEBEREREREREREREREQxiEEgIiIiIiIiIiIiIiKiGMQgEBERERERERERERERUQxiEIiIiIiIiIiIiIiIiCgGMQhEREREREREREREREQUgxgEIiIiIiIiIiIiIiIiikEMAsWoHTt24MYbb0RqaioSEhLQv39/vPXWW0Fto6qqCk8++SQ6duwIk8mEjIwM3H333Th79qzfdf7zn/+gb9++SEhIQFpaGm6++Wbs3r27vocTsxo7n4qKiiBJkt+fOXPmhOjIYk998+rQoUOYM2cOfvvb36J169aQJAnZ2dm1rldQUIDc3FwkJSUhOTkZQ4YMwSeffFKPI4l94cirmq6rCRMm1O+AYlR98kkIgbVr1+Kee+7BlVdeiZSUFMTHx+Oqq67Cs88+C4vF4nddXlPBC0de8Zqqm/re/9auXYs77rgDl19+OVJTUxEfH4/LL78cd911F/bv3+93PV5XFClC8bc1xZaTJ0/ihRdeQF5eHjIzM2EwGNCqVSuMGDEC27dv97mO2WzGAw88gKysLBiNRmRnZ+Ohhx5CWVmZz+U1TcOCBQvQvXt3xMXFoUWLFhg1ahQOHz7ckIdGEWTu3Lmuv1O2bdvmNZ9limrz7rvv4oYbbkCzZs1gMpnQrl07jBo1CsePH3dbjmWJaiKEwOrVqzFkyBCkp6cjPj4enTt3xuTJk33mOctT0yIJIUS4E0Gh9emnnyI/Px8mkwl33HEHkpKSsGrVKhw9ehTz5s3D9OnTa92Gpmm48cYbUVBQgP79+yM3NxcHDhzAu+++i3bt2mHbtm1o0aKF2zrPPPMMHn/8cWRlZWHEiBG4cOEC3njjDVitVnzyyScYMGBAQx1yVApHPhUVFaFdu3a46qqrMGzYMK/tDR48GIMHDw7hUcaGUOTV0qVLceedd0JRFHTp0gXfffcd2rZti6KiIr/rvPbaaxg7dixatGiBkSNHAgDefPNN/Pjjj3jrrbdw6623huoQY0a48kqSJGRlZfmsnL766qt9Xm9NWX3zyWKxIC4uDkajEYMHD0b37t1hsVhQUFCAAwcOoE+fPti0aRPi4+Pd1uM1Fbxw5RWvqeCF4v5333334YMPPkC/fv2QkZEBvV6Pffv2Ye3atdDpdPjoo49w7bXXuq3D64oiRSiuAYo9jzzyCObOnYsOHTpg8ODBaNGiBQ4cOIA1a9ZACIGVK1e67l0AUF5ejmuuuQZfffUV8vLy0KNHD+zZswfr169Hnz59sGXLFphMJrd9TJo0CUuWLEG3bt1w0003obi4GG+99RYSExOxbds2dOzYsbEPmxrRt99+i969e0On06G8vByFhYXo37+/az7LFNVECIEpU6bg5ZdfRocOHZCfn4+kpCQUFxdj8+bN+M9//oNrrrkGAMsS1W769Ol4/vnnkZ6ejt/97ndITk7G119/jfXr1yMxMRFffPEFrrjiCgAsT02SoJhis9lEhw4dhNFoFHv27HFNLykpEZ06dRIGg0EUFRXVup1XXnlFABCjRo0Smqa5pr/00ksCgLj77rvdlt+/f7/Q6XSiU6dOoqSkxDV9z549wmg0ii5dughVVet/gDEiXPl05MgRAUCMHz8+VIcS80KVV4cOHRKFhYWioqJCCCGE0WgUWVlZfpf/+eefRWpqqmjevLk4fvy4a/rx48dF8+bNRfPmzYXZbK7zccWicOWVEEIAELm5ufVIfdMRinyyWq3i6aefFj///LPX9N/85jcCgPjb3/7mNo/XVPDClVdC8JoKVqjuf5WVlT6nf/zxxwKA6N27t9t0XlcUKUJ1DVDsWbVqldi0aZPX9C1btgi9Xi/S0tKExWJxTZ81a5YAIGbMmOG2/IwZMwQA8eyzz7pN37hxowAgBg0aJKqqqlzTP/roIwFA5OXlhfiIKJJYrVbRs2dP0a9fPzFmzBgBQBQWFrotwzJFNXnhhRcEAPHHP/5R2O12r/k2m831O8sS1eTUqVNClmWRlZXlVi8rhBDPP/+8ACDuvPNO1zSWp6aHQaAYU1BQ4HVhOy1dulQAEE888USt28nJyREAvL4saZom2rdvLxISElwVpEII8eijjwoAYtmyZV7bmjBhggAgNm/eXIcjik3hyicGgYIXqrzyVFtgYdGiRX63PWfOHL/XW1MWrrwSghXWwWiofHL64osvBABx0003uU3nNRW8cOWVELymgtXQeSWEEGlpaSI1NdVtGq8rihSNcQ1Q7MnLyxMAxI4dO4QQju9QGRkZIjExUZSVlbktW1ZWJhITE0X79u3dpo8aNcrvd93BgwcLAOLo0aMNdxAUVrNnzxZGo1Hs3btXjB8/3isIxDJFNamoqBBpaWmiffv2bsEeX1iWqDaFhYUCgBg9erTXvP379wsA4uabbxZCsDw1VRwTKMZs2rQJAJCXl+c1Lz8/HwCwefPmGrdhsViwfft2dO7cGVlZWW7zJEnCDTfcgPLycuzcuTOk+21KwpVPTsXFxfjXv/6FZ599Fv/+979x6NChOh5J7AtX2eY1Fbxwn7OSkhK8/PLLePbZZ7Fw4UJ88803DbavaNbQ+aTX6wEAOp2uUfcbi8KVV068pgLX0HlVWFiI8+fPu7qPaKz9EgWKZZHqwvM5dODAARQXF2PAgAFISEhwWzYhIQEDBgzA4cOH3cbo2LRpk2ueJ5a92LZ7924888wzmD17Nrp27epzGZYpqsn69etx/vx5DBs2DKqqYvXq1XjuueewcOFCHDx40G1ZliWqTceOHWEwGLB161aYzWa3ef/9738BANdddx0Alqemyve3bopaBw4cAACf/TC2atUKiYmJrmX8OXToEDRN89uXo3P6gQMHMHDgQNfviYmJaNWqVY3Lk0O48slpw4YN2LBhg+uzJEn4/e9/j4ULF3o9AJq6UORVqPfLa8q3cOWV09dff43Jkye7TRs6dCiWLVuGli1bNth+o01D59Mrr7wCwLsikNdU8MKVV068pgIX6rxav349vvjiC1RVVeHAgQP473//i+bNm2P+/PkB75fXFTWmcP8NQNHn2LFj+Pjjj5Geno7u3bsDqLkcOac7x7Rr27YtysvLcerUKVxxxRVQFMXn8tW3S7GjqqoK48aNw9VXX42HH37Y73IsU1STXbt2AQAURcGVV16J/fv3u+bJsoxp06Zh3rx5AFiWqHbNmjXDc889h+nTp+Pyyy93GxNo48aN+OMf/4ipU6cCYHlqqtgSKMaUlpYCAFJSUnzOT05Odi1Tn21UX875ezDLN3Xhyqf4+HjMnDkTu3btQklJCX7++Wd8/PHH6Nu3L1577TWMGzcu6GOJdaHIq1Dvl9eUb+HKK8AxAOMXX3yBH3/8EWazGV988QV+/etfY926dbj55puhqmqD7DcaNWQ+rV27FosWLUKXLl1w1113BbxfXlO+hSuvAF5TwQp1Xq1fvx5PPPEEnnvuOaxatQpt27bFunXr0Lt374D3y+uKGlM4/wag6GOz2TB27FhUVVVh7ty5rgqtYL9f1eX7GMWGWbNm4cCBA3j11Vd9Vog6sUxRTc6ePQsAeP7555GSkoIvv/wSFy5cwJYtW9CpUyf84x//wEsvvQSAZYkCM23aNLzxxhsoKyvDwoUL8be//Q0FBQXo168fRo8e7Wr5yvLUNDEIRNSEtGzZEk8++SR69uyJlJQUpKWl4brrrsPGjRvRuXNnrF69Grt37w53Momizrx585CTk4NmzZohKSkJOTk5+O9//4vc3Fzs2LED7733XriTGPN27NiBkSNHIiUlBW+//TaMRmO4k0R+BJJXvKbCa968eRBC4MKFC66uZwcMGICVK1eGO2lERPWiaRomTJiALVu2YNKkSRg7dmy4k0RRprCwEPPmzcPjjz/u1U0qUTA0TQMAGAwGrFmzBn369EFiYiIGDhyIt99+G7Is4x//+EeYU0nR5Mknn8SYMWPw2GOP4fjx47hw4QI+++wzWCwWDB48GO+//364k0hhxCBQjHFGZf1FX81ms9/IbTDbqL6c8/dglm/qwpVP/sTHx7u+AG3durXW5ZuSUORVqPfLa8q3cOWVP7IsY9KkSQB4XVXXEPm0c+dO5OXlQZZlFBQUoFu3bkHtl9eUb+HKK394TfnXUPe/xMRE9O3bF2vWrMHll1+Ou+++G+fOnQtov7yuqDFF2t8AFJk0TcMf/vAHrFy5EmPGjMHChQvd5gf7/SqU38coOtjtdowfPx5XXnklHnnkkVqXZ5mimjjzsXfv3sjIyHCbd8UVV6B9+/Y4dOgQSkpKWJaoVh9//DFmz56NqVOn4pFHHkGbNm2QmJiIa665Bh988AH0ej2mT58OgPempopBoBhTUz+Mp0+fRllZmd8+H53at28PWZb99uXoq+/Ijh07oqysDKdPnw5o+aYuXPlUk+bNmwMAysvLA1q+qQhFXoV6v7ymfAtXXtWE15W3UOfTzp07ccMNN0DTNBQUFKBPnz5B75fXlG/hyqua8JryraHvfzqdDkOGDEF5eTl27twZ0H55XVFjisS/ASiyaJqGO++8E8uWLcOoUaOwdOlSyLJ7dUhtYxp43tcSEhKQnp6OI0eO+OymlPfB2FNWVoYDBw7gq6++gsFggCRJrp9ly5YBAHJyciBJEtasWcMyRTXq3LkzACA1NdXnfOf0yspKliWq1dq1awEAQ4YM8ZrXqlUrXH755Th48KDb30QsT00Lg0AxJjc3F4CjL3dPBQUFbsv4ExcXh759++KHH37A0aNH3eYJIbBhwwYkJCS49Qsfiv02JeHKp5ps374dAJCdnR3Q8k1FuMo2r6ngReI543XlLZT55AwqqKqKdevWoV+/fo2y36YiXHlVE15TvjVG+S4uLgYA6PX6Rt0vUSBYFqkmzgDQ8uXLMXLkSKxYscLvwNYZGRnYunWr18sG5eXl2Lp1K9q1a4e2bdu6pufm5rrmeXKWvUGDBoX4iChcjEYj7rrrLp8/zsrP3/72t7jrrruQnZ3NMkU1clbW79u3z2uezWbDwYMHkZCQgBYtWrAsUa2sVisAuLXar+7cuXOQZRl6vZ7lqakSFFNsNpto3769MBqNYs+ePa7pJSUlolOnTsJgMIgjR464phcXF4t9+/aJkpISt+288sorAoAYNWqU0DTNNf2ll14SAMTdd9/ttvwPP/wgdDqd6NSpk9u29uzZI4xGo+jSpYtQVTW0BxvFwpVPu3fvdlvOadWqVUKWZZGWlua1j6YuVHnlyWg0iqysLL/zf/75Z5GSkiKaN28ujh8/7pp+/Phx0bx5c9G8eXNhNpvrelgxKVx59b///U9YrVav6Vu3bhXx8fFCr9eLgwcPBns4MStU+bRz506RmpoqEhMTxeeff17rfnlNBS9cecVrKnihyqsdO3b43P66deuEXq8XqampoqyszDWd1xVFimCvAWo6VFUV48ePFwDEbbfdJmw2W43Lz5o1SwAQM2bMcJs+Y8YMAUA8++yzbtM3btwoAIhBgwaJqqoq1/SPPvpIABB5eXmhOxiKaM5yVlhY6DadZYpqkpeXJwCIxYsXu01/8sknBQAxZswY1zSWJarJ66+/LgCIbt26ef2N76wjHDBggGsay1PTwyBQDNq4caPQ6/UiKSlJTJo0STzwwAMiKytLABDz5s1zW9b5h8qrr77qNl1VVZGfny8AiP79+4sZM2aIESNGCEmSRLt27cTZs2e99vv0008LACIrK0s88MADYtKkSSIpKUkYjcaAKn2amnDkU25urmjTpo247bbbxLRp08T9998vrrnmGgFAGI1G8d577zX0YUelUOTVuXPnxPjx410/siyLhIQEt2nnzp1zW2fFihUCgGjRooWYOnWqmDp1qmjRooWQJEm89dZbDX3YUSkceTV+/HjRvHlzMWzYMHHfffeJBx54QOTn5wtJkoQsy+Kll15qjEOPKvXNp59++kmkpaUJAGLo0KFi9uzZXj/z58/32i+vqeCFI694TdVNKO5/AMQVV1whRo8eLR5++GFx7733ioEDBwoAQq/Xi9WrV3vtl9cVRYpgrgFqOmbPni0AiMTERPGXv/zF53OoeuCwrKxMXHXVVa4KrUceecRVSdunTx9RUVHhtY+JEye6Kt4efvhhMXbsWGEwGMQll1wifvjhh0Y8Wgonf0EglimqycGDB0XLli0FAHHTTTeJ6dOni2uvvdZVt3bq1CnXsixLVBO73S4GDRokAIiWLVuKiRMnigcffNBVnuLi4sT27dtdy7M8NT0MAsWo7du3i6FDh4rk5GQRFxcn+vbtK9544w2v5fxVAgghhMViEXPmzBEdOnQQBoNBtGrVSkycOFGcPn3a735fe+010bt3bxEXFydSUlLEjTfeKHbt2hXKQ4spjZ1PixcvFkOHDhVt27YVcXFxwmg0ivbt24uJEyeKffv2NcQhxoz65tWRI0cEgBp/fL2hunbtWjFw4ECRkJAgEhMTRW5urtiwYUMDHWVsaOy8Wr16tfjd734n2rVrJxISEoRerxdt27YVo0aNcvsji9zVJ58CySN/rbd4TQWvsfOK11Td1ff+9+yzz4obbrhBtG7dWhgMBmEymUSnTp3E3XffLb777ju/++V1RZEi0GuAmg7n/a6mH897YUlJifjzn/8s2rZtK/R6vcjMzBTTp0/327JRVVXx4osvim7dugmj0SiaNWsmRo4cyVarTYy/IJAQLFNUs2PHjokJEyaIVq1auf7uvffee8WZM2e8lmVZoppYLBbx17/+VfTo0UPEx8cLnU4nWrduLcaMGePzb3mWp6ZFEkIIEBERERERERERERERUUyRw50AIiIiIiIiIiIiIiIiCj0GgYiIiIiIiIiIiIiIiGIQg0BEREREREREREREREQxiEEgIiIiIiIiIiIiIiKiGMQgEBERERERERERERERUQxiEIiIiIiIiIiIiIiIiCgGMQhEREREREREREREREQUgxgEIiIiIiIiIiIiIiIiikEMAhEREREREREREREREcUgBoGIiIiIiIiIiIiIiIhiEINAREREREREREREREREMYhBICIiohgybNgwdOnSBaqqBr3ukiVLoCgKvvnmmwZIGRERERERBWrw4MGQJCncyQiYEAK9evVCXl5endZ//PHHkZSUhDNnzoQ4ZURExCAQERGFRVFRESRJwtChQ0O+7Tlz5kCSJGzatCnk245kmzdvxnvvvYfZs2dDUZSg1x8/fjyysrLw0EMPNUDqiIiIiIiaJkmSgvqJRsuXL8fu3bvx5JNP1mn96dOnQ5ZlzJ49O8QpIyIiXbgTQERERKExc+ZMZGVl4fbbb6/T+nq9HtOmTcP999+PrVu3YsCAASFOIRERERFR0+MrsPHCCy+gtLTUb9Bj+fLlqKioaOikhYSmaZgzZw4GDhyI/v3712kbaWlpmDhxIl588UU8+uijyMrKCnEqiYiaLgaBiIiIYsDevXvx2Wef4S9/+Qtkue4Nfe+44w488MADWLhwIYNAREREREQhMGfOHK9pS5cuRWlpqc95AJCZmdmwiQqhtWvXoqioCH/5y1/qtZ0xY8bg+eefx5IlS/DUU0+FKHVERMTu4IiIKOKVlpZi7ty5yM3NRUZGBgwGAzIyMjBu3DgcOnTIbdnBgwfjiSeeAAAMGTLE1aVCdna223Jnz57FtGnTcNlll8FoNKJ58+YYMWIEvv32W6/9Z2dnIzs7G2VlZfjTn/6EjIwMGI1GXHnllXjnnXd8ptlqtWL+/Pno06cPkpKSkJiYiK5du+KBBx7A+fPnoWkasrKy0KxZM1RVVfncxqBBg6DT6XDixIlaz9Grr74KALjtttt8nr9Zs2aha9euSExMRHJyMi677DKMHz8eR48edVu2RYsWGDx4MN555x2UlZXVul8iIiIiIgo9X2MCLV26FJIkYenSpfjggw/Qr18/xMfHo3Xr1pg5cyY0TQMALFu2DFdddRXi4uKQmZmJv//97z73IYTAK6+8ggEDBiA5ORnx8fHo3bs3XnnllaDS+uqrr0KSJIwYMcJr3qlTp/CnP/0JHTt2RFxcHFJTU9GlSxdMmTIFpaWlbsv26NEDl112GZYuXRrU/omIqGZsCURERBFv3759mDVrFoYMGYJbbrkFCQkJ+P7777Fy5Up8+OGH2L17t6u7gAkTJgBwjI8zfvx4V/AnNTXVtb1Dhw5h8ODBOHHiBPLy8jBs2DCcPXsWq1atQkFBAT755BP069fPLQ02mw15eXk4f/48RowYgYqKCrzxxhu4/fbbsW7dOrcBUCsrK3HDDTdg69at6NixI+68804YjUYcOHAAixYtwrhx43D11Vdj4sSJmDVrFlatWoXRo0e77e+HH37AZ599hptuuglt2rSp9Rx98sknSEhIwBVXXOE2XQiB/Px8bN++HQMGDMDQoUMhyzKOHj2K999/H2PHjvXqaiEnJwcff/wxvvjiizoP7EpERERERA3j3Xffxfr16zFs2DAMGDAAH374IZ5++mkIIZCSkoKnn34av/vd7zB48GCsWrUKDz/8MC699FKMGzfOtQ0hBH7/+9/j9ddfR8eOHTF69GgYDAZs2LABd911F7777jvMmzev1rQIIfDpp5+ic+fOSEtLc5tXUVGBAQMGoKioCHl5ebjllltgtVpx5MgRrFixAg8++CBSUlLc1snJycGKFSuwf/9+dOrUKTQnjIioqRNERERhcOTIEQFA5Ofn17psSUmJ+Omnn7ymb9y4UciyLCZOnOg2ffbs2QKA+PTTT31u71e/+pVQFEWsW7fObfoPP/wgkpKSRPfu3d2mZ2VlCQDid7/7naiqqnJN//jjj30ew/Tp0wUAMXbsWGG3272O5cKFC0IIIU6ePCl0Op0YPHiwVxoffPBBAUCsWbPG5zFUd+HCBSHLshgwYIDXvP/9738CgBg2bJjXPIvF4kpLde+9954AIGbNmlXrvomIiIiIKHjO7xj+5Obmes1/9dVXBQCh1+vFl19+6ZpuNptFy5YtRXx8vGjVqpU4dOiQa96xY8eEwWDw+o7z8ssvCwDizjvvFFar1TW9qqpK/OY3vxEAxM6dO2s9jr179woA4ve//73XvPfff18AEH/+85+95l24cEFYLBav6S+++KIAIF555ZVa901ERIFhd3BERBTxUlJScMkll3hNHzJkCLp164aPP/444G3t2bMHX3zxBcaPH4/8/Hy3eZ06dcKkSZPwzTff+OwWbv78+TAYDK7P1113HbKysrBjxw7XNLvdjpdffhkpKSl48cUXoSiK17EkJiYCADIyMvCb3/wGmzdvxsGDB13L2Gw2LF++HOnp6bjppptqPabi4mJomoZLL73U7zJxcXFe04xGoyst1Tm3E0g3dERERERE1LjGjBmDPn36uD4nJSXh5ptvRkVFBe655x60b9/eNa9t27a45ppr8N1338Fut7um//Of/0RCQgL+9a9/Qa/Xu6YbDAY888wzAIDXX3+91rQ4vzME+10kMTERRqPRazq/ixARhR67gyMioqiwadMmvPDCC9i+fTt+/PFHty8w1QMztdm2bRsA4MyZMz4HYf3+++9d/1fvWi01NRXt2rXzWr5NmzYoLCx0W//ChQu4/vrrvbpD8GXy5Ml49913sWTJEjz33HMAgPfffx9nz57FY489Bp2u9kf1Tz/95Eqjpy5duuDKK6/E66+/jhMnTmDYsGEYPHgwrr76asiy73dBnAG3H3/8sdZ9ExERERFR47r66qu9pqWnp9c4T1VVnDlzBq1bt0ZFRQW++eYbZGRkYO7cuV7L22w2AL98N6pJTd9FBg0ahPT0dDz33HP4+uuvcfPNNyM3NxddunTxGu/Iid9FiIhCj0EgIiKKeG+//TZGjhyJxMRE5OfnIzs7G/Hx8a5BUY8ePRrwtn7++WcAwIcffogPP/zQ73Ll5eVunz37qnbS6XSuAVgBuAY3bd26dUDpycvLQ7t27bBs2TI8/fTT0Ol0WLJkCSRJwl133RXQNpxv1lksFp/p27hxI+bMmYNVq1Zh+vTpAIAWLVpg6tSp+Mtf/uLVWqmyshIAEB8fH9D+iYiIiIio8SQnJ3tNc748VtM8Z3Dn/PnzEELg5MmTeOKJJ/zux/M7kS81fRdJSUnBtm3bMGvWLHzwwQf46KOPADhaJz3yyCP44x//6LUOv4sQEYUeg0BERBTx5syZA5PJhF27dqFjx45u8954442gtuX8UrRgwQJMnTo1ZGl0cr4Bd/LkyYCWlyQJd999Nx599FF88MEH6N27N9avX4/rrrvOrRuHmrRo0QLALwEuT82aNcOCBQvwf//3f/j++++xceNGLFiwALNnz4Zer8ejjz7qtrxzO87tEhERERFR7HB+J+rVqxd27txZr23V9l0kMzMTS5cuhaZp+N///of169fj//7v/3DvvfciLS0No0aNclue30WIiEKPYwIREVHEO3ToELp06eIVADp16hQOHz7stbyzZYuqql7z+vXrBwBuXbiFUufOnZGcnIwdO3bg/PnzAa1z5513Qq/XY8mSJXjllVegaRomTZoU8D4zMjLQrFkz/PDDDzUuJ0kSunTpgnvvvRcbNmwA4Oh6zpNzO927dw84DUREREREFB2SkpLQpUsX7Nu3DyUlJfXaVrdu3SDLcq3fRWRZxtVXX42HH37YNdYQv4sQETUOBoGIiCjiZWVl4eDBgzhz5oxrmsViwT333OPq0qA6Zz/Sx48f95rXt29f9OvXD6+//jrefPNNr/mapmHz5s11TqtOp8PkyZNRWlqKP/3pT16BqNLSUpSVlblNu/TSSzFs2DCsW7cOL730Epo3b45hw4YFvE9JkjBw4EAcOXIE586dc5tXVFSEoqIir3Wc59JkMnnN2759OwAgNzc34DQQEREREVH0uP/++1FRUYFJkyb57PbtyJEjPr9HeEpNTcWVV16JnTt3unWTDQB79+51+w7nVNt3EZ1Oh1/96lcBHgkREdWG3cEREVFYffPNN5gwYYLPeZdffjkeeeQR3HfffbjvvvvQo0cP3HrrrbDb7diwYQOEELjqqqvw9ddfu603ZMgQSJKExx57DHv37kVKSgpSU1Nd3b+9/vrrGDJkCO644w688MIL6NmzJ+Li4nDs2DEUFhbi3LlzPvu0DtSTTz6Jbdu2YcWKFdi2bRt+/etfw2g04vDhw1i3bh0+//xzrwFbp0yZgrfffhtnzpzB9OnTYTAYgtrnLbfcgjVr1mDDhg0YPXq0a/pXX32F4cOHo2/fvujatStatWqFkydPYs2aNZBlGdOmTXPbjhACn3zyCbp06YJOnTrV+RwQEREREVHkmjx5MrZt24Zly5Zh69atuP7665GRkYEzZ87g+++/x/bt27Fy5UpkZ2fXuq1bbrkFs2fPxrZt29yCNxs2bMBDDz2EAQMGoFOnTmjWrBkOHz6M999/HyaTCffee6/bdsrKyrBt2zbccMMNSEhICPUhExE1WQwCERFRWBUXF2PZsmU+5+Xm5uKRRx7BvffeC71ejwULFmDx4sVITU3FTTfdhL/+9a+47bbbvNbr2rUrXn31VfzjH//AggULUFVVhaysLFcQqF27dtizZw+ef/55rFmzBq+++ioURUF6ejoGDRqEW2+9tV7HZDKZsGHDBvzzn//Ea6+9hsWLF0NRFGRmZmLKlCk+v0gNGTIEmZmZOHbsGCZOnBj0Pm+//XZMmzYNr732mlsQqHfv3pgxYwY2bdqEDz/8ECUlJWjVqhWuv/56PPTQQ+jfv7/bdrZs2YJjx47hhRdeCDoNREREREQUHSRJwtKlS3HjjTdi8eLF+O9//4uysjK0bNkSHTt2xLx583D99dcHtK2JEyfiqaeewmuvveYWBMrPz0dRURG2bNmC1atXo6ysDK1bt8bIkSPx8MMPo2vXrm7bWbVqFSorKzF58uSQHisRUVMnCSFEuBNBRETU1J06dQqZmZnIycnBli1b6rSNmTNn4rnnnsPBgweRlZVVp22MGTMGa9euxaFDh5CamlqnbRARERERUdMyduxYfPjhhzh69CiSkpLqtI2BAwfizJkz2Ldvn2ucVyIiqj+OCURERBQBXnjhBdjtdtxzzz113sbDDz+MSy65BM8880yd1t+/fz/eeOMNPP744wwAERERERFRwJ5++mlUVlZiwYIFdVr/k08+weeff465c+cyAEREFGLsDo6IiChMSktL8dJLL+Ho0aNYsmQJunbtittvv73O20tKSsKKFSuwc+dOqKoa9JenEydOYPbs2V59cxMREREREdUkKysLy5Ytw5kzZ+q0fmlpKebNm4dbbrklxCkjIiJ2B0dERBQmRUVFaNeuHUwmE/r374+FCxeic+fO4U4WERERERERERHFCAaBiIiIiIiIiIiIiIiIYhDHBCIiIiIiIiIiIiIiIopBDAIRERERERERERERERHFIAaBiIiIiIiIiIiIiIiIYhCDQERERERERERERERERDGIQSAiIiIiIiIiIiIiIqIYxCAQERERERERERERERFRDGIQiIiIiIiIiIiIiIiIKAYxCERERERERERERERERBSDGAQiIiIiIiIiIiIiIiKKQQwCERERERERERERERERxSAGgYiIiIiIiIiIiIiIiGIQg0BEREREREREREREREQx6P8DYNFlPk98QwgAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAAJnCAYAAABYl/qlAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAViAAAFYgBxNdAoAABAABJREFUeJzs3Xd0FFUbwOHf7GazaaRQDS2hGXrvJSAIdhCkdxRpiiggAqIUBUFAUJSOQBBBQZRiAREIyIcgTToCkiC9hYSQttmd74+4QzbZJJtC6vuckwMzc+fuO7OTydy5TVFVVUUIIYQQQgghhBBCCCGEEELkK7qcDkAIIYQQQgghhBBCCCGEEEJkPakEEkIIIYQQQgghhBBCCCGEyIekEkgIIYQQQgghhBBCCCGEECIfkkogIYQQQgghhBBCCCGEEEKIfEgqgYQQQgghhBBCCCGEEEIIIfIhqQQSQgghhBBCCCGEEEIIIYTIh6QSSAghhBBCCCGEEEIIIYQQIh+SSiAhhBBCCCGEEEIIIYQQQoh8SCqBhBBCCCGEEEIIIYQQQggh8iGpBBJCCCGEEEIIIYQQQgghhMiHpBJICCGEEEIIIYQQQgghhBAiH5JKICGEEEIIIYQQQgghhBBCiHxIKoGEEEIIIYQQQgghhBBCCCHyIakEEkIIIYTDWrVqhaIorFixIqdDsaEoCoqiEBISYrN+0qRJKIpC//79cySu1OTm2IQQQgghHiV5DrJV0M/H8uXLURSFjz76KKdDybQdO3agKApDhgzJ6VCEEEIjlUBCiDzP+lI68Y9er8fb25uGDRsyefJkwsLCcjrMPGfSpElMmjSJe/fuZWj/FStWoCgK/v7+WRqXPSEhIUyaNIm5c+c+8s/Kq/r375/s98RoNFKsWDGqVq1Kjx49mD9/frb+rmT2GsvNVqxYwaRJkzh69GhOhyKEEEIIkeWSPlc6+pPbGhKJjJs7dy6TJk1K1ggrvSIjIxk/fjwlSpRgxIgRNttCQkLsXkdGo5FSpUrxwgsvsG7dulTz9/f3T7a/k5MTxYoVo3Xr1ixcuJD4+Hi7+4aGhvL2229Tu3ZtPD09cXZ2xtfXl1q1atGvXz+WLl3KrVu3bPZp3bo1rVq1YunSpRw/fjxT50YIIbKKU04HIIQQWaVMmTKULVsWAJPJxKVLl/jzzz/5888/Wbx4McHBwVSsWDGHo8w7Jk+eDCRUHnh7e+dsMGkICQlh8uTJ+Pn58eabb+Z0OLla8eLFqVSpEgAWi4Xw8HD+/fdfTp8+zdq1axk1ahTjxo1j/PjxODklf0woW7YsAQEBeHl5ZTqWrLzGAgICADAYDJkNK0usWLGC4OBg/P39qV27tt00RYsWJSAgAF9f3+wNTgghhBAik5o1a2Z3/d69ewGoVKkSxYsXT7a9RIkSjzQukX3mzp1LaGgorVq1ylTDv+nTp3P9+nVmz56Nm5tbiunq16+P0WgEICIiggsXLrBlyxa2bNlC9+7dWb16NTpdym3dE1+TMTExXLhwgZ07d7Jz505WrlzJtm3bKFSokJZ+48aN9OzZk6ioKBRFoVSpUlSuXJno6GjOnj3LsWPHCAoKwsXFhd69e9t81uTJk2nZsiVvv/02v/zyS4bPjRBCZBWpBBJC5Bsvv/wykyZNsln366+/0q1bN65evcrgwYP57bffciY4IXKJZ555JlkLTIvFwpEjR5g3bx4rV65k4sSJ/PXXX6xbty5ZQSooKCgbo3XcmTNncjqEdHv99dd5/fXXczoMIYQQQoh0+/333+2uVxQFgPHjxxfYoc2E42JiYliwYAHOzs7069cv1bTr1q2zqWyKjo5m4sSJzJw5k7Vr1/Lss8/Sp0+fFPdPek1aLBYWL17Ma6+9xh9//MGECRP49NNPAfj333+1CqBnn32W2bNnU7lyZW3f+Ph49uzZw+rVq+1WXAUGBvL444+zdetWTp06RdWqVR08I0II8WjIcHBCiHytbdu2fPjhhwDs3LmTmzdv5nBEQuQ+Op2OevXqsWLFClavXo2iKGzYsEGG1xNCCCGEEEI8MmvXruXu3bs899xzFClSJF37urq68vHHH9OwYUMtr/TQ6XQMGTKEQYMGAbB69WpUVQVgzZo1REVFUaRIEdavX29TAQTg5OTEE088wdKlS+nUqZPd/Pv27QvAggUL0hWXEEI8ClIJJITI95o2bQqAqqpcvHjRbprDhw/Tr18//P39cXFxwdvbm8DAQFasWIHFYkkx7127dtGuXTu8vb0pVKgQDRo04MsvvwQejj28a9cum32sc7Mk7bWUWEqT3Gcm3sOHD9OrVy/8/PwwGo14eHjg7+/P008/zezZs7UHXuukpFblypWzGT85tbgzKzIykq+++ooePXpQpUoVvLy8cHV1pVKlSgwbNszu99eqVSueeOIJIGHM5qTjPSc9/9HR0cydO5dmzZrh4+OD0WikXLlyDB48OMXrwzrv1IoVK7h79y5vvvkm/v7+2ljUr776KtevX0/xuFRV5YcffqBDhw6ULFkSo9FIiRIlaNy4MR988AHXrl0D4M8//0RRFNzc3AgPD08xvy+//BJFUahWrVpapzTdevbsycsvvwzAjBkziI2Ntdme+Fwk9SiuscS/R2fPnqVfv36ULl0ag8Fg05Ivrd8ZSGhp+P777xMQEICrqyvFixenR48enD171m761I4VbMcot9q1axeKohAcHAzAgAEDbI6tVatWWtq0JgC+c+cO48ePp3r16ri7u+Ph4UHNmjWZOHFiitdHZq9VIYQQQojsZjabmTNnDjVr1sTNzQ0fHx+ef/55Dh06ZDd94vJUeHg477zzjvZ8l3RYsj/++INu3bpRqlQpjEYjRYsW5amnnuK7776zm7f1WS614c3SKs9t376dtm3b4uXlRaFChWjUqBErV64EUi4jZtX5CAsLY8SIEZQrV057/hs0aBBXr161u29a8dg7H9a5X0NDQwF44oknbJ5309MDbPXq1QB06NDB4X2SatKkCQD//PNPhvZv06YNkPDsffv2bQAuXLgAQMWKFXF1dc1Qvi+++CIAX3/9darvFIQQIjvIcHBCiHwvKipK+7+7u3uy7TNnzuSdd95BVVUKFSpE5cqVuXPnDnv27GHPnj1s3LiR9evXo9frbfZbunQpgwYNQlVVvLy8qFy5MleuXOGVV155pBNAZiTeX375hfbt22MymfDw8ODxxx/HYDBw+fJltm7dytatWxkxYgROTk6ULVuWZs2aaeN5Jx57GdDmXXoUdu3aRZ8+fXBycqJEiRJUqlSJBw8eEBoayoIFC/j666/Ztm2b1toLoEaNGty5c4cTJ05gNBqpX7++TZ6J5665dOkSzzzzDKdOnUKn01G6dGn8/Pw4d+4cixcvZs2aNWzatMnmRX1ily9fpnbt2ly7do0qVapgNBo5f/48S5cuZceOHRw5cgRPT0+bfaKjo+nRowcbN24EoEiRItSsWZOwsDAOHz7M/v37KVOmDP3796dBgwbUqVOHI0eO8PXXXzN06FC7cSxZsgSAV199Nd3n2BEjRoxg2bJl3Lx5k/379xMYGJjmPo/6Gtu3bx8ffvghZrOZqlWr4uPjk+qY30nFxcXRunVr9u3bR8WKFalatSonT55k7dq1bN68mZ9//pkWLVo4nF9KvLy8aNasGcePHyciIiLZePg1atRwKJ9Tp07Rrl07rly5gl6vp1q1algsFk6ePMnx48cJCgri119/TXGes4xcq0IIIYQQ2S0+Pp5nn32Wbdu2UbFiRR5//HHOnDnDjz/+yI4dOwgODqZBgwZ2971z5w7169fnwoULVK5cmapVqxIdHa1tnzNnDqNGjUJVVXx8fKhZsyZXr15l27ZtbNu2jb59+7J8+fJ0PVOmZf78+bz22msAeHt7ExAQwOXLl+nfv79DZcTMnI+wsDAaNmzIhQsXqFKlClWqVOHEiRMsWbKEjRs3EhwcnKxHS0aUKFGCZs2acfDgQWJjY6levbpNmevxxx93KJ+4uDj+97//AdC4ceMMx2Mt79sr6zvC2lAtMetz8unTp7lz5066eykBVK1aFS8vL+7evcuxY8dSnCdUCCGyhSqEEHlcy5YtVUCdOHGi3e2jR49WAdXT01ONioqy2bZ27VoVUL29vdWVK1eqZrNZ23bgwAG1YsWKKqBOmTLFZr9Tp06pzs7OKqC+8cYbakxMjKqqqmqxWNRFixaper1edXJyUgF1586dNvv269cv1XhVVVUBFVAvXryYJfHWqlVLBdQxY8YkOwehoaHqjBkzbPJKLQZHLV++XAVUPz8/h/c5c+aMun79evX+/fs26yMiItT33ntPBdQqVaqoFovFZvvOnTvT/KzY2FjtPHTo0EENCQnRtsXExKjvvPOOCqhFixZV79y5Y7Ov9RozGAxqu3bt1KtXr2rbDh8+rJYoUUIF1Pfffz/Z51q/b29vb3XdunU25zkqKkoNCgpS9+zZo61buHChCqh169a1exwnTpxQAdVoNKq3b99O8XhTiqNfv35pprVYLKqPj48KqNOnT7fZZj0Xy5cvt1n/qK4xPz8/FVD1er3as2dPNSwsTNuW+HNSymvixInad1e0aFH1999/17bduXNHfe6551RA9fX1Ve/du+fQsVpdvHhR+9yk0to3cWxJv5OYmBg1ICBABdRGjRqpoaGh2rbz589r57pWrVpqfHy83c/NyLUqhBBCCJFZ1mej1J6BVNX2Gc3f3189ePCgtu3WrVtq06ZNVUANDAxMtq/1uVav16u1atVS//77b22b9flwx44dqqIo2nNPXFyclmb16tVaWW7mzJk2eTtSrkipPPfXX39pZcC3335bjY2N1batWLFCdXJyUg0Gg90yYlacD4PBoFasWFE9ceKEtu3SpUtqw4YNVUCtWbNmsmdH67N20ngcOR9p7ZuWvXv3qoDq5eWVrHxnlfh5216ZITIyUvX391cB9dVXX7WbhzXOlK7JIUOGqIBauHBhLY5du3Zpn1uzZk111apV6o0bN9J9jE8++aQKqHPmzEn3vkIIkZVkODghRL4UHx/PhQsXmDBhAnPmzAHg7bfftunKHR8fzzvvvAMkDK/Vt29fm1ZgDRo0YO3atSiKwieffEJcXJy2bdasWcTFxVGnTh0+/fRTrReDoigMGjSIl19+mfj4+Cw/pozGe+bMGSBhMsyk3dnLli3LmDFjsrQFXEYFBATw0ksv4eHhYbO+UKFCTJkyhWbNmnH69GkOHDiQ7ryDgoL466+/qF+/PuvWrcPPz0/bZjQamT59Oi+88AK3b99m6dKldvPw8vLim2++wdfXV1tXp04dxowZA8DmzZtt0h87dkwb+uG7776jc+fONufZ1dWVPn360Lx5c21dz5498fDw4PDhwxw9ejRZDNbYOnXqlKEWaY5QFEXrjXPjxg2H9nnU11hAQAArV67E29tbW5eeoRlMJhOffvopzZo109YVLlyYtWvX4uPjw7Vr11i2bFmG48tK3377LWfPnsXZ2Zn169fb9IyqUKEC3377LXq9nr/++osffvjBbh7pvVaFEEIIIXKCyWQiKCiIevXqaeuKFi3KvHnzANizZ0+Kw+Dq9Xp++OEHKlWqpK2zPh9++OGHqKrKs88+y+TJkzEYDFqanj17as9E9oY/zqjZs2cTHx9PmzZt+Pjjj3F2dta29evXj1GjRmEymVLNIzPnw2QysXLlSpsho8uUKcO3336Lk5MTx44d00YnyA2sQ3H7+vraDK/siIiICPbu3cvzzz9PSEgIHh4ejBw5Ml15WCwWFi5cyOLFiwHo3bu3FkfLli0ZPXo0kFCm69OnDyVKlKBs2bJ07NiROXPmcOXKlTQ/o2TJkgApDjsuhBDZJeff+AkhRBaZPHmyNg6xwWCgYsWKTJ06FR8fHz7++GMmTJhgk37//v2Ehoby2GOP0bFjR7t51qtXDz8/P+7du2czBvNPP/0EwPDhw+3u9+abb2bNQWVRvNYKj6+//jrL48pqZrOZjRs3Mnz4cJ577jkCAwNp3rw5zZs359y5cwAcOXIk3fl+8803ALzyyis2hcDEXnrpJQB+++03u9t79uxpUwlhZR2H+vz58zbrN2zYoG1v3bq1Q3EWKlSInj17Ag+HfbOKjY1l1apVAAwcONCh/DLKWhF3//59h9I/6musX79+ODllfBTbxx57jG7duiVb7+HhoZ3LH3/8McP5ZyVrHF27dqV06dLJtj/++OO0b9/eJm1S6b1WhRBCCCFyQs2aNe0OyVunTh2MRiOqqmrzsyTVpk0bu3P3PHjwQJufMaWKgbfeegu9Xs/t27fZv39/xg8gkV9++QVI+Tl90KBBaeaRmfPRoEEDbT7cxPz8/LTyY2553gW4desWkNAwyxGJ5xH18vKiefPm7Nq1i0aNGrF9+/Y0h7qbNm2aVq6sX78+RYoUYejQoVgsFho1asSHH35ok37mzJls376d9u3b4+LiAsC///7LDz/8wMiRIylXrhxjxoxJtfGntdHezZs3HTpGIYR4VGROICFEvlGmTBmtxXxERATnz58nOjoab29vnnjiiWTp//rrLyBhzpbEPTGSunPnDpDwwNekSRPCw8O1idUTt7JKLCAgACcnpyztDZTReAHeeecdXnnlFYYNG8bs2bNp27YtTZo0oWXLljY9YnLatWvXeO6559Ks5LEeY3pYz9/8+fP56quv7Ka5d+8ekHDu7ElpfOsSJUoAyStMrON+2yuMpWbw4MEsXryYr7/+mtmzZ2uFju+//547d+5QoUIFu9d0VrIeS+LxvVPzqK+xlH7XHFWlSpVk83olzfv06dOZ+oyscvbsWQCqV6+eYpoaNWrw/fffaz2wkkrvtSqEEEIIkRNSemZRFIXixYvz77//pvjcktLz4fnz5zGbzUDKz1OFCxemVKlSXLp0iTNnzjg0B2Zq7t27p73oT2nul/Lly+Pp6UlERESK+WTmfKT27FitWjXWrVuXa553AW3+JmtZJy3WeURVVeX69ev8888/QELlUM2aNdPc/9y5c1qjQr1ej7e3N61ataJr164MHDjQbkPBNm3a0KZNG+Li4jh69CiHDx/mt99+45dffiEyMpKZM2cSFRXF559/bvczrceWeK4qIYTICVIJJITIN15++WUmTZqkLd+7d49Ro0bx5Zdf0q5dO44ePWozrFJYWBgA4eHh2gT1qbFOOJn4odv6QjUpvV5PkSJFHB5KyxEZjRcSzo2Pjw+zZs3ijz/+YOHChSxcuBCARo0aMX36dFq1apVlsWbUgAEDOHLkCOXLl2fq1Kk0bdqUEiVKaMPt9e3bl1WrVqU5jII91vPnyISsic9dYilNNprSMGfWAp69HhmpqVu3LvXr1+fgwYOsX7+e3r17Aw+Hghs4cGC6h0xID1VVuXTpEpDyNZ7Uo77GMjrRq1Vqx5HbKkascTz22GMpprEO85ZSzOm9VoUQQgghckJqz3jW5xZVVdO1r/X5SKfTUbx48RTz9/X15dKlS1nyDBgZGan9v1ChQimmK1SoUKqVQJk5H3npeRcShrkDuHv3rkPp161bZ9Pz6+jRo3Tu3Jm1a9cSHx/PunXrUt1/+fLl9O/fP0OxOjs707BhQxo2bMiQIUO4fv06nTt3Zu/evSxcuJBx48ZRqlSpZPtZj816rEIIkVPkTYAQIt/y9vZmyZIlNG3alLCwMIYNG2az3TrcVWBgIKqqpvljfWBM/FCfUiWP2WxOsbeK9eV9Sg/vDx48sLs+o/FadezYkb1793L37l1++uknxo4dS4UKFdi/fz9PPfWU1lMmp1y/fp2tW7cCsGnTJrp3707ZsmW1CiDIWA8gK+v527FjR5rnLiQkJFPHYuXp6Qk87GGUHoMHDwYeVvxcvHiRHTt24OTklOHCi6OOHTumxWztTeaI3HyNpVYha92WtMCe0d/VzLLGYe1xaM+1a9ds0gohhBBCiATW5yOLxZLqMFz2nqfSev4D+8+Aiec0Ta2i5VFWwuSl5114WDGV0TJe7dq1+f777zEYDKxfv57169dnZXipeuyxx1iwYAGQUPb/888/7aazVgI52rBOCCEeFakEEkLkazqdjrlz5wIJ4x/v2rVL21ajRg0ATp48icVicThPLy8vrYX+qVOn7KY5e/ZsikPBWVt3pfSQ/vfff9tdn9F4k/Ly8uKZZ57ho48+4syZMzRu3Ji4uDitsiGnWCfLLFy4sN2hHeLj4zl48KDdfR3pFWM9f8eOHctElOljHZbgf//7X7r37dGjB56engQHB3P+/HmWLVuGqqo8//zzqfYQyQqfffYZkFC4adiwYbr3z43X2JkzZ7RhQZI6efIkkDBkXGIZ/V0Fx67JlFjHMz9x4kSKaaw92pLGLIQQQghR0FWsWFGbSzKl56mwsDCuXLkC2D5PWZ//Uqs8svcM6O3trfU6Sqnh08WLF1PtBZRZ1mfa1LblluddSBj9AODy5cuEh4dnKI8aNWpocy2NHTs2S4djT0ulSpW0/8fFxdlNY31mr1+/frbEJIQQKZFKICFEvtegQQOef/55ACZOnKitb968OSVLluTOnTssW7YsXXk+88wzAMybN8/u9k8//TTFfa0Pi3/88Yfd7fPnz7e7PjPxpsTJyYlGjRoBaIUgKzc3NyDlodGymvXzIiIi7H5mUFBQioUxR2Lt2rUrAF988UW2HdNLL72Eoijs27fPpgLSEe7u7vTq1QuARYsWsWLFCgBeffXVLI7S1tdff82XX34JwLhx43B2ds5UfrnlGrt27ZrdISIiIyO136fnnnvOZpv1d3Xfvn1287S2/rMnM8dmjePbb7/l8uXLybafP3+eTZs22Y1ZCCGEEKKgc3d3p2XLlgB88skndtPMnTsXs9lM0aJFbRo9VaxYEUVRiImJsTtP6d69e1NsVPb0008DpFhWW7JkSbqOI70OHDhgt4x56dIlfvjhByB9z7vx8fGpxpzZZ/nSpUtToUIFVFVl//79GcoDYPz48RiNRi5cuEBQUFCG80kstUpAqz179mj/tzeX07179zh79iyKomjXoxBC5BSpBBJCFAjWyp/du3ezY8cOIGFc35kzZwIwfPhw5s6dm2zCxsjISL777jsGDhxos37UqFEYDAYOHz7MyJEjtZY/qqqybNkyli1bprU+S+r5559HURT++usv7fMhoRv5vHnz+Oqrr+zul9F4IyIi6NKlC1u3bk3WQunQoUN88803QEJlWWIVK1YEYPv27XbjyWrVqlWjaNGixMfH8/rrrxMTE6NtW79+PcOHD09x0tAKFSqgKAq3bt1KsVD26quvUqNGDc6dO0e7du3spjt58iTvvfcemzdvzpJjql69ujZ020svvcT3339vM9RCTEwMX331Fb///rvd/a1Dws2dO5crV65QpkwZrXCZlSwWC4cOHWLAgAFaxVOXLl0YPny4Q/vnhWvMYDAwYsQImwJuWFgYvXr14u7duzz22GO8/PLLNvu0b98egM2bN7N27VptfUxMDOPHj0+1Ys96bDt37kx3z72uXbsSEBBAXFwcXbp00eZnAvjnn3/o2rUrZrOZWrVq0aFDh3TlLYQQQghRELz77rsoisJPP/3EpEmTbOYU/eabb5gxYwaQ0Hsk8fDT3t7etGjRAoARI0bYDFV25MgR+vbti8FgsPuZo0aNwsnJiV9//ZVx48bZfOaqVauYNWtWivtmBYPBQL9+/Th9+rS27vLly3Tr1g2TyUT16tW151sr6/KyZcvYuXOntj4iIoJXX32V8+fPp/h51ufd3377LcMxP/vsswAEBwdnOI+SJUtqDeWmTp2aJb2BPv74Yxo2bMiyZcu4deuWzTbr/EN9+/YFEuY/rV27drI89uzZg6qqNG7cmMKFC2c6JiGEyBRVCCHyuJYtW6qAOnHixFTTPffccyqgtmjRwmb93LlzVScnJxVQXVxc1Fq1aqmNGjVSK1SooOp0OhVQ/fz8kuW3cOFCVVEUFVC9vb3VBg0aqCVLllQB9c0331T9/PxUQN25c2eyfUeOHKkCKqAWK1ZMrV+/vlq4cGFVp9Opy5cv17ZdvHgx2b7pjTcsLEzLz9nZWa1atarasGFD1d/fX1vfqFEj9cGDBzafM2vWLG175cqV1cDAQLVly5bq8uXLUz3PVtbj0Ol0apEiRVL9+f3331VVVdVly5Zpn+nl5aXWq1dPLVWqlAqoTz31lNq7d+8Uv+vnn39eO8Y6deqoLVu2VFu2bKkeOXJES3Pp0iW1Tp062meUKVNGbdSokVq7dm3V29tbW5/0GK3XWErHfvHiRW3fpKKiotT27dtr24sUKaI2aNBArVixomowGFLNV1VVtVGjRtq+aV3jqenXr58KqMWLF1ebNWumNmvWTG3SpIlarVo1tVChQtpnuLq6qh9++KEaHx9vNx975+JRXmOp/R4lltLvzMSJE1VA7dGjh9qkSRMVUCtVqqTWq1dPdXFxUQHVzc0txfw7deqk5V2qVCm1fv36aqFChVQXFxd18eLFKX7v+/fv134fS5UqpTZr1kxt2bKlOmLEiGSx9evXL9n+J06c0O4ner1erVmzplqjRg0tT39/f/XcuXPJ9svMtSqEEEIIkVkpPU8nldpzkFVKz4HW59q0no1nz56tldd8fHzUBg0aaGULQO3Tp49qNpuT7bd//37tOdFa3qpUqZJWJunVq1eKn//5559r+Sf9zJEjR2rHtHv37iw/H2+88YZasWJFVVEUtVq1amrt2rW1cmOxYsXUEydOJMvTZDJp5Q1FUdRy5cqpdevWVV1cXFRvb2/1008/TbE8vH79eu1Yy5cvr7Zo0UJt2bKl+tFHH6V4DEmdPHlSe7a1WCzJtid+drVXNra6fPmyajQaVUBdunSpzTbreXO0HKuqqjp69GjtcwG1bNmyaoMGDdSqVavalJ0qV66shoSE2M2ja9euKqCuXLnS4c8VQohHRXoCCSEKjEmTJgEJLXISt1YaMWIEx48f57XXXqNcuXKcP3+eQ4cOERkZSWBgIDNmzODXX39Nlt/gwYPZvn07Tz75JGazmVOnTlGyZEmWLl3KnDlzUo1l1qxZfP7559SsWZOIiAjOnz9PgwYN2LFjh9ZzJCXpjbdQoUKsXr2aV155hccff5wbN25w6NAhwsPDadGiBfPmzWP37t1ad36rt956i1mzZlGrVi0uXbrE7t27CQ4OJiQkJPUTnYTFYuHOnTup/lhbyb388st8//33NGnShLi4OM6cOUPRokWZOXMmW7ZsQa/Xp/g5QUFBvP7665QuXZqTJ08SHBxMcHAw9+7d09KUKVOGP/74g2XLltGuXTtiYmI4dOgQ586d03qCbNy4ke7du6frGFPj6urKDz/8wLfffsszzzyDXq/n6NGj3L9/n3r16vHhhx+m2rvH2qpNp9Ml66mSETdv3mTv3r3s3buXgwcPcv36dUqXLk337t2ZP38+V69e5d133031XCeV09eYI5ydndmxYwcTJkxAURROnDiBh4cHXbt25eDBg7Rq1crufmvWrOGDDz7g8ccf59atW4SEhNC2bVv2799P27ZtU/y8hg0b8sMPP9CqVSsePHjAvn37CA4O5ujRow7FW61aNY4dO8a4ceMICAjg3LlzXLhwgapVq/Lee+9x5MgRrfWlEEIIIYRIbuTIkfzvf/+jS5cuuLi4cPToUaKjo2nbti3r1q0jKCgInS75a7GGDRvy+++/89xzz+Hi4sLZs2dxdnbm448/ZsuWLSmO+ADw2muvsW3bNtq0aUN8fDynTp3C19eXZcuWMXv2bCIjIwHw9PTM8uP18fHhwIEDDB8+nMjISE6dOkWxYsV45ZVXOHz4sN15V52cnNi2bRujRo2ibNmyXL58matXr9KtWzeOHDmizXFqz0svvcSXX35Jo0aNuHXrFr///jvBwcGcOXPG4ZirVq3KE088QUhICLt3787QcQOUKlVKGw0jK3oDffDBB2zbto3Ro0fTuHFjoqOjOXLkCBcuXMDT05NnnnmGRYsW8ddff+Hn55ds//DwcDZt2kSRIkW0YcmFECInKaqaaFwaIYQQWcbf35/Q0FB27tyZ4gtmIdIybdo03n33XZ5++ml+/vnnnA5HCCGEEEIIkQG3bt2iePHiKIpCWFgYXl5eWZJv//79WblyJRMnTtQaPuYlv//+Oy1atOCFF17Q5r3M66ZOncqECROYPXs2I0eOzOlwhBBC5gQSQgghciuz2czSpUsBGDRoUA5HI4QQQgghhMgo63N9zZo1s6wCKD9o3rw5Xbp0YfPmzezfvz+nw8m0e/fuMWvWLCpWrMjrr7+e0+EIIQQAKfdhFUIIIUSOmjdvHhcvXqR8+fLJJnEVQgghhBBC5C5ff/01Pj4+tGvXThte2Ww2s2zZMiZPngzA8OHDczLEXGnWrFlUrVqVmzdv5nQomXbx4kVGjBhBu3btcHZ2zulwhBACkEogIYQQIlc5evQob775Jrdu3eLUqVMAzJgxI11z9AghhBBCCCGy3+HDh5k9ezYeHh5UqlQJvV7P33//TUREBAA9e/bMknk+85uyZcvmyaHs7KlTpw516tTJ6TCEEMKGVAIJIYQQuci9e/cIDg7GYDBQtWpV3nnnHTp37pzTYQkhhBBCCCHS0LVrV+7du8fvv//OxYsXiYyMxNvbm3bt2jFgwAC6deuGoig5HaYQQogCRlFVVc3pIIQQQgghhBBCCCGEEEIIIUTW0uV0AEIIIYQQQgghhBBCCCGEECLrSSWQEEIIIYQQQgghhBBCCCFEPiSVQEIIIYQQQgghhBBCCCGEEPmQVAIJIYQQQgghhBBCCCGEEELkQ045HYDIOpUrVyYsLIzy5cvndChCCCGEEELkKv/88w8+Pj6cOXMmp0PJV6QMIoQQQgghhH25pQwilUD5SFhYGFFRUTn2+REREQB4enrmWAzp4aSodCl7V1ted6kw8aqSgxHlTnnte80Jqk7FVN2kLRtOGFAsuf9ayk/frU7RE1C0sbZ89vYfWFRzDkaUs/LTdytsyXebP8n3mj1y8jk5P5MyiMjN5PoQKZFrQ6RGrg+RErk2REpSujZySxlEKoHyEWvru3379uXI5+/evRuAwMDAHPn8dIu9D/Pqa4tvrPwVjIVyMKDcKc99rznggekBL3z/gra8+fPNuBvcczAix+Sn7zYuJp7VE//QlhdOno6zS8H9E5efvlthS77b/Em+1+zRpEmTnA4hX5IyiMjN5PoQKZFrQ6RGrg+RErk2REpSujZySxlE5gQSQgghhBBCCCGEEEIIIYTIhwpuM2khspA5MhLi4xMWnJzQe3jkbEBCCCGEEEIIIYQQQgghCjypBBIFl6KDIhVtlzPoysiRRB86DIBrvbqUXbw4s9GJPERBwc/Tz2ZZZC9FUfAu7mazLIQQQgghhBBCCCFEQSeVQKLgcnaHAT/mdBQiH3AzuLH86eU5HUaBZjDq6Tiqbk6HIYQQQgghhBBCCCFEriJzAgkhhBBCCCGEEEIIIYQQQuRD0hNIiCzg0707hVq3AcCpeLEcjkYIIYQQQgghhBBCCCGEkEogIbJEodatczoEIYQQQgghhBBCCCGEEMKGVAKJgstihtt/P1wu+jjo9DkXj8izzBYzF8MvasvlvMqhl2spW1ksKmHXH2jLPo+5o9MpORiREPZZLBZu3rxJREQEJpMJi8WSrv1dXV0BOH78+KMIT+QQ+V7TptPpcHFxoUyZMjg7O+d0OEIIIYQQOSazZQqRcfLcXrDkpzKIVAKJgssUBUEvPlwefhCMhXIsHJF3xZhjGPTrIG15c8fNuOvcczCigic+zsymT49qy70mN8bZRf7EidwlJiaGixcvYjKZtHWKkr7KSqPRmNVhiVxAvte0mc1mHjx4wIULF6hQoUKeL4QJIYQQQmREVpQpRMbJc3vBkp/KIPKGTAghhBAiG9y8eROTyYSbmxslS5bExcUFnU6XrjxiY2MBKXzkN/K9ps1sNhMaGkpkZCT//vsvFSpUyOmQhBBCCCGyXVaUKUTGyXN7wZKfyiBylxAFmAKu3g9/kJYTQgghHp2IiAgA/P39cXNzk8KaEOmg1+vx8/MDElrACiGEEEIURFKmECL75KcyiPQEEgWX0QNe258lWV3/cCoxp08D4FKlCo9NeDdL8hVCCJF/qKqKoig4OcnjlxAZodfrURRFxr0XQgghRIElZQohsld+KYPIHUOILBB3KZTYM2cA0Lm75XA0QgghhBBCCCGEEEIIIYRUAgkhhBBCCCGEEHlOjMnMyavhRMaa8TDqqVbSCxeDPqfDEkLkYXJfEUKI/EkqgYTIAq41aqJzcwfAmIcnCRNCCCGEEELkbjciYgjaF8KGw1e4F2VCRUVBwdvNQKe6pejXxJ/ini45HaYQIg+R+4oQQuRvUgkkCi6LBaJuP1x2KwoZnFCv2PDXsygoIYQQQgghhLDv9LUIBq86xPWIGExmCzoUFCVhjojrETEs2XORzX9dY1GfelTx9czpcIUQeYDcV4QQIv/L2BtvIfID0wNY2OLhj+lBTkckhBBCCCGEEHbdiIhh8KpDXL0XjcWi4uqkx9VZj4sh4V9XJz0Wi8rVe9EMXnWImxExOR2yECKXk/uKEEIUDFIJJIQQQgghRD6xZMkSatWqhaurK8WKFaNnz56EhoamK487d+4wdOhQSpYsidFoJCAggBkzZhAfH2+TLiwsjHnz5vHss8/i5+eHi4sL5cqVo3Pnzhw5ciRZvitWrEBRlFR/9u7dm6njFyI/C9oXwvX/XsAanXTodIrNdp1OweiUUMS/HhFD0L70/e4LIQoeua8IIZI6fvw4PXr0oHLlynh7e+Pq6srjjz/OoEGDOHfunN19oqKiGDt2LP7+/hiNRvz9/Rk7dixRUVHp+uxjx47xwgsv4OPjg7u7O40bN2bDhg0ppo+MjGTy5MlUr14dNzc3vLy8qFOnDnPmzLFJt2vXrhTLH0WLFk1XjHmVDAcnhBBCCCFEPvDee+/x4Ycf0qxZM+bOncutW7eYO3cuu3bt4sCBA5QuXTrNPO7fv09gYCBnz55l2LBh1KxZk927dzN27FhOnDjBqlWrtLT79+/nzTffpHXr1gwZMoTixYtz7tw5Fi5cyIYNG/j666/p3r27lj4wMNBmf6sHDx4wdOhQihcvTsOGDbPmZIhspVP0xMXEp53wPwajHkV5+KJRVVVMsWaH99c76dA72bZnNJssmM0Wh/NwdrEtCuf2GGJMZjYdvALxFtz1enSqghkwowJo51OPgruiIzrezKZDlxnU1D/VSd2TxWBRMcVl7jzEm8xYzKrDeWQ6BoMOvd5+DGZTQhxpXZ+PMgZHJY3BYlGJz2wMcWYsFsdiUBQFg9H2WsnPMaR0bTyqGExxZtTMnAezhXiT4/cXJ4MOXRox2LuvoIKKigWw/FchpCgKznpdQnoH7ivpiSE1ik7B4PwIzkOsGVVNPQbr9WGKMyeLwWy2YE5PDM76ZJVrjsRgpdMpODknP9+O7m+V+O9uTuyfX2JIKj+eh4sXL3Lr1i06duxIqVKlcHZ25uzZs6xYsYKvv/6aPXv2UKdOHS292Wzm2WefJTg4mD59+tCiRQv++usvZs2axf79+/n111/R65Nfw0ljOHr0KC1atMBoNDJy5EiKFi3K6tWreemll1iyZAmvvPKKTfrr16/Tpk0brl69Sr9+/RgxYgSxsbFcuHCBf/75x+aYrP9/9dVXadGihU0MLi4uydLZo6qqzd8MvV6H3mB7f7GY1WR/V5x0zsRb4lLMN7tIJZAQQmSSs96ZSU0n2SyL7KU36Hiid2WbZSGEKEj+/vtvPvroI+rWrcuuXbtwckp4zH/66adp2LAh48ePJygoKM18Zs6cyalTp5g9ezYjR44EYODAgXh5efH5558zYMAAWrduDUDlypU5e/YsFStWtMmjd+/e1K1blzfffJOuXbui+2/OxfLly1O+fPlkn7ls2TJUVWXAgAEYDIZMnQeRMwKKNmb1xD8cTt/vo2YkLverKunav/aTZanTtqzNuqO/XeLYzssO7a8oCv2nN7NZZ463pCuGuk/5Uat1GZt1h7eFcmL3FYf21zvp6Du1qc06U6w5xRhMZgsvRIGqumjn7qCbmT+d4lEBF4MOJ52Oeg90VInWoaoGlAhYO3k/Br395yKDUU/vKU1s1sVGx7Nmyn6HjgGg0Qvlqdq8pM26P7dc5Mwf1x3a3+hmoOfERjbroiNNfDP1gMMxNHmxApWb+Nqs+2PjP5z78wZx/724D9mW8nfr5ulMt3dtK6AfhMeybvpBh2No9lJFHm/4mM26/224wIXDNx3a38PbSJdxDWzWRd6N4buZhxyOoUXXx6lYr7jNut/XnePisdsp7GHLs4gLL42pb7Mu/GYUP8xJ3rMzJS17BFC+djGbdbvX/k3oyTsO7e9d3I2Oo+rarAu7/oBNnx51OIYnelfGv4Ztq+5dX5/l39N3bdaldG0U9nWnw5t1bNbduRzJli/+cjiGJ/tVpUzVwjbrdgad5sq5ew7tX7R0IV4YXstm3a1Lkfy08JjDMbR7uRqlAnxs1v22/BTX/gnXlu3dVyDhnnxNb+Enr3ic/6vk1ekUSpl1PH859ftKYk+/Wh3fit4267YtPcnN0AiHjsG3vBdPD65hs+7a+XC2fXnSof0Bnh1SkxLlbOcx+mXxCW5fvp/qftbrw3TxNO0GVrfZdvXsPbavPOVwDM+/VotiZQvZrPtpwTHuXnNsSoIyVQrzZP+qNutUVSX6vuMvlV3cDSh62xfuMQ9MDlfI6Z10GN1sn9HM8Rbioh1vAPJIYjBZ0tUIxcXdGSVJXURMpMnhShS9QZ9sTK10x+DhTJK6j3THYHS1fZ0fb7JgymQM0ZGmhF9+4MlWT/Fkq6eS7dfh+Y60bN2CT2Z/wqqvHjbsWrlyJcHBwQwdPIxZH38CQK9uUMq3DOMnjGXJomX069PfJi9XD2dIEsPrrw3nwYMH/Lx5K3Xr1gOgZ9c+tGzdglGjRvFsuxfw9vYGEipX+/bty927dzl69Cj+/v6YYs2YYh+eh8S/I7FRJgDq1WnASx26JsRQyDlZRVT0fROQ/LuwWFSiwmNtntOqB5aiwXPlbNLdPa+y+hfbvyvtK7/FhlMzkuWZ3eQtmRBZ4N6G77n1+Rfc+vwL7m34PqfDEdnMoDMQWDpQ+zHo5AVWdtPrdfjXKKr9JG15J4TI/axDhe3YsYOPP/6YSpUq4eLiQpUqVVizZg0AV69epXfv3hQrVgxXV1fatWvH+fPn7ea3cuVKmjRpgoeHB25ubtSrV48VK1YkS7dt2zZ69OhBhQoVcHV1xdPTk8DAQDZv3pwsbf/+/VEUhfv37/PWW29pw6VVr16db7/9NkvPR3p9/fXXmM1m3njjDa0CCKB+/foEBgayfv16oqOj08wnKCgINzc3hg4darN+1KhR2nYrf3//ZBVAANWrV6d69ercuHGDmzfTfgG6ZMkSFEVh4MCBaaYVoqBS1eSvJOItqrYuxk6rdBXtfY4QQiRj776SeDkuSc9GBbmviLxh1eog3L1c2BW8k0/mzqZmnWoULu5FtepVk5UrypYrRZES3rzw4nNcuHDBbn5ffb2KJ55sSZFi3vj4+NCkSRO75Yrtv/1Kv5f7UL1WFYqU8Oax0sVo90wbfvr5x2RpE5crxowdTYWAcvgU86R+47p8t2F9lp6PrFKmTEIDnLCwezbrreWDN14fYbN+0MDBuLq6smbt6jTzDgkJYe//fqdF8xZaBRCAwWBg6JBhREREsPnHTdr6P/7Yx/bt23nnnXfw9/fHbDZz/37qlbtWUVFRDpWL8hvpCSSy1O3IWL7efyld+/RsVDbtRLlcxC8/E33oMACu9eri3aljDkckhBAir7m7ejVh/xVKrMp88QXOfn5205uuXePSq6/arPN+qTNFBvRP8TOuvD2GmNMPWy46+RTGb1XKvUMifvmFW59/brPO94MPcKtTJ4U9Mm/cuHFERkbyyiuv4OrqyuLFi+nVqxd6vZ4xY8bQtGlTpkyZQmhoKHPnzuXFF1/k2LFjWm8TgMGDB7N48WKee+45PvjgAwwGAz///DMDBgzg3LlzTJ06VUu7YsUKbty4Qe/evSldujS3bt1i5cqVtG/fnrVr19KtW7dkMT711FO4ubkxZswYzGYz8+fPp1u3bpQrV44GDRokS59UZGQkMTEPJ1aOjY0FwGg02k3vyDjV+/cntNxv2rRpsm1NmzYlODiY48ePpzrc2o0bNwgNDaVp06a4urrabPP398fX15cDB9JunW+xWLh+/TrOzs5aa72UnDhxgv3799O6dWsqVKiQZt5CFFSK8vAFrFVarYaV//YTQgh77N1X7DSAt9kk95W84f66tdxf/7CBkqJTKDM/5XJF/I3r3HxjmM06j/Yd8ezVJ8XPuD72HWJOndaWdT4+PLZwWcoxbd3K7flf2KwrPH4ixuo1Uz2WzJg4+X0ePIikb5/+uLq6siLoy2Tlignvvs+lS5f4YsE8uvXqwoH/HbQpVwwf8RpfrljG0089w8T3J2FwdmLr1q1auWLyxCla2q++XsXNmzfp3q0HpUqW4vbt26xe8xVdur/Eyi9X0fmlLslifOqpp3AxuvDWiJGYzWaWLF1E3wG98ffzp169+snSJxUZGcn9iAc2PWBSU7SI4/PfxMTEEPkgElNcHOcvnGfa9IQy1LPPPKulUVWVP//8k5IlS1K2rO315erqSs0atTh85DCqqibrdZOYtSzTqGHjZNsaN0rotXzo0EH69OoLwI8/JVSsVaxYkS5durBp0ybi4uIoVqw4vXv24b1337dbthozdjRDhg0CoHTp0vTu3Zv33nsPNzc3h89LXiWVQEIIIYQQuYD5bhhx521bn6lxKQ/zoMbHJ0tvvpP6kC+mK1ds9rEUS304DnN4RPKYHnGrqaioKA4dOqSNzdy1a1f8/f3p3r07U6dOZdy4cVra4sWLM2rUKH777Tfatm0LwJYtW1i8eDHTp0/nnXfe0dK+/vrrDBs2jBkzZjBw4EDKlUvour9kyRLc3d1tYnjzzTepXbs2U6ZMsVsJVLlyZb788kttuXPnzlSqVIm5c+eyenXaLd1ef/11Vq5c6fA5cWR4iMuXE4bBsjfvj3Xd5cuXU60ESi0P6/ozZ86kGcsXX3zBtWvX6Nevn80Y2/YsWbIEgEGDBqWZr8i9zt7+g4WTpzucPuk7AEWBXpOTF/pTknQOGoDabcpSo1Xa816llmdmY6jbzo9abcrYSe0Yg1GfYgwxJjPPffY7N+7H4KpPmF8iwpR8jpJD7hYOu5iJNpt5zNOFLcMbOTR3h5XR1SnT56HB8+Wo94y/w3kk5ephSF8MdoYBbtyhPA2fL8fevXsBaNbM8fwA3L2MmY6haacKNO6QfAhMR3kUdsl0DM27VKLpS8l7bNpj7+WcV3G3TMcQ2P3xdM0JlJTPY+6ZjqFVz4BkMaR0bdiLoUhpj0zH8ETfKumaEyipYmXTF4OTnRjaDKiabE6gpPeVOLOFOLMlWV2QxaJyRW9hS2kcvq/Yi6HdwGrpmhMoKd+KXpk+D08Pqp7ms5X1+mjeokqybSUDvNMXg535fJ4dWjNdcwIlpSgKroVSHoY+MioC08V/bNYlLVe4uD8cwSTunpIsvRJ5L9XPiL92zWYfp8hiqaaPvZ+8XGFQ41LdJy16gw5XQ/L9rXOsxcRGc+jww3JFrz49KFeunE25wvo9lCz9GKNHj+Z/B/bYlCu+XLGMjz76SCtXxMXFMXToUN566y1mzJjBK6+8opUrvly+LFm5YvQ7o6hTpw4zZn1En/69ksVauXJlli17WHnWo1c3Hn/8cRYunc9Xrb5K8xykt1xhsdifz8rVI/mINstWLuaNN97Qlh977DE+/vhjhgwbrK27e/cuUVFRVK9e3e53WdavDPsP/EFM/AMKFy6cbLuVtRziX94vWT4VAxLO7/Wb17Rtf587CyQMW12qVCkWLlyI0Whk5cqVzPl0Nn+fP2MzsoOHlxvPPfcczzzzDGXKlOHmzZt8//33TJ8+ne3btxMcHIybmxuuheyP7KPTKbh7G+k1+WFjSHsj0BSuqPB8H9v7Q5s2bVI87uwklUBCZAFF74Ty39Aril5+rYQQQoiMGj58uE3Fga+vLwEBAZw8eZK33nrLJm2rVq0AOHv2rFZYW7lyJUajkV69enH7tm2lWMeOHVmwYAHbt2/n1f96USUuqD148ICYmBhUVaV169YsWrSI+/fvU6iQ7TjuiSuXAPz8/Hj88cf5+++/HTrGMWPG0Lt3b2057r9CubNzxgvBUVFRgP3eRNbzaU2TkTys+aSVx65duxg9ejTlypXjk08+STVtbGwsX331FUWLFqVjR+lFnZdZVHOySe3TQ1GUTO0P/03Enok5AXN7DM4uTrSvX4oley7ywGLBqOiwJGvCD2ZUYlULOicd7euVxrOQ/d/nFGPQZf48OBn0kInRkbMyBr0h4eVpevPLDedBlxUx2Hn5LDEkSM+1kRUxGDJ7HvQ6nDM55HXSGOzdV0wKmJLUOaiqSpzZglMG7yupxZBeWXIejGnHYL0+7MWr1+syPfy4IzGkJbVeFUrSyVbS2N9eXoqS+mekN6ZkE8D8lz69n+HI51nXDx8+3KZ3e8mSJZOVK6xpn3jiCSBhns127doBCcOcGY1GevfuzZ07CXObWXvwW8sVv/32m1au8PDw0D7LXrkiMjLSbrki8XH4+/tr5QpHzk3SckVa0jpniXXs2JEqVarw4MEDjh8/zrfffkt4eDhms1nrLZW4/GAvD2s5JDo6OtXjsebj4uKSLJ31O4yKitK2WYd+c3Z25vfff9d68vTo0YMWLVrw448/8ttvv/Hkk08C0Lx5c7Zs2WKT78CBAxk9ejSzZ8/ms88+Y+zYsan/XjnwrKjTJ08Tb3F8/q5HSd5WC5EFyiyYn9MhiBwUEx/DB398oC2/1/g9XJxSb/ksslZ8nJldX5/Vllv1DMh0gVMIkTPsDQlWuHBhSpYsmaxXibU1mbVQBnDq1CliY2MpUybl1vjXrz+csDwkJIT33nuPn376ibt37yZLGxYWlqywZi/GokWLEhoamuJnJla1alWqVn04wW9aw8E5wlrwiY2NTTaUm3XoubSGOUichz0xMTGp5rF3715eeOEFihUrxrZt21Jt7Qfw3XffcffuXUaOHJmpCjAhCop+TfzZ/Nc1rt6LJjbekmxeDotF1ebw8PVyoW8T+8P+CCGEVdL7StLXn3JfEXlZQSxXZKXSpUtrIwR06NCBXr16UatWLa5fv87SpUsBx8oPidOlJLV87OWRuNIn8XpFUXj55ZfZu3cv27dv1yqBUjJx4kQ++eQTtmzZwtixY1NNm9dJJZAQQmSSWTWz7+o+m2WRvSwWlX9P37VZFiKv0Rf2wbmibSFASeXFuOLklCy9Po0xng2lSmGOCNeWnXxSf0mv9/JMHlOSCoasptfbr8BNaT3YDpdmsVjw8PDg+++/TzF9+fIJw/NERkYSGBhIeHg4I0aMoGbNmnh6eqLT6fjyyy9Zs2aN3SETnJzsP0I7OqxHeHi4zWSkaVUCPfbYY2nmWbp0aU6cOMHly5epVKmSzba0hnlLnEfi9Eldvnw5xTx2797Nc889h4+PDzt27KBixbSHH7IOBfdqkrmthBD2Ffd0YVGfegxedYjrETGQ5HknOt6MQa/D1yshXXFPaZQkhEhd0vtKXLztc4/cV/ImKVf895mPoFyRtAd/bitXpMWRckVKypUrR2BgICtWrOCLL77AaDRSuHBh3NzcUi0/uLu74+Pjk2reqZVD7JVlrBVzJUuWTJbe19cXwG5FXFKFChWiSJEi3Lx5M820eZ1UAgkhhBBC5AKFe/WicK/k40SnxODrS4UkXdrTUmrmx+lK7/n003g+/XS69slpjz/+OGfOnKFGjRqUKFEi1bQ7duzg33//ZdmyZbz88ss226wVFI/CiBEjsnxOoIYNG/LLL7+wb9++ZJVA+/btw9XVlerVq6eaR4kSJShbtixHjx4lOjrapkdRaGgo165d04bHSGznzp08//zzFC9enB07dmjjoqfm/Pnz7Nq1ixYtWlC5cuU00wshElTx9WT9kCYE7QtlYfAF4hNVBPl6udCpTmn6NvGTF7VCCIclvq+s3BfC/ZiHE8zLfSVvknJF1rBXrkip8VZ+KlekJjo6GrPZTEREBMWKFUNRFOrXr8/u3bsJDQ3Fz8/PJu3Ro0dp2LBhmkPbWect3bdvX7Jt1nWJ5zZt0qQJ8+fP59KlS8nS//vvvwBplgUhoaLo9u3bVKmSfP6v/EYqgYQQQgghRL7Rv39/Nm3axOjRo1m5cqU2XrVVeHg4Li4uGI1GrRVg0sLQsWPH+OGHHx5ZjI9iTqCePXsydepUPv30U3r27Km1Kjx48CDBwcH06tXLZqiE8PBwrl27RtGiRSla9GFLzz59+jB16lQWLFjAyJEjtfWzZ8/Wtif222+/8cILL1CyZEl27NhB2bJlHYrXOoSE9ALKGH9//xSHCWnZsiW7du2yWRcbG8uMGTNYtWoV//77L4ULF+b555/nww8/pHjx4tkQschKxT1dGP1UAD8ev8r18FhUVBQUdoxq5dBk7UIIkZT1vuKkV1gU/I/cV4Qgb5YrssL169ft9hg6ePAge/fupWLFihQrVkxb36dPH3bv3q3NrWO1YMECoqOjk5Ufrl27Rnh4OGXLltXKJ+XKlaNZs2bs2rWLQ4cOUa9ePQDi4+P57LPPKFSoEB06dNDy6NChA0WKFOGrr77ivffe03oamUwmFi5cCMALL7ygpb9z5w5FihSxiUNVVcaMGQPAiy++mO7zlNdIJZAQQgghhMg3OnbsyJAhQ1i4cCHHjx+nU6dOlCxZkhs3bnDs2DE2bdrE6dOn8ff3p1mzZvj6+jJq1Cj++ecf/P39OX36NEuWLKFGjRocOnTokcT4KOYECggIYMyYMXz00Ue0atWKPn36cPv2bebMmUPx4sWZNm2aTfrvv/+eAQMGMHHiRCZNmqStHzNmDOvXr2fMmDGEhIRQq1YtgoODWbVqFT169KBNmzZa2oMHD/LCCy9gMpl49dVX2b17d7K42rZtm6wVnslkYsWKFfj4+NClS5cMH3NB5+XlxZtvvplsvb+/v82yxWKhQ4cObN26lcaNG/PSSy9x7tw5li5dym+//cYff/xhU5AXeYdep0OvU7BOti0vaoUQmWXQy31FCCt75YpixYpx8+ZNTp06lSvLFVmhR48emEwmWrZsSdmyZYmNjeXo0aOsWbMGRVG0SharAQMGEBQUxLx58wgPDycwMJC//vqL+fPn06JFC/r372+Tfty4caxcuZKdO3fSqlUrbf1nn31GYGAgTz31FG+99RZFixZl1apVHD58mEWLFtkMKVeoUCHmz59P9+7dqV+/PoMGDcJoNLJ69WqOHDnCkCFDbHoOPf3005QoUYL69etTunRpbt26xQ8//MCBAwcIDAzktddey9JzmBtJJZAQWSDm7Fks9+8DoCtUCJeAgByOSAghhCi4FixYQOvWrVm0aBFz5szhwYMHFC9enICAAKZNm6a1bPP29mbbtm288847LFiwgNjYWGrWrMnq1as5fPjwIyusPSpTp07Fz8+PL774ghEjRuDh4UHbtm2ZNm1aqhPaJubp6cmePXuYMGEC69atY9GiRfj5+TFt2jRGjx5tk/bEiRPaGOQpTaS6c+fOZJVAmzdv5saNGwwfPjzZpLzCcd7e3jYVeClZuXIlW7dupUePHqxevVobjmPhwoUMHTqUCRMmsGjRokccrXgUMjukixBCCCFSVxDLFf369eObb75h5cqV3L59G4CyZcvSt29fRo4cSUCSd556vZ6ffvqJKVOm8M0337BmzRp8fX0ZOXIk77//fqpzMCVWt25d9u7dy7vvvsvMmTOJi4ujRo0arFu3js6dOydL37VrV4oUKcK0adOYOnUqcXFxVKlShYULFzJo0CCbtJ07d2bz5s0sWLCAsLAwjEYjVapUYc6cObz22msYDIYMnq28Q1HlyTHfaNKkCWB//MTssHv3bm5HxhJTJH0VID0bOTZsSJaLvQ/z6j9cHn4QjIUylNWlQYOIPnQYANd6dSm7eHFWRJgrWFv1BgYG5nAkudcD0wNe+P5hN9PNHTfjbnDPwYgck5++27iYeFZP/ENb7jW5Mc4uBbedQ376bvOT48ePA1CjRo0M55EVPUZE7iPfq+My83uU08/KWcna2yckJCTNtE2bNmXfvn2EhITYjNOuqioVK1bkxo0b3Lp1y2YOqPTI6fNakP/mtZm9ixsRsdryiclP5WA0uVNBvj5E6uTasO+LnedZsOuCtlxQ7yu5+frIijKFyDh5bi+YHPm9S+m+kdPPylYF9w2ZEEIIIYQQQuRRsbGxrFixgqtXr+Lp6UmDBg1o1KiRTZqYmBj2799PQECATQUQgKIotG3blkWLFnHw4EFatGiR6udZC7BJnThxgrJly9odDjA7REREAOTY5+ekqKho4s0WbbkgnoO0FOTrQ6ROrg37Qi7GEm+O15YL6vnJzdeHq6srRqNRq4wQ2cval0LOf8GiqiqxsbGp3hNSum9ERETg6en5SONzhFQCCSGEEEIIIUQec/36dQYMGGCzrkGDBqxZs4YKFSoAcOHCBSwWC5UqVbKbh3X9uXPn0qwEEkIIIYQQQuRNUgkkRBYoPmqUzZxAQgghhBBCPCoDBgygRYsWVK9eHQ8PD/7++28++eQTVq1aRZs2bTh+/DiFChUiPDwcAC8vL7v5WFslWtOlJqUhLKw9hHJqyJzcPGTPo+b65y7uxz9siVwQz0FaCvL1IVIn14Z9x83ncQp9OBxcQT0/ufn6sA5LJcOR5QwZDq5gUhQFFxcXGjRokGKalO4buaEXEEglkBBZwiUgffMgCSGEEEIIkVETJ060Wa5duzZBQUEArFq1iiVLljBy5MicCE0IIYQQQgiRy+hyOgAhcoyig2IBD38U+XUQGaOgUN67vPajoOR0SAWOoigU9nXXfhRFvgMhhBAFz+DBgwHYu3cv8LAHUEo9faxjl6fUU0gIIYQQQgiR90lPIFFwObtDv005HYXIB9wMbixttzSnwyjQDEY9Hd6sk9NhCCGEEDmqaNGiADx48ACA8uXLo9PpOHfunN301vUpzRkkhBBCCCGEyPuk64MQQgghhBBC5AP79+8HwN/fHwBXV1caNmzI2bNnCQ0NtUmrqiq//vor7u7u1K9fP7tDFUIIIXJcjMnModC7BP99i0Ohd4kxmXM6JCGEeCSkJ5AQQgghhBBC5BFnzpyhbNmyuLm5JVv/zjvvANCzZ09t/aBBg/jjjz8YN24cq1ev1oZMXbRoEf/88w+DBg3C1dU1+w5AZB01pwMQQuQ3BWVU7RsRMQTtC2HD4SvcizKhoqKg4O1moFPdUgQoFrxdpN28ECL/kEogIbLAv0OHEX34MACudetSZsH8HI5ICCGEEELkR2vXruWTTz4hMDAQPz8/3N3d+fvvv/npp58wmUyMGzeOwMBALX2/fv345ptvWLNmDRcvXqRly5acP3+eDRs2UK5cOT788MMcPBohhBC5iVoAKpdPX4tg8KpDXI+IwWS2oENBURJ6yF6PiGHJnot4O6u8UVcaSAgh8g+pBBIFl8UMN048XC5RHXT6DGWlmuNR4+O1/4uCxWwx83fY39ry4z6Po8/gtSQyxmJRuXM5UlsuUtoDna6ANGMTQghRoDzxxBOcPn2aI0eOsGfPHqKioihatCjPPvssw4YNo127djbpdTodGzduZPr06axatYo5c+ZQuHBhXnnlFT788EOKFSuWQ0cihBBCZK8bETEMXnWIq/eiAXB10tuUGy0WlTizhdvRKp8djqZdYAzFPV1yKlwhhMgyUgkkCi5TFKzu+nB5+EEwFsq5eESeFWOO4bXfXtOWN3fcjLvOPQcjKnji48xs+eIvbbnX5MY4u8ifOCGEEPlPy5YtadmyZbr2MRqNTJw4kYkTJz6iqIQQQojcL2hfCNcjYgAwOum0IVKtdDoFo6Ij2mTmboxK0L5QRj8VkBOhCiFElpI3ZEJkAc+nn8G1Zi0ADCVL5nA0QgghhBBCiPyuAIzaJIQQWSbGZGbD4SuYzBZcnfRaBZBFVVFV0P/XI0hRFJx0YDLDhiOXeb11RVwMMtKHECJvk0ogUYAp4FHMdjmDvDt1zHw4QgghhBBCCCGEECLLnbwazr0oEzoUbQg4i6oSHWdGJaFnkEGvA0CngKJA2AMTJ69GUM/PJwcjF0KIzNPldABC5BijBwz5/eGP0SOnIxJCCCEKrJCQEBRFsflxcXEhICCAt99+m7CwMJv0/v7+ydJbf7Zs2WL3M5YsWUKtWrVwdXWlWLFi9OzZk9DQ0Ow4vAzLipjv3LnD0KFDKVmyJEajkYCAAGbMmEF8fPJ5DNetW8crr7xCnTp1cHZ2RlEUdu3alWLet27d4rXXXsPPzw9nZ2dKlizJq6++yvXr19N7qEIIIYQQj0xkrBkVlcQjwMXFW7RelbHxlmT7qKhExsq8z3lNessVDx48YPz48VSqVAmj0UixYsXo1q0b586dS5Z3cHAwLi4udssgRYsWza5DzJSrV6/i7e2NoihMmjTJbpr0lB9Ss3v3blq3bk2hQoUoVKgQrVu3Zvfu3SmmT0/ZJyoqirFjx+Lv74/RaMTf35+xY8cSFRWVrhgLCukJJIQQQgghco0WLVowaNAgIKHwsWXLFmbNmsW2bdv4888/cXZ21tJWrlyZd999N1kederUSbbuvffe48MPP6RZs2bMnTuXW7duMXfuXHbt2sWBAwcoXbr0ozuoDMqKmO/fv09gYCBnz55l2LBh1KxZk927dzN27FhOnDjBqlWrbNJ/8cUX/PHHH9SoUYPKlStz/PjxFPO+desWjRo1IiQkhL59+9KkSRMuXrzIF198wfbt29m/fz/FixfP9HkQQgghRPZQMj5ASq7nYdSjoKCqDwfTVNMYV1NBwcMor07zKkfKFdHR0bRq1YqDBw/y4osv8tZbb3Hr1i3mz59P48aN+d///kdAQPJ5oQYNGkSLFi1s1rm4uGTLcWXW0KFDMZvNKW5Pb/khJVu3buX555+nVKlSTJw4EaPRyOLFi2nTpg1btmzhqaeeskmfnrKP2Wzm2WefJTg4mD59+hAYGMhff/3FrFmz2L9/P9u3b0evl2EcE5M7mRBCCCGEyDXKly9P7969teURI0bw/PPP8+OPP7Jx40a6dOmibStRooRN2pT8/ffffPTRR9StW5ddu3bh5JTwCPz000/TsGFDxo8fT1BQUNYfTCZkVcwzZ87k1KlTzJ49m5EjRwIwcOBAvLy8+PzzzxkwYACtW7fW0q9cuZKSJUtiMBiYNGlSqpVA06ZN4+LFi0ybNo1x48Zp69u3b0/z5s2ZMGECixcvzugpEEIIIUQ2S6tSJC+rVtILbzcD1yNisFhUbUg4eyxqwrnwcTdQraRnNkYpspIj5YrFixdz8OBBBg0axKJFi7S0ffr0oXr16gwfPpxt27Yly7tJkyYOlUNym7Vr1/Ljjz/y8ccfM2rUKLtp0lt+sMdsNjNkyBCMRiO7d++mbNmyAPTt25dq1aoxdOhQzp07p1XUpLfss3LlSoKDgxk+fDifffaZtt7f35/Ro0ezcuVKXn755YyfqHxIhoMTQgghhBC52tNPPw3A+fPnk22Lj48nIiLCplVnUl9//TVms5k33nhDK1AA1K9fn8DAQNavX090dHTWB54JWRVzUFAQbm5uDB061Ga9tdCXtCLJz88Pg8HgUIw7duwAYMCAATbrmzZtSqVKlVizZg0xMTEO5SWEEEII8Si5GPR0qlsKg15HnNmS4rOjqqrEW0Cvg051SuNikN4E+UnSckVKz7Ply5enRYsWbN++nX///dduXlFRUbmuDJGa27dv88YbbzBixAjq1q2bYrr0lh/s2bNnDyEhIXTp0kWrAALw8vJi4MCBXLx4kT179mjr01v2scaQtCJr2LBhuLq65roGfrmB9AQSBZfFAvevPVwu5Au6jNWL3pr3ObEXLgBgrFCBYsNfz4oIhRBCFCQHlsCfS1NNYrAWVrNyrI4270Pl5+xvu3MB1va0XddgIDR8Nes+3wF///03QLJxtvfv34+bmxsmkwk3NzeefPJJpkyZQq1atZKlg4TKiaSaNm1KcHAwx48fp2HDhhmKLzIyMl2VHY6MF54VMd+4cYPQ0FCaNm2Kq6urzTZ/f398fX05cOCAw3EnFRsbC4Cbm1uybW5ubkRGRnLixAnq16+f4c8QQgghhMgq/Zr4s/mva1y9F01sfPKKIItFJc6cMDdQYReFvk38ciLMTFtzZg3fnPkmU3lULlKZ6S2mp7h97J6xnLlzJlOf0a1yN3pU7pGpPNIrabkiredZVVXZv38/ZcqUsdk2YsQIreKodOnS9O7dm/fee89uPukRHh6OyWRyKK1er8fHx8fhvEeMGIG7uztTpkzhzz//tJsmq8oPaZVlAA4cOECrVq0cSp+47KOqKn/++SclS5bEz8/2d9TV1ZXatWtz8OBBVFVFyc9jXKaTVAKJgsv0AJYk6r44/CAYC2Uoq+jjx4g+dBgAS9SDrIhOCCFEQfPgNtxKvSD1SLpwx0SkvM0clzymB7cfRRSa2NhYbt9O+Iy7d++yadMmFixYgJeXFx06dNDSVa1alQEDBlClShV0Oh1//vknn3/+Odu2bWPbtm02Y3RfvnwZwO4cOtZ1ly9fznAl0Ouvv87KlSsdTp9aryWrrIg5tTys68+cyXjhvVq1apw9e5YdO3bw4osvauuvXbum5Xvp0iWpBBLiEXHkXiJEQRRjMnPyajiRsWY8jHqqlfSS3hwOyu/vS4t7urCoTz0GrzrE9YgY4i2299HoeDMGvY7CzjCirivFPbNvjpesvG7DYsK4EH4hU/F4GlMfBu9q5NVMf0ZYTFim9k+LI+WKatWqsXXrVnbs2EHNmjW1faOiorSKiUuXLmnrDQYDzzzzDM8//zxlypTh5s2bbNiwgenTp7N9+3aCg4MzVRHUoUMHgoODHUrr5+dHSEiIQ2l/+uknvv76a37++Wfc3d1TTJdV5QdHyzLpTd+wYUPu3r1LVFQU1atXTzHGffv2ERYWRuHChdOMtaCQSiAhhBBCCJFrrF27lrVr19qsq127NosWLaJ48eLaup9++skmTefOnenWrRuNGzdm0KBBnD59WtsWFRUFgNFoTPZ51glcrWkyYsyYMVk+JnhWxJxaHtZ8MnPcI0eOZOPGjQwdOpTY2FgaN25MaGgob7/9NhaLxaEYhRBCiKxyIyKGoH0hbDh8hXtRJlRUFBS83Qx0qluKfk38s/Wlfl5UEOqWq/h6sn5IE4L2hbJkzz/Exlu0bb5eLnSqU5rHlWt4u2TPDBpy3T46jpQrhg0bxqJFi3j//fdxd3fnySef5Pbt20ycOJE7d+4Ats+zTZs25fvvv7d5vn7llVcYPXo0s2fP5rPPPmPs2LEZjnn27NmEhTlWOZa0p05KIiIiGDx4MD169NCGw0tJVpUf0luWSU96R2K0ppNKoIekEkiILOBc1g/Lgyjt/0IIIYTImHbt2vH222+jKApGoxE/P79kwy+kpG7durRv357vvvuO8+fPU7FiReDh8A6xsbHJCkvWYdwy02KvatWqVK1aNcP725MVMSfOw56YmJhMHXezZs1Yt24dw4cPp3v37gAoikLnzp2pX78+8+fPx9NTJlMWQgjx6J2+FqH17jCZLehQUJSEHnPXI2JYsucim/+6xqI+9ajiK3+bCrrini6MfiqAQ6FhHP33nlbxsmNUK1wMenbvvpEtcch1+2g5Uq6oUKECP//8MwMHDmTQoEHa+tatWzN27FimTJni0PPsxIkT+eSTT9iyZUumKoHq1auX4X1TMmbMGKKiopg7d26aabOq/JBaPvbKMukp+zgSY9L8hVQCCZElHpvwbk6HIHKQs96ZD5t/aLMsspfeoOPJflVtloXIc9yLQrHKqSax/Nc8U5eVY3W4pFKo0Tsnj8k97flsMsPX15cnn3wyw/uXK1cOgJs3b2qVQKVLl+bEiRNcvnyZSpUq2aRPa8gDR4SHh6drUtjHHnsszTRZEbO9oRaS5pOZ4wbo2LEj7du359SpU4SFhVGhQgVKlSpF165dAahSpUqm8hdCCCHSciMihsGrDnH1XsLfYlcnPTrdw2cl6zwvV+9FM3jVIdYPaZJToeZ6+X04uKT0OgW9TgESDjw7hw3MyHXraI8gHxcfKnhVyFR8JT1Kprk9IjaVYaUd4OPi+Hw2GeFouaJFixacOXOGs2fPcvPmTUqXLk358uUZM2YM4NjzbKFChShSpAg3b97MVMx3794lLi7OobR6vZ5ixYqlmubw4cMsXryYCRMmEBERQUREwnd25coV7fPOnz9PsWLF8PLyyrLyQ2r52CvLpKfsU7hwYdzc3FKN0d3dPV3zJRUEUgkkhBCZZNAZaFoy+eR1Ivvo9TrKVJVuviKPa/hqwk8qTP+1dkqp63uWK1IBXtufPZ+VRayTvSauaGnYsCG//PIL+/btS1ao2LdvH66urimOKe2IESNGZPmcQFkRc4kSJShbtixHjx4lOjraplVdaGgo165do127dg7HnRK9Xk+NGjW05djYWHbs2EGlSpWSxS6EyDoFYNQmIRwStC+E6xEJLb+NTrpkE4HrdApGRUdsvIXrETEE7QuloWOjKIl8LicrvTJy3Y5+KsChvHtU7kGPyj2yPObEpreY/kjzz26KolC5cmUqV37YAO7nn3/Gy8uLZs2apbn/3bt3uX37dqYbQHXq1ClL5wS6dOkSqqrywQcf8MEHHyTbPm/ePO3n9ddfz7Lyg3Xe0n379vHqq7Zl3H379tmksf7f0bKPoijUr1+f3bt3Exoaip/fwxGZoqOjOXr0KA0bNkz2O1XQSSWQEEIIIYTIU+7cuUORIkWSrd+1axdbtmyhRo0alC9fXlvfs2dPpk6dyqeffkrPnj1xckp4BD548CDBwcH06tUrU8MFPIo5gdIbc3h4ONeuXaNo0aIULfqwt1afPn2YOnUqCxYsYOTIkdr62bNna9uz2vjx47lz5w6ffPJJlucthBBCJBZjMrPh8BVMZguuTnrtpZ/ZklBNqv+vZ4WiKDjrdUTHm9lw5DK1GznhrJcXhCJnpH7dquh1CSNbJL1uX29dMQejLlg+++wzTpw4weTJk22eue2VQ1RV1XoNvfjii5n63KyeE6hhw4asW7cu2fqTJ08yadIkunTpQteuXalTp462Lb3lh0uXLhEVFUWFChUwGAwABAYG4ufnx7fffsvkyZO1YfgiIiJYunQpfn5+tGjRQssjvWWfPn36sHv3bm0eJqsFCxYQHR39SMo4eV2eqgT66quv2LNnD4cOHeL48ePExcWxfPly+vfvb5POZDKxadMmNm3axIEDB/j3339RFIWqVavSv39/Bg0ahF5vv4vn6tWr+fTTTzl58iTOzs40a9aMKVOmULduXbvp//zzTyZOnMj//vc/TCYTNWrUYOTIkdoQGEldu3aNCRMm8NNPPxEWFoafnx99+/ZlzJgx2i+KEEIIIYRI2apVq1i8eDFPP/005cqVQ6fTcfDgQb766ivc3d1ZtmyZTfqAgADGjBnDRx99RKtWrejTpw+3b99mzpw5FC9enGnTpmUqnkcxJ1B6Y/7+++8ZMGAAEydOZNKkSdr6MWPGsH79esaMGUNISAi1atUiODiYVatW0aNHD9q0aWOTz+7du9m9e7f2f0g437///juQUOBK3NqucuXKtG/fnooVKxIdHc33339PcHAww4YNo2/fvll6ToQQQoikTl4N516UCR2KNpSWyWwhNt4CgKtBr1UE6XQKOhTCHpgIjdBRySf7hv4SIjF7163ZohJtMgNgdAKDPqEiKPF1e/JqBDL4fNYLDAykTp06VK5cGVVV2bp1K5s2baJDhw6MHz/eJm379u0pXrw4DRs2pHTp0ty6dYsffviBAwcOEBgYyGuvvZapWLJ6TqCSJUvSuXPnZOutjcaqVq2abHt6yw99+/YlODiYixcv4u/vDySMFDB//nzat29PixYteOONN3B2dmbRokVcu3aNzZs327ybT2/ZZ8CAAQQFBTFv3jzCw8MJDAzkr7/+Yv78+bRo0SJZXYHIY5VAEyZMIDQ0lKJFi+Lr60toaKjddBcuXKBz5854eHjQpk0b2rdvT3h4OJs3b2bYsGH89NNPbNq0KVm3sKlTpzJhwgT8/PwYMmQI9+/fZ+3atTRt2pTffvstWfe/nTt38tRTT+Hi4kL37t0pVKgQ3333Hd26dePff/9l1KhRNumvX79Oo0aNuHz5Mh07dqRSpUoEBwczYcIEDhw4wA8//CBd1YQQQggh0tCgQQN27drFhg0buHXrFvHx8ZQqVYqXX36ZsWPHavMCJTZ16lT8/Pz44osvGDFiBB4eHrRt25Zp06YlmyA2t8iKmD09PdmzZw8TJkxg3bp1LFq0CD8/P6ZNm8bo0aOTpd+xYweTJ0+2Wffll19q/2/evLlNJVDjxo3ZsGEDV65cwdnZmTp16vDtt9/SpUuXDB61EEII4bjIWDMqqs2wXtYKIEjoceFufPjqS1FARSU6XgZUFDnH/nVrTvR/i1YJBA+v28jYeGQQ9KzXpEkTNm3axNKlS1EUhWrVqrFo0SIGDhyITmc733DHjh358ccfWbBgAWFhYRiNRqpUqcKcOXN47bXX8kUD//SWH1Ly7LPP8uuvvzJlyhTef/99IKEc9+uvv/LEE08kS5+eso9er+enn35iypQpfPPNN6xZswZfX19GjhzJ+++/n2Lnj4JMUR0ZlDyX2L59O5UqVcLPz4/p06czbtw4uz2Brly5wsaNG+nXrx/u7u7a+gcPHtCqVSsOHjyYrHB67tw5qlatSvny5Tlw4ABeXl4AHD16lMaNG1O+fHlOnDih/fLHx8dTuXJlLl++zB9//EHt2rWBhKE4GjZsSEhICH///bdNIblfv34EBQWxYMEChgwZAiR0GezZsydr167l66+/pkePjI/Z2aRJwuSG1rEVs9vu3bu5HRlLTBHHxii16tmo7COKKA2x92Fe/YfLww+CsVCGsrq/YwfxN28B4FS8GIVat86KCHMFayvgwMDAHI4k94qOj2bi3ona8uRmk3F1yv2DTOen79YUZ2Zn0Glt+Ym+VTA4F9w/+vnpu81Pjh8/DmAzd0p6xWb3nEAiW8j36rjM/B7l9LNyfpXT57Ug/81rOXMndyIfTh59YvJTORhN7lSQr4+C4lDoXXovPUBcvAXX/57/I2PjbdJ4JKoEio4z4+ykY3R9I5V89HJtJPHFzvMs2HVBW87v95U+y/Zz5NI9bdl6vI/63mHvun0QF0/iN7T2rtuvBjbCOeIykLkyhcg4eW4vmBwpg6R038jpZ2UrXdpJco8nn3zSplIlJaVKlWLYsGE2FUAA7u7u2liGSSfZWr58OfHx8bz77rtaBRBA7dq16dGjB6dPn9aGwYCEVpIXLlygZ8+eWgUQgJeXF+PHjycuLs5mguD79+/zzTffUL58eQYPHqytVxSF6dMTJlNbsmSJA2dB5EZha9dyc+ZMbs6cSdjatTkdjshmFtXCwRsHtR+Lakl7J5GlVIvKlXP3tB/VkmfaNwghhBBCCCEyqFpJL7zdDFhQsaRRBrBYVCyo+Lgb8PPMU6/DRD6T0eu2WknPbIpQCJHf5Knh4LKCtVuedYIpq127dgHQrl27ZPs89dRTrFixguDgYK02L630YFvRtG/fPmJjY2nbtm2yId/8/PwICAhg7969mM3mNLusWWsQkzpx4gRly5bVah6zW0REBDqLisuds+nab/fukEcTUBr08VHUj3vYcu7g3r2YnTI2KbTn3TAM5oSuu3fvhhGSQ9/BoxAREQGQY9dVXhBjiSEu0bW0d+9eXHQuORiRY/LTd2s2qcTFPew+v3fvXvSGgju8Zn76bvMTV1dXjEaj1nosI6wduDOTh8h95Ht1nKqqxMbGZuj+FhERgaenvDwRQoj8xMWgp1PdUizZc5E4swWjYr9yR1VV4swJQ2x1qlMaZ/2NbI40b5AZCrJHRq9bF0PBHe1CCJE5Ba7pg3VM86SVN+fOncPDw4PHHnss2T6VKlXS0iROn3hbYo899hgeHh4Op7euj4uLS3GeIyGEEEIIIYQQwirvDOwuxKPVr4k/j3kmNMJLPB+QlcWiaut9vVzo2yTtEWaEeNSSXrdJ7+ly3QohslKB6gm0ePFifv75Z1q3bs2zzz5rsy08PJzixYvb3c/aYjA8PNwmPWAzdFzSfdKbPulnpCSlMQStPYRyakzbjM4JFJiTcwIddtYWmzVrluE5gcx160L8f+MOOzmh9/DIighzBRlHO20PTA9w/t72WnI3uKeyR+6Qn77buJh4Qrb9oS03a9YYZ5cC9SfORn76bvMT6zjCmRk/Wsagzp/ke3Wcoii4uLjQoEGDdO8rvYAKhhiTmZNXw4mMNeNh1FOhmAcXbkVqy9VKeklLaiHymeKeLizqU4/Bqw5xPSIGkgyvFR1vxqDX4euVkK64pwtncijWjEh6X5P7WP6QketWCCEyqsC8IduyZQuvv/46fn5+fPXVVzkdjshn8lOljxBCCCGEEHnNjYgYgvaFsOHwFe5FmbCoFswWsKgqOkVBr1PQKQrebgY61S1Fvyb+8kJNiHykiq8n64c0IWhfKF/sPE/i1+m+Xi50qlOavk388tTvfdL7moqKgtzH8pPE1+2C4AuYE1UE5dXrVgiROxWISqCffvqJzp07U6JECXbs2IGvr2+yNF5eXin2wrHOrZC4F4/1/6nt4+Pjk670ST9DCCGEEEIIIUTqLkWYmbBwH9cjYjCZLSgqJB4QyqKqxFtUdApcjzCzZM9FNv91jUV96lHFV3qICZFfFPd0YfRTASzfexGLCioJlcA7RrXKcz1nTl+L0HqImMwWdCgoSsIcMdcjYuQ+lo9Yr9stx65yIyJWq+zLi9etECL3yvdzAv3444906tSJokWLsnPnTsqXL283XaVKlYiMjOT69evJttmbz8fePEFW169fJzIy0uH01vXOzs6ULZtDQ6MJIYQQQgghRB4TFmPhs8PRXL0XjcWiYtTrSGmqHFUFFycdFovK1XvRDF51iJsRMdkab1ZSUzxSIQo25b/ef046HU46Jc+9SL8REcPgVYe0+5qrkx5XZz0uhoR/XZ30+eY+Jh5KfN3q8+B1K4TI3fJ1JdCPP/7ISy+9ROHChdm5cycVK1ZMMW3Lli0B2LZtW7JtW7dutUmTkfSNGzfG2dmZX3/9FTXJbG+hoaGcPXuWZs2a4eRUIDpnCSGEEEIIIUSmbQ81cTcmoXxldNJhVlOuGlGBeIuK0SmhGHw9IoagfaHZE6gQQjgoaF9IwhwxJNzXdDrFZrtOp8h9TAghRLrk20qgn3/+mZdeegkfHx927txp0yvHngEDBuDk5MTUqVNthmw7evQoa9asoUqVKjRv3lxb36ZNG8qXL8/XX3/N0aNHtfXh4eFMmzYNZ2dn+vbtq6339PSke/fu/PPPPyxatEhbr6oq48aNA+DVV1/N7GGLHGK6fp240FDiQkMx2elNJoQQQgghhMhaMSYze6+YMFvAWZ9QtI03p947Jt6sgpKQ3mS2sOHIZWJM5uwIVwgh0hRjMrPh8BVMZgvOeh2KoqCiYjJbsCRqUKwoitzHhBBCOCxPdTtZunQpv//+OwDHjx/X1u3atQuA5s2bM3DgQM6cOUPHjh2JjY2lVatWrFmzJlle/v7+9O/fX1t+/PHHmTRpEhMmTKBWrVq89NJL3L9/n7Vr1wKwZMkSdLqHdWZOTk4sXbqUp556isDAQLp3706hQoX47rvvCA0NZdasWfj7+9t85vTp09m5cyfDhg1j+/btVKxYkeDgYP744w9eeOEFunfvnoVnS2Sna++/T/ShwwC41qtL2cWLczgiIYQQQggh8reTV8OJNKkoSkLLeLMl7QHSVMBiAb1OQYdC2AMTJ69GUM/PJ409hRDi0Tt5NZx7USZ0KFoPoFiThXiLigK4OetRlIT1OrmPCSGEcFCeqgT6/fffWblypc26vXv3snfvXm154MCBXL9+ndjYWACtEiepli1b2lQCAbz77rv4+/szd+5cFixYgLOzMy1atOCDDz6gbt26yfJ44okn+P3335k4cSLffPMNJpOJGjVqMGPGDLp165Ysva+vL/v372fChAn8+OOPbN68GT8/Pz744APGjBmj/SEX2UTRwWM1bJeFyAAFhYDCATbLInspikLR0oVsloUQQgiRv0XGmiGhYw+ATSv51CRUFf03yToqkbHxjyxGIYRIj8hYMyoJldtW8ZaEe5t1SEuD/uFGuY/lH0mnjhBCiKyUpyqBVqxYwYoVK9JM16pVqwzfPHv16kWvXr0cTt+wYUN+/vlnh9P7+vqybNmyjIQmspqzO/Ren9NRiHzAzeDGgicX5HQYBZrBqOeF4bVyOgwhhBBCZCMPox4UsBb9HG0CYm2wo6oJ//cw5qlisRAiH/Mw6lFQUnynlXSt3MeEEEI4Qv5KCJEFirz8CuZOnQDQe0sXbCGEEEIIIR61aiW98DAohMWoWCwqOgdqgRRApwOLRcWCio+7gWolPR95rEKInJHXRgioVtILbzcD1yNiEu5rqdzY5D4mhBDCUVIJJEQWcG/cKKdDEEIIIYQQokBxMehpVsrAzxfjiDNbcNan/bLXSa+ACnFmCwa9jk51SuNi0GdDtFlPRg4SIv9xMejpVLcUS/ZcJM5swZjCsPWqquaL+5gQQojsIZOgCCGEEEKIHBcSEoKiKDY/Li4uBAQE8PbbbxMWFmaT/sGDB4wfP55KlSphNBopVqwY3bp149y5c8ny3rVrV7K8rT9FixbNrkNMt/j4eGbMmEFAQABGo5GSJUsydOhQ7ty5k658QkND6dmzJ8WKFcPV1ZVatWqxZMkSu2ljY2OZN28e9erVw9vbGy8vL2rWrMlHH31EZGSkTdrIyEimTJnCiy++iJ+fH4qi4O/vn9HDFSJD2voZKOzy3+Tp5rRrRZx0CrHxFgB8vVzo28TvkcYnhBDp1a+JP495ugBo96vELBZV7mNZJDf1FJN6fZHdVqxYkWIZqX79+snS//rrrwwdOpTGjRvj5uaGoigOTdtiz4YNG2jcuDHu7u74+PjwwgsvcOzYMbtp01smunPnDkOHDqVkyZIYjUYCAgKYMWMG8fEFe+406QkkCi5zPFz76+Gyby3Qy6+ESL94Szyn75zWlqsUqYKTTq6l7GQxW7h16eHLyWJlPdDppZ2DEHlRixYtGDRoEJDwAL9lyxZmzZrFtm3b+PPPP3F2diY6OppWrVpx8OBBXnzxRd566y1u3brF/Pnzady4Mf/73/8ICAhIlvegQYNo0aKFzToXF5dsOa6MGDBgAF999RXPP/88o0eP5uLFi8ydO5fdu3fzxx9/UKhQoTTzuHz5Mo0bNyY8PJw333yTcuXKsXHjRgYNGsSlS5f44IMPbNJ3796dH374gRdffJFXXnkFgG3btjF+/Hh+/PFH9uzZo70wuX37NhMnTqR48eLUqVOHu3fvZv1JECIN3i463qjryuJTcD08BnMar9Fi4hNazvt6ubCoTz2Ke+bee4AQIu+LMZk5eTWcyFgzHkY91Up6pdlrp7hnwv1p8KpDXI+IAcvD+5rJbMEEch8TIo9QVRWTWUVFRUHBoFdyVeUjwPjx46lSpYrNuiJFiiRLt3r1alavXk3VqlWpUaMGBw4cyNDnLVu2jIEDB1K9enVmzJhBTEwM8+bNo1mzZvz+++/UqmU733N6ykT3798nMDCQs2fPMmzYMGrWrMnu3bsZO3YsJ06cYNWqVRmKOT+Qt5Si4IqPhrU9Hy4PPwj6tF+mCJFUrDmWETtHaMubO26WSqBsFm+y8NPCh61Gek1ujLNUAgmRJ5UvX57evXtryyNGjOD555/nxx9/ZOPGjXTp0oXFixdz8OBBBg0axKJFi7S0ffr0oXr16gwfPpxt27Yly7tJkyY2eedmO3bs4KuvvqJ9+/Zs3LhRW1+vXj06d+7MzJkzmTJlSpr5jB8/nuvXr/Pdd9/R6b/5C1999VXat2/PRx99RN++falUqRIA58+f54cffqBDhw58//33Wh7Dhg2jffv2bN68mWPHjmkFM19fXy5dukSZMmUApBeQyDFlPfWsH9KQJXv+Yemei1o10H8jvyV+f4qvlwud6pSmbxM/eXEqhHhkbkTEELQvhA2Hr3AvyqS9APZ2M9Cpbin6NfFP9R5UxdeT9UOaELQvlC92ntfua046hWKFjHIfy4dkiM/8xWxRiY6LJ9pkQU305SqKgqtBh6uzE3pHJjPMBm3btqVVq1Zppps6dSoLFy7ExcWFFStWZKgSKCwsjJEjR1K6dGn27t2Lp2fCfGZdu3alatWqDB8+nN27d2vp01smmjlzJqdOnWL27NmMHDkSgIEDB+Ll5cXnn3/OgAEDaN26dbrjzg/kLaUQQgghRC6w5swavjnzTapprAWIlFqPVS5Smektpqe4/9g9Yzlz50zGgwS6Ve5Gj8o9MpVHej399NP8+OOPnD9/HkgoDEBCq7DEypcvT4sWLfj111/5999/tcqJxKKiohIKX66ujz7wTAgKCgLQCi9WL730Ev7+/gQFBaVZCRQVFcX69espV66cVgFkNXLkSDZv3szq1auZNGkSAOHh4QCULFkyWV6lSpUCwM3NTVtnNBrtnmMhckJxTxfeaFOJr/dfwqKCisrHL9UE4J3vjmsvYHeMapVv5s6QF4ZC5E6nr0VovXhMZgs6FBQl4TnuekQMS/ZcZPNf11jUpx5VfD1TzKe4pwujnwpg+d6L2n2te4MyjH2mSr65j4lH4/iuyxwPvpKpPIqV8aDty9VS3P7rlye59W9kitsdUaNlKWq0Kp2pPOxZsWIFAwYM4LfffuPgwYMsWbKEf//9l3LlyvH+++/To0cPrl69ypgxY9i6dSuRkZG0aNGC+fPnU7FiRS0fi8XC9OnT2bZtG2fPnuXOnTsUK1aMJ554gmnTplG2bFkt7cqVK+nfvz+vvfYacz79jPBoE2aLSlxcHO2fas2ZUyfZ8usuqtesxYM4MzHxFrxcDRhySePVyMhIDAYDRqMxxTTW8kBmbNy4kYiICEaOHKlVAAGULVuWzp07s3LlSkJCQrTGZektEwUFBeHm5sbQoUNt0o8aNYrPP/+coKAgqQQSouBRwNPXdjmDro4bT/TxhF4IrjVqUvKjaZmMTQghREETFhPGhfALmcrD05jyiwSAq5FXM/0ZYTFhaSfKYn///TeANn9PbGwsYFshYeXm5oaqquzfvz9ZBcWIESO0iqPSpUvTu3dv3nvvPbv5pEd4eDgmk8mhtHq9Hh8fnzTT7d+/H51OR+PGjZNta9KkCWvWrOHmzZsUL148xTyOHz9OdHQ0TZo0sZuHoig2LfiqV69OmTJlWL58ObVq1aJt27YAbN26leXLl9O/f3+t15AQuZWiKOgVAIWqJT25dDfqv5a2Cc/68uJUCPEo3YiIYfCqQ1y9Fw2Aq5MeXaLW/haLSpzZwtV70QxedYj1Q5qk2Zsn8X2ttI+b3MdEmqLvxxF27UGm8nBxS/2V8f07MZn+jOj7cZnaPy3jxo0jMjKSV155BVdXVxYvXkyvXr3Q6/WMGTOGpk2bMmXKFEJDQ5k7dy4vvvgix44dQ6dLqJiJi4tjxowZdOrUieeeew4vLy+OHDnCypUr2bVrF8eOHaNw4cIA9OvXj+DgYL744gvqNGrK8x0SGmB98P54jh4+xMy5n1OjZkJvepWEnkLh0SZ83Jwd6hEUFhaG2Wx26LgNBgNeXl4On6cOHToQEREBQMWKFXn11VcZOXIkTk5ZX22wf/9+AJo2bZpsW9OmTVm5ciUHDhzQKoHSUya6ceMGoaGhNG3aNFmDP39/f3x9fTM8hF1+IJVAouAyesCgXVmSVfyd28Rfu57wfzutZ4UQQgjhmNjYWG7fvg3A3bt32bRpEwsWLMDLy4sOHToAUK1aNbZu3cqOHTuoWbOmtm9UVJRWsLh06ZK23mAw8Nxzz/Hss89SpkwZbt68yYYNG5g+fTrbt28nODg4UxVBHTp0IDg42KG0fn5+hISEpJnu8uXLFC1a1G5rvNKlS2tpUqsEunz5sk36xIxGI0WLFtXSWNdt2bKFl19+mSFDhmjrdTodEydO5P33308zbiGEEKIgC9oXkjCPD2B00iXrva3TKRgVHbHxFq5HxBC0L5TRTyWfx1AIkXlRUVEcOnRImwO0a9eu+Pv70717d6ZOncq4ceO0tMWLF2fUqFH89ttvWkMoo9HItWvXbMoJsbGxvPDCCzz33HMsW7aMt99+W9v2+eefs//AAd56fSjVqtfizOmTLFnwBZ26dKPvgFe0dAoPK4Ki48x4uKT9er5OnTqEhoY6dNwtW7Zk165daaZzc3Oja9euPPnkk/j6+nLlyhVWrlzJO++8w549e9i4caNWIZZVUiufJC7jJE7vaJkotbyt68+cydyoGHmZVAIJIYQQQohcY+3ataxdu9ZmXe3atVm0aJFW4TFs2DAWLVrE+++/j7u7O08++SS3b99m4sSJ3LlzB0go9Fk1a9aMLVu22OT5yiuvMHr0aGbPns1nn33G2LFjMxzz7NmzCQtzrIeUo8PQRUVFpdhjyFqQTXyMKeUBpDisg4uLS7I83N3dqVixIuXLl+fFF1/EYDDw888/M2nSJG7evMnnn3/uUPxC5BZKJnr7CyFEesSYzGw4fAWT2YKrk16rALKoKvEWFSedgk5JmBTeWa8jOt7MhiOXeb11RendI1CRMT6z2vDhw7XnZkiYzzIgIICTJ0/y1ltv2aS1zolz9uxZrRJIURStAshisRAREcGDBw+oVasWXl5eWuMzK1dXV5as/Jq2LZsyoHc3rl25QsVKjzNrbvLnZ2tFULTJjLtRn+Jw31arV68mOjraoeN2ZNQBSKgU69q1q826QYMG0bVrV9avX8+3335L9+7dHcrLUamVT+yVcdJTJspI2acgkUogIbKAe5OmGHwTegA5y6TIQgghMsDHxYcKXhVSTZPWnEAlPVLvjVrSoyQRsREZC/A/Pi6OFSoyql27drz99tsoioLRaMTPzy/ZsG4VKlTg559/ZuDAgQwaNEhb37p1a8aOHcuUKVNsxphOycSJE/nkk0/YsmVLpiqB6tWrl+F9U+Lm5qYNe5dUTEyMliatPIBU8/H29taWr169SsOGDWnTpg3ffvuttr5Lly4UKVKEWbNm8eyzz/Lss8+m51CEyDEyZ44QIo33qlnq5NVw7kWZ0KFoQ8CpJLT0V4F4BdycE17D6XQKOhTCHpg4eTWCen6P9vlKFCyuhZzx8XXPVB6FiqQ+TGGhIi7ERMVn6jNcCzlnav+0VKiQvGxVuHBhSpYsaVM5ZF0PaA3KrH744Qc+/vhjDh06RFyc7fB1d+/etVk2mVUqVnqcyVNn8Pabr2MwGFi84ivcPDxQsT8JhaqqmMwqzk6p36yaNWuW6vasoigKEydOZP369WzZsiXLK4FSK5/YK+Okp0zkSNkns8OA52VSCSREFigyoH9OhyCEECKP61G5Bz0q90g1jfWBNrUJO1MzvcX0DO2XnXx9fXnyySfTTNeiRQvOnDnD2bNnuXnzJqVLl6Z8+fKMGTMGgCpVqqSZR6FChShSpAg3b97MVMx3795NVihMiV6vp1ixYmmmK126NH///TexsbHJvu+0hjpInEfi9IlZh92rX7++tm7p0qXcvXuXbt26JUvfrVs3Zs2axfbt26USSORaabWiFUIUPNlZGRwZa0ZFtal4sljQ+ndYksSiKAmVRJGxmXuRLkRSNVqVpkar1J8TM6vty9Ueaf5ZQa+338MupfXwsNEdwMaNG+nYsSP169fnk08+oWzZstq+ffv2xWKx2O6LiqqqbP35RwBMJhNnTp+kavUa/21PoSLIgV5gt27dcnhOIGdnZ61SKyPKlSsHkOkykj2JyydJy2v2yjjpKROlVvaxrk+r/JSfSSWQKLgsZgj/9+GyVxnQSRdsIYQQIq9QFIXKlStTuXJlbd3PP/+Ml5eXQ63l7t69y+3btx2qMEpNp06dsnxOoIYNG3LmzBn2799PYGCgzbZ9+/bh5+eX6nxAADVq1MDFxYV9+/Yl2/bHH3+gqioNGzbU1l29ehXAbgEzPj7hBZXJZEozdiGEEKIg8jDqUVBsXiKnRlUThqz0MMqrOSFyo5UrV+Li4mIzf2hsbCwPHjywOxS0gsIXn37C9q0/8/qbo/h168+8/eZwatWpR4WKlVL8HEeGrm3QoEGWzwmUkr///huAxx57LMN5pKRhw4YsXLiQffv2acPuWVnLLA0aNLBJ72iZqESJEpQtW5ajR48SHR1tMwx3aGgo165do127dll+THmF/KURBZcpCpY99XB5+EEwFsq5eIQQQgiRKZ999hknTpxg8uTJNl3979y5Q5EiRWzSqqqq9Rp68cUXM/W5j2JOoD59+hAUFMTs2bNtCjwbNmwgJCSECRMm2KS/ffs2t2/fxtfXFy8vLyBhSISXXnqJ1atXs2HDBjp16mQTs16vp0ePh73PqlVLaNH55Zdf0qVLF5teFUuXLgWgcePGDsUvRK4hnYOEKNCys4NgtZJeeLsZuB4Rg8WiakPC2WOxqFhQ8XE3UK1k2kPYCiGyn16fMFdP0h4/H330UbJ1AAf++B8ffTCJFi2f4N2JU+jWszdPPdGcQf178+P24GRD0EFCozaDPu0b1aOYE8heGclkMjFu3Dgg82WkCxcuYDKZbBrsvfjii4wYMYIlS5bw5ptvakN4X7p0iXXr1tG8eXOtJxKkv0zUp08fpk6dyoIFCxg5cqS2fvbs2dr2gkoqgYQQQgghRJ4TGBhInTp1qFy5csKwC1u3smnTJjp06MD48eNt0j799NOUKFGC+vXrU7p0aW7dusUPP/zAgQMHCAwM5LXXXstULI9iTqAnn3ySHj16sGbNGl544QU6dOjAxYsXmTNnDpUrV+btt9+2Sf/5558zefJkli9fTv/+/bX106ZNY/v27fTp04dDhw5Rrlw5Nm7cyJYtWxg3bhwBAQFa2v79+zNv3jy2bt1K8+bN6dy5M05OTvz4449s3bqVhg0bJps89vPPP+fevXsAhIeHA/Dhhx8C4O3tzeuvv57l50YIR8mUQEKI7ORi0NOpbimW7LlInNmCUdHZTaeqKnFmCwa9jk51SuNiyD0jkjjSIyE/yU1HK/PY5T5dunRh/fr1tGzZkv79+6OqKj///DOnT5+maNGiNmnv3LlDjx49KFK0KPOXLkfR6Xg8oDIzPvmM4YNf4f2xb/Px3HlaeuvX7WrQOzSc7aOYE6hGjRo0b96cGjVq4Ovry9WrV1mzZg1nzpyhe/fudOzY0Sb9sWPH2LRpEwBHjhwBYPPmzdrwa+3bt6dmzZpa+jZt2hAaGmrTO9LHx4eZM2cyZMgQmjVrxuDBg4mNjWXevIRz89lnn9l8ZnrLRGPGjGH9+vWMGTOGkJAQatWqRXBwMKtWraJHjx60adMmi85e3iOVQEIIIYQQIs9p0qQJmzZtYunSpSiKQrVq1Vi0aBEDBw5Ep7N96dK5c2c2b97MggULCAsLw2g0UqVKFebMmcNrr72GwWDIoaNI3cqVK6lRowbLly/ntddeo3DhwvTp04cPP/xQazWXlrJly7Jv3z7Gjx/PokWLiIyM5PHHH2fhwoUMGjTIJm2hQoXYt28f06ZNY/PmzYwdOxZFUShXrhwTJkxg7Nixyc7VrFmzkg1N8d577wEJQ99JJZDITrnpZV52cHTIKSFE9unXxJ/Nf13j6r1oYuMt6JP0BrJYEiqAAHy9XOjbxC8nwkyRI3OTCFFQdO3alcjISObMmcOYMWMoVKgQrVu35rfffrOpTFBVlT59+nD16lV+2bqNxx57DLMl4bepS/ee7Pt9D0HLl9K0eQs6du6q/ZbpdQquzjlXCdyzZ0+Cg4PZsWMH4eHhuLu7U7NmTd555x369euXrHLq8OHD2nO+1YYNG9iwYQOQMCdP4kqglAwePJgiRYowc+ZMxowZg7OzM82bN2fq1KnUqlUrWfr0lIk8PT3Zs2cPEyZMYN26dSxatAg/Pz+mTZvG6NGj03uK8hWpBBIiC9wNWkXcpUsAOJctS+G+Bbd7YUFk1BuZETjDZllkLyeDjnaJJqZ0MthvdSeEyL38/f3T9UJzxowZzJgxI+2EwDvvvMM777yT0dByjMFgYNy4cdqQDKmZNGkSkyZNsrutXLlyrFmzxqHPLFKkCLNnz9aGTEiLI/MbCSHynxiTmZNXw4mMNeNh1FOtpFeu6s2QWJxZ5VDo3VwTa146d9khv52P4p4uLOpTj8GrDnE9Ioa4eNsho6LjzRj0Ony9EtIV90w+PJQQInP69++v9YxXVRWTWUVFRUFh586ddnvepFQWefnll3n55Ze15djYWMD2GVhRFH766Sdt2WS2EB5twmxJyO+TzxfwyecLEuL5L41ep+DlakhWUZydZs2ala70ic+rI1IrJ3Tu3JnOnTs7lE96ykQAxYoVY9GiRSxatMih9AWFVAIJkQUif99D9KHDALjWqyuVQAWMk86JBo81SDuheGR0eh2lAhwb91YIIYTIb2bMmMHYsWOBhElyE8/dNGnSJCZPnpzivhcvXsTf3/9Rh5hjClrvoEftRkQMQftC2HD4CveiTNpLNW83A53qlqJfE/9c81L7RkQM687GsveKiegdB3I81rx07rJDfj4fVXw9WT+kCUH7Qllz4BJ3HsRp23y9XOhUpzR9m/jl2eMTIi8wW1Si4+KJNllsKncURcHVoMPV2emRVcAY9Dp83JyJjjPzIC7eZptOUXA16HF11udoBZAoeKQSSAghhBBCCCHyqBMnTjBx4kTc3d158OBBiun69etnt7LH29v70QUn8pXT1yK03g0mswUdCoqS0Mr6ekQMS/ZcZPNf11jUpx5VfHN2ontrrFfvxWG2gE6x5GiseencZYeCcD6Ke7ow+qkAGpYrzOBVh7RKrh2jWuXpnk7i0ZERPrNO0p44iamqyoM4MzHxFrxcDRj0j2YUEb1OwcPFiagklUBFPZwdmgNIiKwmlUBCZAG9lzdO/00Kp/fyztlghBBCCCFEgWAymejXrx+1a9emUqVKfPXVVymm7d+/P61atcq+4HIBeaGWdW5ExPxXqRINgKuTHl2iFszWeU6u3otm8KpDrB/SJMd6OSSO1aKCQQ/OTg9fumd3rHnp3GWHgnY+DHrdf639E45RKoCEeLTMFtWmAshedYuaKJ2Pm3O29siRCiCRU2TSBCGyQKmZH1Nh6y9U2PoLpWZ+nNPhCCGEEEKIAmDq1KmcPHmSL7/8Er1eXiyKRydoXwjXI2IAMDrpbF7aA+h0CkanhNcL1yNiCNoXmu0xWiWO1aCDpO/2sjvWvHTusoOcDyHEoxQdF59qBVDi9QlDxpmzJS4hcpr0BBJCiEyKjo/m3d/f1ZanNp+Kq5NrDkZU8JjizPy2/JS23GZAVQzO8jJMCCFE/nX48GGmTp3KlClTqFq1aprpd+/ezf79+9HpdFSqVIknn3wSDw+PbIg0+9jr+CMtbjMvxmRmw+ErmMwWXJ30KIqiTbSt04GTLuGFvaIoOOt1RMeb2XDkMq+3rpjtvR6SxmpRzaAmDA0E4KRXUFCyLVZ75w4SXjyaLSpOegWdkn3x5LScOB85fQfIa7cgJcfPmBAZp6oq0aaE+31aV7JCwnNDtMmMu1Evzwsi35NKICGEyCSLauHozaM2yyJ7qRaVa/+E2ywLIYQQ+VVsbCx9+/aldu3ajBkzxqF9Jk6caLPs7e3Np59+St++fR3av0mTJnbXnzhxgrJly7J7926H8slqERERQEIlV3S8Srz54dj7hw4d5G6M7brg4OB886InJjaWePPDZ55H9R2cCzNzJzIGBbCoZixmiDODRQXMYNRbbF50K8Dt+zGs/mk3lXyytyIjaayoKuZElUBmCzglGg/lUcdq79yhQsx/Dc/jzeCc6K1MTp677JBd5yPx77xqsf+7kfje8SiduRNvE09GPi/x/hcu/MNu9XKWxGbPPxdjMx1vXhIWFkW8+WFPEOvxZtf1kVhMTIxD93RXV1ecnZ2JiYnJN3/Pskq8CpYkY8EmfTOQ9IxZVJWo2DicHDyV6n/5x8bGZijGjO4nco7FYsFisRAXF5fqPSGl+0ZERASenjk/v50MByeEEEIIIYQQecj777/PuXPnWL58eZrDwNWqVYsvv/ySf/75h+joaC5evMi8efNQFIX+/fuzadOmbIo6+8mcQFkjOl4F1fbFWeL2NmZ77Z/U//bLZvZiNSWKLz6bY7UXT6J3vNhtOpZD5y47yPkQIvMsFguqqvLgwYOcDiX3yeitQm4xIhWxsbGoqqpVAOZV0hNICCGEEEIIIfKIffv2MWvWLCZNmkT16tXTTN+xY0ebZX9/f15//XWqVKlC27ZtmTBhAu3bt3foc+2x9hAKDAx0IPqsZ21tGRgYSGRsPE7Bv2nb6tWvx42IWJyOHdbWtWgRmGwOkrzKuPc34tSHLfYf1XfgHnqXL44ewBxvwcla6Rj/8HMVnfJwPWAym9HrdTSpX4d6fj6PJCZHY03co8HKSf/wNcijjtXeuVOxgOVhdUd2xpPTsut8OP22Vfu/Qa/Y/d1IfO94lJz/uYPT0YPackY+L/HxVKhQnsAW5bMkNntOWM7jFHJBW86pe3t2WXb+AE4RYdqy9Xiz6/pIzLj3N2IduKffunWLa9eucfPmTZydnfHw8JAeQf9R4i0oprh01ekogMFgwNnJsX4S1p48RqPRsQ+IjbFZdHg/kSvEx8dz+/ZtdDodfn5+lChRIsW0Kd03ckMvIJBKICGyRNShQ5jv3QNA7+2NW716ORuQEEIIIYTId+Lj4+nXrx81a9Zk7NixmcqrTZs2VKhQgePHj+eaYSoeBXktlnnVSnrh7WbgekQMFouaaiWaxaJiQcXH3UC1ktl/TSWNNTXZEWteOnfZQc5H7idzAuV+RYoU4f79+0RGRnLx4kVA5r9LzJyBoeFvpKNxiLU3iKPnPGk86fkskfOs37fBYKBYsWI5HE3mSCWQEFng9qJFRB9KaGHoWq8uZRcvzuGIhBBCCCFEfhMZGcm5c+cAcHZ2tpvG2jPn+++/58UXX0w1v6JFi3L+/HmioqLyRSWQI8N05O2BPGxl16gkLgY9neqWYsmei8SZLRgV+62lVVUlzmzBoNfRqU5pXAzZP6dN0lj1Kbxry65Y89K5yw5yPnI/NV/dJdOWF+tOdDod/v7+3Llzh/DwcGJiYvL8MFVZ6UFsPPdj4xOGnlSS/620fueqCijwf/bOPM6Ootz7v6ruPsvMZCaTZZKZJCSAmEBASQJKWEJUBLwuYEC8KCGgSEBZVBAQ2RT1CuLlyh7I1ZDAi8iigOgFZQuEgJAEhBgggWSyTCbrzJxZztLdVe8ffbpPr+d0nzmzZerLZz5h+nRXPfXUU0+feZ5aRsRl1CaV0OWbK4ESiUSo+3eknCuBmkYmQ9clGHgopaitrUVDQwMoHdqn6ogkkEAgEAgEAoFAIBAMAeLxOL797W/7frZ8+XKsX78eX/nKVzB27FhMmTKlaFnd3d1Yu3YtqqurMWbMmD6QVrAvsWD2FDz19na0tKeR9TlYhzEjaA8AjXUJnD17cn+LaGGXVfU5ZKa/ZXXrzh10Hky66w+Gmz6GYI5BMASglGLs2LFDfmVCX7AzlcHp96xES3saAKC5VuJUKZLlYybUJ/HIwtloqA2X0AEKW34deeSRoe4/8/pnHL+/+9NPha5LIKgkIgkkEAgEAoFAIBAIBEOAZDKJxYsX+352zjnnYP369fjxj3+Mo446CgDQ2dmJ7du34+Mf/7jj3nQ6je985zvo7OzEueeeC1neN/8s9JsYzc2pv4JINNQmsGj+LCxctgqtqQxgC6ppOofGdCgSRWOdcZ8ZUMuoOta2dKArq6MmLmF6U12freqw13XpCR/D//x9PbZ3pOHeGSitOWWtTSpY1by34jL6ybOjMwvVlURzyxMlGDkUcdtSFH30pz1ViqG2PsO9HZyp873dKnZ2ZtAwIo5R1bEhofuhxmC1laE27oq9r4Dh53P3VYaaXQ4G9s1v+wJBPzP+uuvB0z0AAJKsGmBpBAKBQCAQCAQCYM+ePZg2bRqOPPJIHHzwwRg/fjx27NiBf/zjH9i6dSsOO+ww/PrXvx5oMfuUobjVz2Dl4MZaPHrBbCxd2Yw7X9hgBSwlStBQG8e8GRNx9uzJaKhNYEcqg6UrN+Hx1dvQ3qOCg4OAYGSVgnkzJ2DB7CkVC7wF1TUiIWP/Wor17c4kQ2NdAvNmTMQXDh2Pp95uqbiMxeQ5bEIt1u/oQipTOPzdlMfU3XDAbksPvNaM9rRqfeanj97Y02A7K4VzPuhk8oNxDlVnmHPzC9jbnXOsppApweiaGE6fNbGiY1kwuOhPP15pgt5XwPD0ufsSQ9kuB5qhvZmdQDBIiE2cgPhBByF+0EGITZww0OIIBAKBQDDk2LRpEwghjp9EIoGpU6fiRz/6Edra2hz3d3d34+qrr8ZBBx2EeDyOsWPH4utf/7p1Xoqbt99+G/PmzcOYMWMQj8cxdepU3Hjjjda+3oORnp4eXHXVVZgyZQri8TimTJmCq666Cj09PaHLeOSRR/Dtb38bM2bMQCwWAyEEL774ou+969evxw033IBjjjkG48ePR3V1NQ455BBccskl2L59u+f+NWvW4Morr8SRRx6JMWPGYMSIEfjEJz6Ba6+9Fu3t7WW2WlBJRo0ahe9+97vgnOOvf/0rfvOb3+Cxxx5DU1MTbr75Zrz++usYPXr0QItZMcLMoh6sM62HCg21CVx+0lRUxSQkFQkJheLLn2zC85fNxeUnTUVDbQLrtqfwtXtW4r6XN6I1lUFOY9B0jpzG0JrK4L6XN+L0e1Zi3fZUr+UpVteuriw2powEUEyiSCgUSUXC85fNxRc/0YgLH1xdcRlLyfPOthQkSjzymLobTpi29KOTplq25KeP3trTQJ+VMvjTPV50xpHO6VB1jp2dWc92Whrj2JHK4t7lH1VsLAv675y3MPSnH+8r/N5Xw9nn7gvsC3Y5kIiVQAKBQCAQCASCQcNxxx2H888/H4CxiuEvf/kLbrnlFjz77LN44403EIvFkE6nMXfuXLz55ps49dRT8YMf/AC7du3CXXfdhaOOOgqvvvoqpk6dapX5yiuv4IQTToCiKPje976H/fffHytXrsT111+P119/HU899dSgm5Wr6zr+4z/+Ay+99BLmz5+POXPm4O2338Ytt9yC119/Hf/4xz8gSaW3PLjzzjvx2muv4bDDDsO0adPwzjvvBN77v//7v7jjjjvw5S9/GWeccQaSySRee+013HXXXXjggQfw6quvYtq0adb9N910E5599lmceuqpOOecc0ApxXPPPYef//znWLZsGf75z3+ioaGhIvoQlGbJkiVYsmSJ41ptbS3uuOOOgRFIsE9DCIFEAICgsS5hbcGyI5XBwmWrrLMYkrIESgv+1TzvpaU9jYXLVuHRC6KdxWAnTF0ZTQcAqDpDUpJACUFHWu0TGcO2vSOtgnNY8gz37WsUiUKiBGa6xK6P/rQngUFnRkVG1UMlzFWdY5vQ/T7Hvjbu7O8rAMPe5w5V9jW7HAhEEkgwfCESMGGm83eBoAwooZg+Zrrjd0H/QihBw+Rax+8CgWBocsABB+Css86yfr/00kvxpS99CU8//TSeeOIJfO1rX8O9996LN998E+effz4WLVpk3Tt//nwceuihuPjii/Hss89a1y+++GLkcjk8//zzOProowEACxcuxNSpU3H11VfjoYcewje+8Y3+a2QI7r//frz00ku4+OKLcdttt1nXp0yZgssvvxz3338/vvWtb4Uqp6mpCYqi4IYbbiiaBDr99NNx1VVXYeTIkda1888/H0cddRQWLlyI6667Dn/84x+tzy6++GL8/ve/RzKZtK5deOGFuPrqq/Ff//VfuOWWW3DzzTdHbLlAUDn8zwTqfzmGE0tXbjLOYAAQl6knwU4pQZxQZPOzdpeubMblJ031K6oidSkUyOrGCjBVZ4jLUp/JGLbcdD7Absoz7Cnytb0SfTXYJnlwPri3qVyzuT3SiknGea/HsmBw0Z9+XCAIi7DL3iOSQILhS6wKOPOhgZZCsA+QlJO4/bO3D7QYwxolJuGL3/3EQIshEPSKd17cinde2lb0Hs6NbW1IQLJ57KQafP5b030/A4C//24tdm3pKl9IAIcdPwGHzZ3YqzKicvLJJ+Ppp5/Ghg0bAADPP/88AODcc8913HfAAQfguOOOw9///nds2bIFkyZNQltbG9566y1MnTrVSgCZnHPOObj66qvxu9/9btAlgZYuXQoAuOyyyxzXv/vd7+Laa6/F0qVLQyWBJk+eHLrOI444wvf6f/7nf2LhwoX417/+5bh+zDHHBN7/X//1X577BYKBwH3I+b4EH2Sb22VUHY+v3masupElEEKsc0UoIVAk491FiLEdWlrT8fiarbjosx+LPDPbry7OjVnAzroKz2g6h0KZ5znASMgwzhGTqLUlaRQZg+RRdQ5C4Gi7RAmYzqHpHDFpcPXhgBCgAl+dgkPVOEAARSIg8O8rQXlkVB3vtnREeoZzY/yUO5YFg4vAcadzgAOKHDzuRN8L+go/uwQAjTHojEORKGgZ7+7hhkgCCQQVgGUygG5sNQBJAk2IJYcCgUAgiEa6M4e27d29KiNRVfyrXeeeTK/rSHfmevV8OXzwwQcAgDFjxgCAdY5PVVWV596qqipwzvH6669j0qRJJe8FgNdff71XBzW3tbVBN78HlEBRFNTV1RW9h3OON954A01NTZ4kTjKZxOGHH44333yz3w6X3rbNSE6OGzeuT+4XCPqTwZY42ZdY29KB9h4VFMTaoiWrGQEagIPmEyCAMWOXgqCtW8XalhRmTa6vSF1avi5CAJk6J0xwABqD5zmdMWQ1Y5IF58wKGEWRsbg8cMhDCYFpiUyYYyB+Os1pzAhGAyCgUCR/exKUx9qWDqRz4b7P2CFA2WN5oBlM0wQGw/vJb9yZZ64YUMTkyvhxgSAsfnbJOEdGNexSZzqqYsbfwcIugxF7FgkEFWDrJZdg/ZzjsX7O8dh6ySUDLY5AIBAIBEOWbDaL3bt3Y/fu3fjggw9wyy234O6770ZdXR1OOeUUAMD06cZqJ3NFkElPTw9ef/11AMDmzZsBGImIMWPGYN26dWhtbXXc/8ILLwAAurq60NbWVrbMM2bMwNixY0P9mG0oxt69e9HT04OJE/1XXE2cOBHd3d29kjkK1157LQDvyis/NE3DT3/6UwDGSiuBoD8RW70NLF1ZHTyfgDHRbVkOjTHH/YQYQc+urFaRuuyH16uavzHw/H/253K6XUbnc2FlLCVPIYDqlWfYExCF99OpqgfrtDf21J8M5h7vykZPAJkMBd37MZj7YyDwG3dZ21jL6UNz3AmGNqW+X7gnVAi79EesBBIMOP/v9c2Rn/nGp/frA0kEAoFAIBAMNH/4wx/whz/8wXHt8MMPx6JFi9DQ0ADA2BJt0aJFuO6661BdXY0TTjgBu3fvxvXXX489e/YAMBJCgLH1zmWXXYYf//jHOOWUU3DzzTdjypQpeP3113HppZciFoshl8uhp6cHo0aNKkvmBx98EOl0OtS99fWlZ6OZssfjcd/PE/kVx72ROSy//OUv8dhjj+HUU0/FggULSt7/3e9+19LtZz7zmT6VTSAoB5Eo6jtq4hIIjG3QwsC5sV1fTTx6WCJqXSb5jYwqLmNv5BH405/2JDCoiZe/bZLQ/b6BGHeCwYiwy8ogtCEYvugasO3Nwu8TjgAkMSQE0dGYhnd2Fw7aPmzMYZCpsKX+hOkMOzYWtn4Yt38tqCQWuwqGFskRMdQ3Vhe9p9SZQCNGF9+OdMToBDI9vZsRlRwR69XzpTjxxBPxox/9CIQQxONxTJ48GZMmTXLcc+CBB+Jvf/sbzjvvPJx//vnW9c9+9rO46qqr8LOf/Qy1tbXW9SuvvBLZbBa//vWvMXfuXABGguWaa67Bk08+iTfeeMNxf1SCzsYpF3ObOnMrOzeZTMZxX1/x29/+Fj/5yU8wd+5cPPjggyW3nvvhD3+I++67D2eeeSZ+85vf9KlsAkFYBvMB7L1lsCS0TB1Pb6rDyCoFrakMGOPWli1+MMbBwFFfrWB6U3T/G6UuS04AMgXq+kDGSG3n5nZmQAixhy2Vsieh4vBMb6pDMiahMxPtuyIHyh7LA42wDyf96ccFgrAIu6wMIkopGL5oaeCPthmtF78JSCPKKmrkaaej5rg5AAA5P0tZMHzI6llc9mLh4O6nvvqUSAL1M5rK8H/3vWv9/s2fHoWYSAIJhhiHzZ2Iw+b6b/9lYiYFglaIlOLz35pe1nP9SWNjI0444YSS9x133HF477338P7772Pnzp2YOHEiDjjgAFxxxRUAgIMPPti6lxCC66+/HldccQXeeecdaJqG6dOno66uDrfddhuampp6lQTatWtX6DOBYrFYydU7o0aNQlVVFbZu3er7+datW1FdXR1qVVG5/Pd//zcuu+wyfO5zn8OTTz5ZMuF06aWX4rbbbsNZZ52FJUuWQJLEIawCwXAjoUiYN3MC7nt5I3I6QzxgwgLnHDmdQZEo5s2YWNahzeHrKvy/LBFQSvtExihtN7ewkSXSL+e6DVUqZU+DJFdqYcxkL7/f+zL5m1AkHNpUh5Uf7Qn9DCHo1VgWDC76048LBGERdlkZRIRMIKgAtSediFHzz8Ko+Weh9qQTB1ocgUAgEAiGBYQQTJs2DXPmzMEBBxwAAPjb3/6Guro639U5yWQSn/rUp3D00Uejrq4Ob775Jnbt2oX/+I//6JUcRx55JBobG0P9zJs3L1S7jjjiCLS0tKC5udnxWTqdxltvvYUjjjiiz4KHN910Ey677DKcfPLJ+Mtf/lI0AcQ5x/e+9z3cdtttOPfcc3H//feLBJBg4Bhs0d4+ZjDmDxbMnoLxtcaq1KzPOTiMcet6Y10CZ8+e3Kd15c+MBoERqPZ7zr29TLkyRmm7XR5BMP1pTwKDmfvVR0pRUUKE7ivEYFndKcadYDDitktWoXf3cEJMVRcMXwgFRu7n/F0gEAgEAsGQ5bbbbsO7776Ln/70pyVXrqTTaXz/+99HIpHAj370o17VW+kzgQBg/vz5WL58OX7zm9/gtttus67ffffdSKfTmD9/vuP+7du3o6OjA/vtt1+vton75S9/iZ/85Cf40pe+hEcffbToqjPOOS688EIsWrQICxcuxN133y1mtQsEFSKj6ljb0oG93Sp2dmbQMCKOUdUxTG+qs2a2DpaAoZ2G2gQWzZ+FhctWoTWVcZzWrOkcGtOhSBSNdcZ9DbXFtzEtty6dc6Q1HRIx9JRQJNC8f3I/p2lORaa18mQsJg/jhXLr4gp6crolj4nZ511ZHTVxydHXw5WG2gRuP3MGzl/2JvZ05RyfcYTrq758Kw1En/X1a7YmISOhSMioesm8ukyB0TUxfOe4A7ClrQe1SWXAbDaoL/qyj/z8dHVcAkCg6nzIjuNivgwo30cONsqxjYyqY32bjrTGUd28d0j2b6XJqDpWb96Lf7d0AgAOaarFzP3qffXSm/HotkvVlaDcV+yyLxFJIMHwJVYNnPf3gZZCIBAIBAJBGcyZMwczZszAtGnTwDnHM888gyeffBKnnHIKrr76ase9K1aswBVXXIGTTz4ZEyZMwPbt27FkyRJs2rQJS5cuxcc//vFeyVLpM4EA4Nxzz8XSpUtx++23o6OjA3PmzMHbb7+Nu+66C8cddxzOOeccx/0//vGPcf/99+OFF16wzj0CgOXLl2P58uXW/wPAsmXL8MorrwAwkk2TJxsz5e6880785Cc/wbhx4zBv3jw88sgjHrnOOuss6/+vuOIKLFq0CFOnTsUxxxyDBx980HFvTU0NTj311N6qQiAoGw4+5M572JHKYOnKTXjkza3Y252DZgu+yZRgdE0Mp8+aiAWzpwyckCU4uLEWj14wG0tXNuPOFzZYgWRKCcbVxjFvxkScPXtyRQI0gXURYHxdAkeMZvh7cw6S6/wA+3P3vfyRY7Z7Y12ibBmD5CGkUO6IhIzbn99gPWP2+eOrt6G9R83bLcHIKgXzZk7AgtlThmUwy66Xjrxe3PSmryolW9Q+623utj+SvxIlSMYkqDqDqvtXWB2TQAhBR1rFz5/+94DZbFBfjEjImDQqia1taaTSWkXHVTE/bSJTAlkiqK+KDclxHOTLgIEbd5WinPFrf2ZPVwbgwJ1v/XNY++kdqQzufnEDHlm1Fd3ZwrbYBEB1XMLpsybhu3MPRENtomLvObtdPvBaM9rTqvXZULfL/kAkgQQCgUAgEAgEQ47Zs2fjySefxOLFi0EIwfTp07Fo0SKcd955oNS5unfChAkYNWoU7r77buzevRv19fWYM2cOHn74YcycOXOAWlAcSZLw17/+FT/72c/w8MMP46GHHkJjYyN++MMf4rrrrgu95drzzz+Pn/70p45rv/vd76z/P/bYY60k0BtvvAEA2LFjB771rW/5lmdPApn3v//++zj77LM9906ePFkkgQSDjsG4esZk3fYUFi5bhZaONDSfwKvGOHaksrh3+Ud46u3t0HTvNj2DhYbaBC4/aSp+v2IjGDcScp+Z2oBbv354xWdN+9V1UEMNHrngaPxz5Qo8tzlX9Lm1LSm89tEeKyj1/GVzeyWjnzwT66vwl4uPRUKR8NA/N1v36ozja/esNGY16wwUBIQYKy1bUxnc9/JGPPX2diyaPwsHNw6fA67NseDUC4E9hUIA3PXNmTh8Ut+djxdetn2vzyghiMsSYhIH4wDjDJwTcHBoOoeqc6hMH9D2B/UFYwxpVcfOzmy+LUZ7/GQst84gP22iMQ6NcbR2DF2b8PNllfCRA0k5PtdtZwSG/9E1tk+N+Sis257Cub9/w1gp5oID6MrqWPLqJjyzthXXfvEQ/Or/3quYzzTtcnxdHL94+r19wi77C7H/lUAgEAgEAoFgwJkyZQo451iyZEmo+2+66SasW7cO3d3d6Orqwuuvv47zzz/fkwAyy37qqafQ0tKCXC6HHTt24JFHHhm0CSCTmpoa3HzzzWhubkYul0NzczNuvvlm1NTUeO5dsmQJOOeOVUAAcMMNN4BzHvhjv98so9iPnRdffLHovZs2beoDrQgE+yY7UhksXLYK29p6igYWAUDVOba1p9GeVj174g8EpMh6K0IIJEogU4qGEfE+DdDY6xqRCL8tlUQLz0mUVExGuzzVcdlTLuMcGVVHS3sajHEkZQnJmISEYvyblCUwxtHSnsbCZauw0yfYti9ijgU/vdjhAC556K1+1Usx2YL6rNLbpPb3rqumHSuSBFki0HRjTRbjA2uzQX0Rk6lntRXnQFymvjJmNd23/GJ1hvHTVt0wEg9hdDLw3twfuy+rpI/sb8rxuX52FpMARcKw9dM7Uhl8+37/BJCb7R0ZXPyHNdjWB+85RaL7hF32JyIJJBBUgB2/ugnN556L5nPPxY5f3TTQ4ggEAoFAIBAIBMMOv+2iyrlnIFi6chNaUxn30QuBMG7MzlcH8WogQXFUnVnWGJcpqGvLOkoJ4rIRsmlNZbB0ZXM/SzgwmGMB8NeLnf7WSynZwvTZIMjbls1gstmgvrDLaMIB5PK+0i3jtrbwQeeoftqE5CUaTuN4MFKO/VZizO9rLF25Ca0d4ceNzjgY50J/gwCRBBIMX5gO7F5f+GHhZ4C4yX70ITL/egeZf72D7EcfVlBIgUAgEAgEAoFAUDZD4FCgjKrj8dXbkNPCJ3TMQLKme1fpCQY3nBvb4JgrCWISBSEEjHNkNd2R2COEICZRqDrD42u2IqOW/zfrUIBzjsdXb4OqM0svPK8Xv/HRn3oxx6ldNnNlQbE+y0VYaRKGgRrudpsFjHZycOQ0hqymW36oP2zWry90xpHOaYFnGKk6tyYB2GVsTWVC+dBy/LSJzgBFIiV1Ilx53+HncwFAYwwZVYfOvLbx2OoteGyV084AgDFA1eH7zL7upzOqjsdWbY2cCOUcAMGA+QyBgUgCCYYvag+w5EuFH7VnoCUSCAQCgUAgEAgEFcIvoDYYg2xrWzrQ3qOCIvp2QMa2TH0glKBPMc7XMDBnRmdVHarOkdUYNFYINFNKQEHQ1q1ibUtqAKTtPxhHfiwQSy85nUHVubWSw05/6qUwTguypXM6NGb0mX1rRnufbdq9b8QZ7DZrouX7xbRbk762Wd++UHWU2qHNniAyZVR1FsqH9tZPA0N3HA+BuRQl8fO5HBwZlUFjHGlVt5KEpm3s6VLR1pNz2BkHR44BOofvM0Oxf6OwtqUDe7vVsp5lbOB8hsBAHmgBBIJ9gcTBh4DICgAgftBBAyyNQCAQCAQCgUAgGCp0ZfOBJOe596ExglADF6br7zNKwjAYk312/LYltAewNZ1Dtk3ZJfkZ1F1ZrR+kGzgKKzUK14JWdpj39ZdezHFql80umcY4YlLhQ1O2Htes9t5uSTlQ481PbvsKKM2VSenLvnH3RVid6joHbMeGGIfTh/OhlfDTQ3Ucm3oayvjZiKdNNjMw+wqcOMd8iGeGWv9GwRoHZcDBB8xnCAxEEkggqAANP/j+QIsgEAgEAoFAIBAMa8IEqQZjHKsmLoEY+6SUBdkn5mnv27h7KGqfcW48UxPf90I4xPH/+dn2ISPO/akXc5xGla2qwoeVD1QwfjDZbNS+sHA1wXw8TNsq4ac550NyHJN9IAtUjv1SYiSAeLEdAF0JoqHYv1GwxkEZA6FUHwwH/Q00QrMCgUDQS+JSHL+Z+xvH74L+RVYoTv7OoY7fBYLBBiEEjDHjD8DBOG1aIBjkmONHkiobUBMIBprpTXUYWaVge4ceObRCAFDxSvEw2F6z7j6lpLCggDHuOSzbDmMcDBz11QqmN9X2pZgDDiVAbVJBaypTUi8AQumlUrZgjtMwstn7bMqYqsoIMMDYbbYUfW2z7r4gIf/0s/eYKWNMoqF8aG/9NBBGJ4Mz0TLY/Gk5lONzG2pi4JxgR2dhzAflwoaLn57eVIdR1QpaU9nIz1IabOHl6G+I5yUHBBElEwgEgl4iUxkzGmZYPzIV+fX+hkoUjR8baf1QSbzeBIOPRCIBAOjq6hpgSQSCoUkmkwEAKIoywJIIhjKRZ473AwlFwryZExCTw39/MYNyskTExIIhhrEtFIEsFc68CbJLzo3zExSJYt6MiUhUeFXJYIMQgnkzJ0CRaFG9mPSnXsxxWko2d5/FZMn1ee/kGKjhbrdZINiX9ofNhu2LIOwyjq9LhPKh5fhpE4ka2xoO1XG8L7xhyvG5p82chNNmRR/zQ61/o5BQJJw2a2LkySekSOZ0OOlvoBFRMoFAIBAIBIJ+oK6uDgCwdetWdHZ2DspApEAwWNE0DS0tLQAKY0kg2JdYMHsKxtcmQgdWKCGgxAiCCwY/ft2qSNS6bj8g24SxwsHZjXUJnD17ct8JOIgwxwLgrxc7/a2XUrL1R58N5NdHt826ZelPm3X2hetskSLPuWWcWJ+MXGfUADjPSzRUxzHdRyYauO2XuQyYca/9use855lh6KcXzJ6Cxrrw40aiBJSQAfcZArEdnEAgEAgEAkG/MHr0aHR2dqKrqwsbN24EgMizt83EkZj1vW8h+rU0po4URcHYsWMHWBrBUINzDpY//HvN5nZ8av9Rg2amaUbVsbalA11ZHZee8DH8z9/XY3sqA00PjvQqEkHTyCQ6elTPwcoDib0tNXEJ05sqm7D1K3+w9GM5UEKQUCSMHRFHayoD2PpSZxxprkORKBrrElg0fxYa8oHIviKqfvuqPxpqjfYuXLbKoxc7BOgXvYSVTdUZVMDTZ817e4qW2dd2XcnyTZvNqDooJR7/k9ai22xv7M70mTtSWeghtlLzG1c3/9/7pRuex97/Le3pUP6XwAiCV2IcD5QPHKpfT019aYyBwJg4Yfe5WdWZyM1ozNd+7WM+p4V7JgjOOVY170VXVofRdQSqzh3vzMH+nmuoTWDxgiNw7u/fMPxgEZrqErjyC1Pxy7++hz1dOc/nQT7DbesHjq3Bh7u6HHpRdQadcWN1LQgyqj7odDXYEEkggaACdDz1FNSW7QAApakRdV/+8gBLJBAIBILBBqUUU6ZMwZ49e9DR0YFMJhN5NVA2a+y/bG4tJ9g3EP1aGkopamtr0dDQAErFygeBP26Puqcriz+t2YaeXCE8eP6yN1FfFcO8mROwYPaUfg0g29mRymDpyk14fPU2tPeoVhBjRELGJyfWYVVzu+cZAmBcbRynz5qEs2dPxn/c9vKgSAJ1ZzX8+pn3PG0ZWaUgmw/w9GYmeZCuRlYpofrROGx68GB/9UuU4NELZmPpymbc+cIGy04pJRhXG8e8GRNx9uzJfWqnUfXb2/4Iw8GNtb56AYy+lCUCRaKYNr7/z94Ikk2mBGNHePss6KteX+uxr8qXKEEyJuFbx+yPRcs/hGpLWDfWJULbbKXsbkRCxvSmWry1pd3qi5hMMbJKwaT6KqxqbiuMK0Iwrq5348rs//te/gj3vbyx5P2EAIdNqMWNpxxatr32x5jbl3DrK5NP9pi+456zZuKv77Tij29uwc7Owtk240YkcPosr20c3FiLu8+aieueeBdrNrc7xjRBuP5lnEPVGTSd45v3vQ6VMeiskCSUKCDnVyqZ7/XB3McHN9biyYuOwd0vfogHXm92+AEAqInL+OJh45GMyfjV395HR95u3bh9hrvvGDf0xDgHJQQSJYbOJAJN544VmZ+55cVBqavBhEgCCQQVoOOpp5BetRoAkJw1UySBhhlpLY0rll9h/X7znJuRlMMvjxX0HjWn49nFa63fTzxvOpSYmAUiGHxQSjF27NiyVzIsX74cAHDkkUdWUizBACP6VSCoPDrjuPKxd7C7K+sIO+Q0htZUBve9vBFPvb0di+bPwsGN/RtIXrc9Zc0qVnUGCgJCjBnCu7qyaE+rAICYREEIB+fG55+YWIdl3/70oJrpqjOOx1ZtRVpjnra0pjLgHND08mfnFtOVux+HKg21CVx+0lT8fsVGa8Xap/cfhUXzj+jzvo6i34MbayPf3xv89GLO5h/olbN+sp35qf1w5cnTQvVZX+uxr8unhODyk6bixQ924sOd3VbfPH/Z3D5pf0mf2aOCw/CZlAI/P/VQfOkTTUgoEqZf939WH82aPAr/u6D346qhNoGTpo/H4pc3llx/xDjwzrYULnhgdVn67s8xF8xgSqMXx09fJhzG2UxmX3z5E4049a5XLfv98/eOxnifbc7WbU/hwgdWozWV8SxMDNO/OuPIqIXJKBlb4oLDSPpoDMhqunVdogTo1z6OTkNtAtd/ZToSCsXvV2zKb5Vn+OgHz/s0Ln5ojctuvQcD3fXNmTh8Uj0Ab98RDtjXXTHOCxNfNK88g1lXgwUxjU4gEAh6CeMMa3evtX4YL753taDycMaxszll/fBBMCtWIBAIBALBwMC4EXDZ1Zn1zMJPKhKSsgTGOFra01i4bBV2ltjOpJLsSGWsrYQY40jKEpIxCQnF+NeUDTC2l5IoRUymUCSKkVWxQZUAMvWcymqBbQGMkE9G1dGT84naFCGsrsx+dJ/VYDJUtjIi+VnOMqUYXRPv876Oqt+12zoi3V+pcWXXi0TJgCeA7Nhlm1Rf5dtnbnGj6j2qHvu6fDvU1TdhbLYv7E7nBZ9JCcHBjbWWLPY+GlVdGR+6I5XBDx5+K8QGdAZ6SH27XVh/9mUxBtGQK0qQvtyY+urKaiXt111mTHYqI6nQon2wI5VxJIDCwhhHQqED+n0lLLJEIUsUMVlCTKaglODih9b42q3bli556C3sTGU8eo5LNLLOhoKuBhqRBBIIBAKBQCAQCAQCwT6DqjMreKBI3ugVpQRx2fhTuDWVwdKVzf0m29KVm6w99OP5YEmQbMasZduM4UE2x8Wu56C2mHAA77V2Rio/iq7MmcN+DAa9DcYgalT9Xvfk2kj39+e4Gkr8v9c396keo/Zrb/qpHLPuG7szrpk+kwRI5rcNc7lt2JHKlr7RqsOoN6q++7MvizEI3ZcvpfRlpzWVwZ/e2ha9TETrg6UrN0VOZgCGLed0NiT9qqqzSP2wdGWzR88699s8rjhDUVf9jUgCCQQVYL9778XUVW9i6qo3sd+99w60OAKBQCAQCAQCwbCDcw7OObT83vSy5F01YC4WJoQgJlGoOsPja7Yio+ru4ipORtXx+OptUHWW3+qNWNvE5GwJDLvMms4jnx/XH9j1LOW35zJXBmU13Xfv/492dYfWs5+uAGM7v4yqW6t+7P04WHUFOBNRg0HCQP3qhn515tRvTmNYs7nN13ZVl+3297gaSnDO8cRbLcF697Hrx9dsDW3X/j6GId1H/RTVlov5QD/5/OyOgyOr6R4/YGKcE+LfHj95y24DC7/7h86MCQlR9M05D/2+6OsxNxiT2G6CfJrf5ABTX8+u3VF0bPmV6bmbB/eB+Xy5aDo3tqobQn7V/G5QaoybqDrDY6u34LFVBT0DsL5fRKp7iOlqIBBJIIFAIBAIBAKBQCAQ7BMYZz8YUJ/IlT0gQCkBBUFbt4q1Lak+l21tSwfae1RQEGtmbFrVoTGOnMZ8tzPjgOcMgsGAXc9msC2rMWiMQ9W5bwAno7HQevbTlcYYcrpRR9qnH4N0NegCmIMgUeWnXz1vh1o+YGdi6NfQLQE8tpt12W5/j6uhBONAezoXrPecv38K6wP8fQyDnu8nPsD9VMwH+tuR1+6MADO3nnHDYSScfanA0DPbEMWt5FNVkfTNODy6ytjeFzrrv770e5cONvxsi3F/GzH1lUoXH1t+ZQbh1wfm8+XCAZi5xqHiV83vBkFj3P36oyDY06WirafgF+3fLyLVPcR0NRAMqSTQAw88gIULF+KII45APB4HIQRLliwJvD+VSuGHP/whJk+ejHg8jilTpuBHP/oRurq6fO9njOH222/HYYcdhmQyibFjx+LMM8/ERx99FFjHM888g+OPPx4jRoxAbW0tPvOZz+C5554LvP+DDz7AGWecgTFjxiCZTOKTn/wk7r777kE7Y0kgEAgEAoFAIBAIhgqlNhBxf0qI8UxXNtp5NeXQldXzM1X9P9cColHRN0Xpe5wyFYLZJkFbs4XVs5+u7OW7/3w27xuMugIGXyLKT78acx5W7oA4/vGgu2w3yrgaTGf89DUcPL9yoHCtmN5NPYa161I+xu1i/PqpL7ujlHxuO/KzO7tv8dyfpzvg/DE/PUZtrtmGqIkRs93FxgV33e/Wlf3z3oy5qAyFEVrqneHG0JfTJtzbCJayV/8yC31gPt8bHPL14/eVcjHljaozznv/Hh9quhoIhlQS6JprrsG9996L5uZmNDY2Fr23u7sbxx9/PG699VZMmzYNP/jBDzB16lTccsst+OxnP4tMxntA1MKFC3HJJZeAc45LLrkEJ598Mh5//HEceeSRWL9+vef+Bx54ACeffDLWrVuHc845BwsWLMDatWvx+c9/Ho8++qjn/n//+9/41Kc+hSeeeAJf+MIXcMkll0DXdXz3u9/FJZdcUr5iBAKBQCAQCAQCgUAQeBZEEJwbz9TE5T6SqEBNXAIBCVwIEiR51Db1B+XKFFbPpXTlxrzPlEvMsSxOVP2asbXQt0cYV8NpQiwBAUh4+zT1GHa8lTNu3P3Ul93R13ZnUhWT/IurQNvMNvit3CyG2e6w48Ls9970ZaUYCona8mzf+S5zJx96O57M53uDQ75+/L5SLlHfwZaPI973eLl128sdzLoaCIZUEmjx4sXYtGkTdu3ahQsuuKDovTfffDPeeustXHnllXjmmWfwq1/9Cs888wyuvPJKvPHGG7j11lsd97/wwgtYvHgx5syZg9WrV+Omm27CsmXL8Oc//xl79+7FRRdd5Li/ra0NF198McaMGYPVq1fj9ttvx+23347Vq1dj9OjRuPDCC9HZ6Tz48sILL0RHRwf+/Oc/Y9myZbjpppuwevVqHHfccbjjjjuwcuXKyihKIBAIBAKBQCAQCIYhlBSSKaWCdIxxMHDUVyuY3lTb57JNb6rDyCoFDBws5P5OBEabBht2PYcN4idkGlrPUXRl9uNg1dVgJLp+Dd3y/O+l7++/cTXYsZskJcDIZCySXddXK6Htupxx05/91Jd2Z0IAHDi2pteyBmG2IUoKKB8Wj6RvSjCo+3KwUY7t1yaLj63ejifz+d5AaXD5gxHzu0HY7zkMHKNrFNRXFfxiue/xoaargWBIJYFOOOEETJ48ueR9nHMsXrwYNTU1uPbaax2fXXvttaipqcHixYsd1++77z4AwI033ohYLGZd/8IXvoC5c+fi2WefxebNm63rjzzyCNrb23HxxRdj4sSJ1vWJEyfioosuwu7du/GnP/3Juv7BBx9g+fLl+MxnPoMvfOEL1vVYLIYbb7zRIYNg6JHdsAHpt99G+u23kd2wYaDFEQgEAoFAIBAIhh0cxoxlWSqcHRGUoOCcI6czKBLFvBkTkVD8Z45XkoQiYd7MCVAkipzOispmIktkUM7CtuuZ8WA92zlgbHVoPUfRldmPdl0NQpVFoq9Xf0XVb0ymmLFffaT+CDuuBqN9VxLHxomE4JTDmyLrMayOyhk3/eX/ypEvit2ZyBJBXO67lUBWG2j4cKpEAVXnkcfFYOnLCE0dMMLaFgBLXydOH+cYW26/29vxZD5fLkZChQzYeA2LXS3md4Mw/QAAikRx2sxJOG1WQc/lMhR0NdDsk+ui1q9fj5aWFpx00kmorq52fFZdXY1jjjkGzzzzDLZs2YJJkyYBAF588UXrMzcnnXQSXnzxRbz00kuYP3++dT8AnHjiib7333DDDXjppZdw9tlnl7z/2GOPRXV1NV566aVQ7Zs9e7bv9XfffRf77bcfli9fHqqcSpNKpUAZR2LP+31e1/Llm3pdhqT14Ihczvr9zRUroMtVZZVVe9vtUPLJH/VjH0Pqkot7Ld9gIZUyDlIbKLsaCmRYBjmbLa1YsQIJmhhAicKxL/WtrnLkbAeprlixApKyb/9BWYx9qW8FTkTf7puIfu0fUqkUamvFjMDhgCJRaLrxvUDVvQEIxrgVaGisS+Ds2aUnGlaKBbOn4Km3t6OlPe17YLVdNgKjLQUG17ZZdj0HtcWEAJg2fkSk8r26crbf3Y+7OrPRGjBADJZejKrfG0+ZjgseWB3KdqOMq+G0HRwAfOPT++Fv77aG1vvZsydjyaubQpcfxcf0t/8rRz633bnNhTGObN7Pe32mk0qdGbZg9hQ8+VYLtrSlQ93P8+mFUvp2j4XB0peDcUtSP9z6KpY7baxL4KuHT8Cf17T0qkzGufU9w68PFsyegrte+LAsyyOEDPh4LQdFohhTEw+0Wzv2NhWz9TAMRV31N0Mgnxsd8/yegw46yPdz87p5X3d3N7Zv3479998fkuTNErrvL1VH1PslScL++++PTZs2QdPEoVUCgUAgEAgEAoFAEJWMqkNnHIxzxGSKMSNivtuKpDUdlBJMqE9i0fxZaKjtn8k7GVXHlrYefGfOARhdE/McLJ7VGHpUHSS/nUpCkYoePl4qdp5Rdaxq3ouXPtiFVc17kVH14g9EfIYSgoQiYURC8cjJONBje1aRKGJFgrN+NNQmsGj+LDSNTIJSAndcyN2Pdhl0xrGqeS/+tUuDxgZHosHU7fqdXdBZ8VVqe7qyJfugnP61E1W/hzTVOe63k9NZxceV2T6NsaL68ntOZzzyc1FkMnUeVLb9vvdbOx33jR0Rj6T3qHqsTSq49ISPYVR1zBOwzqg6etRo5XPOK6pPt93ZcdvRbWcejrSqO3ymu/a0pkMiJLTPdPdh1LN9zDb8z3/OCJUaIQCkAH2XsqdiulJDjDl7+a9+uAuvfri7LH/RX4v1wvq0oPs8Ps1nEggAS1+ja+IlZXKUSYhnYklGY0X7oKE2gYQilZVGY4z36/eV3r5TTAgQ6IPc95ltKmbrYTG/c4yuieG2Mw/vt+92Q4l9ciVQR0cHAKCurs73c3MGoHlf1PtLPRP1fvMZxhg6OztRX1/ve49J0NlB5gqhOXPmFH2+r1i+fDl2d2WRGT21z+ua8+n9el9IrgfYdaz16zHHzgFi5a0E2vzAA0jnE4gjRtXj8AHqg77AnJU8UHY1FEhraXzqlU9Zvx937HFIyskBlCgc+1Lfqjkd2Q3/tn4/9rhDoAQcCDoc2Jf6VuBE9O2+iejX/kGsAtp3acsw/PqZ9/Doqq1I24IWqsZwwNgafLCj0xE4bKxLYN6MiTh79uR+CRLsSGWwdOUmPL56G9p7VDDOoOkcAfEpxCQKzovPYo5SH8/PQx9ZpWDezAlYMHuKp93lPAMYwcEpo6vw4a4u5FzxIoLCGoeczvCnt1owsjoWWJYfBzfW4tELZmPpymb8bsVG9Ngq8etHY1Y2w5rN7Thr8T+h6zpyDMjpurVFTX/DOEdLexqfueVFtPeoUHUGjRlnGMkSwc5UBg21CUt2Ted4ecNuvLZxj28flNtXftj1u+TVTejKFial+unXfv+dL2yw+lemBGNHxMsaV+6tztzty6iFlXFmH/oF+u3P2f1AVtPx62fei6SXYmXbdZ5RnXbldx/nQE5jjvui6r0cGXWmQ3ONSQ5ji6nDJtThxlOmY9r44Pei3R4dW9qhYLflUsqOTjxkPADggmWrLT2CAzHZSJrZjxpprEvgy59owrLXmosmgBjnWL+zyxqHZh8ybkwcCLKrID4+rgbJmOSrIzvjahM4fZazPwPtSdMhU6eNB+lKogQNtf5jzl5+W3cOKmPQWSEhJUsE9VWx0P6ir3NAYX1amPvs+nrgtWa0p1VHO2SJ4JGFs9FQm8DG3d2h5BtVHcNnp43Fo6u2et5zVTEJZ8yahAvnHhioR4mSkrYiUyOJ2ZUtVEApwbiAPq4klXqn2H3GNX9aC8a9K/cApy+3+yB73y1a/qEj4UaJc9xXxyR0uzrDtNOOtIoLlq2O/D4cDuyTSSCBIBSxKuDryypS1NhLLwXr7AQA0BHRtjkQDH2SchL/Pfe/B1qMYY0Sk3DywsMGWgyBQCAQCAT9zOaUjttWp9Ge2wjVtZd8W4+KzqwGDiOxQqmxrc3zl83tt33i121PYeGyVWhNZaDqDIQDpTY6MQMbek5HQpEgRZgV666PgoAQYzZ/ayqD+17eiKfe3o5F82fh4Mbasp8BjNU2GVXHu9tSYD5hLfeVnpweWFYxGmoTuPykqdjdncETa7ZbASp3P5ry8HztEivojcPYGlDTdazbngpdd28xZUrndIAAFMTaksqU6fR7VuKqk6chndMtnTHGocHbB1edPA2/+r/3IvdVMUz95jQdy17bHKhf9/2/X7ERjBtbbM0/ajIuO3Fqr8eVzji+ds9KR/tM7H3oHhduG7bDOMrSS1DZdp3bZfp3SweWvLrJcx9z3ffe9k7MnFxv6TGr6XgghN6jyBjkZ8zE7DvbOnDBA6t99UGIeyw5sdttXC4/qepnR+fMnoIvHNaIix9a46NvIKsXgsoxiUKihr4Y53jw9c2BdZntad7TbSTCbH2o5ws07SoKlBjnD8UkbrXBUlr+PJdHL5yNifWFycZF7Yk7bbyYrubNmIDrvjzdI7O9/JxrmRkHoDEOjXG0doT3F1GSY1EJ+/6J6vsuP2kqxtfF8Yun37PGFiVG0jlKUqCYbwGAnMrw3Hs7ccaRk4qWW8pWLjj+QFxw/IGYdePfrc8/vf8oLJp/RJ9+Xyn3/e/G7TNy+a3z3EmgmEShFDnr0LT1lz7YiQ07u62++8P5n8Z/3vu6w0/O/fULyGiFbx9mkapW/vtwX2ef3A7OXG1jX4ljx9x33bwv6v2lnol6v/kMIQQjRAJhSJKcPh3VRx2F6qOOQnL69IEWRyAQCAQCgUAg2OfZkcrgttVp7E5zMMaRcAUkYzIFy8dsVJ2BEgKJkn5LAO1IZbBw2Sq0tKfBGEdcopHOBeAwtmcJu12Ru76kLCEZk5BQjH+TsgTGjFUpC5etws5UpqxnACOwbQZ8OIznSiFT+JYVFpkaQV/zX3s/7khlHAEoCiAZk+Duag6UVXc5OHUES7fu1Ujb2npwyR/WOGzDbJ+9D8z7tkXsq7BIUrB+/SD58SRTiv1GVfV6XJn6ctuiG/e48LNhT9ll6qXU+LDL9Piabb59E5ed9136hzUOGeSIei8lYyk/k5BpUX2k0mpgAshOS3sazXu6y9pOzY7djkZWxXDxQ2uK+iMTVTeCzAlFKro1pmMccnjKNHOJpl2FtQ97ENveBlnK/+T7097/UezJTxZ7PU0jkx5bsZev66zoCh4OI3Afalz0UQ4o7PunXN+nuMaWO/FQqll+8rkTnwyI5FuCbGX/MdXGtnG2z0dVx/v0+0q57383XVnN4zP87Bowxm0Yj0FtepAoQW0y5vg9lVEdCSAAqIrJFXsf7qvsk0kgvzN57LjP56murkZjYyM2btwIXffueeh3nk+xOqLer+s6Nm7ciP333x+yLBZnCQQCgUAgEAgEAkEplq7chL0ZIwQQl71b+VBCoEjGNWP2enmHDfdGvtZ84CEuU+g8+rHkdrndgU53We763PvqU0qsAFZrKoOlK5vLegZwBnIkQkLt4U+If1mVYOnKTc4tq4rMXK903UHYdUQAS0fufmPcmJ0fhNkH5n2M80h9NVSw68uvfXbs46KUDZP8dSC6XkqVbYdxBPaNnR2pbMVtP6yfMVeCFNPHms3tof2UqvOK+tXXPtpT0h+ZV8L6dMc4JPDah81XcCB034Q9G8neG1HsKYosfuX7nZ/kxrxjoPxF2PfPQPm+MP0Vz3/HGIo+t9z3v5t3tnWE9hmV+i728BtbitY51N+HfcU+mwRqamrCihUr0N3t3OOxu7sbK1aswP77749JkyZZ148//njrMzfPPPMMAOc+7ccffzwA4Nlnnw2837yn1P2vvPIKuru7HfcLBAKBQCAQCAQCgcCfjKrj8dXboDNjhQkhxH/7I1uAT9Mre0h8GPlUnSGWX/kRdEh1KcLIzTl31EcIgc440qru2BKIEIKYRKHqDI+t3oLHVjmfAYwzVNKqDj2fmLA/8/iarWjvyTnaQggJpVfOvWWVe/C0HVPXdnTOkc7p8Is1VbLuYjI5dVSo271Fkx9avu90H71yDiC/ZVex/o3axn4aGgF1c0tfdlsspitN52jvyXns3m9lSjl6cY9hQoyt/Mzx4VeP2TeMG31jzI533qeyytu+3c+4D653o+kcIPDVR0bV8W6L/+41bmL5FUeV8qucc6zZ0h7CHznbUmzVknccEqtvspq3bwD0mW/wsydVZ0jn9MCgeBRZ7OUrlBRNLJvoDFAkUnJc9MV2cOXowxxfPL+6y74isNLvFj/5AG8Coy/eaVbZFSvJi1/7ynmnZFQd77d2esrPaSw/br19Geo7jet3uy4453jqXy2eZ9y205d9M1TZJ5NAhBCcd9556Orqwo033uj47MYbb0RXVxe+853vOK6ff/75AIBrr70WuVzOuv63v/0NL774Ik488URMnjzZun7GGWegrq4Ot99+O7Zu3Wpd37p1K+644w6MGTMGX/3qV63rU6dOxZw5c/DCCy/gb3/7m3U9l8vh2muvBQCcd955FWi9IDS6Bmx8ufCja6WfEQh80JiGN1rfsH40Jmypv2E6w7b326wf1s8zfQUCgUAgEPQva1s60N6jGjO789GBUsF1DufBwn2JKR+FsUqGcW9QIyxBctuDIozDUR8AK3Ca05kVQAWMGbIUBHu6VLT15BzPaIxB1bm1v7/7mbZuFU+/s93TllKBZ7Md7rLWtqRCaKA4pq7d6JxD9TGJStZdTCa3RjjnyPrYaJDmdMaRyZ8P5bYfxkr3b1+3sZLY22faotm2IDiAp9/Z7rH7wEB2RL24xzBgBC/9xoejLQzIakafaIx7xgYBKm77dj9TCp6X0U8fa1s6jPOrQmBf2VYJv8o40JPTQvkje1uK6dFvHGby48Y4e8creMXHDS/IYu8rI6HIoOf9gl9CKoos9vIRYhVQQbSB8Rdh9eHn+3I6s842svtUt02Xyk0W+9hv/DPOfW19KPpcv/aV805Z29LhOzbNMtI+L+He+gzGgY60/zvfPZaGYt/0JUNq77HFixfjlVdeAQC888471rUXX3wRAHDsscdaiZQrrrgCTzzxBG666SasWbMGM2fOxOrVq/Hss8/iyCOPxPe//31H2Z/5zGdw3nnnYfHixZg5cya++MUvYvv27Xj44YcxatQo3H777Y776+vrcccdd2D+/PmYOXMmvv71rwMAHn74YezZswcPP/yw53yfu+66C8cccwxOPfVUfP3rX0djYyOefvpprF27FhdddBGOPvroSqtMUAwtDTxmS7xd/CYgiTOZBNHJ6llcufxK6/envvoUZDqk3OuQR1MZnv3dWuv3b/70KGs2nEAgEAgEgn2PrqyePyC4gB4iqhB9Q7bysOSzzpvoXb3cpwTu+hxwzpK3ozMOybbVCyHmwdTEM7Per3z7M23dObiJei6IWVZXtveTp0xdD0TdxWRyU44FcOtf7rru/D2of/uyjZXEr//CjOe27pxjnAHFg4t2vZSaZe8ew4BzFUBQPRzcIbu7HTS/oqiSth/Vzxj3EY+d+NltlPJ6g58Ps+suqGVdWS1wVYFfe+zdoenM4zTD2keU7a9MWRz25CrArwlR7MRefhR/aH8mqK6+WJHisV0fffi1hcOZWHWPr974PntdfuO/2HtuqPlcv/bZYZxDQul3ykD4DA5eNMFn2o7JUOubvmRIRSlfeeUV3H///Y5rK1ascGzhZiaBqqur8dJLL+GGG27AY489hhdeeAGNjY247LLLcP311yOZTHrKX7RoEQ477DDce++9+O1vf4uamhp89atfxS9+8QsceOCBnvvPOussjBkzBr/85S/x+9//HoQQzJo1C9dccw1OOOEEz/3Tp0/H66+/jmuuuQZPP/00uru78fGPfxx33nknLrzwwt6qRzCAbL34YvS89RYAoOrwwzHRlTQUCAQCgUAgEAgElaMmLoEg3GxnO6RPwlleLPnMrWp6WW+p583PQ59TwY1gNCEAD7mAmnOjnvrqmJ8AkTDLqon3PiRh6nog6i4mUyVxt69Ue/ujjZWk3PFRXx1zjLNS2PXSXeJe9xgOS6m2MM5BQCtq+1H9TMFfOO2kXLuthF81yige3PWjmB5Lt8crd1j7iEo59hRlDNvLj9If9meC6uqD3eBC66M3vq+U3MU+jtpfQ83nVqp9feUziolFQAASIdE5xPqmLxlSGliyZAmWLFkS+v66ujrceuutuPXWW0PdTynFJZdcgksuuSR0HSeffDJOPvnk0PdPnToVjzzySOj7BX0IocDojzl/LxOWzYL3pK3/FwgEAoFAIBAIBH3H9KY6jKxS0Nqhh95WhKCwdVxfY8mXyoAx3qt6w8hNCVCbtNVX7AB7xsHA0VATA+cEOzrDP1NfreCLhzXimj+960jAhWmeeY+9rOlNtSGeLI6p63RHuBnJlay7mExGSLs0Ye6jxHkfLfKna6X129eY9m22r5Qt2p/74mGNuOP5DZHs3tTLP0ucE+4ZwyEHcbG+AYw2Vtr2o/gZkpfRz06mN9UhGZPQmSk9Y56ZZ/SgMn6VEqAqJiOVUSPZwPSm2sBtA6OMQ5Ow9hEWM5jt7qswiZUodmIvH5yHare5oV8pf9EXZwK59RH0EumN71u/w3tWjZ1i+oky/ivhc0lfZNqKUKn2TW+qQ0KhkVYE9dZnUALUJBRk1NKx16H2PuxrxF45guFLrBo49+nCT6x6oCUSCAQCgUAgEAgEIUgoEubNnACJAhoLXgFjvy5LpN8CLaZ8ikSLnmsSBlPuYjN2CSGO+orpI6czKBLFaTMn4bRZ0Z6ZN2MiRlbFIEvE8XkYvRLiLSuh9H7FjKnrsFSy7mIyOXVUubJJkehub/TbX1sleus17NfUVzFbtCNLBCOrYpHtPqxe3GM4jEzF+sZEob2zP3s/leNnZIkAHL76SCgSDp1QF6qcnM5AUDm/SgjBrP3qQ/Rl4f9liRTVo3cclu7DsH0Tdkyb/VWOPUWxE3v5KuOQQ0TZJWqc59YfPtFNpcdXJd4tdhHCytcX7zSr7IqV5KVS7UsoEqaOj3asRm99BiEEXzqsqeR9fdk3QxWRBBIIKsCIE05A/Te/ifpvfhMjfLYCFAgEAoFAIBAIBJVlwewpGJUwAgn2w6FNGC+cHUBgBP/7kwWzp2B8bQKAv3xhKCa3O2hTqj5mO0S7sS6Bs2dP9jzjLtPvGeRlMkM4OuehAnic+5cVlmJVLJg9JfQGSOXUXQ52HRkHYfs3gBIUDdiafWDeRwkJ3b9DCbu+/GzRjn1clLJ7brseVS/e8RF8LyUI7Bs74+riFe2bqH5GpqSoPmbtVx96LCkSrahfPfpjo0v6I/NKWJ/uGId+5+7YLhKgT8eNo6/04j6zHFns5Yc5p808Va/UuOiryRN2eXM++hho3+ceW346NftxKPrccr4z+HHYhLrQPqNS38XOOHJS0TqH+vuwrxBJIIGgAtSfcQYafvgDNPzwB6g/44yBFkcgEAgEAoFAINjnaahN4JKZSYxJEt+tTHIaA6VG0CGhSJG3tMmoOlY178VLH+zCqua9yKi649qrH+7Cqx/udnzulm/R/FloGpkMvZWUnahyF6tP1RnSmg5KCSbUJ3HbmYdjS1sP1rV24tITPobGugQoJXDH4ezPLJo/Cw35gBElxgx8AiNAqJUIaALGii2/sgB/Xdtp78lh/Y5OZDUdOY2BMWfAqqE2YclTDAJ46u4rKCFIyEYAmgDIqv4B+qb6JL5/wkGB5fSoOkCA0TVxfP+Eg9CU7ys77v6N2saMqqO1PQONMegsXFIvqJxi/eh3j5ZfwWLaVGNdAoQAasA+j+a4IABWNe/12LAf5eglo+rY0taD78w5AKNrYqAk+AwyAmDejAmYUGKsEwC3fv3wXtmf+yyNqH4mozGPPux90p7OWXZbjAn1SUweU1XWVmH2+uz2VpdUCm0hBO64dFrTrfFk943Fk3MFX+VulM65YzvRhCL1qW9w9JVLb/axQgDEZYotbT1Fx1Kx8qUS+xISAFLIccE5h8645R/CyBKGhtoEbj9zBkbXxDz2llF1y6dNHFWF286cETi+wvg+exui6NOUDwBymtfQJFKez3XjN4rMa26f2d6TK+ln/XB/f9mwq8vh3+zkIrxTquNy6PdvOd/F/BhTEwus0247leibfYkhdSaQQCAQCAQCgUAgEAi83HTTTbjqqqsAACtXrsRRRx3l+DyVSuGGG27AY489htbWVjQ2NuJrX/sarr/+etTU1AyEyBVhv1oJ1xxVhQ94I+58YYMjSDu6JobjPz4Wf3u3NVLQYUcqg6UrN+Hx1dvQ3qMa2/lwQJKM8KuqM2iMQ2eFQJosEdTnt6ZaMHuKFXA4uLEWj14wG0tXNnvk84MAGFcbx57uHBSJRg6WBNUnUYKG2jhOPGQ8AOCCZautthEQVMUkjKpS0Jpy7rFPABw2oRY3nnIopo137qcvUYJkTMKhTXV4f0cKHenCOSKUwHNWU3VMwrnH7I+zZ0+29OOnawKCkVUK5s2cgE9PGYXfPr8eaza328rjyOnAaXevwI2nHIpDmuoc8qg6g6Y7Nzczt61SJOppR1+wI5VBVtM9crihxEhW3vnCh0XvAQc60irufOFDjEjIOGxCLVY3t3v6d96MiQ79hpHT1P+uziw02zkvv37mPYctF6MjreLXz7wX2I8LZk8BB3z7OiZTZDUdEiXQ87O3/YL6Zh9KlEBjRh+ftfifVjl+ejH1d/5xB4TWS9D4j8lGUsJu13a7OqSpDucesz+ue3ItVjW3ecqlxAjsf3xctK2T3PhZVBQ/01iXsOyEA55+03QjWG5M1jf6xG8sPbJwNr59/5uRZPfTbUYtbCvXmdEwqjqGz04bi0dXbUXOFduujslQJJJfHRLeN5q+YXRNHFv29vjeQwBojGFnKhNu/ITdDs51n9lX97z0IX6/YpNVTEyiyGrM0ntWYw77HlmlIKvpJd8LxfRnokgEY0eU9hdmf324q8taVQsAn7nlRc+7Lip2W+joUT2JZ0WiGF0Tc8h4xOR6Xxu327RbHmNFsPOdcNbif2JklYLPTmsA47yQTCwmn0+HEwDzj9oPC48/sE+SDD2q7hifjDPoDJbMUn51lN3P+slhb0tbdw4qY47vLxIFYjJ12ItMw9mISdj3b9hxW2p7Ul6kTj/bERiIJJBg+MJ0YPcHhd/HfBygYo9IgUAgEAgEAsHQ4t1338X111+P6upqdHd3ez7v7u7G8ccfj7feegsnnngizjzzTKxZswa33HILXnrpJSxfvhyJxND9I3lkguLyOVPx+xUbwTisoNnt35iBmETxzNodoctatz2FhctWoTWVgaoz0PyR1DoH4HNWOgegMQ6NcbR2ZHDfyxvx1NvbsWj+LBzcaCQbGmoTuPykqfjflz9CRmOO7YzcYY6EQnHP/Fk4a/E/oysij1mfXR/zZk7E14+YhIsfWuNoGyEAYwzpgJnEjAPvbEvhggdWO9pkQgnBsQeNwecObsD//GO9pfsDxlZj0+5uR3+cengTLj9pqvWsn67Nc4NaUxnc89KHRZMjq5rb8ZU7VuC2/5yB//hEoyVPXJYQk4wZ/pqugxBAkaR+Ow/KbJfqWh3l19+MAzs7syi27oLDCCTrjEPjHLu6smhPq+AwAseUAl/+ZBNuPOXQSGceuPVvF44Dvrbsh844/veVjejO6b79eN/LG/HYqm0gBNjTnfPck1F1cMDS164uQx9ufXHkt1tTC2MopzGrHD+9EBBUxyWH3UXRSUFOIKsXklMxieYDsIWtsnakMrjwwdVoTWV8y2YcyKgM77d24sgpo0LJEwW/cT9tfC0+aE2Bg1jj8LkfHo9kTA5sq5n00RhAwBGXqXEmWf55s81RA6tB9QGw+v+3z32A+17+yLITN1lNR1YDZHOJp0mIhAwlBGNrYti6t8cToOY2GU6/ZyUWzZ8VqW1RaahN4MK5H8PDb2yx+urWMw7HD//4FjIqswLgdvtuTWXA8z4taJx7xnQA5xw9BZedOLWov3CW5VSwOa7D+IcwclIQWAMtz4iEjLu+OROHT6q3rpk2vmTFRui2d8vzl831bcv2jjTSOd1jHjmNoTWVwR/f3AJN50goEiTbCiN/WyX5UVQgLlN89zMfw+iaeKT2h0FnHC9/sAvPv7cTqs5AOGDvUcaN7x2UAK0pPbA/7G3JuZbWFb6/ADmt8B0gJlEsOGYKLvv8xyO9U9zvX7fP6Av86rzla5/ECQePE2cA+SC2gxMMX9QeYOmphR/Vf0aIQCAQCAQCgUAwWFFVFQsWLMDhhx+Or371q7733HzzzXjrrbdw5ZVX4plnnsGvfvUrPPPMM7jyyivxxhtv4NZbb+1nqfsGkp8ZK1MjQJuQowUAdqQyWLhsFVra02CMIylLiCvUs6IlCA4jcNPSnsbCZauw0xYM3pHKOBJAlMA3QJFRGS556C3fswfcV0quKrLpoy6h4OKH1jjaloxJiMm0aDlVigQW0CY7Sj4obuqeEuLpD9l2DoCfrpMxCQklLxclCHPOvcY4LvnDGvy7pcO37RJFnwag3NjbZYcSIBnzt0ez7UEkZOrQTVI2+gQwVqVRQtCY3w6vHDlN/cuSU0dh+p3lkzgdadW3H5OyBF03Aq7bOzLQfe5xHw9httfv3IisbQwBKKkXiYY/gLyUTSZt/kTVjeC8WTbjHH98c4v1bBAcwA8efitQn5XAPu5qkwoodY7NuCwVbatd7+Z5SoTAet6uz7DDqlh9djrSmsNO3GdlcW4kajKqHurMGzuMc/x7e8phPxLxbiVq2nx7prxz3NwUk9LeV+NrE/kEUAE/++MwtrvqyjpnJfjpOIgn3mpBKq0Gfu4uy93N5lgr5R/ClG3aQlx2jve2HhWXPBQwVtzveh/ftyOVwbLXNvvq3/IXvKBP056K2WpcccqY1Rh2dWZ9augdpl/tyelgjCMuBb+nOTd8pl9/2Nui66zodm328lWdYVSVUnYSxf3u74v3r3v42+uc3lQnEkABiCSQQCAQCAQCgUAgEAxRfvGLX2Dt2rX43e9+B0ny/tHLOcfixYtRU1ODa6+91vHZtddei5qaGixevLi/xO1Xop5qsnTlJmsWf1ymoJRA1VmkcsxTQ1pTGSxd2ewo2zH7vEhQpNQs7nJYs6XN0zYAJdtHKbGCc+429QY/XdsJOg/GD41xXPfE2orI1Vvs7QpLqXNcNJcu7H1irF6IZqNAaf2b14Hi/W6v268cmk8ImhBwzz3uYJ67vWHx00sUSumE0sJpPO7yVZ0hldGsZ4uxM5Xt1ThynwlUDL+znRjnofrfKgPBugybh4lSH+BvJ+azfjKV2joK+fuz7kOGAmhNZfCP5uAkSV/w+JptJX2xCQfw1uZ2x+dRdLy3O1fUBt1luV9XvXkvRJGzN++cpSs3oaNIootSgphU2AZO1Rl4GWPjj29uKUs+N3Ydu/2qzoMt3FzN49cf9rYUO9PMr8zXPtobtQl9itsGw4x5gRexHZxAUAF233MPsh9+BACIH3gAxlxwwQBLJBAIBAKBQCDY11m9ejV+8Ytf4Gc/+xkOOeQQ33vWr1+PlpYWnHTSSaiurnZ8Vl1djWOOOQbPPPMMtmzZgkmTJpUlB6cc3ap3G7ogquQqRxKEc44eLfyq/BiNQZEUx7WcngOIM/ie1nqMIKjrerfajWrFqYt0TsNjaz6EyrNIyhSEEjDGoHLuP3WSSfD8OU006NCRkAkyOsdjb23AuccZ25Q9tuZDgBZmDDMAadW9hQwHlXJQ83sTxUAdetKRdulZA+BM/OX0HFSWD3zl2805x9rtGahct9qmM26sTGJuGRhAbYEzooEQICZzpHVWaJOpU+4TUiAqOMl49K5yQ/6Mqtt0LYGQRP4sGB2UECgSAyM5/5Oy/WAy1mxuywfsqCUDoANEt9ph4rZVHd6kDeMMaS3tuR5ETIpB1ykeX70Nqs6QlCVoPAMQI+jMAIBQgHqD0DpX8weOx9xSAFSFxgGmGcqIy+YqKwDUaJvGgbTaDZWpUKhzXGS0DHTu3OrPqf+8rXOeT7wVZCCEICYBaZa2+t0+u5ojDY0zgBpnMxBKAa4gqxkr4mIyhUQINJ6z2q0D4MRor865seKL8EJfcwJNj4GAIWcF+V02aaNHy0IihYC0MVwIAAmazhGTeLAemNHvXpuUQYgxLrKaDp1xxGUCSVJBJN1KfGj5MWr8vyGrqU9TBgckBxAOFXDoU2Vpx1jpVruNc7qUKldrdYCoyLKe4v7WGpuKz2c57OpOefqfc45M/tB7AgCUA5wA3LAHU5eEsPzYMuRkyHhktxOX4tB04hgXhKoAGFSdGTbn4191ACrLwRDJaZMEOjjVLP13q93oUZ3+P611o1uVrNI4p85zSvJ9YVmETYaYTJHWGV5pITjxAMMPJOWkQz6VqehWuzw+zo9utQs6i0FyHT2Q1tIOH/1//94E0JzjnqyeM8aJJEMmTl+9dnsb9vSkkFAk3zGt6szoRxOmWA3VGcfja7bi23MmICY7Ha1fWaA6wKjDpgz/wJFmGV//4AtTnLZACDiyyGi6EdS39YMiE2Rt79GEIkEiEhKyextC3WN3ZhsYsl77Yop1po71fiVZaBzYnmrzjg1wZFUODm5sGUeIQw9/facVPzzxQBAacAAT4LUTHoNbsKxuvB/tftVwJdT6vfC8sy80nSMm64jJqvWe/sZRDVZbEpLxncRRhs0eCnJmLV+8ZmurZV9+yFRGXHJ/f9Ac79qScPc7r+BDfH2L7feeXLdRnyetoaFH60Z3yByu+/uoXYYwKFRBTHK2Q+OapwyucBC1f1YkF4Nwv6kBgiHJ7NmzARgHwQ4Ey5cvx+6uLDKjw+232xu+8en9el9IthO4/YjC7xe/CcTLO6Rx8/nnI71qNQAgOWsm9rv33t7LN0hYvnw5AGDOnDkDLMngRWMa1u1ZZ/1+8OiDIdPBn2Pfl/qW6Qy7NndZv4/drwbUZwuJ4cK+1LcCJ6Jv901Ev/YPA/1dudJks1nMmjULyWQSr732GiRJwjnnnIP7778fK1euxFFHHQUAePrpp/GlL30JF110EW6//XZPORdffDHuuOMOPPfcc/jsZz8bWJ+pPzfvvvsu9jttP9SfUO/7uR8/n/RzUFJ4TzPOcM2Wa0I//9m6z+KEuhMAAKlUCgCwkq3EE7tecNxXoxh/cHepzj956+MSfrHfLxzX1u3N4PY9N4DzwozTYn8p5/bMhdp2jONabMxzUEa+Zh1tQIhTBkd5XEb3h1c6C6VZVB9wi/Wre+arTAhqYoWLbdvnQu8o9Mu9J47AU21PYWWnYePtWdtMee4sk3MALI7ujy53ydCD6gMK2wPaZbC3ydSpvufz+MLoY5GQCR5fbyS56Oi/QalbDdcxEohRgiqFQGPc0gdhSWibf4iMLW5EpU4k978NYcnuOhlaxyzIFDAXYdAxfwEd8bbv/SPjzu+I6Ww1ujdeYv1+74kj0Ka14dctvw4tw1dHfRUj1Zm46Z890BgQkwA++knII96x7nEdeeGAa3Xo2XSR4xpR9qJq8t2ee/3sMyYRLBj/Ncysnum496HdD+Gdnncc1xz6t5XF1Xr0NH/Xui8hA1B2QZpwr9Xv9u252rPMY1fajlORSU23yQWQhkchV78fSg8sNwbpzQsd12hsB5L7FV+taLfTdMtp0LunWfUnZYIjP/E43ku/56yLGeODUurQCdRx0LedB8aAXH4I0fg2VO23xGcLIuNftx7SLWdA7z7IcW+i6SFIVR9Z95n6TGscWdtgGRmnmBCbgO+N/5517fxnO0HiWyA1LUVCIkjIwcFEc9zrrf+J/WMfx0cdheC0NP4B1NRuRrdP/7vRMxOR2brA+j0mAVJyE6TGBy05O3PMMc7dY+vbDd8GS09xjAup8X6QxNZQq4j09GRktp1l/Z6QAS32IeJNfwBgyD8yTsE4RypnO09GIdYZL3s2ngU9M8lx6H1y0u9B4y2+ddr9d7UMHFz9cXyr4VuOe9al1+H+nUsddQYxIkZw0fjvYlLcOcniv7f9Fht6tjuuBelE7z4I2HWGw08qNe9h9H6PQ6YkcEzbSW8+Dyw3zmgjAEUCDjh4Mbqwy3FfUFla91Rkt58OIO8bAJDqtaBj/+zrH/w4peoi3LdqhGULAEAn3AWitHnudb9HZUpwWNVhOHPMmTj/2c7CfTX/wuiJTwe2wU1P84Ug2ijDR3MgqwNVU+4AkTuQzE/gsLfdrUut8zBkd3zZrB0xCpwy499YmX0isN32dzEAaFsuArQ6x7WGj98ORrscftWuB8fzqU8iu/NLjmuJ+lWQx/yfJXtSNnyL+bu7jJ6Nl4Drzvhn1QH/DUILkx9GxIL79FM1n8Kpo04FADzyfhZ/b86B1P4T0ui/B6nBg9b8A9x7wjjHtZ9u+SmyPItUjjm24h0RI+i0jbfaGEH7riPA9p7oeJ7WrUTd+BcghdyC7rqJ1yFBnYnF67ZcB42HS2YdN+I4fKH+C9bvqVQKK9Ir8HL2Zcd97R3tGPHAiAH/G2TwRykFAoFgkCNTGYeNPWygxRjWUIli3P7RDqQUCAQCgWAoc91112H9+vVYtWqV7zZwJh0dxlkpdXV1vp/X1tY67huupLW+mRu5L8647G2b+konAz29Na0ZB0wEhZ4GWj6TcsUI85z7Hu6jj/7UQ9i6/G4rc1e60AwScwiNny7DtKHUuOgPyrW5wd5H3PVvWEj+Icbh6Zi+9A9ZvTxbiCpTqfuDxrbf5VK2wwHk3DMeBgKXCJXws4OgVYIKI5JAAkEFUJqaoOf/cFaamgZYGoFAIBAIBALBvszKlStxyy234IYbbsChhx7ab3X6MXv2bOTiOcRi3m09gjjuuOMcW+PoTEfs0fDPH3jAgZgz3Vg5Z66k279+f2DXi477FCW/XYrq3BckFo95Vt4pH23H4hcIjLCH/eSPciiUE8vL0K2qocpzztj1nkli17MkSSBS4U/6OXPm4O01b2PV+lXGhWxh+zlCzFnRUdtml6HQpu68TiUqYf8pU5CMSZA/Wm8KCkKoJwolSRSxmAKis4I+CIEsyYAWYQuZACRKIZsrwQlFoR+c7XDbqqrLhgx55syZg9buVsSeDm+T06ZNw3jpcNz51j+hawyyJMG9G02xFTDR8PYhpRQHH3ww5kxx2vWLK1/E+1ved1xz6L+IPciSDEgSzE3CYooCxb7SPpt1PUeMfneUIcG9AV7l9ODGG1qWJQmxmIxx48bho5aPHJ/lcsbWW7FYzKETAsMmda7DuZzNbk/uOr12VkpWU585rgF6YZlKLBbDqFGjHD5Kfu4ZQJIAEMiy0aZA8uNeohLq6kZC7rIl+AmBIit5nxjN18mSlPfbxJKTqjkwW2e6x9bhhx8Olp7sGBfesRkeWZKhOVRs+ETGOZArbKWmKIrlCyRJAiQJKiuyXZeDgmyUEDSMbfC8L+QWGbGXY446g4gpMcycORMHjz7Ycf1//3o/0NNqu1JcH24/SUjBhsKO6cLDhl5qR9RAyzkngIQpy/KXtIh/8OHwQw/Gg/9qLdgC4PEPDiFt7xxFomhsbMSc2XOM8WBCJY/dOdvgjyzJht3Yxp4iS8jqOkrrsWCEkkRx0AFT8M6mIu8L27sYAGQqAZJzDCcSCWjIOfxqYXvL0mPF2Aq1oDNFkZHRNVtboo03QlC0TydNmoQ5s4xx8VrPe5C3NgM2/xAGWZI9Yyv5pyS4yr2+RXGONyUWA6UU1KVHUIqYErNWApbimGOO8WwPnHgsYWwxHILJUyZjzicLbVi+fDkSPIGYa6s7SgbHLjUiCSQQVIDGG24YaBEEAoFAIBAIBMMATdOwYMECfOITn8BVV11V8n5zBVDQSh9zO7WglUJhUN5V8NQdT4W+3/3HMCUUT301/PMx6g22nH3I2fifx8Y6rv3X/CPAOceFD6xyXH/yJyd4nj984ljU7LoaOzqzSErGYdDduSJBQ+ZdfZXbczzUvcdaZwKNr43jzxcfBwD44m0vozWV9TzjLDOG9EeXG0ExDlQpzjOBDtlvJBZ9tbCd9dH/9ZKniIWfWIhvHWpsXfTpX/wDgHHehNmekm1jCccWcTX5PXsYM84EMtt0/M0vGDf4nQnUdiImSl/Bpt3OPfE/f3gTfvLFQ5BRdXzxtpfzupbgidXo1d5t6orBZEiksBWcIcMXgLYToeUDfLJttdxTrv6/6P+twRtwytpQ1RDNJvNnAo2sUtCayoAxjuzOLyC76yTrHpkQaIH7wflcUkf66sHsE7MPCYCvzZ6Mz+73Cc+9Vxx5BS474jLHNaf+bfbAvUEzlh2N9MbLrX63nw/xqZ//HT2qcYC5kj8onmvOcUEJkGk9Bdn82UgEgExJ/vwhPz0QT7iS5caWtIeERKygv54hVl2UGP9ee9S1njOBVqxYAcAIAjp1IntskmUbgS1XIK3q1ioCAmOMAkCPWjgTiFJiyWAns/00gHAQAoc+b/37B/jDPzdb9z31kxNA/AKp2QnAlitw1twDce4x+wfqwhz34Ir38PRdZ+L/feMYnLFoZWlfZ7MHU5fI7gdsucKS84x7VqJ5T2HsuMeWeSaQfVzQnd8E47qlMz8sG/CxSb17Cro/utzS/1PXfB5t3Tmc/D/LrXtu/danMK3RWOX66Z+/ZNmBqY301m8CxN8Gq/JnAtXHCK45tgqfO8a7Ve+R44/Egyc9jpNsdQax6MKjcVD9KM/1nx/9G3zhfwwfzjlHVVzGrq6AwDOnqHG99uLqNPz5lPOsM4HsY5pQoDvn0i8rnCHDOVBfreC+k+72PRPI7R/Sqg7GvEFs1jUN6ZS/f/CFKRhZtadgC5SgZ/N5vn2RyJ8JZC9bIj7ldx+Kp776Pcclqw2prNe1Mu9ZWT3N3wEhwB++dzS+s2yVt+32QrhTDyOTCs755Fdw7owvBjbbGpNWGd7vMBcc9N846dBxDr8qESAhU3S7x4pLBgKAdM8A6zrUek8/dsHRmHf3q9jRmUWC5re5K6WHjd+zcji1CRl/vnxu0TOBPHTOAro+6Xu/Lz56ePhLDwMATr/7VWzZWzgr8u4LZuOMewqTkX5/0bH4yu2vectMfRp3ffMiTBld7f3MhyrZffYa8NhXHgv1LADPOXwAcFztcbj8ZOc763Of+1zoMvsSkQQSCAQCgUAgEAgEgiFCV1cX1q83VlwErb4xz+/505/+hEMOOQQArGfcmNcPOugg38/DQBjxzKSM9Dzp3fOAEYQHd+7rnpSTRvDGdd2vrmRMxmkzDsR9L29ETuPGQfOhZ47n4TIkIkPVCBRKcNrhB2B0lRGIPG3GgbjzhQ9LFEDA9DgUmYKDg0ByRMMlJJ2ycxnu7EFMihUOKc63mwCY3liL1ZvbQ7SNAsx22DOXwTlHTmPONnH34dx2PSigSACuoLtCDPmrFbh07WwDpRLAaaTtuGbsV4/3WgvnRBiHZiuAua+/LVnl7n8JCcCVBKKERrZJhQLzZk4w2qUzQwZ7GyiJuMeYqy9M8n1i9qEsESTkat9glPcQdfjo398eOOfI6YBCkw5bNiFIQiY6VJ1D5wCnEowGFwKWhBDIJGYlfSQKI7Bv04NEnAtupPwZJyX1YIdSgFNDLyjoxUyi+unBPAcijE0CFOAxcL2wEkOWiDFGAcjECBTnNBj6hF9SJQZwQJGoQ58ySTrGU7DdSQCXEKPJ4rZpK8uTc+QxjEyOiOzrCro0ZDDldI9zP7lk17iIk/zYLFKnRAHNJ0fEOQeHBDDJ0n+1Uo2sojjanZSrbbJIIMRog2YGwvN94Ucu77+PbZJRq8SRlJOeexSqoEqpLu4H81TJ1Y6VrwUZkw4fffIhE7DsteaS5Zkc0lhv2ZDbfmMyAVhwkk2iBPNmTER9ssbzWaB/8Gw3xpHTSaB/CMJpCzSwL/zeowGt8did2YZ7XvoIehGfy80BwuOQKcH42vpQbbfzhcMaURMvYQch7CQuGePa7lcZYKwADDE+wallu6cdfgCa6gptUXUOCdx3TDnljFttnTFxbOg+tUniPzEkAmZfEp4AeEHgKtk53pJKFfxTGjKqHOO/fBnKRSaypwyiDuSGmAUGx3okgUAgGML0qD248B8XWj89ak/phwQVRc3qeOr2t60fNRsxaCMQCAQCwRAhHo/j29/+tu+Pmcj5yle+gm9/+9uYMmUKDjroIDQ1NWHFihXo7nYGuru7u7FixQrsv//+mDRpkl91w4oFs6dgfK0RZMiWjJb4w/PTaBvrEjh79mRH2WFDAI11Cd8tWHqzg9bM/erLahtj3LrfbBMPsZdXqbaW0nUs5FYugLGy5GenTA99f19ib1dfYe8T44D36GGdMLbu7nc/FIlafZ3VmGP7HlNW+zUO4rEf9/ndEbreU1dv9OLWiVtOxgoz6d3lKxJFbUK2ni3GuNp4oD4rje8ZJyyaryvXxuy463PbiUfGAA8S1L+lbAr5+2NyuHY01iVwwmRvUtUpYzg8q7ECmDdzQlG/yWzJDALg8EkjHZ87dVy8zlHVsaI26B0LXlnC+IcwZRcjatnueuqSwX3IGLfO8rHbU6m22yEAvjZrYlnyFcPtV0shU+LbH/a2RJl/QAB8+gDv6rWBJMr3n8GRbhmciCSQQCAQ9BIOjvf3vm/9hP2iJ6gcnHPs3tpp/YQJTggEAoFAMBRJJpNYvHix78/RRx8NAPjxj3+MxYsX4/DDDwchBOeddx66urpw4403Osq68cYb0dXVhe985zsD0ZQ+J6sxvN/aCY0x6IyX/H7QUJvAovmz0DQyCVpGJJrAmGHdODKBSz93ENa1dmJV815kVB0NtQkkFKlkcKI6LuN/vv5JcI7QcodhREIpq21pTQelBBPqk1g0fxYaahNWUIxzDp1xbNrdjS17e3zlNO/RGMPOzgwyqjFRp5iudcaR0XmoZIBEgAvnHoi0qvfp97+MqmNV81689MEuq0/9sLfLjRZpFVAwZp8QAAlFAiUk0t8fGVXHlrYefGfOARhdEwP1i5gDnn73vYcQJBQJdUkFlBorLdyyShJFY10CjXWJ/CofZxm663c14JB1AiAm+W6UhozG0KP66IVzqDor2W+A1ybdcqY13apbkShY3rY556CE4IwjJpUcXwTAb772yUB9VhwfVTLOI/k6e0C6XNz1ZQO2ghuZlC078YMQY5WQIlFw7kz+2H3Nv1tSnr6mhODAsdUl22La/MhE8XBpRtWt+or5aftl04/8/d878NiqrVD1wrOjq+NF3xFprbD9Y0KRUBOXHeXax7QUMKZNLpx7IGqTSqBPc/eXu2V+7wV7+8wy23tynjpqkwouPeFjGFUd803WmTTWJYr6Hjt+/rmhNoGzjtqvqD7NbQLtfrRU203M58bUFFYphnlP2O3Ubjd2XZh+tSomhXpfp1UGDo7quIyvfLLJSnba2yLT4vZMbP8mFAkjEsWToGZ7X/1wF97a0o6sqiOn6Q6bLoaph5c+2IVXP9yFVz/cHcpPF573L09jDO9u6whVxnBEbAcnEAgEAoFAIBAIBPswV1xxBZ544gncdNNNWLNmDWbOnInVq1fj2WefxZFHHonvf//7Ay1iRWH5wO/FD61BV0ZzzB6XJYKdqUxgYOngxlo8esFsLF3ZjDte2BC6TgKgoTaOifVV2NrWg5/86d38lm7GeRjzZk4AIUAyJkHVWWFbItvzEjUCX999cA3StgCGKXdW611Qw962O1/Y4HuUvTtsM25EHKfPmoSzZ0+2dLYjlUFW0602PPF2CwgBNJ1DlggUiULVmeMeAHj23zvxmVtexLyZE7Bg9pRAeQBjNQglBBIxtrDxCycpEgElBPe9/BEWv7wRGVW36g9KbERlRyqDpSs34fHV29Deo3r6dMHsKR5bMtt1zE3PByY0ekNjXQLzZkzE71ZsjNROv7aAAzGZwH0kDAFw/nEHOPo9CIkSfPvY/ZFRGZa91oyOtOqR1ZyZvnRlM5a8ugld2cK2anVVCrqzGuT8NnC1CQV7ugtno5hjAyDWzH0/CIBp40Zg/c5OEALL/rpzOhYue9PTb37YbdItZ8OIOLqzGrqzurHdn16oV5YIqmJSoD2b9ygSxUHjRhTVZyXxSw6aq3CKjT87OZ1B1dHrsXVwYy3uPmsmrnviXazZ3O4J4lICnH/8gTh95sRAmeKyhO6sBh2G/gmAG558FxmVoSenW/df/ad3cMuz72PezAlWe1WdYcPOrqJBfVkieGThbDTUJrDzA//7zHH06Kqtvn7aT0fmM4+8uRV7u3OehDABcN/LHxV9RzTWJbCrM+so329Mc8aLrl4BgJv+7z385tn3LTn8fJrdPhYt/9Dhy+zjuqE24ZGDcQadGbZGCYGUT85K+SSulk8S+Mlp6vHus2Zi2vji25GZ7/rP3PKixz8fd9BorNiwN7C/x9TEceIh4/CnNds8/WVv+73LP3T4HfN8LJnCSlaWek/YbdDv3S9LxOE3AaPs4w4agwPH1hQdnyY6AzrSKm5/fgPufGEDZuw3EjeecigOaarDoxfMxn3LP8LiVzYGltM40mtfQexIZXD3ixvwyKqt6PbswFJYXeU3Hsw+M/XwrSX/hM4Kk2hkiaC+KoZcfsWg+WxQUsldHgBc9sjbGFUdC3xHD2fESiCBoAJ0LV+O9sceR/tjj6NreenDAQUCgUAgEAgEgv6iuroaL730Er7//e9j3bp1+M1vfoP33nsPl112GZ577jkkk95VC0MVnXGkc8Z++nu7clBtyww4jFUGp9+zEuu2pwLLaKhN4IufaPTMIJZ9ZuTGJIKEQjF2RBwxieKdbR3Y2ZlFTjOCEjmNoTWVwX0vb0Q6p4NzI5BZFZOQVCQkFGr8K1PoDPhwVxdaUxlHHabcb29pd8hdzsqXhtoELj9pKqpiUv7skvwM5HzSxY0sUXzxE41WEGXd9hS+fu9rUG0BF8a5EdTLy9mT07F+R5fjHsDYfsfUhdkHfvKAGG3m3NgWKiggpTEOTeeWns360zm96DkQYVm3PYWv3bMS9728Ea2pjG+fBtlSQ20CMu39Cgo3MYni+cvm4vKTpjr1UqK5QW1R80kSe/nJ/Az0y0+aGjp4NiKh4PKTpuKyEz/usGtT1obahNXX3/jUJMc9V508DXFZgkQp4rKEX5/+Sd+xUWolFQfwr20dSKvM8gHmE379tjkVvJrr8pOm4j+PLMgZlyliEkV3Vveo2rS7Ja9uwp7unGXP9jYY9m2uNugd/muh/PFzEXY1+o4/v3LQ+7G1bnsKFz6wGu9sS/luTcU48LtXNnp0GJMLLe7OaQ79cQBLXm3GH97Y4riu6oW+7snplj0USyLGZcP+itm8fRzt7Mw6PgvS0YZdXfjaPSuxaPlH2NmZ9bVjDuChf24u+o54/rK5lg0BwK7OrGdMqxpDVufWGVxBZFSGrqyOjMoMvQT4NNM+DmmsDRzXbt+SVXVkNeOdwLgxbrMaQ0Zj6M7qVr0a89pnTKLWWLGvsPHD/q53++ftHRn88c1t2NaeDnx+b1cWH2uoDny/mG2f3lTnGcuKVFi5s35nZ8n3hN0Gg/zHb5593/MuSSiSx5/UJWVUKRSKFOwHGAdWNbfjK3eswF//tR0NtQl877Mfc5Rz0vRxSMg00L6CWLc9hVPuWIElrzb7JIC87bKPB3ufmXowv6JxGLaSURlaOzLY251zPOunN7/yAOf4L/V9b7ghkkACQQXY+8AD2PHLX2LHL3+JvQ88MNDiCAQCgUAgEAiGIUuWLAHnHEcddZTns7q6Otx6663YvHkzcrkcmpubccstt2DEiP6bld7XMM6RUQtB2lg+qOempT2NhctWYacr2WKyI5XBwmWrPEGHhOIty5wdvbc7h+0dGTDGkZQlJGMSEorxb1KWrPNEMqoOxjlIfna0TCkIMbazMhMfiYBgbFZlReUuhjuuwwHk8iukOGDJ7Ka1I2PVaerFHViTKfWcGeIXhJQlYunC3Qd2ecDh0aHik4Bz32Nvm6nncjHb2tKeLtqnQba0I5Vx2GKlUHWGlGvGOFA8BxSmLfbyCQFImas9FIladi1R4jtmJNc9btuJydR3bETBPdPer99uW51Geyb4vA05LyclxAosF5OjI61atmAf3xIlZevTjyhb//nd6bttI2zjr0R55Ywtjw0q/j5ub3fOoUNCAFUrtDgpS6G2iYzLRl/resHHAcXPCil1VpG7DUF+2q4jxjmu+/O72NbW49kq0Y1W5B3hHkuMczzxdotjTMcVGuncF6ssxo1EQBGfRqm/LG6dxCUa2jrNeu2oerix7n7X232aIocbazoHfv6XddCZze79ViYRBI5lxjmuePSdor7VbYNBmLbvZ4N2W5ApBUPwtpl2NMZxyR/W4N8tHeDcWU5jXRKyRIv6ajc7Uhl8+/43PBNVimHatMZY6Hcit/0E+ZtdRd6xCaX0O3q4IpJAAoFAIBAIBAKBQCAY8rgDSMVmtLamMli6stn3s6UrN4UOcpjBU3O2alymnj38KSXWLHuelzNIbkpQ9AyAYnJHwV6nFLLOKHoJwq4Le1tK6cAviF5MZj89R8He1lJ96tcnS1du6pNTQjkQuf/DtMVefm/0VgnsSY6wQeGw2Pttb4bjH83ehJobh22WuLdS47NS+CV8/BIFUfRcjo14bDCkb/b49LDnmeV9iLueYrm4Uu2K0gazLFVn2NWVjZScCaNfVWfWVoXmmC53rHAYW/4V82lBLXXrROfhU5Rmve5rYWyrmF2ESWaa6BzWdrHloOrGWXdAsG+Nsn1iayoTqv1R2qgxjuueWFsRP7p05Sa0dkT/DmB+TyrXPlWdeVaNPbZ6W9HySr2jhysiCSQQCAQCgUAgEAgEgiFNRtU9M605544zG0xi+TNrHl+z1XN4cEbV8fjqbb6BmLT74JQ8jBuBiphEQQiBzjh6chrSqm479LkQCNL0wqHJnHOH3ISQwCnDhCBQ7lLYw1BuXRFiBBC7c5rnOVNXj63egsdWGXqJubahcQfygjDrJIQ4+qC9J+eRx6FD+B8yzbixFUxPTvOdKWzoOZRoDuw2YPapaUs9Oc1K+LnbYfaJ+Xxf4df/QVsD+rXFvN6d06D59J3dPvsCd9FBMVL32Ci7PsCyI6M+o990BqzYphYdS3YZDP0F1yPlA/GPr9laVH99qVtPXb7XnFf9fGcpNJ2H9kF+Nhi0tZ9s0yFjzCOXsbqmdJ0sf+aMu55Sqg9qV5Q2mKj5rSrLORes2Bg0bVJn3PbOYb06f8w4T4UH+jS/kt06AcKtTnHX6ytLwHlBZr1B7/qurBZ5NRTjAGPhVus464S1HWnBJoz3qKU3HxsMwrT9Uv6Xcxa5jWs2t6G927l9YdSzvTKqjsdWbS1rtRngn3wOi6ZzZG3jknOOZ9a2Fr0fCH5HD2dEEkggqABNN92EA/72Vxzwt7+i6aabBlocgUAgEAgEAoFgWLG2pcMTwAma4UspAQVBW7eKtS3OveLXtnSgvUeF32kueokIojkL2Ni+xNiv3i8oxlEIiJgJJDtBSRVCguWOQpCu/Jpn6mpPl4q2nhwoiO9s/DCBbffMbbMtT7+z3SNP2q5DzX92eVZj0PNBYb/gjrmdTFTsNmC2NZcPurrr8rMl8/m+Ikr/+7VFZyx/MLux1Zobu332BaXWCvAiY6NcTDsyodTYaqxT5UV1aZeh1CoU+/jsS/1FwW9Yuq/5+YOS5QK9ssFA32zTocZ8fGPIFRDG1m7+54gUI6hdUdrgLo+EqNfvuSAbMttFYH/n9G71Hgdg7opW7P1ox62TUu/HoHp9ZSlSlJ+95nTWq3PgylkMZL5fCHH2A+f58+qYvw0GYdp+qfZntejt1Dnwj/d2Oq5F3aFybUsH9nb33XutGBzGeYkmjMN3W1QT+3eosPY8XJAHWgCBYF9Arq8faBEEAoFAIBAIBIJhS5fPAcXFQiXGghtubaljL8eYEV2igCLYH9MYQ8xn7iXPh/H8AuLFZuUHyR0FP10Vw6wTnBRZtRFdDrPctu5c0ft0xn3rtQf9goJm3IyWRsBhA1ZdhaCSuyp3n5jP9xVR+t+3LSFE60v5w1JpGXzHIkdRXXplKO4YrLFi3Tuw+EnqXjUX1R8UnivfBoth6tDXN0YI9JdrP37titoGO4SU5x/Nd4T/dWcQvxIjxV5fmPeMWyeVXODm3/uFet30JgFk1hf5mfwjQed96YxDirjswvzeEdT3Rr3ltXWv6z0b1ZT7+r1Wuv6CLRazDz8q8b1pX0GsBBIIBAKBQCAQCAQCwZCmJl76UGM7nAMEBDVx57zImrgEAlLRgJYfxPwFEnEAAQAASURBVAy2RQzFBMkdhXJ1VW4ws1S59dWxyhXqopygbVQbcPeJ+Xxf4df/QbKWa899Kf+gkoGg6Fgqd3wWe65fw6g+He++FNUfFJ4L54PKHU+97f9yn/drV2/eC+X6zCD5zeuVfkfZ6wvznnHrpJKj1SjXv4Hl2mup+oBoOi0kv4okhcvwH6WeC0o6laK+yvmejVpMX7/XSlEdK9hiVO9Qie9N+woiCSQQCAQCgUAgEAgEgiHN9Ka60EEBxjgYOOqrFUxvqvWUM7JKQTlHGLOQs5EJAHNnKUrCB884d8pdbgywHF2NrlFQXxUDAw/dzjDl1lcr+OJhjSXlKSf0RMp8zm4DpdrqZ0vm832Fn90GEaUtJnb77BNKiGFtvxZhbESF5bfDG6GQorq0y1BKf/bx2af6i4CfyO6VQFH8gQkB+sQGmU2HMu1d/5djP0HtKmccmeWVsRix6Bg022Vs4Va5TBDNR4eLvR/tuHVSKZs32x6UWynHXkshlxEZN98vnAf1A4lkg6btl/K/cTl66yUCzP342MjP2ZneVIdR1X33XisGAXBAQ7X1OyVAbTKcLGHtebggkkCC4QuRgCnHFH5I5WcUCIYHlFAcMe4I64cS4Vr7G0IJJhw00vohg+UvL4FAIBAIBP1CQpEgS+He/zmdQZEo5s2YiITi/BsgoUiYN3MClAj7uJiBnpzOih7mbSJLxJrNSwhxyF38QGgEyl0K+6xft66K1Wnq6rSZk3DaLEMvuV4cQG7WZ++DkVWxkvKUM/vZ0HN0+ew2YPap37xjdzvMPjGf7yv8+j+oR/zaUgq7fQ4k7rFRKcx+kyhwzASl6Fiyy1BKfzrjli0MBv0B/ttcuePVUXyniSwRJBQp1KZMUWxQs+mQUtqr/ieEQI74N6HZLjfljCNFMmxHKaMNxcagaZMSJaFlKYVEibX6ptj70Y5bJ+Xg1z2l/E859lpKBkqjx28IMWSVJf9+IIhmg6btl2o/pTRywm3GfvWodU1McNdRyo4SioTTZk0sO9nXm/CMLBHEpIItEkJw4iHjSj4XxZ6HCyJSKRi+xKqA039X+IlVlV2Utns31JYWqC0t0HbvrqCQgqFAUk7i5uNvtn6ScnKgRRp2KDEJJ553qPWjxMQLXiAQCASC4YYi0dCzbhvrEjh79mTfzxbMnoLxtYlQ5RAAcZlCKnJYOGPcuk7ycgbJXeog6WJyF5fTqRl7naVyOmadUfQShF0X9ra4deCERw50+uk5Cva2ZjXmCXYHtcP+fF+kAQjg2//F1ONpC/e2xV5+b/QWhig9GWVMh8Heb6MSBCdMLj2b3C5DKdnLHZ/9iXslEBBNz+XYiNsGixHkF6LCGPdtaxCl2hWlDWZZikQxpiYeKQAeRr+KRK2trUrJEgaJkKI+LUh8h07KmBxAXYmIsLbltoty82ASJYjblgFFPfNGkSgaRsQBBL/7o9hgY10iVPvjEZYuyZTgZ6dML3lfGDEXzJ6CxrrosS7ze1K5K3r9dHLqjAlFyyv1jh6uiCSQQFABWq6+Gh99+Sv46MtfQcvVVw+0OAKBQCAQCAQCwT5PRtWxvk3Hqh0qHny9GTrjiIUINEyoT2LR/FloyAevMqqOVc178dIHu7CqeS9qkwpuP3NGqIBFQpEgUYpxtXGMrvGebcM40KPqVhQtoUiewBclxuxzY+ZwcF1xhTrk5pxDZxwaY9AZR3tPztEOe7Bf1Zn12asf7gJjHIpspIaKBQVMXdUmFWzY1YmTpo/DCJ999d0Hc0sBUc+0poNS4umDYjrQOaC6EhXFIPDXcxQaahNYNH8WmkYmQSnxJKbMPm0cmcBtZx6OLW09lt4zqo6G2oTVnkqiSBRb2nqQUQuHo3POsSOVcdRvklF1bGnrwXfmHIDRNTFQQqC6grVpzbjfT2/usWEvu1xKJfTsn9vtordYYxHA6JoYvvvJBEYmCtbvbquWX91gytA0MlnU+OqSisOmzbbYxyjnvGJnuYTpG8a8cry7rR0ZVXc8zzmQCOE73TYS9mQOx3gqMi5HV8ctHZq6UsrY/gow7FoKmawK4zPcPqEYps1yDpw+ayLGjIiXXBFiLm4JSny5x8Upn2wKJUsYcjpDj6qDEO/7EQhOfpo6aaxLlDVGdZdft/dB0DjJqLplF2GTs37IlOCaLx4MSog1Nv61tSOSj6OE4FenfcLXrlWdOWywlH5M2y9mg5xzqLqxWW2YFWYyJbj9GzNwSFOd5x3m9sNhdNhQm8DiBUdEngxiTJShoX05sf3EZQrOgTc27bV8KACMrokXLS/ou8ZwR5yKJBAIBAKBQCAQCASCIcOOVAZLV27CI29uxe6urBHcWPWu4x7zTAF7YIPA2FbkkYWz0VCbsMp5fPU2tPeoxixgDkgSsc5cKAYBoOo6VJ0grepQKAmeScyN+zXGQAj1zoAmgBErIr4zh2VK8IkJIzFtfK0ld3dWd9Q288a/gxJjmyBKCDKqbpV5z0sf4rbn1kNlDFF27qlSJNz1/AY89/5OdGeDg2NufbmTQiaNdQnMmzERZ8+e7AnKSJQgGZMweXQV3tve6TgbpjouI6Pq1ozgnKYjaAK8RMvbBs7NwY21uPubM3Hdk2uxqrnN87muc+zuzOKb970OLd9eAoKRVQpOmj7OCtaFJYzN5XSGsxb/EyOrFGRUDYARwHxmbSuee2+Ho36A4Jm1rWjvUcE4g6Zz31Vf1TFDtzG5YJeMc/z6mfccY8Mse97MCVgwe4qjjEpsSWWVZft/xo3gbJjSq2ISPja2Bu9s6wi83zSLjrSK29ZwHDNBwegDO/DXd7d72kopkNOMrYQkSnD3N2fiP+99DZ1ZzVMuJUawf9r4WktuVTd07vZBd72wARfOPbCQzI0Ywu7MqEX7hnFu9WNOZ8hqukOOHz3yL1z9p3fz/si4mlELKxWDkClx2EhURlXH8NlpY/Hoqq3I+bgSmRJcfuJU1FfF8Otn3kNPTg/lg885egp6cjr++OYWx/0NI+KYWF+F1c1tRe3B2LItXLsObqzFoxfMxtKVzbjjhQ2B92U13Xr/3Lv8o3yCg6KriA813VlOZ1B1r1zuITZmRNyS5c4XNjjaWBOXitYlkeAVoEftPwqjqrwTGvzYkcrgL/9q8V0tGcafgQCEh+sD+/s67UrUUOJcQdo0MoHjPjYGKzbswdb2tKcsSoDfn3ME/vbuDoedXfqHNaivilk+LkzioC6p+No1B1ATk/G1WRPx8JtbABR/bx06oTZQ70H+JAiJGFvA/eyU6Tikqc6QJ0LyvRgHN9biyYuOwd0vfojfv7op1DNZjUHnxnZ3yZhUsi2NIxNIZ3V0ZrW8bQE/+8u/kdOYNWZ3d2as7wx+5RX7rjGcEUkgwZDk/72+OfIz3/j0fn0giUAgEAgEAoFAIOgv1m1PYeGyVWjpSEMrsv2MGRCKSRSUGsF5Soy95BtqE1Y5rakMVJ2B5kNWOgfgjfH6woF8QIcXLvggEWIFBFWdQ9P1/AoiI+ClM27Mbi5SiM44crrukNt9J+Nm0Nw4pNsuXyoT3Khiu/isa+3EutbO4BvyGOciFA8ixSSK5y+bW3RffkoIDptQh817evJb43EcOLYaJ04fj/uWbzTkZbxoIktjHHpO7/X+/+u2p3Dhg6vR0uENIgKGftNqQRApn3nc3pHBklebS5Zv2ibnRrIhbCogpzFs78jYpCgk3birfnM2dbG8X1bT8zOsjZtNe7zv5Y3W2CDEKLs1lcF9L2/EU29vh864Z8VXBXNBrnERjEyNsT26Oob3dnQWvd+MMasaR5vK8dePcvjbnStAiGE39rbq+cZoupEgu/DB1ejK+Y8jxoFHV23FvJkTAQDpgAQGB/DA65vx3Hs7sWj+LBzcGO2gcp1xLHttM3pyemDfqBqzbL95T7dn5VdON3yJib0Pi+nObiNRcfvboPI/3N2JO+/Z4Ovf/OAAzjhyEuqrYvjLv1osn8G5Mb6KJQQBY5WBHHFru4baBL74iUZP4sWOPSGh5ff4zJTYts0+dvzeFX51NdQmcPlJU/H7FRuttsuU4IXL52Lur1+0rpkPM3DkNP9kMPJ1PvzmVixfvxu/O+dIyz79utzdp+57KIXDT5urPB3zA/KiydSbALKH9EvZj/19L1FivWf+3+ub8fO/rIXGYCVLZQpwEPzkz2uxvSPt0GtOYw4ft2j+rJJj4sIHVmFXV85Xrqym47n3dlp9W+y99fL63Tj9npUev7pueyrQn9iR85MfCAj++ZPPYaQroVTKN0dx3Q21CVz/len445tboOe3vGOMQwueA+Ow57gsISZxj30iL//d35yF0+951UpSA7Z3XL6sS//wlqUrd3kEpOR3jeGKSAIJhi+6Cmx6ufD7lOMAqfSewH6MPuccaF/+MgBAHj26EtIJhhAqU/FG6xvW70eOPxIKLc+WBOWh6wwt77dbvzdNHRl6+b9AIBAIBIKhwY5UBguXrcK2tp6S59iYqDpDUnJu82OW05KfIZyUJYAYgdveEJMJMqpXMMY5qmISuvPlcxhb2iTzZxjaA90S8T8XiANY15LCefe/iR2pDEoRsBCnz3AngNwzswGjL1JpNVRghhCS3x6JYERCsVYAMR4uMWDqOCYV32IviHJsjTGOhEKRUcPN1lZ1hjilkRJAgLEtoDsoKFFjyzLGueOzUIF0XtBXXKHIqoY8jHEkZcmx3RRjxkHbLe1p6IwjGevdtntBhO1nwAiyEwAtHZmS+QnODf0RQpBVNagMVnQ0qRhbFplkVC0fPDZmsm9rTxdVaEdaxbfvfwME/gF7e9ta2tNYuGwVHr1gdogWFp7LqDqymg5KSGDfGMlJPdxKDASv2nNj91vW6pQQNfj52x6fLbc4gMUvbzQOrI+QTVy4bBXu/OYMy2cwbrS/kCgNJqsx0PzKybCY7QkroSIZ5YcJ5Lux67zYSg27v5QlgrgiOa4BefvJhVsGur0jg/PufxN/+u7RxtZ8rs/9+pQQWO84wNuFMdk4I6nLvpIub6Ruu7I/H9Z+AMOnypLkeMdQShGzhQUMPehoaU972pVQJIDD8nELl61CbdI/bM65keRpTRkJMLdcCjUmf7S0py0fFcYv2P1qWtU9thZUjv05dwLIlDfK72EgxLA3xjnSeunvT24fYrdPE8Y5Ln5ojSd5HZMo0qxQx47OrPGOypfltneRAPJHJIEEwxctA/zpwsLvF79ZdhKo+uijKySUYCiS03O45pVrrN+f+upTIgnUz+gqwz/u/7f1+zd/epRIAgkEAoFAsI+xdOUmtKYykRIcxqxRhrhcCAiY5QD5w4oJMbbv6aV82YBgPocRVPKTy/x/k2IB0KzO0dqRASGG3Fovk1b9DQewdGUzLj9parTnbOqIssWauRKqnFhQubYWZANB90dNAAH+OjC3EPT7rFT5pi255THHhh1KCeKEWu10j60whAk2Rt1Kzy5zsXFhjsW4LHn6VmMc9j8fjLYXbmK8dCC3tSNT8pyceH7VXGsqg6UrS68YMzF1Yp6TEdQ3mi3ZXGnK6XM/fxsE4wABh0yItRKrFK2pDB5btdX63W47YeyhN+0Jg6ZzEBJ1078Cpoy97c+gFVhBtHZkAv21X5+6k1TuiQB+iTaJABr37wfz0TD2Y45L+3s1CLsuYxJB2uUI7D6uNZVBVvOP65gJ4iC5CCGISQRZzfue90ORCHTm1MVHu7pC21opW/bbZtb5fPkWFvW9XExOVWcVa7PAi4iQCQQCgUAgEAgEAoFgUJNRdTy+ehtyJbbU8UPTC4cJc87x+OptUHWGmFQIXrlnnZZDsYSBX/nG9ijO64wXD8UY++pXfuVFpQnSxeNrtkY6eNsO5159lULn0Wc498bWoq7AKmfFlp8tMQ50Z7XI+gHgmIhtl8cMamY1Hd1ZzUpkGsFNI5RkH1uVIqeystoRk0jRBIOJqnMwxjwrvDTdWEXVndWgMW/fc158VZkZ9C6VvDD1p+oMj6/ZCi1EcN5u+8aZV4YgGdWQV7X1TV9j7/NSCS9zLNn9bamVR5zDsQ1UKVSd4W/vtoJz7tCTWV8potiwvT1h0Vjv3y+mbYaB+/i8ct5xOud4bLXhr+1a9HuH6ow7VgEB3q3PcjpDt+s8LXv/+PWDn/34JTPs3azpPPAdU8o+zLLtY3Rvd84jF+eFbVSVvN/xsyFCCBQabky6/SpjDFv2pj22VqwXi9lyqd4v142X814OktMsy297Qfc5UOb3oL54B+3LiCSQYPhCKDB2auGHiOEgEAgEAoFAIBAMRta2dKC9RwVF9BnuHIXgNuPIl0OsrZSizpCuJN4VHWGeIv2+3VulaOtWsbYlVdazftvkhSHqM72xtYHEnAkfFZ98R+GzfPDYXCVkYo4d+9gKS6nbm/d297nesz4JPg4j8G1sWeSvlKJyRUjAUEpAQdDWrWJ3V67k/XbbNwPXOjPO/zJXoPmKFFqi8Nj7vNTqgcJYKvjbMEngKP1PQdCRVvNnohWepSGD71Fs2N6e/oTn6y6Xct8Xe7tzHn/t9w7161N3lTorbi3ufuCcl2U/hq783zGl7COrOn0cBcmfeeOtw7qPmN8jAloX0S+Y5WvMSJxFsbVituxOnlXKx5bzXg6S0yzLPOusGIUtKft/+9uhjNgOTjB8iVUDC54caCkEAoFAIBAIBAJBCbqyuhFwDHvQhQue30jJDEPZAwxDbRJpb7ZtGWg4uPNMiIjPlvVcxMd6a2tDjWJ6DaO73tqjO9gXlIApLUd4+iRoGLFMQgzdhUlCO3RsJbQHzjjD9rk5lhz+tsKyWDtokvJLNt8PpXC0p5/VH8lvepIW5ftOd72+79CySvepz9YPHP72E2bsBumqlB7cnxLrjD6nffgNvaAVbmXrHsYKF2o4ikjP+V6P6p96WV+454jPNduY7kVZAn9EEkggEAgEAoFAIBAIBIOamrhkbD1UZrTJ3LbI/NexfcgQix2U2oJpMENAUBOPHoYg+f/KqjPiY721taFGb+2p0vaYUMrboWPAR0VEATg3dKeEOMd0sI15tz8NwhxLfbldk7lNX290FPbZ/mhPcN3h/KbvtmS98J3uen3foRXCLifn5es7SFdR9WBW637O950SkBgsW/f5J6Mnb/zr89vSrhL0pn1B1yrVZoEXsf+VQFABWq65Bh99dR4++uo8tFxzzUCLIxAIBAKBQCAQ7FNMb6rDyCoFDNGDvQTGeR3I/2uUw8HyM3cHMnxQXt0cIXc6GnTUVyuY3lRb9J6ggA4l5ekr6jO9sbWhCC0jKmQfO1FtsVSAb1J9VZ/rvdyjc4oGG0NGLjkM/TFw1FcrGFMTK/mM3fajzLzvi1SFvc9LyVIYSwV/G7aOsDBw1CUVUOLUU9j6otiwvT39CQEwbXxxv2nH3S/lvi9GVcc8/trvHepHb97TJuXYDwEsmf30ENY+zDEqU+KRy/5ryRV5ETIadr8qUyAm00i2VsyWS5VSblKonPdykJxmWQy8pDzW+U0BZQn8EUkggaACaDt3Qt28GermzdB27hxocQQCgUAgEAgEgn2KhCJh3swJiMnR/4SVbQfGE0Iwb+YEKBJFTmfgnPfLYep+KBKBLEWrWyKk14eMDyTzZkxEQpEiPWM/CyW6vqIH/Htja1GpdPCqrOJs5mSXJ/CAcc6Ry29hZh9b4asrbr8xmUbuZwDIRTggnBACdxWl+sLcvi0Ixo0ypBL6MPWnSBTzZkyEHGYlkM32dVbk8Pd+WKESpc/NsWT3t6UgBJAjDAxFojj50PEghDj0FLa+ctvTn8gSQbzMFXKAYT9KGe+a02Z6/bXfO9T3+RDi2p/19gMPbT/2y7JEAt8xYe3DPkZHVcc89kEILP+hBvkdYpSjhkxeuf0qpRSTRiUj2VoxWy6VrCp3W7dy3stBcpplKRItKY35Paicd9BwRiSBBMMXpgPb3y78sNIHFAoEAoFAIBAIBIKBYcHsKRhfm4gcOKfEuZ2MWQ5gHKg+EGdrEBjBS0UKf+yzQoFxdfGiB9cPZgiAs2dPDvyccw6dcWzvSHsC3WaMJ4q+zNnUbjKqjlXNe/HSB7vw6oe7sLc7B40xR53l2ppZb1jKyHUUpRxLth+0bm9vxmds6DpDRtWt62awPqczrGreiw92dBZNUhSVPd//b21ui36+jlEA0iUOjbfXVUr17jYYfqT4M40jkxhXFy96Ty4fvGysS+CMIyaitSPjsT+3HJxzK3jHOJBWdejM6QNyqo6eXKH9fREWNf2WH5xza1ytat6LjKojo+o4pGkEqmMSGOcOWwsqnxISySc31iUwb+ZE63e7j8hqxf2kX3tM//CvXRrWt+keme3vj/7A8GMEq5vbitqJHc4L48l8JkpiDQAaRyYC/fXXj5yE+iol36f+Og6T+7B3j7sfzCa639d+2Kuyt1PTnTrgnFv2wbl/eYxx63pjXQJjavzHs0zhsDPvdmuGvYddwWQmNew2OXlUFeqrlFDPExjvk5zGcOvf38cv/7oOf/1XC158fwfue/lD/PYfHyCj6lA1HYwxtKbSUHUdOY1B1RlWN7c52qDmfbo5ntt7cp7xbRLlvQwYY1zTGTSdQdV1ZFUdWc2QhQIYN6K4DwUK/pkSUvY7ZzgizgQSDF/UHuDBMwq/X/wmEB9RVlFVRx4JecxYAEBs/ykVEE4gEAgEAoFAIBDYaahNYNH8WVi4bBVaOtLQQq6IyWoMOcCaYWovpzWVgVoiUFhpCIwZ5TSf2UgoEjKqXnrmKwPaunNgrNw5u32HRIBS3RGXDd272ZHKIKvp0HSjXSs27IGeD9LLEkHO1j+UGLO8wwT7E4oEzgv3Mc6h6gyfueVFtHXnoDIG3dX1BMCvn3kPC2ZPKcvWgGj5i8GQy7M3zT4UdMY9h52n8zeYAb+0ykAJw+3PbYCWD7aqeqHvdqYynj53x+o60iqymm4FQW9/4cNI8suUQGO8pP3ZYRwwmyrlt3tyr7AzdUFgrE4aV5vAlraewA4eEZdx3MfG4B/rdhStmxKgoTaO2QeMxtfvfQ27OrPQbNtAmfbXUJvAjlQGd72wAd05p70z7g2y51wXKu0j3H6rIIsxrjSd46zF/zRWFHCAUCMIH2XlIodhd2HzFQTAovmzHGfAmD5i7Ig4WlOZotkIyVaR3T+096jQdR0gwOJ/v4h5MydYfWK+P/7jty/3ix+WKEFGZThv6ZtWwoUAeGXDbvznkZM840vnHHc8vwE9Oec7xUyKh3ndNdUlsHjBEZ6yTR19fdFraO9R86oNWglEwPK+IIye1PzKG9O+zGfc7+tS2aWMynDDk+8CIPjTmm2edwUl+S0Zuf97NK3pUCSKxjqj3qsee8e3HkKM8VBfrWB3Vw6a5iwt6opdSggm1CexM5UFAGQ1Ha9s2BMpIZrROACO3z63IfAeDQB0jr++05q/YpR/zu/fgM54fgUXwf/8Yz1yGgPjxnuScQ5KSN5fEoysUpDN68occ2G+xxhtCzJC4+ndXVlj5WWIwrK2d5L5Hc/towQFxEoggaACjPnOd9D0y1+g6Ze/wJjvfGegxREIBAKBQCAQCPZJDm6sxaMXzMYFcw7E2IAZun5wGEGZdE7Huu0pq5zzjzsAtUnnTNuauISqWLQty8KiSATJmOQIPkrUuKZIpY83TqvRTqOQ8lsrJft4a7Mw8a6sxrBue8pxbd32FL52z0pjS538NTPoZfbZuu0p7ExlHM+V0pP7c50Zfa/qHNs7Msho3gSQWed9L2/E6fesBADL1pIRtmIaWxPHuUdPgUz3zeOqCdzBc6AzqyGr6VbSyOy70+9Z6elzOzrjuP25DZEDpmZAmwCOBEo5+h6ZVHDazIlIuraQqonL1nhVJIpHL5iNiSOTnjqsFWeE4PE127CnO1e0vi8c2ghw497WVMaRaLPb31//tR2n3LEC969sLqNVlcNYmeD1W4CxasYcVxzGKgRVY8hoDOkcK3vrylKLJ+wy+Z2VI1GCRy+YjXkzJhQtR7P8ArPa0ZrKIKcx6NxImLSmMlafmLZ8cGNtaJ9dDm77NnVrwgGsam7zjC+dcfRkdSx7rdnznuAoJICOPnCUb701cRnnHj0Ff/7eMR692n1oayoDTefGdpsB8p8+ayKqYpKlp1KY72d34hmA431dcgUfgCWvNmPJq5vQkVY9n9uL9ytrTE0c5x93AB5ZOLvkOUwSJbjzGzNx/nEHIN7Ld+yJh4zDIwtnA4Cl57Sqh56k0tuEpGlnGjP+vyOt5lfocGiMg3HjelZjyGq6MYHG1mcSJb3WgUlaZSUTQO7P7d/x/GxIYCCSQAKBQCAQCAQCgUAgGDI01CZw+UlT8ZeLj0VMAmQCKCGnjnMAC5etslYoXH7SVHz/hIOQVCQkFIqkIuHNaz6PB8/7tONadUxCUom25YkfQbNUKSGIy0Z9lQwqMm7MjpXKPMOiJi5XLCFm1z1grABauGwVWtrTjvvcgeasxvD46m1gnFtbSpUK8Rhb5un5bZHgeKaUfnXG0dKexsJlqwAAl580FSdPH+/7XHVcQsIV+IorFBfOPRAJxUgmuj8fKCiAhEx6JU9SoaiOy77nJXEOyNR53dSjO4kHwOrLvSWSJm7iMkVCodCZM/BZFZdQHY++2c2e7hxeXr8bx35stGPMn/mpSYjLhZUvDbUJTBlTbQS2bfeZsnRmVDDGkZSLj5d/btyLHamMda/7PA3GOLa19eDih1YbKx8GmIRCHXow2ZHKYPOeHkcfxBUaaUVWGOIyRcL8yeu8KiY5ZPILGHMAr364p2T5HPntvPK/J2UzcQHEJON3ZvMJpi2bPttuDwk52H9Xx712EZfz7bHZkt2m7M1yJyk5L8jk9o16iQj6hp3dSObljUkEMYli7sfH4M1rTsD1X5nuWQGU05jDh5o6SsZk3zGXUCjOOXp/UGKsGgnaLsydHDL9NuPc06fm+9rvHVnu2Wp+5yzFZYqzZ0/2XbXqx5iaOC4/aSo+vf+oXvnWuVMbCu+t/DWKyq/oi0JQ3ZzDaqsps8ZYye0XyyUuU8RlZ8I16Mw+Ux6/d45AJIEEAoGg1ySkBO783J3WT0Lqvz2CBQZyTMKXvvdJ60fuo9m7AoFAIBAIBg/G1kSALCHSEoDWVAZLbbPrFYlCogQyNf5NKEaA0X6NEGLNlO0Nqt/yExuVqMOOOYO8J6eVXUYpmaNg1/3SlZtCB7k7sxpU3Ti7IKx+CrOancGsUs+T/B12WTfs6vJ9jsB7KPXOVNZ6jhBSMiDbXzAYK7Z6I4+UT/L42URQ8Nk93kzMvowqDeO84uOktSOD5r09jjEvByROSX5LJPM+uyxxmYKWiEjv7MwUvTcuUzAebnVdf6AFzKpfunKTZ6VPJX2FCeMcskSNH5s/LkUU/2LH3SfUtsLBz5bt9qAHbDEGGL7CDePGCgpKaaBNBSHldWCsyHD6xniJlTfGOWiGXmOyhFh+q86E4v839K6urEOeUjbutpmoftu43/+JSo19Dvhu87mzM+vrr0ohS7RXvvXF93di6cpNnnfVoEwCwdnH5veMvpLVSHI65Sm25RsHyurD4YBIAgkEAkEvkaiEg0cfbP1IVCQg+htKCcbuN8L6KfXFVCAQCAQCwT5A/nXPuX8wJwhVZ3h8zVbrYGO/WIJ7H37OeaQ6gtD04AOMK1WHG7/zQ0I/y1hFZTJ1396Tw+Ort0HVGWIlVikRGKsjVD26fvQyguk6M2ao22X9cFe3771+4UiVGc9xzvusT8ulHB3a4SjeJvc2PDGJesZbb/US2IZeqFnnHFv2piMfLm5vR9jkBOOGfRW7d/BYjL/P4pzj8dXbPHKWu/1b1PpLYcrXq6SUfdswQnxt2V1nVJsO0m2YcuwyucdEKTvUGffUHaTiYqv1AhM1Okda1fLllqeXrObVcUbVK+pP/bYNK9bHfph6M99R5bLyoz14bNU2Z9lll9b3uPuhL3dgK+e9FaUPhxMiCSQQCAQCgUAgEAgEgiGHGeeKOluWgqCtW8XaluCzSty4Z6GWC0dwsKRSdVSSnohnEJXC1P3T72xHe48KCuKZvOOeRW6PZ/aHfow6iEPWoG1uurPGNjh2CIC2btVKvg22Pu2NPDrjngPni0Ep8Yw3cwz0Rg6/Z7tzeq+CfllNL30WjSu4bm9HmASQrSTr/9yB48F2nIWfz2IcaO/xnrfSX/WXwpSvnM01OTh6choyOhznhvnZsrvOYmK6JxYYdfnr1q+cnpzXtk2ZzLLCQoi37qDn17Z0+CZL0qqO7qyOXMCqwA93GonzYnoJSprYn3fL4vdEuWPG7zE/fxWGzkz5q23N59t6om2NOZD0t5uKWl/U73jDhegbpgoEAg9tDz2E3OYtAIDYfpNQf+aZAyyRQCAQCAQCgUCwb2OG96LuwGIEwDi6ssFBG89KoAqGPIyyvMHJym5wNTgxdd/WnQMH912FFfhcP6rHlM2UtRjuQCYlZJ/tS02P3jK/8dZX+gnauiwsQWOz+P1OdFZ69YlZj39iYPDZjlsv/S1jqX7xHhKfT+USRI4eqzq3kgoqA+K2z4q9O0rpJCiRHFa3QaWX00br3WmrO8i/dmW9SV+dcSsxlAtol5m0KtdWurPepFeXz7VKE+b7gR2zfYz3bitEY5Wl2M0kLO7JF26i9OFwQiSBBIIK0PnCC0ivWg0ASM6aKZJAAoFAIBAIBAJBPxFpAj6MYBcBQU2RQ+TdATG/8xzKJaisStYxWDF1X18dAwEJvc1Tfx+rY8pmyhoFxjnIPrrpSjnd4DfeBqutR5XL/5yX3tUzGHXjlqm/ZSy3X6JuIwcY23oFUezdUUpGv9U0fs9FbWs5vtFavRYi+VQTl+DOM/klL91U5c/oLddWqnzO+K2J9/22+2G+H/hhnpdWLsb5cr0qYlgRNJ5MyunD4cC++c1EIBAI+pEetQfnPXue9dOj9gy0SMMONavjif9ZY/2o/TBLSCAQCAQCwcBibr9EEGXuPsDAUV+tYHpTbeA97vACJdHqCILky/KjUnUMZkzdf/GwRoysUsDAiwZdAWeQsz/0Y26uZJfVPBg+DBxAfbUCSgZnn/ZGnqjPMsY9443z3uulL3Qal6XAsRlUr70d0RIOwfcOtqNN/XwWJcDIKmXA6i+FKV8lN7P0s2V3nVG7Lki3YcsxZTLLCouR6HDVHaCq6U11kCJ2AAGw/9gqAOXr5YCx1b6y9PXwCPP9wI8Rid6NhxEJGfVV0SYcDCT97aai1ldfFb0PhwMiCSQQVABaXQ1aV2v8VHtfVoJ9Gw6Oj9o/sn4G4xL+fR3OOfZu77Z+ypn1JRAIBAKBYGhhBgUIAWQpfIhAkSjmzZiIhBI8q9j9XYIQEqmOIOQiB8JXqg43ZjJiMGDqfmRVDPNmToAiUd8zJexwGGdfKFJ0/UjE+In0DDW2hLLLeqBPQDIIhRrPEUL6rE/LpRwd2ok6Uz2nM9/x1hu99LYNfkiEYL9RVRHP9XG2Q2c81N8glBj2VezewWMx/j6LEIJ5Myf0i5zFfKaJ++9vUz5FqkzIk3MeaMv2OqPaZZBuw5Rjl8k9JkrZoUSJp+6gJxKKhNHV8YBP/ZElgpiUXwlUpl5iPon3hCL1uT8N8/3AjqlqWTLeUeVy9IFjcNqsCWU/39+4+6Evv2OU4/O/cnhT6D4cTogkkEBQASbeeisOev55HPT885h4660DLY5AIBAIBAKBQLDPY4+dKVL4I8Ab6xI4e/bkQjkht3SKUocfJF9GMXpbh1+dcZmiepBsi2LX/YLZUzC+NhHqudqEnA92htcPASBT4yfSLPn83XZZp44fEbqM8S77qnSflotEEFmHbsqZaOUeb2bA3pQjiizmGKq0ThtHJnxXHoTBLktWYyW3ymoYkSh6b1ZjoGUkL/uCYj5rwewpvQp697b+UkTxL3bcNs4Yt87zcduym6j+KahtYcrR83I21iU8YyKrF7fB0TUxT93FxvbYETGHPMVs3K9d5eglqIq+9qel+rgY5doqAfDZaWOxYPaUQfGuCINsy/qY3zP6QvYgn1/MzRIA3/j0fn0gzdBHJIEEAoFAIBAIBAKBQDCkoYQgoUglgxAEwKL5s9AQEBzknGNV816s2dwGnXEwxqAzDo0xcA4kehHokKkRUNTyZdrLNlcRhG1HGAiMmdMSpfjMx8dWoMTey2PXfUNtArefOQOja4pvgaNIBJ/ef5S1hVFY/SgSBeNGQi9KsFqiBI0jE7j0cwdhXWsnVjXvRUyiofv+7KMm4+/rdkDVjX6NIrMduYJTqwmAuioFlJBINuaWIeAM+EBGVcdw6ecOQm2ysFUS58Y4Y4xDokDS5+wPP+x65BxQ5MqcTDOqSsHCOQdgW1saWU1HVtWhajo27+1xrO7JqDo60qpjvAIF31OXVEApgVYkAC9Tgv/P3pnHSVGcffxX1d0zs+yy3MhyK6IgYiKgiCiHBxo1GjTxJhqjIhFNvF6MiopHgho1nvEg0WjifaMiJMoVRJTDCy9QDmG5r2WPmenuqvePnp6dmZ17eqZndp6vH5LtmZqqp6ueenrmeaqeGrl/J7T1WUHZgN6yQzln6N6hAlcdfwA6FijlWiK8KgdPsAuna7UPvTu1yavT2qcpcduXUsIwBYKGiRkLf8CytbsgpTUmtk39cVcjHjrn0LTki3Rgxw5fk2GCx7EJ8YImmcytePdmyy+khCeFvWGMoUeHCjw+YWiLeZ3MdDAAVx13QIu2hbR0fNm6nZj/3TZ8+P02zPt2K2Ys/AE7G4KI3JijJ9Bxe45yxhAwzKhnpzeN+Rr7+Q+/34YZC3/AjIU/4MPvt8Ovm44+I+Nx7IAuePfLTfjPV5uxbN3OlOlKI+GMoSLD3Sf2Pbdv40HXal9e781JmiJsl1flUDh3XPZIfYgd92Sj4lU5qn1aWJeXrdsJv07HBQBAcSwHIgiCIAiCIAiCIIgMiHUpKZyhwqNANwUMMzpBEIOdroVjQLeWeeKFlOHPnT/jYximgJ7wIO/s0AWgi8RedFtGhTMoPHOHe2w99qpkv25g1srNaX9O5QyGkC36MBmcxd89FSuP3fdb6vx4ZvFavLZ8I3Y3BJPWbQiJ/369FYawne7JHUCcWUGC6DRzzZ9gLPkq4sE92mHDrkbc+PqX1q4VaclgpOkMvOPdr6Ou7fv3aTyjfk23vWRE9r2mcAQNyxEWOVcqPSp2N+ktPtulyoMOlR6s2lKfdbLrPU06bnz9S9wz+1ucPqQHTjq4Bp+s3YmGYLNDzggmd85FzgtDtJzbybBjf8k2Ruxq1DH1zZUtXn/n803hvzkDRt8zF9v2BsJ6Htm3Cme48Mi+0E2Jfy1Zh92NLfsTsMb01eUbk8ps698jc7+HkAIKSy5/pqTjRLUJGAKmtFIjxgvGcJbYVqkcMEV67cRSoVm6GdukkBJBw4xq7453ouebzfkzPkb7NhosM8gSzicGwBTW7qt4/VyhKdi/SxW27PWHbQIDg183w+Mf2TcKZ/BqHEFDJLSJAGAIAcasz0Y+f9LtrwqN485fHBz1PLPn9VnDeuHpD9cmfAb27tgmqi4hJb7aVIexf5mHXQ1BBM3ksidC4QwS1s6pic8uQ1OGjnf7837dxPkzlkQFGhiASq8Cvy5C9iD5M5Ihvu7Zz4dEt/ePReui5GGwnhmJ5kBsPQpnaONR8JNe7fDp+t1R9xArXyL9SfQ9JlEdCgOCpsxqzGLrSzVf4hFpJyo8Sos5milVXhWcWfYytm98Gg/tokz8eb8hMPKuD2AK+7wshvZtNJw+pAcuGNE34SKgcoCCQARBEARBEARBEETJEW+BOmcMXlWBR7EcIrbDjjMkPFdi054mNAXNsLMloJtI5r/I18mDEtYK60SrrFPhCTmj7Xs1hYxwwiWv0xM6V8LuI4UDKhPwG+kdrZ7MIeNVOdSINDlfb6rDxGeXYXOdH8E0PEVSAmaEFKl8U6nejwwAadwKLsAOHBkCX2zcA90U4CE3Yq4OeHtcDVPCpynwKAjrpn1bAhK64ezJorFjGos9V/40fjCuefkzCCkgJQvPK5+m4IdtDTnJZAoJQ0psrvPj8QU/4LF536fVn2poXKwV4M27FDKVxbR3j4W2MRhCtHBOpqvfW+oCLT5njasJn6agrU/DRUftix4dKnDbzK8gYe3qyHQ+f75ht+X8hDUWLZzMzBq7Uw6pwZyvtoAxFrWDBCF7p3AGr8rREDTD6czSvd9E96hEbDH5elMd1mxvyMnZGw/OAL9hWvM+2NxutD1LTdAQ2FznD833xHctkTyY0Bg08fnGPaEdNqExkTJh35hCIqCntpv2Zz2qFTDKVLfrAyYufOoTPHj2oVGvc8Zw2Zh+eGnpj2k9A01hBV1+2FafcxAhMli+oz55cD/V542YBRMS1j3b5VKRqIRXVcIBhkAK5TUj2ok3B6Lai2iQM4ZTf9IDvx25HyY/txxCSmsna2gMbLuWyjbHfo9hob/ijamqACJk34QUQKh8ghhUXDSFwaMqMIWEKdK3t5FzwaNypDjmLyEqtxahLL3pOJz84MIWNtfS1fTmSkOgecEDQs+gJxeuwczPNuHxCUMxsKblYqBygNLBEQRBEARBEARBEK0KxiwnssqtwEgiZ8uWOj/+vWR9lFMhX0GefGOvnGehleWZOEx1M9qxIqRMOwAEJN8dFXn2yZY6PyY+uwy1u5tgmiLtXVVZHEWTFoaQ4KFgg+2IFUKiQlXg1XjOTtFIJJoDGbZuqgoH58zxABDQckwT4dWsOaIpCjyq9XfQENi0x59RKqR4eFRrZbhX4TDM9ANqppChHXEsqt+yQcLSQTBk7ZxMVb9fN7HXb+3+sXcGAYnTZiVDNyV8oX7zaUqLdHlCAprK0aNDm7BdY4xBVTg8qjWGqsJDdgBpBVpTYd+jPY+FlJj47LKk92dkuQvIo/Jw0M5u1xAi410lPo2jQs38YPiETv5QnbFjEtk3QsqMdNXWzWx12xASV76wAmacHaZJn4GhPyPlddLWAVZQohjx6yZMmToAFEvsHEhFeGdtaF56NQUeVQnbh9jvJPG+osSOIQ/9f6LvNZxza/5oKjwqzzhAGwwFcrK1t7nqsxl6HvvipNTLdG6FPydk2BYIIVG7uwkTn12GrXX+LKUsbSgIRBAO0PTZZ6hfsAD1Cxag6bPP3BaHIAiCIAiCIIg0eGbxWuyJSYVVqkEgazWu5fXRM/R2R37W/rxT/RBZ9zOL12JzyPnCGXO9r23ZIu/Xq4YCMw72QWx7keSjnXhtpRtIi5QnQew0bez2zQyjeLG6nGv/SCCr3RaZ1P/J2l1Rr+USfEm208Hum3TChrkEzxK1i9D/b86TE9UwLUdwZLvZ9GXQFFH1pEu8s34i64z7GbS0I4Ui3o6WrOa6s2LBKNIjWLLVJ/uzsfY7kb6kSjuab7LVRX8eFiSkS2T/xsqQ7f1INNsCbyi4vLnOj2cWr0v+wVYKBYEIwgG2PfIINl51NTZedTW2PfKI2+IQBEEQBEEQBJECv27iteUbc97tUEwYpoQQIqsdCIYpw4erJzvcPh6pSttyvbZ8I3RTQOOZnTmQT+xUbTZ2eq1M+yBd7H4GkNd2YttKRGSgJ1IejbOcU+EZpoSQ2eujCJ0B5AT5VrfPN+62gi7SkjuX9sJzMcHMMkwJPYUjW0qJgMNbnyLHRM9gJ18mmFb+qyiy6Utb9zIl6Tk+pky4EyTWjhQSIa1UYJkQa3vyEfAuVnKfm/HeiX6RgaW9a8hp8v1cySeGae34iSTX+7HOVpJgjMGjcOimwGsrNrRopxygIBBBEARBEARBEARRcuS6S2Fl7R7rAPd8eDJdQiL5+RapPiukfV6Ns9hy7W7UrbN2imAXUCSxspgyf6uhI1Mv5aOvE7WVCBYxAaLkyXWCISIVW5afzTalmBs0BU2srK0DkP0ctJEAGoImGoNmXIezBLAtxZkrQjq/EyFyTOwzi5zG0tncBZdwfjeKhHVGUCBBxW7qaqTOpbReebLz5YBEdL/Zf7dQWZZZsIk5+EWklMdWAmE7apPr/UgAdoyUcwYOhl0Neot2ygEKAhEEQRAEQRAEQTjIF198gX/84x+oq2v+gdnU1IRJkyahR48e2H///fHYY4+5KGHrIFenSX3ADB2w3LrIJXwhkXj3Qa7YdVuH3Re3i8rM87YR+/4L0Q/NbaVfNvbvXMhlM0qx60kkUgL1AcP62yG5pUycuipVSqt8zmPAkRhhkjacqic/fZDNzrZ8k+m9ltLcKjYSBWYjYXAmmJkNpT62th21ceJ+Iuuwv4PEtlMOtPogkJQSr732GsaOHYuamhq0adMGBx54ICZOnIgffvihRfm6ujpcffXV6NOnD7xeL/r27YvrrrsO9fX1cesXQuChhx7C4MGDUVFRgS5duuCcc86JW7fN7NmzMXr0aLRt2xbV1dUYO3Ys3n//fcfumUgTrgL9xjb/42rWVXW74Qb0+dez6POvZ9HthhscFJIoBRSmYET3EeF/CivSUxBbMZwz9BrYMfwvm/zPBEEQBOEUd9xxB6ZOnYq2bduGX7vhhhvw+OOPY+/evfjxxx9x+eWX4z//+Y+LUpY+uTohq7wKGIprR4oT5BIcY6H/8oFdt5TOrnouRez7L0Q/pGwj6rx4FvdvtygGGdKFMaDKa/kUnJQ70XlKmpLcnZfPeQzk97wTpyQvJf3JlUzuVWZYnogm3neP2LSbdlpRNyj1sbXtqI0T9xNZh/0dJLadcsDROw4EAvB6vU5WmTPXXnst7rvvPtTU1OAXv/gFqqur8dlnn+HJJ5/E888/jw8//BAHH3wwAKChoQGjR4/Gp59+inHjxuGcc87BihUr8Je//AXz58/HggUL4PP5ouqfOHEiZsyYgUGDBuHKK69EbW0tXnrpJcyZMwcfffQR+vfvH1X+X//6FyZMmIAuXbrgwgsvBAC8+OKLOP744/HSSy/hl7/8ZUH6hQCgVQDjnVmB6enb15F6iNLEp/pw51F3ui1GWaN6FBx34UFui0EQBEEQAICPP/4YY8eOBQt5CgzDwFNPPYXDDz8c8+bNw86dOzFkyBA88MADOP74412WtnwZ1L0d2rfRsHlP68kLzwCoHAhmcUsMgL2OhsHZdDK2XO3aaNaB8lI63kYuxMqSTxdaZD9z5nxfJ2orHaLkcfNUczTrjG4Wj54ko8KjYFD3avywrT7rOZguDECnKi1pmXzoVuSYCOQv5xR3aJuRquR3HGJx06apGS7xz7ftaa0wRD8fEplJnmE6OCcp5bFlAAZ1r456zYn74aH5IYSEgESHSq1FO+WAozuBunfvjt///vf44osvnKw2azZv3oy//vWv6NOnD77++mv87W9/w1133YX33nsP9957L/bu3Yv77rsvXP7uu+/Gp59+iilTpmD27NmYPn06Zs+ejSlTpuCTTz7B/fffH1X/3LlzMWPGDIwaNQrLly/HXXfdhWeffRZvvPEGdu7cicmTJ0eV37VrF6644gp07twZy5cvx0MPPYSHHnoIy5cvR6dOnTBp0iTs3bu3IH1DEARBEARBEER+2LZtG3r16hW+/uSTT1BXV4fLLrsMPp8P3bt3x2mnnYbPPvvMRSlLn1zdhD5NwelDerSqHcSqwsA5h6Zkfk+qwsCY9U/N8POpSttynT6kBzSFQxcSapH0u6ZE36+UMhzAzQd2PwPIqq+zbSsRke9GyqMLCadEy1YfOeeO9U++1e2QHu3h06yMEJzzvLanKgwqT7ETKA+6FTkmmsLz4mRWbY9vBNn2JWeFS34Ua0cKCWeWztmkit9KmX/bU8zkMjctm5q6HGMZxtEdHIpSHltVYZYdjei7XO/HCtxZO7OCpoCmcJx+aM+wvS4nHLWIbdu2xUMPPYSf/vSnGDFiBP7xj3+gsbHRySYyYu3atRBCYOTIkWjXrl3Ue6eccgoA6wcaYH3RmzFjBqqqqjB16tSoslOnTkVVVRVmzJgR9fqTTz4JALj99tvh8XjCr//sZz/DmDFjMGfOHKxfvz78+ssvv4zdu3fjiiuuQM+ePcOv9+zZE5MnT8b27dvx+uuvO3DnBEEQBEEQBEG4haqqCAQC4et58+aBMYaxY8eGX+vUqRO2b9/uhnitBicc9ReM6It2FclX1JcKDM0polKlikr2WfvzzqVkaq77ghF90a3ayq7h1nkJkdiyRd5vwBB5ky22nwFn+zpVW3HLxcyjSHmc6gY1w7kaq8u59g8D4FXz0892/Yf17QCg2XfpzXRrRgZtaQpPS0fzNY81hYfnsdMonEFEbKGwxy4bRIG2YsSzI4VC5Szj/rHPR3FDXrfJRZ+S2dSWZwIxV8/myXZsfap7yeSS9W8uusqYZQsCoXPUatr58OsRfbKsrbRx9Km0Zs0azJo1C6effjpWrFiBSy65BDU1NbjsssuwdOlSJ5tKi/79+8Pj8WDRokVRh7ICwNtvvw0AOPbYYwEAq1atQm1tLUaOHInKysqospWVlRg5ciR++OEH/Pjjj+HX582bF34vlhNOOAEAMH/+/KjyADBu3Li0yhMEQRAEQRAEUXr07dsXc+fODV+//PLL2HfffdGnT/OPzo0bN6JTp05uiNdqiOcQkFLCFBKGEDCFTJmTv7pCw3EDuuRHwAJiO7akBHTThGHKjHZfaIr1Wbu/OLNW46ZbQ6JejpTLEAI/7mrEQ+cciu7tK6BkGKjKB3ZgQEordZRNvg5+96o8nOrK1lUhMxurdIjt92RzoTng0yyPR+WoaedzbJec3xRQFZbWziIGa5ee3U8MgCfHgIrCGUxh7dbIh4PTq3K09UUHkxXO4c1iXGN1IXbYIvsmEbFj6UQQzbYHdr2/P27/pHqrZtnXuingDzlr7XYVzlGRxar9JqM5F5wTfZAIe15zxuDLoL8ZAE8OOskAnPrT7hARzzwhBD7fsCfqOtEz0XK6l1cYSOUMZhY7UWPtUjNWfxpm9HcP3RThdHCJvpdEvr5qy17sbgwmHCu7rG6aCBoCutk8voYpEDSs1w1TQEqZ8TMcABQOSLCMUwtG9lEuwXZ7Hvl1E37dhBG6N90wYZgCSpbPIyEtW8A5Q48OFXh8wlB0zVMQu9hx9EwgxhhOOOEEnHDCCdi+fTv++c9/4u9//zueeOIJPPnkkzjkkENw6aWX4rzzzkN1df5z73Xq1AnTp0/HNddcgwEDBuC0004Lnwn0wQcf4He/+104ZduqVasAoMUZPjb9+/fH7NmzsWrVKvTq1QsNDQ3YtGkTDj74YChKy4eRXY9db6o24pVPxIgRI+K+/uWXX6J3795YsGBByjryQV1dHbiQ8O341pX2U7FgwdqoayYMtN/5afh6d8efQvIsp4RhovmnD4v+BVHi2AFUt/SqFDClia+bvg5fD6wYCIUVvw60prGVQmLvpuYvSW1rGFiRpBhxg9Y0tkQ0NLatExrXwlBXV1eQ3yAAMGHCBFx33XUYPnw4vF4vPvvsM9x4441RZT7//POEvz2I9Ij0xQhpOV0MU7Y428VOXRTpvNlS58czi9fiteUbsb0+gFyJbAcAgoaJkB8zIzI9R4DBctwALOw4tcgsiBE0BWBG34fCGSo8CnRTZBwUiZQrYIiwNOfP+Bjt22g4YdA+YGD415J1eQu4pIM/ziAZcQZA5azF63Zf2e+lcx9+Q0AVAoDliEznzjNtR2GWbyay3wEgYJhQeMu5sKsxiIBhtpg72xsCcOpUCQbgJz3b4arjDsCtM1di9daGuOVUzuAJOQITzel48FDqpUTlrLGLdn47qXUBQ+CDb7bilENqAETbo3SIHOPfHrUfHp67OmE5QwiwBGnOkvVZqj5KJpfCWcgh21zvTa+vhBAybr0MwGWj+qF2dxNmfl6b1hg23wNQ5VXg10VYFwArkNfGo2RkW2va+bBtbyAnu2z/pExmlwOGgJHhvLbRM+ibWCSA15ZvtC4idO3y55bDTCAwA/DMh2vRFDTgounNCjtToEfladtcG3vO6xnuDlO5lf4t1m7abK8P4PUVG/HJ2p3hnSYAcOe7X2Nwj3bw62ZcnYidN9NnfYPps76J0rPI52j08yfRPTS/bttSn8ZDu1tT36spAFNk8cUlBGfIWP8j8RsC3BQYfc9cbKnL/XuZDWOWLTj90J749Yg+ZRsAAhwOAkXSuXNnXHPNNbjmmmuwaNEi/P3vf8fLL7+MyZMn47rrrsOvfvUrTJo0CYcffni+RAAAXHXVVejRowcuvvhiPPbYY+HXjzrqKJx77rlQVasL9uzZAwAt0sbZ2D8Y7XKZlk/1mXjlifzCRRAHfPNQ+HrpEX+DmWUQqPrRR6Gttr6o6fvvj7orr3BERqI00KWO57Y/F76+uefNJREEak0IE9j4cfMXlgNOUVAEi0sJgiCIMmXy5Mn4+OOP8corr0BKiZNOOgk33HBD+P2VK1fis88+w7Rp0zKu2+/344YbbsDSpUuxevVq7Ny5E+3bt0e/fv1w8cUX4/zzz4emNa9Iv/XWW5O2s2bNGvTt2zdjOYoJIYFA0IzreJCwnGyGaYZWlDN8vakOE59dhs11fuhm9g4Pj8LBuZX2hbPotFo+TY1ajW8nh2HM8mKxcLIY63+lBIJpOmoi0RQWciKm90F79XO8QAcQv79UzmGY8fs3U7mChsDmOj+e+/hHdKv2Yd/OlfhxZxNMKRA0itcjedzArli4ajuERGjUosdc4QCHiUAaTknLT5j+vXpVDjX0xVbhgEeREBIQUiDkd26WB5YjLd6uHyEBETO2ppC4852v4zpTm4LZz414bX+xsQ43vP4lBnSrwqbd/qi5wZnl5Lf70xQSfj21znkU6/wrxqzzHoREWrrktKZJAIt/2IFfPrYYo/p3RlMCexSJxgFF4S106eRDavDI3NUp7dn2+mDUe6n6zJ7ytt2yC1r2x3J0hy1YhE4Jibj1Bg0RFUSItYfXnnAg/vTu1/CqSlhn053nluM8tAsqwu9u7W5oaVtt/bHv056jH1wzBsPu+G+4f7IJzKdjkyUyn9eZl06fRAEgu83/fL01o/pUbu3ikwCCDkaOPAoHmIRupPcEs29LSIT1yohI85WMdOpXubUri4XmI2cM/bpWYu32+MecmELiqhc/w46GIIIxMuxu1LFwVeKUv7FDFG/IstUrwHrGG0HT8YB3MkyJnHOICglHA0CAtTDi0fOG4Ke9OjhabymStyBQJG3btkWbNm2gqiFjbZr45z//iWeeeQYnnnginnrqKXTt2jUvbd9222244447cNttt+H8889H+/bt8emnn+Kqq67CmDFj8Oqrr+LUU0/NS9v5YvHixXFft3cIjRo1qpDihFmwYAG21wfg73SgK+2nYtTw3tEvBPYCy5vPcho5ciTgbZtV3ev/9S80hXaEte3YAT91aQzygb0q2S29KgUa9AZ4Xo/WpUqtMsknioPWNLZBv4G1cz4KX48ceQQ8voI84oqS1jS2RDQ0tq0TGtfCUKhdQADg9Xrx4osvoq6uDowxtG0b/R1zn332wYoVK7IKvtTX1+Nvf/sbDj/8cJx88sno0qULdu3ahVmzZuGiiy7CCy+8gFmzZkUdEg0AF1xwQdz22rdvn7EMxYLl+AWCZuqyEpZj0atxTHx2GWp3NwEAKlQFpkzPiRSLbgpUKIlTM6U+zLjZadmUhsM7Hpk65Awh00rVEtlfAV1kLFsiuSo8CoSwDmeu3d0Ezi0Hrl7EASAA+N/qHZCwHc0te9AQIq0AUDYEDBHqp1B6NGY5ZBUoQMS6MyFlWsGH2LENGGlMoBxpoynhMd/REIAEwoGtWIRMLwAEWHNQVZSQ49YKrAZ1d3RJSomNuxrx3Mfr05LdEICmsij7IaTExGeXRe+qYS39qhLAf7/eAhFK+5Rpn1UoSlqp/pLVW+FR0BAwwu8ls4f22Ohpjo1tjv26iQpPyzqT2VbrZes9++B3ISWa9PzreWvFFBKqxhHUnQsMA9YO1GyCFAFDhAOnscEXIP7OzXQwhYyrb/GQ0tpduXWvdQ+Z7uItFEUoUsExBHDl85/ilctGlPUuICCPQaD6+no899xzmDFjBpYtWwYpJQ477DBcdtllOPvss7Fy5Urcc889ePnllzFx4kS8/vrrjsvw3//+F7fccguuuuoqXH/99eHXjzrqKMycORP77bcfrrnmGpx66qnh3TmJduLYaTrscpmWj/1MbP7veOWJPMM40G1w9DVBEARBEARBZMH//d//Yfz48VGpmxMFnjp37ozOnTtn1U7Hjh2xZ88eeDyeqNcNw8Dxxx+POXPmYNasWTj55JOj3r/wwgsxZsyYrNosZjKJ3Ug070QBQrnrGYOZpfPeWpUv4M0xFbRuZh5kyYV027L7y2nZOGfwMitFjW4Iy8ntcBtO0xg0oHCWcKzjOSKdIl09S6VHkc7WyLEtRALlyDFvCppJ+zKT+RDbN7ns7MsVhbOM0p7FG1fdbLZPqWgINOtkLn2WjJQ6FRGgSlVvNnbOSRtLZE++ngV23dkQMKwzYpyUKZ6+JVIdQzTL7lW5lVo0x10wRP7YXOfHM4vX4doTinPTQqFwPAj00Ucf4cknn8TLL7+M+vp6VFVV4dJLL8XEiRPx05/+NFxu2LBhePHFF+HxePDWW285LQYAYNasWQCAsWPHtnivW7duGDBgAFasWIH6+vqUZ/LEnudTWVmJmpoarFmzBqZptjgXKN75P/3798fSpUuxatWqFkGgVGcSEXnAUwmc/4ojVbX/xS9QOfwIAIBW082ROgmCIAiCIIjS4b777sO9996LLl264Oc//zlOO+00HH/88fB6vY62wzlvEQACAFVVMX78eMybNw+rV8c/T6K14dfNjM80EDK0Yl1VwumXRA6OG8OU8CgyKhVcJkgp0z43xA3ytbKZMQaPwtEozJLwmwkJyARjLUTmafwyJZWeZaNHtsyqwvKeik+GUiF6FI5G3UzYl9nch903AFw9Xyobb3TkuIbvncXZ9hMHWyc1nv7ZQ/HaTUQuY2HfTy51ZSJrMqTM7OwYIj7FtsvF1v945CJqrL6JODcuZfMRTHY6SqJ4YbC+9722YgMmH7N/eIdgOeJoEGjw4MH46quvIKXEoYceiokTJ+Lcc89FVVVVws8MGjQI//73v50UI0wwaOVI3bZtW9z3t23bBs45NE1D//790b17dyxatAgNDQ2orGxO5dTQ0IBFixZh3333Ra9evcKvjx49Gi+88AIWLVrUIn3H7NmzAUSn9Rg9ejSef/55zJkzB0cccUTc8qNHj87hjgm3qD7pJLdFIAiCIAiCIFxk06ZNeOutt/Dmm2/iueeewz/+8Q+0adMG48aNw2mnnYaTTz65xUIwJxFC4L333gMAHHzwwS3eX7BgAZYsWQLOOfr374/jjjsu6e+0WCJ3OEXy5Zdfonfv3uG0hoVk1S4Tze6eDJwwEhDShAh9PJcsQdbKYRNpZFaKi3V+RfnQFDRQWP9LFvqRpKZ4Y53HTUAp27ZJR48Svl8A765uRMue6H6ymQ92XZnjnG4AmR2Ibu/KiuwH+94jjuuJkjIeElZKrWz7LJndSjUWQd2Im6bOrnf+ggXYsCEAwzRysnO52NgFCxZkqRt2y0Bh9soR2ZBIp5KdiZROnZH6trehAUbMdqDmACeDFAKGFCWxmKGcYQC27/Xj3+8uQP8O+fsSYmf5iv1OXFdXV9C01IlwNP/VDz/8gN/85jdYsmQJli1bhksvvTTlD4vzzjsPc+fOdVKMMCNHjgRgrcqLTdv22GOPYcOGDRgxYgS8Xi8YY7j44otRX1+P22+/Pars7bffjvr6elxyySVRr1966aUAgKlTp4YDToC1A2nevHkYN24c+vTpE379zDPPRLt27fDQQw9hw4YN4dc3bNiAhx9+GJ07d8b48eOduXmCIAiCIAiCIApGly5d8Nvf/hZvvfUWtm/fjldeeQVnnHEGFixYgAsvvBA1NTUYM2YM/vrXv+KHH37Iub1gMIhbb70Vt9xyCyZPnoxBgwZh1qxZ+M1vfoNjjz22RflbbrkF119/fThtXa9evfDMM8/kLIebNGW5eyHSpefEBohcnD/l5jgq9QX58carUGOYrJ2i16MI+ez552RfSlkCfZCAcDq10P+nG3JI1o+ZtJvt+8EEwc98zBGysUQhidSZuPoc5zMUKiwBZPbfG1sLju4E2rRpU8aRrV69ekXtrnGSX/3qV/jb3/6GBQsW4IADDsCpp56K9u3bY/ny5fjggw9QUVGB++67L1z+//7v//Dmm2/irrvuwooVKzBkyBAsX74cc+bMwWGHHYY//OEPUfWPHTsWF198MWbMmIEhQ4bg5JNPxqZNm/Diiy+iY8eOeOihh6LKd+jQAQ8//DAmTJiAIUOG4KyzzgIAvPjii9ixYwdefPHFFofGEgRBEARBEARRWlRUVGD8+PEYP348hBD43//+hzfeeANvvfUWrr76alxzzTU46KCDMH78eJx66qkYNmxYxm0Eg0FMmzYtfM0Yw7XXXos///nPUeV+8pOf4B//+AfGjBmDmpoabN68GW+//TZuvvlmXHjhhWjfvj1OPfXUlO0tXrw47uv2DqHYzAiFoHLdTuCT+HIlhQGqYv0UNmXkbqLsUBUFSpZbgRiT0EV5HVhu9z0AwDDy3Jqzrrl4Yy2kgFmAM0eS6Vk6epToAHZF4YDIr/xKhOyB0JjHu59s54MaSs+f2Wed1Q3GAWTRjXY/NN97opGKj8J5VvqXym6lpVOspZPcrvfoo0dhccM3UDeuz9nOZWtjR40aBfU/72XZNrn1y5VIffP6PFCNYNT7QjY/txRFAWcMpjSzPl+QyDMMYGBQFI4Rww7F0D4d8taUvQMo9jtxMewCAhzeCVRZWYm6ujqIBF8ghBCoq6uDmfV2zMxQFAVz5szBn//8Z/To0QPPPfcc/vrXv+Lbb7/F+eefj2XLluHwww+Pkn/+/Pn4wx/+gK+//hr33nsvvvnmG1xzzTV4//33UVFR0aKNxx9/HA888AAA4IEHHsC7776L8ePH4+OPP8YBBxzQovz555+PWbNmYcCAAXjqqafw9NNP46CDDsKcOXPwq1/9Kn+dQbTENIANy5r/mfn+AUIQBEEQBEGUG5xzjBo1Cvfddx9Wr16NL774ArfddhsqKipw5513Yvjw4VktiquqqoKUEqZp4scff8QjjzyCGTNmYMyYMeF0FAAwfvx4/OY3v8G+++4Ln8+Hvn37YvLkyXj55ZcBADfddJNj91poBnVvl5WbTiJ+nv9sYEDWqeAQ+my5uhqdGoNCkWisVUe9Kpm1bZOLHuVyJla68FAfiVDKtET3k8192HXlMg+dgIOlLXtkojFbbvve003uZvejyrPvs2TkMhYAos4EykU/nbCxROskH0Mbq2/xHlOR7RbCfhI5Ii272qFSw6DuxRGMcQtHdwJNmzYNd999N3788Ud06dKlxfs7duxA79698cc//hE333yzk00nxOv14vrrr8f111+fVvl27drh/vvvx/33359Wec45rrzySlx55ZVpy3TiiSfixBNPTLs8kSeMJuCFc5uvr1gKKLQTiyAIgiAIgsgfgwYNwqBBg3DjjTeitrYWb775Jt56662s6+Oco2fPnpg0aRI6d+6MM888E3feeSfuuuuupJ879thj0a9fP3zxxRdFk6s8U3yaApUDegaL4DkDVIUjaAp4We7eezXHQ6EZY1AVVrQHl9tnlTiNlBJBU4DB2k1Q7PEgzhDardFyrDnn4Ezk9R5S6Vk2emSPrVEA3WNg4TFP1pfZ3Edk32huzqUszECk7Pa9M8YQTOOgKbsfOedQFZl1nyUi17HIta5MZE0GY8xdvWgl5OtZkC22/js9rrH6Fu98IcYAhVnpTXVTQmFF1DFECyQAj8Jx+qE94SvsoYRFh6NrVt5++20ce+yxcQNAgJUn+7jjjsObb77pZLME4Tpb//IXrL/0Uqy/9FJs/ctf3BaHIAiCIAiCKEKklFi1ahV+/PFHAED37t0xadIkzJo1y5H6x40bBwCYN29eWuU7d+4MAGhsbHSkfTfIZBcGA+BVObpV+wAAAUPklAmOAdCU3H9Sawov6G6gTM4c8arOyyaEtPoegEfleWnDadp41KRj7c3jdqB09SyVHkWqer7GNhGRY16hKUnvJ5P5ENs3TszHbDGFzGhHUrxx1ZRm+5SKygidzKXPkpFSp2LOeoqsN9a0ZmPnnLSxRPbk015kW6dX5Y4/O+PpW7wgEBC9Ay9giKidb0TxUdPOh1+P6OO2GK7jqCX84YcfMGDAgKRlDjzwQKxZs8bJZgnCdfzffYemZcvRtGw5/N9957Y4BEEQBEEQhIu89tpr+PWvf41du3aFX1u7di0OOeQQDBgwAH379sXZZ5/teJrs2tpaAICmaSnLNjQ0YOXKlaisrAwHg0oRhTF4lPQcSZrCISXwuzH90LHSA8YAPYelzZrCIYVA0BDw6wb8ugndMGEKmZFDiDMGn6Zk5SD1KOmnoGKwHPDptmU5wxh8WTj/kjkaGnVL7ztVebBfl0pwxuApRE61LGEARu7fCVIChhDh8ZVSwhQShhAAGLyK8y5SBoTHy27LMEP/YmQRQiJdX7fCGYSQ0BSGtr7U9iJXGnUTjAE9OlTgiP06gTMW7j/dNBE0BPTQfQkhoanp6bU9p+35xhlDhUu6xBhDz45tcO7hvVPKzllofkXokH3vlxy9b1rtDezeNnzv6doQ25lv63I8XbIRQsAwZdKgVmRaO5+mRI3rwlXbsHmPP1o/05wimmLv7OIQUiaVMx1sW0lkh1flUDjP6lmQDA6krRORaKHnnpRI21akgx3oMkyBoGEioJvY69ehmy31TkpLdo/CLB3N/7FwRJaoHPj9sf1RXZH/Z12x42g6OF3XwXnyBy5jDH6/38lmCYIgXMWn+PDE8U9EXROFRfUoOPX3P426JgiCIAi3+Nvf/oYtW7agQ4fmw2evuuoqrFy5Escccwx27NiBl19+GcceeywuueSSjOr+6quv0LdvX7Rp0ybq9cbGRlx99dUAgJNOOgkAsHfvXmzatKnFWaVNTU245JJLsHfvXvzmN7+Bqjr6s7CgMNacwz9VVphg6PD0P772BTjLaRNQVH3NNUkYABAK7mkKg6Zw8DRSGSmcocKjhBzhMqVsCrN+WwfTSIXDYKW4sWUR0goWpHJaBU0BmM11ZEKyqu26djcGsW1vIGWKIQYg5C9POcb5YsF329GkJw/aMljjImTuumWPmcJZyFmfWicywRAhXQWgN+lxy1R5FdQHnAlUW8EHBWMP7Ip1OxoQMMyYNE7Z3Z2to7aOAAyGSzmrhvZuj4fPHYJ5327Days2Jp3LQlqyB+N0781vrkyrvWXrdsMUMmp+J7Ihkf0TMBKfOmTb0nR1WOUMjDXvnggYZrjt3/17OXRDZDxnq30q9utSic9+3BNlg2LlVNOwr1vq/PDrhiMOep/G4c8k92gR06djBTbsakp7bPyGADeFFXR0UA6BzFLMMWY9B3Qzs/SH6eKPoyh6xCSN913DaCU60ZoxBHDD61/gntnf4vQhPXDBiL7omuaOy9aGo9/2999/f3zwwQdJy3zwwQfYd9/0VjYQRKngi/hh7Yv5kU20fhSuYP8O+7stRlnDOUOn7lVui0EQBEEQAKxAzc9+9rPw9d69e/HOO+/grLPOwvPPPw9d13HooYfiH//4R8ZBoJdeegn33XcfjjrqKPTt2xfV1dXYuHEjZs2ahR07duDoo4/GVVddBcA6k3XAgAE47LDDMHDgQHTr1g1btmzBf//7X2zYsAGDBw/GPffc4+i9FxpTSGTqp5YoTDBBNyUM04RPU6CkkSOKMwavqkBlAv4kjlogJH+aq+G9KocactKaQsKvmxk78pzsLsuRJxEwUpf1KBwKA5rS9OJ6Qmd/OCmvBFIGgOxypgwFPBQGCQYhRVbBK6/KrQW0WYxVpsSr36NwLLr+GBz55w9CAQEJBmYFT6XlgBX2a5DWYuCQgzYYR3cZAxqCBv61ZB1Mh8fHvgdLRdxLyfTN5r3Y0RAE0DyXPYqEEZEKLx3SvQMR8p5LRNsau93IcYOUIZuSvPZMbaOUEpqiQEq00NVMA0AaZ+Dc2hX4Ve3epJLG3nM8+2oKidMeXpR1AIgDUBXrzC8pgfYVGjbrgewqi0FNIwifKR6FW2dtQcKUSKpzG3f7ISTgC+2aE6GdWkZMer/IMSiG84DczrhWqO8OuZCJbnkUDs4kAkZqm6yF6i3k7avcuaC+XxfYvMePJxeuwczPNuHxCUMxsKb0zsLMFUeDQKeffjpuu+023HzzzbjlllugKM0rsU3TxK233opPP/0UU6dOdbJZgnCdrtde67YIBEEQBEEQRJGwc+dOdOvWLXz9v//9D4Zh4JxzzgFgpWs7/vjj8e9//zvjuk855RTU1tbiww8/xOLFi1FfX4927drhkEMOwdlnn42LLroovLOnY8eO+N3vfoePP/4Y7777Lnbt2oWKigoMHDgQV155JSZPnoyKigpnbtoFttT50ZhGIMFNJCznaIVHSWtHkAg7a50jYAjwkJO0EEGFVAiZ/s6i5t1W6ZZ3++6sMQ+aEhUeDkBBU7ztHinwG6KFE7aQ6KbAniYdjLFQuqbmEWOMwRsnAYyQEk0J9KuNR4Vhirgr7VsLdX4DF/9zKX5zZN/waxJWUCwfKDEO0lhbY4+bNS7O2hQbU1oB0ni6mulU1IUEExI7Q4G0dEhkX21dTCd4mwg7psgZQ5NuYlt9+nKlIh8qoZsCqqIAYAimuG8hLad/wBBW34GhKSY9rRoKqBOlRSa6FTTTf864seHJ6V2dElZwuHZ3EyY+uwyvXDai7HYEORoEuuaaa/DCCy/gzjvvxAsvvICxY8eiR48e2LhxI+bOnYvvv/8eAwcOxLXkMCcIgiAIgiAIopVSXV2NHTt2hK/nzp0LzjmOPvro8GuapqGhoSHjuocNG4Zhw4alLcfDDz+ccRulwjOL17otQlpYq9YFvGrqdLW66byz1m7f/rsYKBY58oUTfe5mH0kAzy1Zn9FnUumu6fYy/gKweY8fH/7QbPvzMZ+TEc/WFEIGp+qXiE5Jl+5n4t2zE+gCkAUew2zJxOZoCgvv/ii2ZwNRWMpt3FnIymyu8+OZxetw7QkHui1SQXE0CFRVVYUFCxZg0qRJeP3117F69erwe5xz/PKXv8Sjjz6KqipK2UMQBEEQBEEQROtkwIABmDlzJu644w4oioLnnnsOQ4cOjTojaN26ddhnn31clLK08esmXl22wW0x0sYwJTyKBEuyG0hKCSNPK691Uzp6oDeRmlLv8zc/rYWUyXXWJpXu5lO3iwlTSixbtyt8gHw+7zlRTC3S1pRiv3MGZBrDib1np3awSDSPocozl6vQpGtzrDktk37GLIb8bwThMKYAfBqD3xB4bcUGTD5mf/i08jlP2vETQLt06YJXXnkFW7ZswdKlS7Fnzx60b98ew4YNQ9euXZ1ujiAIwnUa9UZc/v7l4etHjn0EbbQ2ST5BOI0eMPH2w5+Fr0+Z/BNo3vJ5mBMEQRDFxZVXXolf/epX6NmzZ3jHzx133BFV5qOPPsKQIUNckrD0WVm7Bzsb4h9oX4xIWCvblSQeunQPY89FBqKwlHKf724MAmBJddYmle4WekeMmzQEDGihM7jyec+JdlZF2pp825T8wFKeXRRL7D07SXN1biZoTJ9sJIz3GYoBEa0RS60ZOBh2NehYWVuHoX06pPhU68HxIJDNPvvsg5NPPjlf1RMEQRQNEhLr6tZFXROFRUqJ3Vsbo64JgiAIwi3OOOMMPPLII/j73/8OADj77LNx4YUXht+fP38+6urqcOKJJ7okYelTHzBL7juXDCc7SvY+QRQHMvy/aewESqG7xXBWU6GQcH8u27bGbTmyIVuZS/meCYIoHBISjFn/Xx8o8oMlHSZvQSCCKCfq3n0X+qbNAACtphuqTzrJZYkIgiAIgiAIN5k0aRImTZoU973Ro0dj165dBZaodVHlVcBKZGW2DUvhTE/1PkEUmnR1knS3GQb3+8Nu3205siFbu17K90wQROFgsNJGMjBUecsrLOL43X711Vd4+OGH8cknn2D37t0wTbNFGcYYvv/+e6ebJgjX2P3GG2hathwAUDF0CAWBCIIgCIIgypjbbrsNY8aMwahRoxKW+d///ocPPvgAN998cwElaz0M6t4OHSs1bK4LuC1KWtiHnSeDs/wmHCqtkFnroJT7vEMbD+qa0ku5mI7ulnJfZEKlV4UROjzGjXuOtDX5tin5QWYsc+w9O0mzLKXRi2n1XUyB0tMRgsgOyzxICEh0qNQwqHu1yxIVFu5kZfPnz8fQoUPx2GOP4bPPPoPf74eUssU/IYr8NDWCIAiCIAiCIIgsufXWWzFv3rykZebPn49p06YVRqBWiE9TcMbQnm6LkTaqwkKHcSeGMQY1nQNYskBT8lc3EZ9S7/NTf9I9pc7apKO7pdwX6aIwhqF92oMxltf5nIxIW+OWDLkgJKBk6KmMvWfNoXtmaNZbowTcmOnanMjU6aVupwgiExQO6KaEpnCcfmhP+LTyOkfa0SDQ9ddfD8MwMGPGDDQ1NeHHH3/EmjVr4v4jCIIgCIIgCIIoV4LBIBSlvH58Os0FI/qWROIfBoQPik+FpnDH78luPx91E/Fxos/dHCsG4NzhvTP6TKp7VdMMKJUyNe19GLFfp/B1oedcPFtTCBmcqt+uR2SwLSXRPTuBxgs/htmSic3RQx1Mzwai3MZdhu64pp0Pvx7Rx2VpCo+j6eA+++wznH322bjoooucrJYgip5ejzwC2KspyuDLLUEQBEEQBJGcZCvog8EgFi5ciK5duxZQotZH12ofqjzA3qDbkiSHM0A3BRgYOLOuhQSEtA4y5wxQQjmMpAQ0lSFoOJecR+EMppDgjMGrMgSM0jg6nQHhVbpNess08/HKe1SOoCFcvz+vysFDNsCnKfDrZkYyeRQOCYE0bttx7H7vXOUFYO0asPRVQAirAIvQW9vWccaS3muTIaBwwCyBHRXZ4FU5Jh/TD4bZfPep+iQfMvCIZ4+VjceyKXoe5r3KWTjgkus9atx6bvo0BQ1Bs9m/kupzcQIYnDFUaAraVWjYXOfPSh7OrBRppmnpbRuPgjq/M4fIe1WOgMNbixQG6IYAQvPSSBJJY2ie5wzW8yhfOkIUDvsZmI5uRT5f05m7CgPMAiqHFaBkCDrcqMIZatr58PiEoeha7XO07lLA0SBQZWUl/ZAhyhKmaW6LQBAEQRAEQbjIfvvtF3V9//3346mnnmpRzjRNbN++HX6/H5dcckmhxGu1aJzBq0iY0rl0PXYKIE3hkFIiYIiMVqbHYkrANCXin7qQf6+KIWRSh2AxwpnlKLWDY208CoKGmXCMVW6lNDJFcTgxA4aAKa2UMwpn8Gk8Iz0KuhgpsQI7wNY6PwKGCT2uE675NZUzeELBB4UzVHgU6KaI+7l8nwzg5tkmAUPgj69+CY/KYQoZ1Sc+jcOv5z84aeudHfg1zMzmg322jpCp+1HlDPt1qUTtbivIYo97pm3a6AIAJIJmZoGWoGkFS22bbQfBFM7w1uSROHL6+1k9G6zApyUTAMcCQFbQRaJC41Z/OTQnDImMAmfWHBVp20w6N6h4ifzOYtucVM9L2z4JKaHw1N+fChkAUpgVEI7/7MkezoDBPdrh9tMGYUC38joLyMbRINBJJ52EhQsXOlklQRAEQRAEQRBE0SOEiDqTwD4PNRZN0zBo0CAcc8wxmDp1aqHFbJUwBvhUFaYp0OSAR00CUHnImcgY2ng4hBAImqUXTClVhAT8uoBPsxxa1o4KFVJKmEK22EVllS/Mbot0kLDOHTBMM++7k3yqtRPCCd0HQkHDoImzn/woLSecISTMoAmfpoTHSuUchtlyPFIGFljImZ0l9kc9CgdjElKycKKOQuwQk0B4Fb7dJwDQpBcmqGfrXTrj5lE4uL2FJmJ3l/0cE8IKUAgpICVC7/GoHWAqb067Zu00VOBRZCiIJMN1AggFpURO45uIyPlm6yFg7Ra17YZuCsd3FWRDs6wyFDAs/M5Fv20rUgSNPKEgNqRs/gxRMGLtGGfN8yl2jkXuPk/1vLTLmkLm7bnpVRg455CQkELClDLtgKeZQUATCNkybtkwKUXC3c4SwBcb9+Cyfy3H4xOGYmBN+QWCHA0C3XPPPTjqqKNw5ZVXYvr06WjTpo2T1RMEQRAEQRAEQRQla9euDf/NOcdVV12Fm2++2T2ByoTmMyScdVL5dRMVHqU5tRJjMPO9jYGIQqLlOMQ76F7I/DmyciUyKJAv8uWc3VIXSLts5FgB2QfknAoQ6KYI642QEk3BwuuHRHppDN0iso/iwTmHhwOZHiXOGIM1RaPr5RwwnNlMk5B4NsN+3eldBblSCNuQK7opwLm1i7G4eq88SDZH482xWOI9L23y/dwMmhIVCqAwDsEkgsH82ULdFKhQ7GdP4p1tFaqCoClQu7sJE59dhlcuG1F2KeEcDQKdffbZqKqqwiOPPIKnn34aBxxwAKqrW0bWGGN4//33nWyaIAiCIAiCIAiiKFizZg3at2/vthhlhW4666SSoTq9qpKX+on0iB2HeNDYFAf2WNl/u0mk3pB+xCedueUkeoFSHMa7L9KB7JAozA46Ij75nKP5nhOFtMHpPns4Z/AyK6i5uc6PZxavw7UnHJhHyYoPR4NA8+bNC/9dX1+P5cuXxy2X7JBUgigYXAX6Hxd9nSXBtWshmpqsaioq4OnbN0fhiFJCYQqO6nFU1DVRWDhn6DOoU9Q1QRAEQbhFnz594r6+du1a/Oc//4HP58P48eNRVVVVYMlaH8zKVBN1GLtTGKaER5Hhvwl3sMchnh9BSkljU0TopkyxNr1wGKaExgXpRxKSzS0nsdKxFW4cIm032YjcoAyo7pKPOVqoOVFIG5zus4cxBo/C0WSYeG3FBkw+Zv9w2s5ywNEgkKDt8UQR89yS9S1f7Dal+e/l21q8fe7w3mnVvflPf0LTMivoWTF0CHo/8URWMhKliU/14baRt7ktRlmjehQc8+uBbotBEARBEACAP/3pT3jyySexfPlydOjQAYC1YO6UU05BU2jh0O23346PPvoIHTt2dFPUVoFEfnYeSDQ7wMgP5h72OMTLapPOAfZEYSmW8ZCwDjsvFnmKkWRzy0kKHUiItN1kI4hSJh9ztFBzotA2ON12OGfgYNjVoGNlbR2G9umQV7mKicySexIEQRAEQRAEQRBJeeONN9C3b99wAAgApkyZAiEEpk2bhkmTJmH16tX461//6p6QrQSGjM4PzhgZ+o9wl0RjQGNDJIP0IzWF6CM3xsFuk3SAKHWc1uFCzolimn8y4ssiY5Zs9YE8H1RWZOQtCGSng1u4cGG+miAIgiAIgiAIgig61q5di4MOOih8XVtbi08++QSXX345brrpJjz88MM49thj8frrr7soZeuAMetf3uoP/Ue4S6IxoLEhkkH6kZpC9JEb42C3STpAlDpO63Ah50Sxzj8pLdmqvI4mSCt6HL/btWvX4ve//z3effddCCHAGINhWJG1RYsW4ZJLLsGjjz6KMWPGON00QbhGl8svh7lnDwBAadfOZWkIgiAIgiAIN6mrq0P79u3D1wsWLABjDD//+c/Drw0ZMgSPPfaYC9K1Pljon9PrTRkA+5jBfNRPpEfkOMTCGY1NsVEs48EAqBzQzeKQpxhJNrecpNDHtUbeF9kIopTJxxwt1JwotA1O956EkBCQ6FCpYVD36nyLVVQ4GgRav349jjjiCOzYsQOnnXYaNm/ejMWLF4ffHz58OLZv347nn3+egkCE6zCho/u25p1qtV2OhuRaVnVV/OQnTolFlCC60LFwQ7MuHd3zaGhZ6hKRHaYpsO6LHeHrPoM7QVEo4ylBEAThDvvssw/WrVsXvv7Pf/4Dr9eL4cOHh1/z+/15P4y7XGAMUBXm+MHjqsLCY5SP+on0iByHWBhjNDZFhBY6uKIYxkNVGDjnUBVZFPIUI8nmlpMwxqAVcJ5G3hfZiNzgrPBnOhHN5GOOFmpOFNIGp/vskVIiaApoCsfph/aET1PyKlex4WgQ6JZbbsGuXbswf/58HHnkkZg2bVpUEEhVVRx99NFYtGiRk80SRFYoIojDVt4Rvn571EwY5LgnsiBoBnHHR826NHP8TAoCFRhTF5j//Lfh6/MGHEFBIIIgCMI1DjvsMLz55pt4++234fP58OKLL2Ls2LHwer3hMmvWrEH37t1dlLJ1YLtGNIXDME3HVpuyUJ02TtdPpEfsOMSDxqY4iBwrt8cjUhbSj/ikM7ecRFM4dNPMezvx7ot0IDsYAK/K4dcF9Z0L5HOO5ntOFNIGp/vsEbI5GFXTzodfj+iTJ4mKF0e1afbs2Rg/fjyOPPLIhGX69OmDjRs3OtksQRAEQRAEQRBE0XDDDTfAMAycdtppOOGEE+D3+3HDDTeE3w8EAliwYEHUziAiNxgAj+rMz1vb8SUlYAgBU0gwAD6VF2l2+9aLpnCYQiBoCOimNRb24c5SSphCQkgJh4becRgAj5LfUxF8KkdFHlYzV3kzq5MBCOgmdENAy+Ke7XnnBCpnMEwJ3RSQ0p25ywBUaEpexsYJNMWycZGHpcdizzFDCBimgG6YCOgG/LqJgG6iPmDANE0EDQG/bqApaCCgGwgaVnkprflqmNa1WoC8cAqz0j3ppol/L1nnqg4kw9b3YpIpFoUBprB2dBCFhQHwaQp4gl1AkXMz8rkY7z0R+v/Ispwx+DQlb/oXaV/y2VZkP6Vqp0kXYAzo0aECj08Yiq7VvjxIVNw4uhNo586d6Nu3b9IyUkoEAgEnmyWIrJCMY2e7QVHXBEEQBEEQBJErQ4YMwUcffYRnn30WAHDmmWfi8MMPD7+/YsUKjB07Fueee65bIrYaTCGhm0DAcGaVKQOgcCBg0MrneHBmHaic776xUxAFTRF6RbZ4vxByZIutR4CVciefcgYMAVVhqNA4goaAU1l36gOZ7doQACABM8IZaTvjkonEYDmZNYWDMwaFMwQNE4ZI8qEU6EJGtWqfqyEKqDMKZ2AM4IyhjUdBQDcdGRunzvIImgIwW/Y/YK+YFzAS6q716vqdjVHXAEL3mMPgxUENzSUjjbxkhgSMkPLc+PqX4dcj56Qp8jsnkxFP35P3tXsYElYUKAPsfjZFcdjneDbIHgOVWzpVbH3PmRUgVOIETRPNzUz0O1IHfRpHwBCOp/yLZ18qPErOtt0mnt0CLLubrB2vqmDsgV3RsY0ndyFKEEeDQPvssw9WrVqVtMwXX3yB3r17O9ksQWSFqVRgwdCH3BaDIAiCIAiCaIX85Cc/wU8SnBt5xBFH4PXXXy+wRK2PrzfVYVcAjjm9ActR5ISDIl94FA7OrZXuQRfOuMj32RAqZ6HdPc7JoTBrpbCQgJACpkBazuR4eEKOQwkGCQkGFj602wowWK9BSvgNgUK4FiWscxAMU4ZWRANBw4ReBHps372ttwwMw/ftiCVrdkb1X+SZF9ZqbhUy5Ox0Qs8lnLUT6WAICTNohs+ccGru2GMsJGAIE3qOGdaa9adZVr9eXKnTrIBCbhLZtp1BWjtwmDWHEdqtIGH3aX7u3KNYTv14+u5VFXgUCUNIBIr5AZQGxfYMjWeDIsdA4YBHsZ45phTQjfQ1TeNWEE9AImg4pzdCAn5dwKexqECQKWTCudnc76nlsOe8bpoZBZU1zqAqHAwSpkRauhppXzwqzzSmGBePwq3dpgl3ScWPXXIGNAQNPPfxenzwzVY8PmEoBtZU5y5QCeHo1ofjjz8eb7/9Nj7//PO47y9cuBAffPABTjrpJCebJQjX2XDVVVh1zDFYdcwx2HDVVW6LQxAEQRAEQRQJ9fX1WL58ORYuXOi2KK2KLXV+THx2WcEdu26jhzwbrfWQcyMPK/RNaa2eVjiDwjnMHJy8uimB0Op9lfPQbg/rn/0aYwgFgAqLhOW8N6UsKicsYOmtvetBC61wj+y/eNjOw1JGAmjSTUeDKnZdjAGGg0fs5ENWp3BSHgnLec0YoHIOVeHQVAWqkpttSIVuWm0m0/dgsU3cVkSkDYodA8uGI6MAEBAKGIY+5zS2PRehnZVCJg4A5dpOuhhCgjEAjGWsq/a8c0J+3UxcT7J+qtAUVKgKhJCo3d2Eic8uw9Y6vwMSlQ6OBoFuuukmVFRUYNSoUbjzzjuxevVqAMCsWbMwdepUnHjiiejcuTOuu+46J5slCNcRDQ0Qe+qsfw0NbotDEARBEARBuMzatWtx2mmnoUOHDjjssMMwduzY8HuLFi3CQQcdhHnz5rknYInzzOK12FxmP96BZkdhsTlpix17xXIy51E6SDQH4hKRaxu5UKz6EdlvSY6gicLNfnQap4MYuiny1j+tpc+TEW8e51vfUtmO1qTvxUg++j/f9jZS5mLQj3zbnkzliEcy2SQAzln47LnNdX48s3hdXmQsVhwNAvXt2xezZ89Ghw4dMHXqVDz33HOQUuKUU07BnXfeiS5duuDdd99FTU2Nk80SBEEQBEEQBEEUDevXr8cRRxyBd999F6eddhpGjBgRdWjv8OHDsX37djz//PMuSlm6+HUTry3fmNIZ31rJd0q21oiQgGmaMBzYWWKY0YdwRyKldKSNXChW/UjWb7EUQz8WM3b6PyJ7IvWxUPqWaA6QvheGfPR/vu2tYUoIIYpGP4rF9sQby1TjaKd6ZIzBo3DopsBrKzbAn2tOzRLC0TOBAOsHzapVqzBz5kwsWbIEO3fuRHV1NYYPH47TTjsNHk95Hr5EFB9MGOi054vw9Y52gyF5dlOi7dix8PbbHwDg6d3LEfkIgiAIgiCI0uSWW27Brl27MH/+fBx55JGYNm0aFi9eHH5fVVUcffTRWLRokYtSli4ra/dgd6MODisXv/vuCKIU0B06qNw+O0SJk9XJOheIiIfdb+lA/Zga6p/ciJzHhdK3RLaD9L0wlGL/22f9FJN8xSBLvLFMNY5BQ8CjWHthOGfgYNjVoGNlbR2G9umQV3mLBceDQID1o2b8+PEYP358PqonCEdQRABHrbgmfP32qJkwsgwCdTjnHKfEIgiCIAiCIEqc2bNnY/z48TjyyCMTlunTpw8++OCDAkrVeqgPmNah8pmcaEyUPU6GC626WkaBKCSZnHT7h/qRKAT2PC6kvsWzHaTvhaMU+7/Y5XOL2LHMtJ8Ysz5THzAclqx4cTQdHEEQBEEQBEEQRLmzc+dO9O3bN2kZKSUCgUBhBGplVHkVMLC0zxYhCABgcYI2TtflZButkXT7h/qRKAS2nhVS3+K1RfpeOEqx/4tdPreI7ZdM+0lK6zNV3rzsjylKHL3T2267La1yjDFMnTrVyaYJgiAIgiAIgiCKgn322QerVq1KWuaLL75A7969CyRR62JQ93Zo30bD5jo/rY8l0kbjgOlAWh0GgCfwNXFmvU962ZLmfkvdO9SPqaH+yY3IeVwofUtkO0jfC0Mp9j8DoHJAN4tHvmLoq3hjmck4CiEhINGhUsOg7tV5kLA4cTQIdOuttyZ9nzEGKSUFgQiCaFX4FB/+fsLfo66JwqJ6FPziqkOjrgmCIAjCLY4//ng8++yz+Pzzz3HIIYe0eH/hwoX44IMP8Ic//KHwwrUCfJqC04f0wJML1yBoCLfFKTic5f8w6tYGZ4CiKFClCT3HQ61VhYGxBDuBGIOqsJzbyIVi1Q+739LZwVcM/VjMaKGDMKh/sidyHhdK3xLZDtL3wpCP/s+3vVUVBs45VEUWhX4Ui+2JN5bpjqOUEkFTQFM4Tj+0J3xa+fiOHA0CzZ07N+7re/bswfLly/Hggw/iuOOOw+WXX+5kswRBEK6icAX7ttvXbTHKGs4ZOnSrdFsMgiAIggAA3HTTTXjllVcwatQoXHfddVi9ejUAYNasWfjwww9x3333oXPnzrjuuutclrR0uWBEX8z8bBPW72x0W5SCwgB4VQ6/LlxfiVtKeFUrE76mcBimmXXfsVAdyci1jVwoVv1Ip99icbMfncbJlfORfZmP/imGVf75Jp4+5lvfUs2B1qTvxUg++j/f9jZS5mLQj3zbnmzkiCVVPwlhBYAAoKadD78e0Sc/QhYpjgaBRo8enfC9U089Feeddx6GDBmCM844w8lmCcJ1tj/5JIJr1gIAPPv2RedLLnFXIIIgCIIgCMI1+vbti9mzZ+Pss8/G1KlTwxkRTjnlFEgp0bt3b7zyyiuoqalxW9SSpWu1D49PGIpTHlyIIlgcW1CChoDCAKMV3rcntIrXyVtTOaBwy2HEGYNPU+DXs3NgaQpPeepArm3kAgMQ0ItrdxyDtXuPMwYhBDbsakLAMMHAoHJr9baQgClMCGmd6sCY9Z5b/egkPpWDMebIfdhOZykBIQUUzmA4uA1B4wwSEq19g6XKAcMUAJi1S5Aza96qHH4jPw59zgDdsMZM4c27GIQQMIR1QL3T40k0Y9sgwNoJYgoJISUidSDT8fdpivU5zZn5HYk914WQMKSlq1oeno+ZyOPTFEBa9kHhyNhOqJzBFLnLb88lzqxnBZh1tg9nqZ+/TYYJTeGoaWd9h+xaXV5ZfAp6+lH//v0xfvx4TJ8+HWeddVYhmyaIvNL4ySdoWrYcAFAxdAhAQSCCIAiCIIiyZvjw4Vi1ahVmzpyJJUuWYOfOnaiursbw4cNx2mmnwePxuC1iydOx0gOfCjTo8d8vxIp2zqzAhSkLkx5FAiUb9EpnPIJ5uDnLYS6tIISUMET2Tt6gKaCbVioaTeFhp2IsCmeo8CgIGmZCRxkHkI4PLZR9J61xL0bfvcIZhBQIBCWEBL7dsjf0jkTQjC0to97jDPCqzs0ve7QKOYUChoCqMPg0Dt0UWQdYlJDD059lBQyW4zbeuVj23NTLJABhxUklInsi388LUwKmlOE+5i0kIPKJZfcZjBZzMPsR8OsmfBqHwjkqPIo1v+MEabLRLQnEzHV3NIUhlJKOAQHDzCn1nR3g5Mx6LmdblT2XLKLnsP1sTjQeNe18OP3Qnvj1iD5lFwACChwEAoCuXbvi22+/LXSzBEEQBEEQBEEQBUVVVYwfPx7jx493W5RWx9eb6jDx2WUJA0BA+g6GXFanCgkEDAmfpsCjWNdCCpimhEBmZwV4FA7GJERoVbjTq/GVkOPFjUCBk7shMsWUQFPQhEflCDqwyl/CCkgYphleCR63nLQc7olIdxxMiZS7jwqJFtrJIGHpqpAyaYDKENnrspCA35DwqhyVHg4hAd1MHFhLhS2mR+HWDowCKKOtL7opcxpHUwJpHagUg8oZPKFzRQBrF4SQlo2R0gpSZVIrh5WKG1Jm3X8+lYeCg5YcDAymMOMEBQtHoe1Svu2wbXNNKaAb7uweKSbsOegkEkCTLuBVrV2iXlWBR5FReg0psw7cFgNelUPCshNOYX8v8igcnFu7eBis3VlmaHcWC2lsJhtbY5/N8cbjg2vGlNUZQLEUNAgUCATw3nvvoX379oVsliDyjtq1K7TevcN/E+VFo96IS/9zafj6ieOfQButjYsSlR96wMRbD6wIX5/6+0Ohecv34U4QBEEQrZktdX5MfHYZanc3OVJfrul3JKwVwRUeKyCgQIHCJZoy9GjqpgjVATTmwRvqZjDBbwhXzxpx2oll12mPe+yOICGlowGvYnLgGkJCUzk44xBZ6Hk2BAwBrllObSeGMZgsOpdH3BhHU0gr/1kIxhiU0GH2jXrmYycAeDgQMLKXKWCIsL0EGAwhXA0AtUYChoBX4xQAKgCBUGoyhfPw/AKsnadNRXY+W6bkM4ClmwIViv38ZOAc0ELvCSmz/h4U+2y2xwNAWQeAAIeDQM8880zc1w3DwMaNG/HCCy/gm2++wZVXXulkswThOt3vuMNtEQgXkZCora+NuiYKi5QSdTv8UdcEQRAE4Ra33XZbWuUYY5g6dWqepWl9PLN4LTbX+VMXLCDWClQBr2o5GHQzc8ePXUc+cfMbUmv8dhY77jbZjH+pEHnPhbzPQOg8FSIzkulotvhz3EIVK1OwhHdKFCsScGTnI5EeAUOgjYdHvdaanwNOkMg2Abl/F0pWdznjaBDowgsvDB9uFontjGOM4ZxzzsH06dOdbJYgCIIgCIIgCKJouPXWW5O+zxiDlJKCQFng1028tnyjtYJUVWCK4jk03jAlPIoM/50NhThXiHAWe9xZxKHj2Y5/qWCYEhoXBb1PIQHRyvs1X8TTUbdtjS2TnZ6OcB7q18IhJCCEiEq72NqfA04Qa5sA5+xTvLrLHUeDQE899VTc1znn6NChA4YOHYqamhonmyQIgiAIgiAIgigq5s6dG/f1PXv2YPny5XjwwQdx3HHH4fLLLy+wZKXPyto92N2og4NZ51IUERLNTjdy/ZQP9rgrIXUUORx4XSpIAIZo/ffZWoino25jy+RSZj6CcBxDWKkSgfJ4DjhBrG0CnLNP8eoudxwNAl1wwQVOVkcQBEEQBEEQBFFyjB49OuF7p556Ks477zwMGTIEZ5xxRgGlah3UB0zrgN8i/VFPaYHLE2vcWcTfrZ9yuc/WQjHqqAz9RxCtgUhdJr1On0jb1Hydn7rLHZ66CEEQBEEQBEEQBOEU/fv3x/jx4ylNdhZUeRUwMBTr8X8s9B9RXkSOebmMf7ncZ2uhGHWU7CXRmijGOVYKxPaVk31H4xCNozuBFixYkPVnR40a5aAkBFFYGj78EMaOHQAAtVMnVB55pMsSEQRBEARBEMVM165d8e2337otRskxqHs7tG+jYXOdH6IYchpFwADYGeoYKBVMuRA57gj93drHnwFQOaCbrfs+WwvxdNRtbJkYB4Km29IQRO6oEdssyuE54ASxtglxrp2su9xxNAg0ZsyYrA9cMk2y+kTpsuPpp9G0bDkAoGLoEAoCEQRBEARBEAkJBAJ477330L59e7dFKTl8moLTh/TAkwvXIGiKonKwqAoL/x5WFZbVwcZaKHm924e2E+kTOe4AwBjLevxLBVVh4JxDVZw5wDsdOAMU3rr7NV/E01HNZR21ZWKMgTNRFOcUtTY4K47zn8oBzgDOm6NA5fAccIJY2wQ4Z5/i1V3uOBoEuvnmm7FkyRLMnj0b/fv3x8iRI7HPPvtgy5Yt+PDDD/Hdd9/hhBNOwBFHHOFkswRBEARBEARBEEXDM888E/d1wzCwceNGvPDCC/jmm29w5ZVXFliy1sEFI/pi5mebULu7yW1RwjAAmtLsANIUDsM0MwpSRdah52mRpJsrk1vjqujYcbfJZvxLhch7LuR9elUOxlje5kZrJZmOZtuXPpUhYGR/ckesTF6Vo0kXWdZGxIPB6le/XlyLJVorXrW8ngNOkMg2AbnZp1R1lzOOBoGOPfZYTJ8+HU888QR++9vfRkXcpJR48skn8fvf/x433ngjjjrqKCebJgiCIAiCIAiCKAouvPDCuKsPZeggG8YYzjnnHDoTKEu6Vvvw+IShmPjsMqzf2Zi0bDqBBx4qk4ujRuUMQkiYEJCSgTHAo3IEjfQdcAoDdEMAzKrPcHgJtxrKi+J0vWm1HVqR7qYzzBNaWeykDJwBhimsHQ2w5nholodXMheTA9CJQJym8OZ7lYDCASPP/nuVA1JabXpUhqCR211onEFKiRyryRg3AqEqt85QszVRhP5mYPBwIJjh2HkUBlVRwJiEX8/Owa1wBsOUULkMPSsZVAUwKL7nCAzWrlmFM/g0lvU4EemhKQw8znc+zhh8mlKy/W/rkRACgTzsaPKqHJxZttgUEiL0TGHM+p7sURiCWbbLABimCZVzSLCwzfPrJnya4uyNlBCOBoGmTp2Kk08+GRdffHGL9xhjuPTSS/Hee+9h6tSpmDt3rpNNE4SrdP/TnyCDQQAA83hcloYgCIIgCIJwk6eeeiru65xzdOjQAUOHDkVNTU2BpWpdDKypxiuXjcC4e9/H7kD0ewxWGpDmXTUCRhJnfCofaDqOW11I6OHgSnZOC0PC8nTnCTeCP+G2i8ADFjQllJBzyRQt9SEbB70pAdOMF0JsvmYtXrFeU0KBjUJlC7LbBHILMAZNUfAzXAwBGMK5SJPuwlyw+1+I1DbHSSzb5NyAWYFNE5rCUeFREDTMjIOAlv5JOgvIYSKffXZQgjErWJ2OnVF5aPeKSJ7mkTMrGGhKJH22FhuhbKuO21zdlFbAIabvASvgWeFRoJuiZFLD2XqkcAZDWN+f8oHfEGAJF8rk1qaAddZY0Iw2TmP/Mg+nD+mBC0b0RddqX05tlCKOBoGWLVuG3//+90nLDBw4EA8++KCTzRJEVkimYGPXMVHX2aJ27uyARESpojAFY3qNibomCgvnDPse0jnqmiAIgiDc4oILLshb3X6/HzfccAOWLl2K1atXY+fOnWjfvj369euHiy++GOeffz40TYv6TF1dHW699Va8+uqr2Lx5M2pqavCrX/0Kt9xyC6qqqvIma77pWu1DpwqOJkOAcyW80pOHHP02XlWBR5EIpOmsVEKOMCmR0U4eIn+oHPAo1oreXFZVm6FAmy+UWkxC5n2c7Xo9CgfnaKGjpinQlO+tNCE5rI1m1v1LAIECtEtY2P1f6kg0O709KodZgvekcWv+CelucNwpPAqHwls++0wh0aSnF2nzqRxqaOGEwgGPIiEkYAoTQlo7HRljUHnz2TcqmsvZz18pRU6pAjOFMytokU6cwpSh3S2h1G2GEI7Nych5Ye/CapbR3ilUPLrmUThsEa3nIAsFDFn4LKlC7GAqdI9srvPjyYVrMPOzTXh8wlAMrKkusATu4mgQyOPxYMWKFUnLrFixAh7aKUEUAabiwycH3+y2GEQrwKf6cPMI0iU3UT0Kxpw3wG0xCIIgCCLv1NfX429/+xsOP/xwnHzyyejSpQt27dqFWbNm4aKLLsILL7yAWbNmhZ00DQ0NGD16ND799FOMGzcO55xzDlasWIG//OUvmD9/PhYsWACfr3RXQ1qOKYQcLokXgWTi7DEFoDJrt0PxuGzKG1MAQgECDjmlAoZAhUcBA0NTgVL16KZAhaJErRIXUsJf4MiARGgFdkFbJVobpRxENATg1RiCreQcIt0UoRR90bYl3QAQYI0l5yxiBxGDwgCFJ3cb2+UAZtkzvbA7gzKN4dl669XyE8CUsIInFZ5mW28IUXRzRTdFlIyRWONYminsUuFTOXRTonZ3EyY+uwyvXDairHYEORoEGjduHF566SVMnz4dV199dVSwJxgM4t5778Xs2bNx1llnOdksQRAEQRAEQRBE0bBgwYKsPztq1Kik73fs2BF79uxpsbDOMAwcf/zxmDNnDmbNmoWTTz4ZAHD33Xfj008/xZQpU6LOILr++utx11134f7778cf//jHrOUFgD/srcf6Sy8FALT7+c/R7uc/b1Fm6/1/hf/rrwAA3v36YZ/rp7QoUzd7Dna/+kr4uueDD4LHBKiCGzZi823Twtf7Vf4EGyr7tqjrio+eRVXQOi/o024D8HKfkS3KjF89H4duWwUA2OWtwv1Dzg6/Fwj5zg7Zthq/XD0v/PqDP/0ltle0j6qnje7H9Uv/Fb5+p+8ILKkZ1KK9yz5/A90btgMAvm3fC/8eeEKLMset+wSjaj8DAJiMY9oRF7Uo03dPLS766t3w9T8OOglr23VvUe6Wj/4BRVqOpwXdf4L/9jmsRZnzvp6NA3f/CACoreyMxw75RYsywzetxMlrF4evpw87H41a9Lh0btqNKz9tHrtX9h+Dz7vs36Kuq5a/gA6BegDAii798fr+o1uUOfX7hRi29VsAwF6tDe4Zdi4konfrDNqxBmd99374Mw8fcjq2VnaMqsdj6rjp43+Gr2f3PhyLehwCwF61bfXNb794C73rtwIAvm/XA/886GctZBr743KM3bA8fH3ziJYp8HvXbcbFK98OX/9z4In4vn3P8LXd5o0f/ROa0AEAH9YcjHd6D29R19nf/hcH7VwLANha0QEP//SMFmWGbfkap/6wKHx9z9BzsNdTGVWmvX8vrl7xYvj6tX6j8GnXA8Ly2Px+xUvo5K8DAHzRaT+8fMAxLdo7ec2HGL7ZmsONqhfTD5vQosyBO9fhvG//E75+bPBpqK3qElVGESZuWdKcMvO/vYZhQc+ftqjropVvo2/dZgDA2upu+MegU1qUGbXhUxz349Lw9bThv4HJo7MydK/fhsu+eDN8/e8Dj8e3Hfu0qOv6T55FG8PKLbmk20F4Z98jW5T51XcfYPCOHwAAO3zVeODQM1uU+enW73D6983PgPsOPQu7fW2jyrQNNuC6Zc+Hr9/abySW7jOwRV2TP30VXZt2AQC+6tgXLxx4XIsyJ679CEdu+hIAEOQq7hh+YYsy/XZvwAVfvxe+njHoFKyv7tai3G2LZ4T/nttzCOb2GtKizAVfzUK/PRsBAOurumLG4FNblBm58XOcsP7j8PUdh1+AoBK9Q7Vrw05M/vy18PWLBxyLlZ32bVHXdUufQ1vdsuVLux6It/od3aJMMltuE2vLHzr0l/D72keVKVVbLgH88otZYVu+uSpzW27bp5rgXkxc2mwz3jrwGKzcp3+Lun635Dm0C+wFAHyxzwF4+8Cx0M3oHZXxbHksudrySC4ukC23uWnJ0/AIA4Bly9/rewSA5r70qgpO/2oO9t9q2Yx82fJIMrHlDEDQ48P9R14Y9b5uChzQSm25ISS8KscpK/+Lg3d8j68Xz4AxaF90v+OOFvU0fPghdjz9dHP7f/pTiyxQxq5dqJ3S/H3W85OfIjj44BZ1TWhoxLOVbVq8XmgcDQLdc889WLhwIW688UY88MADGDZsGLp27YqtW7di6dKl2Lp1K7p37467777byWYJgiAIgiAIgiCKhjFjxkStyM0E00y+cpdzHjezgqqqGD9+PObNm4fVq1cDsA5RnzFjBqqqqjB16tSo8lOnTsUjjzyCGTNm5BwE6m8YaFpmOVXaDB0Wt0xg1apwGanrccsYW7eGywAA4vSFbGqMKlM1vD9Q2aIY9t+xHu1DjpBNlZ3ittejfhsG7VgDANgWE9ixqQ42hMsAgGYaLcpwKaLKLO7W0mkIAP32bMR+e2oBAE1K/OwYXZt2hesyEqQYrtT9Ue1V6v645Q7asRaqtPrwmw6945bpvXdLuK4KIxC3TEd/XVR7XLZc0ayZRlSZOb1bBpwA4MBdP6JL024AwNYEfd69YUe4rp3eZud55IrvtjHj4jODLeqJHZelXaN3jeumBAOwX90mHLhrPYDEfd4lYlwSUWEEospU6U0tyhimxAE71sBrWPKuahv/bLBee7eG62rbtjFumQ7+vVHtqXHOfdFE9LjM7dnSqQ8A/XdvQE3DDgDALm/buGVqIsZlr1YRt0xbvTF6XIyW48Igo8p81rllsBAA+tZtTtnnXZp2R5Vhcdau+4xgVBk7oBDLgJ3r0DY0Zuvb7hO3TM8Im5HIrnQI1EfbDNHSZqjCjCqzsHtLhzZg2Yzee7cAsJzo8dincWe4Ln8Cu1KlN0W1l2iuR5b5Mk5ABgD6RIxLPJ0DgE5p2AyfGTMuwYa4dR2waz06hoINtZXx0/BnY8tVo3XZ8p57NmPANivYUKH7454/k8qWG6aEZgTD9QDA3H1bBqkBYP+d69Gp0QpQbm/TAVLKFmfHJLLlkThhy20KacsBYODOdWF5v48J3hmmhEeR6L5nc1Hb8gZPtF2xx7G12nLDlPCoQK+GbTho+xqwHQxNMn49xo4dUd837XPgI5G6HlWG7RvfbvZO8d2+UDgaBOrZsyeWLl2K66+/Hi+99BLeeeed8Hs+nw8TJkzA9OnT0a1byxUHBFHKGLt2hX/MMk2D2qGDyxIRBEEQBEEQbnHzzTdjyZIlmD17Nvr374+RI0din332wZYtW/Dhhx/iu+++wwknnIAjjjjCsTaFEHjvPWul98EHW6sQV61ahdraWpxwwgmorIyOlFRWVmLkyJGYPXs2fvzxR/Tq1Stp/SNGjIj7+pdffgnZoyeM0A/cNWvX4Ks4O6Gqd+yAFiqze9durItTxvf9alRG/FD+36JFQMxOIKW2Fu0jyghhAlLCaBGcaXYglOKZFURhKHS6GxnTZmtMt1M62L1PifGIRJTODI2UNNtjjiQAXUQ/MIUw4zxfrXNkwn9LAd1snenD4pP6Tq3dQGbWY1EoJKK/P1nnO7VeJADdMGHfpZQSO+vqsTHOd1LvN9+gKuL75pIlH0N0it6lxnfvQYeIMv4mP/bW1bXICJBqgVehcDQIBADdunXD008/jSeffBLffvst9uzZg3bt2uGAAw6gs4CIooIJHT23fBC+3rDPMZBcS/KJxNROmRKO/lYMHYLeTzzhiIxEaaALHR+sb9alY3ofAy1LXSKywzQF1ny6PXy97087QwkdbEkQBEEQhebYY4/F9OnT8cQTT+C3v/1t1K4gKSWefPJJ/P73v8eNN96Io446Kqs2gsEg/vSnP0FKiR07duD999/HN998g9/85jc49thjAVhBIADo379lKhf79dmzZ2PVqlUpg0DJ+AbAoP2tFaCiY8e4ZYzu3cM7e8ya+IsCRbv20PePWEnKWz7LpccTVabBG2cbEIBVHXuH08HVJlixv7GqSzj90C5vVdwydZ7KqBRFutLyJ7RgPKrMTl/8g4a/b9cDTaoXQOKdBlsrOoTrMln87zINmi+qvQYtfj77rzr1DacQ2loRf5Ha+rb7oCK0kjnRKvudvuqo9kQcuXRFjSpT54k/Lt926IWtbSxZNsaklrGprewUrivR7oe9MeMSbwdE7LjsSDAuP1TXwAilnVkXJ0UWAGyLGJdENKneqDL1CXbLfNuxDzzCgJTAljbx58uPbbuGVzknGrtdvrZR7Rm85cp3nUePSyI9X9W+Z1hvNyQYl00R49IY0uNY9mptosdFbTkuEiyqTKKdG2sjxmJtwnFpH1WXjBPQ8aueqDKJdOqbjn3CKYQS7fLZEGEzEunTLm9VtM2Ic6aKwZXocfHFX7H/fbse2Btaqf9j265xy2xp0zFcVzDB+S31WkVUe00Jxi96XOLr3brqbuFdKeur4su0Iw2b4VdixiWBzfiuQ+/wXCBbntyWtzGDYCw3Wx5kKr7unNqWr+rQC9tCtry2qgtknMhBa7flX4dsORDflktpzVv7u0gx2nJ/jC2wx7FV23LZbDMYgJqajogXrRBtq6O+b0qtpc2QqhJVxmwb35avKZK1BkzKeFOVKEXs1XmLFy9OUTI/LFiwANvrA/B3OtCV9jNFNRpwyoLmfOVvj5oJQ41+wJ07PP5W21jWX3ppqw0C2RHsVPnpy5kGvQE/f71Zl2aOn4lKLf6XpWKiNY1t0G/g37d8FL4+b9oR8PgcX+dQMrSmsSWiobFtndC4FoZCflceM2YMOnXqhFdffTVhmdNPPx27du3C3Llzs2qjvr4ebSN+bDLGcM011+DPf/4zVNV6Bj733HM477zzcOONN+KOOPnOb7zxRvzpT3/Ca6+9hvHjx2clh9u/Qcbd9R7W7zWhxnHo2fh1E0axL8clyoYKTYHCGUyR2cHtBEEQyXDCtth1ZArZs5ZUaApMIREs4u3IseNdDuNo33NT0IRH5fjXxcMxtI8z2ZwS/aZz+7uyTV6WSW/evBmPPvoorrzySlx8cfMhW9u2bcPHH3+Mpqb4+RTzyeuvv47jjz8enTp1gs/nw7777otzzjkHP/74Y1S5uro6XH311ejTpw+8Xi/69u2L6667DvX19XHrFULgoYcewuDBg1FRUYEuXbrgnHPOwQ8//BC3PADMnj0bo0ePRtu2bVFdXY2xY8fi/fffT1ieIAiCIAiCIIjSYdmyZRg4sOUh35EMHDgQS5cuTVomGVVVVZBSwjRN/Pjjj+HzfcaMGYO6urqs622NaLQ5mEhAoRfnMgC2v40zSkRGEIQzxNqWXOvIFLJn0dh9qRbx9494493ax5HB2mQuhISARIdKDYO6x99Z1hpxfJn0o48+imuuuQaBgLX1ijGGGTNmAAC2bt2KESNG4LHHHsMll1zidNNxkVLisssuwxNPPIF+/frh7LPPRtu2bVFbW4v58+dj3bp14dQHDQ0NGD16ND799FOMGzcO55xzDlasWIG//OUvmD9/PhYsWABfTE7qiRMnYsaMGRg0aBCuvPJK1NbW4qWXXsKcOXPw0UcftUi98K9//QsTJkxAly5dcOGFFwIAXnzxRRx//PF46aWX8Mtf/rIg/UIAknFsb//TqOts6Xj++TBOOBEAoHaJv/WWIAiCIAiCKA88Hg9WrFiRtMyKFSscSZfNOUfPnj0xadIkdO7cGWeeeSbuvPNO3HXXXWjXrh0AYM+ePXE/aweL7HKlSDrOCkVRgDiHgBOlBWfZn3URD02xtCfeAer5QlVYOD0kYwyqwgraPkEQFk7bE7eJtS1aFrYlso5MKTV7lu/xt/uSMQbORFHqWrzxLrVxzBRVYYAEgqaApnCcfmhP+LSW6fdaK44GgWbOnInJkydj2LBhuPnmmzFr1iw89thj4fcHDRqEQw45BG+88UbBgkAPPvggnnjiCfzud7/Dgw8+aP0AiMCI+DFw991349NPP8WUKVMwffr08OvXX3897rrrLtx///344x//GH597ty5mDFjBkaNGoX//Oc/4R9x5557Lk466SRMnjwZs2fPDpfftWsXrrjiCnTu3BnLly9Hz549AQBTpkzBoYceikmTJuGEE06ISutA5A9TqcD/htznSF1VlL6FIAiCIAiCCDFu3Di89NJLmD59Oq6++uqoYE8wGMS9996L2bNn46yzznK8XQCYN28egOazgOyzgWJJdWZQSZCmv8qnMviN9J0aXgUImq37gORSggHwqhx+XTgyJgyAFjo/0ijQgeaRbdpoCi9Y+/HkIf0myhHbnjTpxZumKxMS2RY9g8Po49WRKW7as0xw+nkSr/7IvixGXUs23qUyjtmgcoaAYY1FTTsffj2ij8sSFRZHN6bdc8896N27N+bOnYtTTjkFXbu2PCRu8ODB+Oqrr5xsNiFNTU2YNm0a9ttvPzzwwAMtAkAAwvmypZSYMWMGqqqqMHXq1KgyU6dORVVVVXhHk82TTz4JALj99tujftj97Gc/w5gxYzBnzhysX78+/PrLL7+M3bt344orrggHgACgZ8+emDx5MrZv347XX3899xsnCIIgCIIgCMI17rnnHtTU1ODGG29Enz598POf/xy//e1v8fOf/xx9+vTBTTfdhO7du+Puu+92tN3a2loAgKZpAKzgTvfu3bFo0SI0NDRElW1oaMCiRYuw7777hjMjlCKmENBNoEk34NdN6IYJ+9hbKSVMIWEIAcZ42mnh7BXCrTklSqnBGaAbAopDg+JVOThj4IzBpykFGWtNYRAhnbR1tJDtR+JRODSVkY4TOVGq+qMpHBKAxymD4iIMgE9TwBmDEAJBQyBgmDBMCZ+a/v0pHNBNAX/QgD9oxH2mAtHP1UhbBoTsWYHzn3kUDjXDjRycWWff5BjzikvkeNgonMNbZHnhImW0x1Q3TQR0E7opsjoXqhTwGwKcM/ToUIHHJwxF12pf6g+1IhzVwk8//RQnn3wyKisTH4jeo0cPbNmyxclmEzJnzhzs2rULv/jFL2CaJl577TVMnz4djz32GFavXh1VdtWqVaitrcXIkSNbyF9ZWYmRI0fihx9+iDpDaN68eeH3YjnhhBMAAPPnz48qDzSv0EtVniAIgiAIgiCI0qNnz55YunQpJkyYgD179uCdd97BU089hXfeeQd79uzBhAkT8Mknn0QtDEuXr776Co2NjS1eb2xsxNVXXw0AOOmkkwBYaT0uvvhi1NfX4/bbb48qf/vtt6O+vr5gGRqc5suNe/DzhxZi9W4JUwKmAAwhETAlGoImGgIGGoMmmnQTfl2gSTdhiPR+AAsJ6AIornW75Y0pASP0zwkCIUepkBKMJT8Hg8HaSZarvzhoyrAuNgbNcPsKZ6jwKNCUwgVlgqZA0JCtcqV3PrBWzTN4VZb1mSmtkVLVn6Ap4NcFgiWc8srWyQqPAgmJxqCBRl0gaAroprTu0ZDWGShp1GcIKzWmbWdjn6lNQSsoFPtctW2ZIQSaggaajMI+OYOmgJH+hicA1vMkaEo4KWrkeMQLoGgKR4XGi8J+qJyBMUBIiYBhWuOrmwgYErqQlh7kkL+OwToLSeXFt9CgjabgvMN74+WJIzCgW/mcBWTjaDo4IUR41Vkitm7dCq/X62SzCVm2bBkAKwf0IYccgu+++y78HuccV111Ff7yl78ASJ0KoX///pg9ezZWrVqFXr16oaGhAZs2bcLBBx8cd4dRvNQLydpIlaohkhEjRsR9/csvv0Tv3r2xYMGClHXkg7q6OnAh4dvxrSvt54MFC9a6LYLr2Lni3dKrUsAv/AgGg+HrRYsWwceLf0VBaxpbU5cIBpu//S1atAiKVmxfOQpHaxpbIhoa29YJjWthqKurQ3V14X7wdevWDU8//TSefPJJfPvtt9izZw/atWuHAw44IKezgF566SXcd999OOqoo9C3b19UV1dj48aNmDVrFnbs2IGjjz4aV111Vbj8//3f/+HNN9/EXXfdhRUrVmDIkCFYvnw55syZg8MOOwx/+MMfHLjbwvLu55twxfPLkcx/F+8tGfrHAGgcEGCQkIBE0rqI/KFyazcOpHVmglNBnlRIWA7PdNIlSSCjVIKZtG+YJnya5TT0qgo8ioSQCOullFagRkjk5JRrDWicQeEMAhLBAiiKxgFF4WBg4d2Bfj3/KZI4EApMspAzWTqmf57QWR9ua5Ia8oSbwnlZFFYe9tyrcqgKh26KcHqreNjPvVwxJQDZsqZmW1pcnW4H7QshlkfhVhA/xXlK1o4ghiY9w6iVwxhCwgiaeUsJausmYD3DhARMKdKy2xz5XYDTEDTx3srNOPOwXmW3CwhwOAh04IEHYuHChQnfNwwDCxYswODBg51sNiFbt24FANx3330YMmQIPv74YwwcOBArVqzApZdeinvvvRf9+vXDpEmTwoelJjoU1f7BaJfLtHyqz8QrT+QXJk102vt1+HpH24GQrHwOBCMIgiAIgiDyj6ZpOPjggx2r75RTTkFtbS0+/PBDLF68GPX19WjXrh0OOeQQnH322bjooovCKa8BK6vB/Pnzceutt+LVV1/F3LlzUVNTg2uuuQa33HILKioqHJOtEHy5cU/KAFAqJKydPhUey0nRGHTXIVPOmELC4+EAlLIcBwkrsFDhsVLzMGbvOGp2Jgop0VSGfROLISQUhSGoF8bZbAhAU60gpZCyIAEgwNKJcHovKdEYdM4lWiw7Xwwh8+aALpJbzDsBQ0BCIlCoyHmJUUg90E0BVUmd1lNI6XoAKJJ8dVEglHLNfqYxSOhp2u1C7CPbtMePi/+5FK//7siyCwQ5GgQ677zzcO2112LatGm45ZZbot4zTRPXXnstfvjhB0yZMsXJZhMihKU+Ho8Hb7zxBrp37w4AOProo/Hyyy/jJz/5Ce69915MmjSpIPI4xeLFi+O+bu8QGjVqVCHFCbNgwQJsrw/A3+lAV9rPFNVowLDPJ4ev3x41E4YanQpw1PDeadW16dZb4f/aCij5Bg5Eza23Oian29irkt3Sq1KgQW+A5/XmFb0jR45EpZY4LWax0JrGNug3sHbOR+HrkSOPgMfn6COupGhNY0tEQ2PbOqFxLQyF3AVks3nzZrz22mv45ptv0NjYGD5jdNu2bVizZg0GDx6ccRBm2LBhGDZsWEafadeuHe6//37cf//9GX2uGLnlrS8dce5Yq5cp4Zvb0Dg094E3wcEWupmfw8tLDQkgWMBUU5HjUsgxiG23tUI6nRsSoABQkZDKhtu05vkcSWx/FOMzbPMeP55ZvA7XnlAa/muncNRDdsUVV2DmzJm47bbb8O9//xs+nxVRO/PMM7F06VKsXbsW48aNw29/+1snm02IveNm2LBh4QCQzcEHH4z99tsPq1evxu7du8NlE+3EsdN02OUyLR/7mU6dOqUsT5QOem0tgqu/BwAoNIYEQRAEQRBlz6OPPoprrrkGgUAAgHU+jx0E2rp1K0aMGIHHHnusZM/kcYPdjUEsX7fbsfqKLX1NuULjABimhEeRLdIJSSlhUP+EKXRGPMOU0Lgo+BjY7dLcIIjSIJENt5Gy+FLm5RO7P+y/iw1TSry6fAMmH7M/fFr5ZIRK53ywtNE0DbNnz8b111+PHTt24Msvv4SUEq+88gp27tyJKVOm4K233kqZJ9EpDjzQiui1b98+7vv2601NTSnP5Ik9z6eyshI1NTVYs2YNzDh5hOOd/5OsjVRnEhEEQRAEQRAEURrMnDkTkydPxuDBg/HWW2+1yDwwaNAgHHLIIXjjjTfcEbBEeeeLTUW3mpQgnMA+9ycW63wgwi0krLRwhR4Du12CIEqDRDbcptyOdLP7o5ifYTsbglhZW+e2GAXF8Vw5Ho8Hd955J+644w58++232LlzJ6qrqzFw4EAoSmGja2PHjgUAfP311y3e03Udq1evRmVlJbp06YJu3bqhe/fuWLRoERoaGlBZ2ZzKqaGhAYsWLcK+++6LXr16hV8fPXo0XnjhBSxatKhF+o7Zs2cDiE7rMXr0aDz//POYM2cOjjjiiLjlR48eneNdE27QZsgQKO3aAwC8/fZzVxii4PgUH5752TNR10RhUT0KzrhuaNQ1QRAEQbjFPffcg969e2Pu3LmorKzEsmXLWpQZPHhw0vNUiZbsagi6LQJB5A0JCcScKiGL1n1WPrg1BjT2BFFaxLPh0e+VF8V+z1IC9QHDbTEKiqM7gfbbbz9cfvnlAKx0BwMGDMCRRx6Jgw8+uOABIADo168fxo0bh9WrV4dTL9hMnz4du3fvxvjx46GqKhhjuPjii1FfX4/bb789quztt9+O+vr6FqkaLr30UgDA1KlTEQw2/yCZNWsW5s2bh3HjxqFPnz7h188880y0a9cODz30EDZs2BB+fcOGDXj44YfRuXNnjB8/3rH7JwpH58suQ4977kaPe+5G58suc1scosAoXEHPtj3D/xROAYhCwzlDdeeK8D/OC7PjlCAIgiDi8emnn+Lkk0+OWlgWS48ePbBly5YCSlX6dKj0pC5EECUKi+M8jPcaUVjcGgMae4IoLZLN2XKczyz0X7HCGFDlLa9zpB292+3bt7ty4GoyHn30URx55JG45JJL8MYbb2DAgAFYsWIFPvjgA/Tp0wf33HNPuOz//d//4c0338Rdd92FFStWYMiQIVi+fDnmzJmDww47DH/4wx+i6h47diwuvvhizJgxA0OGDMHJJ5+MTZs24cUXX0THjh3x0EMPRZXv0KEDHn74YUyYMAFDhgzBWWedBQB48cUXsWPHDrz44oto27Zt3vuESJ/nlqzP+DPnDu+dB0kIgiAIgiCIUkEIAU3TkpbZunUrvF5vgSRqHZw8uAY3vf5lka8tJYjMYQDirWHizHqPdN4dGACVA7pZ2DGw2w22PHmAIIgiJJENtym3NaqR/VGsz7COlR4M6l5cMYx84+hOoEMOOQTfffedk1XmTL9+/bB06VJceOGFWLZsGR588EGsWrUKl19+OT7++GN069YtXLayshLz58/HH/7wB3z99de499578c033+Caa67B+++/j4qKihb1P/7443jggQcAAA888ADeffddjB8/Hh9//DEOOOCAFuXPP/98zJo1CwMGDMBTTz2Fp59+GgcddBDmzJmDX/3qV/nrCIIgCIIgCIIgCsKBBx6YNNWbYRhYsGABBg8eXECpSp/2bTwY0qe9Y/VpCoOmlJlnpgihcQBUhcU9O5kxBrXM+yaSQjtSVYWBc17wMbDbLfd5QRClQiIbbsNYeT3n7P4o1meYwhjOGNITPq28svg4uhNoypQpOOOMMzB37tzweTzFQK9evfDUU0+lVbZdu3a4//77cf/996dVnnOOK6+8EldeeWXa8px44ok48cQT0y5PEARBEARBEETpcN555+Haa6/FtGnTcMstt0S9Z5omrr32Wvzwww+YMmWKSxKWLrefdjB+/tD/YOa4rJQB0BRrTaRu0nJ7t6BxiO6DeGgKh2GaRbmSupAwAF6Vo0kXBWvPHpdCjkFsu611XhTr7oBSwZoPDH6DetFtUtlwm9Y8nyOJ7Y9ifIbVtPfh1yP6pC7YynA0CLRr1y6MGzcO48aNwy9+8Qscdthh2GeffeJGQ3/961872TRBEIRrNOqNuGj2ReHrf5zwD7TR2rgoUfkR9Bt48/4V4evTrjoUHl955XclCIIgiocrrrgCM2fOxG233YZ///vf8Pl8AKwzQpcuXYq1a9di3Lhx+O1vf+uypKXHQd3b4aFzhuCK55fnFAjSFCtTPWMMFZqCJj0zxww5MJ1BYYBhSgASKmcwRPn1qqZwmELAkAyMAZwxKw0cY5BSQggJhQNGYWIfRQtngGEKqAXoCwbApylgAEwhISHhUTmChsjrvLfb5aGxlxLwqAxBhxz93gLcQzr4VA4JIFDuSp0DHoUBYFCYzHlRRGtE5QxSSBQi5KIpHFICEhJSSuimhIAEpDWnGbfOxuEMqFA5mlqx3tvBeiEkDCmA0H17VYaAIZPaHit4xKCbycvlSvd2Psy4YBi6Vvvy2Epx4qiH7MILLwx/UXn11Vfx6quvAkBUEEhKCcYYBYGIVkWnee/Cs20zAGDXuoPQ4cwzXZaIKCQSElsbt0ZdE4WnfnfAbREIgiAIAgCgaRpmz56NadOm4bHHHsOuXbsAAK+88gqqq6sxZcoUTJs2LWnqECIxJx1Sg76dj8L1r36BzzfuyaqOoCkRNE0oDFmNg52WKh/ON86AcomFGBKA6YxDzB5Ly2lfOgTD9x8tNQUaozFlfuZbLJxZDnZDCBh5dkbGonAGCYmA4XzbVkBLgLPC9GMy/K3YCQ5YOmQFBSzyEeAOhILnRHwKuaAgaAokjTbFjJWSx+8PbsEAKNzS++j5nd5N2s/vYJadYu+MM4RMukjgN0f2xaQx/coyAAQ4EASqq6uDz+eDx+NJO+UaQbQ22i37EFXfrQQA7K2rpSAQQRAEQRBEmePxeHDnnXfijjvuwLfffoudO3eiuroaAwcOhKIoWLNmDaZNm4ann37abVFLkoO6t8NdvzwEP3sg8dlL6WD5ZjJ3OuTLeeNTORhj8OvFlTql2PGpHGoo/YyUEiK0KlsIASFCwSYXyGXXSrYiK8xyOjPOICWKYudHOiihqFe2K/edCpoJiaxSbGnckkDkEKyyHJiZfdijWDvIhACETLwrRIJ2k+UTj8Kh8JhdfCE79O+Lj8CEGR/BlLT7qZRRuTXX9By/ALSm4I9NrvYlk+9iqrUJDvYuI5UzSKT3venMw3qVbQAIcCAI1KFDB9x6662YOnUqLrjgAgDAkiVLsGTJkozOySEIgiAIgiAIgmhtMMYwYMCA8PX69etx++2345lnnoFhGBQEypItdX5MfHaZ22I4jt8QtAMkCwKGAOcMPHQQtRJyEAVN4VoACHDH6S4koIQCYk0lFEzM1THq9n0aQsKrcRgFOrPIRjclKjwKFA40BVv/eSPFim4KqIoS3lkaaYeG9ukAMIZAhmlHieLCEBK0f9t9TAlUhNJmAlbw2x9M71k38dlleOWyEWUbCEp9clUKrDyl0V393nvv4aqrrsq1aoIoGaTmgfD6ILw+cK/XbXEIgiAIgiAIF/jf//6HsWPHorq6Gh07dsRpp52Gb7/9FgDQ2NiIq6++GgcccAD+/ve/o0uXLnjwwQddlrh0eWbxWmyu87stRl5w25ldikhYTthYCuyPLwrsvtDN0tgB1FqQcGfXFY13cZDIBtkke48oHWiOuU/sXMvE9m2u8+OZxevyIlcpQKdmE4QDrLny5vDf5w7v7aIkBEEQBEEQhBssW7YMxx13HILBYPi1mTNnYunSpVi4cCFOPfVUfPXVV+jevTumTJmCSy+9FF5aPJQVft3Ea8s3IkhpdYgIDFPCo8jwSnwhytcprpu0Yt0N3DrLi8a7OIi1QTZ+3cw5hRhBEM3Yc83+O110U+C1FRsw+Zj94dOUfIlXtOS8E4ggCIIgCIIgCKLcufvuuxEMBvHnP/8ZW7duxdatW3HnnXdi06ZNOProo/HNN9/gpptuwurVq3HFFVdQACgHVtbuwe5GnX7MElFIRDvhyz1GSC7n8oLG231ibZDNyto9BZeFIFoz9lyzzt1KHw6GXQ06VtbW5Uu0ooZ2AhEEQRAEQRAEQeTIokWLcMwxx2DKlCnh1/74xz/iv//9L+bNm4d77rkHV199tYsSth7qAyYkpHMnwROtBgmJ0InRob8JgiAKR6QNsqkP0FlABOE02TzjGbM+Vx8w8iBR8UOLpwiCIAiCIAiCIHJk69atGDp0aIvX7dcuuOCCQovUaqnyKmBgFAAiWsAinK+MEmQRBFFg4tmdKm/5pZ0iiHzDQv9lgpTW56q85bknxpG7/te//oWPPvoofL169WoAwEknnRS3PGMM77zzjhNNEwRBEARBEARBuI5hGKisrGzxuv1ap06dCi1Sq2VQ93Zo30bDpj20uppohgHgEf4glQPBMlYR2ihXXtB4u0+sDbIZ1L1dwWUhiNZM5FzLxPYJSHSo1DCoe3WeJCtuHAkCrV69Ohz4ieS9996LWz72kDSCKHUq1q6C0tgAAGiq2ouKQYNcloggCIIgCIIgWic+TcHpQ3rgyYVrECz3g1+IMKrConwNnHMwiLJ0jGuK1Q90GH1h4Sz+mTD5hsa7OIi1QTY+TYGmMBofgnCIyLmmZjC3NIXj9EN7wqeV5+68nINAa9ascUIOgig4gqn4sdvxUdfZUvPqP1H13UoAwLbDh6L3E0/kLB9ROqhcxfF9jo+6JgoLVxj6DekadU0QBEEQhSY2QwKQPEsCZUjIngtG9MXMzzZh/c5Gt0VxHFrRnzkMlnMnFo0DwTKLE0b2hWGapEsFggHwqhx+vbCBRxrv4iCRDbLRFA7dLOOtia0Eej67T+xc0xSetu2raefDr0f0yZtsxU7Onso+fcq384jSRiheLDvoj26LQbQCvIoXfxxOuuQmqqZg1FkHuC0GQRAEUeYkypAAxM+SQBkSsqdrtQ+PTxiKnz2w0G1RHEXlDJxZK/rJ0ZQeDNZKex5nPnEOqBIwXOpMr8oRNAoXFIjtC6/K4Hfr5jPEozAojKEpi919DICnwH0di09ToHAGn8bg1wsXjPFpChisHUiqAugUZ3AFhQGGGdI/ae0KY9w6s8Svm+CMoUJT0EQDVJIwWDbKFNK150mkLKVh1Z3HDrYLIWFIYZ3xw6zdQEaK700MwOMThqJrta9A0hYftFydIAiCIAiCIAgiRyhDQuHpWOkBB9CaNnoYEbmk7JBGuTp7UsFgOX40hccNAAkpETAy7z+VA05lGTSFhE/jMIRM6aDKhdi+MIRA0BCupCbLlqApkY22q5zBo1r3rXCGoGFmPX4MgMKtw8MzydzFABhCgDEOhTNUeBTopihI+q+AYZbUOLdWDImWShO6HvuXeQgYJjSFo41HQUA3M9KvUqa1PMckgEAeBi3TgI7KQztf8vxMKTYibbM/y4UCPo1jQLfyPAvIhoJABOEAtWdfAu5vAgD87PD9XJaGIAiCIAiCKDSUIaGwfL2pDhOfXdaqAkCxZOvc0bjlDI/yLjFACBlytCfnZwfvA4VxvPPFppQyaKGdSzLUCGeAwq1c/VJKmEJCSAkhowNcmaJyBgZrxS9jDJxZbSXaTWcKmfWKe0NYK74ZYwjkGA0yhAwFghSoTMLv0E4Vn8qtPoYEQ3Rf6KbIWe5iRmGAwnmUrtlICZg53Lp9bkumYyRh7d4zTDO8I8irKvAoId03rUCNkM47w50MAKnc2ulQCMeyR+FgTMIUKFibbrF5jx8Slh54VF5WQTv7Vj0KB5iEbhR+rG2bwSAQKLKNWJn2hSEAUwjHnynFjEfhUBiy2iVqIwH4dYGvN9VhYE35BoIoCEQQDuDv0fyj37t/bxclIQiCIAiCIIjWzZY6PyY+uwy1u5vcFqUoMYSEpkbvjhFSIpCmd/yzDXsQSNOxZAiJCk/8VGyMMagKg5ASTcHcPG9mknZiETL7AJBN0JRgDrnWJIAm3XQ0hU/AEKjwKFBY9BkkhmjdASDACnp4FdZCF4SUOadhSydImgzL0WiGdZUxFnJAq47Mg3yTS6A2U3RTwKtxmKL1O7FlxP+39vmZiKApXEtjJqR1Ppxfd6HxPJCPZ0oxE8wlsh+BBHDxP5fi9d8dWbYp4SgIRJQtTOjovXlO+Hp9t3GQXHNRIqJU0YWOOWubdWlc33HQSJcKimkKfL9sa/i639CuUJIczEkQBEEQROnyzOK12Fznd1uMosXalSDgVZXwa7qZvqN18570+zZeW7Fk0nYu7US25wROO9ecrC9RfwTLwMGc6N6d0DMnKHb5igUJuHqGE1F43BprW9daGzR3MmfzHj+eWbwO155woNuiuAIFgYiyRRFBHPrNveHrjV3HwCDHPZEFQTOIe5c269KYXmMoCFRgTF1g0avNB3H3PaQzBYEIgiAIohXi1028tnwjdFOgQlVgiOJeWe8WhinhUWQ4LZuRwQ6HTDcDRLYVS6ZtZ9tOZHuFOIelGIjtDyFK6wygXIi9dyf1zAmKXb5ioVz0lXAf0jUCAEwp8eryDZh8zP7waakXlbQ2yENGEARBEARBEARBlAQra/dgd6MODgbOU6cGK1ckmp1e+TiHJFFbsTjZdrJ2ItsrF2L7oxUudE9I7L3nW8czpdjlIwiCKFd2NgSxsrbObTFcgXYCEWWLZBxbOw6LuiYIgiAIgiAIonipD5iQkEjjaJiyxzp+m6EQx3DbbcV/Pf/t5Ku9YieyP+jei4til48gCKIckRKoDxhui+EKFAQiyhZTqcCHP73bkbr2u/cmVH23EgCw/vCh6P3EE47USxAEQRAEQRBEM1VeBQxWijMiOSzkgGZJgiZOt5Xu6063k6/2ip3I+2Vlc0y4Rct7Ly6KXT6CIIhyhDGgylue4RDa+kAQBEEQBEEQBEGUBIO6t0P7NhoEJEQ55f7KEAbAzpbHWbK9M862FYuTbSdrJ7K9ciG2P9Qy8u7E3nu+dTxTil0+giCIcqVjpQeDule7LYYrlNHXBIIgCIIgCIIgCKKU8WkKTh/SA5rCETTL6BCUDFEVFj6UnjEGVUnfBc1ZZsGUyLZiybTtbNuJbE9zqL1iJ7Y/OOdlEwSLvXcn9cwJil2+YsFJfaXeJZJRLraRSI7CGM4Y0hM+TXFbFFcoz/1PBOEwu0Ycg4YDDgYA9Bo+0GVpCIIgCIIgCKL1csGIvpj52SbU7m5yW5SihAHQlOj1nprCYZhmWsnCatpXwK+b2FEfzKqtWDJpO5d2ItvTTTOH1prbdHKvmZP1JeoPr8rRpLfu4Giie3dCz5yg2OUrFhgsffXrwpE+Ka9kiKWJW2Nk61prs42k85lT096HX4/o47YYrkFBIKJsYULHPjs/CV9v6XgYJNeyqmvXkceE/243vHfOshEEQRAEQRAEEZ+u1T48PmEoJj67DOt3NrotTlFhO7ukBHRhQkoGxgDOGHwqh99I7XB99LxD8fmGOtz8xpdJy0a2ZUgBBmalvYrZrWM5xRmCZvbuKp+mgMfZBSSlhJCAhASzTouCkFZqNCMHf5/GrX7LReZIfCoHA9Lq/1QwJO4PhXN4VSCQy80XMcnunQHwqDzre7c/H8xxjFTOYJgSjElwZumkBIOQAgpnMIo4jaXKAKNA4vk0BQpn8GkMfj274FikE7yYNT5STo70ZG1tDn6fysFY9mOdLbbNUDhDhcbQpOe+QKAY8CoMEuk9o0pdlzyKlU8zmKNxYgBmXDAMXat9zghWglAQiChbFBHEEZ/fFL5+e9RMGFkGgQiCIAiCIAiCKBwDa6rxymUjcMSf3k/LocaZ5UgwJWCYsqQdIolQQgEYf5QTvPlOGQBrgwKDKRL3wWXPLsewPh3gURmCRvK+CsQ4zBmsVFj2ToigYaYVjOEMSOQbZwAMIcAYDzv/hZTQTZG3sdQddtT7HQrKcGYF3pQkuY0UzqAwwKH4VVEQqVexASAndEHlDJ7QoUpKjgFES3dKs/MLFQCKnNMKZ2jjURBI01bE2hh77FkSG+IWjFkBZVVhaAxaN5fsFu17UziDYYqc9LDYCBgCqsLg07g1ZgW4NysA1GwvbV1L97lUzARSGPh480Qv0YeCE4sxbBs/oFt5ngVkQ2cCEQRBEARBEARBECXHjoZg2qu/hQQChoTKOdp4lIKeG9OhQsX0Mwbj0qP3hUfhUPPwK9yjMAiJpLsMJCzntikkNIUlPENjc50f736xCYEUAaB4rm4JQDclGoMmGoPpOdp8KodXVRLKY9fZFDRhCglTWH/rLgbzPBzwKByawiwnb47qxAB0rfKgfUXydbpCAn5dwEwwznbfuOnrU0KOb6uPrIBUriovAai8ZQDIKV3QFGtHW1OaOkvkRuyclhJI54g3j2LZb69q7QbjjMGrKmjjUTCoezV8GkeFpqAiH0Y2AxRm7dS47eeDUOVTwwGgVEhYuzYDenEFgJw4Tyc85rpIa6ydQKKlveSMwaeprutIMjwKt3a/5IA39FyNnCeVHgVeB++bwQqupIPGWfiZWUg8CkOlR0m4g7TcKF6tJwiCIAiCIAiCIIg4bKnzY+KzyzL6jOUQMmGIwq6I3dVk4KH3V6NP50qoCsuLAyyYgRPcTiGTqLxX4QUNIvgNkVaKIAmgSTcLnk4oHrqwVll7VQWaynPeQSEBbG8IYneTkVZZv25CyOhGhZRF0TdCAprK4dFUeFQFXk1xJFVX7D07eb/Folflhj2nm9Lse92Mn6qPMYa2Pg0q52AMaHI5giIkwDjD3xZ8j50Nekafjd1dWQw4vcOqkPcXz14KKR3bnZkPgqbIefdLwBAtnhESQNDB+7YWlqQnpyEkOLd2YhcSNxeLFCOUDo4gCCJHKtQKPHfyc1HXRGHRPAp+df2wqGuCIAiCIFovzyxei811/ow/J2HtCCo0m/f4sfC77QmdmMWEKQsvYSYtFkP/WavaBbyqAt2hqF4mjtbI9m2KRbdiZXOqf+LV6+T9FkPflSuZBLBj9T4Wp/QtF2xn++Y9mT+jCOfJt+0oRortGWHPiUK3n47NKCcoCEQQDlDzylPwbVgLANh6+E/Q9ao/uCoPUVg44+hW2c1tMcoaxhmqOpTvAX8EQRAEUU74dROvLd9YFM6+dDGlxEc/bC/4KthsKNVzAwqNYUpo3L1zFgxTwqNIMMYgpXRdtxgD7PihLRvgrD5F1uv2/RLuEKn3sUgpi8Z+Fdv5ROVOOdqOYntGuDUnktmMcoOCQAThABXrvkfVdysBAP62msvSEARBEARBEETrZWXtHuxu1MHBUEoJnPb6jRKSlkiFfcaSm+0LaZ0/ImQR7GSR0X/mw+EXWa/r90u4QqTex0KBFyIR5Wg7iu4Z4RLJbEa5QUEggiAIgiAIgiAIomSoD5iQkGAMJeXVKCFRiTRx+7QBq33muhzxyJdMxXivRGGx9T7+6wQRn3LUj2J+RhSSRDaj3KAgEEE4QKB7L3DDOvCvy379XJaGIAiCIAiCIFovVV4FDFZ6k1KiFNwPCgdKKMue6zC4G4lkIa1iRahd+ZKpGO+VKCyJdIB0g0hGOepHMT8jCkm5378NBYEIwgE2njMx/Pfhw3u7KAnhBo16Iy5474Lw9T9P/CfaaG1clKj8CPoNvH7v8vD1+GuGwOOjRxxBEARBtEYGdW+H9m00bK4rrUO32/pU7Gkq7pRw5CZJHwZA5UDQdK99HhowzuByOApRAkTK5nQTdr2u3y/hCsl0Kx86R+SfQszlcrQdRfeMcIl8PY9KEe62AARBEKWOhMSOph3hf+W+1dYtGuuC4X8EQRAEQbRefJqC04f0gKaUzs9ZhTEcsV9nqEWelJ4xBq3IZSwWVIWBc+5af6kKCx90zRhzXbciN+bZsjmtT5H1un2/hDtE6n0sxWS/OCPHc7ooBeiocrQdxfaMcGs+JLMZ5QYtkyYIh3luyfqMP3Mu7R4iCIIgCIIgiLS5YERfzPxsE9bvbMzocwyAV2XwG4VdtFPT3ofRB3bBglXbYJhmUS8ZUhmDXmAJM1mhXAyrmRkQDkJqCodu5r4diLP0D7aPbN9GU3hR6FasbE71T7x6nbzfYtCrciXdvo+n97E4pW+5YD1nODpWerFxd5OrspQCmsJgpGv8siDftqMYKbZnhD0n/LooaPvp2IxygnqCIAiCIAiCIAiCKCm6Vvvw+IShGX9OUxjAGNQC/hLu3s6HGRcMQ7sKDZwx+DTF0bRrtnMlkzoTlTdMCb8pCuoo8CgcnjTkZwB8qlXWTRgQHkPDFDBMATXHJc4KZ+jVsQ26VXvTGkfOrLZ1U8AUElJKS7cy1AOnsfuGh1ZdCyFgmDLn+WbruBASQcNE0BAQQsKrOnPSg0fh0Byqi8gMn8rTtomaYumAYQoYoln3bZzSt1yw54DCOWZcMAzdqn0ZfT5TW14I1DwLFMzzogxNae5TKSWkhGvzPZ3nnFdhOT9TPAqDlAjPEyGE4/etcEBTUpeLnBNOf/9Jp11Ou4DCUBCIIAiCIAiCIAiiRNi4cSP++te/Yty4cejduzc8Hg+6deuGM844A0uWLGlR/tZbbw2nQIn3b+3atYW/CYcYWFMNrwIoLP2zbIKmhF8XMEReRQvzs4O74Y3LR2JAt+rwawpnqPAoOactsla4Mng1DiEzS0gspIRPs1KZRUrBGFDpUeDRUrsKGOL3e6Z3FTQFAkby1cEKs/otYFhl3ULlVn/rpomGoAm/IRA0ZU6r2BmAo/bvhLEHdsW2vYG0xtGUli4HDIEm3ZKlMWjAn6Qf7TOMMnUuaooVXIqtKzKFEwPQvkJDhUeBwhkMIdAYNNCoCwTN7OebLTNngN8Q4f4OmiJ07Uwi7qApEHSorkzQFIZyX6QeMAR000wrVVTzuAv4dUv3G4MmmoIGPvtxd0b65lGYZVcc9A9bTmcenhsDa6rx9wuH4ZAe1ck/GEEqW+gG+d44a0YE8jgDKr1KC5uTDJVb/Z6IoCnCNrIxaKJJN12Z7ypncZ+7QMimhl4M5PhMseto0s3meRL6fyfv2xSAnmTTnf0dxX4uAM3ff/IdqFV5dLuEBaWDIwgHaPfJQmi7dwIA9PYdseewo12WiCAIgiAIgmiNPPTQQ7jrrrvQr18/jBs3Dl26dMGqVavwxhtv4I033sBzzz2Hs846q8XnLrjgAvTt27fF6+3bt8+/0HmEMWslqsIVCAnowoThUiYghQGDe7TDyto6KJxB4Qy/GbkvuoZWgke6Ijhj8KoKVCaSOu5j8SgcnAMMLJw+zK9nnt5FNyUMU8KnKfAoVj2mFFA5R9CQ0M3EXlSPwqyV1YxBSgkhrTMypcyfA9OUiD50xiUMkbtzzkbjDKrCASmxsrYOi77fYd1nlqQSS1MYdFMmPL+Uc4DJ0AHizArx/fOiw3Bo7w5YuGo7rnx+BSQkGBhOP7Q7ftq7A6a++WVYFztUerBtbwC66VygTlMYgrl0So54FMuhb/sR7Xmih7zimUqmhuwCZ1adk4/ZH4fv2wnL1u3En979xlnh00RTmLU6nDFXAqwSyCkoL2HZh4ZgcsPPAXBuOd/PHd4bXau9+Nu8H6w6pMS0Uwfh+tc+z1kWvy7g06xx/npTHSb9azlq9xRPSjiFWXrIOY/Wa2FCSAZImVPQRw3pN4NA0Mx8jnhVBb85si/GDtgH5zy5OOUuISsgzaGksdsjjxnn0sIQEqaIfu7aNlUIgYBLts6jcEhI6A6371W59YyLQUorgOQkaoRdVTidAZQICgIRhAN0WjAbVd+tBADUHzCIgkAEQRAEQRBEXjj88MMxb948jB49Our1hQsX4thjj8WkSZPwi1/8Al6vN+r9Cy+8EGPGjCmgpIXFCkgI1wJAgOXQGda3I1Zva0izvMwoAAQAuilQoVjpTYSUWQWAbCyHpYkKjwLGAF2X0JkJhTFoKkvofNNNCVUJ7QRi1mp6IYHGZEuCiRYYQkJRrN08/vpg3lelJwumMAAcDEYoqFfh4eCMYUS/zgAsZ561otpyrPk8Kg7qXg2VRzv4DOHsTi03A0CANd9URWk+XB0Sup79SnpTSHhUHk5PpCkcPTtU4A8vrnNI4syxHb+s6PafOIuAlWZL4Rz7dq5EMMILzRhDr05tHHFM23bVq3FMfHYZNu5qzCm46zRCAorCo1JkWTstVQgp0ZQimJYKU0ioGkNATz8A5FV52G74dRMBQ6Bnh4pwsDUZEtbig0D2IheUyOeubVMNFwNAAKLmgpMEDAEeCs7Y5Pq9JRGmkPB4OKV+S0GZbzwlCIIgCIIgCIIoHU4//fQWASDg/9k79zg5qjLv/86pqu6eS2YyuQyZyRViCCEESQJqQBKDSlDWC7DoooSAC4IusLpeWN9XBEXeXZRddEEWJCokiLrcVFbcIEoIixEkCZfERAIh18kESCbpzKW7q+qc94/qqqmuruqu6tv0zDxfP23o7qpznvOc55zT8zx1ngOceeaZWLp0KXp6evDKK68MgWRDT2YI04QBlnPnpb2HQ1+vm9F3zcjsfaXeH1Seu6y4WtiR4pbBptDOIcIfCctmJaI/LV9pGLP6HfDvX685BFnHUI/BSuPVhXuclOJq9NPtqvU7ceDI0Luwh9oGa4E7QOndWPirF7sqpgN7bHcnU0O++8SLnw3aVGpNyUR8uEG4OkMCeGnPEaxav3PE2qS3D0bavGkT9FuhGv1ayK6JQWgnEEEQBEEQBEEQxAhA0zQAgKrm/5m3bt06PPfcc+CcY9asWfjABz6A5ubmWotYNYQQdeFs27b/KKSUvqlI3B9JaaVjKwXDlNC4KPl+L7opHYe2YqcCK5J6zTAlYop0UsJVOo3MaKEebNaGMStVlsRg/zrfeUIejOV/pptmXbWnUrh14R5zIYZJwfIYY9BNgUc27oMuyHlZC4S01govUkr87i8HKl5XxhAlBQurjdsGbcpZk7xEnQe89f5l/xHsPtRfEVnqFbsP7JSqIxXvb4VK2Vixugh/KAhEEBXgjWuuB8v+mJCcNtgRBEEQBEEQtWX37t148skn0dHRgXnz5uV9f8MNN+S8Hzt2LL7//e/jkksuCVX+okWLfD/fvHkzpk2bhnXr1kUXuhJkvbCZOnGi9mcMKNmD7AHgpZdeRGqP9Wf3lm4dhmkAsM8CKA0JK31LJV0pdllSAoZpFHVKWU/dms65RPVLOfs2RhHZfreDQHb/2uN6y9uGY7sAsHfvXmyUB3I+O9JrYHgRzjZsXbjvAEo/oso9djb8ZQcO9upgZcwHRDQypsBrr78OXSBnPj7c502DVpm5ox771W2DNuWsSZWQx01/2kS6rtOLlm8bdh/U9/pZPt7fCtVsrp9de6n2b9VkMulbTzKZREtLS1XrDgN5qwmiAshYHCLRAJFogIzFi99AEARBEARBEBVC13UsX74c6XQat9xyCxRFcb575zvfiR//+MfYsWMHBgYG8MYbb+D2228HYwyXXnopfv3rXw+h5JWjVIdsNXDLEiRWufJWu71hHAW2DPWke6JyuPs1jKuz1DDscAjPSVlZO7fLMgQAmZ9uj6gefv1YrTmsnrvV2+Z6m8frTJyqUOl5pV6p5W+F0aDPcqCdQMSoRTAVuzo+lPOeIEpB5So+dOyHct4TtYUrDLNOOybnPUEQBEGMBoQQuPTSS7Fu3TpcccUVWL58ec735513Xs77GTNm4Oqrr8acOXPwwQ9+EF//+tfx0Y9+tGg969ev9/3c3iG0ePHiEltQJk/8BgCgcA6zDvLBM8agKjx74DPwzpPfiXcfNx4A0L95P9QtL2evk9BF6U86V6u9nDOo2SBiA5cYKPA0tqpYB1uX25bqQr8JQ8EAVVGRMQ3H+6oqijOu1dffhvrSBufyKVOmYMH8KVD/PDgvaApDn65HrpozQFM5Unqtx29427DHhNvOS00HZ5encIbpUzvx3IG9MIx6HT8jD4VzvGPmTKQMAfWN1wBY87GQEsjZUVrcPhLaUNhtZbBt0Kae5nHGrH4y6mSHbz6VWVdURYEpZF38dqkmtfyt4LVrL9X+rWrvAPLWUw+7gAAKAhGjGKHEsWnOV4ZaDGIEEFfi+MppZEtDiaopeO/fzhpqMQiCIAiipggh8JnPfAYPPPAALr74Ytx1112h733/+9+PmTNn4pVXXqmbNBXloHIgUwf+qwZNyTnkOpdBxwRncFJvRYXBaq9uVu5paScNmEv2QrsTGAZT3hVKvUIML+zud/evH35nLjTGFfT0Rw8CWWcR1a8RuXVR6pgNKm9SawJjGzV0J+tg8holqD7bHDkDxiQ0vHk0HamsQs5mwLKVSthMpfEb3+WsSZWQx11vQ0xBc1xDdzI1BNLUBrsPWJ38dqkW3t8K1bSxYusWQengCIIgCIIgCIIghh1CCFx22WW47777cNFFF+Hee+8Fj3g25YQJEwAA/f3D/wBmznld/PF/QseYUIcSWzuGShNYVRg45yXf70VTBmUxZW4gqJAMdjsZY9BoF3ZJ1IPN2kgpHeecu38B5AVpGPKDhGqJY7DeU6HZuvCO2dJ3AQ3qVlM4zl8wGRqdK1wTOIPvOskYw7K5kyKXVyh4yRkQ84s41QHe8Q2UtyZ5iToPeOud29mKCxZOrogs9YrdB/Xy26VaeH8rVMrGitVF+FOfMxJBDDNib3UjsXcnEnt3IvZW91CLQxAEQRAEQYxg7ADQqlWr8MlPfhKrV6/OOQcoDH19fdiyZQuampqcYNBwJz7EDjcG4OQpY0Nfryk88v4Hlr2v1PuDynOXlTYERIHTqt0y2HjfE8VhsGyWYeiT1klp9Tvg379h/WqljMEwQcda4NdEry7c46TUXXxe3a5YNAOTWhMllFZZhtoGa4HbPr1md/6CyRXTgT22J7Uk6s7B72eDNpVaU+x5LSw8J+AMnDJ1LFYsmjFibdLbB7X+7VIrvQb9VqhG/YXsmhiENEQQFWDKqjtw/E1fxPE3fRFTVt0x1OIQBEEQBEEQIxQ7BdyqVatw4YUX4v777w8MAB09ehSvvvpq3ucDAwO44oorcPToUXziE5+Aqo6MLOEK50MaCIqrHE1xFVJKmELCEAJ/7T6KVPZcHesMkcHvpATiarREWAlNcRxmnDEkIjrbvGgKB6SElICmMjRkyx8wTEduN7aDT0rAEAKmkJBSgjPrXiI8DEDGEFA4MK4pVtUnpIHCzh8J6zyouMpzbMxGN4Rjt/a/3sCQKazkV2pEMzAEkA44E6eWo9nbZsAaHyI7ZkV2zGrZMVtKb/k5QNtbEvjPTy8YMod3XOVIqLxud61UirjKoRTYcTWhOY6EpkTqh4GAPF6awsEZw93LF2JyW2PVx3ZYGOC00T2ehf2vlIiVvaYwa22KoMuMKwCd0BQ0x1W0tyRCr28qZ2iMDZ/1R1OsNdTWu4R/msKqwXL/M6Hyiu/m9futIIT1gEk1hoO7LsMU0A0Tad1ASjeR1k0YpqibBw6GkpHxa58gSoAJHTO6Hnfe7+z8MCTXhlAiYriiCx2P7xi0pQ8f92FoZEs1xTQFtj9/wHk/613HQKEnQQiCIIgRyLe+9S3cd999aG5uxvHHH49vf/vbedd8/OMfxymnnIKDBw/ihBNOwGmnnYY5c+Zg0qRJOHDgAJ588kns3bsX8+bNw3e/+90haEX1sJxvwECFDutu0BTopoCmMBhCwjBl4A6AlCHwXy/sQX/GdK65+fGt+M+nX8eyucdg98GBnO9KQTcFGOPOf+tmeU6NjClyziMwmYmGmIIYVOs7l3PO+mnFkDZEThvs78i/Eg0BZA9iAg72ZdA+Jo6UbiKZMqpXXwAxheOzZx6Hp199E2+8PZge8kAyhVXrd+Lnz+/BgCso+PM/70Ff2nTOv9JNgf2HTZglGkHQxrNqHJeuMCvtoRe37JxZ9pwxBRBwXkcpfsyMKaCbVtoi91Pr45piULgVEKslCgPax8Sxp2egthX7UM4ZaZxZc/WAbub1LWfFA0BOWQxF+0FhVlorU1gBkwGfYLndz//9chfuungB/uuFvfivF3ajP1N6B9vtLHXKV7mVistykgevY+WSMSUypgmVMyQ07qybdgf71dveEsehvowTPOtLG/jumm1IedaaIAwhYdToYJ1KnGlTaF4phMKsubLc+lXOYJgycE0vh0K/FapJKnDQZteo7CJz46+34PPvm4n2lqHffTkUUBCIGLUoIoN3vvp95/2eSR+AQY57ogQyZgbf3zhoSx+Y/gEKAtUYUxdY/8vXnffHzZ9IQSCCIAhiRLJz504AQG9vL26++Wbfa2bMmIFTTjkF48aNw+c//3k8//zzePzxx9HT04OGhgbMmTMH1157La6++mo0NDTUUPpaUf5jpipnUDnDXRcvxD88sBGA5dhQmSjomOo+knuQtW4K7D+Swr1/3FW2TMCgs6tahysLCfRlLAdeS0LDUWlYh59LmW13fq0SlXdeq5w5T0hXC40zqMrgeQxCAqYU0I3q1htE1EPpK0VM4XjnlFZ8edls/PH1t53PTSFx4V3r0Z1MQfd0cF/axMMb90I3ZShbVLNKrkSf2jsNbKe4BIOQAlLakgz+e9sn34kv/uIlMGbt9Jl9TDO6jqSK6rpANkSHUtshAeimhGGaOJBMYev+JK5cvaEmASAlqweFW/pLGQJ76yAABITXp8Yt+cGsM3l4Nihz8pRW3PnpBVi1fidu/8NrYGBQuf8ZQH51vf5WLwZCBOlNCTApEVc5vn3eSfjSf70U2J57nnkDD2/YB8aAgM1uRVE5Qyx7Dhxg7SZNaByfX/oO/Mvj22CEMVZYa0e151S/+hKagpgCTGpNoDGm4rU3e8EgIZ3/Z/jZFe/BR+94FoA1R/zsz1bQuRayxrO6vfm8kzCuKYZdB/tw19Ov42CvDoVJgHFHTnsdHCqEzKbaYwymFMgYpWkooXKkYT1EUkmLiCkcCkPgb4WwsimcQTcFMmU+5OLHvX/ciTVbuvHjS0/DnI6Wipdf71AQiCAqwIGP/B0O9iYBAEbz6JtICIIgCIIgiNpw77334t577w11bUtLC+64Y3SlKhZS+j6ZHRX7Ke8GV4oZ4QRCwhNTeFWehq2Wc0wCaFA5dFPi8IAOISQ4r04bChHWsVkOupBQFensrGKQ0PWhCQANJbopnF0wdtuFlEjpJroOWwGCmMqdM4MAK3WRKXLvKYQhgoNFasQdMLopwZnMSVunwD8V1Lknd+K6h18BYLVp24GjgbvnEiqvqYNXAvivP+/B469040AyVfT6SiAkENcsew8T8KhHDCGhqdw3fd/Yxhj+5uRO/HDdG0XLcY90ISX+z6OvhNaHhOXo/vcn8tOtujFNge5s3yolHg5kCpmTK4wxhoaYir85uRPf/u+tkcqqdX9LACnd2l3aFFfR1hjL6sHWhfVvIptK1J530obp27/VIGNKNCjAe44bj86x1kMxv35pP46mjrquYtnfFrVdB71IWGe3xTVecgAIAI6mq7NrKmOKsh9QsdtX7i7nQuw/ksLl972ARz9/+qjbEURBIGLUIpmC7gmLct6XSt/xJ1VCJIIgCIIgCIIgykA3K+PEldmy3I473YzuADJq+OR1pTCE9ZS7HfDK1DgAVEvShkBjbDC93khtZyEk4AQh7Ixobl3EVZ63M4YxBg6Z83kx51/Qd6XE+4S0ZIxHOIBINwUMIQOdy6WmsiuHZMpAb9rMO1+pWtjzmv3fwxG7DUF9z0Io03uFbgq8VcJOPO/OTy+cMceuWIka92svY8Cq9TuHRR/a8hfqFbvL7HnHPk+mFineHPmKmE29rA/2mlyvlKujWv3m6D6Swqr1u/DlZbOrXFN9QUEgYtRiKgn86WT/FBoEQRAEQRAEQQwvpJQVfXrUMK2Ds+2yjRLKrsWOlkpjmBIx1Uq7ZR0WPtQSVQ+RPZybMVZS/44U3jqaQSqbfslt6zHFSj3kPfBJSokKxVtLti/DlIgpMpTT326TBBBTGQZ8Kh2K/pewgk8NKq/ZXGGn8BvOROn7YrhtIyrFAofuPi1nvHjbKyXwyMZ9pRdYYwxTOueHBeGed5RaRUWzGKa1A8nGW3up63+1GMlrMlCb9plS4uGNe3H1We9wdqKNBujABIIgCIIgCIIgCGLYU2nHgQSw8+0+p+wR7ndxkACEQM3S8Qw1hhhd/euHLgS2dFnpzd264AEprCTy9VVrc5EIP+Zz2hQg6ND2f22VN9xtvVDfh9WkHZOwbaMaPSA9/11qHd726obA4X69dMFqjISVfrAQ7jHKGKtpoEMCeO1An/PeO0WM9vVhpHKoL+Ose6MFCgIRBEEQBEEQBEEQw55qJF7rzzquhl9St/IYTe2VqOzh2MMSCfSmDUCWrguFM5R47EnJhJXVvq5ew5qj3v5KoFI6c2yjBsahqaW7YN3tlRh+NlNo1xQDy2tPrdvXlzECvxtuuibCIe11bxRBQSCCIAiCIAiCIAhi2MOq4OK104RUo+x6ZjS1l2X/N6phQHNczf6njy5CqIeBWQfAx2qXWidsv9nXBblyY8rQ9v+ot78SqJTOHNuogZ+/nDRn7vYyNvxsplDb/dpT6/bZ858fw03XRDgYK9zvI5HR1VqCcMGEjo631zvv909YBMm1ksqaftctaNzxVwBA/3Gzseuq6yoiI0EQBEEQBEEQ4aj0LgQGYPr4BqfsYgffB5Ux3J4hZgA4B8yRfvBAFpXbTsjh11eVQuMccztbIJFr60JIcJ7vAmXI15fjyK2Rv5Qh/JjPaZOPt3/o+7+2NQ8HW/c5imrwOwT3fdQ4S6lzexjc5drzatjrvZ+72xtXOcY2ahg4UjjFWr3AADQUCQ67+0FKCc5YzeyUATj+mGbX+1wjqqaNEEPHuKYY5na2DLUYNWXU7QS65ZZbwBgDYwx/+tOf8r5PJpP4p3/6J0yfPh3xeBwzZszAV77yFfT29vqWJ4TA7bffjnnz5qGhoQETJ07ERRddhB07dgTKsGbNGixZsgRjxoxBS0sLli5dit///vcVayMRDkVk8K7NNzovRWRKL6vvKLQjPdCO9EDpO1pBKQmCIAiCIAiCCANjDFoFn+hXFYaYojhlqxHL1pTo99QDqsIAaR0gD1Q+uFZPcAZwzkvq35HEMS1xJDQFUubaesYUkL5BEwaFez8rre5S7UtVLL9OGOw2MQZkfA54H6r+Z7B2SOg1PHR+uM5LbqL0fTHsvi9l7Si2s0d1GbfCi+8oUQIGg7e9nDGcv2ByBEmHFlVhBc+YY8gdg3bquFrZqaowJNxBKk+19bY+jOQ1GahN+xTGcMGCKc5u79HCqAoCbd68GTfccAOampp8v+/r68OSJUtw22234YQTTsAXv/hFzJ49G7feeivOOusspFKpvHuuvPJKXHvttZBS4tprr8U555yDRx55BKeddhq2b9+ed/3999+Pc845B1u3bsWll16KFStWYMuWLfjgBz+Ihx56qOJtJgiCIAiCIAiCGC1oXs90ibBsWe7NMJrCQ29yYAyIKTzSPfUAY5bjMm0I6z2sp86HUxuiEHed0THc+qpSMACdYxtyPnPrIm2IvN0zUsq8g9v9dth46/EjyPFdCM6ij3VN4Tn97UX1cVIHSVap82NaGlRMak1UprAQ2PPacLZ1uw3B30dvmaZwtI+J3g/F+s49JiQYRIHdlYz5Bz382ssYw4pFM8rqw1r1vyN/oUGT/co776is+onYbPly0u35XFcvY8Zek+uVcnVUq98cHWMTuGTR9CrXUn/Ur+VUGF3XsWLFCpxyyik477zzfK/5zne+gxdffBHXXXcd1qxZg3/913/FmjVrcN111+HPf/4zbrvttpzrn3rqKaxcuRKLFy/Gxo0bccstt2D16tX45S9/iUOHDuHqq6/Oub6npwfXXHMNJkyYgI0bN+L222/H7bffjo0bN2L8+PH43Oc+h6NHaRfJcOTovFNx8MwP4uCZH8TReacOtTgEQRAEQRAEMSqQEhASMISAKaSVdqYCT3YqnMEUEtv2J2GaJjKGgG4KhH0YmMFyYqV1MaxSyDAAKUOAc4ZjWuJZZxODptb2VISYUv36YgqDwjmklDBMAd0wR/wT1n4onOFgbxqH+zPOAeicMSQ0BZ1jG8BdQUEbQww+rW2rTDckBjImUnp+iqqYwhELcOwZEdMONsYUtCRUZ2eBlBKmkM4c4N25ZH8vpMT0cU2Y1JLvuE/rAilT5H0eRCXMhAH45KlTsXLFqXlBuGrAYJ1xxhlz+tdO61ePBMUUNYVDCGvMFutz+3shBAxTIGNYc/kbb/dCd/U3Zwzf+dt54YP8sNaZlStOLXgP5wwdrQl0tCagcIYBIzh9G4M1hrzYa5FhCqfNad1ES4Pm9GFYWMB/VxOVF6+LgUFKCSkBTWVojFnjO2WKkuSMMo/bwR13jMq2r7RuIKWbSOsmTFNUdKdxqcRVDoXzsn7njG+KhV5jw+qSAUiovGwdaQqHBALXi0rQ2ZrAyhWnot1nLRjpjJog0M0334wtW7bgxz/+MRQlf7BIKbFy5Uo0Nzfj+uuvz/nu+uuvR3NzM1auXJnz+T333AMAuOmmmxCLxZzPP/ShD+F973sfnnjiCezevdv5/MEHH8Thw4dxzTXXYMqUKc7nU6ZMwdVXX423334bjz76aEXaS9SWt87+OPZd/Hnsu/jzeOvsjw+1OESNaVAb8F8f+S/n1aBW/0c8kYsWU/DJ//su56XV8EBagiAIgiBqz4FkCt9dsw1pE8iYQEoXGNBN9GdMGEKgQeO47PQZaI6X9pvAEBJpQ+Abv96CAUMiYwropoSPjy6HSS3xbPBEsdLJqRydYxO47PQZeP8J7TV1uEatK65yxFUFHa0JfOpd0/DuY8chbVh6zRgyMJjFYDn6Cvl+znzHeKg+Z8sEkTGD66sUGVOiL22gL2MiZQjoAqh0Vq4ofXDylFbcftEpOHV6W8l2YveFGsELagiJ197qw4Kbfocdb/bCFJZzXOEMD121CJ961zQ0+jgcY6oClTMkNMvxN7YxhpjKfXczZEyBtCFyzhyyUTnDhOZYURuyrz133iSoCoeQEmnDGvMDupkzB6QNax747pptOd+/euAoDvbmZ3ixziEJpy97nKjcSiHWkG1/lD7TFIaGmIL2lgTmdLTgoasW5ZRRyHHu1Z9N0GfNcRUqt+pTctKTWZ+d2NmCY1rikWymkkStNWMKpIzsy9Xnuw72Y8u+I7jnmR35NqFb12dMay6/b/1u3PnUa0jpprNbZ9YxY9AQUxwndiG5FG6lFpzT0YKGmIKgjRlxVcGyuZPwoxWn4rNnHocOn51Ddn/GVcXX4W6vRe427z+SwtJb18IQwhl/QTJbO10YGmOK0z6FM8Q1BTGl+sEgXQB9GRO7D/Uh7RMEE1Lizqdec/osY0gMZAzEVIammIqYxhFXWbTzvyI0KmMK9GdM/OCp17Bl3xHc+OvNeGFXj7MmGEJCFxJpU/qmkqwEUfogbQikDROMWQHxi989DY2x8K59hQGnzmiDHmKNVbn1GyYWMDHbnyrM0rs9xkrBDkhnTMvGg9aLcrns9Bn45T+cgRMmja6zgGzUoRagFmzcuBE333wzvvWtb+HEE0/0vWb79u3o6urCsmXL8tLFNTU14YwzzsCaNWuwZ88eTJ06FQCwdu1a5zsvy5Ytw9q1a/H0009j+fLlzvUAcPbZZ/tef+ONN+Lpp5/GJZdcUrA9ixYt8v188+bNmDZtGtatW1fw/mqRTCbBhUTi4F+HpP6oqOYAmDCc94lD22EoQ+O8X7du55DUG4ZkMgkAQ2ZXRPWgvh25UN+OXKhvRybUr7UhmUyipWV0/tE30ti6P4krV29Ad9LfmaubEoYp8YnTpuK6D52AX27ah1v+Zxt6+vWqy7b4+In41sdOwpauJHrTBprjKuZ2tiChKfj91gP4046DEBKQkGDW88+QYJjclkBC5dj+Zh84Y5BSoKUhhoN9GZgRd0qonKEprqA/Y0Y6a+SK9x6HpXPaoXKGa362CfuPDBR0EsUUDoWzrNMtd1eG5Vi1vlM4w2feexw27Tli7brJOjVrQbMK6NJyRPqpMax2FDZ4MDhnwMlT2/Dls4/HtT/bhP6MCSEBIQWkZI4D0nZiheHqpcfhy8vmAADe0T4GV6x6AfuPpAr2fSx7xo1dp7XDI7cvbLmEAMCsJ9yDTEJIoF+3+iWuWk9kH+zL4A/b3syzIwZgIGNCAjCFREJT8K2PzUXn2Ab8ZX8S3/jl5sC2202KKRycA5961zS8f047rly90ZHbFBKmEDj+mDF49UAvFM6yjndrl4BhCqd+L/YcoJsSP1y3I+caCSBVLJLrud4mrjCMSWj4t0+egua4iv/76CvY2zMAwDrvJaaEt22V85wzUtpbEoirCmKK1WcrTp+OV/YlsWnXIUhnlhjsX7tv/T6/Z8Wp2Lo/CSmBuZ0tmD+tDad++0lfOThjeOfUsfjG35yILV1JHOrL4K2jaUwcE8PB3gz+/Xev4mBvuuzgqJUa02qvbZNm1sGucGtnWTlIAPsOD+BjP3jWeV8M21ltZkznXBDOmBXgYwIqE+g3/APDhpAwM6aj56BNZH0ZAw88vxt/2PYm7l6+EFef9Q7M/9bvfPvtWx8/CTc99hccHii+TkkA3UdSkAAM0xp/MQU4feYErNv+ZuCcAFjBpgljYrjmrFm45bfb0NOfKbhO2PNeufT06diwqwcq504w0hQSKd3ET5/bnVOHkFbgSOUM4xpjuOb9s3C4P4M7n3oNpkTBMSZkdIElgNXrd2HVH3dW/EGAMHAW/gGEwd84lt1+7cNz8PW/OREbd/fg5b2HsWZzNzbvSzpBMwlrjv35n/c4O31/v/XNgipKqFYfnXtyB849uRP7egZw82/+AgA56/t9nzkNn/nJnzFQgfU87HoBaa0R1scMP7nsNHx21QsQQiIVYs39xGlTR+UOIJsRvxMonU7jkksuwSmnnIKvfvWrgdfZ5/fMmjXL93v7c/u6vr4+7N+/H8cee6zvziLv9cXq8LueIAiCIAiCIAiCGORAMoUrV29A1+GBgucrSABXrt6A19/sxZ1rX8fRlBF4bSV5/JVuJAd0LJzehiXHT8TC6W05Bw8zZjmzbUcYz/7b1hjDtPFNVmoaBqQNiUN9mdBPwLp3ahhC4mjKKKgfP/5z3evoT+u45mebLP0WuV03BZjHwWgdoM0RU5XsrhAOxhh41iMlUdiBV2l6DSBtouxD5IUEYpqChpiKuKbipM4WLJo5AYwxp081xWqz4pM+rRg/fW4P3kymHPvuPpLKpu/Kddm4n4bXTQmFW2nWtGxAztsXtlxxzdoFEtbRmDYEDNN0xprp2SajKgzxrGwSQEo3MZAxMaWtAfd4Ai9B6KYAZwwzJjTljRFV4YhrKk5/xwTENcWxIwDozxhIpoyQdZTu0WXIHVcZU0LhzBnX3oPuJYBMyH5370DJqTPbZ3M6WjC+KebMD/Z8YevAO4+4Pz995gT8/XuPw+VnHodFMycUPfjcThO3cHobPnjiMfjUu6fh5Cljcefa1ysSAAKsvpYuuRXOnQBnJacDQ8jI6QVt+z14NAPA2pmSMgT69MKxBAng7+/7M1K6fzASABpUBUJIdB0ewJWrNyA5oPv2mwTw/Se3IxkiAOSu3y2/BDBhTNyZh/zmBOdeIfH9J7fjUF8mbwecd0dYJWMiuikd2xdSOnJ75xdN4WhQFUgJHOzL4IfrdmB8cxxgLHCMaRF2mvphFAiQRyWqHKXUa/f7W0fTSGgKTp85AVcteQfOOuEYxDUFmmq9YqqCj5zSCc6ZEyQptuvRfoChc2wDlhw/EbMnjXHWOvf6ftzE5ooEgMJgrxeqwp12xVSORceNzwb3wz10ceXqDXjT5wGi0cKI3wn0jW98A9u3b8eGDRt8gzU2R44cAQC0trb6fm8/NWhfF/X6Yvf4XR/E+vXrfT+3dwgtXry4aBnVYN26dXi7N43U+NlDUn9UVKMPkg8OgdS4WTDUpgJ3VI+9JdzzqXdPq7gcfthPJQ+VXRHVg/p25EJ9O3Khvh2ZUL/WBtoFNDJYtX6nswMornIYmeAzFrqTKXzj11t8dwxVi760gVXrd+HLy6L/TWQ7ZmyHKVC8jTbc67iT2bMkwua4gvWE71ceegWH+i1naExhGCgSaNNNgbhaPOWeknVE6hHOXakkrExXpretbuetl1LaeHhAx6r1uyAhc+zbWz5nzAkeRNE/ED5AYZMyBmVJqBx9LjuUEjlBEAlg7V/fxK5DfaHHmy0/Q/hUbACwrfto0QBlJZDIHVcS1s6OINzjNkzZQzUWvPjFR+15tlJ69tpqFF3VAgngwQ17ALgDVoDGrSByEPZunCA4Z4gzjrQh0J1MYdX6Xb7X6ab1fak6iWpPR1IG+rPjOewaUyncsjrrnMLQ7zE2r+6e/utbBe3GlNVPIVpvSAA/e343vvbhOUWvdetOUxjMAjsiw9rTqvU7Q8lZCQqtd1HmE3sclvIbbSQwoncCrV+/Hrfeeiu+/vWv46STThpqcQiCIAiCIAiCIIgSSekmHtm4D7opEHPtDAgiYwhs2t3jXF8LJICHN+5FSs93qoXZjCKllcoOQKg2DtYrPe8BvQQPbncyFVq/gJWKyHsoux+cW20rZ2dGOVTC3+5uq3cXiE2pbZQSeGjDHjy8Ibx9e2UqhBCiJId+FFnWv37QkT8shll454a3aVJKvP5WX+jyy8U7rgYypu/Ydo/bsBRre63w7p+w59moQcNi2LZaiq5qwW9e2Q8hhCObEuJsmTDdxxhDTOHQTYFHNu3NG6+2PjIR0kf6YZgSpizeZ1JaO0WDxnaY+aRc7JStNkHzi1t3f9rxdkG7qYOh5FBLUX79UpfvnOTG2tlZXN9uDFPCKDCXSynx8IZSHmcvHb/1Lm2YkeYTexwW09lIZcTuBDIMAytWrMDJJ5+Mf/7nfy56vb07J2gnjp2r3b4u6vXee8aPH1/0emL4MPF/Hkai25oAU5Om4K1zLhhiiYha0q/341O/+ZTz/oFzH0Cj1jiEEo0+MikDD92ywXn/t9ctRCwxYpc4giAIghiVbOk6gsP9OjgG04sVOq+Aw3IMcZa/U6aaHOrLYEtXEgunt0W+1zrnwyKKzKLCmwo4Z77pqrxIWDIHnBvtwMCG1ElXiardbbVjit5ml9PGg30Z6wwPl31HkakQ5fjzw8pyNG2gXzfBwRCcICsXCeDAkRTmTfb3g3hLEdI6OLxWeMeVkPAd2+5xGxYJK71lEGVmMCyZwXkWqKSmbVu1/7ve6OmzUrHZstn656z8AAPn1ri263CPV9t2ytW3BNDTWzydnJDW2WCcBcwz1kFjZUgSjoI7qFxi2brrTYedVUYXPf3Ff2+88XZfSfPTm0fTrne5CAkc6qv+OYtembzr3V/2JyO1zR6Hpf5GG+6MWA9Zb2+vc75OLBbzvcZOn/boo4/ixBNPBBB8Jo/3PJ+mpiZ0dHTgjTfegGmaeanm/M7/mTVrFl544QVs3749LwhU7Ewior4Zs2UTml/dAgDoPX4uBYFGGRISyUwy5z1Re9I1OOyZIAiCIIihw3ICyRznaEwBMmaAQykbIaq1L1VKoDdd2hlEfr8jYwpzDjGPcl+pRNWXVXfhuxTOhvw3sqawsnci2W0N3AlURhtl1hnsLpoz5sitBUR6wui/VLmi2IKEdA6kj1JdOkJQp9Y25LfDzm9slypXWh/6lHBeU7bn2YIR9hIZ6jmgEEGyJTQFA5lwAQjGrDFrCpm3+5Qxdx3uNINy8KMy1RNmF55dX846qnJkDGGd18TCB3ErSVy1Ur8pDFA8c12u7vKpdMByWBHi90apu14K7QaU2f/VGu9611soX6MPti2V+httuDNig0DxeBx///d/7/vdunXrsH37dnz0ox/FxIkTMWPGDMyaNQudnZ149tln0dfXh6amwbNh+vr68Oyzz+LYY4/F1KlTnc+XLFmCn//853j22WfzcrivWbMGQG5u9yVLluBnP/sZnnjiCbznPe/xvX7JkiXlNZwgCIIgCIIgCGIE0hxXwMBy0oEwBsQVIOXnBxiip84ZA5rj0f/UljI/NRMAKJwDZmFHR3lHYnvkiHh9mLo5q6yMpWAdxi6RKsPxbrchMH1RGW1k2fRT3oxOcVVBTJVgYEgbPmkGQ9TJSvQwR7mDgfnKX4wGjYfe9VJqO0rFq1sG/7Fdar/Htfo7ocGeZ6uh5qGeAwrBmN1m18KRDeo0xhX0hXQ2N2iK9bCCp61B87vzWQX0rYVIe2rX597sE1M4NIWBgVU8DWBYNIVDzcrgRUp7zs1XUlNcgRDAwChN74UQvzcatXDnxnmJqcH2NNhTtf2F5bWP5rh/2xo0xdcm7HFYym+0kUD9rTgVoqGhAStXrvR9nX766QCAr33ta1i5ciVOOeUUMMZw+eWXo7e3FzfddFNOWTfddBN6e3txxRVX5Hz+2c9+FgBw/fXXI5PJOJ//9re/xdq1a3H22Wdj+vTpzuef+MQn0Nraittvvx179w7mTty7dy/uuOMOTJgwAeedd17FdUFUH6NlLDLjJiAzbgKMlrFDLQ5BEARBEARBjDjmdrZibKMGAQnhzs8T4FcUsIIPEsi9vsqMa4phbmdL3ueFHKC2Q84KlljYMrs/84PBOnOnkoTVF0Nu6p4gOGehrqsWto6UMnJsudsa5Gstp43jm2Joa4zl2zeCbSes/gv48ooS1hbGJFRH/rAwAFPaGgOzT3k/58zaMVArvOOKMzhjO3fHVvQddAzAMS0J3+9qkI0rRw43g/NsZXdR2rZaiq5qQVujBpUPyiZzlphoEnuvF0JCQKKtScsbr7Y+yg29MABtzVrR6+z0qN55xpa5VvO0XzV+erZ1ZwUn/e+pV5uqBW2Nub83/Ja4Yyc2lTQ/TWiOB37PGTCuqbi9VRK/9W5uZ2ukttnj0O832mhgxAaBSuGrX/0q3vnOd+KWW27BsmXL8LWvfQ3Lli3DLbfcgtNOOw1f+MIXcq5funQpLr/8cqxbtw4LFizAddddh0suuQQf//jHMW7cONx+++0517e1teGOO+7A22+/jQULFuCaa67BNddcgwULFuDgwYO48847MWbMmBq2mKgUu6/4Mrb9yz3Y9i/3YPcVXx5qcQiCIAiCIAhixJHQFJy/YDI0hSNjiqIHWMdUjvnT2pzrawEDcMGCKUiU+OQtYwxqNhWO3Ub3Z374PT3NAGglePMmtSRC69epO0RghTPruqCUZtVG4fZOldLrd7fVDiZ5iyu1jYwBf7twKi5YGN6+vTIVgnNeknM3iiynz5zgyB8WVWGIqcFjxZtuiDGGmRObAq6uPN5x1RhTfcd2sTHqh6qwSLqqFl77sefZQrsASsG21VJ0VQs+cnInOOeObKYsHowLM6aklMiYAprCcf78KXn6tvURU3lZgQxVYVBDPA3AGMOYhBo4tsuZI8OiKbk2EDS/uHX37uPGB9pNvdlULSX52CmdRX9vxFUllL7dqAqDmp2f/C5njOGChVOiCVsmfutdQlMi9b09Dkv9jTbcGfoVp45oamrC008/jS984QvYunUr/u3f/g3btm3Dl770Jfz+979HQ0ND3j133303vv/97wMAvv/97+Pxxx/Heeedh+effx7HH3983vUXX3wxfvvb3+KEE07AT37yE9x777048cQT8cQTT+DCCy+sehsJgiAIgiAIgiCGKysWzcCk7NPzaUMUPLC7ozWBmz4217m+FjTFVVyyaHrxCwugKYPOwLQhIITM+cxLTOH5O0cYICJuJ1A4w60Xnuzoq9g5RAzh0g8Bg87SoXJ6S7CydoN521rIUVpKG1sbNFyyaHq+fXtkzkmFGLGuqDtoEirLkcWL8MiydPbEHPmLYcsfNTg1e9KYmu1WyN0pYY3vIAqNUS922+vHbZ2L3Y+V0rPXVuut7QzA3502DUCubLoovBOuY2xDTju8U64Q0hk7Ha2JwLVBUzgmtSRK1knUuWBsg1Zwnqkmtqw565yZv/vRq7vFx08saDf1ZlO1gAH41Lunhbo2x64rtLavWDQjVN2VoJBMUfq+0DgcDYzKINC9994LKWXeuTwA0Nraittuuw27d+9GJpPBrl27cOuttwbu0OGc49prr8XmzZuRSqXw9ttv4+c//zlmzpwZWP8555yDdevWobe3F0ePHsXatWvxgQ98oGLtIwiCIAiCIAiCGIm0tyRw9/KF6BzbAM4ZdBPI+BwFwADcvXwhTuxsda6vNgzAOSdNQnuQE7yIl8IUEqaQEFIipnJ0tCbAOcOAYSKti0CH7IBuYsB1VozKrXz3SsQccXd8aj7eO2vioH6LyKtwluf1lNJqg26ayBgCuilgComjKd1pWy3TeY1LAOMSDEpWjwN+xhICTeFAtm2GEDiQTCGlm3ntzRgmDFNG2g3EAHz63dPQ3pLIs29b5pRu/euOxWgKh5AShilgmCJH5/ZnhrD0b5omTAGEFSuucqiKkiOLG1NIpF1nK2kKx8G+DFoaNNy9fGFRhxyD9QQ3Z1bfZEzT1270bIOlS/e9aQMtCTWU06/cnWf92TMlbHkVlx5s3WcMS2bTFKHrs/tuz6H+goe2u9vt7VOR/dd+H+bpfnd5he6x7XByW2NFdljEVQ6eDZxKKSEloKnWPiu1ghE9hbPI5dl9O7HFSn3FGUNCU9ASt9KMBc0bDMCPVpyKhGcHT3/GcMbrgGGCc4bJbQ24e/nCnLXB3RdSArdfNB8TxgSn3/Kr3y0/j7CDR+EscJ7x2mOxYhnC73xRuSUrA3JswK3nIN21NmhW3wToO61HSUTpJxsLPT8WI9pZaqWNAbvf28eEC7rbds1QOH2snz0Fzc8tDRoaarSjxp4z/eYtd9ts/OZV+3dh4G+0UcDoPAmJIAiCIAiCIAiCGJbM6WjBQ1ctwqr1u/Cz9a/jqC6dQBDDYJqlEya15Fx/xi1/gGF6E0xVBpVb6XzGNcUi3yukxN6eAWzedwQpl5c/bQjMm9yCvT0DSA4YEFJAGPnyC2k5u+2new0h0Z8xLKcI4767ONxYTh+OD53UAWBQX7f/4TXc/6ddgfoyhIQhJDgTiCkMpvQ+YTz43xf/6Pm8p+QZijvLYgqDkFZd3nud854CClE5w42nNwIAXpUdeHDDHhzszZR0jnXGFDnBxgdf2IPHXu7yHBYvPf8Wx7YbtyPPbd+PbNqLnj7dOWheQiJjWE7jjCmAPD9XoboLy8WZtauMMTgBRLcsP3jqNacEBqAhpqAvq5SMKfBvT7yKe/+4M5tKzLJHv76xz/VROIOQEr95eT/+vPOQ6xDvwZse2rA3m7Jq8NM1mw8UbIk9B6ic4e/fe1yO3IDliC4yJHJkBQblBYADyRT+c+1r2Lb/qKvccH1ux03tvrv/uV34ny3dOH/BZAgpHcfrkQEdf9mfRH/GDG1NdrvfTKbynJxCymxwMHf+YAA27u7xvcfd9/bY8Y5Dd7vs8ex3SdqwglcAs5y4ru8SGoeQQL8n0KJy61rr4f/8+/za39aooWNsApv3JoteazuVY64AlY3CGS4+MY7dSYEXDnL09OmOfdp6VjjDYy91IWXkBh+ktC7SVIZxTXGcP38KLlk03dFvUF9cdf8GzJ86Fr/f9magnt3yTWyO4WBfJrubLnoQwTvPHOrNQBc+gZQCotjzgJBWULJYjJ0BSBtmzngGrHknrrKsjVhpGNuatBzdvbCzB+lskD1I38c0xbHsxEkAgMc37y9os165PvPeY/HxUzrx4At78YsXdqM/4z9JKJxBgURzjOFI2prjSvlNoXIrhd24phjOndeB1et3Iu2zvhcm+m7fhpiCD5xwDH79clfgNbY59aZ0fHfNNjzwp92+8/OS7z4FQwg0aNyy6QhZdzkDFkxrw5auI5AAMkV2drvXO/fvPG/bMob1sIRfUQpnGNcY/TfaSIKCQARBEARBEARBEMSwor0lgS8vm41TYt3YlRT47gupwQOifRxi7S0JxFUFMcUKXBQLjADADR+Zg5OntGHy2AT+sO0tHOpLY0xCw6827cPmriNAtj7LaVLaI8SmkM6Tz16nxVu9aRwe0NE+Jo5/WDoTq9bvwsG+DEwfT4k3vYspgb6M6aT+iGXTbt1+0Xz8ccfbSOkC//1SF0whwX0eC25vSeCKM4/DIxstJ3yh9DFCAimjsDPKb8OB/ZGWdTp99ZwTcOuavzrOdiGBf7vwnTimNYHlK/8EmQ2CfOyUTsyf2oZ//92r6OnPQATIZgqJZEZiWouCc2d14Fcv7iv6VHtYTAlPACg8DMC1Z83Cyv/d4diN98lm276vPusd2NKVRG/awNu9adzwq81IVSGKqXDrPCjOGXr6dF9ZfvLsGxASMKUAA8s7Z8sQAt3JFO5etwNGMXvRBWKq5fj7/dYDCLo85TNOizXf2sVk2bRXbintc37CeSslLNtN6QIJjUE3BT52x7PoTqZC3W9jBzS8Q9cQEt3JFO555g3ohnDOqfiP329HT38mkotXwpoH/vau9bh7+ULM6bCC4Fv3J33nF/uezfuO5N1j47XDQ30Z/MNPN4Ix1+4PBnzro3MxY0ITPv/TjXi7N+Nbj9WV+VL0ZUxnF4Z9dhhjwANXvAeX/Oi5nDFi92PGkFA5y3HwSwAH+zI4MqBDIjvn2WeBQeLOTy/E62/3QkpgbmcL/vjaQfzkjzud+71zQ3OM4W9nx/GdRWdgS1cSn175J2eNsWzYxD3PvJHXIvt9a0LDnZ9egFOmtjnfFeqL7mQKbx1NwxQSsWxQP6j/GQNUhUPluQGgsBlAbZ3a/fvBE4/BZ1e/gIO9mewsm98ePySs4F1rg4qvLDsRN/9mK4QwETQ16gHDrl+3bGBcYwzXvH8W5nS0YG5nizMetu5P4ntPvuq7DgXp+7oPnYAtXUn8n0dfxhtv9YNl7csO7FrBG+n06Rc+MAuNMRU3fLQV133oBGzc3YOX9x5G95EUJrUkMKejBTGVI2NKvLZ1M3RT4pbnByIFaSWsuXZcUwz/+P7jnXZu3ncEK31sqRASwIAusGZzNz42f3L4+yTw/M5Dgd8bQsLMmIipHA9v2Is+3Qyczw8k09Y9pkRCUxBXAQaZTSVr6dV6WIPhAye0Y3JbA+IaxzEtDfjwvEkY2xjDnOv/B2k9fLDbbrtuShimia37kzlts5clv4dMDJE/P442KAhEEBWgeeuLUI9ak48xpgW9c04ZWoEIgiAIgiAIYhQQUxhmtSmhDsQG4DxxGoafPLsLD13VifaWRE7e/efeOIhX3+wtRdwchLQCQLajwnYu2jSoCjKmwP7DA/jek9uzDulwrpKYwqEwhlQ2TZxuCjTEFHxw7iR8cK71pPTav76FoykjsAzGAFPKoucHlIshJBpiCi4/8zh878ntzucKA86YNcFKA+T0L8OE5jjuXPs6DvXlO5vdSAD/sXEA18xP4OurN2D/kWiO+2ohAfxg7WvQFAaFDQa8/EhoChZOb8OBZAoX3rXZ2XlTeaGY49Dz2xkBWI5jBgldlwBkXoq4mMoB6R+4yasOg+cMVdq80oYA58xpg1tuCWsnUFgaVAX92TE6oJtI62bI8FEuQbsRNIVDZVZAza7D3i1R6jEtXYcHcOXqDXjoqkWQAK5cvaGoI999j1+qJNsOgWw/ezimJYEvP/gyevr1vO+KYc9zprTmxIaYZX8Lp7flBNdz7S8fhTHEVY501gusmwINip3WiuHdx43H+05od65//o2enPuD4sN22+01xj1v+53FZrfnYF8G1/7sRUenB5Kpgn3RoCrWLhkUPo+tUbPK7z6SgpmdO0vZCWRzIJnCNT/bZO2ShNW/YR6ScHNkwMjuuJNFdwP5kVA5dFPiYF8GP1y3Aw9dtcgJANl6C5rvbX149W332/imOPb15M/9Vuo3l325/juhKTh95gScPnOCb52HdzJ8e334ABBg7ZhCdhdgT5/utPPIgI4v/uLFknco/9ODL2LWMc04sbO16LW27Rb7DWTPz2HtQMIKijbEFMRUBWD5rZk1aQyuff+snM+ctKqhavGv98rVG5zz6dxlaSpDxufhlGJz3UhnVJ4JRBCVpv3xhzDtR7dh2o9uQ/vjDw21OARBEARBEARB+KCb4c8N6E6msGr9rrzPWaC7sHCQxnuXWxaG/B1MnFtOTTsdmpDRzprhrvMxZLa+QvL4ETZgVg5+shVi0+7Dzk6MYucLHUpJrNqSDn19rfDuRhNFgnur1u+MvPskCnb91rkPwX3httmYjy2aYbciVBE/e3LLHcUGvIGuaowGe5zbuOeEUrHnrjB2Y3dj0HwXht+8sr9k+3S3v9hcUKwfOWeOXXrL8sZJvPtswu7mDCOD/blbp8X6gmfTgxUjir7C4JYrHhAADkP3kZSVqrKEe4N05pUv6r1RiNLsJ3fp6ElHb6mfrKvW73QC8KVgCuAbv9oS6toov3+iYttilPJXrd9ZtjzdyRR0U+TVXciOy7GT4U59/AIiiCFAMBVvTP6I8xKMNsYRpaFyFR+Z+RHnpXKypVrDFYYT3jPJefFKnepIEARBEMSIQUpZME2VF90UeGTT3oIHt1dKljAOKCnDOyoHyx283jBlpLYkBzIl70aISpBseY5bKbF53xHopsieX1NYH4YAXj8snOvrCSEBIYo7cFO6iUc27oNuiqo5cCSsc6UkrL7wC2a6bZb5pF2MOr6qibsNOXIj+hiqBXkBYFbaOSOAtQtQNwUe3rgHD2/YVzRIwBhz7illvpNS4g/b3oRuikhBaq8MNmHsz3tP1LJKpZgMzPW5W6eH+zPOGK4EdvlAbhujmrZ7bgkznxZCInhHYxj87NAtn8qDZSvXhqOQ0k08u09HqV3pltUZoyHWgUJs3N2Dw/1Fdsa6bDdMsLEUDFPm7Y4Lwu7bctGz6WrDrj21spN6hTyVxKhFKHG8NPuLQy0GMQKIK3F8cSHZ0lCiagoWnfeOoRaDIAiCIIg6JuoBzhzW+ShbupJOKqRqyqIwBm9iFO915TjZJBCpLX/461ulVxYRW7ZiCAlkdBMczNmlwVjwWRj26S8c1lPYfucpDSWGAGK88FkeW7qO4HC/Dg5mpdmpUhNs1djOXK+f0G2Lfs5i72HvQ4nbIZ0rt/Wv9zwZPwr4nCtGcB1+J1qELJMzcDAc7NWtc1CQP68E3VPKfCckcDRlWGOyjCCCPY6DggnF5m+/jKBBtuxbv9/NEWVQXB3q1ulvXtnvjOFCfVEsXqWw3PJtMcO20Yt7bnHPp0OF1w4BOSgfKzwmyrHhKGzpOoJeXUYeoUJKZ3x4x2jpo90uG3j8le6ctLVuGGM5tuvd4VgpJKxdrmHmAdv2ysUeU179Be3YrpWd1CsUBCKICrDnsn8E063Iu9RiQywNQRAEQRAEQRBego/Z9ocx657etOfcnBL9J27HuZ8smspgCMsRGNe4/3Ux8kjqAACUZklEQVQhmxDkg8lrSwGSA+U7aKLgJ5u3GRIyuyNq8LOEqiClm2AsOEhmXx7VBqqNLU8huXrTlouLlbE7JJQsrsIteTw7fYrUXuhbBuvp82qfL+WmkG5jKodR5PASrUo7x+LZM1cUzgLPMivXTu25C5KhiO88754ocwSQHZMoLXjQkD33xa/MMJ81aBwpXYAxBO7087NlP0LtxvSVYXD+8cpg67SnL+OMYW8RDO75vrB89nX+crGiQSQv7rnFhjNWdlDCpkFTMBBxt4XXDr3yuUmo/vqOasNR6E2bgL0GlbXzaXCMcsaKpgQtxqG+winl3LZbzTif9C7QAdi2Vy5B/aBk0+H6BftrYSf1CgWBCKIC6OMmDrUIBEEQBEEQBEEUoNBZPn5Iad3THK/8n81+sjAwNMbUwteFbEJQW6O0pbVBC31tJQgjGwMDYxLu7DkKZ2jK3hvk1HF2glTV/RUdW55Cm1Ka4woYWNa5VkVZXGUH2WfB+wt81xRXYQhR0yCQLa+f3JwxxBQUPMS+nF0thdAUXjTAVG7NUmad+QyQITNNlTrfMcs6fQMQCZUjFXCuWIOm5Oyc8ZYZ5jOFczTFi+nSvw6vvGHmBn8ZBucfvzoYGNqaYoNj2IP73oJjKBbcL6XOazlziwtN4chUIHWdwlnkQFCuHcoCelPy2l3Omh12uDfHFcBnXGlFgtx+stpjNGwKtUKMa4oX/L5Wa1/YlILNPv1XCoViZwlN8f1NUM3fdvVOfSXFJQiCIAiCIAiCIIgqwFk056qARFuThrmdLTmfFyoj7MO8YWXxXhcmiwuDf2okBuS1pRBnza7dg25BsvmdldKgKRAId/aAhOX0kLAcbVFtoNrYD7IXspu5na0Y26hBoLr51mzbYvC3M7fu/Jyy9aRbdxvccrlNppCsQWNoOCCEhIDE+GYNbY0xhDmq3b7Hb74rBmfAmIRln97dDIXmK69+7VvD2F9Y3GVFjen5aS2KDG6dnjuvY3AMFyCKjPb8F6SvMLjnFvd8qlbQ9kvV2dzOllz5iiyu5dgwED5IMrezFc0a80k/FtxO73ziHaPlTuucAR+eN6noNYPzYHUWEobwQQa7b8vFHlOl2thoY5guawRRPlzomLnnYefFRW3THRAjB93U8fCrDzsv3SRbqjWmIfCX/+1yXmbAE2cEQRAEQYxeGGORDkTWFI7z509BwpOyqNTDs913eWUJ45OxzswofqGqMMeh5b5eVVheWwrR0hirybkoQLBs3uoZY5g/rc15Ur2YPlQOzBzLc55sr9ah2FHhDOBZz2Ahp1xCU3D+gsnQFI5q/cJlgPMUu6owXxt326yU+bbIGK8b3brbkD/Wsk5DFnyOinsM1QKvLkUZm74ypoCmcFywYCouWDi56K4jKaVzj998VwzGGN4/px2awvN2QhSaK9369c5TxezPe4+bMGX5yhMmwB5BBrdOxzbGnDFcCezyAa+tRyvHPbe451POeeS5PygYFXbd9bNDt3yFzvAq14YtOcNdl9AUnDFZg7crC7XTuybnjdEyI84LprVhbGPhYync8lVrR6aqsEBFej+1+7ZcrJ2V4X/blWsnwx0KAhGjFi4ymLf9B86Li8xQi0QMUzIigx+8+APnlSFbqjmmIfDcYzucFwWBCIIgCGJ0IaWEYQpkDBMZQ8AwBVI+KWg0hYd2rna0JnDJoukVl9MUEoYQUNigG9TeqeJGCIm0IcCZdZA9Z/npZvKDJIPnUgghc67njPnqJAjGGOKVfCQ8qB4Mnr8ihEDGEEhn+/Fwf/bcVZfeprY14JgxVuqbtCEK7ggal2C4ZG4ck1oSzvUqq6V73x+VM8QU5rRpX89Awb5ZsWiG04ZqYKc+U5j134YQMIXMk8k9fjI+jkS1gCc1TACzUqg811GvuORKuWxG5cXHUM53FZDNFLl/p9jj3Es52rLnrjB2Y51DJkPPd+6xaAoJKSU+ekpnyfbpbr97LvCrS+WDY9dv7AshHbv0lpWXjquIXN7v7TXGHbFPBchgt8et06C+sM9F8c7XQRTSl60n+1/hee83Bt1yuXUade6f1JpAXM1dX+2yiq27QTrzyhf1XgAwhWVDummtKboZrIuwfHC6hrZ4fouC2umeT7yyrlg0A8e0FE7lVgjOgG99bK7zXjdF3m+htGEWlK8SeG3Ri5+2VyyaUbY8x7TEoSk8Z24A8udZN9X4bTdcoCAQQVQAPtAHpTcJpTcJPtA31OIQBEEQBEEQxKigJyWweksKfRkTKUMgY1pP2aYMgVO//Tvc+OsteDOZcq7nEQIbi44b7/t5wXRwAZ8fSKbw4At70J8xMaCbSOmWjINn1QADhomBjImUbv07YJjgnGHKuEb8x0XzMXlsQ9FzShgsR15/2kC/bubIkzYElt66Ft9dsy1HJ4VQOK9qIIjBeiJYSIkL/vNZ9OsCGdM6OyZjCrz3lqfwnv/3JPpcevvFC3swoJtojClgLFdvbjgD/nFBA6a3qrh7+UJ0jm0A5wwpUwxpEEhhwAdObEfakE6b/uuFPQX7pr0lgbuXLyx4Lkip2KmKGuMKJCw7SekCA7qZJxNn1o6tuJa/UyBtmEiZwveJ7L60gbRRuyBQShdI6QZu/PUW9GfnBhtTSPTrJtIGoAufIBByx5AbO71gOQzoAn1pwxnn/bqZtxOsnCNCJrc14O7lC9HeknDspqi9MxY439kcSKbw3TXbcuawAd1Ef8bEfz2/B6dMHZvnWO8rcOiSd55TuWVbnDEIKX3rSukCCrdtlvnOmQobnFfc82WpRzwdSKZw4683O2uM7vIt27bUnzHy2uPuB8CynUUzx+WV35c20Zc2rPuyAWpvMMVPX5PbGnL0lTZM/PdL+3P7xqU3u6/ShmkFs7LYNmLPj7ZOdVOGnicnNsfxk8tOg8I5Epri3GeXlTEKz7kpQ/jqzC3fuKbcnS5pXRTUt22vG3f1YEA3kTasNSVt5OrCHntRzGNsguPqBYmcezKmCGxn2giWtb0lgW9+dK7PXeGIKRz/9cJebNl3BDf+ejP+c+3reb+FLv3xn531MaEpzkMUhctlaEmooXfYeMdbGNpbEjn2Ugp9KWv8p/TcZIv2POvFz8ZGE6PvFCSCyCKZgv0T35vzvlRm3PkvaH51CwCg9/i52PGlb5ctH0EQBEEQBEEQwWzdn8Q3/9iHQwHxjN60iXv/uBNrtnTjx5eeBsBy2vk9de/HI5v24Y+vH8TdyxdiTke43PF+Dxdv3Z/Elas3oOvwQGCQiDFgfHMcvSkDMnsYdluThvPnT8Eli6ajvSWBU6e34du/2YrHXupyykloCloaVExta8Senn4kBwyYUiDoTO/uZAr3PPMGHntpP/QiB3/bjhlNsRz+XidLEAoD3A+0s2z7OGNQOEM66yhTFQZN4U6fbNh1OK8sCaA7mc75zBASB/syULOHjsc1xdGbIaRTdkNMwdQW62+8OR0teOiqRVi1fhce2bQXPX06hBSBgQnOsinPPJ+r3GqDXYeQVvAjyhnq7S0J/GHbWzllm0Lm9I2fzc3paME5Jx2DX73YBcO09g8oHJHqdmPveGlpUB2Hqjf44JbJFBJKtv1zO1sxp2MM7vvjLqcdmsIxvjmG8+dPwY/+dwcM186GSoV/NIU5qegKbZqQsHa43PvHnQWvURmgqtHGkIDrbKTSmgEJq89VhVlvJCu5NM4G08epCsODVy7KcXDO6WhBQ0xBxjARNPUJIQvOd/Yc1p1M5e+QAfCrl7oiy20KiZjKMb45jvPnT8EvX9yHw/26swPtnmfe8K3LbsP58ydj3fa30NOn58yZy06chF+8sCeyQ9qP3UkTX73jWXQXCZpLCXCFQWH58zaQqz/f+wEojOGMd0zAn3cecuZKa1eHNdbtlGLu8s/6t6cdfUkAull4p6d1jcTengFs3Z90+tlvfpSQVgpKIZAOGGwxheG8BVPwpQ8e77RV4dbcq5sCE8fEB/tH4TCFgCFk3tw6qSWBCxbk6szNnI4W/OMHjse3HtsyqA9upcErpO+uIwOBaeRsXRimaQUiItrL1DGK007DlINrg087/frOLesNv94SqW43KUPg3j/uxKo/7gxMFzqQDQCZGaut//TBWfjyQ68ULFc3JZbNnYimuIoHX9hTcL4tZ6S57aWUNHWH+oOz8LhLC5ofRxsUBCJGLaaSwHPzvjXUYhAEQRAEQRAEEZEDyRT+/r4/BwaA3Ow/ksLl970AQwikQwYyAMtJ2XV4AFeu3oCHrirNcXAgmXICQIXOfRHSevr7Xy6aD03laI6rmNvZkpOzvr0lgQtPnYLfbz0AIa00Qvd95jScPGUsEpqClG7ime1v4/8++goO9mYAZjmI3Y6VBlVBxhRWQEpKxEM+vWs7yOzdH34BEpsJzXF8edls6KbExDExjGuKY+bEJrz+Vh8O92dw9QObrEOqs2nHwgblbGIKh8IYMqZAf8ZES4Pm6O2q1Rucsr3tam9J4MvLZuPqs96BLV1J9KYNXLV6A1jWhWw7ku37pZSOni0XnsTqy9+D3rTh9A8APLP9bfyfR17Bwb50qB0cbx5N5znN7HQ2dt8E2VxTTEVcVRBTLNnuWr4QvSkd33zsL3i71wqWFZKhNaHhisXHYt7kVoAxZAyBbz22BT19/meauu3FFBINMcteNIXjyiUz8eALex0dfeujc/HRUyYjoSm49487wZjlYJWwHHClhDhUznKcuK0NGv71/JMxbXwDlt32TOQyGYAGTcnuAAAaNeDfPjkf7501IXAMma767fvt81PGN8XwqfdMxw/+8Br0CNt37CCjEBJgzNql4ro9pjDfdHs2cYVDNwUYA1SVA3LQKR40TwUFtTSFQeM80Pbcc1glYQwY26Dh51e8B9PGN+G/X+6CkIMBjUJpHgHgj68fxM+veA/e6s3kjMlkSseDG/bm1xdCHjdH0xI/enkAB0OsMRLAmLiKWy442bElm2L6iyschrDSzG3dn3Q+t3at5o5177rg1hdg7VILM5saQub1s9/82BxX8aP/fQPrXn0LQlhO+gtPnYKYqmDp7Il493Hjfc9VsWX/w5fel1PW9558FZt2H86bW9d8YTFaGrSCMrc2aDn6+I+/OwXjmuN566St7309/QUDFzYS1i6rt5IpTBrbEEJ7+e2MKRKXvfdYnDZjHJrjKv7tib/i5b1HnHb69Z1b1q4j/kYW4wyZkPNKmH6XsAJC333i1VDXPvXXN9HaEAMYgwLA9PyGadA4BrK/qVK66awPUfHaupACXzp7NsY1xfD1Rzcj7dk1HUYjDao1p9k2kNA4FM5HdQAIoCAQQRAEQRAEQRAEMcxYtX4nugMcJ350H0lBOqcvhINl3dfdyRRWrd+FLy+bbX0ewcexav1O5+lvTWEFU2K9eTSNF/ccduoJlIux7IH2DAumtUHN5uFPaApe3NODwwM6GLOCSpZjerBOzhnijCNtWM4R3RSIq8UzIuimcJz5thM86KndngEduw7257Vj4fQYdFNAceURy5R4jqO7HW69ucsO6qaEpmDh9DYAyF7PfO9w69n+3r7PzYt7enAkpTtpmbwojOU4z4SUaNQUGJ5UWe42eW3Oiy3bkuMn4rtrtuHwgO6kOgxKwcWzqfNSusCS2e0AgO+u2YYDR63gUVzlMDO5KQTdMllPzlv2ImQ2MObS0YmdrTkOTttmACtAESVIEkRywMCLew5j056eknfh8GzasQHdRJ8OvLjnMD5w4jEA/MeQV59unRxOGTBMGflReJ7dLWfdmm8PZhFdaSqHqli76nTDGlOMBSeqc/eFrzwFbM89h8VVnme3pcIZQ8+Ajv96Ya9Tl1vOYnV1J1M599okU/4BzbydHp6x6j0zaNObRqiHDGwO9+s5tmRTTH+ayqFKqy8P9WWydjc4jtxj3Yu3X6OMiaA5xj0/AsB92d10nHPEOfD/zj85dB3esuz52Tu3NsTCZ+Wx7z3z+Im+AShb31GmGwlg9XO78JVlJ4SXwyPTjPFNTh952+nXd25ZA+WqUt7St46mi18EK1XhQCZl2aSWPxcqfDDs6F4fSsXWlwIFFyyYAlNKmFLmrUnF5kcAUBSOBGeOzIaQKHBk0aiBVEAQFeDtpedi399djn1/dzneXnruUItDEARBEARBECOWlG7i4Q17Izl5zOwTuVEwhRW40U2BRzbtdXLqFz4TaLCSlG7ikY37oJsCMYUXTDfDgLx6wuAuM2x9jDHnoGrDDD4g277dOhDdukZVWNG0OYXa4X5KWAhR1tkndjtK0Vul8OrcFz/fs/ezrN1EbVMUG7PTS9nllmMvfibj7lu3zQAITMkUFV0IPLxxDx7esK+schhjULOp9Nx6jqoT3bTkMSKmMTLEoMPezx7CFGfLIGThcZzSzVDy+dleFPuKircu4bGZUucZbzCnFKSU2Py2ESmoYkqJhzfmyhPVnkwhC/alG79+DStvqetNtaiUVdn6LuXhgkc37Yu49kauIodc2/AvrJT0aGEIOx1LWHathVj3gcLzUFQYY6HnrkJl2FRStuEMBYEIogIkFyzCwaXn4uDSc5FcsGioxSEIgiAIgiCIEcuWriM4FJC+qpJk3fLgYOjp07GlK1nkjly2dB3B4X4dHAycF3agMIZQ9RTyYUSpz/5eorhDSLhSv4VJ9VKoHe67S9wElPMUMOfB/VNJh3UQUXTuRhRoe6E2lVM/Z7nllmMvEjLPCcpd3iW3zdj3VQIG4GCvjp4C50CExUr7hxw9R9UJB8PBXr3s9hWyh2Iy2OmRgsbxlq4joeXz2l6p9l1KXRkjfKpOINx86SZKOjghgYH8M+WLcqgvkyNPVHtiLNycbJddqt2FXW9qRZi5OowDf1Df0eecWuuimmOr8oSTL6zthoEz4NUDRyu2dlRStuEMpYMjRi1M6Oh86xnnfdfEMyF54TykBEEQBEEQBEEMLb1pM2Jit9Kxnd0SEr1pyysYNrhgyxk2FuGtJ9Q9ReoL41uSTqK3Qt/nwr2HmLhlKtAOt2yl9qFX0lL0Vimi9rGNt+2Kp4CwbSrXxrz3qgpznj4PKlPCf1ddzk6gCo1Pr51xZp3dVGqeJMVnQLj14adPxgaDr6ri30/lUrky8tvXmy68u6GY7ZVi32Fx1xX1If2gMRIka142OO/3Od+V1iNSIkceP3tyn3MVND8Xm5PtssthKOfNauH8NghengKptS5KXTuGAtseK2W7YWBg6POxcc6AYpZfaO0a7VAQiBi1KCKD07Z823n/34sfgzGMgkAPPLc78j2feve0KkhCEARBEARBELWjOa6AleLlKQEGBpk9/6Q5XvzPZ7cj05YzbAoSKRG6Hj/86lM5h8qtvPrxgHRlxdIn+X2vKgymsM668TavUDvcAbRS+9D71HS5eiuHqH1sw8CQ0KwzWBTGoCiltcmv/nj2QGyFsbw0bLnlyrx7YwqHEAISMvBsBwZru4LXKnhe35aHypm1u8jl8ZPSqsfPyacUOSuCM0s3Xtx69tNnQlWQNkwwsLyUf7Y85c5FDNZ5ThlDOOcFBdGgRRvHzfHCZ3QUtr18G4mrlt1WAnddfn2a0DhSun9dlR733rmpFAtmDDnyBI1PkU075nemjV1/MYr1azHC6q8WQYpKVeH8NihhOEa1Ja/M7j4OsxwUWztiCkOmSung/GAANMVaO/K/s1obq5DthhWoyeesKIUxCC7hI6ZDUGrWisk2jKF0cARBEARBEARBEMSwYW5nK8Y1Vf/hLTsBloBEW5OGuZ0tke6f29mKsY0aBCREkTwkUqKketwOuqD6EpqCppgK1eUYsb9nKL5biLNBh5eQ9n3MKddL2Hb4+ONDoboEFqL0/qkEUfrYDedWgK4ppiKhKTnOqUJt8u5C86tfUwbLdSNkbrl+9zLG0BBT0BhTc3bNeO3Ff3dY7n+7JY3qemOwDiL3IiAxvllDW2Ms7/oGTYEWYMwM1uHzbv0JaY07t579dKJwhsaYmn9/tp/GN2tluxY5z/Zb3LYHfxIazx7GPiiD/dx90Die29laUL5CthdsX+UFIPzqiqk8T06VB08SUcd9lPSQnAENJcSWxjXFcuQJGmONMRWNMdVzRprMBmbC7eAs1q+FKHW9qRalBJr87hnUd/Q5J/raG233rJdCa0dC49CCzpirAvbcEwtclO3dP/62axPWdsPAGHD8MWN8+zGhBs+RQP6OzUrLNpyhIBBBEARBEARBEAQxbEhoCi5YOCXSH/QKY5EdAAq3DmbWFI7z509xnOphi0loCs5fMNl5urbQbhEJ5NUTlbD1SSmdp33VEAc+M8Ycp0qYw5XDtoNzHrlPrHNcsuG5bDvK1Vs5eHUehkIbR6K2KYqNmSLXlsu2F0/fuYNGbpsBcgN3YVAV/70YmsJxwYKpuGDhZN/7gmzZW56UEoawxrhbz1F1Ysvj53Qs2D4+qD6vPXh1l9M+Hxk4KzyOE5oSSj4/24tiXzZhu9pbF/e0u9R5JmxPeIvPCVoyhrkT1EiBBIUxXLAgV56o9qRwFmpOtsv29mvYcVaJ9aYesfUdHMwIplxdRD2DLtc28u2CMQYt4rwSlnwzCUjtCsuu9RDrPhDu90RYGILnrkJzpHXv4G+Easg2nKEgEEFUgMn334lZN/8TZt38T5h8/51DLQ5RYxrUBjz6sUedV4PaMNQijTq0mIKLvvFu56VV4Ok0giAIgiDqlxWLZqCjNfxvro6xCcR9njQvhMxe3dGawCWLpg9+EaGQFYtmYFJLAgCcs1YCZfTWEwKvU8NdX9oQeU8YCyGdVE4KZ6GfNtaUQd35lesmSjv80nMVvt76jeduR1B9tXL3uHXuh9d5xhkr2jdRdFisz914y41iL3a6IKtN+WV7nwx324yQMlJ/BKXzseVfsWhGbkAkQnnuNo1LsDw9R9GJLY+7rWGQsILSKme+9lBsXLplaIwpRa8vJl8h24tiXwAizbPeuqo1z4TB6x+e365iXIQ/6zvG+ssTxZ7GNcUi7QDx9qt3B15BeSusv3IoxTkflNrL1neUuDMDytZF1JSgwKCsQaKqVQpatI8JXq/cNMUVTGotbLs27vWhEtg24bVxezdylDmt0rINZ0gLBFEB4ge60LD7DTTsfgPxA11DLQ5RYzjjaI23Oi/OaGqtNYwzJJo058Vory9BEARBjGjaWxJYueJUjAvhy+hsta7ljEV6QljhDJPbGnD38oVodzn5C+WV9zqC2lsSuHv5QnSObfBNn2KjKSyvHt/yi8icUx9nGDBMDGRMpHTr3wHDBM+2a3xTrKBMbjiz0r+Nb47nleuGAUXbIaWEKSQMYSXtiYd82pkzQDdFXjvc9bnL1k0R+kwF932GmX15/tsUMq+9QK7O/XD7zVTO0NmaKNo3YWzBr/5CfTMmoeI/Ljolp9wo9hJXOaQEDCFwNGXgSH/G0ZkpJHTPTijbZhgAReGhj+lgAFK6QEo3kXGdPeO2rfaWBBKeYEN/xsjaVHB57jZNaGD4xwUNeXqOohNbHgaEnlsYrLllyrhG/MdF8zHZp550wDk4aSPf/s+YOaHoOLacoP7XFLM9X334jAO7nowhQzngO8YmcuoS2fPFNJVlUzdZdQXhtWVHBtdOQbd9esdDsZRdzTGGLy5sLBjgtbHXGD95otjT1WfNdPqymPxA7hgDrAcNwsymYdcbwNpBWEyOesLW9+S2xtA79BQe7bdBMcLGgwZtI7cfMtlxnjIFVIUhTDPCSh9TOL593twcOzFM6dijDQNwzkkdWLni1IK2a6MpHJClBcN828PgpLp0941uSgxkrLUhSC39GcMZV7ZsIjue6t1+qw15KgmCIAiCIAiCIIhhx5yOFtx4ehPOnq7lHZLNYB3QfdnpM3DPJafisZe60JcxQx9ozgB89szj8OCVi3DCpPLOTJjT0YKHrlqEvzm5I/AaKYHHXurCm8lUWXW56/vsmcehozWBmMqhKpaTq6M14bQraoouhTP88zmz88oFBp3MDTElUF8Hkil8d8029GcsJ3JKFxjQTWRMCQ6gfUzc976mmILxTTHEVcW3HSdMavEtO5ky8NWn+/DgX9OBehVSIm2YOfeljOzL898Duomlt67Fd9dsyytvXFMMZ50wsagOjezTyfMmt6B9TDywb6LanLfPNYXlObn7MyauWr0xT/5i9vKpd03D0tntVgAiq6O/HjiKZd97Jqcf/+6Hf8orW+GWTXz2zOPQOdYK3NgPZDNYQbGExtE5NoHLTp+By06fgY6xgzKonOfZlt3XKUPktNDte7TKRl55bj1//T2NmNrinz0g7Bhqa4w5duc3t9jOW3dbO8YO3v/heR2B9TRoClRu3WePVJXzPBnGes5HcnMgmcKNv96MvowZGBDVVFbU9tz6aB8Tz9s1w5k1TpviKjSVQVM5EipHc1xBY0yB30P4GUPgsZe6sGXfEXx3zTbsO5yy5gPDslxVKZze7LOrNviOxbeOpvLGdKGxa+O3G2Vai4JfX30GLjt9RsE15pf/cEbBMRvWnqa0NfrOSYXkt8eYpjCMbdQcx7dvG2GNpaltDUXnGHuc/X7rgUh6rBWF4p62vq9aPBPHtMSLBlEMIbHgpt/hgv98Fn/pOlJZQYswp6MFv/jsImjK4Di3g1IdrQlctXgmHrvmvUVt8L+v9b/Gvs4mYwr8n0c2Q3HNLXYaQvtcLnu+Hd8cC7RdTWE5Z4NlTIF+3czOhaazY6dU3kqm8Z9rX8+fW5nV97aOGmP5k4uU1hlxJ2TPFMqYxdfw0UIJR50RBOGl/7jZEHErep+aXB9bagmCIAiCIIiRx759+/Dggw/i8ccfx7Zt29Dd3Y1x48bhjDPOwFe/+lW8+93vzrsnmUzixhtvxMMPP4zu7m50dHTgwgsvxA033IDm5uYhaEXlGJvguHhuAv9x+RnYuLsHW/cnISUwt7MF86e14Y23+3Dl6g3oOjJQsBzOrB0bMYVD4Vaqpi8vm10xOdtbEnjPsePxqxe7fJ8/N4TEPc+8gcde2o+7ly/EnI7yAk/tLQl8edlsXH3WO7ClK4netIHmuIq5nS1lnXswtjGGLy+bmlPuVas35JzV48fW/UlcuXoDupOpvPbL7OvNo2nfe3Uh0RZT8H/PnYPxzfG8dhQquycl8ds3MnjprvV5et26P4mBjBl6hwoAdB9J5fWTu/4wvNWbxuEBHe1j4rj5vJN821QKdp9/8MRj8NnVL+BgbwbuvWOGkOhO5svvvtdrLypnuOZnm3x1683U9dbRtFO2KaRzRhBnLK9s2+GZMWVe26/70AnOddv2J/Efv9/u2FYxO7ItMK5yqArHDR+dm1Oeu6516w6E0mfQGCoki824pji+dPbxmD6+0bethepZtX4nfr/1TattUkJI4Nr3vwPvOnZ8KFvZuj+Jy37y56J22RRTceenF+CUqW1F9XHuyR341Yv7srshPUFG3YTKGcY1xnDN+2dhTkcLVM5w9QMb0Z1MwTvS3jyaxt3rduDup3eAMWvHSU55mcIB+wPJNH64bkfeWLxi1Qu+qTe9tl8M24fd3pJw7MhvjQk7ZsPMybtf2R84JwWNXcAaYyrnVoqsAgEPCSuQqBZJjeW27YwnuFlIjnrCre/fvLwf/+fRl2GYEkGbQ4UENuw6jI/e8Sz+4+/m48MFHtooRtT4xzEtCcRVBTHFGueXn3ks3je7Pcc2bvhoa1EbdF+z9q9v4sEX9uJoysgbW28dTWfnS4m4yvGRUzrxNyd3ojmu4pIfPZe3lntt9y/7k7jjD9vR06fntx3Wbh3DNJHQlJyz4sJiComLf/Sc/zwvAXCgUVPAOcPRlOErQ3/GxMv78gN6w8V+qwUFgQiiAnSft3yoRSAIgiAIgiBGAbfffjtuueUWzJw5E2effTYmTpyI7du345e//CV++ctf4oEHHsAnP/lJ5/q+vj4sWbIEL774Is4++2xcdNFF2LRpE2699VY8/fTTWLduHRKJcGmn6pmEpuD0mRNw+swJzmcHkilcuXoD9vX0Bzp+bGwfiW4KqIpSMKBRzMnmx4FkCv/+5KuB3zNYOey7Dg/gytUb8NBVi0KnAytEQlOwcLq/c7ecQ5Ld5RZz8tj90HW4cCDOS0zhUDlDxhToPpLC957cnqeXQmVbTzQDhkCeXu37oj6rLGE5qOzy/vPTC/C5n26M1LYGVSnYpnI4kEzhmp9tygaAcokpHAqz9BlkZ+5+PZBM4cK71oduW0zljm5MIdEQU3LSlBWyRTfu6zKGcOxUSBnc18zSayqbnihtCGdHRNh6w8hjE9ame/ozuHPt66H62FvPT5/b5fw3Y1ZKqHmTx+bJ4jeMDyRT+Pv7igeAAOBgXwb/8NNNePTzpxeU0W7z/iP5jtmEpgDSeuL+YF8GP1y3wxkb+49YMqjcGos2cYUjFXJnZhC6KbHPMxbt+rzY4862/aWzi+/cc+O3xpRCkD0eSKbwg6deD5yTvPI/dNUi5zshpZM+0WsPmsKgcY7+bBqslG7CMIP17rVthSFn/fSTo1LzVxTCrl4JTcGcjhYwxmCGiM4YQuLan2/CjAmNOLGztTwhI2KP87mdrb42EsYGE5qCmROb8c8Pv+IESGIqz9lNk9A4BnRrJ2XaEGhJaFhy/ERHBgePuhKagiltDfjiL170XWPcSFi2Zq8DYQNjti13BYzjmMpgmhI9A1YAyu/3R36IepB6sd+hgtLBEQRBlEmf3oe/efRvnFef3jfUIo06MikD939jvfPK+DwRQhAEQRAjgXe9611Yu3YtXnvtNaxcuRL/8i//goceeghPPfUUFEXB5z73OaTTgzsqvvOd7+DFF1/EddddhzVr1uBf//VfsWbNGlx33XX485//jNtuu20IW1NdVq3fie5kKm/HQiGsp1gLOyZLCZ2sWr8Th/qCnSaMWbsXAOtJ1VXrdwVeWykqlbu/GHY/AINtDAvnrKBeipXNGaBlP3bf774vKizrXupOpvCNX2+J3LZibSqHovqIUHfUfhNSOteFGUdR0U1RtG2KfZ5KFep3E0U31R7PfkGgVet3ojvAiepH95HiMua02Se/lte2vGPDG3QO45APg5Ayrz4/vPJt9tklMJSsWr8TPf3Ba0Shsaubg6kRg8aGjQRweCB/B4dbjkL9Vs35q5p4dzQVwhAS3/jVlkjl56SmjPh4QRnPY/ji7UPvmWHu9xLAy3sPl1x2IUqZh922HPObZxjLkZ/56LqQ9oer/VYKCgIRBEFUgH6933kRQ4OeNp0XQRAEQYxUzj//fCxZsiTv8zPPPBNLly5FT08PXnnlFQCWk3/lypVobm7G9ddfn3P99ddfj+bmZqxcubImctealG7ikY37Ijl+bAxTVjRAYsviTcnihTGGmMKhmwKPbNo7Ig4wttuumwIxJd+hGIYgvYQtmzHk3H+4P+PcVwqmsJ6uzxgCm3b3RG6bhKxKX4fXR/G6vWWFwTAlkNW1/b7ccWS3QEoJw5Sh2uaWpxpjKIpND8V4TukmHt6wN1Lw25QSD28MljGqbYUZG0ax7ZkhkRKe+grt4hy0/b8e6K1ZILwYpa4RUkpnbACAqrBQ81BywAg17suZQyqNt6uirCVH05lI4wEANu3uweECQbl6pZQ1d9v+o6H6sJSy7XUgTHe5bTkWYMtSShiuzixlGR+Jv7XCQungCIIgCIIgCIIgRgCapgEAVNX6M2/79u3o6urCsmXL0NTUlHNtU1MTzjjjDKxZswZ79uzB1KlTC5a9aNEi3883b96MadOmYd26dRVoQXSSySQA5NW/vcfEwd5UwbQgQVhPr5qBbeo+MADD9N91vG9fF9atO+QrS8E6JZwyGYC3j6bw08fXYVZb7nkTr7xl5NRdjt7T6XSOI9Zb1qEBkdfOLVu2QHvrrzmfea9xl+PuByFNiAi+FiFFTtoir16KlS0Bx3MoYDr3f++RdTjYmy7JNuxyTSGy9SJy23TDhP1gfqG+9qOrKxXY/8X0IYSAgWB9uskrK4SjTXraZo8jzkq30y0HLHsX0iqPB7QN2fHjdvRKoKBeg+aOYkSxaSHNyH1s86bPPPPyyy9D7M914+3fn2sTP318Hd7u9T9fqxCFZPS2GR57ME0TwuWv9RsbXhuqdPjFrk8GGKtbRwzAQMaAwuHY67p163Ku6evXkUyWN8eGJcwa4ZX/7aOD19u6lJ45EwCkkHl2ZAoZbtyb+cEXPznssgqtBQBw6FA/DDN/wITR8bZ9ek75zzyzLm+HSxAP/TX6rk9TAt9/ZB2WTovlfWfPHYY5WP+rf30V6/rfAAAcOZzbzjDtc7ftL3/ZgsZDr0aWGfDvQ28AzPT0QX/G8O3D3Xv2YN26twqWXQx7Hdi5cyfWrduf9727PnueB6xx7DeSTVN6dl1Fo5D9VoKgdSWZTKKlZejPH6KdQARBEARBEARBEMOc3bt348knn0RHRwfmzZsHwAoCAcCsWbN877E/t68bSQwYljeh1CwrlXxAvCRZZPa+YU45/eB71JBLL35lux0cvhsCJHA0U55t2OXYRC4n76TryvR1MV0X02ehskKPB891lRpHdjnuJrj/O2jzRzXGkJ+ei9pAFcezt25bvqhIBMtYzLbCfF7C+fChYZ5/wyBR2Xm+HErSr7TkL9aGIL2HGfeF7nfLUe9r1UCJmeKTmdLaNZTaKGl+Qrg+LGnNRfhxlrfbK9xtoa+LsgaOVGgnEEFUgHHPPIHY228CADIT2nHozLOHWCKCIAiCIAhitKDrOpYvX450Oo1bbrkFimI90XjkiHXmQWtrq+999lOJ9nWFWL9+ve/n9g6hxYsXR5a7EthPW3rrb9p1CD948XkYUbaeuFAVJbBNjx14Cepb3b7fdXZ2YvHik/xlkWagd4gxQFWsP89104SicCw6dX7e4dDy1begvrzReV+O3hN//APSrrMhvGXtPzIA9Y+5T7OedNJcLD7hmJzP1N+vyXnvLsduu2kIqFm7TEAgY4qC6XlUzhBTc5/M9erFr2zOrRRgjDEkVA4z2/+qojr3L5h7PB5/YytMQ6BUd52iKDCEad3t6rs4RM4B3EH32odZF+prP/5weAvU/Xud90V1zQQyhoDCGbQi+nTjLYsxCT3EWHLaZlheVzX7vlQ7Tf/lANTNL7rqZ759bZ9dIqSAe5tKIb0GzR3F8NMzYxJpw8yzabfdhe1jm191vwT17dx5Zt7J83DmrIk5n/327VegvtnlvF906in4j43PRc6TpPBgGf3aHGcCuimgKhyqJ2VgxjDyxoaiSEhdQEgJlXNkfOQrdXeeuwBFUQDPToe4miujbprZOZc7Y3Hx4sU5c1ljo4aWFrUma1vQGqFwBiklEpqSs+vFtinnfXZsKtwab/a454whpmXHvZEbCQkz7oHcfourg3OXWw67rEJrAQD8+PXnoSZ78tofRseHNu2Dum3z4D1nLs4566gQf079Fb/b9Vqoa90snDsbi989Le9ze+5QlQHns+NnH4/Fp1o7qn+wdT3UvuSgrCHa59bdiSeeiMUndUSWF/DvQwCQEDCEgGbbvGuMMMZ8+3Dq1KlYvHhOwbI5l0jrAmBAQuXoy+SvE6qiYPr0GVi8OP+BJHd97nXG3tEeZ7lrKufM2qblIq5x6Nm0c0G/KzhD4DiKOjcXImhdqYddQADtBCKIijD2+XVo/5+H0f4/D2Ps80OTCoMgCIIgCIIYfQghcOmll2LdunW44oorsHz58qEWqS6Y29mKsY0aBKLv1GAo/PRzoQw0fgdC27KEeRpWCAkBibYmDXM7850G9XKGRVgG+0FCCPvcCo7GWPDzqAyWU8eNn178yuaMoTGmokFTcs4TcN9/7rwO575SsEqVELDsRGbLB6zgVSF7YwA4D25T0boLFO6ra27pOu4JABWr21sWZ8XHkd02u+5i4ygKdv1h+totT1i9RsFPzwq3ZNE8j8KX0sc2fn0dZvjP7WzFuCYtUl0AMK4pFiijX5u17Dj2nhlltTl/bDAwJDTF0ZO3eQxAQ4yXtENPuuvzKKkxpkBzyWj3ieUQLlBmDafaoDWiIasvHjCXcYacsWm33R73Cc0/xZXCWahxD+T2mzsAVI5tV4Iox8stPn5C5PIVBnx43qTI9wFDuxPIrw8BIKby7NjLDwM0aEqoPgxacxtiSsF5OOw6kGPLrnkmpzzPWsRg2XODlpXBp1xrblECx9FQ2O9QQUEggiAIgiAIgiCIYYgQAp/5zGfwwAMP4OKLL8Zdd92V8729Ayhop4+duzxop9BwJqEpOH/BZMTU6H/yFjtcu7CbP1gWpYgnREqJjGk9qXv+/CmBDryhpNS2a4r15L87iBVUkqqwnHqC9FKobDdSIuf+sY0x575SUDigmxIxlWP+tLac+hljUAv0s922Uvu6kGM6vD6K1+0ty5a9EKpieeHd10c5vL0QjDGoCgvVNrc81RhDYfUMoCbj2avihKbggoVTIgXgFMZwwYJgGaPalt/YyJWZ5dmTqjBwxovamRfG4KkvuD/ctn/8Mc0Vs89yKXWNYIzl6NLI7oYoRkuDFmrclzOH1BOtDbHIAen509owtjH/PKBQlB0FKt0uo8xPNid0jPHtQ++9pZQdZR1w23JQ+d41VuGDv0v85hVHhhC/KUYDFAQiiErAFUjFeoGPngmEIAiCIAiCGBqEELjssstw33334aKLLsK9994LznP/vCt25k+xM4OGOysWzcCklkQk5w9D/pOnedeU8PT4ikUzMK4p2KEkJZyUJx2tCVyyaHoxUYcEv51OxbD7AbDaKArlgQNydhYIIQvqpVjZQgJ6NpOM+373fVGRWWdSR2sCN31sbl79QU5sxqy2FWtTORTVR4S6vWWpLDgEyJi1C8ouO8w4ioqm8KJtM+XgLqRK1+8mik1Xso/9avHrkxWLZqCjtSF0uR1ji8sY1bb8xoYb1TOR2o5dTYm2G4gzllefH1755nbW18MPKxbNQFuBoEOhsevWWVDf2DAAbQ3BO8UqOYdUk6gBvHiEB0JUzvCtj82NJlAdbdItvi7m2sM7p4ytWNluSpmHi9qylDnyS7Cca/zmjyi/KUY6FAQiiAqw44vfxCt3PoRX7nwIO774zaEWhyAIgiAIghjB2AGgVatW4ZOf/CRWr17tnAPkZtasWejs7MSzzz6Lvr6+nO/6+vrw7LPP4thjj8XUqVNrJXpNaW9J4O7lCzG5rbHo0+V2GidN4RBSwhTWeSOVlOUfPzAr0LkpYTnSJ7c14O7lC9Ee4MzMGAKmkDCEqLiMpSKz+gqSye6HzrEN4JxhwDAxkDEDHdopXSClW9cMGCY4Z4F6CSrbvl83rRQz3vvt+0pJFai45DmxszWv/qAzgThjSOmiaJsKYYrC/V9MH1Hq9paVMkXBg+tThnDKjqscUqJsO3Xbu5TA7RfNL9g2G02x6q/W+AjSs+FxWJbSx17c42v7gaOh2tTeksDKFaeGCnR2tMSxcsWpRWWMalt+Y8N9fcoUUBXrqX5NYUgZAgMZExkj2M68aArDFE99Ha257Uhny/XKF1d53lhy67qr1yy4q6jStLck8PfvPTan7f0Zo+DYteUV0tqZOL45VnBsMFi7ObxnOHnlqNQcUi9Y8zYPFQhSOcPtn5qPE8sIEgpReE2sNsX6MOVaozSF48iAHlrGYmXbMCBnHeg6POBbh/f3g22j7vLdZAwJzq3Ab0drAopHhrSem+g16m+KkQ4FgQiCIAiCIAiCIIYJdgq4VatW4cILL8T999/vGwACrCdlL7/8cvT29uKmm27K+e6mm25Cb28vrrjiilqIPWTM6WjBQ1ctwlWLZ+KYlnheqi6VM0xsjuHkKWPBYKUgSekCA7qJpbeuxXfXbMObyVTo+gq5DKe2NaIhpiDIDxVXFSyd3Y5xPk+DH0im8N012/DPj7yCAd0sS8ZycO8FsWXqz5hFZbL74bNnHoeO1kROmj4GQOXAZafPQMdY6ztVYYipHB2tCXz2zOPw4JWLcMIk/7z9fmXb949LMHz42Fje/QeSKfz3y12hH95WOUNC4+gYmy+Pu/72MfHAnWIMgKayUG3yYuv6kY37StJ1FH268ZYV1xTEVctxr2R3/8RVjriqoKM1gU+9axqWzm63HO9l2Knd3q//Mtfer7p/A846YSI+/a5pOW3TFIammOKM74xZ/fHhp2f7zAnrCXgWqY+9DGRMpA0zZ3x9Z81fQ7dpTkcLfn31Gbjs9BlojgdnKxEAHnupK5SOotpWseuvWjwTv776DFy5eGbO93FNwTEtcZw6vQ0TmmO+8/akljiuXDwzr757L3tXzplDKs+V785PLcBjL3XhZ3/enWNbC7/9O/S5dP3w9gy++nRfTeZX297vXvd6zpxkb3jwzhttjbG8uTdtCOiGwLzJLWgfE8/TtaZYZ7conBU9T6eSc0ilKGUXqo3dXk3haNA45na2wPtciMKAU6e34ddXn4EPndRRUj12P76873CZ63T5wcegPtQUhsbY4HyQMQUe3bTPkdF7plaUsmMqd9ZzJbsz1BlPG/fm6CHo90N/xoQhBO66eAE+9a5paIrlz11xVcGyuZPwoxWn+srQOTaBy06fUfJvipFM8GmMBEEQBEEQBEEQRF3xrW99C/fddx+am5tx/PHH49vf/nbeNR//+MdxyimnAAC++tWv4le/+hVuueUWbNq0CQsWLMDGjRvxxBNP4LTTTsMXvvCF2jZgCGhvSeDLy2bj6rPegS1dSRzqy+Cto2lMHBNDMmXge797Fa/sO5LndulOpnDPM2/gsZf24+7lCzGnw3IYlHOMhJSA6b9RBH0ZAw88vxt/2PZmTn1b9ydx5eoN6E6moHt2mQTJWG3cMoXVm7cfLvvJ89BNaR0GzRhu+OhcXPehE7ClK4netIHmuIq5nS2h8vV7y7bv79nxMmIKy3na1y27Hwq3+iimcHAGvHPaWHz+fe8oKE97SwLnntyBX724Lxsoy023Y79rTWi489MLcMrUtqJt8pM3E7L/g/QRVp/etvmVNXNiE15/q895r3KGa362KZJNFGuvn70/8PweTGpJ4M5PL4ApgL/sT+KOP2xHT5+et3Oj2uPDq5sf/e8OPLXtLcemS33KfOv+JNa++iZ0T3sMU+S1qdB81N6SwA0fnYuPz5+MK1a9gIN9GZie3UpvHk1H0lFU2wpz/YmdrYHfp3Qzb94e1xQPrG/imDjiqoKYIiEkcONHT8Q72sdgbmcL3ni7L3As9aVzdxyYAuhJyarPr4Xs3W/eKDT3Hh7Q8cq+JNrHxHHzeSdhfHPc0eWp334yklyVnEPqCYVz3PbJU9A+Jo7HX+nGob40xjXF8eF5k0o/AwjA/iMDuPCu9ZZt1XgeCsLbh+650o0ppCOjbggkNKXo+VRB9nHxPX9CyhB5QTt3HQ9v2AfGgIN9mTwblrDO3PvMvS+AMWvnjxvO8n8rFbLRUn9TjFQoCESMWgTTsGPKeTnvCaIUNK7hvFnn5bwnaouicJx4RmfOe4IgCIIYiezcuRMA0Nvbi5tvvtn3mhkzZjhBoKamJjz99NO48cYb8fDDD+Opp55CR0cHvvSlL+GGG25AQ0P4cyOGOwlNwcLpg873A8kULrxrPfYf8Q8GNKgKMqaVxuTK1Rvw0FWLykodcqg/Y6Uc8vmOMyDhU58EcOXqDeg6PADAeiLc7RSptIxhOJBM5cjkpZhMdj9YqfdynZ7ePoqK9/51u3IdWYVkV5j1hHHGFAAkdFOgIaZgQnMcS46fWLBeu9z9R/Idsw0xBZDWE9cH+zK49mcvhu4nr7wqB9x+4rC6rgR+ZS2cHnPkvPCu9SXbhI23vYXs/dqfvYj//PQC3LNuBw72ZqzrOYMuaj8+bN088ZfGos7TYtg66E/np06KqRwcLKdNp84o3L8Hkilc87NNONSXAYM117jjQKXqKKptFbs+6PtSbZgxa7faaTPG4biJzUXHkheVWwF/IWTV7KeYvTdqSs688Z+fXoDP/XRj4DiLZVPcdR9J4XtPbq+IvJWcQ4aO/DE5tjGGT717WkVKF1LivvW7kBzQndrc60D0MVbeHOIloSmY0taAL/7iRRzszQ+8aAqHyq15RcJKo9ngswMnqGzbPg4kU9kAUD52HWnDdB7AKDRXBl3jNwc+dNWiQBsdGfZbOchLRoxahBLDy8df47yEUnrUnxjdxJQYrpl/jfOKkS3VHEXjePdHj3NeikbLG0EQBDEyuffeeyGlLPi69NJLc+5pbW3Fbbfdht27dyOTyWDXrl249dZbMWbMmKFpRJ2wav1Ox9Hgd1YAz6a6AiyHxKr1u7LfBDsuCmVSefIvBwomefGrzysj9zz2Hyxj9Shdb0NPIdklcmW3nkgWoTLz5JTrc/5UqTrxyus9DL1edF0pm4hq79/49ZZhoZ8ouHXgh7dNrx44Grq8kaKjUiimBy+mtAJm1dRNufbuhbPR0ZdR8XZ1ZUMs1jphB4As28r9vh7GWK6tFV6jnLWvhDqK/cZx2zgLsbj6XVMP+hyukJeMICpAYvcONP31FTT99RUkdu8YanECeeC53ZFfBEEQBEEQBDHSSOkmHtm4D7opEFOCHYKMMcQUDt0UeGTTXqR0s6R0cCndxB9fP1j0Ond9D2/cg4c3lCZjJfALaGUMUbLe8sqviJThidLnNoYp89JnlVNulH6qVrmVplJyRi0nYwhs2t1T9/qJglsHhTYUudu0460+yIDo83CxoWrjp4cgndkICUBWTze+feMj0ki295GAlNJZJ+q1X0pd+7zpCcPUUQgpJQzXehomzhR0Ddl5aVAQiCAqQOeDP8bMf/8GZv77N9D54I+HWhyCIAiCIAiCIAqwpesIDvfr4GDgRdI3cc7AwdDTp2NLV7Lk+npTRqhr7foO9uro6c/UTMYw7DrUV1O9VZJife7XGgkgmdJ9vglfrpsoOqm1jZZKpeSMXo7lqGfZ96XWW0+4dVBsp4rdprQhEBSnHC42VE0YY756CBOEtv3P1dAN2Xs0isTsCuLVVjnn+nkRMmtLrH77JYqt2UgAb/dlItdRCEdXrjrCyBHESLTzakNBIIIgCIIgCIIgCGJU0Zs2ISFznEGqyzmieVJ6WQ9pS/SmiwVy/F0Wdn3eMp26PecZ2vVJmXudN11QaTKGw68q+8DnIL2pvFS9VR+/PucF+sDGMAu7qvLK9aYe8nkfRid+8hY6Q2GodF1sLIW1Cf/+KbQdJucfAEOvH1Zmoik/Hbjx6sN+651bCpXn7o9SbXM4IaWMblvOzYP/WWnd+MpUcPtXzj8A8tepnMvrsC8rnYYtdL2VjPp4sMeeuwb3WuLt0qHol2LzShBRUsL5/cZxo3D/eSrqEWp+c2C92Xk9ow61AAQxVHChY+aeh533r0+9AIJrQygRMVzRTR0Pbx+0pQtmXQBNIVuqJaYh8Jf/7XLen/jeTig+eZIJgiAIgiAAoDmugCE3JVBM5ZCGAAMQ8wQEpLQcvM1xtSRHll2f26uYyB4WzZDvzJPScnYwBkiXH4YzhpjKYZgCMe+ZNi4Zq0VC5QX1lnfOTgGZiqVjqjR+fZ7QFKSzsqsBDlVvEKNYuQzWeQW6KaApPC8wELaf/ORVOYemSAiBIen/sHLGVQ5kUwmFtQm/cgrZuz2U3FakcAZNYXWlnyi4deB12MZ8zoyREgALDj752pDCICSDkNHG63AmaCzpZpEUUi61Vlo3gfaucBginL1b6bD821CPfVnrFKDBVC4oZI89d9usOcg6zaa0MVZZTfnZWpjatIAHIwrV4UVhDJwDCue+qVVjCocuCqddtceEqvjPgfVm5/UMaYkYtXCRwdzXf+i8f2PyR0oOAnVd+BkoA30AALOhqSLyEcOHjMjghy8P2tJHZn6EgkA1xjQEXvjtTuf97PdMoiAQQRAEQRCBzO1sxdhGDd3JFISQzoHFDZqSd60QEgISbU0a5na24JGNweUGxTXmdraiKa4g0z8Y0eEcaODB9bU3xyAlw4GjgzIClkPEG6Tyylgtpo9rKllvQ02UPrdhAFoaCv+u9ytXU7ivAy2KTvzKBYC4Wl+69pOTMYZERJsIam+wvVtPkcvs+3rVTxTcOuCeuSRozDf6tNevPKdvwIa1jkrBf+zDE5bPhWEwdVI1dBNo7ypHDOHsPWiHy0juy1Ko5g4k244gkTPGos5/1cRrayxvacofBQzA+KZY5DoGjuQGJRtig3rwjjkGQFEY1OzZPmmfM4gYAE1liPmEL8jOo0MeMoKoAKlpx6Fv9jz0zZ6H1LTjhlocgiAIgiAIgiAKkNAUnL9gMjSFI2OK4CdkpUQmu6Pj/PlTkNCUks4TSGgKFs0cX/Q6d30XLJiKCxaWJmMl8KsupvGS9ZZ3TUWkDE+UPrdRFesp5kqVG6WfqlVupamUnFHLiakc86e11b1+ouDWQYEH43PadNzEpsBgwHCxoWrjpwfGWODuPwBQGABWPd2QvdcOv7SHlSvbsiOFswr2S2XDVqWufUqxxc+njkIwxnJ21iq8eArNoGvIzkuDgkDEqEUyBfva3+e8JKNJgyAIgiAIgiBGCysWzcCklgQAWIere7yuQkjnydSO1gQuWTQdQOnnfiyd3Z5zZ5j6SpWxmtSjTGGJIruVpi+cy6RaOhkuuq6UnFHLueljc4eFfqLg1oEf3jbN6Sj8BPxwsaFq46cHK11jPoxZzmchUVXdVNze5ejoy3pDU7izY7Rex5jb1jJGfhCo1LXPW0ehX0dCSAhXoEmC5enKi9819aDP4QoFgYhRi6kk8OeTvuG8TCX4hxZBEARBEARBECOL9pYE7l6+EJ1jG8A5w4BhYiBjIqVb/w4YJjhnmNzWgLuXL0R71oFiCAFTSOdf99OzhY65aW3QrJ1E2fcpQxStr1QZK0FaN33bWSmZRPYcALv8lF7kfI4KEFZ2ANndGBI9fZmislWrn4ay/6NQKTmjlnNiZ2td6Uc3zbJt2tZBYzz3IdWgNsUUXrDO4WJDlUTKwbll874jSOmmrx7SuvA9mJ4zBl0Auomq6qYS9u4mbQgwhrrtS1vV7v4JO07KOULO++BGpfbZ2O0QUuIDcyaiozVR8hhz6+T1t3orvh7m2JpnK5RhSt+170AyFUmO9pZE9tzAQfozRo4eFIWjozWBjtYEFJeuMp5UcMe0xPOuGclzVq2gM4EIgiAIgiAIgiCIUcmcjhY8dNUirFq/C49s2ouePh0SEgwMbU0azp8/BZcsmo72lgQOJFNYtX4nfvViFwZcjhEGK3VKsSdnJayD6xtiCnRTYEJzHIf7g+srRcZKYLfzwRf25rXz4Q17MbejpSyZ7PKPpoyclHBLb12L8xdMxopFM6rq1Ckke0uDiiltjdi4qwcZUwAm8Pwbh0LJVq1+qnX/l0ql5IxaTj3ox7bpn/95T86YKdWm53S0YOnsdqzZ0g3DlJCw5hh3mz500iQ89lIXHtm0r2id9aCjWnAgmcI963agP2M6c8tXHnoZ//LbbY5O/PSgSWRTwzEYwnJGCyExRmO4aNFxVdVNqfZ+59rX8dCGPehN5zrp46qCpbPbMa4x/HkutSJlmEgbpmPTNrWa+ytFT0rgyV16jp09uqkLbY0xzJvcgr09A0gOGKHGmD13uMv6/pPbcf+fdlVcJ25b+8FTrzn1KZxhfHMsb+1bs6UbG2/tCSWH3Y6UIXL6VkoAzDrXZ1xT3NEDAKxavwsPbtiDg70Z3yDfsrnHgIFhzV+6R+ycVWsoCEQQBEEQBEEQBEGMWtpbEvjystm4+qx3YEtXEr1pA81xFXM7W5w881v3J3Hl6g3oTqbynliVAHRTwjBNHO7PBNZjOzk4sw5m/58vnInX3uzzra8UGSuBu526Tzv/Z3M3Xt57BHcvX4g5HS2RZXKX7/X5dCdTuOeZN/DYS/ud8quFnz7f7k3je797Fa/sO5Ijm5DhZatWP9Wq/8ulUnJGLWco9VNobijHphs0BXFVQUyREBK4a/lCp01vvN0Xuc7hYkOl4vTDkdy5RTdFnk6C9ADA+ey1rZsxvYXjA0tnV132qH1zsC+DP2x7My+tF2dAX8bAA8/vxh+2vVn1eTQKW/cnsWn3Yehmvre/2nN//plApe8F2ro/iZv/1I9DqdxAliEk3upN4/CAjvYxcdx83kkY3xwv2I9B66Eh8m22Ujqxbe0nz74BIQEJidNnTsD2A0fz1j5TyFByFFrX7fetCQ13fnoBTpna5nx37skd+NWL+3zPaHrzaBoPPL8Hk1oSuPPTC2AKjLg5ayigIBBBVIDjbrsBTdu3AAD6Zs3Fji9+c4glIgiCIAiCIAgiCglNwcLpbXmfH0imcOXqDeg6PAAAUDng8bsCsJwd//v623gzmQr1dGqDpvrWV4qMlcDbzrjGkdJzGyqkRNfhAVy5egMeumqRlf4lpEze8r00qAoypsgrv5rYsh9IpnDhXZux/0gq7xrOGeLZA7XDylatfqpm/1eSSskZtZxa66fY3FAJm2aMQWHAkuMnVqTO4WJDUXDrxOuETmgKIOGrEz892J+x7to7mcP0TaF5NK5a6UZrPY8Ww5Y5rfssnBiaub8U7Ha8PZAfyIopHApjyJgC3UdS+N6T2wu2o1A/xlQODlZVndjzipDACzsPoT+Tn/ZNVRg0XnjtK7auN2pW3x7sy+Dan73o3G/fZ6+5msJyAoRum3DfR5QHnQlEjFqY0DF1/xrnxYReemHCBDOtF0T1c1kTBEEQBEEQBFEbVq3fie6k5aiIq7zgU8QDGROr1u8K+DbXcVTGw8hVwdtO77kBgOWoAawnt4PbGa58L5wz5/NSyi+HepaNqF+KzQ3l2E3Q/FDNOocrOTpR8hU3knRSibmqnJ0wpeCW2Y/h0j/udmg+3vQo7aiXNUc3BfrSRslylNqOYr83hotNDDcoCESMWhSRwcKttzgvRQSnbiAIgiAIgiAIYvSR0k08snEfdFMgphQOAAHWU7WPbNrre5iyN+d9PcWApJSh2skYQ0zh0E0R2E4/wuqx1PLLoZ5lI+qXobAbstV8RpNOhmNb3TIXWj6rKXNeOrgSynC3Q+XBQdow7aiXfpRSwjAlTImS5Ci1HYf7M3XR/tEIBYEIogIcftdivHnOBXjznAtw+F2Lh1ocgiAIgiAIgiAqwJauIzjcr4ODgfPiriMGoKdPx5auZN533gQyfjtthgohEbqdnDNwsMB2+hFFj6WUXw71LBtRvwyF3ZCt5jOadDIc2+qWudhDFNWSuRI7n3J0X6S4Yu2ol360zgSyfreUIkep7fjNK/vrov2jEToTiCAqwKEzzx5qEQiCIAiCIAiCqDC9aRMSMuepX4UP5q5nyA/uSEj0ZtOrFKKOYkCwj7h2y1T4qe3w7QT89RjLnrMDAKrHERS1/HLwk41nz0oAAG0IZSPqFz+7UTmHblpPq3uHTyXsJsx8VOk66508nXh3ffi8H6468et/N15/ej201S1z/kk6+dRC5lLW3mK6VyKsE8X7sTZrjr3uu8eM+zdNsTb5tcN9to+m+N/f05fxnceCqAc7HilQEIggCKJMGtVGPHbeYznvidqixRV8+pvvyXlPEARBEARRLs1xBQwM0pXLTeUcMQUwpURM5RjwHKjMwNAcz/9TOy8dXB1FgVjWC+RuJ4OVkz9t5B/mLWVwO/3w06OmMkgwSJl/lkDU8svBT7aEpiBjWOmLFI8jq5ayEfWLn90o3EpfZEqJmFJ5my46H1WhznrHqxMGhoTGoZsSGmfO3GYznHXiP1dZbVV5/k6bemhrjsyeJc8eL26CZA4TQAqiEiutn+4bNAUZU0DhLC9wU0j3hcpSI5ZVDs7YcCk3EbPWPoUxqLxw3/i1I6ZwSCmc//a7v60plncfZ9bvDUOMznmsVlA6OIIgiDJhjKFJa3Je9fQH/WiBMYZYQnVe1AcEQRAEQVSCuZ2tGNuoQUBCCJejQ+Vo0BQoXmcNgLYmDXM7W/LKkmW5saoLZ/Btp+pzyLoQEgIysJ1++OnRCjIpSGhKzm+3UsovBz/ZOGNIaAriqpLjRK61bET9UnRu4JW3m6Gos97x04nKLX2oHmfycNdJobZqEdpay7+U3TJLz5MQtbLZ/DOBomsgR/fZZiicoUFT8oIWxdrh1492WVH6sVw4G9z548jBsm1Si8vhu65n185C6/q58zp85zFNGb3zWK2gIBBBEARBEARBEARB+JDQFJy/YDK0bOoyrxPLC2fA+fOnIKENr13JjLFQ7ZRSImMKaAqP1M6weiy1/HKoZ9mI+mUo7IZsNZ/RpJNKtbWWjyO4ZS60fNZ7/7jbYYj8nb02YdpRLzbLGIOqWGcclSJHqe0Y2xiri/aPRkZ0EGjfvn343ve+h7PPPhvTpk1DLBbDpEmTcMEFF+C5557zvSeZTOKf/umfMH36dMTjccyYMQNf+cpX0Nvb63u9EAK333475s2bh4aGBkycOBEXXXQRduzYESjXmjVrsGTJEowZMwYtLS1YunQpfv/731ekzQRBEARBEARBEETlWLFoBia1JAAAaUPkPLnqpSGm4JJF032/KxI/GnLCtNPO9d/RmghsZ6nlCyGd1HOllF8O9SwbUb8Mhd2QreYzmnQyHNvqltmPWstcatIQdzt0gbJ0Xy/9qCkcTdk0a6XIUWo76qX9o40RHQS6/fbb8cUvfhE7duzA2WefjS996Ut473vfi1/96lc4/fTT8Ytf/CLn+r6+PixZsgS33XYbTjjhBHzxi1/E7Nmzceutt+Kss85CKpXKq+PKK6/EtddeCyklrr32Wpxzzjl45JFHcNppp2H79u15199///0455xzsHXrVlx66aVYsWIFtmzZgg9+8IN46KGHqqYLorpMenQ1Ztzxbcy449uY9OjqoRanorzdm8bbvWk88Nzu0C+CIAiCIAiCGCm0tyRw9/KF6BzbAM4ZBgwTAxkTKd3MOw9ozqQWtDRovuXUeQwosJ1uOGOY3NaAu5cvRHsBp16U8m09DhgmOC+9/HKoZ9mI+qWadmMKCVNIGELAFBIp3ax6ncOV0aSTUtsq5aA9DWQMx55qKXNcy3VB16p/Skn/5ofdjgkN1u6ZcuysXmyWM4als9tLlqPUdtRL+0cbI/pUpXe9611Yu3YtlixZkvP5M888g/e///343Oc+h49//OOIx+MAgO985zt48cUXcd111+Ff//Vfnev/+Z//Gbfccgtuu+02fO1rX3M+f+qpp7By5UosXrwYv/vd7xCLxQAAn/rUp/DhD38YV199NdasWeNc39PTg2uuuQYTJkzAxo0bMWXKFADAddddh/nz5+Nzn/scli1bhjFjxlRNJ0R1aNzxVzS/ugUAwNP5wUJiZNOn9+GCX1/gvH/4ow+jSWsaQolGH5mUgZ/f9Lzz/u+ufxdiiRG9xBEEQRAEUUPmdLTgoasWYdX6XXhk01709OkQUsAUyInubNpzGEtvXYvzF0zGikUzchwXxVLJ1QPedh7qyyClW0/jMgAfmteB68+dU7JDxk+PEjJ7WLSG8+dPwSWLpg+Jw6eeZSPql0rbzYFkCqvW78Tjr3RjwOWod88rZKv5jCadRGmrbU/9GdNZqnYd6g9cp6rBgWQK//1yV95uD0NIqJzhmOY4/nbh1IL9U8n1s5yi5nS04OvvacSTu3S8cJCXZWf1YrNtjVpZcpTajnpp/2hiRHvIzj//fN/PzzzzTCxduhRPPPEEXnnlFZx66qmQUmLlypVobm7G9ddfn3P99ddfjx/84AdYuXJlThDonnvuAQDcdNNNTgAIAD70oQ/hfe97H5544gns3r0b06ZNAwA8+OCDOHz4ML75zW86ASAAmDJlCq6++mrceOONePTRR3HJJZdUTAcEQdSGjJkZahFGPWZ2uzBBEARBEEQ1aG9J4MvLZuPqs96B37yyH7f8dht6+nN/Awoh0Z1M4Z5n3sBjL+3H3csXYk7H8DrM2N3Ojbt68Jn7/gwG68nnCxZMLtsh4y5/S1cSvWkDzXEVcztbhjznfz3LRtQvlbKbrfuTuHL1BnQnU8h4/rbxm1fIVnMZTeM3TFvd9uSOe0jpb0/VIMemTZ/oCwNUhePckzuq5uwvNf1bEGMTHH87O47vLDqjbDurF5stV45S76+X9o8WRnQQqBCaZm3RV1VLBdu3b0dXVxeWLVuGpqbcJ/ibmppwxhlnYM2aNdizZw+mTp0KAFi7dq3znZdly5Zh7dq1ePrpp7F8+XLnegA4++yzfa+/8cYb8fTTT1MQaBiSPqYTSqrf+W+CIAiCIAiCIEYmRwZ0fP/J7TjUl/8QkMIZYtnDjrsOD+DK1Rvw0FWL0N6SqPszgbwkNAXzp7VB5dXJIp/QFCyc3laVssulnmUj6pdy7OZAMoUrV29A1+EBAIDCALfPvEFVfOcVstV8RpNOgtrqtSc3nAGJAHuqJF4ZOAPcm4EaNUuG7iOpqslQTSppZ0Nps+6fJuXKUer9o2nMDiWjMgi0e/duPPnkk+jo6MC8efMAwDm/Z9asWb73zJo1C2vWrMH27dsxdepU9PX1Yf/+/TjppJOgKPnRSbsc97lAherwuz6IRYsW+X6+efNmTJs2DevWrStaRjVIJpPgQiJx8K9DUn9UVHMATBjO+8Sh7TCUhpLKOvih9+Mg3j9Y1jDRQRi4YaW3i9Kmdet2Vkma+iQlUshkBp0Azz77LBK8/n+8JJNJABiyOaOSmLpExpWz/tlnn4WiVfiRn2HESOpbIhfq25EJ9WttSCaTaGkZXjsyiPpk1fqd6E5av5HjKofhPTeHM8QZR9oQ6E6msGr9Lnx52WzIuj8VqDis0o9UEwQBIH9eSRsiJ29V0LxCEH6Uuk5VU4bUENm0d9UaCWtxJRluD6gQpVOdR3rqGF3XsXz5cqTTadxyyy1OAOfIkSMAgNbWVt/77D8Y7euiXl/sHr/rCYIgCIIgCIIgiPohpZt4ZOM+6KZATOGBQRHGrB1BuinwyKa9NT2EmyCI4QXNK0QlqQd7klIOuQyDlVS+yJEEBcVGD6NqJ5AQApdeeinWrVuHK664wknTNtxYv3697+f2DqHFixfXUhyHdevW4e3eNFLjh8fTKKrRB8kHh0Bq3CwYalOBO0Yn9g6gKP26+N3TqiVOXdKn9yH26OC5YGeccQaatPq3JfuJ86GaMypJJmVg5xN/ct6fccZ7EEuMqiUuh5HUt0Qu1LcjE+rX2kC7gIhKsKXrCA736+Bg4LywZ4lzBg6Gnj4dW7qSw/JpW9r4QxDVp5x5hVIoEV7qwZ6ExJDLQIRjOP42IUpj1OwEEkLgM5/5DB544AFcfPHFuOuuu3K+t3fnBO3EsdN02NdFvb7YPX7XEwRBEARBEARBEPVDb9qEhMwJjrj9W6qS6+xizHrKtjdt1J2jhQI8BFEf+M0rmmsu8frQ3fMKQXjxsyfFZUSakusKroY9yez/gmxaYcFrpX95pcNoK1BBRJ39NiGqx6gIAgkhcNlll+G+++7DRRddhHvvvRfcc7hlsTN5vOf5NDU1oaOjA2+88QZMM3+7ot/5P4XqKHYmEUEQBEEQBEEQBDG0NMcVMLCcgE5CU6ByhpjKoXr+zpTSckA1x9W6S7hSb0Epghit+M0rCufZOYUhoeWeQ+2eVwjCi+86pXJoipV6zfuwQjXsiWX/55ZB5dyqnzPEteC1stLQAw/FoB8Do4URHwSyA0CrVq3CJz/5Saxevdo5B8jNrFmz0NnZiWeffRZ9fX053/X19eHZZ5/Fsccei6lTpzqfL1myxPnOy5o1awDkpvVYsmQJAOCJJ54IvN6+hhhetGxcj/FP/Qbjn/oNWjb6p+sjCIIgCIIgCGJ4M7ezFWMbNQhIiOzjs5xZTtqY5+lqISQEJNqaNMztbIGkqAtBED74zSsAEFM4EpoC7vJie+cVgvDiZ0+MMcRVBTGV5+yMqZY9cQZ/m1bJpusN+mkyehjRQSA7BdyqVatw4YUX4v777/cNAAHWhHj55Zejt7cXN910U853N910E3p7e3HFFVfkfP7Zz34WAHD99dcjk8k4n//2t7/F2rVrcfbZZ2P69OnO55/4xCfQ2tqK22+/HXv37nU+37t3L+644w5MmDAB5513XtntJmrPhKd+g8k/X4nJP1+JCU/9ZqjFIQiCIAiCIAiiCiQ0BecvmAxN4ciYIjCwI6VExhTQFI7z509BQlPq7lnbUp6OpgeqCaLylDOvEISXerAnxtiQy+DIUvESRxYUBBo9jOi9o9/61rdw3333obm5Gccffzy+/e1v513z8Y9/HKeccgoA4Ktf/Sp+9atf4ZZbbsGmTZuwYMECbNy4EU888QROO+00fOELX8i5d+nSpbj88suxcuVKLFiwAOeeey7279+PX/ziFxg3bhxuv/32nOvb2tpwxx13YPny5ViwYAE++clPAgB+8Ytf4ODBg/jFL36BMWPGVEUXBEEQBEEQBEEQRPmsWDQDj720H12HB5A2BGIKzzn4WgjLqQUAHa0JXLIo+2BgnTlaSnH81FkTCGLEUPK8QhA+1IM91YMMgBWQIoKRtLKPGkZ0EGjnzp0AgN7eXtx8882+18yYMcMJAjU1NeHpp5/GjTfeiIcffhhPPfUUOjo68KUvfQk33HADGhoa8u6/++67MW/ePPzwhz/E97//fTQ3N+O8887DzTffjJkzZ+Zdf/HFF2PChAn4f//v/+EnP/kJGGNYuHAhvv71r+MDH/hAxdpOFEcwDa9N+0TOe4IoBY1r+MTsT+S8J2qLonCctHhyznuCIAiCIIhq0N6SwN3LF+LK1RvQnUxhwDDBwayDrSUgIKEpHB2t1nXtLQkAgG4KmCJ7WDYYUro5pE/ySynrSh6CGM2UOq8QhB/1YE+VlKGS6yftfLHWfyGtANBbR9O0/o8SRnQQ6N5778W9994b6Z7W1lbcdtttuO2220JdzznHtddei2uvvTZ0Heeccw7OOeecSHIRlUcoMWx+x1UVKWvn578GZpoAABmQcnA08cBzuyPf86l3T6uCJLUhpsRw1TsrY0tEaSgax2nnHjvUYhAEQRAEMUqY09GCh65ahFXrd+GRTXvR06c7zqm2Jg3nz5+CSxZNR3tLAgeSKaxavxP3/2k3BnTTKWPprWtx/oLJWLFoRk0durY8B5IpmC5nWBh56HlqgqgeUeYVgihGPdhTuTJUYv2kdWsQW5/9GdPZ/7Nu+9tD9nuEqC0jOghEELVCNDQNtQgEQRAEQRAEQdSQ9pYEvrxsNq4+6x3Y0pVEb9pAc1zF3M4W54narfuTzlPQuiFy7u9OpnDPM2/gsZf24+7lCzGno/oHYrvlMT1PQw+FPARB5BJmXiGIsNSDPZUqQ72tn8Mdtz7dy78QkvQ5SqB8OQRBEARBEARBEARRIglNwcLpbVhy/EQsnN7mOLUOJFO4cvUGdB0egBASqpL7PHKDqkAIia7DA7hy9Qa8mUxVVU6vPF785KGjFAhiaAiaVwiiFOrBnqLIUG/r53Cn0PqvcEb6HCVQEIggCIIgCIIgCIIgKsyq9TvRnXWkxFUO7omocM4QV60/ybuTKaxav6um8njjO7WWhyAIgiD8qLf1c7jj1acX0ufogIJAxKiFCx3H7/yp8+JCH2qRiGGKbur46dafOi/dJFuqNaYh8NIf9jgv07NdnCAIgiAIopakdBOPbNwH3RSIKRwsYEsNYwwxhUM3BR7ZtBcp15kH9SgP7QwiCIIgqkm118/8fbAjm3r7PUIMHXQmEDFq4SKDE3f8yHm/Y8rHIbhWUlnaobfA9AwAQGox6OMmVkRGYniQERn86JVBW/r4Oz4OTSnNlojSMA2BjWsGn1aZc3oHFJ8nXAiCIAiCIGrBlq4jONyvg4OB88KRE84ZOBh6+nRs6Upi4fS2upFn2/6jFZeFIAiCIIKo9Po52h9eqLffI8TQQUEggqgAU3/yfTS/ugUA0Hv8XOz40reHWCKCIAiCIAiCIIaK3rQJCZnjfFJczhevU4oxQEKiN23UTJ6YypHO7p7WPOctVFsegiAIgvCj3tbP4U6QPs3s2UCakvvwLOlz5EJBIGLUIpiKPZM+mPOeIAiCIAiCIAiiXJrjChgYpBxMPMMZQ0LjMIXMc7pICTAwNMer8zeJnzyqwiDBIaVErMbyEARBEIQf9bZ+Dnf89JlQOTKmAGcsJ8AGkD5HMtSjxKhFKHFsOPFrQy0GQRAEQRAEQRAjjLmdrRjbqKE7mYIQ0knBonIOb8ZaISQEJNqaNMztbKmZPAwMMSU/NYxbnhOrJA9BEARB+FHt9dMdDBkN+K7/jCGuKnnX1uL3CDF00IEJBFEB3vzw32L3338Ru//+i3jzw3871OIQBEEQBEEQBDGEJDQF5y+YDE2xnrYNcjpJKZExBTSF4/z5U5DQ8p0yI1EegiAIgvCD1qvKQvokbCgIRBAVoHfOKTj8rsU4/K7F6J1zylCLQxAEQRAEQRDEELNi0QxMakkAANKGgBC5jhchpHMmT0drApcsmj6q5CEIgiAIP2i9qiykTwKgIBBBEARBEARBEARBVJz2lgTuXr4QnWMbwDnDgGFiIGMipVv/DhgmOGeY3NaAu5cvRHvWQVNP8uQniyMIgiCIfKSUMIWEIQRMIZHSzZLLquT6aZ+HY8u2ed+RsmQbjtTb7xFiaKAzgYhRCxM6pnU/4bzfPelsSK4NoUSjmwee2x35nk+9e1oVJCEIgiAIgiCIyjCnowUPXbUIq9bvwiOb9qKnT4eEBANDW5OG8+dPwSWLptfM4VJv8hAEQRDDmwPJFFat34n+jAn3/pKlt67F+QsmY8WiGSWtKZVYrw4kU7hn3Y4c2b7y0Mv4l99uK0u24Qit/wQFgYhRiyIymL/t35z3+9rfB4OCQARBEARBEESdc//99+OZZ57Bhg0b8MorryCTyeAnP/kJLr300rxrb7zxRnzzm98MLOuNN97AjBkzqicsgfaWBL68bDauPusd2NKVRG/aQHNcxdzOliHJuV+OPIz2BhEEQRBZtu5P4srVG9CdTMF70kx3MoV7nnkDj720H3cvX4g5HS2Ryy9nvXJkO5Irm26Kisg2HKm33yNEbaEgEEEQBEEQBEEQxDDi61//Onbt2oUJEybg/7d35+FRVOkex3/dnaSzJ8giRCEBDE5EBJUtRkgYJGFcQRBEZbsDgiPjhsuoCOgo6gx3Rgd93HLZB3DBQR2QfZNVEFRENlkCCMRRlpCEhKT73D+YtDRZO3TSSef7eR4eUqdOVb3V51R1V79dp5o0aaKMjIxylxk8eHCJyZ7o6GjvB4gSBQfadH1sPV+H4VKReCwWkj4AgOIys/I0YsZXOnLyTInzQwJsOutw6sjJMxox4yt9NDKx0neZePr+eX5sFyanggNtkpHXYquNatrnEVQPkkCAFzR7b6JC9+2SJOW2uFIHhz/u44gAAADgr9LT0xUfH6/Y2Fi98sorevrpp8tdZsiQIUpJSan64AAAgN+bvv6AjmXlSZLsAVYVnnV/zo7VapHdYlV+4bk7b6avz9DjaVdWf2w2i3Kd7qkgX8YG+ApJIMALArJOKuj4z5Kksw0u9XE0qG6hAaH6vM/nrukga5APo6mbAu02DXwx0TVtC7D6MBoAAKrWTTfd5OsQAABAHZVX4NDHW35UgcOpkABbqXeNWiwWBdmsOlPo0MdbD2vUb6+o8mHHisdWcj1fxAb4EkkgALhIFotFdpvd12HUaRaLRQF8YAMAoFSrV6/Wxo0bZbVaFR8fr5tuuknh4eEVXj4xMbHE8u+++07NmjXT6tWrvRWqR7KysiTJZ9v3d05jVOgodE1/u+1bOY/Wnq8R6B8oDX0DZaF/lG3PCYd+yc6TRZLTOOR0FK9z/nuHRdLPp/P0zwWrFV+vaq/bL4xNTvf5DodDzvMSQ57GRt9AaUrrG1lZWYqM9P1zp2rPpzegBjvd+loV1G8oScprfLmPowEAAADcjRs3zm06Ojpar7/+ugYNGuSjiAAAQG10ptBI5lwCpUigVSr4b8KlxIE5zH+X80Fs5yuxvJpiA3yJJBDgBf/p2cfXIQAAAADFtG3bVpMnT1ZKSoqaNGmiY8eO6d///rfGjh2rIUOGKDo6Wrfffnu561m/fn2J5UV3CHXt2tWrcVdU0a8tfbV9f+d0GgUsX+yavqbNNboxvoEPI/IM/QOloW+gLPSPsoVlHNebX38pR6FTAbZzd88E2CSrwykjKdBmkeW8dEuBwyGbzarE9tfq+th61R5bqM2owOFUgNUqm9U9DeRpbPQNlKa0vlET7gKSSAIBAAAAgN/q3bu323RcXJxGjRqlhIQE9ejRQ2PGjKlQEggAAECSWsdEKTo0UMey8uR0Gln/m1gJtBW/BcjpNHLKqF5YoFrHVP2X4SXFZrVYZA8oPtRbdccG+BJJIAC4SDkFObp93q9fnnza61OFBYb5MKK652xeoWaN3+iavmd8JwUF8xYHAEBpunfvrpYtW2rbtm01Zqxy1DylPVAbAFB3BQfadOd1l+m9L/brrMMpu8UqSwlvGMYYnXU4FWiz6s5rL1dwNTzHtybHBvhSSaM0AgA8ZIxx/YNv0AYAAHimQYNzw3rl5ub6OBLUFiSFAACSNDgxTo0jgyVJ+YVOOZ3u1+FOp1F+4bmHBDWJCtagxFhiA3yIn0kDqLVmbTzo8TL3dGpWBZEAAADULjk5Odq+fbvCwsJcySAAAICKaBQZrHcGXq8RM77Ssaw8nSl0yCqLLBbJGMkpo0CbVU2iztVr9N+kTF2PDfAVkkCAFzRcPE9BPx2RJJ1tFKP/pPbybUAAAACo806fPq2jR4+qVatWbuVnzpzR8OHDdfr0aQ0dOlQBAVwWomQlDaEDAIAkJTSJ1EcjEzV9fYY+3npYJ3IKZGRkkUX1wgJ157WXa1BirE+SLDU5NsAX+LQPeEHEts0K371dkpTdqjVJIAAAAFSZ9PR0rVmzRpK0bds2V9nKlSslSTfeeKOGDRumX375Rb/5zW/UoUMHJSQkqHHjxsrMzNTSpUt1+PBhtWnTRn/96199tRsAAKCWaxQZrMfTrtSo316h7UeylJ1fqHB7gFrHRPr8OTs1OTagupEEAgAAAIBaZM2aNZo2bZpb2dq1a7V27VrX9LBhw3TJJZfoD3/4g7788kstWLBAJ06cUEhIiBISEvTQQw9p1KhRCgkJqe7wAQCAnwkOtOn62Hq+DqNENTk2oLqQBAK8wBEWoYKoeq6/AQAAgKoydepUTZ06tdx6kZGReuONN6o+IAAAAAA1FkkgwAsyRj7l6xAAAAAAAAAAAHBDEghAnTJr40GPl7mnU7MqiAQAAAAAAAAAqpbV1wEAAAAAAAAAAADA+0gCAQAAAACAcll8HQAAAAA8xnBwqLOclkDtjr3HbRqojEBroO5JuMdtGtXLZrPqmm6Xu00DAAAAAAAAdR1JINRZTluQvm85zCvrCtv9nQKysyRJheGRyml1tVfWi9ohyBakYW2805dQObZAq67vGefrMAAAAAAAAIAahSQQ4AWXfjZH4bu3S5KyW7XWvtEv+jgiAAAAAAAAAEBdx3g5AAAAAACgRMYYOZxGhU6ndmeeVl6Bw9chAQAAwAPcCQQAAAAAANxkZuVp+voDyj3rkPlv2YTPd+qd1ft053WXaXBinBpFBvs0RgAAAJSPJBDqLKuzQK0yZrmmd8feI6c1sFLrOjxolKz5eZIkp50LIX8za+PBMuc7TIE2H//MNd3+kts0sHPLqg4L53EUOvXtisOu6Wu6XS5bADe7AgAAVMaOo1kaMeMrHcvKcyWAJKnQ4dSxrDy998V+ffbNUb0z8HolNIn0WZwAAAAoH0kg1FlW51n9Zv801/QPTftWOgl0tmFjb4WFWqjQWaAvT/zLNd0uuqcPo6mbHIVOfb3012Rd6y4xJIEAAAAqITMrTyNmfKUjJ88Um2cPsMoii846nDpy8oxGzPhKH41M5I4gAACAGoxvyAAAAAAAgCRp+voDOpZ1bpQDewk/qrFaLa7yY1l5mr4+o1rjAwAAgGe4Ewh1ltMSoIwmv3ObBgAAAIC6Kq/AoY+3/KgCh1MhATZZLJYS61ksFgXZrDpT6NDHWw9r1G+vUHCgrZqjBQAAQEXwrTfqLKfNrq0JT/g6DAAAAACoEbYfOaWTuQWyyiKrtaQE0K9lVqtFVll0IqdA249k6frYetUXKAAAACqMJBDgBZaz+bI4nZIkY7XKBNl9HBF8bdbGg+VXusA9nZpVQSQAAABAxWTnO2RkdP4NQDaL5DDn0j/WC0aHs1gkI6Ps/MJqjRMAAAAVRxII8ILmk/6s8N3bJUnZrVpr3+gXfRwRAAAAAHgm3G6TRRYZY1xlwYE2FTqNbFaLLHK/O8gYySKLwu18tQAAAFBTFX/KIwAAAAAAqHNax0QpOjRQThk5necSQRaLRYE2q6wXPB/I6TRyyqheWKBax0T6IlwAAABUAEkg1FkWZ4GaH/7E9c/iLPB1SAAAAADgM8GBNt153WUKtFl11uF0uyPofMYYnXU4FWiz6s5rL1dwoK2aIwUAAEBFcc826iyb86za7n7dNX2o8U0qtAZWal2/dE1T1jUdJEkF0Zd4JT7UPTxHCAAAAL42ODFOn31zVEdOnlF+oVNBNqus1l/vAnI6zyWAJKlJVLAGJcb6KlQAAABUAEkgwAtOdeji6xAAAAAA4KI1igzWOwOv14gZX+lYVp7OFDpklUUWy7lnADllFGizqknUuXqNIoN9HTIAAADKQBIIAAAAAAC4JDSJ1EcjEzV9fYY+3npYJ3IKZGRkkUX1wgJ157WXa1BiLAkgAACAWoAkEABcpCBriB5sOdU1banGx60xhNw5gXabBr+c5Jq+4LnFAAAA8FCjyGA9nnalRv32Cm0/kqXs/EKF2wPUOiaSZwABAADUIiSBAOAiWSwWWcSFsC9ZLBYSPwAAAFUgONCm62Pr+ToMAAAAVFL1/VwdAAAAAAAAAAAA1YY7gQAvuGz2Owo5uE+SdKZZC/04YISPIwJKVzSEXHB2vtt0WfxxCDkAAAAAAADA35EEArzAfuSQQvftliQ5AwJ9HA2qmzFGRk7XtEVWWfxsbLKa/uwhY4yM+XXaYpHftQEAAAAAAADgKZJAAHCRzjrP6N39v979dX/zd2S3hfoworqnIN+hf47b4Jq+9/nOCgrmLQ4AAAAAAAB1G9+QAV5wJraljM0mScq7PM63wQA1RE2/ewgAAAAAAADwdySBAC842neor0MAAAAAAAAAAMCN1dcBAAAAAAAAAAAAwPu4EwgAUGNUZgg5STIFTp0563BNf7j5sCyBpf/OgWHnAAAAAAAAUBeQBPKBTZs2ady4cVq3bp0KCgrUpk0bPfbYY+rXr5+vQwOAOoHnFQEAAAAAAKAuIAlUzVasWKG0tDQFBwfr7rvvVkREhObOnav+/fvr0KFDGj16tK9DBAAAAAAAAAAAfoAkUDUqLCzU8OHDZbVatXr1arVr106SNHbsWHXs2FHPPPOM+vbtq9jYWN8GCo/VW7dcQb/8JEk6W7+RTtzwWx9HBMDbuHsIAAAAAAAAtQ1JoGq0fPly7d27V0OHDnUlgCQpKipKzzzzjIYMGaJp06Zp7NixvgsSlVJv/XKF794uScpu1ZokEABJJI4AAAAAAADgWySBqtHKlSslSampqcXmpaWlSZJWrVpVnSEBAGqYyiSOLhScne+1dV0skloAAAAAAAC+YzHGGF8HUVfcdddd+uijj7R582Zdf/31xeZHRESoXr16Oniw7C/tEhMTSyzfvHmzAgMD1bx5c6/E6ymHwyEjSRarT7bvqbAApxbenOma7rngUuUUVi7254xRwn//3iHpzxbLxQdYUxjnuf9rSbv6RJAUOPzX16fgPad01ofxVJQftW2gza6BHX69i3LGphdU4Mj3YUQ+5kdtW1cFWEt+H3E4HJIkm83mle0UOj3/GFhabKg8b7crSrZ//35FREQoMzOz/MqosEsvvVS5ubm6+uqrfbL9rKwsSVJkZKRPto+ajf6B0tA3UBb6B0pD30BpSusb3333nUJDQ31+DcKdQNXo1KlTks4N/1aSyMhIV53KCAgIUEREhM9ORN99950k+ewCsDLuWF3P9bc9XLJXcj1vXjB9SaUjqnlqY7v6xD/P+zv0v/9qOH9r23k7/+L6OyIiWFKw74LxMX9rW/yKtvVPtGv1KPrBFbzL169p0Q/oOH5QEvoHSkPfQFnoHygNfQOlKa1vhIaG+vzzskQSqFZav369r0MoUdEdSjU1PlQO7eq/aFv/Rdv6L9rWP9GuqM127tzp0+1z/KAs9A+Uhr6BstA/UBr6BkpT0/sG48RUo6I7gEq72ycrK6vUu4QAAAAAAAAAAAA8QRKoGsXHx0uS9uzZU2zesWPHlJ2d7aoDAAAAAAAAAABwMUgCVaPk5GRJ0uLFi4vNW7RokVsdAAAAAAAAAACAi0ESqBp1795dLVq00KxZs/T111+7yk+dOqUJEyYoKChIgwYN8l2AAAAAAAAAAADAbwT4OoC6JCAgQOnp6UpLS1PXrl119913KyIiQnPnzlVGRoYmTpyouLg4X4cJAAAAAAAAAAD8gMUYY3wdRF3z5Zdfaty4cVq3bp0KCgrUpk0bPfbYY+rfv7+vQwMAAAAAAAAAAH6CJBAAAAAAAAAAAIAf4plAAAAAAAAAAAAAfogkEAAAAAAAAAAAgB8iCQQAAAAAAAAAAOCHSAIBAAAAAAAAAAD4IZJAAAAAAAAAAAAAfogkEAAAAAAAAAAAgB8iCQRt2rRJN998s6KjoxUWFqbOnTvrgw8+8Ggd+fn5euGFFxQfH6/g4GDFxMTo/vvv108//VTqMv/85z/VsWNHhYWFqV69err11lu1ZcuWi90dnKe62/bAgQOyWCyl/hs/fryX9gwX27Z79+7V+PHjdfvtt+uyyy6TxWJRXFxcucstWrRIycnJioiIUGRkpLp166Zly5ZdxJ7gQr5o27KO2yFDhlzcDkHSxbWrMUaff/65HnjgAV1zzTWKiopSaGio2rZtqwkTJigvL6/UZTlmq54v2pZjFvDO51zUDnFxcaWe81JSUorV59rU/8ycOVMjRoxQ+/btZbfbZbFYNHXq1FLrZ2Vl6bHHHlNsbKzsdrvi4uL0xBNPKDs7u8T6TqdTkyZNUps2bRQSEqKGDRtqwIAB2rdvX6nb4DNWzeBJ3xg/fnyZn6EOHDhQ4nKetvXu3bvVr18/NWjQQCEhIWrbtq3eeustGWO8sMeoqB9//FGvvfaaUlNT1axZMwUFBalx48bq06ePNm7cWOIynDvqBk/7hr+cOwK8shbUWitWrFBaWpqCg4N19913KyIiQnPnzlX//v116NAhjR49utx1OJ1O3XHHHVq0aJE6d+6sPn36aM+ePUpPT9eyZcu0YcMGNWzY0G2Zl156SWPGjFFsbKxGjhyp06dPa86cObrhhhu0bNkyJSUlVdUu1xm+altJatu2rXr16lWsvKSLNHjOG237xRdf6Pnnn5fNZlNCQoKOHTtW7jIzZ87UwIED1bBhQ9eXjO+//7569OihDz74QH379r3YXavzfNW2khQbG1vil8ft2rXzcC9woYtt1/z8fN18882y2+1KSUlRWlqa8vLytGjRIj377LOaN2+eVq5cqdDQULflOGarnq/aVuKYRd3mjfdL1C5RUVF65JFHipVf+EMXrk3905gxY5SRkaEGDRqoSZMmysjIKLVuTk6OkpOT9fXXXys1NVUDBgzQ1q1bNXHiRK1atUqrV69WcHCw2zIjRoxQenq6WrdurYceekhHjhzRBx98oMWLF2vDhg2Kj493q89nrJrDk75RZPDgwSX+SC46OrpYmadt/f333+uGG27QmTNn1K9fP8XExGj+/Pn6wx/+oO+//16TJk2qzG6iEiZNmqRXX31VLVu2VGpqqho2bKg9e/Zo3rx5mjdvnmbNmqX+/fu76nPuqDs87RtFav25w6DOKigoMC1btjR2u91s3brVVX7y5EnTqlUrExQUZA4cOFDueiZPnmwkmQEDBhin0+kqf+utt4wkc//997vV3717twkICDCtWrUyJ0+edJVv3brV2O12k5CQYBwOx8XvYB3mq7bdv3+/kWQGDx7srV3BBbzVtnv37jXr1683ubm5xhhj7Ha7iY2NLbX+8ePHTXR0tGnQoIE5dOiQq/zQoUOmQYMGpkGDBiYrK6vS+wXfta0xxkgyycnJFxE9SuONdj179qx58cUXzfHjx4uV33bbbUaS+ctf/uI2j2O26vmqbY3hmEXd5q33S9QesbGx5X6WKcK1qX9asmSJ67h++eWXjSQzZcqUEuuOHTvWSDJPPfWUW/lTTz1lJJkJEya4lS9fvtxIMl27djX5+fmu8gULFhhJJjU11a0+n7FqFk/6xrhx44wks2LFigqtuzJt3bVrVyPJLFiwwFWWn59vunTpYiSZdevWebaDqLS5c+ealStXFitfvXq1CQwMNPXq1TN5eXmucs4ddYenfcNfzh0kgeqwRYsWGUlm6NChxeZNnTrVSDLPP/98uetJTEw0kopdbDmdTtOiRQsTFhbm+jLSGGOefvppI8lMmzat2LqGDBliJJlVq1ZVYo9QxFdtSxKo6nmrbS9UXqLgnXfeKXXd48ePL/WYRsX5qm2N4QvlqlRV7Vpk3bp1RpK55ZZb3Mo5Zquer9rWGI5Z1G1Vfeyh5vEkCcS1qf8r64t+p9NpYmJiTHh4uMnOznabl52dbcLDw02LFi3cygcMGFBqO6ekpBhJJiMjw1XGZ6yay9tJIE/beteuXUaS6datW7H6K1euLPW9C9UvNTXVSDKbNm0yxnDuwK8u7BvG+M+5g2cC1WErV66UJKWmphabl5aWJklatWpVmevIy8vTxo0bdeWVVyo2NtZtnsViUY8ePZSTk6PNmzd7dbsom6/atsiRI0f05ptvasKECfq///s/7d27t5J7ggv56vjhuK16vn6NT548qXfffVcTJkzQ22+/rW3btlXZtuqSqm7XwMBASVJAgPsIv77uT3WBr9q2CMcs6irOb3VTfn6+pk6dqgkTJuiNN94occx+rk2xZ88eHTlyRElJSQoLC3ObFxYWpqSkJO3bt0+HDh1yla9cudI170Il9QH6TO23evVqvfrqq/rrX/+qefPmlfq8F0/buqz6N954o8LCwugbNcSFn7M5d6BIWddgtf3cwTOB6rA9e/ZIUrExKiWpcePGCg8Pd9Upzd69e+V0Oktcx/nr3rNnj7p06eL6Ozw8XI0bNy6zPirPV21bZMmSJVqyZIlr2mKx6N5779Xbb79d7A0VnvFG23p7uxy33uGrti3yzTffaMSIEW5lPXv21LRp09SoUaMq266/q+p2nTx5sqTiHxg5Zquer9q2CMcs6ipfv1/CN44dO6ahQ4e6lXXo0EGzZ89Wy5YtJXFtirLPD0XlixYt0p49e9S0aVPl5OTo6NGjuvrqq2Wz2Uqsf/56y9sGfaZ2GDdunNt0dHS0Xn/9dQ0aNMit3NO2Lqu+zWZT8+bN9f3336uwsLDUH/mg6h08eFBLly5VkyZN1KZNG0mcO3BOSX3jfLX93MGdQHXYqVOnJJ17yGZJIiMjXXUuZh3n1yv625P68Jyv2jY0NFTPPfecvvrqK508eVLHjx/X0qVL1bFjR82cObPYiRGe80bbenu7HLfe4au2laTRo0dr3bp1+vnnn5WVlaV169bpd7/7nRYuXKhbb71VDoejSrZbF1Rlu37++ed65513lJCQoN///vcV3i7HrHf4qm0ljlnUbb58v4RvDB06VMuWLVNmZqZycnK0detWDRw4UJs2bVL37t11+vRpSVybwvM+UNk+U9oy9JmarW3btpo8ebL27dunM2fOaP/+/Zo0aZIsFouGDBmiTz/91K2+p21dkf7kdDpd5yxUv4KCAg0cOFD5+fl69dVXXQkczh0orW9I/nPuIPUMwGsaNWqkF154wa2se/fuSkxM1HXXXaePP/5YW7Zs0XXXXeejCAGUZOLEiW7TiYmJ+ve//63f/va3WrVqlT755BPdeeedPooOJdm0aZP69++vqKgoffjhh7Lb7b4OCV5SkbblmAVQl1z4y9t27dpp+vTpkqQZM2bovffe02OPPeaL0ADUIr1793abjouL06hRo5SQkKAePXpozJgxuv32230UHaqa0+nUkCFDtHr1ag0fPlwDBw70dUioIcrrG/5y7uBOoDqsKMNYWqY5Kyur1CykJ+s4v17R357Uh+d81balCQ0NdZ1E165dW259lM4bbevt7XLceoev2rY0VqtVw4cPl8RxezGqol03b96s1NRUWa1WLVq0SK1bt/Zouxyz3uGrti0Nxyzqipr2fgnfKRoSs+icx7UpPO0Dle0zpS1Dn6mdunfvrpYtW2rbtm2uNpQ8b+uK9CeLxaKIiAivxY6KcTqd+p//+R/NmjVL9913n95++223+Zw76q7y+kZZatu5gyRQHVbWmJPHjh1TdnZ2qeNhFmnRooWsVmup41aWNK5hfHy8srOzdezYsQrVh+d81bZladCggSQpJyenQvVRMm+0rbe3y3HrHb5q27Jw3F48b7fr5s2b1aNHDzmdTi1atEgdOnTweLscs97hq7YtC8cs6oKa+H4J37jwnMe1Kcp7rsaFbRoWFqYmTZpo//79JQ6lWlqfKW0b9Jnaq+h8kpub6yrztK3Lqu9wOLR//341b96c5wFVM6fTqaFDh2ratGkaMGCApk6dKqvV/etwzh11U0X6Rnlq07mDJFAdlpycLElavHhxsXmLFi1yq1OakJAQdezYUbt27VJGRobbPGOMlixZorCwMLVv396r20XZfNW2Zdm4caOkc7dNovJ8dfxw3Fa9mvgac9xePG+2a1GSwOFwaOHCherUqVO1bBcl81XbloVjFnUB5zcUufCcx7Up4uPjFRMTo7Vr1xb7QUROTo7Wrl2r5s2bq2nTpq7y5ORk17wLFfWBrl27utWX6DP+JCcnR9u3b1dYWJjrC13J87Yuq/6aNWuUk5ND36hmRV/yT58+Xf3799eMGTPcnvVShHNH3VPRvlGWWnfuMKizCgoKTIsWLYzdbjdbt251lZ88edK0atXKBAUFmf3797vKjxw5Ynbs2GFOnjzptp7JkycbSWbAgAHG6XS6yt966y0jydx///1u9Xft2mUCAgJMq1at3Na1detWY7fbTUJCgnE4HN7d2TrGV227ZcsWt3pF5s6da6xWq6lXr16xbcAz3mrbC9ntdhMbG1vq/OPHj5uoqCjToEEDc+jQIVf5oUOHTIMGDUyDBg1MVlZWZXcLxndt++2335qzZ88WK1+7dq0JDQ01gYGB5ocffvB0d/Bf3mrXzZs3m+joaBMeHm7WrFlT7nY5Zquer9qWYxZ1nafHHmq3HTt2mJycnBLLGzdubCSZVatWucq5NvV/L7/8spFkpkyZUuL8sWPHGknmqaeecit/6qmnjCQzYcIEt/Lly5cbSaZr164mPz/fVb5gwQIjyaSmprrV5zNWzVVW38jKyjK7du0qVp6bm2sGDBhgJJmhQ4e6zatMW3ft2tVIMgsWLHCV5efnmy5duhhJZu3atRe5l6goh8NhBg8ebCSZu+66yxQUFJRZn3NH3eFJ3/Cnc4fFGGMuPpWE2mrFihVKS0tTcHCw7r77bkVERGju3LnKyMjQxIkTNXr0aFfdIUOGaNq0aZoyZYqGDBniKnc6nbr55pu1aNEide7cWcnJyfrhhx/08ccfKy4uThs3blTDhg3dtvvSSy9pzJgxio2NVZ8+fXT69GnNmTNHZ8+e1bJly5SUlFRdL4Hf8kXbpqSkaO/evUpMTNTll18uh8OhLVu2aM2aNbLb7frggw9qxcPSajpvtO3PP/+sxx9/3DU9Y8YMhYSEqG/fvq6yiRMnuv2aYebMmRo4cKAaNmyo/v37S5Lef/99/fzzz3r//fd11113VeFe1w2+aNshQ4Zo/vz5uvHGG9W0aVMFBgZq+/btWrx4sSwWi958802NHDmy6nfej11sux4/flxXXHGFTpw4oZ49e5Z4l0h0dLQeeeQRtzKO2arni7blmAU8O/ZQu40fP15/+9vf1LVrV8XGxiosLEy7d+/WggULVFBQoKeffloTJkxw1efa1D+lp6drzZo1kqRt27Zpy5YtSkpK0hVXXCFJuvHGGzVs2DBJ536ZnZSUpG+++Uapqam67rrrtGXLFi1evFgdOnTQqlWrFBIS4rb+4cOHKz09Xa1bt9Ytt9yio0eP6v3331d4eLjWr1+vVq1audXnM1bNUdG+ceDAAbVo0UIdOnRQQkKCGjdurMzMTC1dulSHDx9WmzZttGLFCtWvX99t/Z629fbt25WUlKQzZ86of//+atKkiebPn6/t27dr1KhRmjRpUjW8KpDOvX88//zzCg8P18MPP1ziUFq9evVSu3btJHHuqEs86Rt+de646DQSar2NGzeanj17msjISBMSEmI6duxo5syZU6xeUZa0pF9V5OXlmfHjx5uWLVuaoKAg07hxYzNs2DBz7NixUrc7c+ZM0759exMSEmKioqLMzTffbL766itv7lqdV91t+95775mePXuapk2bmpCQEGO3202LFi3MsGHDzI4dO6piF+usi23b/fv3G0ll/ivpV7Sff/656dKliwkLCzPh4eEmOTnZLFmypIr2sm6q7rb9+OOPzR133GGaN29uwsLCTGBgoGnatKkZMGCA2bhxYxXvbd1xMe1akTYt7W4vjtmqV91tyzELnFPRYw+128qVK02/fv1MfHy8iYyMNAEBAaZx48bmjjvuMIsWLSpxGa5N/U/Re2hp/wYPHuxW/+TJk+aRRx4xTZs2NYGBgaZZs2Zm9OjRpf7K3uFwmNdff920bt3a2O12U79+fdO/f/8y76zlM1bNUNG+cerUKfPggw+aDh06mIYNG5qAgAATERFhOnbsaP7yl7+Y3NzcUrfhaVvv3LnT9O3b11xyySXGbrebNm3amDfffLPEUVNQdcrrGyVdS3PuqBs86Rv+dO7gTiAAAAAAAAAAAAA/ZPV1AAAAAAAAAAAAAPA+kkAAAAAAAAAAAAB+iCQQAAAAAAAAAACAHyIJBAAAAAAAAAAA4IdIAgEAAAAAAAAAAPghkkAAAAAAAAAAAAB+iCQQAAAAAAAAAACAHyIJBAAAAAAAAAAA4IdIAgEAAAAAAAAAAPghkkAAAAAAAAAAAAB+iCQQAAAAAAAAAACAHyIJBACAH+vVq5cSEhLkcDg8XjY9PV02m03btm2rgsgAAACAuiMlJUUWi8XXYVSYMUbXX3+9UlNTK7X8mDFjFBERoczMTC9HBgDwFEkgAECNcODAAVksFvXs2dPr6x4/frwsFotWrlzp9XXXZKtWrdInn3yicePGyWazebz84MGDFRsbqyeeeKIKogMAAABqJ4vF4tG/2mj69OnasmWLXnjhhUotP3r0aFmtVo0bN87LkQEAPBXg6wAAAEDVeO655xQbG6t+/fpVavnAwEA9+uijeuihh7R27VolJSV5OUIAAACg9ikpsfHaa6/p1KlTpSY9pk+frtzc3KoOzSucTqfGjx+vLl26qHPnzpVaR7169TRs2DC9/vrrevrppxUbG+vlKAEAFUUSCAAAP7R9+3Z98cUXevbZZ2W1Vv7G37vvvluPPfaY3n77bZJAAAAAgM6NNHChqVOn6tSpUyXOk6RmzZpVbVBe9Pnnn+vAgQN69tlnL2o99913n/72t78pPT1df/7zn70UHQDAUwwHBwCodU6dOqVXX31VycnJiomJUVBQkGJiYjRo0CDt3bvXrW5KSoqef/55SVK3bt1cQzLExcW51fvpp5/06KOP6oorrpDdbleDBg3Up08ffffdd8W2HxcXp7i4OGVnZ+vhhx9WTEyM7Ha7rrnmGn300Uclxnz27Fn9/e9/V4cOHRQREaHw8HBdddVVeuyxx3TixAk5nU7Fxsaqfv36ys/PL3EdXbt2VUBAgA4fPlzuazRlyhRJ0l133VXi6zd27FhdddVVCg8PV2RkpK644goNHjxYGRkZbnUbNmyolJQUffTRR8rOzi53uwAAAACKK+mZQFOnTpXFYtHUqVP12WefqVOnTgoNDdVll12m5557Tk6nU5I0bdo0tW3bViEhIWrWrJn++te/lrgNY4wmT56spKQkRUZGKjQ0VO3bt9fkyZM9inXKlCmyWCzq06dPsXlHjx7Vww8/rPj4eIWEhCg6OloJCQkaOXKkTp065Vb32muv1RVXXKGpU6d6tH0AgHdxJxAAoNbZsWOHxo4dq27duql3794KCwvTzp07NWvWLM2fP19btmxxDTcwZMgQSeeejzN48GBX8ic6Otq1vr179yolJUWHDx9WamqqevXqpZ9++klz587VokWLtGzZMnXq1MkthoKCAqWmpurEiRPq06ePcnNzNWfOHPXr108LFy50e4DqmTNn1KNHD61du1bx8fEaOnSo7Ha79uzZo3feeUeDBg1Su3btNGzYMI0dO1Zz587VPffc47a9Xbt26YsvvtAtt9yiyy+/vNzXaNmyZQoLC9PVV1/tVm6MUVpamjZu3KikpCT17NlTVqtVGRkZ+vTTTzVw4MBiQzUkJiZq6dKlWrduXaUfDAsAAACgZP/617+0ePFi9erVS0lJSZo/f75efPFFGWMUFRWlF198UXfccYdSUlI0d+5cPfnkk7r00ks1aNAg1zqMMbr33ns1e/ZsxcfH65577lFQUJCWLFmi3//+9/r+++81ceLEcmMxxmjFihW68sorVa9ePbd5ubm5SkpK0oEDB5SamqrevXvr7Nmz2r9/v2bMmKHHH39cUVFRbsskJiZqxowZ2r17t1q1auWdFwwA4BkDAEANsH//fiPJpKWllVv35MmT5pdffilWvnz5cmO1Ws2wYcPcyseNG2ckmRUrVpS4vhtuuMHYbDazcOFCt/Jdu3aZiIgI06ZNG7fy2NhYI8nccccdJj8/31W+dOnSEvdh9OjRRpIZOHCgKSwsLLYvp0+fNsYY8+OPP5qAgACTkpJSLMbHH3/cSDLz5s0rcR/Od/r0aWO1Wk1SUlKxed9++62RZHr16lVsXl5eniuW833yySdGkhk7dmy52wYAAADqoqJrhNIkJycXmz9lyhQjyQQGBpovv/zSVZ6VlWUaNWpkQkNDTePGjc3evXtd8w4ePGiCgoKKXaO8++67RpIZOnSoOXv2rKs8Pz/f3HbbbUaS2bx5c7n7sX37diPJ3HvvvcXmffrpp0aSeeSRR4rNO336tMnLyytW/vrrrxtJZvLkyeVuGwBQNRgODgBQ60RFRemSSy4pVt6tWze1bt1aS5curfC6tm7dqnXr1mnw4MFKS0tzm9eqVSsNHz5c27ZtK3FYuL///e8KCgpyTXfv3l2xsbHatGmTq6ywsFDvvvuuoqKi9Prrr8tmsxXbl/DwcElSTEyMbrvtNq1atUo//PCDq05BQYGmT5+uJk2a6JZbbil3n44cOSKn06lLL7201DohISHFyux2uyuW8xWtpyLD0AEAAADwzH333acOHTq4piMiInTrrbcqNzdXDzzwgFq0aOGa17RpU9144436/vvvVVhY6Cp/4403FBYWpjfffFOBgYGu8qCgIL300kuSpNmzZ5cbS9Fnfk+vJcLDw2W324uVcy0BAL7HcHAAgFpp5cqVeu2117Rx40b9/PPPbhdA5ydmyrNhwwZJUmZmZokPcd25c6fr//OHVouOjlbz5s2L1b/88su1fv16t+VPnz6tm266qdhwCiUZMWKE/vWvfyk9PV2vvPKKJOnTTz/VTz/9pGeeeUYBAeW/df/yyy+uGC+UkJCga665RrNnz9bhw4fVq1cvpaSkqF27drJaS/5tSFHC7eeffy532wAAAAA8065du2JlTZo0KXOew+FQZmamLrvsMuXm5mrbtm2KiYnRq6++Wqx+QUGBpF+vbcpS1rVE165d1aRJE73yyiv65ptvdOuttyo5OVkJCQnFnndUhGsJAPA9kkAAgFrnww8/VP/+/RUeHq60tDTFxcUpNDTU9VDVjIyMCq/r+PHjkqT58+dr/vz5pdbLyclxm75wrOsiAQEBrge4SnI9HPWyyy6rUDypqalq3ry5pk2bphdffFEBAQFKT0+XxWLR73//+wqto+iXeXl5eSXGt3z5co0fP15z587V6NGjJUkNGzbUqFGj9Oyzzxa7W+nMmTOSpNDQ0AptHwAAAEDFRUZGFisr+vFXWfOKkjsnTpyQMUY//vijnn/++VK3c+E1TUnKupaIiorShg0bNHbsWH322WdasGCBpHN3J/3pT3/SH/7wh2LLcC0BAL5HEggAUOuMHz9ewcHB+uqrrxQfH+82b86cOR6tq+iiatKkSRo1apTXYixS9Au6H3/8sUL1LRaL7r//fj399NP67LPP1L59ey1evFjdu3d3GwaiLA0bNpT0a4LrQvXr19ekSZP0j3/8Qzt37tTy5cs1adIkjRs3ToGBgXr66afd6hetp2i9AAAAAGqOomua66+/Xps3b76odZV3LdGsWTNNnTpVTqdT3377rRYvXqx//OMfevDBB1WvXj0NGDDArT7XEgDgezwTCABQ6+zdu1cJCQnFEkBHjx7Vvn37itUvurPF4XAUm9epUydJchvCzZuuvPJKRUZGatOmTTpx4kSFlhk6dKgCAwOVnp6uyZMny+l0avjw4RXeZkxMjOrXr69du3aVWc9isSghIUEPPviglixZIunc0HMXKlpPmzZtKhwDAAAAgOoRERGhhIQE7dixQydPnryodbVu3VpWq7Xcawmr1ap27drpySefdD1riGsJAKiZSAIBAGqd2NhY/fDDD8rMzHSV5eXl6YEHHnANiXC+onGoDx06VGxex44d1alTJ82ePVvvv/9+sflOp1OrVq2qdKwBAQEaMWKETp06pYcffrhYIurUqVPKzs52K7v00kvVq1cvLVy4UG+99ZYaNGigXr16VXibFotFXbp00f79+/Wf//zHbd6BAwd04MCBYssUvZbBwcHF5m3cuFGSlJycXOEYAAAAAFSfhx56SLm5uRo+fHiJw77t37+/xOuAC0VHR+uaa67R5s2b3Ya5lqTt27e7XYMVKe9aIiAgQDfccEMF9wQA4G0MBwcAqFG2bdumIUOGlDjvN7/5jf70pz/pj3/8o/74xz/q2muvVd++fVVYWKglS5bIGKO2bdvqm2++cVuuW7duslgseuaZZ7R9+3ZFRUUpOjraNfzb7Nmz1a1bN91999167bXXdN111ykkJEQHDx7U+vXr9Z///KfEMbEr6oUXXtCGDRs0Y8YMbdiwQb/73e9kt9u1b98+LVy4UGvWrCn2wNeRI0fqww8/VGZmpkaPHq2goCCPttm7d2/NmzdPS5Ys0T333OMq//rrr3XnnXeqY8eOuuqqq9S4cWP9+OOPmjdvnqxWqx599FG39RhjtGzZMiUkJKhVq1aVfg0AAAAAVJ0RI0Zow4YNmjZtmtauXaubbrpJMTExyszM1M6dO7Vx40bNmjVLcXFx5a6rd+/eGjdunDZs2OCWvFmyZImeeOIJJSUlqVWrVqpfv7727dunTz/9VMHBwXrwwQfd1pOdna0NGzaoR48eCgsL8/YuAwAqiCQQAKBGOXLkiKZNm1bivOTkZP3pT3/Sgw8+qMDAQE2aNEnvvfeeoqOjdcstt+jll1/WXXfdVWy5q666SlOmTNH//u//atKkScrPz1dsbKwrCdS8eXNt3bpVf/vb3zRv3jxNmTJFNptNTZo0UdeuXdW3b9+L2qfg4GAtWbJEb7zxhmbOnKn33ntPNptNzZo108iRI0u8EOvWrZuaNWumgwcPatiwYR5vs1+/fnr00Uc1c+ZMtyRQ+/bt9dRTT2nlypWaP3++Tp48qcaNG+umm27SE088oc6dO7utZ/Xq1Tp48KBee+01j2MAAAAAUD0sFoumTp2qm2++We+9957+/e9/Kzs7W40aNVJ8fLwmTpyom266qULrGjZsmP785z9r5syZbkmgtLQ0HThwQKtXr9bHH3+s7OxsXXbZZerfv7+efPJJXXXVVW7rmTt3rs6cOaMRI0Z4dV8BAJ6xGGOMr4MAAADujh49qmbNmikxMVGrV6+u1Dqee+45vfLKK/rhhx8UGxtbqXXcd999+vzzz7V3715FR0dXah0AAAAAapeBAwdq/vz5ysjIUERERKXW0aVLF2VmZmrHjh2u57QCAKofzwQCAKAGeu2111RYWKgHHnig0ut48skndckll+ill16q1PK7d+/WnDlzNGbMGBJAAAAAQB3y4osv6syZM5o0aVKlll+2bJnWrFmjV199lQQQAPgYw8EBAFBDnDp1Sm+99ZYyMjKUnp6uq666Sv369av0+iIiIjRjxgxt3rxZDofD44uvw4cPa9y4ccXG9gYAAADg32JjYzVt2jRlZmZWavlTp05p4sSJ6t27t5cjAwB4iuHgAACoIQ4cOKDmzZsrODhYnTt31ttvv60rr7zS12EBAAAAAACgliIJBAAAAAAAAAAA4Id4JhAAAAAAAAAAAIAfIgkEAAAAAAAAAADgh0gCAQAAAAAAAAAA+CGSQAAAAAAAAAAAAH6IJBAAAAAAAAAAAIAfIgkEAAAAAAAAAADgh0gCAQAAAAAAAAAA+CGSQAAAAAAAAAAAAH6IJBAAAAAAAAAAAIAfIgkEAAAAAAAAAADgh0gCAQAAAAAAAAAA+CGSQAAAAAAAAAAAAH7o/wG96JpVoGOo/QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -398,7 +408,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABoIAAARRCAYAAAACU5AsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAViAAAFYgBxNdAoAABAABJREFUeJzs3XdUFNfbB/DvLmXpKIIGC2AFjVgRCwY1Rs0vxmiiscausSSaKLHGFmOJGqOxxIIxYIkxGhMTo7GCKKLYwV5BsQtIr7vz/sG7KwvLssAuW/h+zvEcmbkz88zu7MIzz9x7RYIgCCAiIiIiIiIiIiIiIiKTI9Z3AERERERERERERERERKQbLAQRERERERERERERERGZKBaCiIiIiIiIiIiIiIiITBQLQURERERERERERERERCaKhSAiIiIiIiIiIiIiIiITxUIQERERERERERERERGRiWIhiIiIiIiIiIiIiIiIyESxEERERERERERERERERGSiWAgiIiIiIiIiIiIiIiIyUSwEERERERERERERERERmSgWgoiIiIiIiIiIiIiIiEwUC0FEREREREREREREREQmioUgIiIiIiIiIiIiIiIiE8VCEBERFTJs2DCIRCLMmzdP36EQERERERERERFRGbAQRESkBR07doRIJFL6Z2ZmhkqVKsHX1xfffPMNEhMT9R2mUTh69CiGDx+OevXqwc7ODra2tqhbty6GDh2KQ4cO6Ts8qmAyMjKwd+9ezJ49G//73//g4uKi+IzHxMToOzwiIiIioyXPoYp7+Oy7776DSCTCd999V2hdbm4ugoKC8MEHH6BmzZqwsrJC5cqV0aRJE0yePBk3btzQSqyJiYlYvHgx3nrrLVSrVg2WlpaoWrUq/Pz8sHDhQiQkJGjlOESaunbtGtatW4eRI0eiadOmsLCwgEgkwrBhw/QdGhEZKHN9B0BEZEpq1aoFNzc3AEBOTg4ePHiAs2fP4uzZs9i4cSOOHz+OevXq6TlKw5SUlIRBgwbh33//BQDY2dmhbt26EIvFuHv3LrZs2YItW7bg3XffxY4dO1CpUiX9BkwVws2bN9GrVy99h0FERERUYf31118AUOhvsqtXr6J37964efMmAMDFxQXe3t5IT0/H9evXER0djVWrVmHq1KlYuHAhRCJRqY6/e/dujB49Gq9evQIAeHh4wN3dHS9fvsSpU6dw6tQpLFu2DBs2bEC/fv1Ke5pEJTJz5kzs3btX32EQkRFhjyAiIi0aMWIETp48iZMnT+LMmTN48uQJDh06hMqVK+Px48cYM2aMvkM0SOnp6ejQoQP+/fdfODs7IygoCC9fvsTly5dx8eJFvHz5Elu2bIGLiwv+++8/+Pv7Iy0tTd9hUwVgYWEBX19fjB8/Hps3b8aRI0f0HRIRERFRhfHkyRNERkbC09MTXl5eiuXXrl2Dn58fbt68iSZNmiAkJATPnj3D2bNncfXqVTx//hxz586FSCTC4sWLS52Hbdu2DX379sWrV6/w0Ucf4datW7h//z4iIyNx79493LlzB3369EFSUhIGDBiA4OBgbZ06kVrVq1dHr169sGDBAvz3338YMGCAvkMiIgPHHkFERDrWpUsXLFiwAJ999hlCQkLw/PlzVK1aVd9hGZRJkybh8uXLqFSpEsLCwtCwYUOl9ZaWlhg8eDB8fHzQrl07REdHY9KkSdi4caOeIqaK4s0338SZM2cUPz99+lSP0RARERFVLHv37oUgCEq9gXJzc9G3b18kJSXBx8cHx44dg729vdJ2lStXxrx58+Dl5YUBAwYgMDAQnTt3LlGPnbt372LMmDEQBAFjx47FunXrCrWpW7cudu3ahbFjx2LDhg0YP348/Pz8OAoE6dxPP/2k9POff/6pp0iIyFiwRxARUTlo164dAEAQBNy/f19lmwsXLmDo0KHw8PCAlZUVKlWqBH9/fwQFBUEmkxVqLwgCDhw4gM8//xzNmzeHi4sLJBIJatSogT59+uDEiRNqY7p//z6GDBmCN954A1ZWVmjQoAFmzZqFjIwMle2XLVsGkUgEPz8/tfsdMmQIRCIRPvvsM7Xt5GJjY7F582YAwJIlSwoVgfJr2LChYmzwX375pdAcLfJxxoOCglRuHxMTo5jfpSghISH4+OOPUaNGDVhaWqJKlSro1q1bkd3u582bV+xYzB4eHhCJRAgNDVW5/s6dOxg/fjwaNGgAGxsb2Nvbo1WrVli5ciWysrKK3K8hunjxIubMmQM/Pz/UrFlT8Rq+/fbb2LJlCwRBULld/vfu4cOHGDFiBGrWrAmJRILatWvjq6++UgzHUVD+1/fKlSvo27ev4rr28vLCt99+i8zMTB2eNRERERHpgqph4Xbu3ImrV69CLBZj69athYpA+fXv3x/9+/cHAMydO1dlXlWU7777Dunp6ahduzZWrFihtu3KlSvh4eGB9PT0QnMZhYaGQiQSwcPDo8jthw0bpna+pFevXmH+/Plo2bIlHB0dYWVlBU9PT3z11Vd4/vy5ym2Km9cyKCgIIpEIHTt2VLleKpXil19+QefOneHs7AxLS0vUqFEDgwYNwuXLl4s8F0OUmpqKbdu2YcCAAWjYsCEcHR1hbW2N+vXrY/z48UXm6AXfu6CgILRu3Rr29vZwcHDA22+/jf/++0/ltvlfX6lUih9++AFNmjSBra0tnJyc0KNHD0RGRurqlImICmEhiIioHKSnpyv+b2trW2j9smXL4OPjgy1btiAhIQFeXl6wt7fHiRMnMHz4cPTu3RtSqVRpm7S0NLz33nv46aef8OjRI1SvXh0NGzZERkYG/vjjD3To0AHr169XGc+FCxfQvHlzbN26FQkJCWjUqBFEIhEWLlyITp06ITs7u9A2w4YNg6WlJU6dOoXr16+r3O+rV6+we/duAMDo0aM1em1+//135ObmolKlShg6dGix7YcOHYpKlSohNzcXv//+u0bH0IQgCJg4cSLefvtt7N69GxkZGWjcuDEsLCxw6NAh9OrVCxMmTNDa8eS2b9+Oxo0bY926dYiLi0PdunVRtWpVXLhwAZMmTUKnTp2QkpKi9ePqyujRo/Htt9/i6tWrsLe3R9OmTWFlZYWQkBAMHToUgwYNUrv9/fv30aJFC2zZsgXOzs6oV68eYmNjsXz5crRu3Vptj5wzZ86gdevW+Pvvv1GjRg3UqlULN2/exJw5c/D2229zOEEiIiIiI5KcnIyQkBC4urqidevWiuW//vorAKBbt25Kw8UV5csvvwSQN/fj+fPnNTq2VCrFzp07AQBjx46FlZWV2vZWVlYYO3YsgLz8pmDuVhaXL19G48aNMXfuXERFRcHFxQX169dHTEwMli9fjmbNmuHKlStaOx4AJCYmolOnThgxYgSOHTsGiUSCxo0bIyUlBb/++itatWqF3377TavH1KXQ0FAMHjwYu3fvRkpKCurXrw8PDw88evQI69atQ/PmzYstygQEBGD48OGIjY2Fl5cXzM3NERISgv/973/44Ycf1G7br18/BAQEICkpCY0aNUJOTg727duHdu3aYdeuXdo8VSKiIrEQRERUDuTdtB0cHFC3bl2ldTt37sTUqVPh6OiI4OBgvHr1CpcuXcLDhw8RGRmJevXq4a+//sKiRYuUtrO0tMSGDRsQFxeH58+f4/Lly7h06RJevHiBnTt3wtraGhMnTsTDhw+VtsvKykK/fv2QlJSEDh064MGDB7hw4QJu3ryJU6dO4d69e4piTn4uLi746KOPAACbNm1SeZ7bt29HRkYGfHx80KxZM41em5MnTwIA2rdvD4lEUmx7KysrRQ+r8PBwjY6hiWXLlmH16tWoWbMm/vnnHyQkJODChQt4+vQp/vvvP1StWhVr1qzB1q1btXbM8PBwDBs2DIIgYOXKlXj16hWio6Nx9+5dXL9+Ha1atUJERIQieTUGkydPRnR0NF69eoXr16/j7NmzePToESIjI1G/fn3s2LFDbdK4ePFi1KlTB/fv38elS5dw9epVREdHo27durh16xZGjhxZ5LazZ89Gp06d8PjxY5w/fx63b9/GiRMn4OzsjIiICEydOlUXp0xEREREOrB//35kZ2fjgw8+UOrRL88fOnfurNF+WrVqpeg1pGn+EBUVpXgYS9PjvP322wCAlJQUREVFabRNcRISEvD+++/j0aNHGD16NB4/fow7d+4gOjoaz58/x5AhQ/DkyRP06dMHubm5WjkmAAwaNAgnTpxA+/btER0djUePHuHChQt49eoVVqxYAalUiuHDh+PWrVtaO6Yu1a9fH7t370ZiYiLi4uJw7tw5XL9+Hc+ePcPs2bORlJSkyMtUefToEX788UesX78eT548wdmzZ/H8+XPMnj0bADBlyhScPn1a5banTp3C/v378eeffyI2NhZnz57Fs2fPMHLkSMXrWFSvLSIibWIhiIhIR3Jzc3H37l3MmjVLMZTAlClTYG1trdRm2rRpAIDNmzdjyJAhEItffzXLn7QSiUT44YcflHrqWFpa4tNPP0X16tWVjmtmZoa+ffti0qRJyMnJUTwxJ/f777/jzp07sLKyws6dO/HGG28o1rVt2xYrV65ETk6OynOST7K6detWlb2Gfv75ZwCa9wYCoChUlWQc7fr16wMA4uLiNN5GncTERHz77bcwMzPDn3/+iffff19pfbdu3RRjgi9evFgrxwSAadOmITc3F9999x2++OILWFpaKtY1aNAAf/zxB2xtbREcHIzHjx9r7bi6NHDgQDRu3LjQ8latWinGsVY3ia4gCPj9999Rq1YtxbI333xTsc3+/ftx4cIFldva29vjt99+g5OTk2JZ+/bt8eOPPwIAAgMD8ezZs5KfFBERERGVO1XDwiUnJyM5ORmA5vmDWCxGnTp1AGieP+R/mE7T48hzlJIcpzg//PAD4uLi0LNnT2zcuBEuLi6KdY6Ojti8eTOaN2+OmzdvYs+ePVo55pEjR3DgwAG4ubnhn3/+UfrbXiwW48svv8Rnn32GzMxMrFy5UivH1DVPT0/07t0bdnZ2Ssvt7e0xf/58+Pn54fr160X2CsrNzcWIESMwZswYRVHS3Nwc8+fPR5cuXSCTyQo9uCmXk5ODWbNmKV3HNjY22LhxIzw9PZGWllZsjyIiIm1gIYiISIu++eYbxVjMFhYWqFevHhYuXIjKlStj6dKlmDVrllL7M2fOIDY2Fm+88QY+/PBDlfts2bIl3N3d8erVK5VDGURGRmLGjBno1asXOnbsiPbt26N9+/aKYdMuXryo1H7//v0AgL59+6JatWqF9tevXz+l4lB+HTt2hKenJ168eFFozpzz58/j4sWLsLW1xYABA4p4hQqTP2lX8I9ydeRt5UlgWe3fvx+pqanw8fGBj4+PyjY9evSAhYUFrl+/jidPnpT5mI8ePUJ4eDjMzc0xatQolW1q1aqFVq1aQSqV4vjx42U+ZnmJjY3FkiVL0K9fP3Tu3FlxTc6YMQNA4Wsyvw8//BDu7u6Flvv5+aFVq1YAgH///VfltiNHjlR5Hcmv6ZycHBw6dKg0p0RERERE5Sg7OxsHDhxQzMMil3/I5NLkD0lJSRq1L81x8rfTVp6Sf3g6VczMzNCzZ08AwNGjR7V6zAEDBqBSpUoq2/Tu3VurxywPUqkUe/fuxYQJE9C9e3f4+/sr8pTbt28DUJ+nFDVKg3z54cOHVT5QaW5urnL+XLFYjIkTJwIoOr8hItImc30HQERkSmrVqgU3NzcAeX/837lzBxkZGahUqRI6depUqL18ks2MjAy0b9++yP3Gx8cDyHsyrW3btgBeP5VU3FBl8m3lbty4ASCvl4UqZmZm8PLyKnIulk8//RQBAQH4+eef8fHHHyuWBwYGAsi76a5uwtaC5G1TU1M13kbeVtV8S6Uhfx/u37+v9n2QP/318OFDuLq6auWYZmZm+N///ldkO/lwCwWH+CvKhAkT1CYwpfH111+rjTG/VatWYcqUKSp7jMkVvCbzU9WbSO7NN9/E2bNni5yjqqht81/TRW1LRERERIbj2LFjSE5ORr9+/ZR6zefPM0qTPzg6OmrUvuBxNNkufzzayFPS0tJw584dAHlDIC9YsEBlO3mPd03zheLI85Q9e/YohuErKDMzs0THvHjxotbnW3V1ddV4fp0nT56ge/fuxeZJReUp5ubm8PT0VLlOnldnZmbi/v37aNCggdL6WrVqFXn9yLe9d+8esrOzla51IiJtYyGIiEiLRowYgXnz5il+fvXqFQICArB582Z07doVly5dUhSKgLwhyYC8J9M0Ga86PT1d8f/vv/8eW7duhZWVFRYvXoxu3brBzc0NNjY2EIlE2Lx5M0aOHFnoqST5022qegPJqVs3dOhQzJw5E4cPH8aDBw/g5uaG9PR07NixA0DJhoUDgJo1a+LixYuKJEcT8ie2ateuXaJjFUX+Pjx//hzPnz8vtn3+96Gsx8zKyirxe69OdHS0VudOAqDxcGoRERH44osvAACfffYZhg4divr168Pe3h5mZma4d+8e6tatq3b8ck2uy/xPaJZl26KKfrt37y6yVxwRERER6Z6qYeGAvDlXHRwcFA/daUImk+HevXsA8nIPTeRvd+fOHbRs2bLYbeQ5CqCdPOXVq1eK/587d67Y9trIUYDXecrt27eVzkmVjIwMjfapab5bEqpGESjK8OHDcfHiRdSpUwcLFy5Eu3btUK1aNcUctUOGDMHWrVuLHCLd2dkZZmZmKtflz0FU5Sma5t0pKSmoUqUKNm/ejM2bNxdq+95772HmzJlF7ouIqDgsBBER6VClSpUQGBiIGzdu4NSpUxg/fjz27dunWC8fPsDf37/EQ38FBQUByCsIqepqXtTTTPKn29Td3Fe3rkqVKujTpw+2b9+OzZs3Y968efj999+RnJyMxo0bo02bNiU4i7yb8f/88w/Cw8ORlZWl+GO8KJmZmTh16hQAoF27dkrr5D12iprkMy0tTeVy+fswZMgQtfPXqFLcMYs6rvyYbm5uiI2NLdEx1QkNDdXavkpK/tr16dMHa9asKbReXU8gOU2uy6J6nJV026KSUfkTjkRERERU/gRBwN9//w1LS0u89957hdb7+fnhwIEDOHr0KAICAord39mzZxU36P38/DSKoWnTprC3t0dKSgqOHj2qUSHo2LFjAPJywEaNGimWlzVfAPJ6jJS2uFTa3Gjz5s0YPnx4qY5ZUMeOHdWevy49ffoUBw8eBAD8/fffKkfGKC5PefnyJaRSqcpiUP4cRFWeomneLd/2wYMHKvOUksypS0SkCucIIiLSMbFYrJhE899//1W6Ue/t7Q0AuHr1KmQyWYn2e//+fQB5RSRVTp8+rXK5l5cXAODatWsq10ulUty8eVPtsceMGQMA+OWXXyCTybBp0yYAKHKuG3X69u0Lc3NzJCYmYsuWLcW237JlC169egVzc3P069dPaZ18CIai/tiWD7NWkPx9iIqKKknoGh0zMTERL1++LPKYcXFxSEhIKPFxDVFpr8n8rl69Wuy6hg0blmjb/Nd0/m0FQVD5z8PDo9g4iYiIiEg3zpw5gydPnqBTp05wcHAotH7gwIEAgIMHDyqGvVbnxx9/BAA0aNBAo4IOkDe0cN++fQEAGzZsQFZWltr2mZmZ2LBhA4C8/MbCwkKxTp4vqBt5QFWe4ujoiFq1agHQTZ6ii9zIEMlzFCcnJ5VFoNzc3GJ7XOXm5hb5eslzECsrK5XFuri4uCLnjJJvW6dOHcWwcPPmzVOZo8gfBCUiKi0WgoiIykGrVq3w/vvvAwDmzp2rWN6+fXtUr14d8fHx+Pnnn0u0TxsbGwB54x0XdOPGDfzzzz8qt5PP9bJz506Vycjvv/+ucp/5vfXWW2jYsCEePHiAVatWITw8HBKJBIMHDy7ROQCAh4eH4kmzqVOnqp3D5fr165g2bRqAvGJU/mH2AKB+/foA8oYoU2XdunUql7///vuwtrbGpUuXcPjw4RLFLz/mxYsXVSaIP/30k8rt6tSpg5YtW0Imk2H58uUlOqahUndNZmZmYvXq1cXu488//8SDBw8KLY+IiMDZs2cBQOWToQCwadMmlU82yq9pCwsLdOnSpdgYiIiIiEh/ihoWTq5///5o2LAhZDIZBg8eXOSwwQDw22+/KYawnjdvHsRizW+DTZ8+HdbW1rh37x6+/PJLtW0nTZqE+/fvw9bWFjNmzFBaV69ePYhEImRmZqqcoyY8PLzIoou8GPXDDz9AKpVqHDugPjd69eqV4nUp6phbtmzReIhoQybPUZKTk1UOn7dlyxaNhgeXFxSLWt6lSxelAqBcTk6OypxQEARFftS9e/dij09EVGYCERGVWYcOHQQAwty5c4tsc/bsWQGAAEA4evSoYvn27dsFAIJEIhFWrFghpKenK22XkpIi7N69Wxg5cqTS8p49ewoAhJYtWwqPHz9WLL906ZJQr149wcrKSgAgdOjQQWm7jIwMoU6dOgIAoVOnTsKzZ88U6yIiIoSqVasKFhYWxZ7PypUrBQCCubm5AEAYOHCgmldIvdTUVMHb21sAIDg7OwtBQUFCZmamYn1WVpawdetWwcXFRQAgtG7dWkhLSyu0n2PHjgkABJFIJOzYsUPpnGfMmKE4L1W//hYuXCgAEBwdHYXg4GAhJydHaX18fLwQHBwsfPXVV0rLk5OTBVtbWwGAMGHCBCE3N1ex7rfffhNsbGwUxw0JCVHaNjQ0VDA3NxdEIpHw9ddfC4mJiUrrMzIyhP379wu9e/cu9jU0BCtWrFC8hpGRkYrlz549E7p37664JlW9/vLPkIWFhdC2bVvh4cOHinXXrl0T6tevLwAQ3n333ULburu7K7b94IMPhISEBMW68PBwoWrVqgIAYezYsWU+xydPnijO4f79+2XeHxEREVFFVVQO5enpKYhEIqUcp6Do6GjBwcFBACA0adJECA0NFWQymWJ9QkKCMHfuXEWuMnz48FLFGBQUJIhEIgGA8NFHHwm3bt1SWn/nzh3h448/FgAIYrFY2Llzp8r9+Pv7CwCEt956S3j58qVi+YULF4Q6deoUmX89f/5cqF69ugBA6Nmzp3D37l2l9TKZTIiMjBS++OILpb+/BUEQ5syZIwAQXF1dhUuXLimWP3nyRPjf//6nOGbBfFEQBKFr164CAKFhw4bCiRMnCq2/e/eusGTJEiEwMFDl+RqSnJwcwdnZWXEdZGRkKNbt2rVLsLGxUeQpBV//kJAQRc5rZmYmbNy4UXGd5eTkCPPmzVO896dOnVLa9pdfflHkKDY2NsLevXsV69LS0oTRo0cLAAQbGxvh3r17ZT7PMWPGCACEoUOHlnlfRGSaWAgiItICTQpBgiAI3bt3VyQA+a1cuVKRpFhZWQlNmzYVWrduLdStW1cQi8UCAMHd3V1pm6ioKEUBQiKRCE2aNBE8PT0FAEKtWrWERYsWFfmHfWRkpCJxsrS0FFq0aKHYtnXr1sKAAQOKPZ+EhASlG/sFixwllZiYKLz77ruK/dnZ2QlNmzYVmjVrJtjb2yuWDx48WEhOTi5yPx999JGibY0aNQQfHx/B3t5esLKyEjZu3FhkIUImkwlTpkxROn6LFi0EX19fwd3dXZEAqno9V61apdiuUqVKgo+Pj/DGG28IAIT58+crChWqXqOdO3cq3kdzc3PhzTffFNq0aSN4enqqLVwZotTUVKFhw4aKYlyDBg2E5s2bCxYWFoJEIhE2bdpUbCFozpw5grOzs2Bubi40a9ZMePPNNxWvfb169YRHjx4V2lb++n733XeKRK5ly5aK4pH8ulZ33ajTvHlzoUqVKkKVKlUEJycnxT4rV66sWF6lSpVS7ZuIiIioolKVQ12/fl3xt1txoqKilP7ec3FxEXx8fIRGjRopciszMzNhypQpglQqLXWcv/32m+Do6Kg4joeHh+Dr66t4uA6AUL16dWH//v1F7uPMmTOK3Eme78lj79atmzBo0KAi86+oqCihdu3aimPVqVNHaN26teDt7a3II1TlGq9evVLEKBaLBU9PT6Fp06aCubm54ObmJixYsKDI/CYxMVF45513FPuuWrWq0KpVK6FFixaKh/M0yX8Nxc8//6yI2dHRUWjZsqVQo0YNxev/ySefqC0Eubu7C5MnTxYACG+88YbQqlUrpbxgyZIlhY4pLwR16NBB6N27t2I/rVq1UuS3ZmZmwq+//lqqc9qxY4dSLiK/viQSidJyVbERUcXEoeGIiMrRvHnzAAAnTpzA0aNHFcu/+OILREdH47PPPkPt2rVx584dnD9/HqmpqfD398eSJUsKDVnm7e2NiIgI9OzZE9bW1rh58yZycnIwceJEXLx4Ea6urkXG0apVK1y8eBGDBg2Co6Mjrl69CqlUipkzZyIkJEQxPrE6lStXRp8+fQDkDTvQsWPHkr8g+VSqVAkHDhzAoUOHMGTIEFStWhW3b9/GpUuXFMM9jB8/Hlu2bFE5Cafcjh078O2336JBgwZ48eIFYmJi0KVLF5w5c0btsGAikQhLly5FZGQkhg8fjmrVquHatWu4ePEicnJy0K1bN6xevRrbtm0rtO2ECRPw22+/wdfXF1lZWbh58ybq16+PPXv2YPbs2WrPu2/fvrhx4wamTp2KN998Ew8ePMDZs2fx8uVLtGrVCnPnzlU5hIQhsrW1xYkTJzBu3Di4urri/v37ePLkCT788ENERkaic+fOxe6jdu3auHDhAgYPHoznz5/j9u3bcHNzw6RJkxAZGYnq1asXuW3r1q1x5swZvP/++3j48CFiY2PRoEEDzJs3DyEhIWqvG3USEhIQHx+P+Ph4pfmcEhMTFcuLm2CWiIiIiIpX3LBw+Xl7e+Pq1av4+eef0b17d1hYWCAqKgpxcXHw8vJS5FhLly4t0ZBwBfXr1w/37t3DwoUL0a5dO6SmpuLcuXO4d+8egLy/gcPDwxVDcKvi6+uLkydPonv37rCyssLNmzdhaWmJpUuXYt++fTA3N1d7ntHR0VixYgX8/f3x6tUrnDt3DjExMahbty4+++wzHD58GO3bt1faztHREeHh4Rg9ejSqVauGe/fuITExEWPHjsWFCxdQo0aNIo9ZqVIlHDx4ELt27ULPnj1hZmaGS5cu4fr163BwcMCAAQOwY8cOTJ48uYSvpn6MGDECf/75J9q2bYvs7GzcuHEDzs7OWLZsGfbt2wczM7Ni97F8+XJs3rwZtWrVwvXr15GdnY2OHTvi33//xdSpU9Vuu3PnTixfvhwODg64cuUKzMzM0L17d5w8eRIDBgwo1TllZmYq5SKZmZkAgKysLKXlqobDI6KKSSQIgqDvIIiIyDh17doVhw8fxnfffaeYu0cX5syZg2+//RYAsHHjRowePVpnxyL96NixI44fP45ffvkFw4YNK9G2Hh4eiI2NRUhISJkLkkRERESkP23atMGZM2dw/fp1eHl56Tscte7fv49OnTohNjYW3t7eCA0NhZOTk77DIi0KDQ1Fp06d4O7ujpiYmBJtGxQUhOHDh6NDhw4IDQ3VSXxERCXBHkFERFQqd+/exZEjR2BpaVniG/clNX/+fMydOxcAMHbsWPz66686PR4REREREZWvJ0+eIDIyEp6engZfBALyerKHhobCw8MD0dHRePfddxUjGRARERmaovueEhERFUEqlWLatGkQBAH9+/dHtWrVdH7MefPmoU6dOrh37x7u37+PtLQ02Nra6vy4RERERESke66urpDJZPoOo0Q8PDwUvdoFQcCpU6fQrVs3fYdFRERUCAtBRESksaCgIPzyyy+4e/cuHj16BDs7O3zzzTfldvwhQ4aU27GIiIiIiIiK4+bmphi9gIiIyFBxaDgiItJYTEwMwsLCkJSUBH9/fxw+fBgeHh76DouIiIiIiIiIiIiKIBIEQdB3EERERERERERERERERKR97BFERERERERERERERERkolgIIiIiIiIiIiIiIiIiMlEsBBEREREREREREREREZkoFoKIiIiIiIiIiIiIiIhMlLm+A6Cy8/LyQmJiIurUqaPvUIiIiIiIyt29e/dQuXJl3LhxQ9+hkI4w5yEiIiKiiq4seQ8LQSYgMTER6enpejt+cnIyAMDBwUFvMZBx4rVDpcVrh8qC1w+VFq8dw6XPv4WpfOg75wH4HUClx2uHSovXDpUWrx0qLV47hq0sfw+zEGQC5E/FRURE6OX4YWFhAAB/f3+9HJ+MF68dKi1eO1QWvH6otHjtGK62bdvqOwTSMX3nPAC/A6j0eO1QafHaodLitUOlxWvHsJUl7+EcQURERERERERERERERCaKhSAiIiIiIiIiIiIiIiITxUIQERERERERERERERGRiWIhiIiIiIiIiIiIiIiIyESxEERERERERERERERERGSizPUdABEREZGxkclkiI+PR1JSEjIzMyEIgr5DonJgbW0NAIiOjtZzJKZHJBLBwcEBVatWhZWVlb7DISIiIqIiMBcybcx5dEckEsHKygqOjo6oUqUKxOLy7aPDQhARERFRCchkMsTExCA1NVWxTCQS6TEiKi8SiUTfIZgsmUyGV69eIS0tDZ6enuWeFBERERFR8ZgLmT7mPLojk8mQnp6O9PR0pKSkwMPDo1zzHhaCiIiIiEogPj4eqampsLCwQM2aNWFnZ8fkp4LIysoCwORIF3JzcxETE4P09HS8ePEC1apV03dIRERERFQAcyHTx5xHdwRBQGpqKuLi4pCamor4+Hi4uLiU2/H5qB0RERFRCSQlJQEAatasCXt7eyY+RFpgbm6O6tWrA3j9GSMiIiIiw8JciKj0RCIR7O3tUbNmTQDln/ewEERERERUApmZmQAAOzs7PUdCZFrkcwPl5OToORIiIiIiUoW5EFHZyT8/8s9TeWEhiIiIiKgEBEGASCTi029EWiYWiyESiSCTyfQdChERERGpwFyIqOzknyFBEMr1uCwEERERERERERERERERmSgWgkpp27ZtGDNmDHx8fCCRSCASiRAUFKTRtvfu3VNMpjZ27FjdBkpERERERERERERERBWWub4DMFazZs1CbGwsnJ2d4erqitjYWI22k8lkGDZsmG6DIyIiIiIiIiIiIiIiAnsEldqmTZsQExODFy9elKhXz4oVKxAREYEFCxboMDoiIiIiIiIiIiIiIiL2CCq1d955p8Tb3LhxA7NmzcKMGTPQrFkz7QdFRERERERERERERESUDwtB5UQqlWLo0KGoX78+Zs2ahVOnTml1/4IAZGfmatzeQmIGkUiUb3sBOVlSjbc3MxfDzFy5Q5k0RwapVKbxPiytlC8/xvD/McgE5GSXLYbcHClkUqH8YrAQw8ys5DFIc/LWZ2fm6i2G/ArGIJMJyC1rDNlSyGSaxSASiWAhMWMMGsSQ/9rRNIacbCmEssQglSE3R/PPtrmFGOKyxCAWwcLSRGPIkkIQSh+DVCqDtCQxWJpBLBYpLZPlChr/3hSLRTAvEAMAjc9BLv/v3aK2FwQgJTMHMgGwk5jD3Oz1Nppsr40YdLm9qcRQkK5iCAwMxNq1a3Hr1i3Y2dmhS5cuWLRoEdzd3TXaft68eZg/f77K4/fu3Ru7d+9WWiaVSrFt2zZs2LABt27dQmZmJmrVqoWePXti8uTJcHFxKXQOe/bswdKlSxEdHQ1LS0u0b98eCxYsQJMmTUr1OsjPRZPPp5mZGGYWHOCAiIiIiMjUBAYGYs2aNUq50OLFi+Hu7q7xPuLj4zFr1izs3bsX8fHx8PDwwIgRIxAQEABz88JlkaioKHz99dc4efIksrOz4e3tjalTp+Kjjz5SuX9VudDChQs1zoXKGwtB5WTx4sW4cOECTp8+DUtLy1Lto23btiqXX7lyBdVd3PDLjDCN9+XV0wyifDfFBJmAG3s1v9Hr7CWGS8O8xDs5ORkA8OemMMTf0vzGXMMPC9x0lwq4+bfmMbg0EsPZUzn5fxYtQ8IdzWIQiQGvnsoxSHME3NqneQxV3xSjSgPlGJ5eliLxnmY3hMTmgGcP5RhyswTc3q95DNW8xXCqVyCGS1Ik3tcsBjNLoEF35RhyMgTc+U/zGN5oKkblOsoxPLkgxatY9TEIsrz36t6RMNT/X4EY0gXcOah5DK7NxajkoRzD43NSJD3U7HWwsAbqvascQ3aqgLuHNY+heksxHN2UY3gUKUXyI81isLQF6nZVjiErWcC9o5rHUKOVGA41lWOIOy1FyhPNYpDYA3XeUY4h85WA+yEliMFXDIcayjE8jJAi9amGMTiIUKez8k33jAQBMcdfxyC/dm7tU/29V7ONGPauyjE8CJci7blmMVhVEqF2J+UY0l8KiD2h+etQq50YdtWUY4g9IUX6S81isHYSwaODcgxpLwQ8OKl5DG7tzWDronyTNea4FBkJmsVg4yyC+1vKMaQ+k+HhKc2/693fMoONs3IM90OkyHylWQy2VUVw81OOIeWJDHGnNY/Bo4MZrJ1ex5CcnIxnpyW4+Y9mvzft3hChVtvXMVhbW0NiKUF6crbGMZhJgIL3u6VZeYWf/AQAYiFv7N6snBxk//82IjPAzKJAWykgzdE4BJhLAGgQQ1EMIQaxGSDWQQy5Wch78TUgMhOQhSydxzB/wTws/f47tG3TFksWL8PLly+xdt0ahISEIiz0BNw8aiptL5MCsgIxyB9uWbJoGapUqaK0zqOuG7KylM8jYNIUrF23Gm+198e0KTMhkVjizJnTWLp0KXbv2o2Ik2dhY2MDIO+9CN72C8aNG4c333wTCxcuREZ6Jtat+wnt27fH4QPH4O2tPgEytyq8TCYTkPYqS6O/a53qiVHN+/Xfow4ODsVuQ0REREREhm327NlYsGAB/Pz8sHLlSrx48QIrV65EaGgoIiMjUbNmzWL3kZKSAn9/f9y8eRPjx49HkyZNEBYWhunTp+PKlSvYunWrUvvLly+jffv2kEgkCAgIgLOzM7Zt24bevXtj06ZNGDlypFL7n3/+GaNGjULjxo2xZMkSZGZmYvXq1fDz88PJkyfRtGlTrb4m2sBCUDm4fPky5s+fjylTpqBly5b6DoeIiIgMlaD838J9JagiuH3nNpavWIZmTZvjwL7DiqfVurzTFR3ebo9538zB5l82a7y/97v3gLu7h9KygkWY9PR0bNy0Hs2aNse/f/8HsTivwDJy+Gg4ODhi/cafcCzkKN7v3gMAkJiYiGnTpqFGjRoICQmBg4MDZLnAhx/0hk+b5giYOgmHDhwt/YtAREREREQVzq1bt7B48WK0aNECoaGhilzo3Xffha+vL2bOnIktW7YUu59ly5bh2rVrWL58OSZPngwAGDVqFBwdHbFmzRoMHz4cb7/9tqL9hAkTkJaWhpCQEPj4+AAARo4cidatW2Py5Mno3bs3KlWqBCAvF5o8eTJq1qyJ8PBwxQNpffv2RaNGjTBhwgSEhWneYaO8sBCkY9nZ2Rg6dCjq1auHuXPnlmlfERERKpe3bdsWaUlZJepp9Ja/n9IwOTKZgHsHwjXevk4dNzT3dwMAxYXtWtsNKTFxGm0vEong7++ntCw3R4r7/6k+R1Xq1nVHU/9aSsvOptxH6oNHGm1vZi6Gv387pWXZmbmIOXRa4xjq1fOAt79yFfrMq3tIi3us0fYWEjP4+yv39MpMy0HskTMax9CgQR00al9daVlE/B2kPXqq0fYSGwv4+7dWWpaenI0HxyI1jsHTsy682roqLTv5/DbSnzxTu112dt7T9HZ2dvD391Val5qYiQch5zSOwcurHhr4vqG0LOzJLWQ8e67R9nb2Evj7t1JalvwyAw+Pn9c4hoYNG6Bey6pKy0If3kDmi5cabe/gYAV/fx+lZYlP0xB34qLGMTRq5Ik6zZSH7jkWcx1Z8fEabe/oaAN//xZKy+Ifp+JR+CWNY2jc2Ase3s5Ky47cu4bshASNtq9c2Rb+/s2Vlr14kILHEZcVP8uvnaK+95p4N0KtRk5Kyw7duoJHr15pFIOTkz38/ZWf3nh2PxlPzkRptD0ANG3yJmp4VlZa9t/1aDxJTtJo+ypVHODvr/w0/ZM7r/A08orGMTRr2hiu9SopLUu5EoXnqckabe/i7Ah/f2+lZY9uJuLZuasax9C8eRNUq638lH7S5ct4mZ6i0fZVXSrB37+x0rKH1xLw/MI1jWNo0aIpXNzsFT+HhYXhpZkUYksLNVu9Vq2aE/z9Gyl+jo6OhiAIhXr45Jey6zek7P5d8bNILEKtn9bCMl839oycbOD/h+nLffYUzyeOV+qUYtfjQzh+MhgAYCYWQyJRjjcu4CtkXruu+FlcuTLeWP9zkTFlHjuGlz+tVVrmNHMuJI0167auKobcbClkuYWH8Nq6fQvGjv8U//59ABcuXkBQ8GbEPYpD7dq1MWfOHAwYMACPHz/G1KlTcfC/g0hNS0W7tn5YuXwV6tatW2h/237dip83b8LVa1cgk8nQsGFDTJgwAcOGDVOK4cjRw9i6fQvOnz+HJ0+fwMLCAk28m+DLiZPx3v+6AwAsLC0hFoswbNgwBAcHIzk5GTNnfI3de3YjISEedevWw4ypM9H7oz6F4hAEQAQRJBKJ0vKcIl6HoshjyE+anQ15JXDX7t8glUoxbux4WFi8/nO9ZYuWaO/XHn/+9Sc2/bwJ1tbWr2PIkiKnQAzya1QkAlJTU2BlZQULi7z30NLCUql3eGpqKnJyclC1atVCQ2tWr573d4aNjbVin/v/+xfJyclKQ8blQAo3Nzf06vkhtv+6DQ8exBQqQOVnaWmpcmg4kajo7/f8PDxqoJV/bQBgbyAiIiIiA5GwfTsSd+xQWlZrrXIulF/Okyd4MHq00rJKvfugyvBhRR7j0ZSpyLz+Oic0r+wE961FFweS//sPL9asUVrm+u23sGnevIgtSi8oKAjDhw/H0aNHce7cOQQGBuLhw4eqc6GDB5Gamoq33noLP/30E+rVq1dof8HBwVi/fj2io6ML5UL5HTp0CL/88gsiIyPx+PFjWFhYoFmzZpgyZQp69Oih1DZ/LjRnzhzs3LkT8fHxqF+/PmbMmIE+fQrnQuXl119/hVQqxcSJE5WGb/Px8YG/vz92796NDRs2KOVCqmzZsgU2NjYYN26c0vKAgACsWbMGW7ZsURSCYmJicOLECXTs2FFRBAIACwsLTJw4EcOHD8dff/2leM337t2ryIXy5yFubm7o06cPgoODERMTAw8PjzK+GtrFQpCOLV68GNHR0Th16lShmwbaZOMgwaBv2mjcvmDOLRKhRNsXnJMGAJp1doN3x+K75qnbZ1ljaNHVHU0711LRWjMWErMyx+DzPw807+pW6hgk1uZljqHV+7XR8n8epY7B2s6iZDGoGJ+/Tc868H2/ttrtwsPzio9+fi0KrbN1LNk1rSqGdh/VRZuedTTeR0F2TlZljqH9x/XRrnfhX+SqqLoZ5ljVpswx+PdvUKL5eQqq/IZtmWPoONCzTDFUqWmnFMPra0d1XKpi6DSkYYnmCCrIxc2uRK+DuYoYOg9vVKL5eQqqVtuhzDF0HfVmmWJwredY5hje/bRxieYIKqi6Z6WSxaBifh+PDmK0a6fZPgresAfyrhFr+6JvVKemJyPn/j2lZUK28lByVraviyrZr0SF2mclxqs9Ru6TJ0rbmKe6qG2flZKM7Dt3lZZZCNlqtymOmYUY1haFt5fPufbNgrlITU3FyFEjYW1tjcDAQAwaNAhmZmaYOnUq2rVrh2/mf4PY2Fj8+OOPGDC4Ly5fvqzojQIAY8aMQWBgILp37475/efD0tISBw4cwPDhw3H79m0sWLBAEcNvu35FfMJLfDL4E9SsWRMvXrzAli1b8HH/3tixYwf69etXKNZu3brBxsYGU6dOgVQqxbp16zBk+CfwbFQfrVopPyCQnV14OMDU1FRkZGRo/Jo5OzurXG5t9/p6uHAp7yGEjm/7F3p//Nr74cTJE4iOjoav7+uHKMwtxTAvUDyRX/tt2vsiOTkZIpEI3t7e+PzzzzFq1CiltlWqVEGrVq1w+MghrFj9PT7++GNYWlri1KlTWLnqB3Tu3Bnv9XhX8d6cO38WANCuXbt8x8uL4S3/9tj+6zZEXbsEr8YNNH5tgLzPm20lCQZ9U3xSXrBgRURERET6J01ILJR3FMyFlNbl5hZqL41X/0BtzqNHStvIXNQ/7ChNKpwLCSX4G740ZsyYkZcLjczLhTZu3FgoF5o/fz5iY2OxcuVK9OrVC1FRUYVyoY0bN6J79+749ttvYWFhoZQLLVy4UNE2KCgIz549wyefvM6FgoOD8cEHH+C3334rJheaCqlUip9++gmffPIJPDw84OfnV6h9QampqcjMzNT4NSkqF8rvzJm8h+Pz5xly7dq1w/HjxwvlQgU9e/YMsbGxaNeuXaGCkYeHB1xdXREZ+foB+OKOCQCRkZGKQlBx7YODgxEZGclCUEVz8eJFyGQytGmj+mbThg0bsGHDBvTs2RN//fVXqY8jEhWe6L5k24vKtD3w/5Ozl2HCXsbw/zGIyx6DuYUZoNmD7nqNwcwi7+aqqmMZwusg1kYMKm5AM4ayx6Du2imKRVljMBPDsow3HRnD/8cgKVsMZmbiMt8AFpuX/bpWVTBUrNNgULf826val1DMMUoak6qB5kQiUYmPocnx5MvT09Nx/vx5WFnljUPWr18/eHh4oH///li4cCFmzJih2KZatWoICAjAsWPH0KVLFwDAvn37EBgYiO+++w7Tpk1TtP38888xfvx4LFmyBKNGjULt2nkPHgQGBsLW1lYplkmTJqFZs2b49ttv0b9//0Kxenl5YfPm18Osffzxx6hfvz5+/PFHbN++vdjX4PPPP0dwcHCx7eSKKoLmfy3j4vJ6WNeqVavQa1yrVi1Fm/zJj8pCfuXKGDFiBNq3bw9nZ2fExMRg3bp1+PTTT3Hp0iWsXavcQ2z37t0YPnw4Zs+ejVmzZimWjxkzBqtXr4aZ2evP7qNHeT2w84/PLY9BHuOjR49KdX1p4+8xIiIiIiJ9KpgL9e3bt8hcqGrVqggICMDRo0eVcqGNGzeWKRf68ssv0axZM8yfP19lIahgLtSnTx/Ur19fMddNcbSVC+Unz4VUzQMkX1YwFyrJPuTLb9y4UeJjlra9oWCGpWNdunRRWe188uQJ9u/fDy8vL/j5+aG5DroiEhEREenThAkTFIkPALi6usLT0xNXr17FpEmTlNp27NgRAHDz5k1F8hMcHAyJRIJBgwbh5UvlpwI//PBDrFu3DkeOHMHo/x9KIn/ik5aWhszMTAiCgLfffhsbNmxASkoK7O3tlfaTP6kCAHd3dzRo0AC3bt3S6BynTp2KTz75RKO2mkpPTwcAlb3J5a+nvI06X375ZaFlY8eOhb+/P3766ScMHjxY6WEla2tr1K5dGxKJBP369YODgwPCwsKwdu1aPH/+HDt37lQMLaetGImIiIiITJGx5kL169fHnTt3NDpHQ82F1O1Dvp/8+yjpMY01F2IhSMc+++wzlctDQ0Oxf/9+dOjQAevXry/nqIiIiEiXzJwqw7Ke8lw3IjVznojMzWFZry6kMkE+TQzETk5FtgcAixo1IM0355R5ZfXtzRwdCsdUzLjKZaVqvh8nJydUr15dKSmSLweA+Hxzml27dg1ZWVmKHiaqPH36ek68mJgYzJ49G/v370eCinnJEhMTCyU/qmJ0dnZGbGxskcfMr1GjRmjUqFHxDUvAxsYGAJCVlVVoKAP50AvyNiVlYWGBr7/+Gj169MC+ffsUhaC0tDS0bdsWzs7OOHXqlGJIig8//BD16tXD559/jsDAQIwfP75QjAWVNUYiIiIiMl6lzYWU9lFF/RBizIXy6CIXqlKlCh48eFDkMfMz1FxIXa4i30/+fZQ0tzHWXIiFoFLatGkTTp48CSBv0mj5stDQUABA+/btC429TkRERBWD06BBcBo0SOP2Fq6uqLtvH+JTs/KKQRqosWxpiWJyePddOLz7bom2Kav8Q4lpshxQHi5AJpPBzs4Of/75Z5Ht69TJmwsuNTUV/v7+SEpKwhdffIEmTZrAwcEBYrEYmzdvxo4dOyCTyQptn38C0qLiUCcpKalEcwS98cYbxbapWbMmrly5gri4ONSvX19pXXHDHGhCPnzE8+fPFcv++OMP3L17F+PGjVMalxzIG9Lv888/x5EjRxSFoPxDHjRs2FDrMRIRERGRcSptLlQSzIXyMBcqeh/52xcUFxentA917VUd01hzIRaCSunkyZOFxkAMDw9XTGAOgIUgIiIiojJo0KABbty4AW9vb1SrVk1t22PHjuHhw4f4+eefMWLECKV1gYGBOovxiy++0Pq42L6+vvjvv/8QERFRKPmJiIiAtbU1GjduXOJY5eTD3uVPxB4/fgwAkEqlhdrn5uYCAHJycpRiXL9+PSIiIhTDV+SPEQBatWpV6hiJiIiIiCoy5kKlz4WqVasGNzc3XLp0CRkZGUo9i2JjY/HkyRN07dpV6Zjy/RckX5Z/TiJjzYXKNtNyBRYUFARBEIr8FxQUpHb7jh07QhAEDgtHREREVIRhw4YBAL766iuVT7AlJSUpuuPLn6wrmFxERUXhr7/+0lmMU6dOxeHDhzX+p4mBAwfCzMwMP/74o6IIAwDnzp3D8ePH0bt3b6WhBpKSknDjxg2lscNzc3ORlJSEgtLS0jBv3jwAQM+ePRXL33zzTQDAtm3bkJ2drbTNpk2bAEBpPqFevXrB3t4egYGBSE5OVix/8OABdu3ahfbt2yt6HhERERERUckwFyp9LgQAgwcPRnp6OtatW6e0fPny5Yr1crVr14afnx9CQ0Nx/vx5xfLc3FysWrUK9vb2SrmTseZC7BFERERERAbpww8/xNixY7F+/XpER0fjo48+QvXq1fHs2TNERUXh77//xvXr1+Hh4QE/Pz+4uroiICAA9+7dg4eHB65fv47AwEB4e3sr/UGvTboYF9vT0xNTp07F4sWL0bFjRwwePBgvX77EihUrULVqVSxatEip/Z9//onhw4dj7ty5iiJPamoqPDw88MEHH6Bhw4ZwcXFBTEwMgoKC8OjRI0ybNg0tW7ZU7OO9996Dn58fwsPD0aJFCwwZMgT29vY4fvw4du7ciTp16iiGhQOAypUrY9myZRg7diz8/PwwZswYZGVlYfXq1QCAVatWafU1ISIiIiKqSJgLlT4XAvKKVLt378bUqVMRExODpk2b4vjx49i6dSsGDBiAzp07K+1n1apV8Pf3R7du3TBp0iQ4Oztj69atuHDhAjZs2IDKlSsr2hprLsRCEBEREREZrHXr1uHtt9/Ghg0bsGLFCqSlpaFq1arw9PTEokWLFMObVapUCYcOHcK0adOwbt06ZGVloUmTJti+fTsuXLigs+RHVxYuXAh3d3esXbsWX3zxBezs7NClSxcsWrRI7YSxctbW1vj4448RGRmJffv2ITk5GZUqVULLli2xdu1apSfagLynCA8dOoRly5Zh9+7dmDt3LqRSKWrVqoUJEyZgzpw5SskPAIwZMwZVqlTBsmXLMHXqVFhaWqJ9+/ZYuHAhmjZtqtXXg4iIiIioomEuVLpcCAAcHBxw4sQJzJo1C7t27cKGDRvg7u6ORYsW4auvvirUvkWLFggPD8fXX3+NZcuWITs7G97e3ti1axf69OlTqL0x5kIiQdPZn8hgtW3bFoDqcQzLQ1hYGADA399fL8cn48Vrh0qL1w6VRVmvn+joaACAt7e31mKSi0/NglT2+k+zqg5WWj8GlZ586AWJRKLnSExXaT9f+v57mHTPEN5j/v1BpcVrh0qL1w6Vlq6uHV3mQmQYmPOUD33kPZwjiIiIiIiIiIiIiIiIyESxEERERERERERERERERGSiWAgiIiIiIiIiIiIiIiIyUSwEERERERERERERERERmSgWgoiIiIiIiIiIiIiIiEwUC0FEREREREREREREREQmioUgIiIiIiIiIiIiIiIiE8VCEBERERERERERERERkYliIYiIiIiIiIiIiIiIiMhEsRBERERERERERERERERkolgIIiIiIiIiIiIiIiIiMlEsBBEREREREREREREREZkoFoKIiIiIyCDFxMRAJBJh3rx5+g6FiIiIiIio3DAXIm1jIYiIiIiIqBxERUWhR48eqFy5MmxtbdGmTRvs2bOnxPsJDAxE06ZNYW1tDRcXFwwcOBCxsbEq26anp2P69Onw8PCARCKBh4cHpk+fjvT0dJXtY2NjMXDgQLi4uMDa2hpNmzZFYGBgiWMkIiIiIiKSYy6kf+b6DoCIqKCHCel4kJCOtnWqQCwW6TscrcnKleL0vQQ0fMMeVR2s9B0OEZHBc3d3R0ZGBszNjf9P1suXL6N9+/aQSCQICAiAs7Mztm3bht69e2PTpk0YOXKkRvuZPXs2FixYAD8/P6xcuRIvXrzAypUrERoaisjISNSsWVPRViqV4r333sPx48cxePBg+Pv74/Lly/j+++9x5swZHDlyBGZmZor2cXFxaNOmDZKSkvDll1+idu3a2Lt3Lz799FM8ePAA3377rdZfFyIiIiIiKoy5UGHMhcrG+K8kIjIpz5Iz8eFP4cjMkWG4nwcCunrqOyStmbEnGoeuPoOTrSUOTfKHlYVZ8RsREVVgIpEIVlamUTifMGEC0tLSEBISAh8fHwDAyJEj0bp1a0yePBm9e/dGpUqV1O7j1q1bWLx4MVq0aIHQ0FBFUvjuu+/C19cXM2fOxJYtWxTtg4ODcfz4cUyYMAGrVq1SLPfw8MBXX32F4OBgjBgxQrF85syZePr0Kf744w989NFHAIDRo0fjgw8+wOLFizFkyBDUr19fWy8JEREREREVgbmQMuZCZceh4YjIoGw6cQ+ZOTIAwC/hMfoNRssOXX0GAEhIy8bR68/1HA0Rke4EBQVBJBLh2LFjWLp0KerXrw8rKys0bNgQO3bsAAA8fvwYn3zyiaLbfdeuXXHnzh2l/agaFzv/ssOHD8PPzw82NjZwcnLCJ598gvj4+PI8VY3ExMTgxIkT6NChgyLxAQALCwtMnDgRycnJ+Ouvv4rdz6+//gqpVIqJEycqPRno4+MDf39/7N69GxkZGYrl8kQoICBAaT/jx4+HtbW1UqKUnp6O3bt3o3bt2orER27y5MmQSqXYvn17ic6biIiIiKiiYS6kjLmQ4WCPICIyKCmZufoOoVxk5kj1HQIR6dCOGzuw88bOEm8nlQkQIAAA6lXyxMq3lxXZdvqJ6bgRf6PUMQJAP69+GOA1oEz7UGfGjBlITU3FyJEjYW1tjY0bN2LQoEEwMzPD1KlT0a5dO8yfPx+xsbFYuXIlevXqhaioKIjFxT+r9N9//2HVqlUYPXo0hgwZgjNnziAoKAiJiYn4999/Sx1zTk4OkpKSVK7LysoCAEgkEsUye3t7pZ9VOXPmDACgXbt2hdbJl0VGRmLYsGFl2s/x48cRHR0NX19fCIKAs2fPonr16nB3d1dqa21tjWbNmuHcuXMQBAEikQjR0dHIyMhA27ZtC+27bdu2EIlEiIyMVBsfEREREVFpc6H8vKp44bu3vityPXMh3eVCL1++BIBicxyAuZCxYSGIiIiISMsSMxNxN+lumfZhb+Ggdv3j1MdlPkZiZmKZti9Oeno6zp8/rxjSoG/fvvDw8ED//v2xcOFCzJgxQ9G2atWqCAgIwNGjR9GlS5di93358mVcunQJnp55Q4iOGTMG5ubmCAwMxO3bt0vdbT88PBydOnXSuP0vv/xSbNISFxcHAEpjVsvJl8nbaGM/vr6+SEhIQHp6Oho3bqxyXzVr1kRERAQSExPh5OSkdt8SiQTOzs4axUhEREREFZs2ciEHCXMhdZgLFb0f5kJFYyGIiIiIiHRiwoQJSuNau7q6wtPTE1evXsWkSZOU2nbs2BEAcPPmTY2Sn169eikSH7muXbsiMDAQt27dKnXy07RpUxw+fFjluuzsbACApaWlYtmbb75Z7D7T09MBqH6qTv76yNtoaz/q2hZs7+TkpFF7TWIkIiIiIiLjzYXkPYry5zxFYS5kXFgIIiKDIhLpOwIiItKWunXrFlrm5OSE6tWrF5r41MnJCQA0Htda1b6dnZ0BQDGcQWlUrlwZ77zzjsp1qoaG04SNjY3S9vllZmYqtdF0P9bW1mr3o+6YpW1f3ASuRERERESUx1hzoc6dOwMoec5TFOZChoOFICIyKIKg7wiIiMquslVl1HUs/Md5cfLPEVTN1lVt2+p21ZGclVyq+OQqW1Uu0/bFMTMzK9FyABA0/EWQf4LQ0u5DlezsbCQkJKhcp6oQ5OjoWCgRKUjdkAfqhiFQtZ8rV64gLi6u0FN+Bffj5OQEGxubIocwiIuLg62tLSpXrlxsjFlZWXj58qXS5K5ERERERKqUNhfKr7pd9WLXMxcq2z5Uyc7OxtOnTwFoVghiLmRcWAgiIiIi0rIBXgNKNfFofGoWpDLN/nBXN3kqld6pU6e0Pi62r68vACAiIqLQOvkyeZvi9vPff/8hIiKiUPITEREBa2trxTjYIpEIPj4+CAsLQ2xsrNIkqRkZGbh06RJ8fX0h+v+uuN7e3rCyslIZ4+nTpyEIgkYxkuE4e/Ys5s6di1OnTiEnJwfe3t6YPHky+vbtq/E+srKysGTJEmzduhUPHz6Ek5MT3n//fSxYsABVq1Ytdvv33nsPBw4cgEQiUTx5SURERKattLlQSTAX0g3mQqadC7EQREQGhUPDERGRPulijqDatWvDz88PoaGhOH/+PFq2bAkAyM3NxapVq2Bvb4+ePXsqbXPjxg1YWFgoDfswcOBALFy4ED/++CMGDhyoeBLw3LlzOH78OAYNGqQ0rMLgwYMRFhaG5cuXY9WqVYrl69atQ0ZGBgYPHqxYZmNjg969e2P79u3Ys2cPPvroI8W65cuXw8zMDAMG6DahJ+0JCQlBt27dYGVlhf79+8Pe3h5//PEH+vXrh4cPHyIgIKDYfchkMvTs2RMHDx5EmzZt0Lt3b9y+fRubNm3C0aNHcfr0abi4uBS5fWBgIA4ePAgrK6syPZlKREREROVDF3MEMRcyHCwEERHpAQteRESGSRdzBAHAqlWr4O/vj27dumHSpElwdnbG1q1bceHCBWzYsEExLIFcw4YN4e7ujpiYGMUyT09PTJ06FYsXL0bHjh0xePBgvHz5EitWrEDVqlWxaNEipX0MHz4cW7ZswerVq5GUlAR/f39cvnwZP/30E956661CT+8tWrQIR44cweDBg3H+/HnUrl0be/fuxb59+zBjxoxCE9KSYcrNzcXo0aMhFosRFhaGZs2aAQDmzJkDX19fzJw5E3369FF6MlKV4OBgHDx4EAMGDMD27dsVT0yuX78e48aNw6xZs7BhwwaV28bExCAgIACTJ0/Grl27FEOMEBEREZHh0sUcQQBzIUMh1ncAREQVER+MJSKqWFq0aIHw8HC0adMGy5Ytw6RJk5CTk4Ndu3bh008/1Xg/CxcuxPr165GcnIwvvvgCK1asQJcuXRAREYFatWoptTUzM8P+/fsxZcoUhIaGYty4cdi7dy8mT56M/fv3Fxqf3M3NDREREfjggw+wYcMGfP7554iNjcX69euxcOFCrbwOpHvHjh3D3bt3MXDgQEURCMgbw33mzJnIzs5GcHBwsfsJDAwEACxevFhRBAKAMWPGoE6dOti+fTsyMjIKbScIAkaMGAFXV1fMnz+/7CdEREREREaNuZBhYI8gIjIw7CpDRGTshg0bVuRY0aGhoSqXe3h4FBo+StNlch07djToIaiaNm2Kffv2adS2qPMQiUQYM2YMxowZo9F+7OzssHTpUixdulSj9rVr18aOHTs0akuGSf4Z69q1a6F13bp1AwAcP35c7T4yMzNx5swZeHp6Fuo5JBKJ0KVLF2zYsAHnzp3DW2+9pbR+9erVOH78OMLCwoqdPJiIiIjI1DAXUo25kP6xEEREBsZwf2kRERERGbrbt28DQKFJdAHgjTfegJ2dnaJNUe7evQuZTKZyH/n3ffv2baVC0O3btzFjxgxMnDgRfn5+pYq/bdu2KpdfuXIFbm5uCAsLK9V+tSE5ORkA9BoDGSdeO1RavHaotHR17VhbW0MikSiGTCbTIy/C8D3WLUEQkJWVVeLPaHJyMhwcHEp1TA4NR0REREREZCKSkpIA5A0Fp4qDg4OiTVn2kb8dAMhkMgwdOhSurq4mM3wGEREREZGpYI8gIjIwHBqOiIiIyNgsW7YMp0+fRkhICGxsbEq9n4iICJXL5T2F/P39S73vspI/sanPGMg48dqh0uK1Q6Wlq2snOjoaACCRSLS6XzIc8p5AfI91SyQSwcrKCq1atSrRdqXtDQSwRxAREREREZHJkPfiKarXT3JycpE9fUqyj/ztbt26hblz52L8+PHo0KFDqeImIiIiIiLdYSGIiIiIiIjIROSfv6egp0+fIjU1tci5f+Tq1KkDsVhc5FxCBechunbtGrKysrB27VqIRCKlf7GxscjKylL8/OrVqzKcHRERERERlQaHhiMi0gMRR8AjIiIiHejQoQMWL16MQ4cOoX///krrDh48qGijjrW1NXx9fXH69GnExsbC3d1dsU4QBBw+fBi2trbw8fEBAHh4eGDkyJEq97Vz505kZGRg2LBhADjMCBERERGRPrAQREREREREZCI6d+6MOnXq4Ndff8XEiRPRrFkzAHnDvC1atAiWlpYYMmSIov2TJ0+QlJQEV1dXpSHjPv30U5w+fRozZszA9u3bIfr/p1g2bNiAe/fu4dNPP4W1tTUAoFmzZti0aZPKeI4cOYKnT58WuZ6IiIiIiHSPQ8MRERERERGZCHNzc2zatAkymQz+/v749NNPERAQgKZNm+LWrVtYtGgRPDw8FO1nzJiBhg0b4s8//1Taz9ChQ9GtWzfs2LED7dq1w/Tp09GnTx+MHz8etWvXxoIFC8r5zIiIiIiIqLRYCCIi0gNB0HcEREREZKo6deqEkydPws/PDzt37sS6detQrVo1/PbbbwgICNBoH2KxGHv37sW8efPw4sULrFixAuHh4Rg5ciQiIiLg4uKi47MgIiIiIiJt4dBwRGRQOHcOERERUdn5+vriwIEDxbYLCgpCUFCQynUSiQRz587F3LlzSx1HTExMqbclIiIiIiLtYI8gIiIiIiIiIiIiIiIiE8VCEBERERERERERERERkYliIaiUtm3bhjFjxsDHxwcSiQQikUjlkAo5OTn4448/MHToUDRs2BB2dnawt7dH69atsW7dOkil0vIPnoj0jkPgERERERERERERUXlgIaiUZs2ahY0bNyI2Nhaurq5Ftrt79y769OmDPXv2wNPTE5999hkGDRqEuLg4jB8/Hr169YLAWeOJiIiIKpybN29iypQpeOedd1ClShWIRCIMGzZM4+3Xrl0LkUgEkUhU4nlY9uzZgzZt2sDW1haVK1dGjx49EBUVpbJtbm4ulixZAk9PT0gkElSvXh3jxo1DfHy8yvbx8fEYN24cqlevDolEAk9PTyxZsgS5ubklipGIiIiIiExXeno6pk+fDg8PD0gkEnh4eGD69OlIT08v0X6ioqLQo0cPVK5cGba2tmjTpg327NlTZHtd5kKGjIWgUtq0aRNiYmLw4sULjB07tsh29vb2WLt2LZ4+fYq//voLS5Yswfr163Hr1i34+Phg37592L17dzlGTkRERESGICIiAt9//z3u3buHVq1alWjbBw8eYPr06bCzsyvxcX/++Wf07t0baWlpWLJkCb7++mtERUXBz88Ply9fLtR++PDhmD59Oho0aIA1a9Zg2LBhCA4Ohr+/P1JSUpTapqSkwN/fH4GBgejTpw/Wrl2L1q1bY/r06Rg+fHiJYyUiIiIiItMjlUrx3nvvYcmSJfD398fatWvRo0cPfP/99+jevbvGo2hdvnwZfn5+iIiIQEBAAJYvXw5zc3P07t0bP//8c6H2usyFDJ25vgMwVu+8845G7WrUqIHx48cXWm5ra4vJkydj4MCBOH78OD7++GNth0hklDhiGhERVRQ9evRAQkICKleujJiYGNSuXVvjbceMGQMvLy94eXlh27ZtGm+XmJiIyZMno2bNmggPD4eDgwMAoG/fvmjUqBEmTJiAsLAwRftjx45h27Zt+OCDD7B3717F8pYtW6JPnz5YtmwZ5s+fr1i+bNkyXLt2DcuXL8fkyZMBAKNGjYKjoyPWrFmD4cOH4+2339Y4XiIiIiIiMj3BwcE4fvw4JkyYgFWrVimWe3h44KuvvkJwcDBGjBhR7H4mTJiAtLQ0hISEwMfHBwAwcuRItG7dGpMnT0bv3r1RqVIlALrPhQwdewTpkYWFBQDA3Jz1OCIyHptP3sfgn88g7NYLfYdCRAYqKCgIIpEIx44dw9KlS1G/fn1YWVmhYcOG2LFjBwDg8ePH+OSTT+Di4gJra2t07doVd+7cUdqPTCbDokWL0LFjR7i6usLS0hI1atTA4CFDEH3zDlIzcxVD7AYHB0MkEuHzzz9X2kd2djZ8fX1hbW2NS5culcv5a6pKlSqoXLlyibfbsmULDh8+jI0bN8LMzKxE2+7duxfJyckYNWqUIvEBADc3N/Tp0wcnTpxQGmZuy5YtAKAo6sj17t0bHh4eivX529vY2GDcuHFKywMCApT2R0RERERkinSdCw0dOhQPHjxQamuMuZA8L5DnCXLjx4+HtbW1RnlDTEwMTpw4gQ4dOiiKQEDePfeJEyciOTkZf/31l2K5rnMhQ8cKhB5t3rwZANC1a1eN2rdt21bl8itXrsDNzU2pYlmekpOTAUBvxyfjperaefIkE7nS13MImNJ1lf+8bty4ibDUe3qMpnSepcmwNDwNAHD2/kts7Gqvlzj4vUNlUdbrx9raGhKJBFlZWUW2uXbiCa6dfFLifcvyTRtYqbotug7zLLJtyJZbiH+UWuJj5NeovSsavVX0XIellZOTAwCYPn06UlNTMXToUFhbW+Pnn3/GoEGDIJPJMHPmTLRp0wZz5szBgwcPsHr1avTs2RPnzp2DWJz3rFJmZiaWLFmCnj17olu3bnBwcMCVK1cQHByMo0ePIiT8LGpWqwJzMdC/f38cO3YMa9euRbt27dC7d28AwFdffYWzZ89izZo1aNiwodr3TZ3ExETFHDcikfr+qxYWFnB0dCzR/uVxSaVStTE+e/YMkyZNwsSJE9GoUSPFkAlZWVkandupU6cAAD4+PoXat2rVCsHBwQgPD1fMgXn69GmIxWI0b968UHtfX1/8/vvvePjwIapWrYpnz54hNjYWbdq0gVgsVmrv6uoKV1dXnDlzRm2cgiAgKyurxJ/P5ORkpWSOiIiIiPQjOjQO0ccflWkfLrXs0GXEm0WuP7z5Kl48LFsu5N2hBrw71izTPtSZMWMGUlNTMXLkSFhbW2Pjxo0YNGgQzMzMMHXqVLRr1w7z589HbGwsVq5ciV69eiEqKkqRC2VnZ2PJkiX46KOP0L17dzg6OiIqKgqbN2/G0aNHERUVBScnJwDA0KFDcfz4caxduxYdOnRQjDw1depUnD17Fhs2bECzZs1KfS6JiYkaD9WmSS4kCALOnj2L6tWrw93dXWmdtbU1mjVrhnPnzkEQBLW515kzZwAA7dq1K7ROviwyMlIxD2tx7YODgxEZGQkPDw9Fe7FYjDZt2hRq37ZtW+zYsQPPnz9H1apV1Z6voWAhSE82btyIAwcO4O2338Z7772n73CIiDTyIFmzX/xEFV1Gag5ePc0o0z4srNX/mZaakFnmY2Sk5pRp++Kkp6cjIiICVlZWAPKenPL09MTgwYPxzTffYOrUqYq2Li4umDZtGo4dO6YYglcikSAmJgY2NjZK+3373R7o26s7ft0ahMmTA2D+/33cV65cifPnz2PcuHFo1qwZrl69ijVr1qBfv34YNWpUmc6ldevWhZ68K8pbb72Fw4cPl+l4RZk0aRIcHBwwe/bsUm3/6FFeUl6zZuGkV75M3kb+f2dnZ0gkErXtq1atqnbfQN6QyTdv3ixV3ERERERkHDJSspH4JK1M+7CyUZ8LpcRnlvkYGSnZZdq+OOnp6Th//rwiF+rbty88PDzQv39/LFy4EDNmzFC0rVq1KgICAnD06FF06dIFQF4u9OTJk0K5UK9evdClSxf8/PPPmDJlimL5mjVrcPbsWYwaNQrNmzfHlStX8OOPP2LgwIH49NNPy3QuzZs3R2xsrEZtO3TogNDQULVtEhISkJ6ejsaNG6tcX7NmTURERCAxMVFR7FIlLi5O0V7VPvK3KW374nKhuLg4FoKoaPv27cPnn38Od3f3Eo3pHhERoXK5vKeQv7+/VuIrKfkTm/o6PhkvVdfOwfhomD97rPjZlK4r86MHFf/39PSEf0vdPXmiK2nRT2B+LUrxM793yBiV9fqJjo4GAJV/DMqZl3C4rqKoO4b8SbGyMDczU3uM0pIPfztx4kSlp8E8PDzg6emJq1evYsqUKUrHlhd/7t+/r7RcnjjJZDIkJycjNzcXjZs0gYOjIy6cOwszMzNIJHl/0kokEuzevRs+Pj7o168f4uLi4OnpiU2bNpX5PH/99VckJSUBACwtLdW2rVy5comPJ29vpuY9+fPPP7Fnzx4cPHhQMaScfGg4iUSi0TEzMzMBAPb29oXa29vn9fLMzs5WrEtPTy/yfGxtbQEAubm5kEgkih5T8l5zBVlbWyM9PV1tnCKRCFZWVmjVqlWx55IfewMRERERkSGZMGGCIpcB8nrIy3OhSZMmKbXt2LEjAODmzZuKQpBIJFIUgfLnQs2aNYOjo6Oid4ucjY0Ndu3aBR8fH3z44YeKXGjDhg1lPpft27cjI0OzhxA1Gfo6PT0dQNH5rvx1S09PV1sIUref/PsoS/uizkdVe0PHQlA5279/P/r06YNq1arh2LFjimE3iKhiKWZUISIik1C3bt1Cy5ycnFC9enWlpEi+HADi4+OVlv/1119YunQpzp8/j+xs5af2EhMTAQhKy7y8vPDDDz9gzJgxsLCwwO+//w47O7syn4ufn59iSDNdFM+K8+rVK3z22WcYNGiQxsMKqyJPJlUNzyYvEuV/6tDGxqbIodwKtle3b3n7gk80EhERERGZIl3nQgkJCYX2r8tcSJs0yRvytyvNforKbUravqwxGhIWgsrRv//+i969e8PZ2RkhISGoU6eOvkMiIiIiHbC2t0RlV9sSbyeVyRT/t62svthgX8UKmem5atsUx9pefc+WsjIromdUUcuBvPGi5fbu3YsPP/wQPj4++OGHH+Dm5gZra2skpmVj7IghEASZyu3//vtvAHlzFV25cgVNmjQp45kAL168KPbJNTlLS0u1T66Vxty5cxXFoPwTyaakpAAAYmNjkZubi7p166odRzv/EAYNGzZUWqdqqISaNWvi1q1byMrKKnTeBdurGk6hYPuiho0jIiIiItNQ2lwoP/sqVsWur6i5EJA3P6pMVr65kKZzBGmSCzk5OcHGxkZt3mBra1ts7yJ1+UdRuY18nbZzIWPAQlA5kReBnJycEBISgnr16uk7JCIiItIR7441SzXxaHxqFqQyofiGgNrJU01FcHAwrKyscPz4caUnre4/icerV4kqt1m2bBn+/fdfTJs2Dfv27cOYMWPg4+ODBg0alCmWVq1aaXVc7JKKjY1FRkaGyolNgdfDSaSkpKh96s/X1xfr169HRESEYtgJOfkwxPmHZfP19cWNGzdw5syZQsMpRkREwN3dXTEmdrVq1eDm5oZLly4hIyNDkajK43/y5EmZejMRERERkeErbS5UEhU5F0pLS/v/kREKM5ZcSCQSwcfHB2FhYYiNjYW7u7tiXUZGBi5dugRfX1+1D7gBebkKoHo6FfkyeRv5/3WVCxkDFoLKwYEDB9C7d29UrlwZISEhqF+/vr5DIiIqFQ5pR0TlyczMDCKRqNDTbj8sXazyCbjw8HB8/fXX6Ny5MxYtWoShQ4eiVatW6Nu3L06fPl1oCIaS2L59e4nmCNK2adOm4ZNPPim0fO3atQgNDcVPP/0EFxcXpeLL3bt3kZOTAy8vL8WyXr164YsvvkBgYCC+/PJLxdw6Dx48wK5du9C+fXvUrl1b0X7w4MHYsmULli9frpT87NmzBzExMZg1a5ZSPIMHD8bChQuxbt06TJ48WbF8+fLlivVERERERKReUbnQt99+q5dcSJtzBAF5eUFYWBiWL1+OVatWKZavW7cOGRkZhfKGJ0+eICkpCW5uborCWO3ateHn54fQ0FCcP38eLVu2BJA3h+mqVatgb2+Pnj17Kvah61zI0LEQVEqbNm3CyZMnAbyeNHrTpk2Kimf79u0xatQo3LhxAx9++CGysrLQsWNH7Nixo9C+PDw8MGzYsPIKnYiIiMgofPzxx9i9ezc6dOiAYcOGQRAEHDx4ENFXrqJKFWeltvHx8ejfvz+cnZ2xfft2iMViNGzYEOvWrcOQIUPw5ZdfYv369aWORRdzBCUlJWH16tUA8uYAAoCoqCgsWLAAANC0aVP06NEDANC2bVuV+9i3bx8A4H//+x88PDyU1nXu3BmxsbFKQ0xUrlwZy5Ytw9ixY+Hn54cxY8YgKytLEUf+JAwA3nnnHQwYMAA7duxAjx490LNnT9y/fx8rVqyAl5cXpkyZotR+6tSp2L17N6ZOnYqYmBg0bdoUx48fx9atWzFgwAB07ty5FK8UEREREVHFUlQudO3aNTg7l38upG3Dhw/Hli1bsHr1aiQlJcHf3x+XL1/GTz/9hLfeeqvQvfIZM2YgODgYISEhitEQgLz8xd/fH926dcOkSZPg7OyMrVu34sKFC9iwYYNSYUrXuZChYyGolE6ePIng4GClZeHh4QgPD1f8PGrUKDx9+lRx0+C3335TuS/5B5qIiIiIXuvbty9SU1OxYsUKTJ06Ffb29ujSpQv+/u8IPnj3dUFBEAQMHjwYjx8/xuHDh1GtWjXFusGDB+P48ePYsGEDOnbsiP79++vjVFRKTEzE7NmzlZZdvHgRFy9eBAAMHTpUUQjSpjFjxqBKlSpYtmwZpk6dCktLS7Rv3x4LFy5E06ZNC7UPDg6Gt7c3fvnlF3z22WdwcnLC4MGDsWDBAsVTdHIODg44ceIEZs2ahV27dmHDhg1wd3fHokWL8NVXX2n9XIiIiIiITFFRudCJEyfQvn17RTtjzYXMzMywf/9+zJ8/Hzt37sSOHTvg6uqKyZMnY86cOWrnUsqvRYsWit5Qy5YtQ3Z2Nry9vbFr1y706dOnUHtd5kKGTiTkf0SQjJL8CVFV4yGWh7CwMAAoNFYiUXFUXTtf/xmNvZceK36+8k23co9LVxrPPaj4//yeb+KjFsYzoZzcf1ee4KtdUYqf9fX+8HuHyqKs14+8J7C3t7fWYpIrOEdQVYfSd983Zc+TMxX/t7E0g52VRbkcV9s9gqiw0n6+9P33MOmeIbzH/PuDSovXDpUWrx0qLV1dO7rMhcgwMOcpH/rIe8Ql3oKIiIiIiIiIiIiIiIiMAgtBRGRQRCJ9R0Dq8Q0iIiIiIiIiIiIyJiwEEZFB4WCVRERERERERERERNrDQhAREREREREREREREZGJYiGIiIiIiIwWO5ISERERERERqcdCEBEZFM4RZNj4/hARERERERERERkXFoKIiEhjnMOJCBCJRBAEAQI/EERaJZPJIAgCxGKmKERERESGiLkQUdnJP0Oicn7amlkWERkU/i1BRIbOysoKAJCamqrnSIhMS2ZmJgDAwsJCz5EQERERkSrMhYjKTv75kX+eygsLQUREesAh1oiMl6OjIwAgLi4OKSkpfBqOSAtyc3Px+PFjAK8/Y0RERERkWJgLEZWeIAhISUlBXFwcgPLPe8zL9WhERASAPZ+IjFmVKlWQkpKC1NRU3L9/HwC01qVbKlP+cngmZtVYlfyvk0gEiMupui5PdMu7C39FIH9tLSws4OLioudoiIiIiEgVXeZCZBiY8+hO/sKpnZ0dqlSpUq7HZyGIiAwKf88YNr4/RIBYLIaHhwfi4+ORlJSEzMxMrT0J9zI1S6nIUb2StVb2a2qeJWcq/m8rMYejdfkMJZaVlQWg/LvwVwRisRgODg6oWrUq5wgiIiIiMlC6zIXIMDDn0R2xWAwrKys4OjqiSpUq5Z73sBBEREREVEJisRguLi5a77kw+YfjeJL0ushx5Rtfre7fVAyYe1Dx/0/auGP6/7zK5bhhYWEAgFatWpXL8YiIiIiIDI2uciEyDMx5TBcftyMiIiIiIiIiIiIiIjJRLAQRkUFhj2IiIiIiIiIiIiIi7WEhiIiIiMhAcB4uIiIiIiIiItI2FoKIyKBUlJugxnqeRho2kdFgr0giIiIiIiIi0jYWgoiIiIjIaAlg9YyIiIiIiIhIHRaCyKCkZObg4oNE5EplZdqPIAg4H5uA/648RUJatpaiI3Uyc6S48CARmTnSMu1Hxvt5RERGR1u/A4iIiIiIiIhI+8z1HQCRXK5Uhr4bTuNhQjre834DS/s0LfW+lh+6haBTMQAAKwsxQqd0gp2El7sufbb9As7cT0DTWo7YPqpNqffz96XHWoyKdE0QBIiMdZw7ItKaEUFnERWXhDZ1nLBpaKtyPbaIg1YSERERERERqcUeQWQwTt2Nx8OEdADA/uinZdqXvAgEAJk5Mpy8/aJM+yP1UjJzcOZ+AgDg8sMkPH6VoeeIDJ+xzgOSmavcW+9hAt9rIm0yxq+GR68yEBWXBAA4fS8BqVm55Xp8Dg1HREREREREpB4LQWQw0nR44ygls3xvSlU00gLjueWUcWg/MlxCgQpWtpTDQBFVdNkFCsQFfycQERERERERkX6xEEQVAm9JERGRMeAgZ0RERERERESkbSwEERFRqRnrEHdEREREREREREQVBQtBRER6IOJj/0REWiFiPyoiIiIiIiIitVgIIiIiIjIQxtjJruDcYURERERERERkWFgIIiIiIiKjJRhl+YyIiIiIiIio/LAQRAaDt3GMFx8GJyKquEQc65KIiIiIiIjIoLEQRERERESlxqHhiIiIiIiIiAwbC0FUMfAeFRkYY71vWvDJfyM9DSIiIiIiIiIiogqDhSAiKjOOClRx8K0mooL0PTSciN9MRERERERERGqxEEREpAfGWjxjDyAiKkjfQ8MJ/GYiIiIiIiIiUouFIDIYRnpfnIiIiIiIiIiIiIjIYLEQREREGmPBlogK0vfQcERERERERESkHgtBZDB0ObALh40hIiLSDX0PDUdERERERERE6rEQRERlxnuAFQcf/Cei4pT394SIfRWJiIiIiIiI1GIhiCoE3iQi0g0WAYmoIH4vEBERERERERkWFoKoQuDQcOWLhTciIiov/B1PREREREREpB4LQURERESkNRxCkoiIiIiIiMiwsBBERFrHp7OJiCouDg1HREREREREZFhYCCKiMuPT3xUHh/0jIkPD7yUiIiIiIiIi9VgIIiIiIiKt4cMBRERERERERIaFhSCqEDhMjW7x9a24OAwgERXE3wlEREREREREhoWFoFLatm0bxowZAx8fH0gkEohEIgQFBRXZPjk5GZMnT4a7uzskEgk8PDwwZcoUpKamll/QRERlxMIPERkafi8RERERERERqWeu7wCM1axZsxAbGwtnZ2e4uroiNja2yLZpaWno0KEDLl26hK5du2LAgAG4ePEivv/+exw/fhxhYWGwsrIqx+iJiIiIdINDwxEREREREREZFvYIKqVNmzYhJiYGL168wNixY9W2Xbp0KS5duoRp06bh4MGD+O6773Dw4EFMmzYNZ8+exYoVK8opaqLywYm7TRffWyIqDoeGIyIiIiIiIjIsLASV0jvvvAN3d/di2wmCgE2bNsHOzg6zZ89WWjd79mzY2dlh06ZNugqTiAwUCypERNrB71MiIiIiIiIi9VgI0rHbt2/j8ePH8PPzg62trdI6W1tb+Pn54d69e3j48KGeIjR8c/ZeQeO5B/HZ9gv6DoWICkjJzNV3CEQmRTCB7jS5Upm+Qyjk8asMTNl1GT8cuonsXMOLT1+eJ2di+h9R+O7ADWTmSPUdDhEREREREekI5wjSsdu3bwMA6tevr3J9/fr1cfDgQdy+fRu1atVSu6+2bduqXH7lyhW4ubkhLCysbMGWUnJyMgCU+fjXnuQgV/r6pnJYWBiycgX8fjYVAHD0+hPsORgKZ+vi65f59wMAt27fQlhmTJnio6KlZAtKr/mZyEjE2Bb/Pqm6dgq+d/q6rnUh/7ldv3EDTil39RhN6Vwv8DmdvzsSU3xtyj0ObX3vUMVkyNdPenqGUiHFEGMs6EmqTOl7YcWeE+jqYanTY+Y/3sOHDxEW9lxt+2WR6bj9Kq/QkfEyDm/VtCjVcQ352imN1RcyEP0y77VMfRGn8/dNl5KTk+Hg4KDvMIiIiIiIiAwSewTpWFJSEgDA0dFR5Xp5wipvR8peZio/tXvvVemeVjWBB6wNGgflqbhul/IzSUSmK+xhjr5DKCT/d1WoAcanL/IiEAAcic3WYySkC2fPnsV7772HSpUqwdbWFm3atMHvv/9eon1kZWVh/vz5qF+/PqysrFC9enV8+umneP68cPH10qVLmD17Ntq0aYOqVatCIpGgTp06GD9+PB49eqSt0yIiIiIiolJgjyAjEhERoXK5vKeQv79/eYajIH8qtqzHT41+AvNrUYqf/f39ced5CszPnFIsa9iwEfybuBa7L/OjB5V+btCgAfx93coUHxUtMS0b5idCFD/7+raCexVbNVvkUXXtFHzv9HVd60L+c/Py8oR/85p6jKZ0UqKUP6eAft4jbX3vUMVkyNePzdlQpORmKX42xBgLuvciFeZnwhU/29rZwN//LZ0eM//3ac1aNeHv31Dj9o4O9vD3b1eq4xrytVMa+V8XG2uJUZ8XewMpCwkJQbdu3WBlZYX+/fvD3t4ef/zxB/r164eHDx8iICCg2H3IZDL07NkTBw8eRJs2bdC7d2/cvn0bmzZtwtGjR3H69Gm4uLgo2o8dOxZnzpyBr68v+vfvD4lEgjNnzmDdunXYtWsXTpw4AS8vL12eNhERERERFYGFIB2T9wQqqsePfIiRonoMkTIB7NpDRESmSyQyvj6WBX8zl/c8RyL2SyVSkpubi9GjR0MsFiMsLAzNmjUDAMyZMwe+vr6YOXMm+vTpA3d3d7X7CQ4OxsGDBzFgwABs375d8f20fv16jBs3DrNmzcKGDRsU7QcNGoRt27ahXr16SvtZsmQJpk+fjoCAAPz777/aPVkiIiIiItIIh4bTMfncQPK5ggoqbg4hImPEm3LF43CFRKRKeRdRiMj0HDt2DHfv3sXAgQMVRSAg78GzmTNnIjs7G8HBwcXuJzAwEACwePFipSL1mDFjUKdOHWzfvh0ZGRmK5RMmTChUBAKAr776CtbW1jh+/HgZzoqIiIiIiMqCPYJ0rH79+qhevTrCw8ORlpYGW9vXw2WlpaUhPDwctWvXRq1atfQYJREREVHpsPRPZFhCQ0MBAF27di20rlu3bgBQbFEmMzMTZ86cgaenZ6GeQyKRCF26dMGGDRtw7tw5vPWW+qEgRSIRLCwsNO7xKB/2uqArV67Azc1NMUSjPshHc9BnDGSceO1QafHaodLitUOlxWvHsCUnJ5d6WGz2CNIxkUiEUaNGITU1Fd9++63Sum+//RapqakYPXq0nqIjIn0xwtGfiIhUMrY+TMYWL1FJqRtx4I033oCdnV2RoxXI3b17FzKZrMhRC4ob9SC/3bt3Izk5WWVhioiIiIiIygd7BJXSpk2bcPLkSQBAdHS0Ypn8Cbz27dtj1KhRAICpU6di7969WLJkCS5evIgWLVrgwoULOHToEFq1aoUvv/xSH6dARFRinKeLiIjIsMnnJi1qDlIHB4ci5y8tyT7ytyvKw4cPMXHiRFhbWxd6KK4oERERKpfLewr5+/trtB9dkD8Zq88YyDjx2qHS4rVDpcVrh0qL145hK21vIICFoFI7efJkobG1w8PDER4ervhZXgiytbXF8ePHMW/ePPzxxx8ICQmBq6srAgICMHfuXFhbW5dr7BURp1wgQ8NrkohUMYWvBkP/fmOHTKLyER8fj/feew/Pnz/Hli1b4Onpqe+QiIiIiIgqLBaCSikoKAhBQUEat3d0dMSKFSuwYsUK3QVVAYh4+8YgGfg9PyIiIqIKQ96Lp6jeOsnJyahcuXKZ95G/XUHx8fHo3Lkzrl69inXr1uGTTz7RKHYiIiIiItINzhFERoXDUhkHvk9ERERE+qFu/p6nT58iNTW1yLl/5OrUqQOxWFzkHEDq5iGSF4EuX76MNWvWYMyYMSU9BSIiIiIi0jIWgsjAKfcAMvThZioq9tOqONgrj0i3TOETxocBiPSrQ4cOAIBDhw4VWnfw4EGlNkWxtraGr68vbt68idjYWKV1giDg8OHDsLW1hY+Pj9K6/EWg1atXY/z48WU5FSIiIiIi0hIWgsjA8WaSMWKxwHTxBi8RGZqSfi/xW4xMXefOnVGnTh38+uuvuHTpkmJ5UlISFi1aBEtLSwwZMkSx/MmTJ7hx40ahYeA+/fRTAMCMGTMg5Hsaa8OGDbh37x4GDRqkNNdpQkIC3nnnHVy+fBk//vgjPv/8cx2dIRERERERlRTnCCKjImJ9gYiITJgpFCnYe5dIv8zNzbFp0yZ069YN/v7+6N+/P+zt7fHHH38gNjYW33//PTw8PBTtZ8yYgeDgYPzyyy8YNmyYYvnQoUOxc+dO7NixA/fv30eHDh1w584d7NmzB7Vr18aCBQuUjvvRRx/h0qVL8PLyQkJCAubNm1coti+//BKVKlXSzYkTEREREVGRWAgig6H6xhErP0RERFQ09kIlKqxTp044efIk5s6di507dyInJwfe3t5YsmQJ+vXrp9E+xGIx9u7di++++w5bt27FihUr4OTkhJEjR2LBggVwcXFRah8TEwMAuHHjBr755huV+xw2bBgLQUREREREesBCEBkVPmVMRERERFQ8X19fHDhwoNh2QUFBCAoKUrlOIpFg7ty5mDt3brH7kReCiIiIiIjI8HCOICIiPTDWoiafvCei4hj61xu/xYiIiIiIiKiiYSGIiMrM0G/6kfaUdFJ2IjJ9xlbYNrJwiYiIiIiIiMqMhSAyGCI+oktEREREREREREREpFUsBJFR4VO8RERERERERERERESaYyGIKgQOZ6Vb7MxVcXCOICIiIiIiIiIiIuPCQhAZDE3mGOAtaCIiIiIiIiIiIiIizbEQREaF/XqI9Iu964h0zAQ+YoImT3YQERERERERUbkx13cAuhIZGYmzZ8/i1atXkEqlhdaLRCLMnj1bD5ERERkv3t8lIqKKjnkGEREREREZG5MrBCUkJKBXr14IDw9X+0QqEzQi7WFtoOT4mhERERkX5hlERERERGSsTK4QNHnyZJw8eRIdO3bE0KFDUbNmTZibm9xpUgmxFwORdog4UReRbvEzRmSwmGcQEREREZGxMrnMZd++ffD19cXRo0ch4h1LIiIiMiYm8OCCCZwCkUrMM4iIiIiIyFiJ9R2AtmVkZMDf35/JGSnh5aAfUpmAuy9SkSOV6TsUojJJzcrFg/h0re4zTQf7JDIIOqoEPU3KRHxqVom3i41PU/qZnz0qLeYZRERERERkrEyuENSsWTPExMToOwwyMBwarnzJ748E/H4JPdeEY9y28/oNiKgMUrNy0XPNSby36gQCw+5pZZ9pWbnouTYc7606gfXH72pln0SmLOTmc3RdcRzdVp7AzacpGm+3NuQOuq86qbQsLjED7606gZ9C72g7TDJxzDOIiIiIiMhYmVwhaO7cufj7779x+vRpfYdCOqBuYl4yHIIAZGRLceT6cwDA6XsJiEvk09emoIqtRN8hlLsdZx7gWXJeL4Qfj97Wyj5/O/sQT5MyAQBrjvFmNBk73f9unvDrRcgEIDNHijl7r2i83brQogutP4WwCEslwzyDiIiIiIiMldHPEbRly5ZCy7p3744OHTpg0KBBaNGiBRwcHFRuO2TIEF2HR2XEkTeMg6q3KVemPBxcZo60fIIhnXK0ttB3COXuWXKm1vf5XAf7JDIUui4L3X2RquMjEOVhnkFERERERKbC6AtBw4YNKzROt7zXSFBQEIKCglSuF4lETNCMADsAGS++dUREFQWf2iDTxDyDiIiIiIhMhdEXgn755Rd9h0BU4WlW9OGNwvw4zCERmQ5+n5kE/pouhHkGERERERGZCqMvBA0dOlTfIZAOcWg4IiIionLAel4hzDOIiIiIiMhUiPUdgLZt2bIFUVFRattcuXJF5ZjfZPjYiYKIiMiwsccjmSrmGUREREREZKxMrhA0bNgw/PXXX2rb7N27F8OHDy+fgEhjggaPomrSRvV2REREho+/r0qOvYepvDDPICIiIiIiY2VyhSBNSKVSiMUV8tSJyoVIxN5bRERUPvj7hgwJ8wwiIiIiIjJEFTJLuXjxIpycnPQdBlGFwie2ifLh54FMCAsxRK8xzyAiIiIiIkNkru8AtOHtt99W+jkoKAihoaGF2kmlUsTFxSEmJgZ9+/Ytp+hIm3izyTgIAji+ERERERk95hlERERERGQKTKIQlD8ZE4lEiImJQUxMTKF2YrEYTk5O+Pjjj7Fy5cpyi49Kj4Uf08EOEMp4aRORqSjY45Pfb2RKmGcQEREREZEpMIlCkEwmU/xfLBZj3rx5mDNnjh4jotIQ6bJUwIoSERGRTvBXLJky5hlERERERGQKTKIQlF9ISAg8PDz0HQaVgqDBM8S82URE5Y1fO0Qlw9/VZKqYZxARERERkbEyuUJQhw4d9B0CERERERGZGOYZRERERERkrEyuEDR//vxi24jFYjg4OMDT0xMdO3aERCIph8hIG/iQsfHQpIcXkTHg/FZE6vHbnioK5hlERERERGSsTK4QNG/ePIjyzVos5BufpOBykUiEypUr44cffsCQIUPKNU4iU1Zw4vC8ZbydTsaJN7mpPAkcV43IYDHPICIiIiIiYyXWdwDaFhISgvfffx8SiQSjR49GcHAw/vvvPwQHB2P06NGQSCTo0aMHdu/ejRkzZiAnJwcjRozAkSNH9B06kUnhvUyioonYz4hMGHuEkqlinkFERERERMbK5HoE3b59G8ePH8eFCxfg5eWltG7w4MH48ssv0bp1a3zwwQdYsGABBg4ciBYtWmD58uV455139BQ1EREZKpZsiNTTd+GfHU6pvDDPICIiIiIiY2VyPYJ+/PFH9OvXr1ByJufl5YV+/fphxYoVAIBGjRqhR48eiIyMLM8wSWPaubvEZ5N1S9VQRrwxVwxelESkAofRLDl9F6Ko4mCeQURERERExsrkCkF37tyBk5OT2jZVqlTB3bt3FT/XrVsXqampug6NiqHJjRzOnWAcBKHw+8lbm0REpA38U0BH+Iu6WMwziIiIiIjIWJlcIcjFxQUHDhwosmAgCAIOHDiAKlWqKJYlJibC0dGxvEKkElG+K8F7P4aJT7ATEWmHMT7wUHBOICM8BQL4R5YGmGcQEREREZGxMrlCUP/+/REVFYUPPvgAUVFRSuuioqLQs2dPREdHY8CAAYrlkZGRaNiwYXmHShrhXQljxXeOiIh0gc8ekL4wzyAiIiIiImNlru8AtO2bb77BuXPn8O+//2L//v2wtbWFi4sLXrx4gbS0NAiCAH9/f3zzzTcAgKdPn8LDwwN9+/bVc+TEGztERERUnEJDj/LvByonzDOIiIiIiMhYmVyPIGtraxw5cgSBgYHw9/eHhYUFHjx4AAsLC3To0AGBgYE4duwYrK2tAQBvvPEG/vzzT6Un93RBEATs2bMHnTp1gqurK2xsbODp6YkxY8bg3r17Oj02cZia8iYScaoBIqKKgr9jqaIw1DyDiIiIiIioOCbXIwgAxGIxRo4ciZEjR+o7FIWvvvoKP/zwA1xdXdGrVy84ODjg8uXLCAwMxI4dO3Dq1Ck0btxY32EaPt5sMhoF3yo+sU1EVDGUd2GIhSgt4e9pjRhinkFERERERFQckywEGZqnT59i5cqVcHd3x+XLl5UmjF2xYgUmT56MH374AZs3b9ZjlMah4ITUZBiMcXJzKh1+BomoIP4KMBF8H4mIiIiIiEyWyRaCcnNzcfPmTbx69QpSqVRlG39//3KJJSYmBjKZDH5+fkpFIAB4//33MXnyZLx48aJcYjFkvJFkWgoWh0R81FgJCypERETGyZDyDCIiIiIiIk2YXCFIEATMmTMHq1evRkpKitq2RSVu2la/fn1YWloiPDwcycnJcHBwUKzbt28fAKBz587lEos+yWQCAk/cw+pjd9Dd2xVzP2gEG0uTuwS17klSBjaG3UMdFzsM8nWDWKy/gkrIzec4fO0Z+vnUQtNalRTLy6ukcejqUxy/9QIDW7vhzeqOxW9QjL8vP8bZ+wkY2s4D9araaSFC/Xp9Pu6oV9Ve6/uPeZmGuXuvlmkf8uu5rosdBrV2g4hjBhJVKDlSGX4+eR+JadkY17EuKtlYIkcqw+aT9/EyNQuVbCzxIiULn/rXQfVK1jh24xmOXH+u77BVik/Nwvrjd1HV3grD/TxgbmZyU29SAYaYZxAREREREWnC5O7Cf/vtt1i4cCEqVaqEIUOGoGbNmjA31+9pVqlSBd999x0CAgLg5eWFnj17KuYIOnbsGMaPH4/PP/+82P20bdtW5fIrV67Azc0NYWFh2g5dI8nJyQBQ7PEvP8/F2ksZAIC9lx4i89Uz9G4gUay//jgHudJcxc9hYWF4nCpVWnbn9m2EZcQUG1P+bQDgzp07CMt9UOx2hmhpZDruvMq7mZD6+C7edNbP9ZyeI+DLkFQAwJ7zD7Cx6+tCw9knyu/dmchIWJkpvw+RZyMRY6N8k0zVtVPwvZOvS86S4avjaQCAvy8+xNp3yla4eZYmw+zwvP0djn6ApR10XwjKf263bt3S6FrWVP7zORT1AMs6av98vj6RhhcZskLLS/Ld892ZdNxLyrue057cRcMqpbueNf3e0Ya4R5mFvpvK6uY97e+TNFee109JZWRkIFf6urxuiDEW9CBZ+Xd1Zqa0yLhPxOVg67VMAMD1ew8xqokVwh/lIPhqplK7MzceYmJLa0z6/987+YkEEXJlr1+juIcPERamulhU8HdKQSV9ffNfO+suZeDi87z9Jz6+jzbVLUq0L0OQ//VJzyj6fTMGBR+20gVDzDOIiIiIiIg0YXKZy+bNm+Hu7o5z586hSpUq+g5HYdKkSahRowZGjRqF9evXK5a3b98eAwcOrBBJ5LEHOUo/H4zJVioEqWJWoLdAdbuK97StvAgEAMcf5uitEPQgpegnW08+yilynbbcSnx9/BxZ2fsgXXr++ubXqyx9DNOm3Z4wl1+8Pp+kbN2cj6oiUEnJi0BA3g3h0haCjF1MMp8UJ9VMfdDIf+5mKf4f+TQHo5pYYd/d7ELt7idLEZNk2J+Ti/l+j/x3P9soC0H5cQjX4hlqnkFERERERFQck7sD9/TpU4wbN87gkrP58+djwYIFmD9/Pj755BNUqlQJly5dwqRJk9CxY0f88ccf+OCDD9TuIyIiQuVyeU8hfY1FLn96tLjjb7l/DuZJ8UrL8m+TdPkxzK9HK62LjU+D+emTimUtmjdXGpKsKOZHDyr9XLduXfj71S52O0OU/1yqVq0Kf//meolDci8e5hfPKX7O/95tuX8W5kkJip99W/nCVmIG85OhSsvcqtgo7VPVtVPwvZOvS7/yFOZXL6s8fmncEd+H+b1bWtufJvKfW4MG9eHfyk1r+75ndh/md3V7PgXfm9IcK/8+qlV7A/7+TUsVi6bfO9oQlnwN5o8fKn7WxjHto07iRWaaVvdJmivP66ekrM+EIF36ujBiiDEWdO1xMszPvv4bxcrKosi4bSJDkZr7uhjk7+8P2/PHkZSTWahtkyZNYH75fKHlluZiCLmvC9M1a9WCv7+XyuMV9b2V//glkf/ayb9ve3tb+Pu3L9G+DEH+c7C2kRjF9VYUXfcGAgw3zyAiIiIiIiqOyXWvqF27tmLYDkNx5MgRzJ07F59//jmmT5+OmjVrws7ODu3bt8c///wDCwsLBAQE6DtMIq0RiQo/1W5oU8EYWjxkuHTRQ4OXH5kSoSSfEl78hsvUu6NpgSHmGURERERERJowuULQuHHjsG/fPjx/bjgTCx84cAAA0KlTp0Lr3njjDXh5eeHOnTtITS08Dj5pByekL18CbyaVO17jRKaBn2Qiw2WIeQYREREREZEmTG5ouJ49e+LEiRNo164d5syZgxYtWhQ5VISbm/aGZVInOztviJcXL16oXP/ixQuIxWJYWBj32PK6ULCgUNr6gsDKhAnge0hEZAzU/c5VVegq669o1sGpvBhinkFERERERKQJkysE1a5dGyKRCIIgYPjw4UW2E4lEyM3NLXK9Nvn5+WHNmjX44Ycf0Lt3bzg6OirWrV+/HnFxcfDz84NEIimXeIiIiMgwGWPJuySFnJL0XmR9hwyNIeYZREREREREmjC5QtCQIUMMboikjz/+GOvWrUNYWBgaNGiADz74AJUqVcKFCxdw7NgxWFtb44cfftB3mERaI0Dg8HBUrBLNK0JERkPXn2x+c+iIYf35bJAMMc8gIiIiIiLShMkVgoKCgvQdQiFmZmY4dOgQVqxYgd9//x2//vorsrOzUa1aNXzyySeYOXMmGjZsqO8wiSoUU7uNw/tSRGSsyvr9ZRAPHpjCl7AhvI4GzhDzDCIiIiIiIk2YXCHIUEkkEkyfPh3Tp0/XdyhGhfckiEyXyEjKcQZxk5mIFIzjm4OIiIiIiIjIcJhsIejp06fYs2cPbty4gbS0NPz8888AgBcvXuD+/fvw9vaGtbW1nqOkklI3AbXa7bQcBxVU+LZcwWG/TOKJbyJtMYXeA6QTpvBdV9JzKHH7Aj/z40TljXkGEREREREZG5MsBP30008ICAhAVlYWgLwJW+UJ2vPnz9G2bVusX78eo0eP1meYRERkBHiTmUh7+HEiY8c8g4iIiIiIjJFY3wFo2z///IPPP/8c3t7e+PvvvzFu3Dil9W+++SaaNGmCv/76Sz8BUpFM4CHoCkz37562b8ZzsmciMkTG+NVUkh49xnh+FQbfm2IxzyAiIiIiImNlcj2Cli1bBjc3N4SEhMDW1hbnz58v1Mbb2xsnTpzQQ3RUUqUdCo60T907wbepeLq+lo3x/l3B4QMNFa9vIqoQ+F1XLOYZRERERERkrEyuR9ClS5fQvXt32NraFtmmRo0aePbsWTlGRUTsgUNERKpwDjkyFswziIiIiIjIWJlcIUgmk8HCwkJtm+fPn0MikZRTRKRNvNdjmArexBME8M0iIioFYyxqFOzdV9LefkWeM58fIAPDPIOIiIiIiIyVyRWCPD091Q7HkJubi7CwMHh7e5djVERUVtq+OcoOSvonqsh3eY3xbj+RFujic8/vcyovzDOIiIiIiMhYmVwhaNCgQbh48SK++eabQuukUim++uor3Lt3D0OGDNFDdKSOqvs42rpVynuu5a80L7kpzwml81PjnVAi0pOSfL+V6KvKdH8lGCb+GikW8wwiIiIiIjJW5voOQNsmTJiAf/75B/Pnz8f27dthZWUFAOjbty/OnTuHmJgYdO3aFSNHjtRzpEREVGGxcEdEZHSYZxARERERkbEyuR5BFhYWOHjwIKZPn474+HhcuXIFgiBg9+7dSEhIwLRp0/D3339z4noDpMmDvybcYcTIFf48FXyv+InTLWN8fUs6j4i+GEucRIZCa7+ri/hiK9h7lH8baAlfx2IxzyAiIiIiImNlcj2CAMDS0hILFy7EggULcPPmTSQkJMDBwQENGzaEmZmZvsOjEuDNHWOhnTeqPN9vU7tFw48KEekLv39M73cKFY15BhERERERGSOTLATJiUQieHl56TsMIgJHwuKNUuOli8ntiUyZ7qdEEykdpaL/fiH9YJ5BRERERETGxOSGhiNShTfhy5eAwsNpsXeXbvE+qO5waDgi7eGQWQaMbw0REREREZHJMvoeQW+//XapthOJRDh69KiWoyEiIiKqWArO2WNqx6OKi3kGERERERGZCqMvBIWGhpZqOz6RaiwK3uzhzR99Uf+J0c7nie9u6RnjVxqHXCMqzNR7oPFTb8BM+9IrFWPPM86ePYu5c+fi1KlTyMnJgbe3NyZPnoy+fftqvI+srCwsWbIEW7duxcOHD+Hk5IT3338fCxYsQNWqVVVus337dvz444+4evUqLC0t4efnh/nz56NFixbaOjUiIiIiIiohoy8EyWQyfYdARAXwae3C+JpQfoZxi5BIN9R93am6P17Sb8eCcwQR6Yox5xkhISHo1q0brKys0L9/f9jb2+OPP/5Av3798PDhQwQEBBS7D5lMhp49e+LgwYNo06YNevfujdu3b2PTpk04evQoTp8+DRcXF6VtFi5ciFmzZsHd3R1jx45FSkoKfvvtN7Rr1w5Hjx6Fn5+frk6ZiIiIiIjUMPpCEJkO3ig3bOrfHd2/d7w6TI+p93wgKg1j7ClX3p9k/r1ApF5ubi5Gjx4NsViMsLAwNGvWDAAwZ84c+Pr6YubMmejTpw/c3d3V7ic4OBgHDx7EgAEDsH37dkVPp/Xr12PcuHGYNWsWNmzYoGh/+/ZtzJs3Dw0aNEBkZCQcHR0BAOPHj0ebNm0wevRoXLlyBWIxp6klIiIiIipvLARRuUhKz0G2VH9PVcanZkEQBIMZqsPUpGdLlX4WiURqnwiXy8gRUNp7AVKZADNxGd5PXguF5EhlSMnMhQiArcQclua8UfMqPRvZucb7RLghy8yRIitXBkdrC70cP1sqICk9B442+jl+UTJypMU3MjFFfRsnpuWUaxyGLCEtG/ZW5rAwe/29nJiWDbsCy1TR+LPGX4sm49ixY7h79y6GDx+uKAIBgKOjI2bOnIlhw4Yh+P/Yu+/4KOr8j+PvLemFIL13EEVEBRSBACrFcp7+9OwFe/dUPNE7FVTsKJ56Z70TbIiK9SyAIASQ3gRpoYdeQ0hPduf3R8gmm91NdjebbXk9Hw/vyMx3vvOZ73x3duf7mTJpkp588slq63nvvfckSc8//7zTb+g77rhDL7/8sj755BO99tprSkhIkCR98MEHKi0t1T/+8Q9HEkiSevXqpauvvloTJ07UvHnzlJ6e7ve2FW7ZojV33iFJSh02VKlDh7mUOfjuuyrMzJQkNWrXQS0ee9Qxz263KycvVzm/zlbOjz84prd85hmZ4+Od6inevUdHX31Fccd/0xZecYN2FdtUUlqilK27HOVsE8ZLucfK/jittywX/cmpnpSkVNmmfCJj6ZKyGBo2VNFfH3SJ2776dxnfTHX8bb7rPpkaN1ZsTJziYuMkSUZermxjH1eRSSoxm2QafoHMfc90qcv23tvS3j1lf3TpqrRb7nJel92uYz9+I2Pe3LIJFossf3ftD8b2rbJ/OFExdkNxhmS58x6ZOnWRJBUVFaq4tLhsfc89LdnKvr9MAwbKPOQ8l7oSp3wmY93asjKtW0v3Pqj8wjznuBYvkjHtx4o2GDVapsRESXK0g7F/n2wvPy9JKjRLtksvl/mUnq5t8MYEKTu77I+evWS95P+UnJjiVKb4i8+Uv2xR2R/JKbI8+LBLPfa1a2VMnVIWg92uhAdHy9SipWN+QVGBSvLyZH/pWcc007nDZT77bKd6Nh/OU4uff9D6/0wqK9O1qyy33S2bzebUDvbZs2XM/dXxt+WJp5zqiYtNUMyuLNn+9XrFdtx4s2wd2ru2wYvjpOKy71LTWf1kHjpCJpPJqR1sH/5XJat/V6HFJDVtKssd97i2wfKlMn743vF3wsN/V1xj57sB8/buUslr4yva4OJLZT61l2tM//qnTIcOK8luyNTrNFmuvVGSVGorVUFhflmZn3+QliwuWyA+QZa/PepST8yWzbJ+OMnxt+X+h1TQpIlstorfDkapXfbnK9rPNPg8mQcOlCSZTRYlJSaVre+tN2Rs2axSSYUdOshy402ubTB3rozZvzj+Nj82RvGJSYqNqfhuNbJ26NibE2Q/frg0XXmNzF27ubbByy9IhQUyGVJyv/6yXHK5Y155O9i++kL6Y40kqVDSrosvczruSJJ91UrFfDNVsUbZCi2PPSHTCY2UX5gvm620LKZjObK/9kpFG1z4J5lP712xHcfbwfbKCzL27i2LoUcPlVzu+ghR+4yfZSxcUPZHbIwsox+XJMXHJijmeDsYG9bL9v7byjdLdpNJ5pG3yNSmrWsbPDPG8W9r+jlKvsD5uFlSUqK8D96Wtmwpm9CqjSw33+oa02+/yZg5TXF2QzGGZBn3gkxxZcfy8nYw9u2X/d1/VbTBZVfKfNJJTvVYLFbFvvyClJNTVubMfrL/+f9UWFzgHPe3X0u/ryz7Iy1NlvsqjuXl7WBfvlT2yR9LkvLMJpnuLjuWV2bk58v+yosVMQ2/QDH9+isxPtGpXMFrL6to7+6yP7p0leWqa13b4NdfHMfyeJkV/0LF/t6Va1NRSZGSZ8+T/cOJjunmG0bK1K6DS13Gs08p8fi5iPmc82Q+/yIVl5SoqFI72D77RMrcWPZH8xay3HanUx0J8YkyL/hN9m+/ckwrHP2YjOO/FRzrOnhQ9rfeqGiDSy6T+ZSeslhilBhfUbb0+adVfOSQis1mqWcvWf58qUvctv99L61YWvZHcoqSH3tSVovzcPexpYtk+/Kzija4/R6Zmjk/4tYoKpb9pWdlNqREuyHzhRfLPLjsfZGV28H23/elXVllC3Xs6DiOVRY3d57MM6c7/ra+/Jpy8485XdBmZO2QfeJ/KmK65nqZOnUuK2+NUUJcWTuU/uMRqbhYxSZDJWf3l3noCNc2+PIzad26sj+OH8sT45NksVgcZewLf1PON19UrO+BUTKlpDq3QfYR2d94TaXHjslqs2tjbonMvfs65pe3g+1f/5QOHy6beHIPWf7vL64x/fyDEhYulEUmKTFR1qeekySndrBv3CBjyqcVMd1yh0wtK75jrdYYxVtiZHus4vu5ZOhwlbq5w9w26QNpx7ayP9q2dxzLK7eDfeYM2X/+QbmWsuOm+bExMlUZ9zJ275b9PxUXOsVdc70Sejo/3riouEgFzz2lmNIiWcwmJZ99ttIude2bhz/5RPkrVyrZblds02ZqOW6cY172sbLjTd7SpToyZYpjevPHHpP1hBOc6rHk5enIkxXHTVtOjiypzvvOWySCUOe+XblLj3+zpsbEgLskTaAu+v1wwXblFJZo3CWnBKZCOGw7mKffdx51mV5YZTCz6q6cl3lQD8/JU7xF6tYzX20bJfp0lfedHy/Tezf0rrlgPVHbuwjsdkM3/nexY192aZasKbf3q9fJoI8XbtcLP60PdRhRaX9Ooa56b6EO5Rbrxct6akSP5kFdf36JoWcX5it79iyNufhkXX5G66Cu35M9RwtUUBzdiSBfcvCjp/5ed4FEkLfnbNabszape4sUTb7tLFktZr2bsVmvz9ykE5unaPLtZ3lMBoX6s4bQKH+30bBhrkmS4cOHS5LmzJlTbR2FhYVatGiRunXr5nLnkMlk0tChQ/XOO+9o6dKlGnh8YLWm9U6cOFFz5sypMRHUr18/t9PXrFmjRgnJ+tlaNgBi/GqSZs9yKWeyd5KsnSRJ5yz6UJkZGY55NptNS78+KhmSyVoxkGI8/ZtrMtSQLLYEDV9atvwrts76rflJ6m1kae+M/Ir1GekyHR+7MzZIxsYllaow9EGDWN25fJEG7lghSdqdeoLWvVpRpjJz4oWOf9s/3Cppq5an7tFKU9lAanJxvt5Ztky/nH2eLLH9Zcw1yZjnWpfJON0Rk223TR+8nuE0P8Yo0g1HU2U6vj5DklFNTObc6Rq0bIHGTZyvdU3KEkxn2XfopGMtytYXN8LRfMZyyVjhXFeJuUTN/lis0/ZukCRt27RHT5t+0bVHnYcjTIbZEZMk2d/+w/HvRQ326A+1VfPcg3pl2TJJ0rQBF8g6o0ia4a4N+lfsl01S4Wtz9UlyslOZa9cvVULz421gr74NJCn26P/0/fvzlNWg4lg60LZDXXJbOO07Y4FJxkLXunbHnakm88oGadfsOKrnCzKUZDqmK7MrkpAmI9G5DarEND9tn+wHbRp7vA0k6cOmPdWq8IBrG1iHyXS8iY3fJWP1EuXF5GlKYpqjzAOLF6tV8W5t6HG/jFz3bWCSnGJa+NEPWmPp6FRmaPF2tasc98wSaaa7/dJPxSmHNWLWG1qwr0RvHiobjE4zHdH/ZScfL9Okxr653rpW91Rqg398MF+dk6W2ec4Du077ZbFJxpKyurJjc/RVQiNJ0uPzlqj7wa3a1qKZtqRc5L4NjHjn/fL6Ms1KO6BtRsWAZfvsXRqQ1FnxKkv+2P+XI8lNXeZzZEqUCs17Zfl+kSbtqIi5semALs5Ok8loJ1Niu4o2mFmkGW7as1HOMfXaWJb4/uu783QwsaFGlOxRy/yKxINTG8w2ZMyuqOdg/BF9F9dUL8xdqjY5+yRJP9tiFLPDXRuc4Ha/TE87pJ1G2WfilP2ZenTZMv045AYlGB1k/2KfpH0udVWOKfv3vfpyk/MxqoVpny440l2mxO5l6zvioW8aMTIlXqhmOybppC3bdMu/5qrQWpY4v6hor5oWNnJZn/3nPOln57r2JhzUhQuWKq2wLKk/65BZ0/aYNCy7UZX1tZIpsVVZTMXOMf2Qlq19RhOdvXOVo2/+dM6tij1+LK+uDYy5Ju1a/r1+jmnhVObWbbukEy4qK7PLUxtUHMtbbvmPnq58vDcMXVJ0UPuL0pzbYOpBSQdd6ipK6KQLFk6WJH17LFmfZ6aqvWm3zsmuSPyajC4yJZZdEGDkuMb0Tdox9d68QTf+XvH5/Oo/89WguIGqcorp+LF8R9J+/WJt5Zj+z/lLtK1DKx1rcrmMTZ7aoFlF37RLU//9g7KNhk5lrsw7qJTK6/tku6TtbmMqNNbo/DlT9UlRU/34e9lBtLNpp9Kzmx1fX0+ZEssuQDD2uo9p/9HFunp5RRtc+3qGrszPVlJJkuc2+PaIyo8Zm5P3ao6ljSTpP0uWKb60WAtO7aWC30+QsdpdG3SUKbHsuFx+LJ+SVqg8oyLxf862xWp9Qrpi7WXT7O9tcKnHEVOiVGxbrm2f/aaM3wod87orS/2ONpfJ6FfxHbvV035polMzN6hRTp5yYxN0x/G+eW1uruJsce7b4LNdkiqS3utT9mixWmpSpeP9xw1aq8WiWDfrO1mmxJPLYjpYEdMnDUpVpLKk2p83LNAV65Zp5pBHZTHiZH99mUs9VWPa9vNS/TI712l+T+1QH/M5MpWHsUQylrr5TWo0l6wjNHDJC0pIbaBNlX6TLpx6QCbD4vqbdPxKl9+kpa126+LFFW1ccOyYkv1MBNXfET4EzT++rjkJ5K3a1PPNit0uyQnU3rgf1rpMMwxDU5fvrHa5Oz9ephK7oWMlhp77cZ3P612w+ZDW783xeblQCfcHGc3ffNApoZe5L1c/rdkTwohCjyRQ3Xlj1ibtzymSzW7o4S9WBX39M7cX60CBXYaksd/9UWP5YHll+sZQh+AX1+/mcD/iRZY3Z22SJK3bc0y/rCsbTHl9Ztm09XuPacZa1wEWx7K/hvazhtDIPH43TJcuXVzmNW/eXMnJyY4ynmzevFl2u91tHZXrrlxPZmamkpOT1by5a8LRXXkAAAAAwcMdQahXbHYGpwJt9S7Xu4EkacfhArfT3Vm7x7+EztF8HhsUKPtzilym7c4udFMSqL0N+46FdP1788PzcX/r/DwWRhJ3dy/yzey9/cdcj9V7j3o+Vm/05bPGjogaR4+W/Tar/Hi2ylJTUx1lalNH5XLl/27atKnX5T1ZsGCB2+n9+vXT3u1ZjqskTZX+14lJKu/Qzc7sq9Mr3YFUUlqqZV//UDa/0qJuHx9tkqwN05TSt0/Z3ykNFW81y+zmujLHx8dNPakJcTrUsIUyC8uO8YeSPF/B6e5jaLWalXr80XDxFrsym3ZSfmyCkiUZ1dxlWRFTWQyVWQxDyin16m58Q9Kx+BRlNu0kc0qqoy5rgcmlXNn63Ae1/4RWyrSXPa5qX0oTJcfFqOoWGyaXSQ4xFotSY+MUZ09UZtOyO76KYuKrHdCoqKospqrtcCy1kZwfCFh9PTkJqYpJTnaqx5JvrrIuue2WZWVMjtj3ntBKqQlxSjCqHMNNpmr3S4zFrNLkijaQJJktHsu77heTU/wHTmgpo8hU7VdA1XnWGKtS45zb0mQze/01YjeZldm0kw42bOGIJdFe6fGlNbSBJBmx8U5tEJOULLMpz7WcU5BOq3Cse2+j1rKazTqQ5nzHmBOT64UvcTEWpVoq2iGmJFklhccU58W1p4Ykm9mi3IbNnPZHRTuYvHqf6qHkExztEJ+YqNSEOJlKXdfl7t9laynrD7sat1VhfNn25yQ1UCO54WG/xMVYK9ohuYEym3aSzWKVUepS1H1MJrPLZzPeZnUbr2tMZftlf3JjxTS1KCkhXrHWskv0TcUVO7ymekwmk7Y1aa+korK7PbPTmikuxt3RxfN+STjeH0pT0hz7xGa2SB76g3MbOPfJckeT0lTjNf+V9su+1KZOdRQXF8tUZHJZnyclFqsj9ty0JkpNiFOczfX4Ul1dibFWFaU2cvp8enp6ibt6zCbnY9T2Ju11ODHp+LHew8G1St9MjI2R3ezclsqv/jhXOaZia6wym3ZSYWojRyxxpRaXctUpTE5zaoPUhDgp3/vzoMrtsKVJB8XYSpWd0EBxHh+v4No3k+NiZDFV6g+pJ8gw1dwO5fMLrXEqTk1z2h8xJWaXctXtl+0ntNXh+GIVxsRV1JPrfHdNdfFYzWalxDkf70ti4yXXUyKPdSXHxSjueH/IS2uszKadytqhmhU7zbJaXT6bMcWV7qsxlf2Px6f0mAwlndZLJzRuop6VfpMu+uormQyTZHIOxN1v0tS0Sr9HJSXMn+85+BqQCAJQJ8L9Zd68CiH0avs4OwAAUL80bdtatz53rtflU5P+7PS3xWzWrc8O8Xr5+NgRij8+4P1fSRkZGSoq7ao+ffpUv2Alo1NSJVW8M6f8PUXexxDniKHMn1RQWKiikmIfY6jgewwXKD4uTldVmlZQOMCnGNJSnN8fcK/NpmP5rgP3nmOo3A5ldeUVFqikxLsLw0wmk55Idn5HkM02xKcYEuIvUFyM82BQXmF/r2JYuHChpESN+GfFe6BGq+xxhb7E8Nf4uOMxXO+Y9icf2+Epp3Y4TyWlpcoryPe4TFX3O2KokJvfT6U2756+YTKZ1CC57N0NY49P8zWGhPjzFRfzkOPvqyTl5uf5FMOzjnY4z68Y/uq2HXyLoUGVPukuhrK+I5111lkudZS1Q1kM5Z/PY/m5snn5fmaTyaQXk1NU+Rj1fyUlyi/0/qLOB+ITnN6VJN3kUwwWi1nPJjon4Yp9jCEx/iLFxsQ4HaN8jSEl8RbH31f5EUNFO5wn6W5J0tHcY16Pi5TF4NwORSUDVVDoYcTbjaSEP+lBa8Uwb0ZGhgqKY3Tmma7vknPHahmq5MRRkir6U1FJkU8xPJiQqBirVVLF+5N8aQerxaLkxMqPTzvP5xgecMRQwbcYhik5McmpP/kaQ1LCRU4xXOVjDDExMUoqf1fSP87zK4ZRic7vCJLO8zqGhQsXymLup6HnOv/m8jWGlMQ/OWIYeXyaX+3wxHDHtEuKilRY7G87lLVl+ft5vBEXE6uEKu+RLCwa6FMMqUl/lrnKC9Jve8b1fYrVxnDHNY6/LR4eo+wNEkEIa+GdSoAnhvzbd+zv+sWbq9yilS/vSQHCn+v1pZ5LRufnPio+09GwDZBUcRePp7tvcnJy1LBhQ7fzfKmjcrnyf/tS3h9mk0lpKf49E12SzGZzrZaXpDhrTMhjSIiPdxmUiLQYLBZLrWNIik+QKr1UPJxjSIxz31bh0A4xVmutY3AeuCWGQMZQ3ne8ja1qMsFXsTExVRI7viOGMlUTfb6Ki3FNNvoqITauVv06EDGEQzsQg28xePrOCod2iI+reoGM72p7rA+HGPzFO4IQNsL9DhK45+1dHeG2f0M9aBdmzRHy9gAQTXw7wHH48R5tBW9U9z6evXv3Kjc31+O7f8p17NhRZrPZ4zt93L2HqEuXLsrNzdXevXu9Kg8AAAAgeKI2EfT111/riiuuUM+ePdW5c2fH9PXr1+ull17Srl27Qhgd/FXbsXMGu4MozBIdoRZuiR+gXgvTz2N9OE7wSEhEg3A/zxg0aJAkafr06S7zpk2b5lTGk4SEBPXt21cbNmzQ9u3bneYZhqEZM2YoKSlJvXv3Duh6AQAAANSNqEsE2e12XXnllbr88ss1depUbdmyRVu3bnXMb9iwof7xj3/oww8/DGGUCJX6MMgWDsre80pjV4ekJIBoUdvvVl8X59uljtCwNYqU84xzzz1XHTt21KeffqqVK1c6ph89elTPPfecYmNjdcMNNzim79mzR+vXr3d5rNvtt98uSXrsscec7ux+5513tGXLFl177bVKSKh4HNVNN90kq9WqZ5991qmulStXavLkyerevbsGDBgQ6M0FAAAA4IWoSwRNmDBBX3zxhe644w4dOXJEDz/8sNP8Zs2aaeDAgfrhhx9CFCF8QeIm/LlLaBjyb9+xv0OHxBSCKeTdLeQBAH7iYB1SkXKeYbVa9f7778tutys9PV233367Ro0apVNPPVUbN27Uc889p/bt2zvKP/bYY+revbu+/vprp3puvPFGDR8+XJMnT9bZZ5+tRx99VJdffrnuvvtudejQQePGjXMq37VrV40dO1YbN27UqaeeqlGjRun2229Xenq6JOm9995zeVEuAAAAgOCIul/iEydOVJ8+ffTvf/9bqampMrk5Ye7cubPT1XsAAi8YSR13n2+vlw3xSDBJLwDRourhrK6Pb6RCECqRdJ4xZMgQzZs3T/3799eUKVP01ltvqVmzZvrss880atQor+owm8369ttvNXbsWB04cEATJkzQ/Pnzdcstt2jBggVq0qSJyzL/+Mc/9PHHH6tJkyZ666239Pnnn2vgwIH67bff1L9//0BvJgAAAAAvWUMdQKBt2rRJ99xzT7VlGjVqpEOHDgUpIgQSg+eh42vb82g4Z3XdHlwkDqC+4NvFez59d/M9UqNIO8/o27evfvrppxrLTZw4URMnTnQ7Ly4uTmPGjNGYMWO8Xu+1116ra6+91uvyAAAAAOpe1N0RlJCQ4PJ866q2b9+utLS04AQEr9Xm7g7v11Hnq6h3PDVp1cEnknjOIqEvRkKMkYrPA1CBQw0iBecZAAAAACJV1CWCTjvtNE2bNk2FhYVu5x8+fFg///yzzjrrrCBHhpoYbkZGuask/LnbQ4bh3xXb7O/wQrKi7pBkC7Ew7dthGlaNanusiNTtjjrsiBpxngEAAAAgUkVdIuj+++/Xzp07ddlll2nnzp1O8zZv3qxLL71UR48e1f333x+iCAH4I9qSEtG2PQAARDvOMwAAAABEqqh7R9Cf//xnjR49Wi+++KLatWunpKQkSVLTpk116NAhGYahJ554Quecc06IIwWiWzASHe7uIgtX4f7ydBMPZ0IQcUdUdAv2kbk+daf6tK3hiPMMAAAAAJEq6u4IkqTnn39e06ZN00UXXaTExERZLBbZ7XaNGDFCP/30k5566qlQhwg/RdLAf30RrEGpaBs4joTtiYQYAb+Ead8O07Bq5Mt3c10cV/hl4JlP7R2pHTDIOM8AAAAAEImi7o6gckOHDtXQoUNDHQZqibxPJPN957G//UfSBkC44KINRDvOMwAAAABEmqi8IwhA6PkyDmj4eT23KYKzH4EeJ61tfe6akrFcRK0w7dthGlZARetxhbtjAQAAAADhLOruCNqxY4fXZdu2bVuHkQD1g6dkTKDH+qJ18BAAIl3Vw3MkJ+nrNb5na8R5BgAAAIBIFXWJoPbt23s1AGEymVRaWhqEiFAbgR78N/EAfL/5Nq5n+PbOiHq4XwI9TloX466M5QLwR3XHf44rwcVFFIHFeQYAAACASBV1iaAbbrjB7Qna0aNHtWrVKm3dulWDBg1S+/btgx8caq224xn+PoIM0YfBSIRSfe9+9TH5W5/wTRuh+FjWiPMMAAAAAJEq6hJBEydO9DjPMAy98soreumll/Sf//wneEEB9ZCdkcBqcbcbEEJ8XAKKu05QX3CeAQAAACBSmUMdQDCZTCY9/PDDOvnkk/W3v/0t1OEAUa3quGB1A4XcqRWeGNwNHl8epYgACNPmph8AkYvzDAAAAADhrF4lgsr17t1bs2bNCnUYQETxdXwy0AOa0ZYs4tF0CtvBeNS9aPs8I7jqc76sTu/+rMftGkicZwAAAAAIR/UyEbR58+aQvcD166+/1tChQ9WoUSPFx8erQ4cOuvrqq5WVlRWSeOobHp8VnvzdL7VJptATakayCoA3qib26nOiBgjleQYAAAAAeBJ17wjyxG63a9euXZo4caK+/fZbnXvuuUFdv2EYuvPOO/Xuu++qU6dOuuqqq5SSkqLdu3drzpw52r59u9q0aRPUmCIRg0uIFgHvy5GYtInEmAGEXNUkNYeSAKEh/Rbq8wwAAAAAqEnUJYLMZrNM1VzGbhiGGjZsqFdeeSWIUUmvv/663n33Xd199916/fXXZbFYnOZz5WBw8Dii4DCMwCc63N01FEmJwXCPtbrjJhBo3J2J2qh6PA3zwyuiSLieZwAAAABATaIuEZSenu72BM1sNqthw4bq06ePbrrpJjVt2jRoMRUUFOipp55Sx44d9c9//tMlCSRJVmvU7YqAIHET/jyNh/iz78I9WRJI5F3qNxJvIRamzU+/QKDRpQIrHM8zAAAAAMAbUZd9mD17dqhDcDF9+nQdOXJEN910k2w2m7777jtt3LhRaWlpOu+889S5c+dQh1gnjhaU6MPftlVbptRml9USuFdVZR3O12dLdnic7+kq9PLlzu7UWP07N/Z6fT+v2au1u4/qun7t1DQl3ud4o5nNXuWdETJUWGLTxN+2KSnO+dBzOK9Yy3ccUffmqR7rq21SsNRm1+QlWcorKtXIs9vXanCsfDuS46y6um9bWcwmxzo+XbxDhSU23dCvveJjXJO+5f47b5tyi2y6/qx2irX69xkoKrXpowXbFWMxK8bN58huN/TFsiwdzC3WjWe3l9Vs0ocLtik+xqJOTZI1f9NBXdG7jdo3TvJr/XWtoNimD37bqrSEWF3Zp42jnUNtXuZBzd98UJf0aiW7Yei7VbvVs1UD/bE7R5JkMwxddnordW6a4nWdhuE8YLsqK1s//7FXF5/aUt1beP5cRIvs/GKlJcb6vFxBcdlnMTXBqqv6tHXpI+v35ujblbs17KRmOq1tw4oZVQ4n2w/lqV2jmj8Hv27Yr2XbjuiaM9uqZVqC07zVO4/qxzV7dFHPFmrRIEEfLtimTk2SdVHPFl4neIwoyYZXtx118SmeuW6frGaTzu/RQte8v1BtGibqgfO6aPmOIzUuW1hi06Tftikxzqqr+7Tx6jfJkUK7Xp2+IRCh++y5H9fpu1W7nKa9k7FZ15zZ1u13TnVdaoUX7QNn4XieAQAAAADeiLpEUDhatmyZJMlisahnz57auHGjY57ZbNaDDz6o8ePH11hPv3793E5fs2aN2rZtq4yMjMAE7KOcnLLBz6rrf//3Qi3eW1Ltss9/9qsGtYmRJK3bVaJSW8Uj8jIyMrQ9x+Y0bdXvq1Syy3O3fXxenvbn2z3Onzd/nuIsrsNQ5cv9Z+5mjR+UpNS4mgeCdh2z6akF+ZKk2au36uE+iTUu44/K279///6Q7ed1h0pd9o8kFRYWqtTmPNK0ZOlSrdyR7zRt8eIlmrerRNO2FVdMPD5CVWor1TXv/qZXBic7raPyetbtKXGZt2rVShVmeXcYm7+rRJP+KCyrK3OLGieY3G6PN6ZuLHJsx44tmzSgdVkfnpNVrE/WFUmS1mdu0SVd4hzLFNkMp/VtP3RML/+8Vps3b9aIDr4PgEvS95uK9P2WsjhaJZtVaqvo+xkZGVq+r1RvryqQJK3asEWpsSb9b0uxUx3fLN2qF9KTtH63a/tu3bJFGaaKAceq8yuvy1uV69i3b1+1y05ZX6SZO8ri3bk1U2e1jHHM83TcCSRP23vrpEWSpE8XbJFhSMV215HWLxZt0atDkj3WnZOT57y/5mbIfDxZUGIzdM/MXEnSJ79t0evnJjnmRYvso/kqtdkcf9/9/q+6s1dCNUu498WGIs3YXt5HNqlfpT5iGIbun5mnIruhD+Zt1pvnJiv2+PG/uKREMir28XVvZ+jZgdUngg4X2PXo3DxJ0s8rtujJsyvKl9oN3fNLrgxJH87frJMaWbX6YFndB7dvUKc0z0nhyvLynPuFVLd9PFDWHnT+fjDLc9w5x/JcjlX5+fku210dwy5V/trZcShX72Vs0nsZmyRJmfuO6p5PlnpV16OTZunnSsfzga1jqi2fk5Ojt9ZI23I3OU0/diynzvZV1WPRyh2Hnf4+ml+qRybN0uVd41TV0SqftfIYi22G7j1+nClXkG+PiP7mSU5OjlJToz9xDgAAAAD+CNytGGFm7969+ve//637779ft9xyi2P6gQMHtHjxYhUUFAQtlv3790uSXn31VTVo0ECLFy/WsWPHlJGRoa5du+qVV17RW2+9FbR4gqWmJJAkfbKuMKDrrC4J5O1yaw7aqilZIWNnxfZtPOLdMtHI3fC0pyFrpySQG7tz664dP1lb5HUcNam8/KfrKur9pNK/f9xaZR0ersr+KrPI/QwvfF8pqbMr17Xvf7Wxou6MnSUuSSBJOlzo32cmGMqTQFJZUijcFNkMt0kgScot8f/Ojn2VjkfFdkMl4buLAmb5fv/ek1eeBJJc+0ixXSqqtH/25XluyAMFNTfykr0VMe6s8nk7Ulhxz6LNkCMJJEm/bK/d8QZ162en47l3v0m2HauraPw33cfvtb3VfB5Qs3A6zwAAAAAAb0TlHUH//ve/NWrUKBUVlQ0KmUwm/ec//5FUlpTp16+f3n77bd12221BicduLzvZjo2N1TfffKOWLVtKkgYOHKgvvvhCp556ql555RXddddd1dazYMECt9PL7xRKT08PYNTeK796tOr6rTOnebV8+XJHVu6Sdf0ap+lrdh2VdclCx7SePXvq7E6eH91W0zoH9B+ghFg372iqtFz37icqvVerGuOee2ytrLuzXLYj0CrH1rRpU6Wnn1Yn66lJzOZDsq6suMK6fHvjF85Sgd056de7d29ZF//mNK1v3z6yLpznNK38KmerpexQ1LPnqbKucL6Ku3w9Ob/vlnXtaqd5vXr1Up/2J3gX/+zpTpeQd+3aVdaN61zW443K+yTGYnIsW7X/Va4zv7hU1jkz3dbnb9+prr+np6cracVcWYvzPZapXDZ71W5Z1zm3b4eOHZWe3qnG9fnbds2aNlN6ei+vysbHxzitx9NxJ5C8PYZ5Ul1sqX/8Jmt+xWhy+sB0mY8/1mzjvmNOnx9Px61I9tb6hbLmHnWa5s++rLyP4uKsTnUUFNtknf2L4+8zep+hE48/fvK9VdMkU6nj2OPN+jeZt8q6peKO3srlsw7ny7pgrtvlaurnlSUtz9CRYucB5FB9t/vCuumgrKuWOf42mzzHnfL7PB0ozHP8nZ6ersSlc5RT4v2FIRazSSYPSdjasJhNNbZ3RkaGZDrm1HckKTU1RenpZwc8Jsn331OV/WvdAlnzclzKrN2dI+sS59+VCYlxEdHfPAnW3UDhdp4BAAAAAN6IujuCvv/+e91777065ZRT9N1337kkV04++WT17NlT33zzTdBiatCggaSywfHyJFC5Hj16qGPHjtq8ebOys7ODFhMAVObLnV1AbUXZk+7qPV9SMux6RLJwPM8AAAAAAG9E3R1BL7/8stq2batff/1VSUlJjvfzVHbKKado7lz3V+7WhW7dukmS0tLS3M4vn15QUOCxDALD8GK4Kkre1R1S7pqwtu1a6+Vrt3i9VOdtVo9HhA0ONHXOm+M96gYtj2gVjucZAAAAAOCNqLsjaOXKlbrwwguVlOT5pc+tWrXSvn37ghbTkCFDJEnr1q1zmVdSUqJNmzYpKSlJTZo0CVpMQKBE6ni2KUBZCBO3NvgvQvtOIFTtN/W4KYKmtp/56vZRpB4H60yEtke9T9DW8833RjieZwAAAACAN6IuEWS32xUTE1Ntmf379ysuLi5IEUmdOnXSsGHDtGnTJr3//vtO81544QVlZ2fr0ksvldUadTdoAWGj6hBwsO8WCPfxRfJZwUVzI5oE+/gWjgmbSPtMc8z3TzieZwAAAACAN6Iu89CtW7dqH8dQWlqqjIwMnXLKKUGMquzFsmeffbZuu+02ffPNNzrxxBO1YsUKzZo1S+3atdPLL78c1HjgGY8Tci8Y7VLdGsJ10CocByQR/ug1gRfKj2K4Hp8QPFHxmaYf1yhczzMAAAAAoCZRd0fQtddeqxUrVuipp55ymWez2fTwww9ry5YtuuGGG4IaV6dOnbR06VKNHDlSy5Yt0+uvv67MzEzdc889Wrx4sZo3bx7UeIBAcTcAGo65kTAMqc7VdkyPMUFEsnA8DkEByZrV1SM5o/FRn54+Bnw+/BOu5xkAAAAAUJOouyPovvvu0/fff6+nn35an3zyieLj4yVJV1xxhZYuXapt27Zp2LBhuuWWW4IeW5s2bfTBBx8Efb1ANAj0oBXvCHIWqPZA4EXjXYqh+NhEyUc1LFXto3XdY7kTE6ESzucZAAAAAFCdqLsjKCYmRtOmTdOjjz6qQ4cOac2aNTIMQ19++aUOHz6s0aNH67vvvouawdto5zLWU8uxH2/Gjhhfqhvh1qxBf0dQUNfmO3ftEe4xA76oy2M73xvRod4nmOr55nuD8wwAAAAAkSrq7giSpNjYWD377LMaN26cNmzYoMOHDys1NVXdu3eXxWIJdXjwoL6Pv0STcLyDob4NydT7Ac0IU7a/ynppfeurdSVsxmHDJQ7US566X9h8PiIQ5xkAAAAAIlFUJoLKmUwmnXjiiaEOA0AYqCktYhhGvb6C192j4epva9Q92rbuBTMXWo8PHZJc27q65ojWpoqK7YqKjQgezjMAAAAARJKoezQcUFvcSOFeMN4hE9SB2ygf8aIfhx53ZQVXTXcihixZUw+7QXWbXA+bAwAAAACAkIu6O4I6duzoVTmTyaTNmzfXcTSorXB8xFg5xnjLBCuhEujmDvo7gugwLmgRRJLqPsN8vIH6gfMMAAAAAJEq6hJBdrvd7eOdjh49quzsbElSixYtFBsbG+TIEAiMtUUGd4OiJELCW31/tBWCKyh3GPo5L5Qi9TAZoWHXaxzz/cN5BgAAAIBIFXWJoG3btlU776GHHtK+ffs0Y8aM4AUFrwRjUILBqsAL57u2fGEY/vXBcB1Li469Etn87VP1QSiOG+yK8MB+CA+RmnQMNc4zAAAAAESqevWOoPbt22vKlCk6cuSI/vGPf4Q6HHiBgYr6xdfB4doMKEb7O4IkkhCRhENdcAX6o8FnDeGKY0vwcJ4BAAAAIJzVq0SQJMXExGjo0KH6/PPPQx0KqiDpEz3qYl8Gepw16O8ICuraIuNRfPV57NyXxEEE7ErUc7U93kTC8aomJAMhcZ4BAAAAIHzVu0SQJOXn5+vw4cOhDgN+CMZYUeQPR9WNUD8Cjv0SfaJ9n1b7jppo3/h6hv0J+gDKcZ4BAAAAIBzVu0TQ3LlzNXnyZHXr1i3UoQBRIVoesRZtY3jRtj31GXcaBF5QPx++3P0VoZ/c2kZtopMHHU1eNzjPAAAAABCurKEOINDOOecct9NLS0u1a9cux0ten3zyySBGBX9F5pAY3Am3fRktCSxEpvo+CMvnr/6q730fkY3zDAAAAACRKuoSQbNnz3Y73WQyqWHDhho2bJgeeughDR06NLiBAQgrQX9HUJAzYTymCEC04vCGUOE8AwAAAECkirpEkN1uD3UICGPevJA6Gl5aXV/4sqfYrZ7R5+tGWbty+0OoBLNf1/u7XGrZ1ByDECk4zwAAAAAQqerdO4IQ2cLp/QnhEwkCwd+ByGgYADaM0KQrGPytQFPUvcqf1UD390DtPx6Z5526aqVo/BjSowAAAAAAUhTeEVRu//792rVrl+x2u1q1aqXmzZuHOiTUwF2Sh4HiyFQXCTt3fcGXAa6qCZtoH3ANxD4IpyRXOMUCwH+B+CiH4y8DjlH1C+cZAAAAACJNVN0RVFRUpJdeekldunRRixYt1Lt3b/Xt21etWrVS48aN9eCDDzpe4gp4Eo4DTOHM28Evr3J6ddj4Vdcf9LvLwrhjeQqtrvOwJh9GTiMxJxyBIUc01894NWXrNBL/VxZOd736wpe4I3MLIxftHTicZwAAAACIZFGTCMrKylKfPn302GOPafPmzWrRooX69u2rvn37qkWLFjp8+LD++c9/qnfv3vrll18cy+3Zs0eff/55CCOPHna7oVKb789Or+1dP76st9RW+3UVlthUarPLXiXuEptdxaX2arfHMAyV2Oxly9vDc3imxFb9NlRmGIbbNg30oH2pzS6bj+1VtV/4unxlNrvhcXm74V98/ijvPza7oaJSWw1lvd/mEj8+t74oj7sm5e1c1/FUXlc5b2MMlBIfjkWldiNsjxf+cpcDrGkf1HRsqrmFvE88lvcPf7/XnOoKQRbTU9y+fPf48l3gC3ffGb4kheuSuyhKA9QO/h5j6uq45O2rbqr2g2AfK8MF5xkAAAAAIl1UPBqupKREF1xwgf744w9dc801euKJJ9StWzenMhs2bNC4ceP0ySef6JJLLtGaNWtks9k0bNgw3XjjjSGKPHoUlBj6v7d+0/ZDeXrhsp4afrL3j8g4+4VZmj/6HD3xzR8+rzensETX/2exsg7n68XLetZYfuBLv+rBoV11y4AOPq+rsMSm3uN+8Tj/tKdnSJIuOa2lxl1yist8m93QLZOWaOm2I5Kkzk2T9eEtfZUaH+NzLHXlX79u0luzN+ucE5vq9atPq7aszW7o1klLdLSgxGXe2O9c9+VDn6/0K6YLX5+r7YfyfVqmqNSmG/6zWOv25OipP58si9k151310XCehvnW7Dqq2z9cqrgYiz4Y2UftGyc5zS8utavX8X1f1fM/rdNj53f3KXZPDMPQPZ8uV8bGg16Vf3XGRu08UuBV2d7jflFqvOvXwcz1+3XHoE4+xenOo1NX64fVe3RT//ZO0ysPLv6x+6hu/3CZoz/dNdh5ve76mb82H8jVzROXqNRm6L0beuvE5im6/aNlWrjlkB4a2lU3+3F88MVHC7Zp0/5cr8uf/fwstWgQrw9v6asWDRLqMLLQOv2ZGSq1GXp4eDfdeHZ7p3kvT1uvSb9t159ObaHn/8/9sb6g2CbDMBxJhb1HC31a/5yNBzSoaxOt35ujWyctVUGxTcWldlktJj3/fz39TnDPXLdfi7ceVt8OJ9RYdne2bzG7U/69uONQnl68rKeGHf8+/nXDfj38+Sq1TEvQR7f0VVpirMc6Xp2xUf+dt1Xn92iul/9yaq1jKvfB/K3aejDPZXq4PAa2ahSfL8nSMz+s1amt0/TBTX0UY/Hv+qlSm103TVyilVnZ+vsF3XV137ZeLffcj+v06aIdfq2zXHGpa9LmWGGJrnhnQY3LPvvDWk1enKXLTm+lp/7cQ5L00OerNGPtPt05qKPuPadLrWKLFJxnAAAAAIgGUXFH0DvvvKM//vhDY8aM0ccff+xyciZJ3bp100cffaSnnnpK+fn5uvbaa5Wenq6dO3fqjDPOCEHU0eWX7cXatD9XJTZDoz5f5dOyxwpL9eli9wMdVQdlqo4VffjbNm3en6viUrsenLLSq/VNmLGx+gIexqMm/bbNq/q/WbFb+3NcB/N+Xb/fkQSSpE37c/Whl3UGy1uzN0uSZq3fr7W7c6otO3vDfi2ptD2Vrd97zGXalgOug3/e8DUJJEnfrtitP3bnyG5IT3zzh/7+1Wq/1i1J93+2QjmFpTpwrEhj3CS4qvPJwh0BG+BcmZXtdRJIks+DhzmFpS7TauoD3sg6nK8fVu+RJH0wf5vHcg9OWemU7Cnvi3Xh8a/X6FBusY4WlOihz1dqwZZDWrjlkKSyAfBA8bTrX/x5g8917TlaqBd/Wl/LiMJbia3sAWMvT3Nun1KbXZN+2y5J+n7VHu3O9pzgrHxMqlpP5YN7npu84j2fLJckjf7yd2Xnl6io1C7jeFwPf+Hb91pVt05aUqvlfTFpftn3YonN0EOVvo/v+3SFikrt2nowT+9mbKm2jv/O2ypJ+mnNXm1zk7ipytvD3CvTA/f5Coan/7dWhlF2/P1pzV6/65m+dp9W7MiWYUjP/rDOq2UKim21TgJJcpt0/nDB9hqXyy8u1eTFWZKkqct36VBukTbsPaYZa/dJkt6eU30fiiacZwAAAACIBlGRCPr888/VuXNnPfnkkzWWffzxx9WlSxctWLBAhYWFmjZtmi688MIgRBnddhyr3WNCVu886tdyfwRgoNpbv+/yPsZjRa6D6jsOuyY01u1xTZiEiwO5RdXOz3KzPeFi8wHv77aoyf6cinZYtt194isYfL27IVwcyS/2qlwg7oTw1upKn+WdRwq0y8s7p+pS5XeseHpK1tIQ9r9Qqvpotex8z3eH7a2UhF9eTXsle74ZRps9JK1r8/SyYD7Zb+2emr8XffnuPOzlZzjabfciIeZxWT8uaKjp8Z+14U2Sv7DE+XddfrFNB2v4XRCtOM8AAAAAEA2iIhG0du1aDRs2zKtnzJtMJkfZRYsWafDgwXUfIGrk7wBbmLxWAKhRpL4EHogeFV8YMWa+PAB4h/MMAAAAANEgKhJBubm5atCggdflU1NTZbVa1blz5zqMCrXlzSO1qr7nBZHN11RJIBOBdfWKijB59UXIRML211WSjuQf6otI+JzXVjRtor/Hpvr6i4vzDAAAAADRICoSQU2bNtWmTZu8Lr9582Y1bdq0DiOCrzwN6Nc4uFQXoxIBqNNd3NF295I3V8YCQDBVvoAg0IeoaEp2RNGmIJjq6dc+5xkAAAAAokFUJIL69eunn376SXv31vwi37179+qHH37QgAEDghAZvOfd6ELVwat6OiYBAKhBNCVuUEU92Lfh1n/DLZ5g4jwDAAAAQDSIikTQnXfeqdzcXF166aU6ePCgx3KHDh3SpZdeqvz8fN1xxx1BjBA18f8dQeGZCgrTsKJOJAxMlYdY21jpU5EnEvpntKnuO4HPUIVAN0V96Or17fPMx6UC5xkAAAAAooE11AEEwpAhQ3TbbbfpvffeU/fu3XXHHXfonHPOUZs2bSRJWVlZmjlzpt577z0dPHhQt99+Oy9vjRJ1MlBRR4M90TaoEs6Dqv7sQt7nglCqb4PMwRDOxyjUkkkRlX2KxL7ornnr63sZOc8AAAAAEA2iIhEkSf/+97+VmpqqCRMm6Pnnn9fzzz/vNN8wDJnNZj388MMu8xB6nocWwmikx4dQ3A3qhtGWAGGBzwQCrfI7ggKdXIumZHF1W2JUabiwHPqvq11RTb21SeaQ6I18nGcAAAAAiHRRkwiyWCx6+eWXdfvtt2vixIlasGCB41nezZs319lnn60bb7xRXbp0CXGkcMfbARaXAaqwHKGCv6JxsKysz9bfjhoJuzQa+x3qr1B8L1b9bo5G9WATUQ3OMwAAAABEuqhJBJXr0qWLnn322VCHAR/5+7iRoI531XJl0ZYKCIft8TTgGQ6xVcUYIhBc1SVE/DlG1NfHYtUrdbSL/UnOhfo7w13IXHzDeQYAAACAyGUOdQCAFH2DC9G2PfVB+F/tTaeqK3xeUd8EusuH/eETTsL/+w4AAAAAEGgkghDWahqsMAVxBNeXNTHI4p9oegdH4EVm21T3yKhwyb/wea1/6nvyjy4fXNFyjKn6sakPjwQEAAAAgGhBIghhwd8xuWCO5THcAX/QbzyjbRBMtf2+qC5RTRI7SlSzG9nHwb34BgAAAAAQWCSCEBC1HRrwdnDBZRgmgsYkGECpWTS/g6P2V05HZtvQ74HoV9vDWzSkWKr7/vLnMBhuR053iTBuCAIAAACAyEEiCAFRF2MBhlFzvXWROPB01W+4DcrUtVA88iVQV1xH59hUZG4Vjw5CbUVCF4rmJDZqz58+HI7dvmpCKxxjBAAAAAC4RyII8BIDHnUvEgZ8fRWN2wTvsO89406x8EW/9Q+PjgMAAAAAhDMSQYhojCXWHQZqww37A/BF1YQGx7S6VLskSNjsmToKJBq6nru73rjjEwAAAAAiB4kghAV/B0mCObYSBeM4UShy9grDZUBkq27Mm7tBokQ92Y3+5m+qfuPWk+aKSDk5OXrooYfUrl07xcXFqX379vrb3/6m3Nxcn+uaNm2aBg0apJSUFKWmpmrIkCGaOXOmS7lDhw7p3Xff1cUXX6yOHTsqLi5OjRs31vnnn69p06YFYrMAAAAA1AKJIIQFT+9XcBmsCOGoQ30b8IiMK33DP0YGiMNfXe0h9n1oubzPJCKOacERbm0RXtG4F2ZNFnSGjKi4s6k+yMvL06BBgzRhwgSdeOKJevDBB9WtWzeNHz9e55xzjgoLC72u6+OPP9aIESO0bt06jRw5UjfeeKP++OMPDR06VF9++aVT2S+++EJ33HGHli1bpgEDBuihhx7S+eefrzlz5mjEiBF6+eWXA72pAAAAAHxgDXUAiA6hGhuoi0GJunrpd9QNoITxBoVvZIA36MHhqLpDXl19b0SK+p4kkQLfB+oyWefN17c3Zdjv4emll17SypUrNXr0aL3wwguO6Y8++qhefPFFTZgwQY899liN9Rw5ckT33XefGjdurOXLl6t169aSpNGjR+u0007TXXfdpeHDhyslJUWS1LVrV3333Xe68MILZTZXXGv4+OOP68wzz9Q//vEPXXvttWrZsmWAtxgAAACAN7gjCGHB/0fDBW/wrb4N8/E+DdQX9PT6ofIxrb7v80g/vpN/qB3/EziR3W/qA8Mw9P777ys5OVlPPPGE07wnnnhCycnJev/9972q64svvlB2drbuu+8+RxJIklq3bq17771XBw8e1Ndff+2Yfs455+hPf/qTUxJIkrp166Yrr7xSJSUl+u2332qxdQAAAABqgzuCEBC1HZTxd2ihLsayPD3OiYGnyBFO+6p8wK22V05H6rhtdZsdLleT19mj4cJk+8JRJHZn3hGE+sSb4xf9PvxkZmZq9+7dGj58uJKSkpzmJSUlqX///po2bZqysrLUpk2bauuaPXu2JGnYsGEu84YPH66xY8dqzpw5uuGGG2qMKyYmRpJktXp36tmvXz+309esWaO2bdsqIyPDq3rqQk5OjiSFNAZEJvoO/EXfgb/oO/AXfSe85eTkKDU11a9luSMohF588UWZTCaZTCYtXLgw1OGEpXB7j0FtRNrAZ01tXxfbE8q9HUVdDUANIjWxGii+fLd6c/dQsC8Gqee7L2Rc37sVmjjgWWZmpiSpS5cubueXTy8v529dvtSTk5OjL7/8UvHx8Ro4cGCN5QEAAADUDe4ICpE1a9ZozJgxSkpKUl5eXqjDCTlvB+WqXn0avoN5rqMjjJcAAMJdKL6rfF0n36d1I2x/UsFrR48elSQ1aNDA7fzyKwfLy/lbly/13Hnnndq3b5+efvppNWrUqMbykrRgwQK308vvFEpPT/eqnrpQfmVsKGNAZKLvwF/0HfiLvgN/0XfCm793A0kkgkKipKREN954o3r16qUuXbro448/DnVIESyIwxZ1MfIUxqMukfEOiUiIEfWVL4cMrqyve3V5tAjm++pqEk6xRJP68BGtvI0R8RMgio0aNUpFRUVel//rX//q8S6gUHrsscc0efJkjRgxQn//+99DHQ4AAABQr5EICoFnn31Wf/zxh5YvX66XXnop1OEERKgeExbUgQqf1uVa2O3i9WFkCZJ4l4I7DDQCoREZif4IU02Thltr+/t9FG7bEc3eeecdn54YcPnll6tLly6Ou3c83alT/rx3T3cMVVa5rqp38nhTzxNPPKEXXnhB55xzjr766itZLJaaNwQAAABAnSERFGTLly/Xs88+q6efflonnXRSqMMJiB05Nq08UCqrpaI7zdl4wKc63A1K7c4uqHGoYuuBwD9W75n/rdMz/1unLs2SNfm2sxQfU3bi6ssAyKz1+7QyK1smSZee1krzNh3UB79tcym39WCe3p6zWed1b6bOTZO9qHe/9h8rVNOUeElScaldXy7bqQYJMbrglOYBHdwzDEPzNx3U+r3HdEXv1i7z//f77oCtq9yKHUd8Xua3TQc16otVOrF5is5o11AWs1nzMg/6XE9BiU1fLMtSywYJOu+kZh7LnfHMDJ/rluRz0q+g2KY3f83Uih3ZGjWsq6YsyfJvvbX0+85sLdh8SA2TYv1avrp9EYq7YLx5N8o7czbrz71aBSGaSuvM2Kyr+7ZV1uF8Pfj5yhrLH8ot0lfLd+n0dg11RruGHsv9un6/dhzOV5OUOO3PKdSVfdoqIbbsmLZk22GtysrWZae3dtm/Ww/madofezXspGbq2KT6Y9OeowX6buVu9e/cWD1a1Ty4KEnLtlf/WX97zmYN6tpE3VukuvSTH1fvUfcWKZq3yffPeU3embPZ47w3Zm3yOM+bgfWhr87R/+4foMx9ufppzR4Vl9p1zonN1K9T2QDr4q2HPS6741C+flyzR+ee2FRdmqXUuK7K3s3YrEtPcz6G+/KOoOJSuz5ZtF0NE2N1fg/33zN5RaUu03IKS/TF0p2y2e2as/GA/tid47b+M5/7RXlFNq/jqUuGpNU7j+qU1q79eO3x+H8/4Lqt5fMNw3DbPlVb+1+/btKSbYd1KLdYH93SV2mJZZ8/wzD079mbNWVJll66vKff2/Hpoh16dcZG/Xdkb5+W259TpG9X7tLhvGINO7m5y/yJbn7HFJXa9OWyndX2D/guNzfXr+VqendPTe8QqlrX0qVLlZmZ6ZIIqqmeJ554QuPGjdPgwYP1/fffKyEhwettAAAAAFA3SAQFUVFRkW644Qb16tVLjzzyiM/Llz8Xu6o1a9aobdu2jmc4BlOxzdBLi/IkQyq1VQyO3PHhYp/q2bkzy2l5Sbr5vQz9pWus0/TVq/+Qdf8GSZLdMLRih38nylXbquq6JWnd7mxd9Mp0PXl2kiTpwIECt+XceXX6ese/f1m6Vr9mlbgtt+VAjl6bkaP/ztmglwYlyexmAMWlXd6ZrUf6JkqSfthcpG83F5fVtTFBpzat3Ue68rp+WfS7vtxY9liSjJWZ6tfK6jR/5Q7Pg5ZeOz4YWV7v27NrfulwZQuWrtCbKwrK/r25UAs2e5+A3LBxo9P2PPLhbM3bVbafHumTqM4NLU6xlSv1cbxy3rx5irWYNGtHscf+4+6z+8naQs3ZWRbPte+5f1Z+MFzzzm8qrWHQ2NOxZ1euTf/+Ld/jcvv373cs681nq/J6yq9G9vW4t2p/qcu6NlbpCxNmrNdXCzNVaqvd4PTsjHlKjTO7THe3rW/PztQXCzfrUKHdY32FhTbH9k5YWqB1h0tllvTy4CSlxLquZ+tRm55f5Nz+C1Zn6tqT4pVdZNfoOXkyJE1blqn7Tq8YpLMbhh7LyNeRIrsmZmzQC+nuj03lxi3I145jNv1rpkmvDklSrKX6geDsQnuN+/u1Gev1zqwNGj84SXY5t9n7czfp8N4sfZXp+tikdevWq2FOWTKnuLhEpfaKvrtkyRLtSDIfn1fs8r0lle17b1Xue/vyat6mrMO5uvjVGdqTa1fx8bg+WrBVzw1MktUkPZLh/sKGOXPm6PF5+TpQYNf7szfo5UFJspg9t3HV76pXp6/X/5Y49+cjR454/OzYDcNp+ee/XqJ1h8v+3rYxQT2auH7PPDszV6U25+PEXe/N0rJ9NX+uj+Z7970aLNe8O1+vDE5SvNXk1A7zMvfpg+9+1ZvLyz5T7vb3e9/8qhMbubbP1i1FTuXfmLnB8e+znpuhd4eVJfdWHyjVG8e/00b+d6HPsWdkZOhwgV1Pzy3rS1e8Pd+lzNSfZ+vQwSKP/XX0lyslST8vdT4ufj1rkaatKXAqO3fePE3bWqz/bSn7HbJ1Y4JOcdM/giUnJ6dWz8uOBl26dFHLli01f/585eXlKSkpyTEvLy9P8+fPV4cOHdSmTZsa6xo0aJAmT56s6dOn66yzznKaN23aNEeZqsqTQIMGDdIPP/ygxMTEWm4VAAAAgEBwHTlCnXnyySeVmZmpDz74IGoej5B5xKZiz+OWXnP3ToOsY9UPwh7Ir/vbCXbm1n7jPCWBKsspNrzenk3ZFe1SngSSpIlrCn0Prho/b62oe9HemrchFFZ4McjorfIkkCRHAiyQPlvvW53lSaBQqykJVJ0ftxTXXCjIvP2cbK/h+OMNX4+N1SWBqiofmLdLWrTb/efgKzf9uLxfzc0qcdylsPqg8/LZhYaOFJXFkl1kKLuw+j6w43hbFdsNrTtUc7t527cLbIa2HHVfn7skUCTYnmNzJIHKzdxeooxq2qTYLh0oKNsfuSWGdvvxvbTxiP/9ubyvSdJHa923e6HNtY94kwQKRyV2w+NdPy8t9pzYlqo5znt5l0x5Eqg2pmyo/rMxY3uxVzeorqrSBu+schObIUcSSJI+WhvY3yHwnclk0q233qrc3Fw988wzTvOeeeYZ5ebm6rbbbnOanp+fr/Xr12vHjh1O06+44go1aNBAb7zxhnbu3OmYvnPnTr355ptq3LixLr30UqdlnnzySY0bN04DBw4kCQQAAACEGe4ICpIFCxZo/PjxGjt2rHr06OF3He6U3ymUnp7ud3z+smw6KC1fJElOj4bzVes2rWXdtcNles9TT5V15VLH3z16nKz07mWP7dp+KE/WhfP8Wl/VtrLOnFZj2c93Lpf1sG+PvPNF37591K5Rkst0d7GVx1R5Xnx8TK37QOX64uJiVGivGJzs2bOnrCuX1ar+qsqvNva377Rs2VLWfbv8WrZbt66yblzrdl5aWgOlp5dd/Vpd3/DGgAEDFB9j8aqPVVbb9QaTp373/b5Vsh7Y63G5pk2bKj39NEnebW/l9ZTfzeBrn4//bZaKCpwH3bt06Spr5jqf6vFG37591bqh6yCYv/u28me8ch2du3RWer/2LuU/2LxY1hzXR7Clp6drtW2TrNs3O00rt+dogay/VdwtcuZZZ6pFA8+P9akcS49Teii9W9Nqt2NVSaas27dUW6Zcr1691KNlA1ln/+JV+e7dT1T68cf6xWbMkL2kImnSp08ftW9cdoz9eO10yVRSq++tym1Wm++jNm3aKCXe6rQ/KhvQf4DT9p/R+wyd2NzzXQ9TspbLeqT676qGDdOUnn6m23k2uyHrrOlu5yUmxkX88cobJ510ktJPaeGyXSZJJdV8b6WkJCk9fYDL9HXGZlm3en60oLvPtT/S09M1dfcKWQ/t91imdavWMo7ky5p9yKe6TXJ9xF3/Af1lnTPT8Xdigvv+ESz1/W6gco888oi+/fZbvfjii1qxYoVOP/10LV++XNOnT1efPn30wAMPOJVfvHixhgwZokGDBmn27NmO6Q0bNtSbb76p66+/XqeffrquvPJKSdKUKVN06NAhTZkyRSkpFY+qnDhxop555hlZrVb17dtXL7/8sktsgwcP1uDBg+tiswEAAADUgERQEJSWlurGG29Uz5499eijj4Y6nICq63d8hOIdIqgn6FtARPDlxfah+s5wd1crUC6Y3TKYnwF+o4WnpKQkzZkzR2PHjtXUqVP166+/qkWLFho1apTGjBnj0/t6rrvuOjVu3FjPPfecPvjgA5lMJp1xxhl6/PHHdd555zmV3bZtm6Sy855XXnnFY50kggAAAIDQIBEUBLm5uY6XqsbGun/hevldPV9//bUuueSSYIUWcUI56BDu4x2+vPwbwcNu8Szam4Z9H1pV27/y07kCnbbxJVlV63XV+QUYdFyPoiDfF8i9W7Uuek74aNCggSZMmKAJEybUWHbw4MHVfu5HjBihESNG1FjP2LFjNXbsWF/CBAAAABBEJIKCIC4uTrfccovbeRkZGcrMzNTFF1+sJk2aqH379sENrpa8fOw9AIQFjlnRLRL3byTGDPc8DaUHcxeTjAEAAAAAuEMiKAgSEhL0/vvvu503cuRIZWZm6rHHHtNZZ50V5MhqjwuHEbGqGZmjXwdHKMa/GXSvW+HUvNG6r6N1uxAY3tzRFajvOO4eAwAAAIDIYQ51AIDk+f0KVR+3U/mvYI8/MPYWZYLUf4L5yCjUT+E0FlsXofiyfZXLhlO71MSXAXUekYra8Lv/uPkRRH8AAAAAgMhBIgiAW1zpi7oWih7mKemM8BTIvRWp+547gMJHTbsiUnaVP30qUrYNAAAAAOAeiaAQmzhxogzDiMjHwgUSA13hx8ROQRSiW9etcGreaNnX5OThC2+6S+AeDReYegAAAAAAdY9EECJK5btUomWQL1AYj/FRkPoPA2X1F/s++Cp/L9D+CLaw6HI1BOHv40q9SzCFRQsAAAAAANwgEQRAkusATtQP6ET55sE98seRx5ePqreHrXC6kKDGx42FUaz1XSTcKRvU99LxPQoAAAAAEYNEEMJC+A+t1L/xjkgY8IqAEBFm3PXroA6cAmGOT4Nn9fo7x03H4NgJAAAAAJGDRBAiSuUhh2i/YSXs0N5+odnqLwZJERL1OVlRx+r17w76FQAAAABENBJBCAser7Ktz4MuQVZ1gCvqHw3HoBaOM9EZwlrUH4uAAKqr45m7WvloAgAAAEDkIBEEoH5iAKtecjuYGSGdoV4/lioAKrcfTQl/RMJnsK6OZ+5qjYwjJwAAAABAIhGECBPKq0/DffynPl6ZGwnbzN0M9Vegdz1dCRL9IJTC/XeAVHP/qMv+Q9cEAAAAgPBFIghhgUczhR9TJFz6jIgWkiQZ3RphhkNt9AvmPvbmsBqoIy8XOgAAAABA5CARhFqp60cqMcQQPFXbOuoHeBh8rZfY7ZHHlyNRpDzmrzZIHEWeaP06jdLNAgAAAICoRCIIEaZi2IHBMNSqD1QzglUfBpNR9wLdi3zt79zVBwRXOCR8vPn+4sgAAAAAAPUPiSDUSigf6RbsAZcwGN9BBKLfhJdITo54OuZF8917Eby7fOLLLqzr3V1t/dHb1eoVf3aju49iFB96AAAAACDqkAhCrXDnBAB/RXJSBu6Fep/yvjnUpZr6t6fZ4faOIH+423Z+AwIAAABA5CARhLDgaZCk6oAGV5/Wnap3FUR9UzNeHHLhcidLXYURLtsXTHWxzT7dLVPpyBXM1q/LXV217kAkFeph1wwp2hsAAAAAEGokghAWGCSpvUBfmRv1eZIg9Tn6dniJ+n6NiOPrXUwcU8JXOOybugrBbZKXi3UAAAAAIGKQCAK8VN8GkF0eA1PfGgBRyd3dFJH+hLpQP46tsrCKJZjrCp/N9kqkxRsu/G22aHg0nBd5IAAAAABAGCMRhLDg7SAJgw4ImGr6HFc11y91NnBaN9UGRH14bF30byGCLVoSaPXg4w8AAAAAqIJEEMIaLyIOnqot7TJQzK7wD+0WVnx9DFckiPqkToA2r/IgfiQN6NfF92C0d5m6Eg3t5vfxws1nJhraAwAAAADqCxJBgJfq23hHJGxvrcZyq9nASBokBvwRTo9wiwbRNCDOBRj+i+aPlbtNo68AAAAAQOSwhjoARLZjhaUBqWfFjmy30+/6eLnT3x/M36pHvvy91uvrMWaa12U37T+mS/71W63X6Y2VWdl6aMpK7T9WpDirWW1OSHRbbum2w+rd/gSP9bw6fYMmL8lSSrxV+UU29elwgl6+vKd6j/vFUSY+xqzCErvHOgK1b+vS1OW7/F726f+t9Thvza4cv+utqv+Ls9S9RUrA6gtHVT9PrdIS9L/7B+inNXurXW72hgPqMWaaYizejZ72e36m/n5Bd/3p1JYu8zbtP6Z7PlmhWKtZ/772dO0/VqQb/7vYMX/8X3pqRI8W2pVd4LLsCz+t92r9vvrzm/Ndpr1/Y2+/68vOL1HvcTOq/dx64+5PlunE5qku039dv1/3TV5R7bJHC0p0x0dLtedooUpthkrtzrHc80nFMTsl3qqJN/XV49+s1qG8Yk24opdObZPmU6w3/neJT+Un/rZdb8zapEZJsSourV071cSX75HqTPxtW7Xz+z470+nvfccK9Y9/r1bmvlzHtJv6t9dDQ7vq0amrNWfDgRrXuTIrW8//uE6PXdBd/5m3VRNmbPQq1v3HitRjzDTNGz1EaYmx+mJplsZP3+DVspHkkS9/d/tbo6iGPrXlQJ4+XbRDb8zK1OltG+r1q0+TxVzz8e3Oj5bp4eHd/I63cj0Ltxyqtoy/35t2d+8IqjLtcF6xX3UDAAAAAOoedwShVv4zb2tA6lmZle1VuXV7jgVkfb4IVhJIkm7/cKn2HyuSVDbgtGl/rttyN010HRwtH5A5WlCi/87fpoJim/bnFCm3qFS/rt+vh79Y5VTe18HkY0XhnxgKpD1HXRMG/gpFvw2lXdkFNSaBKiuxeXdV+bHCUj321Wq38x7+4nftyi7Q1oN5evp/a3XLpCUu88PBrZOW1mr52iaBJClj40HNXL/fZXpNSSBJ+s/cLVqzK0eHcot1tKBEeUU2j2WPFZbqsrd+07o9x7Q/p0h3fLSsVnF7Y/P+XO3PKXL7mYuWu3Ze/nmDUxJIkj6Yv01zMw/qh9V7vK7nk0U7tC+n0OskUGVvzdksSXrq+7XV9oH66Lkf1+lYYanmbDygWW4+Z+7M23RQoz5fWet1z9t0sNZ1+GK2F0lHAAAAAEB4IBGEWtmwt34NcNe1/GLvBtSqG9A8VljidnptB2wKS+rXYN+hXK5sro31ewJ3V5U3KidNF2w+pFIvk0v11WYPSeaaLNx62O915oY4mRwtj+3acTjf7fQ1u4/6XJe/x7lFW/zvB/XJxn3e/0bafCCvTmI4pVWDOqlXkseLVQAAAAAA4YdEEAAg4EjDINxUTqCbaveGMSBipMTzFGgAAAAAAIkgIOpEy+OPQo12rB3aL3hoagCe1OXxweDoAwAAAAARg0QQECWi5bFHAABEk1DegUZSHgAAAAAgkQgCogaDPQgnXCkeeuSGnUX7MTKY2xflTRlwoTwecpEIAAAAAEAiEQQAqAuMFEelSB5TJjnpiiRB9GMXAwAAAAAkEkEAAEQ0BnqB8BbKR8MBAAAAACCRCAIA1AHuvUC4ifZHwwEAAAAAAHhCIgiIEuVjnAx2BgaPkUKkq4vHfkXyp6Jy7NyfgWCK1u8Tfm8AAAAAQOQgEQTAKwz4AOGJjyYAAAAAAACqQyIIiBLlV7jz8u/A4J0OtWOQOYxKkfypoE8iVPg+AQAAAACEGokgIMow1hkY0fooH9QnDD5XxicaocL3CQAAAAAg1EgEAQCAeoU7JwEAAAAAQH1CIgiIElxvjHDCnWnRI1r2ZbRsR1igMX3Co+EAAAAAAKFGIgiIMjyCBkBd4U6a8OXPO5DYnwAAAAAA1A8kggAAAUc6Mni4OcNbNBQAAAAAAKifSAQBUYILuxFOSE5Ep0jer5EcOxCO/LkLDQAAAAAQGiSCgChRPhxTV+MyPEIICE98NgGEAmkgAAAAAIgcJIIAwAOudgaiZ7A3WrYDAAAAAADAVySCgCjD3QGBQQ4IcBXJx5fKn+kI3gwgbPA5AgAAAIDIQSIIiDIkMBAODO6/iBrcGQfAHY4MAAAAABA5SAQB8ApjwfAF/SV4aGvvkJxEfUSvBwAAAABIJIIAAEA1oiXRFC3b4Um0b18ki+RHKgIAAAAAogOJoCDYtWuXXnvtNQ0bNkxt27ZVbGysmjdvrssuu0yLFi0KdXiIMowFApAYfK5WFLaNP8d+k58NwfeMd8ofq0iSDgAAAAAQaiSCguCNN97Qgw8+qC1btmjYsGEaNWqUBgwYoG+//VZnn322pkyZEuoQASCgeK9MdPI3cRAO6JKojyL3EwsAAAAACCRrqAOoD/r27avZs2dr0KBBTtPnzp2rc889V3fddZcuueQSxcXFhShCAFUxZgy44j07gO+i9e48kqsAAAAAEDlIBAXB//3f/7mdPnDgQA0ZMkTTp0/X6tWr1bt37yBHhnAyeurvPpWfuW6f098FxTbtzynUXz9bEciwHB7/Zk2d1Buurnt/kYad3Cwo65q8eIcMQzpwrEhLth3WKa0bBGW9dWnq8l11VnePMdM0qJVZ53eI0dPfr9XnS7O8Wu6BOvpshNrGfcckSYu3HtbNE5dIkj659Uyf6sgtKvU475sVu3TfuV2Uue+Y1uzK8T9QSY999buOFpTUqg5/XfHOAknSSS1T9XtWcUhiqEvvZmzxeZl/fL3ar3VtOZCnjxZu92vZ+uTtOVv09hzf90sg/bb5UJ3V/cPqPS7T1uw6qh6tIv87DAAAAACiDYmgEIuJiZEkWa0174p+/fq5nb5mzRq1bdtWGRkZAY3NG6W2UscloaU2zwOJqNnKHYd9Kn/PJ0tdpqW/NDNQ4QRHmPedH3+vu2RGZU995zwYu3TbwaCsN5LN3G5o5vYiyZTn9TI/r9ldhxGFzjcrstQt5pBeXJzvmHblO/PVOtmsUpvdqzpueXumx8/hv37dqAb5O/Xcony3833x9XLvknZ16fesw2F/7AmWNbuO+L3ss/+rXxcHONB3HEptrtMuf2ue3jw3WbGW4N8GlZOTo9TU1KCvFwAAAAAiAe8ICqEdO3bol19+UYsWLXTKKaeEOhwAQISqnAQqtzPXuySQJK06UP2gdiCSQADqhz8OuskQAQAAAABCijuCQqSkpETXX3+9ioqK9OKLL8pisdS4zIIFC9xOL79TKD09PaAxesM6c5rjqlirhe4E39B34C/6DmqD/gN/0XdqduJJJyn95OZBXy93AwEAAACAZ9wRFAJ2u10jR45URkaGbrvtNl1//fWhDgkAAAAAAAAAAEQhEkFBZrfbdfPNN+vTTz/Vddddp7fffjvUIQEAAAAAAAAAgCjFcy2CyG6366abbtKHH36oq6++WhMnTpTZTC4OAAAAAAAAAADUDbIQQVI5CXTllVfqo48+8uq9QAAAAAAAAAAAAP4iERQE5Y+D+/DDD/WXv/xFH3/8MUkgAAAAAAAAAABQ53g0XBA8/fTTmjRpkpKTk9W1a1eNGzfOpcwll1yiXr16BT84AAAAIEAMI9QRAAAAAACqIhEUBNu2bZMk5ebm6tlnn3Vbpn379iSCAAAAAAAAAABAQJEICoKJEydq4sSJoQ4DAAAAAAAAAADUM7wjCAAAAAAAAAAAIEqRCAIAAAAAAAAAAIhSJIIAAAAAIErk5OTooYceUrt27RQXF6f27dvrb3/7m3Jzc32ua9q0aRo0aJBSUlKUmpqqIUOGaObMmV4tO2XKFJlMJplMJn322Wc+rxsAAABA4JAIAgAAABAgRqgDqNfy8vI0aNAgTZgwQSeeeKIefPBBdevWTePHj9c555yjwsJCr+v6+OOPNWLECK1bt04jR47UjTfeqD/++ENDhw7Vl19+We2ye/fu1T333KOkpKTabhIAAACAACARBAAAAABR4KWXXtLKlSs1evRoTZs2TS+88IKmTZum0aNHa8mSJZowYYJX9Rw5ckT33XefGjdurOXLl+uNN97QG2+8oeXLl6tRo0a66667dOzYMY/L33777UpJSdGdd94ZqE0DAAAAUAskggAAAAAgwhmGoffff1/Jycl64oknnOY98cQTSk5O1vvvv+9VXV988YWys7N13333qXXr1o7prVu31r333quDBw/q66+/drvsxIkT9f333ztiAQAAABB61lAHAAAAAAConczMTO3evVvDhw93eSRbUlKS+vfvr2nTpikrK0tt2rSptq7Zs2dLkoYNG+Yyb/jw4Ro7dqzmzJmjG264wWleVlaWHnjgAd1+++0699xzNXfuXJ+3o1+/fm6nr1mzRm3btlVGRobPdQZKTk6OJIU0BkQm+g78Rd+Bv+g78Bd9J7zl5OQoNTXVr2W5IwgAAAAAIlxmZqYkqUuXLm7nl08vL+dvXZ7qMQxDt9xyi1JTUzV+/HjvAwcAAABQ57gjCAAAAEBAGEaoI6i/jh49Kklq0KCB2/nlVw6Wl/O3Lk/1vP3225oxY4Z+/vlnpaSkeB94FQsWLHA7vfxOofT0dL/rrq3yK2NDGQMiE30H/qLvwF/0HfiLvhPe/L0bSCIRBAAAAABhY9SoUSoqKvK6/F//+lePdwEFy5YtW/S3v/1NN998s4YPHx7SWAAAAAC4IhEEAAAAAGHinXfeUV5entflL7/8cnXp0sVx946nO37Kn/fu6Y6hyirX1ahRoxrrueWWW5SWlqZXX33V67gBAAAABA/vCAIAAACAMJGbmyvDMLz+b/DgwZJqfgdQTe8Qqqy6utzVs2LFCu3atUtpaWkymUyO/5566ilJ0tVXXy2TyaTXXnvNu0YAAAAAEFDcEQQAAAAAEa5Lly5q2bKl5s+fr7y8PCUlJTnm5eXlaf78+erQoYPatGlTY12DBg3S5MmTNX36dJ111llO86ZNm+YoU+6GG25Qfn6+Sz3Lly/XihUrNGTIEHXs2FE9evTwd/MAAAAA1AKJIAAAAACIcCaTSbfeequefvppPfPMM3rhhRcc85555hnl5ubq73//u9My+fn52rFjhxITE9W2bVvH9CuuuEKjR4/WG2+8oZtvvlmtW7eWJO3cuVNvvvmmGjdurEsvvdRR/vXXX3cb09ixY7VixQrdfvvtuuqqqwK5uQAAAAB8QCIIAAAAQEAYoQ6gnnvkkUf07bff6sUXX9SKFSt0+umna/ny5Zo+fbr69OmjBx54wKn84sWLNWTIEA0aNEizZ892TG/YsKHefPNNXX/99Tr99NN15ZVXSpKmTJmiQ4cOacqUKUpJSQnilgEAAACoDd4RBAAAAABRICkpSXPmzNEDDzygdevW6ZVXXtH69es1atQozZw5UwkJCV7Xdd111+mnn37SiSeeqA8++EATJ07USSedpOnTp+svf/lLHW4FAAAAgEDjjiAAAAAAiBINGjTQhAkTNGHChBrLDh48WIbh+T6uESNGaMSIEX7HMnbsWI0dO9bv5QEAAAAEBncEAQAAAAAAAAAARCkSQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUIhEEAAAAAAAAAAAQpUgEAQAAAAAAAAAARCkSQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUIhEEAAAAAAAAAAAQpUgEAQAAAAgIwwh1BAAAAACAqkgEAQAAAAAAAAAARCkSQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUsoY6AARG0ZYt2nH77ZKkBn/6kxr86U8uZfZPeE2F69ZKkuI6dlKzR0e7lMmZNl3ZU790/N369ddljo93KlO8c5f2Pv2UJOmxzIP6sts5Wte4g0td9y38SMnF+ZKklc1P1E9dB7mUuWjDrzpl30ZJ0tG4FP37zGtcypy8L1MXb5jl+Pud3lfqcGKaU5mEkkI9sGCS4+8ZnfpraaseLnXdtHyqmucelCRtOqGtvuhxvkuZwVsXqV/WSkmS3WTWiwNvcynTNnu3rv39e8ffn/T8k3aktXQpN3ruezIbdknSgja9NLvDmS5l/rLmJ3U+vEOStDe5sT44/TKXMr13rdHQzfMdf7/W70YVxDjvlxPys3XH0imOv7/rdo7+aNbFpa67F32qBkXHJEmrm3XV/7oNcSlz/sY56rV3vSQpNzZRb5x1vUuZEw9s0aXrZjj+fv+My3UgqZFTmdjSYo367QPH37M6nKVFbU51qeuGFd+o1bF9kqRtaa01ueeFLmUGbFuqgTuWOf5+Pv0OlzKtj+7V9au+dfz9WY8LtPWENi7lHp73X8XYSyRJi1v11MxO/VzK/N/a6ep2cKsk6WBiQ73X+wqXMr32rNX5mXMdf79x5nXKjUtyKtOg8JjuXvyp4+//dR2s1c27udR15+LP1LDwqCRpbZNO+rb7eS5lhm2apzN2/yFJKrTGacLZI13KdD60TX/5Y5rj7w9O+z/tTWniVMZit+mRee87/p7Tvo9+a3u6S13XrvpObY/ukSTtaNBCn5x6sUuZs3cs16BtSxx/vzTgVtnMFqcyzY8d0E0rvnL8/cXJw7WpUXuXuh78baLiS4skSctanqzpnQe4lPnzul900oHNMgxDh+NT9a6bY8Ypezfooo2zHX//u+81Ohqf4lQmuShP9y362PH3T10GamWLk1zqum3p52qcf0SStKFxB3110jCXMuduXqC+u36XJJWYYzR+wM0uZTocztJVa350/P3RqX/WzgbNXco9lvGO499z256hee17u5S5+vcf1D57pyRpV0ozfXjaJS5lzsxapXO2LnT8/crZN6nYGutUpkneId26rOJ4/3X3oVrfpKNLXRzLOZZzLK84lhvHX4DzQ7chHMs9HMubTnhaO2JskqSUIUPU8OqrXcocfO895S8pW5+1aVO1HDfOpUzeb7/p0MSJjr9bPvecrI0bO5UpPXJEu0eX/Z4t2rJFcR1dj2EAAAAAABJBUcOel6eCZcslSYlnuA4cSlJRZqajjFFS4rZM6f79jjKSJJvNpYxRkO8oc2JRqVLcDIhJUudDO5RWmCOpbFDMnRbHDujEA1skSYcSG7otk1Kc5ygjSbE219gtdptTmSUtXQcOJanDkV1ql71LUtngizuN84446qo6CFIusaTAaX2JJQVuy3U7uFUWe1kbZp7Qzm2Z1jn7HHUllBS5LZNWcNRpfeV1VhZrK3Eq86un/XJ4hxodH9g+6KHNm+cedNSVHZ/qtkxylf0SV1rsUsZsGE5lVjTv7raudkd3q/Oh7ZIkm8l9mzfOP+JUlzvxpYVOZZI87Jeuh7Yp7njCYVtaK7dlWlXaLztTXQfsJSmt4JjT+qz2UpcyMbZSpzJz257htq6OR7LU7PjAdnaVpEW5ZrmHHHXlxSa6LZNcnO+0vvLESmWmKvtlTVPXQWZJant0T41t3ig/26mMyc1bwuNLi5zKlCcVqupyaLuSjs/z1OYtj+131LU3uZHbMg0KnfdLjM11v1jtzvtlQetebutqf2SXWufslVQ2kO5O07yK/VLk4biSVOWYEV9a6LZc5TLrGrsf0GxTab9Y3RwLJKlhlWOG2c1+iSstdt4vnfLc1sWxnGM5x3LXY/m8du5/a3Esl+Iy16qgoOx4Eteps9syxVu3OX5LxrRt67ZM6aFDTr9JjWLXvmmUlDjK2PPcH8MAAAAAADwaDgAAAAAAAAAAIGpxR1CUMCclKeGMsseBxLRs4bZMXJcuMkrLrsCO69jJbRlr06aOeiRJFtcrek0JiY4ySzMP6lhskksZSdrUqK3jalFPV5HvSWnieBTR0Tj3V84ei01yelxRsSXGpYzNbHEqk53QwG1dWxu2UkFM2dXjO1ObuS1zMKmhoy67yX2uND8mwWl9+TEJbsttaNzB8Tihg0nur9jemdrMcaWvp3bKTmjgtD53V7cXW2KcynjcLye01YHjseyp8piZcnuTGzvq8nQXRG6V/VJU5bFTkmQ3mZzKHPGwX7Y3aKnS49uU1cB9/z2Y2NDtY6sqK7TGO5XJ87BfNjZq73ic0P4k93eV7Ept5ui/nq62z05IcVpfqdn1kFpisTqVqfqIsnJbGrbRkYSyK/Z3pzR1W2ZfciNHXZ7ugsiNTXRan7tyRpX9cqjK47nK7ai0L3Z42C+HEtOc6jJMJpcyhdY4pzKe+lRmo3aOz8I+D3f77E5pqvVNOjoeDefO0Xjn/VJicd0vpWZrlWOG+/2yrWEr5caVxbvLwzFjf1LFfikxux6fpLK+6Lxf4t2Wq1zGU7/LatBCFqPsTpJdKe5jOlLlmGF3s1+KrLFV9gvHco7lHMul6o/l5Y+G41juuU8VdTlJaccfDRfb1vWRfpIU26G947ektan7drI2auT0m9QU69o3TTExjjLmnVlu6wEAAAAASCbDcPPsB0SUfv3Knom/YMGCoK+7x5hpKj3+2CWrm8FWoDr0HfiLvoPaoP/AX/Sdmr1w2Sm6qKfru7bqWih/DyM4wmEfZ2RkSJLS09NDFgMiE30H/qLvwF/0HfiLvhPeavObmEfDAQAAAAAAAAAARCkSQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUIhEEAAAAICB4+ygAAAAAhB8SQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUIhEEAAAAAAAAAAAQpUgEAQAAAAAAAAAARCkSQUG0ZMkSXXDBBUpLS1NSUpLOOussff7556EOCwAAAAAAAAAARClrqAOoL3799VcNHz5c8fHxuuqqq5SSkqKpU6fqyiuvVFZWlkaNGhXqEAEAAAAAAAAAQJThjqAgKC0t1W233Saz2ayMjAy9++67euWVV7Rq1Sp17dpVf//737V9+/ZQhwkAAADUihHqAAAAAAAALrgjKAhmzZqlzZs366abblKvXr0c0xs0aKC///3vGjlypCZNmqQnn3zS73UYhqG8kjyvyydaE2UymZyWzy/N93r5WHOsYiwxVaaWSqZSr+uQEV91gmQq8mF5q1y7cDTEYJdMxbWLwVQiyeZlBSbJiKtlDDGSLL7HYLJV/H+oYqgoTAyRFIOj73j4rLmNobisHr9jsB3fDi/VOgazZMRGaQxF8n64OBAxxMrl2hdTsQ/Hasvx7Qh0DL60AzGERQwm2/Flq373h0M7+Pr7w10MhT4s7/430LcrN+vckxp4VUXV36OSfPo9G2OOUayl6vEBAAAAAFAViaAgmD17tiRp2LBhLvOGDx8uSZozZ06N9fTr18/t9DVr1qhBqwYaPmW41zGNazNOZlPFyb/dsOvxrMe9Xv6cBufovAbnqdRWKhllgxb21Nkyp/3mXQWGSaXb/u48zVQia/uXvI7Bfniw7Ef7O00znzBT5gYLvYzBqtJto6vEUCRr+/E+xHCO7Eed94v5hOkyN1jiZQVxKt3+sPM0c76sbSd4HYPt0FAZOX2dq2j0s8ypy72sIEGlOx5ynmY5Jmub172P4eAIGcfOcI6h8Q8yp6yqdjnHAag0WaVZf60y86isbd70IYYLZRzr5RxDk+9lTl7t1fJGaQPZsu6tEsNhWdu85X0MB/4kI7encwxNv5E5aa13MZQ0lG3n3c4TYw7I2vpd72PYf4mMvJOdplmaTpUpaYN3MRQ3lm3XHc4TY/fJ2up972PYd5mM/BOdY2j2hUyJmV7G0Ey2Xbc6T4zbJWvLiY4/a/rysu27QkZ+F+cYmk+RKWGLdzEUtZRt901O00xxWbK0/NCr5SXJtvcqGQWdqsTwqUwJ3t0BahS2lm3Pjc4xxG+TpcUn3sew51oZhe2dY2jxkUzxO72LoaCdbHuvc44hYbMszT/zPobdN8goauMcQ8sPZYrb7WUMHWXbe7VzDImZsjTz/h17pbtHSkWtKlVqyNJykhS337sY8rvItu+KKjGsl6XZVO9j2HWrVNzMaZql1fsyxR70Loa8brLtv9w5hqQ/ZGn6jfcx7LxdKmniHEPrd2SKOeLV8va8k2Tff6lzDMm/y9Lke+9jyLpLKj3BOYY2b8lkPepdDLmnyH7gYucYUlbK0vgHH2K4Vyp1TlRY27wpWXNrXNYqyZ5zqkoPXVQlhmWyNP7Z+xh23C/ZUpzrbvtPyVLg1fL2nNNlP3S+cwypi2VpNMP7GLY/KNkTnWNo95pk9u6CGPvRPrIfdv5ta26wQItKZ2n4FO8eOvBk6ycVb3a+IObJrCdVaniX0BqYMlDnNyxrh5ycHKWmpnq1HAAAAADUNzwaLggyM8sGP7t06eIyr3nz5kpOTnaUiTQnNyKXCAAAgDJmU81lAAAAAADBxSh+EBw9WnaVa4MG7h+TkZqa6ihTnQULFrid3q9fPx0oOKDYWO8fjTFw4EBZzBWP6rHZbYr90vvlO3XspPST01XUeJ/u+3SpJMlsNkvy8uzfZJLVUvVxZob3yx9fn9mlDh9ikNzEUFr7GHxpB3cxmK0+LW8xW6TaxOBuX1h8jcHsGoNX+8LwHIPZ4lsMJn9jOF5UbvaFxccY3O0Lk8n7GNzui0DE4EM7BGJf1LYd5C6Gqn3ScJSukxjqbF/4EoO5jvZFkPuDpQ72hY8xWM1WpxhKbaUhiCH0/cFqsUh2/2Mwm0xuvvP8iMFw9/PT2xgC8N1fq31hSCZ3393+fPfXYl+4/f3h676wSqZa7AsPv4HirFbFxnp3itG/f38lxSQ5TYufGq9im3ePI23Xvp3ST02XJO4GAgAAAIBqmAzD4J2udWzYsGGaMWOGMjMz1blzZ5f5rVq1Um5urlfJIHf69esnwzA0c+5Mr5cJ5DuCMjIyJEln9T9LJXbvn49f9cQ/EO8pKrYVR3wMdsOuglLvHg3jKYYiW5FK7d49VsUkkxJjnB8N43MMlljFmH2PYf78+ZKkAf0HhCyGcu7awWa3qdDm/fsS3MVQWFoom+Hdu3GIwfsYyvtO//7Oj4esLoaC0gLZDe/ejeMuhlJ7qYps3r9DLM4SV5aA8DMGs8msBGtCVMaQX5Ivw8t3obiLocRe4vVAsSTFW+KdLn7IyMhQkb1IZ/c/26vlLSaL4q3Oj6+qbQySb+1ADGWsZqviLM7v7/I1hgRrgtPjcX2JYf78+bLIonMHnxuyGCQP7WArUbG9djHU9v08vsYQyHcElT9C2dOFU4h84bCPy8970tPTQxYDIhN9B/6i78Bf9B34i74T3mrzm5g7goKg/E4gT4menJwcNWzYsFbrMJlMLgmFYC4vlQ281uaFvcRQxmwy1zqGOEucywBROMZQ/l6AqgPuwYyhOhazRUnm2sVQddCUGAITQ3nf8aWPVE0m+MpqtrokNHxFDGXcfeZ9EWOOcUn0+SrOHFerY0wgYgiHdiAG32Ko+j6bUMTgSYwlxuXCEF/V9ns3HGIAAAAAALjiHUFBUP5uIHfvAdq7d69yc3Pdvj8IAAAAAAAAAACgNkgEBcGgQYMkSdOnT3eZN23aNKcyAAAAAAAAAAAAgUIiKAjOPfdcdezYUZ9++qlWrlzpmH706FE999xzio2N1Q033BC6AAEAAAAAAAAAQFTiHUFBYLVa9f7772v48OFKT0/XVVddpZSUFE2dOlXbt2/X+PHj1b59+1CHCQAAAAAAAAAAogyJoCAZMmSI5s2bpzFjxmjKlCkqKSnRKaecohdffFFXXnllqMMDAAAAAAAAAABRiERQEPXt21c//fRTqMMAAAAAAAAAAAD1BO8IAgAAAAAAAAAAiFIkggAAAAAAAAAAAKIUiSAAAAAAAAAAAIAoRSIIAAAAAAAAAAAgSpEIAgAAAAAAAAAAiFIkggAAAAAAAAAAAKIUiSAAAAAAAAAAAIAoRSIIAAAAAAAAAAAgSpEIAgAAAAAAAAAAiFImwzCMUAeB2mnWrJny8/PVo0ePkKw/JydHkpSamhqS9SNy0XfgL/oOaoP+A3/Rd8LXmjVrlJiYqH379oU6FNSRUJ/zSBwD4D/6DvxF34G/6DvwF30nvNXmvIc7gqJAw4YNlZiYGLL179ixQzt27AjZ+hG56DvwF30HtUH/gb/oO+ErMTFRDRs2DHUYqEOhPueROAbAf/Qd+Iu+A3/Rd+Av+k54q815D3cEodb69esnSVqwYEGII0Gkoe/AX/Qd1Ab9B/6i7wD1G8cA+Iu+A3/Rd+Av+g78Rd+JXtwRBAAAAAAAAAAAEKVIBAEAAAAAAAAAAEQpEkEAAAAAAAAAAABRikQQAAAAAAAAAABAlCIRBAAAAAAAAAAAEKVMhmEYoQ4CAAAAAAAAAAAAgccdQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUIhEEAAAAAAAAAAAQpUgEAQAAAAAAAAAARCkSQQAAAAAAAAAAAFGKRBAAAAAAAAAAAECUIhEEAAAAAAAAAAAQpUgEAQAAAAAAAAAARCkSQfDbkiVLdMEFFygtLU1JSUk666yz9Pnnn4c6LATRrl279Nprr2nYsGFq27atYmNj1bx5c1122WVatGiR22VycnL00EMPqV27doqLi1P79u31t7/9Tbm5uW7L2+12vfHGGzrllFOUkJCgJk2a6Oqrr9aWLVvqctMQIi+++KJMJpNMJpMWLlzoMp/+g6q+/vprDR06VI0aNVJ8fLw6dOigq6++WllZWU7l6DsoZxiGvvrqKw0ZMkQtWrRQYmKiunXrpjvuuMPt/qXvAOC8B5z3IJA454GvOOeBrzjngVsG4IdZs2YZMTExRkpKinHbbbcZDz30kNGuXTtDkjF+/PhQh4cgGT16tCHJ6NSpk3HLLbcYjz76qHHZZZcZFovFMJvNxmeffeZUPjc31+jVq5chyRg2bJgxevRoY9iwYYYko0+fPkZBQYHLOm699VZDknHyyScbjzzyiHHdddcZsbGxxgknnGBs3LgxWJuKIFi9erURFxdnJCUlGZKMBQsWOM2n/6Ayu91u3H777Y5j0N13322MHj3auP766422bdsac+fOdZSl76Cyhx56yJBktGjRwrjzzjuNRx55xBg+fLhhMpmMlJQUY/Xq1Y6y9B0AnPfAMDjvQeBwzgNfcM4Df3HOA3dIBMFnJSUlRqdOnYy4uDhjxYoVjunZ2dlG165djdjYWGPbtm2hCxBBM3XqVGP27Nku0zMyMoyYmBijYcOGRmFhoWP6k08+aUgyRo8e7VS+/MTqueeec5o+a9YsQ5KRnp5uFBUVOab/+OOPji8oRIfi4mLj9NNPN84880zjuuuuc3tSRP9BZa+99pohybj77ruN0tJSl/klJSWOf9N3UG7Pnj2G2Ww22rVrZ2RnZzvNe/XVVw1Jxk033eSYRt8B6jfOe1CO8x4EAuc88BXnPPAH5zzwhEQQfDZt2jSXg0a5iRMnGpKMp556KgSRIZyUXz2wZMkSwzDKrmRp2bKlkZycbOTm5jqVzc3NNZKTk42OHTs6Tb/66qsNScacOXNc6h88eLAhydi+fXvdbQSCZsyYMUZcXJzxxx9/GDfeeKPLSRH9B5Xl5+cbDRs2NDp27Oh08uMOfQeVLViwwJBkXHPNNS7zNm7caEgyLrroIsMw6DsAOO+Bdzjvgbc454EvOOeBvzjngSe8Iwg+mz17tiRp2LBhLvOGDx8uSZozZ04wQ0IYiomJkSRZrVZJUmZmpnbv3q3+/fsrKSnJqWxSUpL69++vLVu2OD3jdvbs2Y55VdHXosfy5cv17LPPasyYMTrppJPclqH/oLLp06fryJEjuuSSS2Sz2fTVV1/phRde0Ntvv61NmzY5laXvoLIuXbooNjZW8+fPV05OjtO8//3vf5Kkc889VxJ9BwDnPfAO5z3wBuc88BXnPPAX5zzwhEQQfJaZmSmp7MBSVfPmzZWcnOwog/ppx44d+uWXX9SiRQudcsopkqrvN5Wnl5fLy8vTnj171KFDB1kslhrLIzIVFRXphhtuUK9evfTII494LEf/QWXLli2TJFksFvXs2VOXXXaZHnvsMd11113q1q2bHn74YUdZ+g4qa9SokV544QXt2LFDJ554ou666y6NHj1aI0aM0OjRo3X33Xfr3nvvlUTfAcB5D9HKwhAAAJdqSURBVGrGeQ+8wTkP/ME5D/zFOQ88sYY6AESeo0ePSpIaNGjgdn5qaqqjDOqfkpISXX/99SoqKtKLL77o+GLwpt9ULudreUSmJ598UpmZmVq2bJnbHxHl6D+obP/+/ZKkV199VaeffroWL16s7t27a8WKFbr99tv1yiuvqFOnTrrrrrvoO3Dx4IMPqlWrVrr11lv19ttvO6YPGDBA11xzjeOKbvoOAM57UB3Oe+AtznngD855UBuc88Ad7ggCEDB2u10jR45URkaGbrvtNl1//fWhDglhbMGCBRo/frwef/xx9ejRI9ThIILY7XZJUmxsrL755hv16dNHycnJGjhwoL744guZzWa98sorIY4S4erpp5/Wddddp7///e/KysrSsWPHNHfuXBUWFmrw4MH67rvvQh0iACDMcd4Db3HOA39xzoPa4JwH7pAIgs/Ks76esrs5OTkeM8OIXna7XTfffLM+/fRTXXfddU5XHEje9ZvK5Xwtj8hSWlqqG2+8UT179tSjjz5aY3n6Dyor32+9e/dWy5Ytneb16NFDHTt21ObNm5WdnU3fgZNffvlFY8aM0b333qtHH31UrVu3VnJysgYMGKDvv/9eMTExGjVqlCSOOwA474F7nPfAW5zzoDY454G/OOeBJzwaDj6r/LzHM844w2ne3r17lZubq759+4YiNISI3W7XTTfdpA8//FBXX321Jk6cKLPZOc9c03NCqz6XNCkpSS1atNDWrVtls9lcbqGv6TmmCG+5ubmOfRgbG+u2TL9+/SRJX3/9teOFqvQfSFK3bt0kSWlpaW7nl08vKCjg2AMnP/30kyRpyJAhLvOaN2+uE088UStWrFBubi59BwDnPXDBeQ98wTkPaoNzHviLcx54wh1B8NmgQYMkSdOnT3eZN23aNKcyiH6VT4auvPJKffTRRx5fGNeyZUvNnz9feXl5TvPy8vI0f/58dejQQW3atHFMHzRokGNeVeV9LT09PcBbhGCIi4vTLbfc4va/8h8MF198sW655Ra1b9+e/gMn5T9o161b5zKvpKREmzZtUlJSkpo0aULfgZPi4mJJ0oEDB9zOP3DggMxms2JiYug7ADjvgRPOe+ArznlQG5zzwF+c88AjA/BRSUmJ0bFjRyMuLs5YsWKFY3p2drbRtWtXIzY21ti6dWvI4kPw2Gw248YbbzQkGX/5y1+MkpKSass/+eSThiRj9OjRTtNHjx5tSDKee+45p+mzZs0yJBnp6elGUVGRY/qPP/5oSDKGDRsWuI1B2CjvUwsWLHCaTv9BZcOGDTMkGe+9957T9KefftqQZFx33XWOafQdlJs8ebIhyTj55JON7Oxsp3lvvfWWIcno37+/Yxp9B6jfOO9BOc57EGic88AbnPPAH5zzwBOTYRhG3aSYEM1+/fVXDR8+XPHx8brqqquUkpKiqVOnavv27Ro/frzjWZOIbmPHjtVTTz2l5ORk/fWvf5XV6vq0yUsuuUS9evWSVHY1Qf/+/bVq1SoNGzZMp59+upYvX67p06erT58+mjNnjhISEpyWv+222/T+++/r5JNP1oUXXqg9e/ZoypQpSk5O1oIFC9S1a9dgbCqCaOTIkZo0aZIWLFigs846yzGd/oPKNm/erLPPPlv79+/XhRde6Li9fdasWWrXrp0WLlyo5s2bS6LvoILNZtM555yjjIwMNW3aVBdffLHS0tK0fPlyzZo1SwkJCZo9e7bjUU/0HQCc90DivAeBxzkPvME5D/zBOQ88CnUmCpFr0aJFxogRI4zU1FQjISHB6Nu3r/HZZ5+FOiwEUflVTNX998EHHzgtk52dbTzwwANGmzZtjJiYGKNt27bGqFGjjJycHLfrsNlsxj//+U/j5JNPNuLi4oxGjRoZV155pbFp06YgbCFCwdPVcYZB/4GzHTt2GCNHjjSaN29uxMTEGG3atDHuueceY9++fS5l6TsoV1hYaDz//PPGaaedZiQmJhpWq9Vo1aqVcd111xlr1651KU/fAcB5DzjvQaBxzgNvcc4Df3DOA3e4IwgAAAAAAAAAACBKmUMdAAAAAAAAAAAAAOoGiSAAAAAAAAAAAIAoRSIIAAAAAAAAAAAgSpEIAgAAAAAAAAAAiFIkggAAAAAAAAAAAKIUiSAAAAAAAAAAAIAoRSIIAAAAAAAAAAAgSpEIAgAAAAAAAAAAiFIkggAAAAAAAAAAAKIUiSAAAAAAAAAAAIAoRSIIAAAAAAAAAAAgSpEIAgBEtcGDB8tkMoU6DK8ZhqEzzjhDw4YN82v5xx9/XCkpKdq3b1+AIwMAAAAQjjjnAQDUhEQQACBimEwmn/6LRB9++KGWL1+up59+2q/lR40aJbPZrDFjxgQ4MgAAAAB1jXOemnHOAwC+MxmGYYQ6CAAAvDF27FiXaa+99pqOHj3q9iRg7Nix2rFjh/Lz83XiiScGIcLasdvt6tSpk9q0aaOMjAy/6xk1apT++c9/avPmzWrXrl0AIwQAAABQlzjn8Q7nPADgGxJBAICI1r59e23fvl3R8HX2ww8/6KKLLtJ7772nW2+91e96VqxYodNPP12PP/64nnnmmQBGCAAAACDYOOdxxTkPAPiGR8MBAKKau+dlT5w4USaTSRMnTtT333+vM888U4mJiWrVqpWeeOIJ2e12SdKkSZN06qmnKiEhQW3bttXLL7/sdh2GYei///2v+vfvr9TUVCUmJqp3797673//61OsH3zwgUwmky677DKXeXv27NFf//pXdenSRQkJCUpLS1P37t1155136ujRo05lTzvtNHXu3FkTJ070af0AAAAAIg/nPACAmlhDHQAAAKHy9ddfa/r06brkkkvUv39//fDDDxo3bpwMw1CDBg00btw4/fnPf9bgwYM1depUPfLII2rWrJluuOEGRx2GYejaa6/V5MmT1aVLF11zzTWKjY3VjBkzdMstt2jt2rUaP358jbEYhqFff/1V3bp1U8OGDZ3m5efnq3///tq2bZuGDRumSy+9VMXFxdq6das++ugjPfzww2rQoIHTMv369dNHH32kjRs3qmvXroFpMAAAAAARhXMeAIBEIggAUI/99NNPmj9/vvr06SNJeuqpp9S5c2dNmDBBqampWrFihTp27ChJevjhh9W5c2eNHz/e6aTo/fff1+TJk3XTTTfpnXfeUUxMjCSpuLhYl19+uV555RVdffXVOuOMM6qNZd26dTp8+LDOP/98l3kzZ87U1q1b9cADD2jChAlO83Jzcx3rrKx379766KOPNH/+fE6KAAAAgHqKcx4AgMSj4QAA9dh1113nOCGSpJSUFF100UXKz8/XXXfd5TghkqQ2bdpowIABWrt2rUpLSx3T33zzTSUlJelf//qX08lJbGysnn32WUnS5MmTa4xl586dkqRmzZp5LJOQkOAyLTk5WXFxcS7Ty+sprxcAAABA/cM5DwBA4o4gAEA91qtXL5dpLVq0qHaezWbTvn371KpVK+Xn52v16tVq2bKlXnzxRZfyJSUlkqT169fXGMuhQ4ckSWlpaS7z0tPT1aJFC73wwgtatWqVLrroIg0aNEjdu3d3eRZ4uRNOOEGSdPDgwRrXDQAAACA6cc4DAJBIBAEA6rHU1FSXaVartcZ55Sc7R44ckWEY2rVrl5566imP68nLy6sxlvIr3woLC13mNWjQQAsXLtSTTz6p77//Xj/++KOksiv2Hn30Ud19990uyxQUFEiSEhMTa1w3AAAAgOjEOQ8AQOLRcAAA+K38xOmMM86QYRge//v1119rrKtJkyaSpMOHD7ud37ZtW02cOFEHDhzQihUr9OKLL8put+uee+5x+xiG8nrK6wUAAAAAX3HOAwDRgUQQAAB+SklJUffu3bVu3TplZ2fXqq6TTz5ZZrNZGzZsqLac2WxWr1699MgjjzhOhr777juXcuX1nHLKKbWKCwAAAED9xTkPAEQHEkEAANTC/fffr/z8fN12221uH4ewdetWbdu2rcZ60tLS1LNnTy1dulR2u91p3h9//KF9+/a5LFM+LT4+3mXeokWLZLVadfbZZ3u5JQAAAADginMeAIh8vCMIAIBauOOOO7Rw4UJNmjRJ8+fP13nnnaeWLVtq3759Wr9+vRYtWqRPP/1U7du3r7GuSy+9VGPGjNHChQudTmZmzJihv/3tb+rfv7+6du2qRo0aacuWLfruu+8UHx+ve+65x6me3NxcLVy4UEOHDlVSUlKgNxkAAABAPcI5DwBEPu4IAgCgFkwmkyZOnKgpU6bo5JNP1v/+9z+9+uqrmjFjhuLj4zV+/Hidd955XtV16623ymq16uOPP3aaPnz4cN1zzz3KycnRV199pQkTJmjp0qW68sortWzZMvXu3dup/NSpU1VQUKA77rgjYNsJAAAAoH7inAcAIp/JMAwj1EEAAIAy119/vX744Qdt375dKSkpftUxcOBA7du3T+vWrZPFYglwhAAAAADgP855ACD4uCMIAIAwMm7cOBUUFOiNN97wa/mZM2dq3rx5evHFFzkhAgAAABB2OOcBgOAjEQQAQBhp166dJk2a5PeVcUePHtX48eN16aWXBjgyAAAAAKg9znkAIPh4NBwAAAAAAAAAAECU4o4gAAAAAAAAAACAKEUiCAAAAAAAAAAAIEqRCAIAAAAAAAAAAIhSJIIAAAAAAAAAAACiFIkgAAAAAAAAAACAKEUiCAAAAAAAAAAAIEqRCAIAAAAAAAAAAIhSJIIAAAAAAAAAAACiFIkgAAAAAAAAAACAKEUiCAAAAAAAAAAAIEqRCAIAAAAAAAAAAIhSJIIAAAAAAAAAAACiFIkgAAAAAAAAAACAKEUiCAAAAAAAAAAAIEqRCAIAAAAAAAAAAIhSJIIAAAAAAAAAAACiFIkgAAAAAAAAAACAKEUiCAAAAAAAAAAAIEqRCAIAAAAAAAAAAIhSJIIAAAAAAAAAAACiFIkgAAAAAAAAAACAKEUiCABCZPDgwTKZTE7/WSwWpaWlqW/fvnrqqad05MgRr+r69ddfHXWcd955NZYfO3as0zqzsrKqLT9mzBinOPfu3etVXJI0e/Zsx3Lbtm3zKq727dt7XT/gi7179+rjjz/WAw88oAEDBigpKYk+BwAAAAAAopo11AEAQH3Xpk0btW3bVpJUUlKiHTt2aMmSJVqyZIneffddzZkzR507d662jv/+97+Of8+aNUvbt29Xu3btvFq/3W7XpEmT9Pjjj7udbxiGJk2a5OXWAOHts88+04MPPhjqMAAAAAAAAIKGO4IAIMRuvvlmzZs3T/PmzdOiRYu0Z88eTZ8+XQ0bNtTu3bt1xx13VLt8Tk6Opk6dKklq2LChDMPQBx984NW6u3XrJpPJpIkTJ3osU55Y6t69u9fbBISr1NRUnXvuuRo9erS++OILvfLKK6EOCQAAAAAAoE6RCAKAMDR06FCNGzdOUtlj3/bv3++x7OTJk1VQUKC2bdtq7NixkqSJEyfKMIwa19O+fXsNGjRImzdvVkZGhtsy5Umlm266ycetAMLPzTffrF9++UUvvPCCLr/8crVs2TLUIQEAAAAAANQpEkEAEKbOPvtsSWWPZtu6davHcuWPhbv++ut17bXXKjY2Vtu3b9fMmTO9Wk95gsfdXUE5OTn66quvdMIJJ+jiiy/2cQsCa+/evXrooYd00kknKTExUfHx8WrVqpXOPvtsPf7449q3b59T+Z07d+qf//ynRowYoU6dOikhIUGpqak644wzNG7cOB07dszjuux2u9566y2dfvrpSkxMVOPGjXXhhRdq/vz52rZtm+OdR578+uuv+stf/qJWrVopNjZWjRo10vDhw/Xtt98GrD2CwTAM/fTTT7r33nt12mmnqUmTJoqLi1OrVq10+eWXa+7cuR6XrfxeqHnz5unCCy9U48aNlZCQoF69eunNN9+UzWZzWa5q+37//fcaPHiwGjZsqOTkZJ111ln65JNP6mybAQAAAAAAog2JIAAIU/n5+Y5/JyUluS3zxx9/aPHixZKkG264QY0aNdJFF10kyfm9QdW5/PLLlZKSoi+++EJ5eXlO8z777DMVFBTommuuUVxcnD+bERA7d+7U6aefrgkTJigzM1Pt2rVTz549ZTabtXjxYj377LNavXq10zKvvfaaHnjgAWVkZMgwDJ1yyilq0qSJVq1apSeeeEJnnXWWjhw54rIuwzB0zTXX6O6779aKFSvUqFEjdejQQfPnz9egQYP0zTffeIzTMAzdf//9Ouecc/Tll1+qoKBAPXr0UExMjKZPn65LLrlE9913X6Cbp87k5eXpggsu0L///W/t2rVLLVu2VPfu3VVQUKCpU6dq0KBBevvtt6ut45tvvtHgwYOVkZGhDh06OPbBfffdp8svv9xtMqjcG2+8oYsvvlirV69W586dlZycrEWLFum6667T/fffH+jNBQAAAAAAiEokggAgTH399deSyt5p0qlTJ7dlypM9/fr1U9euXSVJN954o2P57OzsGteTmJioK664Qrm5ufriiy+c5oXLY+HGjx+vPXv26Nxzz9Xu3bu1bt06LV68WFlZWTp8+LA++OADtW7d2mmZ888/X7Nnz9axY8e0ZcsWLV68WJs3b9bWrVt18cUXa+3atXrsscdc1vXWW29pypQpio2N1WeffaasrCwtWbJEe/fu1Z133qlHHnnEY5wvv/yy3njjDbVu3Vrff/+9Dh8+rOXLl2vv3r36+eef1bRpU7355pv66KOPAt5GdSE2NlbvvPOOdu7cqf3792vVqlVauXKlDhw4oClTpighIUH333+/srKyPNbxyCOPaOTIkdq3b5+WLFmiHTt26Ouvv1ZCQoK++eYbvfrqqx6XHTVqlJ544gnHsnv27NFbb70ls9msN954w6W/AgAAAAAAwBWJIAAII6Wlpdq8ebMef/xxTZgwQZL0t7/9TQkJCS5lS0pK9PHHH0uqSP5I0gUXXKCmTZuqsLBQn376qVfrLU/0lCd+JGn9+vVauHChevbsqdNPP93vbQqE9evXS5Luu+8+NWnSxGleamqqRo4cqRNPPNFp+rnnnqtBgwbJYrE4TW/Tpo0mT56smJgYffLJJ053pBiGoZdfflmS9MQTT+jKK690zIuPj9cbb7yhM844w22MR44c0TPPPCOLxaKvv/7acWdWueHDh+utt96SJD3//PO+bH7IxMbG6vbbb3d5j47FYtEVV1yhBx98UCUlJdX2s44dO+rdd99VYmKiY9oll1yixx9/XJL00ksvqaioyO2ygwcP1tNPPy2r1Sqp7HFzd955p2655RZJ0jPPPFOr7QMAAAAAAKgPSAQBQIg99dRTjneixMTEqHPnznr22WfVsGFDvfTSS44B86p++OEH7d+/X3FxcU4JC6vVqmuuuUaSc2KnOv3791eXLl00d+5cbdmyxWnZm2++uTabFxDt2rWTJH355ZcqLi72ermcnBy99957uummmzR8+HANHDhQAwYM0LBhw2Q2m5Wbm6vMzExH+fXr12vbtm2SpFtvvdWlPpPJpNtuu83tun788Ufl5uaqd+/e6t27t9syf/rTnxQTE6N169Zpz549Xm9HqC1evFiPPfaYLrnkEg0ePFgDBgzQgAED9Pnnn0uSVqxY4XHZ+++/X2az68+Ne+65R1arVQcPHnQ83rCqBx54oNrpq1evrvZuJAAAAAAAAEjWUAcAAPVdmzZt1LZtW0lliYtNmzapoKBAaWlpGjJkiMflyh8L9+c//1lpaWlO80aOHKnXXntNS5cu1Zo1a9SjR48a4xg5cqT+8Y9/aOLEiRozZow++ugjxcTE6Nprr/V/4wLkr3/9qz788MP/Z+/e43Ou/z+OP68d7GSbMad9saEZ5ZSYw9hGOaQkUU6RQzn0TYUcS/wICSkqCWUiiZRUmnIamvNZiDSHnEebnTe7fn/su8suO+8a49rjfrvp5np/3p/35/X5XJ/N2vN6vz9asmSJ1q5dqzZt2qhZs2Zq3ry56tWrJ4PBkGmfsLAwPfvss7p8+XKOY0dGRpr+fvz4cUlS+fLlVaFChSz7P/zww1m2HzhwQJL0999/q3nz5tkeL73Ws2fPqmLFijnWJinHsQpq5cqV2Z5fRikpKerXr1+uS9llvIa3y+7ec3d3V6VKlRQREaGjR4+qRYsWed7Xz89PdnZ2SklJ0dGjR1W5cuUc6wMAAAAAACjOCIIAoIj169dPEyZMML3+999/NXz4cH3++edq06aN9u/fbwqK0l28eFFr166VJPXu3TvTmPXq1VO9evV04MABLVy40LTMXE569+6tcePGKSQkRI0aNdKFCxf0zDPPyNPT06Lzy7g0W8Zl2LKSkpIiSaalwNI9+OCD2r59u/7v//5Pv/zyi5YtW6Zly5ZJSpstNGbMGA0cONDUPzo6Wl26dNGVK1f06KOPavTo0apbt648PDxkb28vSapSpYrOnj2r5ORk034xMTGSJFdX12xrzG7b9evXJUmXL1/ONXySpLi4uFz7SNK2bdvy1C8/EhIS8tRvxowZ+vLLL+Xo6KipU6eqbdu2qlKlipydnWUwGPT555+rf//+ZtfwduXLl89xW0REhG7cuJGvfW1tbVWmTBldunTJtO++ffs0ZMiQTH0rVqzIs4QAAAAAAECxRhAEAPeYUqVKaf78+Tp27Jh+//13vfzyy/rxxx/N+ixevNgUmtz+LJrbLVmyRO+9954pAMlOpUqV1Lp1a4WGhurVV1+VdOvZQZbIOFspPSzJTvr222c4SWnh1qpVq5SUlKTdu3dr69at+uGHH7Rt2zYNGjRIqampGjx4sKS0ZdquXLmiypUra82aNZmesWQ0GrOspWTJkpKUbTCR07b0fXv37q2QkJAczzM/jEZjoY2VX4sWLZKUFgj997//zbQ9p5lA6S5duiQ/P79st0nZh2uXLl3KFIJKaYFi+rHT942KisoyNEtfVhAAAAAAAKC44hlBAHAPsrGx0QcffCAp7VlAmzZtMtue/vweNzc3lS9fPts/NjY2unr1qn744Yc8HbdPnz6SpIiICFWoUEHt2rWz+FyqV69uCqH279+fY9/07bVq1cq2T4kSJdSsWTONHDlSW7du1RtvvCFJ+uSTT0x9/v77b0lSo0aNMoVAknT48GHT7J+M0gOLS5cumUKK7Gq8XZ06dSRJBw8ezLb2+036dQwMDMxy+/bt23Md48iRI1m2R0VF6dy5c5Kyf7+z2/f48eOmIDR93+DgYBmNxkx/0p/5BAAAAAAAUFwRBAHAPapRo0am2T7jx483tf/+++86duyYJGnTpk26ePFitn86duwo6dbzhHLz9NNP6/HHHzctp3b7Em0F4ezsrODgYEm3Zphk5ejRo6ZgoX379nkePyAgQJL0zz//mB1Tki5cuJDlPtOnT8+yvWbNmvLx8ZEkLVy4MMs+CxYsyLL9ySeflJOTk/bv369ff/01T7Xf63K6jseOHdOaNWtyHWPOnDlZzmr65JNPlJKSIk9PT/n7+2e574cffphje506dXg+EAAAAAAAQC4IggDgHpYeAIWFhWnDhg2SboU69erV08MPP5zj/ulLu4WGhur8+fO5Hs/R0VE///yzfvvtN7322muWlG7m7bfflq2trbZt26aXXnpJ165dM9u+e/duderUSampqapdu7aeffZZs+0DBgzQl19+qX///des/eLFi6bnHzVq1MjUnj6DJTw8XJ999pmpPSkpSePGjdPSpUtVokSJTHUaDAaNHDlSkjRx4kStXLnStC0xMVGvvfaadu3aleU5litXTm+99ZYk6dlnnzVbvi/dtWvXtHjxYo0YMSLLMe41QUFBkqSxY8eahUEHDhxQhw4dzJ7/lJ2TJ09q0KBBio+PN7X98MMPeueddyRJb7zxhhwcHLLcd8OGDZo4caLpOhqNRs2fP98U0r355psFOzEAAAAAAIDixAgAKBJBQUFGScbx48fn2O+JJ54wSjK2aNHCGBMTY3R1dTVKMn744Ye5HiM5OdlYoUIFoyTjlClTTO3jx483SjK2bds2z/X+/fffRklGScYLFy7keb90CxYsMNrb2xslGe3s7Iy1a9c2Nm7c2Fi5cmXTuDVq1DCePHky07716tUzSjIaDAZj9erVjY0bNzbWrFnTaGdnZ5RkLFeunPGPP/4w26dXr16mcb28vIwNGzY0uru7GyUZ33nnHaO3t7dRknHjxo1m+6Wmphq7du1q2rdy5crGRo0aGd3d3Y22trbG999/3yjJaGNjk6nO1NRU44gRI0z7lixZ0tigQQOjv7+/0dvb22gwGIySjEFBQfm+fkXh4MGDRhcXF6Mko4ODg7Fu3bpGPz8/03WZMmVKtueTfg3ef/99o62trdHV1dXYsGFDY5UqVUzbnnrqKWNycrLZfhnvs9mzZxslGUuXLm1s1KiR6V6WZHz55ZcLdE5nzpwxlilTxvQn/evJxsbGrP2pp54q0PgAAAAAAAD3GmYEAcA9bsKECZKkLVu2aOXKlbpx44ZKlCihnj175rqvnZ2devfuLenWc4WKSv/+/XXo0CENGTJENWvW1OnTp7Vnzx7Fx8erZcuWmj17tvbt26fq1atn2veDDz7Q8OHD1ahRI8XFxWnv3r06e/asHnzwQY0ePVqHDx/O9JyZL774QtOmTZOfn5+uXLmiv/76Sw0aNNB3332X40wSg8Ggr776Sp988onq1aunK1eu6OTJk2rSpIk2btyo1q1bS0p7PlNW+7733nvauXOn+vbtq/Lly+uPP/7Qvn37lJycrLZt22rOnDlasmSJhVfz7qhTp47Cw8PVsWNHOTk56fjx40pOTtarr76qffv2qWLFirmO0alTJ23atEnNmzfXqVOndOnSJdWpU0cffvihVq1alePyg0OGDNHq1atVp04d/fnnn4qOjpa/v78WL16sjz/+uEDndPPmTUVGRpr+3LhxQ5KUmppq1h4VFVWg8QEAAAAAAO41BqMxi4X7AQBAllasWKHnnntODz/8sPbu3VvU5dyzDAaDJOnvv/82PXcpLyIiIlS1alVJyvLZQgAAAAAAAMgfZgQBAJAPCxYskHTrOUQAAAAAAADAvYwgCACA27z33nvat2+fWVtUVJSGDBmidevWyd7eXgMHDiyi6gAAAAAAAIC8y35hfgAAiqlvvvlGo0aNUrly5eTj46OEhAQdO3ZMSUlJsrGx0ezZszM9kwgAAAAAAAC4FxEEAQBwm5EjR+rrr7/W3r179ccffygpKUnlypVT8+bN9frrr6tx48ZFXSIAAAAAAACQJwYjT2IGAAAAAAAAAACwSjwjCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpeyKugBYrmbNmrp+/bqqVatW1KUAAAAAd92pU6fk4eGhY8eOFXUpAAAAAHDPIQiyAtevX1dcXFyRHT86OlqS5ObmVmQ14P7EvYOC4t6BJbh/UFDcO/euovxZGAAAAADudQRBViB9JlB4eHiRHD8sLEySFBgYWCTHx/2LewcFxb0DS3D/oKC4d+5dTZs2LeoSAAAAAOCexTOCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCm7oi4AAADAWqSmpioyMlJRUVFKSEiQ0Wgs6pJQiJycnCRJhw4dKuJKrI/BYJCbm5vKlSsnR0fHoi4HAAAAAKwKQRAAAEAhSE1NVUREhGJiYkxtBoOhCCtCYXNwcCjqEqxWamqq/v33X8XGxsrPz082NixcAAAAAACFhSAIAACgEERGRiomJkb29vaqVKmSSpYsSRBkZRITEyURCN0JKSkpioiIUFxcnK5cuaLy5csXdUkAAAAAYDX4qB0AAEAhiIqKkiRVqlRJrq6uhEBAPtjZ2cnLy0vSra8lAAAAAEDhIAgCAAAoBAkJCZKkkiVLFnElwP0p/dlAycnJRVwJAAAAAFgXgiAAAIBCYDQaZTAYmAkEFJCNjY0MBoNSU1OLuhQAAAAAsCoEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAANwn5s+fr3r16snJyUlly5ZVjx49dPr06XyNERkZqcGDB8vLy0sODg7y8/PTtGnTlJKSkmX/gwcPqkOHDvLw8JCLi4uaNGmiVatWZTv+qlWr1KRJE7m4uMjDw0MdOnTQwYMH81UjAAAAAKDwEAQBAAAA94Fx48ZpwIABcnV11QcffKDXXntN69atU9OmTXXu3Lk8jXHjxg0FBgZq/vz56tKliz7++GM1btxYo0ePVt++fTP1P3DggAICAhQeHq7hw4dr5syZsrOzU+fOnbVw4cJM/RcuXKjOnTsrNjZW06ZN05tvvqmDBw8qICBABw4csPgaAAAAAADyz66oCwAAAACQsz///FNTp05VgwYNtGnTJtnZpf0Y365dO/n7+2vs2LFavHhxruNMnz5df/zxh2bOnKlhw4ZJkl588UW5u7vro48+Ut++fdWqVStT/yFDhig2NlYbN25Uw4YNJUn9+/dX48aNNWzYMHXu3FmlSpWSJF2/fl3Dhg1TpUqVtG3bNrm5uUmSnnvuOT344IMaMmSIwsLCCvOyAAAAAADygBlBAAAAuOMWLVokg8GgDRs26L333pOvr68cHR1Vq1YtLVu2TJJ0/vx5Pf/88ypbtqycnJzUpk0bnTx5MsvxQkJC1LRpU5UsWVLOzs565JFHtGjRokz91q1bp+7du6t69epycnKSm5ubAgMDtWbNmkx9+/TpI4PBoBs3bmjo0KGmpdNq166tb775plCvR3599dVXunnzpl599VVTCCRJDRs2VGBgoFauXKn4+Phcx1m8eLGcnZ01ePBgs/bhw4ebtqeLiIjQli1bFBQUZAqBJMne3l6vvvqqoqOj9f3335vaV69erejoaL344oumEEiSqlSpoi5dumjLli2KiIjI76kDAAAAACzEjCAAAIC74NrSpbr+v8AjXeWPP1YJb+8s+ydfuKAzL71k1laqcxeV6dsn22P8M2KkEo7+YXpt51Fa3l9mP0sk+pdfdOWjj8zaKk6aJOeHH852H0uNGTNGMTEx6t+/v5ycnPTZZ5+pZ8+esrW11ciRI9WsWTNNnDhRp0+f1gcffKCnn35aBw8elI3Nrc8vDRw4UJ999pmeeOIJTZo0Sfb29lq7dq369u2rEydOaPLkyaa+ixYt0qVLl/T888+rUqVKunLlikJCQvTUU0/p66+/VteuXTPV2LZtWzk7O2vkyJG6efOmPvnkE3Xt2lVbt241C0SyExMTo4SEhDxfE09Pz1z77NixQ5LUrFmzTNuaNWumzZs369ChQ/L39892jEuXLun06dNq1qyZnJyczLb5+PioYsWK2rlzZ56PKUk7d+5Unz598tQ/JCREO3fulI+PTw5nCgAAAAAobARBAAAAd8HNa9eVdPIvszZjUlK2/Y0pKZn634y8muMxkv/5x2yf1LLROdcUFZ25pjzMKrFEXFyc9uzZI0dHR0lpy4b5+PioW7dumjx5ssaMGWPqW65cOQ0fPlzr169X69atJUk//vijPvvsM7377rsaNWqUqe8rr7yil19+WdOmTdOLL76oqlWrSpLmz58vFxcXsxpef/111a9fXxMnTswyCKpZs6Y+//xz0+suXbrI19dXc+bMUUhISK7n+Morr+SpXzqj0Zhrn/RnAFWqVCnTtvS2c+fO5RgE5TRGevuxY8fyfcyC9gcAAAAA3B0EQQAAALhrhgwZYgqBJKlixYry8/PTkSNHNHToULO+wcHBkqTjx4+bgqCQkBA5ODioZ8+eunrVPBjr1KmT5s6dq99++00v/W82VcYQKDY2VgkJCTIajWrVqpXmzZunGzduyNXV1WycjAGTJHl7e6tGjRrZLlN3u5EjR+r555/PU9+8iouLkyQ5ODhk2pZ+PdP7FGSM9HEyjpHfYxZGjQAAAACAwkcQBAAAgLumevXqmdpKly4tLy8vs4AovV2SIiMjTW1//PGHEhMTVbly5WyPcfHiRdPfIyIiNG7cOP3888+6du1apr7Xr1/PFARlVaOnp2een2/z4IMP6sEHH8xT37xydnaWJCUmJmZa1i19Gbr0PnkZIysJCQlmY+TUP6tj5rc/AAAAAODuIAgCAAC4C2xLe6jEA+YBg6FEiWz7G+zsMvW3LZPzs2Ts//Mf3YyOMr228yidc03ubplrui1kKGy2trb5apfMl05LTU1VyZIl9d1332Xbv1q1apLSntUTGBioqKgovfbaa6pbt67c3NxkY2Ojzz//XMuWLVNqamqm/e3ssv4ROS9LuElSVFSU4vOxxF6FChVy7VOpUiUdPnxY586dk6+vr9m23JZ8yzhGxv63O3funNkYOfXP6pgZ+9eqVatANQIAAAAACh9BEAAAwF1QumdPle7ZM8/97StWVPUff8zXMf4z/b189Xdr105u7drla5+iVqNGDR07dkx16tRR+fLlc+y7YcMGnT17VgsXLlS/fv3Mts2fP/+O1fjaa68V+jOC/P399csvvyg8PDxTEBQeHi4nJyfVrl07xzHKly+vKlWqaP/+/YqPjzebWXT69GlduHBBbdq0MTtm+vi3S2/L+Ewif39/ffrppwoPDzct5Xd7/0aNGuV6rgAAAACAwmVT1AUAAAAAedWnTx9J0htvvJHlbJ6oqCjT0mTps4xuD1oOHjyo77///o7VOHLkSP366695/pMXPXr0kK2trT788EOlpKSY2nfv3q3Nmzerc+fOZsuuRUVF6dixY5meo9SrVy/FxcVp7ty5Zu0zZ840bU9XtWpVBQQEaNOmTdqzZ4+pPSUlRbNnz5arq6s6duxoan/66afl6uqq+fPnKzo62tR+5swZrVixQs2bN1fVqlXzdL4AAAAAgMLDjCAAAADcNzp16qRBgwbp008/1aFDh/TMM8/Iy8tLly5d0sGDB/XDDz/o6NGj8vHxUUBAgCpWrKjhw4fr1KlT8vHx0dGjRzV//nzVqVPHLNwoTHfiGUF+fn4aOXKkpk6dquDgYPXq1UtXr17VrFmzVK5cOU2ZMsWs/3fffae+fftq/PjxmjBhgql95MiRWrlypUaOHKmIiAjVq1dPmzdv1pdffqnu3bvr0UcfNRtn9uzZCgwMVNu2bTV06FB5enrqyy+/1N69ezVv3jx5eHiY+np4eGj69OkaNGiQAgICNHDgQCUmJmrOnDmmsQAAAAAAdx9BEAAAAO4rc+fOVatWrTRv3jzNmjVLsbGxKleunPz8/DRlyhTTM3dKlSqldevWadSoUZo7d64SExNVt25dLV26VHv37r1jQdCdMnnyZHl7e+vjjz/Wa6+9ppIlS6p169aaMmWKKleunKcx3NzctGXLFr311ltasWKF5s2bJ29vb02ZMkVvvPFGpv4NGjTQtm3b9Oabb2r69OlKSkpSnTp1tGLFCnXp0iVT/4EDB6pMmTKaPn26Ro4cqRIlSqh58+aaPHmy6tWrZ/E1AAAAAADkn8GY16fe4p7VtGlTSVmv3343hIWFSZICAwOL5Pi4f3HvoKC4d2CJO3X/HDp0SJJUp06dQh0X9470JeccHByKuBLrVdCvo6L+eRgAAAAA7mU8IwgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAO4bERERMhgMmjBhQlGXAgAAAADAfYEgCAAAACgiBw8eVIcOHeTh4SEXFxc1adJEq1atyvc48+fPV7169eTk5KSyZcuqR48eOn36dJZ94+LiNHr0aPn4+MjBwUE+Pj4aPXq04uLisux/+vRp9ejRQ2XLlpWTk5Pq1aun+fPn57tGAAAAAEDRsCvqAgAAAIC88vb2Vnx8vOzs7v8fYw8cOKDmzZvLwcFBw4cPl6enp5YsWaLOnTtrwYIF6t+/f57GGTdunN555x0FBATogw8+0JUrV/TBBx9o06ZN2rlzpypVqmTqe/PmTbVv316bN29Wr169FBgYqAMHDmjGjBnasWOHfvvtN9na2pr6nzt3Tk2aNFFUVJRef/11Va1aVatXr9aAAQN05swZTZo0qdCvCwAAAACgcN3//wcNAACAYsNgMMjR0bGoyygUQ4YMUWxsrDZu3KiGDRtKkvr376/GjRtr2LBh6ty5s0qVKpXjGH/++aemTp2qBg0aaNOmTaaArF27dvL399fYsWO1ePFiU/+QkBBt3rxZQ4YM0ezZs03tPj4+euONNxQSEqJ+/fqZ2seOHauLFy/q22+/1TPPPCNJeumll/TUU09p6tSp6t27t3x9fQvrkgAAAAAA7gCCIAAAgLtg2bFlWn5suUVj1CxTU++2eDfb7aO3jNaxyGMWHaNrza7qXrO7RWNkZdGiRerbt6/Wr1+v3bt3a/78+Tp79qyqVq2qt99+W927d9f58+c1cuRIhYaGKiYmRi1atNAnn3yiBx54wDRORESEqlatqvHjx5ueE5SxLSAgQBMmTNC+ffvk6Oio9u3b68MPP1SZMmUK/ZwsERERoS1btig4ONgUAkmSvb29Xn31VfXt21fff/+9+vTpk+M4X331lW7evKlXX33VbJZUw4YNFRgYqJUrV2revHlycnKSJFMoNHz4cLNxXn75ZY0bN06LFy82BUFxcXFauXKlqlatagqB0g0bNkxr1qzR0qVLeV4TAAAAANzjCIIAAADugusJ1/VX1F8WjeHm4Jbj9vMx5y0+xvWE6xbtn5sxY8YoJiZG/fv3l5OTkz777DP17NlTtra2GjlypJo1a6aJEyfq9OnT+uCDD/T000/r4MGDsrHJ/dGWv/zyi2bPnq2XXnpJvXv31o4dO7Ro0SJdv35dP/30U4FrTk5OVlRUlBITEyVJDg4OOfZ3dXXNtc+OHTskSc2aNcu0Lb1t586duQZBuY2zefNmHTp0SP7+/jIajdq1a5e8vLzk7e1t1tfJyUn169fX7t27ZTQaZTAYdOjQIcXHx6tp06aZxm7atKkMBoN27tyZY30AAAAAgKJHEAQAAIC7Ji4uTnv27DEt7/bcc8/Jx8dH3bp10+TJkzVmzBhT33Llymn48OFav369WrdunevYBw4c0P79++Xn5ydJGjhwoOzs7DR//nydOHGiwEuYbdu2TS1btsxz/y+++CLXAOfcuXOSZPb8nnTpbel9CmMcf39/Xbt2TXFxcapdu3aWY1WqVEnh4eG6fv26SpcunePYDg4O8vT0zFONAAAAAICiRRAEAACAu2bIkCFmz/ipWLGi/Pz8dOTIEQ0dOtSsb3BwsCTp+PHjeQqCnn76aVMIlK5NmzaaP3++/vzzzwIHQfXq1dOvv/6qpKQkSVKJEiVy7P/QQw/lOmZcXJykrGcXpV+f9D6FNU5OfW/vX7p06Tz1z0uNAAAAAICiRRAEAABwF3g4eqi6e3WLxvAq6ZXr9ujEaIuO4eHoYdH+ualePfM1KF26tLy8vMwCovR2SYqMjCzw2J6enpKkq1ev5rdUEw8PDz322GN5XhouL5ydnSXJNGZGCQkJZn3yOk76c4CyGyenYxa0f6lSpXKtEQAAAABQtAiCAAAA7oLuNbure83ud/QY77Z4946OXxhsbW3z1S5JRqMxT2Pb2WX/o21ex8hKUlKSrl27lucgyN3dPVMoc7ucln/LaUm2rMY5fPiwzp07l2nG0+3jlC5dWs7Oztku53bu3Dm5uLjIw8Mj1xoTExN19epVNWzYMNcaAQAAAABFK/en7lqZXbt2qX379ipVqpRcXFzUpEkTffPNN/kaIzExURMnTpSvr68cHR3l5eWlAQMG6PLly3nav3379jIYDJk+9QoAAIB7z++//66KFSvKx8dHPj4+qlixYo5/li9fnuuY/v7+kqTw8PBM29Lb0vtYMo6Tk5PpmUAGg0ENGzbU+fPndfr0abO+8fHx2r9/vxo2bCiDwSBJqlOnjhwdHbMce/v27TIajXmqEQAAAABQtIrVjKCNGzeqbdu2cnR0VLdu3eTq6qpvv/1WXbt21dmzZzV8+PBcx0hNTVXHjh0VGhqqJk2aqHPnzjpx4oQWLFig9evXa/v27Spbtmy2+8+fP1+hoaFydHS06JOpAAAAuDvuxDOCqlatqoCAAG3atEl79uzRI488IklKSUnR7Nmz5erqqo4dO5rtc+zYMdnb25stgdejRw9NnjxZH374oXr06GGaFbV7925t3rxZPXv2NFtirlevXgoLC9PMmTM1e/ZsU/vcuXMVHx+vXr16mdqcnZ3VuXNnLV26VKtWrdIzzzxj2jZz5kzZ2tqqe/c7O8sNAAAAAGC5YhMEpaSk6KWXXpKNjY3CwsJUv359SdLbb78tf39/jR07Vl26dJG3t3eO44SEhCg0NFTdu3fX0qVLTZ+Y/PTTTzV48GC99dZbmjdvXpb7RkREaPjw4Ro2bJhWrFihixcvFuo5AgAAoPDdiWcESdLs2bMVGBiotm3baujQofL09NSXX36pvXv3at68eaYl2tLVqlVL3t7eioiIMLX5+flp5MiRmjp1qoKDg9WrVy9dvXpVs2bNUrly5TRlyhSzMfr27avFixdrzpw5ioqKUmBgoA4cOKBPPvlELVq0UJ8+fcz6T5kyRb/99pt69eqlPXv2qGrVqlq9erV+/PFHjRkzRn5+foVyLQAAAAAAd06xWRpuw4YN+uuvv9SjRw9TCCSlreE+duxYJSUlKSQkJNdx5s+fL0maOnWqKQSSpIEDB6patWpaunSp4uPjM+1nNBrVr18/VaxYURMnTrT8hAAAAHBfa9CggbZt26YmTZpo+vTpGjp0qJKTk7VixQoNGDAgz+NMnjxZn376qaKjo/Xaa69p1qxZat26tcLDw1W5cmWzvra2tvr55581YsQIbdq0SYMHD9bq1as1bNgw/fzzz5me1VSlShWFh4frqaee0rx58/TKK6/o9OnT+vTTTzV58uRCuQ4AAAAAgDvLYCwm65ONHTtWU6dO1bJly9StWzezbRcvXlTFihXVqlUrrV+/PtsxEhIS5OLiIl9fXx07dizT9kGDBmnevHkKCwtTixYtzLbNnj1bQ4cOVVhYmAICAuTj46OLFy8qISEhz+fQtGnTLNsPHz6sKlWqaO7cuXkeqzBFR0dLktzc3Irk+Lh/ce+goLh3YIk7df84OTnJwcGBGRJWLP3H5owfBkLhOn78uBITE7P8YFVOBg8eLDc3tyyfZwQAAAAAxV2xmRF04sQJSZKvr2+mbRUqVFDJkiVNfbLz119/KTU1NcsxMo59+zgnTpzQmDFj9OqrryogIKAg5QMAAAAAAAAAAORbsXlGUFRUlKS0peCy4ubmZupjyRgZ+0lSamqqXnjhBVWsWNHi5TOy+4Rj+kyhwMBAi8YvqLCwsCI9Pu5f3DsoKO4dWOJO3T+HDh2SVHjPj8G9p7CfEYTMDAaDHB0d1ahRo3ztxwxRAAAAAMhesQmCisr06dO1fft2bdy4Uc7OzkVdDgAAAAAAAAAAKEaKzdJw6bN4spv1Ex0dne1Mn/yMkbHfn3/+qfHjx+vll19WUFBQgeoGAAAAAAAAAAAoqGITBGX3/B5JunjxomJiYrJ99k+6atWqycbGJttnCd3+HKI//vhDiYmJ+vjjj2UwGMz+nD59WomJiabX//77rwVnBwAAAAAAAAAAkFmxWRouKChIU6dO1bp169StWzezbaGhoaY+OXFycpK/v7+2b9+u06dPy9vb27TNaDTq119/lYuLixo2bChJ8vHxUf/+/bMca/ny5YqPj1efPn0ksdY8AAAAAAAAAAAofMUmCHr00UdVrVo1ffXVV3r11VdVv359SWnLvE2ZMkUlSpRQ7969Tf0vXLigqKgoVaxY0WzJuAEDBmj79u0aM2aMli5dKoPBIEmaN2+eTp06pQEDBsjJyUmSVL9+fS1YsCDLen777TddvHgx2+0AAAAAAAAAAACWKjZLw9nZ2WnBggVKTU1VYGCgBgwYoOHDh6tevXr6888/NWXKFPn4+Jj6jxkzRrVq1dJ3331nNs4LL7ygtm3batmyZWrWrJlGjx6tLl266OWXX1bVqlX1zjvv3OUzAwAAAAAAAAAAyFqxCYIkqWXLltq6dasCAgK0fPlyzZ07V+XLl9fXX3+t4cOH52kMGxsbrV69WhMmTNCVK1c0a9Ysbdu2Tf3791d4eLjKli17h88CAAAAAAAAAAAgb4rN0nDp/P39tXbt2lz7LVq0SIsWLcpym4ODg8aPH6/x48cXuI6IiIgC7wsAAAAAAAAAAJAXxWpGEAAAAAAAAAAAQHFCEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAcA+Ji4vT6NGj5ePjIwcHB/n4+Gj06NGKi4vL1zgHDx5Uhw4d5OHhIRcXFzVp0kSrVq3Ktv+qVavUpEkTubi4yMPDQx06dNDBgwez7JuSkqJp06bJz89PDg4O8vLy0uDBgxUZGZmvGgEAAAAAdx5BEAAAAHCPuHnzptq3b69p06YpMDBQH3/8sTp06KAZM2boiSee0M2bN/M0zoEDBxQQEKDw8HANHz5cM2fOlJ2dnTp37qyFCxdm6r9w4UJ17txZsbGxmjZtmt58800dPHhQAQEBOnDgQKb+ffv21ejRo1WjRg199NFH6tOnj0JCQhQYGKgbN25YfB0AAAAAAIXHrqgLAAAAAJAmJCREmzdv1pAhQzR79mxTu4+Pj9544w2FhISoX79+uY4zZMgQxcbGauPGjWrYsKEkqX///mrcuLGGDRumzp07q1SpUpKk69eva9iwYapUqZK2bdsmNzc3SdJzzz2nBx98UEOGDFFYWJhp7A0bNmjJkiV66qmntHr1alP7I488oi5dumj69OmaOHFiYVwOAAAAAEAhIAgCAAC4Cw5tOqdDm/+xaIyylUuqdb+Hst3+6+dHdOVsjEXHqBP0H9UJrmTRGFlZtGiR+vbtq/Xr12v37t2aP3++zp49q6pVq+rtt99W9+7ddf78eY0cOVKhoaGKiYlRixYt9Mknn+iBBx4wjZOamqp3331X69at0/HjxxUZGamyZcvqscce06RJk1SlShVT35CQEPXp00f//e9/9dFHH5nak5KS1Lx5cx06dEjh4eGqX79+oZ9vQS1evFiSNHz4cLP2l19+WePGjdPixYtzDYIiIiK0ZcsWBQcHm0IgSbK3t9err76qvn376vvvv1efPn0kSatXr1Z0dLSGDRtmCoEkqUqVKurSpYtCQkIUEREhHx8fsxqHDRtmdtzOnTvLx8dHixcvJggCAAAAgHsIQRAAAMBdEH8jSdcvxFo0hqNzzj+63YhMsPgY8TeSLNo/N2PGjFFMTIz69+8vJycnffbZZ+rZs6dsbW01cuRINWvWTBMnTtTp06f1wQcf6Omnn9bBgwdlY5O2onFSUpKmTZumZ555Rk888YTc3d118OBBff7551q/fr0OHjyo0qVLS5JeeOEFbd68WR9//LGCgoL07LPPSpJGjhypXbt2ad68eRaFQNevX8/zUm329vZyd3fPsY/RaNSuXbvk5eUlb29vs21OTk6qX7++du/eLaPRKIPBkO04O3bskCQ1a9Ys07b0tp07d5qCoNz6h4SEaOfOnaYgaMeOHbKxsVGTJk0y9W/atKmWLVumy5cvq1y5cjmeLwAAAADg7iAIAgAAwF0TFxenPXv2yNHRUVLa8mM+Pj7q1q2bJk+erDFjxpj6litXTsOHD9f69evVunVrSZKDg4MuXLggZ2dns3GffvpptW7dWgsXLtSIESNM7R999JF27dqlF198UQ8//LAOHz6sDz/8UD169NCAAQMsOpeHH35Yp0+fzlPfoKAgbdq0Kcc+165dU1xcnGrXrp3l9kqVKik8PFzXr183hV1ZOXfunKl/VmNk7FPQ/p6ennJwcMixP0EQAAAAANwbCIIAAABw1wwZMsQUAklSxYoV5efnpyNHjmjo0KFmfYODgyVJx48fNwVBBoPBFAKlpqYqOjpaKSkpql+/vtzd3U2zW9I5OztrxYoVatiwoTp16qRz587Jz89P8+bNs/hcli5dqvj4+Dz19fDwyLVPXFycJGUZsEgyXbe4uLgcg6Ccxsk4hiX9szufrPoDAAAAAIoWQRAAAMBd4ORaQh4VXSwaw7WMY67bE+JSLDqGk2sJi/bPTfXq1TO1lS5dWl5eXmYBUXq7JEVGRpq1f//993rvvfe0Z88eJSWZL2V37dq1TOPXrFlT77//vgYOHCh7e3t98803KlmypKWnooCAAIvHyCg94EpMTMxye0JCglm/goyT1RgF6W9pjQAAAACAu4cgCAAA4C6oE1xJdYIzL71VmFr3e+iOjl8YbG1t89UupT07J93q1avVqVMnNWzYUO+//76qVKkiJycnSVK3bt2Umpqa5f4//PCDJCk5OVmHDx9W3bp1LTkNSdKVK1fy/IygEiVK5DiLR0oLvpydnc2WYcvo3LlzcnFxyXV2UVbLuWUcI2Of2/vXqlUrT/3//PNPJSYmZppFlNMycwAAAACAokEQBAAAgPtGSEiIHB0dtXnzZrNZJ7Gxsbp+/XqW+0yfPl0//fSTRo0apR9//FEDBw5Uw4YNVaNGDYtqadSoUaE+I8hgMKhhw4YKCwvT6dOn5e3tbdoWHx+v/fv3y9/fXwaDIcdx/P39JUnh4eGZtqW3pfdJ//unn36q8PBw0xJ8t/dv1KiRWf9jx45px44dCgwMzNTf29ub5wMBAAAAwD2EIAgAAAD3DVtbWxkMhkwzfyZNmpTlbKBt27bpzTff1KOPPqopU6bohRdeUKNGjfTcc89p+/btmZajy4/CfkaQJPXq1UthYWGaOXOmZs+ebWqfO3eu4uPj1atXL7P+Fy5cUFRUlKpUqWIKxqpWraqAgABt2rRJe/bs0SOPPCJJSklJ0ezZs+Xq6qqOHTuaxnj66af12muvaf78+Xr99dfl5uYmSTpz5oxWrFih5s2bq2rVqmY1Ll68WDNnzjQLglatWqWIiAi99dZbeTpXAAAAAMDdQRAEAACA+8azzz6rlStXKigoSH369JHRaFRoaKj++OMPeXp6mvWNjIxUt27d5OnpqaVLl8rGxka1atXS3Llz1bt3b73++uv69NNPC1xLYT8jSJL69u2rxYsXa86cOYqKilJgYKAOHDigTz75RC1atFCfPn3M+o8ZM0YhISHauHGjgoODTe2zZ89WYGCg2rZtq6FDh8rT01Nffvml9u7dq3nz5pkFUx4eHpo+fboGDRqkgIAADRw4UImJiZozZ45prIwee+wxde/eXcuWLVOHDh3UsWNH/f3335o1a5Zq1qypESNGFPp1AQAAAAAUHEEQAAAA7hvPPfecYmJiNGvWLI0cOVKurq5q3bq1tmzZoubNm5v6GY1G9erVS+fPn9evv/6q8uXLm7b16tVLmzdv1rx58xQcHKxu3boVxalkydbWVj///LMmTpyo5cuXa9myZapYsaKGDRumt99+O8dnKWXUoEED02yo6dOnKykpSXXq1NGKFSvUpUuXTP0HDhyoMmXKaPr06Ro5cqRKlCih5s2ba/LkyapXr16m/iEhIapTp46++OIL/fe//1Xp0qXVq1cvvfPOO6YZRQAAAACAe4PBmPHpu7gvNW3aVFLW68DfDWFhYZKUaY14IDfcOygo7h1Y4k7dP4cOHZIk1alTp1DHxb0jMTFRkuTg4FDElVivgn4dFfXPwwAAAABwL7Mp6gIAAAAAAAAAAABwZxAEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAKAQGg0FGo1EpKSlFXQpwX7p586aMRqNsbPhfFAAAAAAoTPxfFgAAQCFwc3OTJEVERCguLk6pqalFXBFw/7h586ZOnz4tSXJ0dCziagAAAADAutgVdQEAAADWoFy5coqNjVVcXJxOnjwpKW2WEKyH0WiUxPt6J6RfW3t7e1WuXLmIqwEAAAAA68KMIAAAgELg6OgoPz8/lStXTo6OjrK1tS3qklDIEhMTlZiYWNRlWCVbW1u5uLioevXqKlGiRFGXAwAAAABWhRlBAAAAhcTGxkYVKlRQhQoViroU3AFhYWGSpEaNGhVxJQAAAAAA5B0zggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWqtgFQbt27VL79u1VqlQpubi4qEmTJvrmm2/yNUZiYqImTpwoX19fOTo6ysvLSwMGDNDly5cz9d2/f7/GjRunJk2aqFy5cnJwcFC1atX08ssv659//ims0wIAAAAAAAAAAMjErqgLuJs2btyotm3bytHRUd26dZOrq6u+/fZbde3aVWfPntXw4cNzHSM1NVUdO3ZUaGiomjRpos6dO+vEiRNasGCB1q9fr+3bt6ts2bKm/oMGDdKOHTvk7++vbt26ycHBQTt27NDcuXO1YsUKbdmyRTVr1ryTpw0AAAAAAAAAAIqpYhMEpaSk6KWXXpKNjY3CwsJUv359SdLbb78tf39/jR07Vl26dJG3t3eO44SEhCg0NFTdu3fX0qVLZTAYJEmffvqpBg8erLfeekvz5s0z9e/Zs6eWLFmiBx54wGycadOmafTo0Ro+fLh++umnwj1ZAAAAAAAAAAAAFaOl4TZs2KC//vpLPXr0MIVAkuTu7q6xY8cqKSlJISEhuY4zf/58SdLUqVNNIZAkDRw4UNWqVdPSpUsVHx9vah8yZEimEEiS3njjDTk5OWnz5s0WnBUAAAAAAAAAAED2ik0QtGnTJklSmzZtMm1r27atJOUayiQkJGjHjh3y8/PLNHPIYDCodevWio2N1e7du3Otx2AwyN7eXnZ2xWZSFgAAAAAAAAAAuMuKTQpx4sQJSZKvr2+mbRUqVFDJkiVNfbLz119/KTU1NcsxMo594sQJtWjRIsexVq5cqejoaD377LN5KV+S1LRp0yzbDx8+rCpVqigsLCzPYxWm6OhoSSqy4+P+xb2DguLegSW4f1BQ3Dv3rujoaLm5uRV1GQAAAABwTyo2M4KioqIkpS0FlxU3NzdTH0vGyNgvO2fPntWrr74qJycnTZo0Kce+AAAAAAAAAAAABVVsZgTdKyIjI9W+fXtdvnxZixcvlp+fX573DQ8Pz7I9faZQYGBgodSYX+mfii2q4+P+xb2DguLegSW4f1BQ3Dv3LmYDAQAAAED2is2MoPRZPNnN1omOjs52pk9+xsjY73aRkZF69NFHdeTIEc2dO1fPP/98nmoHAAAAAAAAAAAoiGITBGV8fs/tLl68qJiYmGyf/ZOuWrVqsrGxyfZZQjk9hyg9BDpw4IA++ugjDRw4ML+nAAAAAAAAAAAAkC/FJggKCgqSJK1bty7TttDQULM+2XFycpK/v7+OHz+u06dPm20zGo369ddf5eLiooYNG5ptyxgCzZkzRy+//LIlpwIAAAAAAAAAAJAnxSYIevTRR1WtWjV99dVX2r9/v6k9KipKU6ZMUYkSJdS7d29T+4ULF3Ts2LFMy8ANGDBAkjRmzBgZjUZT+7x583Tq1Cn17NlTTk5OpvZr167pscce04EDB/Thhx/qlVdeuUNnCAAAAAAAAAAAYM6uqAu4W+zs7LRgwQK1bdtWgYGB6tatm1xdXfXtt9/q9OnTmjFjhnx8fEz9x4wZo5CQEH3xxRfq06ePqf2FF17Q8uXLtWzZMv39998KCgrSyZMntWrVKlWtWlXvvPOO2XGfeeYZ7d+/XzVr1tS1a9c0YcKETLW9/vrrKlWq1J05cQAAAAAAAAAAUGwVmyBIklq2bKmtW7dq/PjxWr58uZKTk1WnTh1NmzZNXbt2zdMYNjY2Wr16td599119+eWXmjVrlkqXLq3+/fvrnXfeUdmyZc36R0RESJKOHTum//u//8tyzD59+hAEAQAAAAAAAACAQlesgiBJ8vf319q1a3Ptt2jRIi1atCjLbQ4ODho/frzGjx+f6zjpQRAAAAAAAAAAAMDdVmyeEQQAAAAAAAAAAFDcEAQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK2VXWAPFxcXp999/17Zt23Tu3DldvXpVzs7OKlu2rOrUqaOgoCA98MADhXU4AAAAAAAAAAAA5MLiICg8PFyffvqpVq5cqYSEBBmNxiz7GQwG1apVS4MGDVLv3r3l5uZm6aEBAAAAAAAAAACQgwIHQUeOHNGIESMUGhoqW1tbBQcHq2nTpmrYsKHKly+v0qVLKz4+XteuXdPx48e1fft2bdiwQa+++qr+7//+T+PGjdPLL78sO7tCm5QEAAAAAAAAAACADAqcwtSrV0/e3t768MMP1a1bN3l6embbNygoSAMGDJAkbd68WfPnz9fw4cN148YNvfnmmwUtAQAAAAAAAAAAADkocBA0b948vfDCC/me0RMUFKSgoCCNHz9e586dK+jhAQAAAAAAAAAAkIsCB0H9+/e36MC+vr7y9fW1aAwAAAAAAAAAAABkz6aoCwAAAAAAAAAAAMCdUeAZQXlx9uxZ7du3T6mpqWratKnKly9/Jw8HAAAAAAAAAACADCyeEbR371716dNHTz75pMaPH6/o6GhJ0ogRI1S9enV16tRJnTt3lre3t9577z2LCwYAAAAAAAAAAEDeWDQj6PDhwwoMDFRcXJwkae3atdq+fbu6deummTNnysfHRw0aNND169e1ZcsWjRkzRnXr1lW7du0KpXgAAAAAAAAAAABkz6IgaOrUqYqPj9d7772ndu3aKTQ0VKNGjdLJkyfVpUsXffXVV7KzSzvErl271Lx5c3388ccEQQAAAAAAAAAAAHeBRUHQli1b9Oijj+qNN96QJNWuXVvr1q3Tb7/9ph9++MEUAklSo0aN1KFDB23dutWyigEAAAAAAAAAAJAnFj0j6OLFi6pfv75ZW7169SRJDzzwQKb+vr6+ioyMtOSQAAAAAAAAAAAAyCOLgqCUlBSVLFnSrM3FxUWS5ODgkKm/o6OjUlNTLTkkAAAAAAAAAAAA8siiIAgAAAAAAAAAAAD3LoueESRJsbGxunz5sul1TEyMJOnKlSsyGo1mfdO3AQAAAAAAAAAA4M6zOAiaMWOGZsyYYdZmNBpVoUIFS4cGAAAAAAAAAACABSwKggIDA2UwGAqrFgAAAAAAAAAAABQii4KgTZs2FVIZAAAAAAAAAAAAKGw2RV0AAAAAAAAAAAAA7gyCIAAAAAAAAAAAACtl0dJwEydOzPc+BoNB48aNs+SwAAAAAAAAAAAAyAOLgqAJEybIYDBIkoxGY572IQgCAAAAAAAAAAC4OywKgiTJzs5O7du3V6dOneTg4FAYNQEAAAAAAAAAAKAQWBQEjRgxQl9++aVWr16tLVu2qEePHurXr5/q169fSOUBAAAAAAAAAACgoGws2XnatGk6e/asvv/+ezVv3lyffvqpHnnkETVo0EAff/yxrl+/Xlh1AgAAAAAAAAAAIJ8sCoIkydbWVk899ZS+//57nTt3Tu+++64SExM1ZMgQeXl5qXv37vr1118Lo1YAAAAAAAAAAADkg8VBUEblypXTiBEjdOTIEW3btk29evXSzz//rHbt2mnNmjWFeSgAAAAAAAAAAADkolCDILOBbWxkMBgkSUaj8U4dBgAAAAAAAAAAANmwK8zBrly5osWLF+uLL77Q0aNHZW9vr44dO6pfv35q06ZNYR4KAAAAAAAAAAAAubA4CEpNTdWPP/6ozz//XGvXrlVycrLq1q2rWbNm6fnnn1fp0qULo04AAAAAAAAAAADkk0VB0MiRI7VkyRJdunRJ7u7uevHFF9W/f381aNCgsOoDAAAAAAAAAABAAVkUBM2YMUP29vbq0KGDnnnmGTk6OurkyZM6efJkjvs999xzlhwWAAAAAAAAAAAAeWDx0nDJyclas2aN1qxZk2tfo9Eog8FAEAQAAAAAAAAAAHAXWBQEjR8/vrDqAAAAAAAAAAAAQCEjCAIAAAAAAAAAALBSNkVdAAAAAAAAAAAAAO6MAgdBRqPR4oMXxhgAAAAAAAAAAADIWoGDoNq1a2vFihUF2vfs2bMaNGiQpk2bVtDDW2TXrl1q3769SpUqJRcXFzVp0kTffPNNvsZITEzUxIkT5evrK0dHR3l5eWnAgAG6fPlytvssXbpU/v7+cnFxkYeHh5588knt3bvX0tMBAAAAAAAAAADIUoGDIF9fX3Xt2lXVqlXT+PHjdejQoRxn+ERGRurrr7/Wk08+qQceeECrV69Ww4YNC3r4Atu4caMCAgK0detWPffccxo0aJAuXryorl27aubMmXkaIzU1VR07dtT48ePl6emp119/XU2bNtWCBQvUtGlTXblyJdM+kydP1vPPP6/Lly9r0KBBevbZZxUWFqZmzZpp27ZthX2aAAAAAAAAAAAAsivojt9//702b96scePGadKkSXrnnXfk4uKi+vXrq3z58ipVqpQSEhJ07do1HT9+XH///bckycPDQ6NGjdLIkSNVsmTJQjuRvEhJSdFLL70kGxsbhYWFqX79+pKkt99+W/7+/ho7dqy6dOkib2/vHMcJCQlRaGiounfvrqVLl8pgMEiSPv30Uw0ePFhvvfWW5s2bZ+p/4sQJTZgwQTVq1NDOnTvl7u4uSXr55ZfVpEkTvfTSSzp8+LBsbHhkEwAAAAAAAAAAKDwWJQ9BQUEKCwvToUOHNHToUD3wwAP6/fff9e2332rhwoVaunSp1q5dq6ioKHXs2FGLFi3SP//8o4kTJ971EEiSNmzYoL/++ks9evQwhUCS5O7urrFjxyopKUkhISG5jjN//nxJ0tSpU00hkCQNHDhQ1apV09KlSxUfH29q/+KLL5SSkqI333zTFAJJUv369dW9e3cdPXpUW7duLYQzBAAAAAAAAAAAuKXAM4IyeuihhzRjxgxJUmxsrM6fP6/IyEg5OTmpbNmy8vLyKozDWGzTpk2SpDZt2mTa1rZtW0nS5s2bcxwjISFBO3bskJ+fX6aZQwaDQa1bt9a8efO0e/dutWjRIk/HXbRokTZv3qzAwMD8ntKtuk6d0uFBAyVJbm1ay6115mNd/ewzJZw4IUkq411VFceMNm1LTU1VdGyMojduUvTPP5navSZNko2jo9k4SecvKOr9mXIwSpExSfrZu7HOelXTd+d2KjU1xdSv2U9fqERinCTpgs9DOt4g2GwcW3tn1fn9J3mdOixJinVx0+YnX8hUd/mzx1Vr12+m1ztb91Ccq4cMNvaysbWXJNknxKnVyjlKtpGSbW10om4L/fNA3UxjNdzwjUr+m7Z0X2R5b/0R/JzZdmNqqnwOblSV42nPbjLa2Gjz04MzjeNx+R/V2/q97FNSZW+Udj3WTdcqpN0PxptJpusQ9P1cGVJTJUln/Bro1ENNM43VaOvPKvvPX5Kk6NLl9Xu7Xkq9mWjW5z8nD8r34BbT621P9ldyibT3Jf06uERFqvmaBZKkJBuDDjVprUuV/TIdr8naxXKMvyFJulSlpo42fEy29k5mfWqFr5XnmbT3JcnBWb8/0TfTOGX/OamHdoRKkkqkpGpH+36K8Shr2p6akiibpHi1WDPf1PZX7WY6W+Nh0+urV69LkiIWD1P5SxckSZEVfLT7sa4ypt40uw4+f+yUz7FdptebnvmvWT0GG3uVjrykxuuWmtp2BHdSZPlKmWoPXP2ZbG4mS5LOPVBPJ+s2l2Qwuw71N38nz7N/KtHeRnGupbWzdfdM43j9fUQ19m0yvd7+xItKLulh1sch+rL8194KmI890koXvWtlGqtJ6BI5xUTJKSVVF71r6UCLpyTJ7DrU2B8mr1OHJEkpdg7a+tSLmcYpd/GsGm7+3vQ6/PHe+te9tIzGm7eu1c0UBa2+NWvx7web6HTNR9K2GQyysUu7Dv7rvpLH5bO6KelyxUraF9gp0/G8j+1R1T+2m15v7jhQsncyfW1KklvkBTUI/VI3bdOC80PNnlBkBZ9MYzX/YYHsUhJlMEpXqtXXUf/Wpm3p1+GhHetU9p8TSk5MUoyzq749k/mfsQqnj6rujt9k97/VSsOeHqj4kqWUmpIgozHt69EhIVZNf15k2ufPh4N1vupDt67R/65DwJqFKhl1VZJ0vpKv9ge0y3S8Bw5uVaWTByRJqbb2Cus4IG0MmxKysU2rr8z5v9VwwzdKsLVRqo20L/AZRXlWzDRW8KqPTX8/XauRztQNNtueejNFdcNWyuPyWUlSdOkK2hvcOdM4lf/cp+qHf1eJlFTZGaXfug7VTfsSaWP87zq4REWq0fqvTfscadxWV/7zgNk4BoONWq1eIIf4WElpXy+HGj0mY2qSWb9au9er/JljkqQEJ1dtf7z3rTH+dx0q/n1Edbf9KEmKt7PRjjZp38szsk9KUMCPC02vT9RtofO+9WVjZ/7vUKO1X8gxOu19iSzvrUMBT2a6BtWOhJu+l5e4Ka3vMcK07dLleCk1URt2r1C9rd+b2g80f1rXy/0n01itvv1EjilpX0OnHmqiEw8HKfVmsoypyaY+dbb9qDKXTkuSYkqV1e5W5v++2Ng6yPvPfaq1e72p7ddOL5m+l6dzvnFd/r9+ZXp9tNFjulTZTwaDrWzsHEztgd99Kvu4KCXZ2fzve/mjmer227tJFSOOSEr7Xr79qUEy2Nia9Snz9yE9uPMX0+tdj3ZTrHsZsz62yUlqsWa+bG8a5ZBq1PEGwYp4sLEkmV2HBpu+ldu1i5Kk6+Uq60DzpzLV9MAfu1XjULjpdejzo3QzOV7SreWF3a9e0MNhq0yvDwY8pWvlK0uS2XV47Ov3ZZuSrBSDdKrmw//7Xm6udvhaeV44JUmm7+U2tg5m16HSif2qtmedjP/7cE94+z5KdHQxG8cpLlqNf/lSyYlJsk1N1Yytp3W+eh3T9vTr0CR0iRxjoyRJV/7jqyONM/88VmN/mKoe3y9bGZRcwlEbnntNksyuQ5mLEarz+62fx/a07KIbHuVNrw0GW9kabNVm2a1ljY/VC9Cpmg0yHe/hsO/kfvW8JCnK08v0vTzjdah2OFy++8MUZ5/2GbHNHQfKaGv+/dX1+iU9snGl6fWRph10rUpNsz6pN5PV8qd5qu6aNm7JZs1UqlPmfzuuLV2quP37VTI1VSXKlZfXO++Ytv17I1qSFLt7t64vX25qrzBmjOxKlzYbxzY2VtffHi9JSjx1Sg7VqmU6FgAAAABAMhhzerCPlXn22We1cuVK7d69W4888kim7a6urvLw8NCZM2eyHePIkSOqXbu2nnzySa1ZsybT9pkzZ+qNN97QwoUL1a9fP0lS2bJllZCQoBs3bmTqv2fPHjVs2FC9evXS4sWLc6y/adPMIYIkHT58WGWcSuqV5z6RpLRfZBgy9zOk3nqrW51brJhhQ02vb968qd3fRUlGyZDhlshyLKNkG79RbXeHKSVVmvlIV+30qq2GOqu60bd+sWkwGk27GtPHMr026gv3Ehq0d6VanNknSTrvVlpHH3k1y3O0yVBT6v/G2et2QfsNVSRJJZPiNO/nyfqt2WOyLREgowwyZnUNMtR003BTX7ibByD2xkT1jjJkW/ftNdnErFPQ7nC9E9BfR8um/fKhSeoZPXijYq7XQJKSbZJV/shKPXzxuCQpwt1LE1v2U88o81++GIySQZmvgSTtcL+gI6qiCjFXNfO3WZKk0ObtZWfvn2Xdt9eUYJekpbfN0Ot57Ac5VWiXp2sgSSWiftSaUs101r2CaVuLm2fkG1PR7L3L7n1JtrmhduvTfpl1uOwDmhrQVy6GG+r6761fkGas+/ZrIEnbSl1S6tWbmrDlM1Pb4sf76j8JmZd6zOp9ibWP1XLnUqY+r+/8Sv9JOq/jtV/N9hoYZP71st31nA7bmv8SqnXSaXnH3fq6uL3ujDUl2VxTuw1zFF6prj5q2FWSVMpwXc/8WzLbum93zO4P/ffXb0yv3wx+WQ+UlKrEljPrl9378m+JaK1ySvsl8FtbF6jW1b8VUbG8TvkNyvoaZHFvbih1RRHGWx8A8Pn3HzXXNTnKL9drYJCUYHNRtn8fUEi9DqZtnoYreurfUnm6BpJU5p+lqv9nWvD9Wps3dNXZQ+2SL8grzjPra2DIeBbSVcfr+sGhnN7dMFuVoy9Jkn6p30T2HpmDoOxqWlcqUueMaV8TdS6f0OjfF+nnlr3lZKya7TXIWNO/JS5qpXMVs+0VDZfU/rpHrtcg/X0pfyZED56KUP8n31bC/355/mTiRZVLKJPpeFnVdNHpqp7YEKJSCWn/fm3waaTQh5uozb/mQUFO78tPpf7VJWNZNTt3QP/dnXZvrm31okoYM4e0t9dklEH/uFzVL/bmodmLp1ZJpZ/M5Rrcqsnr1EJNbJAh1Dca9XTiVZVOLJXrNZCkRB1X+43LJEmrawTpmwfbyMdwXq3+vRV+53Zvfl/qhhr+dVwvHPzR1Laq7VC5J7nrdlnVdMblsn6zuxVSfbhuuiKq/kc3ynbJ0zUwSvrWI1b/Gs3Dt66xV+Wa7JbrNbAxGpVgPKzHN3+rpbUf188PpIUuDxjOKfDf8nm6BpJ0OWqLuu+9FYb1fHqyusb9K5dk8+Alu/flr5IXtdk2LRRa+OP/yTElSeH16iveo2OeroHRYNDyUgmKNbqa+rSK2KlKpaurRKprrtdAkpJu7lVEbAmFVbkVutTSWTWNqpCna2AwGlVv7wyViY5VTAknDWz/Vtq1iImRw81bYV9O9+Yx1wvaKS+F/DDe1LakVUdVND6s22VX01L3FCUq7eegjsc36bmjv+q3lqNla3TI0/eoCMdT+s3RPAiqqzNq9G+FW/9eG7K/BjJKLXa9Kyc3d/077i3Ttu3fXpHBaJunn0lT/nNeTy1L+8BJzxN/yqluXYWHhwsAAAAAYK5YPZQmKirtE5oZl2fLyM3NzdTHkjEy9kv/e376AwAAAAAAAAAAFIZCWRoOd0d2n3Bs2rSpLp4+a/qUpCHDf80YpPQlR8o39leDDEvRJaekaM93P6Vtz7CrIatPhBokO49ScvVvpJiEFDV8wEPelR1luFZShhsZ+xtl+iCnwZBprDHtH1IF2+NKcklbRs3RvVTWxzMazT6pb/jfeH4VXfV4g7SlnGziY5X0dx2lupSUTXJapyzHkmSaBGdIqyGjxMQYRa06qYwT5XKqKdW9lJJq1VH3VrUVX7mqJOnk71dliDFkrj2La2BrY5BPgzpK+jttyabS5bw0KNhXMT9E3H5AZShJBt36VGydSqX0VN2HZH/tipL++d8yNU7OMqSkHTOL4s3eF1sbQ6br4Gj3h85cNR0s1/flZqnS6te6tpI8by1bczLsigyxBrNrmWms/20zGGyUVCut9kpVqmtM+4d0I+qy4tdeuO2Q2b8vj1TxkF/d8kq6emupnlIlHWVIzOWe+t/7Ym9rY3YdKt6srdjzjmn9snjvMo0jqb53GXWoa34t//rtooxxZpcg2/dFNmnXoYZfbVMt166eVcpv1zIc8tb9m1VNft5lTddSkvo8+pCOHD4hQ5x53+zeF0f7W9ehYmxtJZ0rqWRXx+yvwe33psGgFr7l1P2BW9fB4VIpndiyQ8ak3K+B0SjJ1lb1m9SWV8tbY1y58JeMm2My1Z7d+3KzXAUl2abNKBvc+iGluHvor9CrMsRn8bWZxVjOJWw1pv1DKnW1tpIi02ZTlfX2UtSNXL6vZBjn0VoV5OWTdg7Opx2UdL2OZG8vY1L21yDjOPb2dpm+Ni+etZG2Jma4D3J+X1IqeCnJwVXD2j0kY4m0mQanfo5M+7rI5ntrRq6O9ipRu46SYtNmBNWpXVspvhVk2J6i22V3bz5R10vl/1NDrkdTlBSbdm8a7WxlSM7iGhjTZoxmLMrN0V5j2ppfh9hV2xSbkN4nu2twq6bUSpXNruXJkydlcyRt9mdu10CSZGdv+rpq3Ki2qjd/SOdOpsiwO7trkLmmLo9UVvUK9kpKPm1qc7CzlSH59muQ9fvi4VJCYx69dQ5OF+rqpoNNzt+jZP6+dG3krdKelc22n1m1VcZbK9zleG8aHRyUVKuOgps9pHoN02o5fSxehv0Gs37ZXQNJqv1QNSXFXza9HtP+IZ39LlyGFPN/G7J7X8q5OmpM8P+uw6k6SkpO0k0Pzzxeg7Q+fZtVk6v7rVmS7gfj9MexRP1v5cisr0HGf/McHPR4g4cU8NCt9+PvwzEyHE67o3L62SddcrUaSkpMka2js+ne/GflThlSs/4edXtN/ynlpJFNHlLSiVvf78uV9ZDhSt6ugSQNCvaVs3PaB5VKe15Vki6mzY405v7vviR5ujub3ZOSdGpflGT22SaDDFn9TCpJBqNcHq6v0p5lVTfDz6Q7Vq2SwWhIm9qYsXsWNbmVSvt5VJJsLpzP+jgAAAAAAJaGy+heXxouO02bNlWq0ajQX9fleR83l5Kysbk1ISz9GUF55VjCQY4Oab9UDAsLkyQ18vdXYnJSTruZKeXqZvbakhrSxSck3Pc13Lx5UzfiYi2qITYhXsnJydnsYc5gMMi9pKtZW35rcHJ0kIN9/mvYvj3t2TJNmzYtshrSZXUdklNSFBsfl80eeashJi5WKTdvZrMHNRS0hvR7p0mTJnmu4UZcjG7eTC1wDUnJyYpLiM/T/pLk7OikEvb2Zm35qcHW1kauzubLNlpLDVExN5TXHz+yqiExOVHxCYnZ7JGZi5Oz7O1uffYlLCxM8UmJaty4cZ72t7O1VUln86XLLK1Byt91oIY09vb2cnE0X9Y1vzW4OrvI1tb8WUl5rWH79u2ytbFV60fNn8l0N2uQsr4OCYmJSkiyrIb05/PkhYN9CTnd9hzJ/NZw+8+jltSQvoQyS8MBAAAAQGbFakaQr6+vJOnEiROZgqCLFy8qJiZG/v5ZP1clXbVq1WRjY6MTJ05kuT29Pf1Y6X8PDw/XxYsXVaFChVz7F4SNwZApUMjX/jY2Fu0vSU6Ojpl+IUAN+Wdra2txDS6OTtJtvyC6F2twdki7Trf/wv1u1pATezs7i2u4/Zem1FA4NaTfO/mp6/YwIb9K2NtnCjTyixrSZPU1nx8O9pmDvvxyKuFg0X1dGDXcC9eBGvJXQ/r3nqKsITuODpk/GJJfln6vvxdqAAAAAABkVqyeERQUFCRJWrcu88yZ0NBQsz7ZcXJykr+/v44fP67Tp0+bbTMajfr111/l4uKihg0bFupxAQAAAAAAAAAA8qtYBUGPPvqoqlWrpq+++kr79+83tUdFRWnKlCkqUaKEevfubWq/cOGCjh07pqgos8XONWDAAEnSmDFjzJbwmDdvnk6dOqWePXvKyenWLIS+ffvKzs5OkydPNhtr//79WrZsmWrVqqXmzZsX9ukCAAAAAAAAAIBirlgtDWdnZ6cFCxaobdu2CgwMVLdu3eTq6qpvv/1Wp0+f1owZM+Tj42PqP2bMGIWEhOiLL75Qnz59TO0vvPCCli9frmXLlunvv/9WUFCQTp48qVWrVqlq1ap65513zI5bo0YNTZgwQW+99Zbq1aunzp0768aNG/r6668lSfPnz8+0PjoAAAAAAAAAAIClil360LJlS23dulUBAQFavny55s6dq/Lly+vrr7/W8OHD8zSGjY2NVq9erQkTJujKlSuaNWuWtm3bpv79+ys8PFxly5bNtM+bb76pJUuWqGzZspo7d66++eYbtWjRQr///rsCAgIK+zQBAAAAAAAAAAAsmxFka2ub730MBoNSUlIsOazF/P39tXbt2lz7LVq0SIsWLcpym4ODg8aPH6/x48fn+bg9e/ZUz54989wfAAAAAAAAAADAEhYFQUajUfb29qpWrVph1QMAAAAAAAAAAIBCYlEQ5ODgoMTERBkMBvXt21e9e/dW+fLlC6s2AAAAAAAAAAAAWMCiZwRduHBBs2fPlpOTk0aNGqXKlSurU6dOWrNmjVJTUwurRgAAAAAAAAAAABSARUFQqVKl9Morr2jPnj3at2+fBg0apC1btujpp5/Wf/7zH40aNUrHjx8vrFoBAAAAAAAAAACQDxYFQRnVq1dPs2fP1vnz5/XVV1+pbt26mjlzph588EE1b95cx44dK6xDAQAAAAAAAAAAIA8KLQhKV6JECXXt2lWhoaHasmWLvLy8FB4erj///LOwDwUAAAAAAAAAAIAcFHoQlJycrBUrVujxxx9XYGCg/vnnH/n7+6tGjRqFfSgAAAAAAAAAAADkwK6wBtq/f7+++OILffXVV4qMjFS5cuX02muvqX///qpVq1ZhHQYAAAAAAAAAAAB5ZFEQdP36dS1dulRffPGF9u/fLxsbGz3++OPq16+fnnzySdnZFVrOBAAAAAAAAAAAgHyyKKmpWLGikpOTVaNGDU2dOlUvvPCCypcvX1i1AQAAAAAAAAAAwAIWBUFJSUmyt7eXwWDQokWLtGjRolz3MRgMOnLkiCWHBQAAAAAAAAAAQB5YvHZbcnKyjh07Vhi1AAAAAAAAAAAAoBBZFASlpqYWVh0AAAAAAAAAAAAoZDZFXQAAAAAAAAAAAADujLsWBCUnJ2vFihVq167d3TokAAAAAAAAAABAsWbxM4Jyc/jwYS1cuFBLlizRtWvX7vThAAAAAAAAAAAA8D93JAi6ceOGvvrqK33++efavXu3JMnR0VHdu3dX375978QhAQAAAAAAAAAAcJtCDYLCwsK0cOFCffvtt4qPj5fRaJQktWvXTl9//bXc3NwK83AAAAAAAAAAAADIgcVB0MWLF7Vo0SJ9/vnn+uuvv2Q0GlWlShU9//zz6tWrl2rVqqVKlSoRAgEAAAAAAAAAANxlFgVBHTp0UGhoqFJSUuTq6qo+ffqoV69eCg4OLqTyAAAAAAAAAAAAUFAWBUE//fSTbGxsNGLECE2cOFEODg6FVRcAAAAAAAAAAAAsZGPJztWqVVNqaqpmzJihxo0b6/3339fFixcLqzYAAAAAAAAAAABYwKIg6OTJk9qwYYO6d++uP//8U2+88YYqV66sxx9/XMuWLVNCQkJh1QkAAAAAAAAAAIB8smhpOEkKDg5WcHCwoqKitHTpUi1cuFChoaFat26dSpYsKYPBoOjo6MKoFQAAAAAAAAAAAPlg0YygjNzd3fXyyy9rz5492rdvnwYPHixbW1sZjUatWLFC1atX16RJk3T69OnCOiQAAAAAAAAAAAByUGhBUEb16tXTRx99pAsXLmjJkiUKDg5WRESExo8frwceeOBOHBIAAAAAAAAAAAC3uSNBUDoHBwf16NFD69ev119//aU333xTFStWvJOHBAAAAAAAAAAAwP9Y/IygvPLx8VHfvn119uzZu3VIAAAAAAAAAACAYu2OzghKd+bMGb300kuqVauWvvzyy7txSAAAAAAAAAAAgGLP4iBo69atatmypdzc3FS6dGl17NhRx48flyTFxcVp2LBhqlGjhhYuXKiyZctq9uzZFhcNAAAAAAAAAACA3Fm0NNyePXv02GOPKSkpydS2Zs0a7d69W1u2bNFTTz2lP/74Q15eXho1apQGDBggBwcHi4sGAAAAAAAAAABA7iyaEfTee+8pKSlJU6dO1eXLl3X58mVNnjxZFy5cUIsWLXTs2DG99dZbOnnypIYMGUIIBAAAAAAAAAAAcBdZNCNo27ZtatWqlUaNGmVqGzNmjH777Tdt2rRJ06dP17BhwywuEgAAAAAAAAAAAPln0Yygy5cv65FHHsnUnt72wgsvWDI8AAAAAAAAAAAALGBREJSSkiIXF5dM7eltZcqUsWR4AAAAAAAAAAAAWMCiIAgAAAAAAAAAAAD3LoueESRJS5Ys0fbt283aTp48KUlq3759pv4Gg0E//fSTpYcFAAAAAAAAAABALiwOgk6ePGkKfm73yy+/ZGozGAyWHhIAAAAAAAAAAAB5YFEQ9PfffxdWHQAAAAAAAAAAAChkFgVB3t7ehVUHAAAAAAAAAAAACplNURcAAAAAAAAAAACAO4MgCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVqpYBUHR0dEaNmyYvL295eDgIB8fH40YMUIxMTH5His0NFRBQUFydXWVm5ubWrZsqfXr12fqFxkZqc8++0xPPfWUqlWrJgcHB3l6eurxxx9XaGhoYZwWAAAAAAAAAABAlopNEBQbG6ugoCDNmjVLNWvW1NChQ+Xn56cZM2aoVatWSkhIyPNYS5YsUbt27XT06FH16dNHL7zwgo4cOaLWrVtr5cqVZn1XrFihgQMHas+ePWrevLmGDRumxx9/XJs3b1a7du00ffr0wj5VAAAAAAAAAAAASZJdURdwt7z33nvav3+/Ro0apXfffdfUPnr0aE2bNk2zZs3SmDFjch3n+vXrGjJkiDw9PbV3715VqlRJkjRq1Cg9/PDDGjx4sNq2bStXV1dJUo0aNfTDDz/oiSeekI3NrdztrbfeUuPGjfXmm2+qZ8+e8vLyKuQzBgAAAAAAAAAAxV2xmBFkNBq1YMEClSxZUuPGjTPbNm7cOJUsWVILFizI01grVqzQv//+qyFDhphCIEmqVKmSXnnlFV29elXfffedqb1Vq1bq0KGDWQgkSX5+furatauSk5P1+++/W3B2AAAAAAAAAAAAWSsWQdCJEyd0/vx5BQQEyMXFxWybi4uLAgICdOrUKZ09ezbXsTZt2iRJatOmTaZtbdu2lSRt3rw5T3XZ29tLkuzsis3ELAAAAAAAAAAAcBcViwTixIkTkiRfX98st/v6+io0NFQnTpxQ5cqVCzxWelt6n5xER0dr5cqVcnR0VIsWLXLtL0lNmzbNsv3w4cOqUqWKwsLC8jROYYuOjpakIjs+7l/cOygo7h1YgvsHBcW9c++Kjo6Wm5tbUZcBAAAAAPekYjEjKCoqSpLk7u6e5fb0/2lM71fQsfIzzqBBg3Tp0iWNHTtWZcqUybU/AAAAAAAAAABAft1XM4KGDx+uxMTEPPd/7bXXsp0FVJTGjBmjZcuWqV27dho7dmye9wsPD8+yPX2mUGBgYKHUl1/pn4otquPj/sW9g4Li3oEluH9QUNw79y5mAwEAAABA9u6rIGjevHmKjY3Nc/8uXbrI19fXNHsnu5k66ct8ZDdjKKOMY90+kycv44wbN07vvvuuWrVqpVWrVsnW1jb3EwEAAAAAAAAAACiA+yoIiomJKdB+uT27J7dnCN0+1u7du3XixIlMQVBu44wbN07vvPOOgoODtWbNGjk5OeX5HAAAAAAAAAAAAPKrWDwjyNfXV15eXtq2bVumGUWxsbHatm2bqlatqsqVK+c6VlBQkCRp3bp1mbaFhoaa9ckoPQQKCgrSTz/9JGdn54KcCgAAAAAAAAAAQJ4ViyDIYDDoxRdfVExMjCZNmmS2bdKkSYqJidFLL71k1h4XF6djx47pzJkzZu3PPfec3N3dNWfOHJ07d87Ufu7cOX300Ufy9PRUp06dzPZ5++239c4776hFixaEQAAAAAAAAAAA4K65r5aGs8TIkSO1evVqTZs2Tfv27VODBg20d+9erVu3To0aNdLrr79u1n/nzp1q2bKlgoKCtGnTJlO7h4eHPvroI/Xq1UsNGjRQ165dJUnLly9XZGSkli9fLldXV1P/RYsWadKkSbKzs5O/v7+mT5+eqbbg4GAFBwffidMGAAAAAAAAAADFWLEJglxcXLR582ZNmDBB3377rTZu3KiKFStq+PDhGj9+fL6e1/P888/L09NTU6ZM0RdffCGDwaBHHnlEb731lh577DGzvhEREZKklJQUzZw5M9sxCYIAAAAAAAAAAEBhKzZBkCS5u7tr1qxZmjVrVq59g4ODZTQas93erl07tWvXLtdxJkyYoAkTJuSnTAAAAAAAAAAAgEJRLJ4RBAAAAAAAAAAAUBwRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKFasgKDo6WsOGDZO3t7ccHBzk4+OjESNGKCYmJt9jhYaGKigoSK6urnJzc1PLli21fv36PO27fPlyGQwGGQwGff311/k+NgAAAAAAAAAAQF4UmyAoNjZWQUFBmjVrlmrWrKmhQ4fKz89PM2bMUKtWrZSQkJDnsZYsWaJ27drp6NGj6tOnj1544QUdOXJErVu31sqVK3Pc9+LFi/rvf/8rFxcXS08JAAAAAAAAAAAgR8UmCHrvvfe0f/9+jRo1SqGhoXr33XcVGhqqUaNGadeuXZo1a1aexrl+/bqGDBkiT09P7d27V3PmzNGcOXO0d+9elSlTRoMHD9aNGzey3X/AgAFydXXVoEGDCuvUAAAAAAAAAAAAslQsgiCj0agFCxaoZMmSGjdunNm2cePGqWTJklqwYEGexlqxYoX+/fdfDRkyRJUqVTK1V6pUSa+88oquXr2q7777Lst9Fy1apDVr1phqAQAAAAAAAAAAuJOKRRB04sQJnT9/XgEBAZmWZHNxcVFAQIBOnTqls2fP5jrWpk2bJElt2rTJtK1t27aSpM2bN2fadvbsWb3++usaMGCAHn300QKcBQAAAAAAAAAAQP7YFXUBd8OJEyckSb6+vllu9/X1VWhoqE6cOKHKlSsXeKz0tvQ+6YxGo/r37y83NzfNmDEj3/Wna9q0aZbthw8fVpUqVRQWFlbgsS0RHR0tSUV2fNy/uHdQUNw7sAT3DwqKe+feFR0dLTc3t6IuAwAAAADuScUiCIqKipIkubu7Z7k9/X8a0/sVdKzsxvn000/166+/6pdffpGrq2veCwcAAAAAAAAAALDAfRUEDR8+XImJiXnu/9prr2U7C+huOXXqlEaMGKF+/fqZlo4rqPDw8Czb02cKBQYGWjR+QaV/Kraojo/7F/cOCop7B5bg/kFBce/cu5gNBAAAAADZu6+CoHnz5ik2NjbP/bt06SJfX1/T7J3sZvykL/OR3YyhjDKOVaZMmVzH6d+/v0qVKqX3338/z3UDAAAAAAAAAAAUBpuiLiA/YmJiZDQa8/wnODhYUvbP7kmX2zOEMspprKzG2bdvn/755x+VKlVKBoPB9Of//u//JEndu3eXwWDQBx98kLeLAAAAAAAAAAAAkEf31YyggvL19ZWXl5e2bdum2NhYubi4mLbFxsZq27Ztqlq1qipXrpzrWEFBQVq2bJnWrVunJk2amG0LDQ019UnXu3dvxcXFZRpn79692rdvn1q2bKlq1aqpdu3aBT09AAAAAAAAAACALBWLIMhgMOjFF1/UxIkTNWnSJL377rumbZMmTVJMTIzGjh1rtk9cXJzOnDkjZ2dnValSxdT+3HPPadSoUZozZ4769eunSpUqSZLOnTunjz76SJ6enurUqZOp/+zZs7OsacKECdq3b58GDBigbt26FebpAgAAAAAAAAAASComQZAkjRw5UqtXr9a0adO0b98+NWjQQHv37tW6devUqFEjvf7662b9d+7cqZYtWyooKEibNm0ytXt4eOijjz5Sr1691KBBA3Xt2lWStHz5ckVGRmr58uVydXW9i2cGAAAAAAAAAACQtfvqGUGWcHFx0ebNm/X666/r6NGjmjlzpo4dO6bhw4dr/fr1cnJyyvNYzz//vNauXauaNWvqiy++0KJFi/Tggw9q3bp1evbZZ+/gWQAAAAAAAAAAAORdsZkRJEnu7u6aNWuWZs2alWvf4OBgGY3GbLe3a9dO7dq1K3AtEyZM0IQJEwq8PwAAAAAAAAAAQG6KzYwgAAAAAAAAAACA4oYgCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIAAAAAAAAAADAShEEAQAAAAAAAAAAWCmCIAAAAAAAAAAAACtFEAQAAAAAAAAAAGClCIIAAAAAAAAAAACsFEEQAAAAAAAAAACAlSIIAgAAAAAAAAAAsFIEQQAAAAAAAAAAAFaKIAgAAAAAAAAAAMBKEQQBAAAAAAAAAABYKYIgAAAAAAAAAAAAK0UQBAAAAAAAAAAAYKUIggAAAAAAAAAAAKwUQRAAAAAAAAAAAICVIggCAAAAAAAAAACwUgRBAAAAAAAAAAAAVoogCAAAAAAAAAAAwErZFXUBsNypU6cUFxenpk2bFsnxo6OjJUlubm5Fcnzcv7h3UFDcO7AE9w8Kinvn3nX48GE5OzsXdRkAAAAAcE9iRpAV8PDwKNL/8T1z5ozOnDlTZMfH/Yt7BwXFvQNLcP+goLh37l3Ozs7y8PAo6jIAAAAA4J5kMBqNxqIuAve39JlI4eHhRVwJ7jfcOygo7h1YgvsHBcW9AwAAAAC4HzEjCAAAAAAAAAAAwEoRBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArJTBaDQai7oIAAAAAAAAAAAAFD5mBAEAAAAAAAAAAFgpgiAAAAAAAAAAAAArRRAEAAAAAAAAAABgpQiCAAAAAAAAAAAArBRBEAAAAAAAAAAAgJUiCAIAAAAAAAAAALBSBEEAAAAAAAAAAABWiiAIBbZr1y61b99epUqVkouLi5o0aaJvvvmmqMvCXfTPP//ogw8+UJs2bVSlShWVKFFCFSpUUOfOnbVjx44s94mOjtawYcPk7e0tBwcH+fj4aMSIEYqJicmyf2pqqubMmaM6derIyclJZcuWVffu3XXq1Kk7eWooItOmTZPBYJDBYND27dszbef+we2+++47tW7dWmXKlJGjo6OqVq2q7t276+zZs2b9uHeQzmg0/n97dx9TZf3/cfwFHu4PiDlLMETB2zBDxUpBxW4ONZ03s2Ya3qVk3qybYWrNxLtKFmKt2qxYoZZmDWuatfAOKQIrJVdppaaYaWQ3YAe8Qc7n90fj/DgdjFC+IMfnYzub+7w/1+d6X/IebNf7XJ9LGzdu1NChQxUWFqbAwEB1795d06dPr/PnS+0AAAAAAFo6L2OMae4k0PLs3LlTSUlJ8vf313333afg4GDl5OSopKREGRkZSk1Nbe4U0QTmz5+v9PR0RUdHKzExUe3atdPBgwf1/vvvyxijdevWaezYsc75FRUVSkhI0FdffSWbzaY+ffqouLhYubm56t+/v/Lz8+Xv7+9yjpSUFGVlZSkmJkbDhg3TiRMn9M4778hqtaqoqEhdu3Zt6svG/8g333yjuLg4WSwWVVRUqLCwULfeeqszTv2gNmOMHnroIb366quKjo5WUlKSgoODdeLECe3atUtvvfWWEhISJFE7cJWamqrMzEyFhYVp5MiRCgkJ0b59+5Sbmyur1arPPvtMvXr1kkTtAAAAAAA8hAEaqKqqykRHRxs/Pz9TXFzsHC8rKzPdunUzvr6+5ujRo82XIJpMTk6OycvLcxvPz883Pj4+pk2bNubs2bPO8YULFxpJZt68eS7z582bZySZZ555xmV8x44dRpIZPHiwOXfunHP8ww8/NJKMzWZr5CtCczl//rzp27evueWWW0xycrKRZAoLC13mUD+o7fnnnzeSzMyZM82FCxfc4lVVVc5/UzuocfLkSePt7W0iIyNNWVmZSywzM9NIMlOmTHGOUTsAAAAAAE9AIwgN9vHHH7vdKKmRnZ1tJJnFixc3Q2a4kthsNiPJfPHFF8YYYxwOhwkPDzdWq9XY7XaXuXa73VitVhMVFeUyPm7cOCPJ7Nq1y239xMREI8mUlJT87y4CTSYtLc34+fmZb7/91kyaNMmtEUT9oLbKykrTpk0bExUV5dLwqQu1g9oKCwuNJDN+/Hi32A8//GAkmeHDhxtjqB0AAAAAgOfgHUFosLy8PEmSzWZziyUlJUmSdu3a1ZQp4Qrk4+MjSbJYLJKkgwcP6sSJE4qPj1dQUJDL3KCgIMXHx+vHH390ea9HXl6eM/ZP1Jrn2Lt3r55++mmlpaXphhtuqHMO9YPacnNz9eeff2rUqFGqrq7Wxo0btXz5cq1atUqHDh1ymUvtoLauXbvK19dXBQUFOn36tEvsgw8+kCTdfvvtkqgdAAAAAIDnoBGEBjt48KAk1bnHffv27WW1Wp1zcHU6duyYtm3bprCwMN14442S/r1uao/XzKuoqNDJkyfVuXNntWrVqt75aJnOnTuniRMnKjY2VnPnzr3oPOoHte3Zs0eS1KpVK/Xu3VtjxozRE088oRkzZqh79+6aM2eOcy61g9ratm2r5cuX69ixY+rRo4dmzJihefPm6a677tK8efM0c+ZMzZ49WxK1AwAAAADwHJbmTgAtT3l5uSSpdevWdcZDQkKcc3D1qaqq0oQJE3Tu3Dmlp6c7b4b9l7qpPa+h89EyLVy4UAcPHtSePXvqvHFag/pBbb/++qskKTMzU3379tXnn3+unj17qri4WA8++KBWrFih6OhozZgxg9qBm8cee0wdOnTQtGnTtGrVKud4QkKCxo8f73ySldoBAAAAAHgKnggC0GgcDocmT56s/Px8paSkaMKECc2dEq5ghYWFysjI0IIFC9SrV6/mTgctiMPhkCT5+vrq/fffV//+/WW1WjVo0CC9++678vb21ooVK5o5S1yplixZouTkZD355JP66aef9Ndff+mTTz7R2bNnlZiYqE2bNjV3igAAAAAANCoaQWiwmm+6XuwbradPn77ot2HhuRwOhx544AGtW7dOycnJLt+ylv5b3dSe19D5aFkuXLigSZMmqXfv3po/f36986kf1Fbzc4uLi1N4eLhLrFevXoqKitLhw4dVVlZG7cDFtm3blJaWptmzZ2v+/Pm6/vrrZbValZCQoM2bN8vHx0epqamS+L0DAAAAAPAcbA2HBqu9x32/fv1cYr/88ovsdrtuvvnm5kgNzcThcGjKlClas2aNxo0bp+zsbHl7u/aZ63s3wj/fxRAUFKSwsDAdOXJE1dXVbtuG1ffuBlzZ7Ha782fo6+tb55wBAwZIkt577z3dcMMNkqgf/K179+6SpNDQ0DrjNeNnzpzhdw9cfPTRR5KkoUOHusXat2+vHj16qLi4WHa7ndoBAAAAAHgMnghCgw0ZMkSSlJub6xb7+OOPXebA89VuAo0dO1Zr16696Euyw8PDVVBQoIqKCpdYRUWFCgoK1LlzZ0VERDjHhwwZ4oz9U02tDR48uJGvCE3Bz89PU6dOrfNTc5N0xIgRmjp1qjp16kT9wEXNTfwDBw64xaqqqnTo0CEFBQWpXbt21A5cnD9/XpJ06tSpOuOnTp2St7e3fHx8qB0AAAAAgMegEYQGu/322xUVFaV169bpq6++co6Xl5frmWeeka+vryZOnNh8CaLJ1GwHt2bNGt177716880362wCSZKXl5emTZsmu92upUuXusSWLl0qu92ulJQUl/EHH3xQkvTUU085b95Jf3+jOy8vTzabTZGRkY18VWgKAQEBysrKqvMzcOBASdITTzyhrKwsxcbGUj9wER0dLZvNpkOHDikrK8sltnz5cpWVlWn06NGyWCzUDlzEx8dLkjIzM922cFu1apWOHz+uAQMGyM/Pj9oBAAAAAHgML2OMae4k0PLs3LlTSUlJ8vf313333afg4GDl5OSopKREGRkZzv314dkWLVqkxYsXy2q16pFHHpHF4r7b5KhRoxQbGyvp729Qx8fHa9++fbLZbOrbt6/27t2r3Nxc9e/fX7t27VJAQIDL8SkpKcrKylJMTIyGDRumkydPasOGDbJarSosLFS3bt2a4lLRhCZPnqzVq1ersLBQt956q3Oc+kFthw8f1sCBA/Xrr79q2LBhzi29duzYocjISBUVFal9+/aSqB38v+rqat12223Kz8/XtddeqxEjRig0NFR79+7Vjh07FBAQoLy8POcWt9QOAAAAAMAjGOAS7d6929x1110mJCTEBAQEmJtvvtm8/fbbzZ0WmtCkSZOMpH/9vPHGGy7HlJWVmUcffdREREQYHx8f07FjR5OammpOnz5d5zmqq6vNCy+8YGJiYoyfn59p27atGTt2rDl06FATXCGaQ01dFRYWusWoH9R27NgxM3nyZNO+fXvj4+NjIiIizKxZs0xpaanbXGoHNc6ePWueffZZ06dPHxMYGGgsFovp0KGDSU5ONvv373ebT+0AAAAAAFo6nggCAAAAAAAAAADwULwjCAAAAAAAAAAAwEPRCAIAAAAAAAAAAPBQNIIAAAAAAAAAAAA8FI0gAAAAAAAAAAAAD0UjCAAAAAAAAAAAwEPRCAIAAAAAAAAAAPBQNIIAAAAAAAAAAAA8FI0gAAAAAAAAAAAAD0UjCAAAAAAAAAAAwEPRCAIAAAAAAAAAAPBQNIIAAAAAAAAAAAA8FI0gAIBHS0xMlJeXV3On8Z8ZY9SvXz/ZbLZLOn7BggUKDg5WaWlpI2cGAAAAAACAlohGEACgxfDy8mrQpyVas2aN9u7dqyVLllzS8ampqfL29lZaWlojZwYAAAAAAICWyMsYY5o7CQAA/otFixa5jT3//PMqLy+vs/GxaNEiHTt2TJWVlerRo0cTZHh5HA6HoqOjFRERofz8/EteJzU1VS+88IIOHz6syMjIRswQAAAAAAAALQ2NIABAi9apUyeVlJTIE/6cbdmyRcOHD9drr72madOmXfI6xcXF6tu3rxYsWKClS5c2YoYAAAAAAABoadgaDgDg0ep6R1B2dra8vLyUnZ2tzZs365ZbblFgYKA6dOigp556Sg6HQ5K0evVq3XTTTQoICFDHjh313HPP1XkOY4xef/11xcfHKyQkRIGBgYqLi9Prr7/eoFzfeOMNeXl5acyYMW6xkydP6pFHHlHXrl0VEBCg0NBQ9ezZUw899JDKy8td5vbp00ddunRRdnZ2g84PAAAAAAAAz2Np7gQAAGgu7733nnJzczVq1CjFx8dry5YtWrZsmYwxat26tZYtW6aRI0cqMTFROTk5mjt3rq677jpNnDjRuYYxRvfff7/Wr1+vrl27avz48fL19dXWrVs1depU7d+/XxkZGfXmYozRzp071b17d7Vp08YlVllZqfj4eB09elQ2m02jR4/W+fPndeTIEa1du1Zz5sxR69atXY4ZMGCA1q5dqx9++EHdunVrnP8wAAAAAAAAtDg0ggAAV62PPvpIBQUF6t+/vyRp8eLF6tKli1auXKmQkBAVFxcrKipKkjRnzhx16dJFGRkZLo2grKwsrV+/XlOmTNErr7wiHx8fSdL58+d1zz33aMWKFRo3bpz69ev3r7kcOHBAf/zxh+6++2632Pbt23XkyBE9+uijWrlypUvMbrc7z1lbXFyc1q5dq4KCAhpBAAAAAAAAVzG2hgMAXLWSk5OdTSBJCg4O1vDhw1VZWakZM2Y4m0CSFBERoYSEBO3fv18XLlxwjr/00ksKCgrSyy+/7NKQ8fX11dNPPy1JWr9+fb25HD9+XJJ03XXXXXROQECA25jVapWfn5/beM06NesCAAAAAADg6sQTQQCAq1ZsbKzbWFhY2L/GqqurVVpaqg4dOqiyslJff/21wsPDlZ6e7ja/qqpKkvTdd9/Vm8vvv/8uSQoNDXWLDR48WGFhYVq+fLn27dun4cOHa8iQIerZs6fb+49qXHPNNZKk3377rd5zAwAAAAAAwHPRCAIAXLVCQkLcxiwWS72xmgbPn3/+KWOMfv75Zy1evPii56moqKg3l5qnfc6ePesWa926tYqKirRw4UJt3rxZH374oaS/n1KaP3++Zs6c6XbMmTNnJEmBgYH1nhsAAAAAAACei63hAAC4RDXNon79+skYc9HPzp07612rXbt2kqQ//vijznjHjh2VnZ2tU6dOqbi4WOnp6XI4HJo1a1adW8/VrFOzLgAAAAAAAK5ONIIAALhEwcHB6tmzpw4cOKCysrLLWismJkbe3t76/vvv/3Wet7e3YmNjNXfuXGcDaNOmTW7zata58cYbLysvAAAAAAAAtGw0ggAAuAwPP/ywKisrlZKSUucWcEeOHNHRo0frXSc0NFS9e/fWl19+KYfD4RL79ttvVVpa6nZMzZi/v79bbPfu3bJYLBo4cOB/vBIAAAAAAAB4It4RBADAZZg+fbqKioq0evVqFRQU6I477lB4eLhKS0v13Xffaffu3Vq3bp06depU71qjR49WWlqaioqKXBo4W7du1eOPP674+Hh169ZNbdu21Y8//qhNmzbJ399fs2bNclnHbrerqKhId955p4KCghr7kgEAAAAAANCC8EQQAACXwcvLS9nZ2dqwYYNiYmL0wQcfKDMzU1u3bpW/v78yMjJ0xx13/Ke1pk2bJovFojfffNNlPCkpSbNmzdLp06e1ceNGrVy5Ul9++aXGjh2rPXv2KC4uzmV+Tk6Ozpw5o+nTpzfadQIAAAAAAKBl8jLGmOZOAgAA/G3ChAnasmWLSkpKFBwcfElrDBo0SKWlpTpw4IBatWrVyBkCAAAAAACgJeGJIAAAriDLli3TmTNn9OKLL17S8du3b9enn36q9PR0mkAAAAAAAACgEQQAwJUkMjJSq1evvuSngcrLy5WRkaHRo0c3cmYAAAAAAABoidgaDgAAAAAAAAAAwEPxRBAAAAAAAAAAAICHohEEAAAAAAAAAADgoWgEAQAAAAAAAAAAeCgaQQAAAAAAAAAAAB6KRhAAAAAAAAAAAICHohEEAAAAAAAAAADgoWgEAQAAAAAAAAAAeCgaQQAAAAAAAAAAAB6KRhAAAAAAAAAAAICHohEEAAAAAAAAAADgoWgEAQAAAAAAAAAAeCgaQQAAAAAAAAAAAB6KRhAAAAAAAAAAAICH+j/x7J1ECazYGwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAARRCAYAAADpZCsvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAViAAAFYgBxNdAoAABAABJREFUeJzs3XdYFFcXBvB36R0sqFgoKmLXKGLBYNd8UaNRY+89JiaxxKiJJXYl9sSGBSwxRmNJjF0piigWFOwVFBtKld7m+4PsyrKFBRaWXd7f8+SJzNy5c2Z2duHsmXtHJAiCACIiIiIiIiIiIiIiItIpepoOgIiIiIiIiIiIiIiIiNSPRSAiIiIiIiIiIiIiIiIdxCIQERERERERERERERGRDmIRiIiIiIiIiIiIiIiISAexCERERERERERERERERKSDWAQiIiIiIiIiIiIiIiLSQSwCERERERERERERERER6SAWgYiIiIiIiIiIiIiIiHQQi0BEREREREREREREREQ6iEUgIiIiIiIiIiIiIiIiHcQiEBERERERERERERERkQ5iEYiIiIiIiIiIiIiIiEgHsQhERERERERERERERESkg1gEIiIqQ0aOHAmRSIT58+drOhQiIiIiIiIiIiIqZiwCEREp0b59e4hEIqn/9PX1YWNjAzc3N/z888+IjY3VdJha4ezZsxg1ahRq164NCwsLmJubo1atWhgxYgROnTql6fCojElJScGRI0cwZ84c/O9//4Otra3kPR4eHq7p8IiIiIi0ljiHyu/Gs2XLlkEkEmHZsmUy6zIzM+Ht7Y3PPvsM1atXh4mJCcqVK4fGjRtj6tSpuHfvnlpijY2NxdKlS/Hxxx+jcuXKMDIyQqVKleDu7o7FixcjJiZGLfshUtWdO3ewceNGjBkzBk2aNIGhoSFEIhFGjhyp6dCISIsZaDoAIiJtUKNGDdjb2wMAMjIy8OzZM1y5cgVXrlzBli1b4O/vj9q1a2s4ytIpPj4eQ4YMwb///gsAsLCwQK1ataCnp4fHjx9j586d2LlzJz755BPs3bsXNjY2mg2YyoT79++jd+/emg6DiIiIqMw6fPgwAMj8TXb79m307dsX9+/fBwDY2tqiUaNGSE5Oxt27dxEWFoZ169ZhxowZWLx4MUQiUaH2f+DAAYwbNw5xcXEAAEdHRzg4OODdu3e4ePEiLl68CE9PT2zevBkDBgwo7GESFcjs2bNx5MgRTYdBRDqGI4GIiFQwevRoXLhwARcuXMDly5fx6tUrnDp1CuXKlcPLly8xYcIETYdYKiUnJ6Ndu3b4999/UbFiRXh7e+Pdu3e4efMmQkJC8O7dO+zcuRO2trY4ceIEPDw8kJSUpOmwqQwwNDSEm5sbJk2ahO3bt+PMmTOaDomIiIiozHj16hWCg4Ph4uKCunXrSpbfuXMH7u7uuH//Pho3bgxfX1+8efMGV65cwe3btxEVFYV58+ZBJBJh6dKlhc7Ddu/ejf79+yMuLg59+vTBgwcP8PTpUwQHB+PJkyd49OgR+vXrh/j4eAwaNAg+Pj7qOnQipapWrYrevXtj0aJFOHHiBAYNGqTpkIhIB3AkEBFRIXXp0gWLFi3CV199BV9fX0RFRaFSpUqaDqtUmTJlCm7evAkbGxsEBASgXr16UuuNjIwwbNgwuLq6ok2bNggLC8OUKVOwZcsWDUVMZUWDBg1w+fJlyc+vX7/WYDREREREZcuRI0cgCILUKKDMzEz0798f8fHxcHV1xblz52BpaSm1Xbly5TB//nzUrVsXgwYNgpeXFzp16lSgkTqPHz/GhAkTIAgCJk6ciI0bN8q0qVWrFvbv34+JEydi8+bNmDRpEtzd3Tn7AxW7DRs2SP186NAhDUVCRLqEI4GIiIqgTZs2AABBEPD06VO5ba5fv44RI0bA0dERJiYmsLGxgYeHB7y9vZGdnS3TXhAEHD9+HF9//TU++ugj2NrawtjYGNWqVUO/fv1w/vx5pTE9ffoUw4cPR5UqVWBiYoI6dergp59+QkpKitz2np6eEIlEcHd3V9rv8OHDIRKJ8NVXXyltJxYREYHt27cDAJYvXy5TAMqtXr16krnAd+zYIfNMFvG84t7e3nK3Dw8PlzzPRRFfX1988cUXqFatGoyMjFChQgV069ZN4VD7+fPn5zv3sqOjI0QiEfz8/OSuf/ToESZNmoQ6derAzMwMlpaWaNGiBdasWYO0tDSF/ZZGISEhmDt3Ltzd3VG9enXJOezYsSN27twJQRDkbpf7tXv+/DlGjx6N6tWrw9jYGE5OTpg+fbpkCo68cp/fW7duoX///pLrum7duli4cCFSU1OL8aiJiIiIqDjImwpu3759uH37NvT09LBr1y6ZAlBuAwcOxMCBAwEA8+bNk5tXKbJs2TIkJyfDyckJq1evVtp2zZo1cHR0RHJyssyzi/z8/CASieDo6Khw+5EjRyp9PlJcXBwWLFiA5s2bw9raGiYmJnBxccH06dMRFRUld5v8nmPp7e0NkUiE9u3by12flZWFHTt2oFOnTqhYsSKMjIxQrVo1DBkyBDdv3lR4LKVRYmIidu/ejUGDBqFevXqwtraGqakpnJ2dMWnSJIU5et7XztvbGy1btoSlpSWsrKzQsWNHnDhxQu62uc9vVlYWVq1ahcaNG8Pc3Bzly5dHz549ERwcXFyHTERUKCwCEREVQXJysuTf5ubmMus9PT3h6uqKnTt3IiYmBnXr1oWlpSXOnz+PUaNGoW/fvsjKypLaJikpCZ9++ik2bNiAFy9eoGrVqqhXrx5SUlLw119/oV27dti0aZPceK5fv46PPvoIu3btQkxMDOrXrw+RSITFixejQ4cOSE9Pl9lm5MiRMDIywsWLF3H37l25/cbFxeHAgQMAgHHjxql0bv78809kZmbCxsYGI0aMyLf9iBEjYGNjg8zMTPz5558q7UMVgiDgm2++QceOHXHgwAGkpKSgYcOGMDQ0xKlTp9C7d29MnjxZbfsT27NnDxo2bIiNGzciMjIStWrVQqVKlXD9+nVMmTIFHTp0wPv379W+3+Iybtw4LFy4ELdv34alpSWaNGkCExMT+Pr6YsSIERgyZIjS7Z8+fYpmzZph586dqFixImrXro2IiAisXLkSLVu2VDoS5/Lly2jZsiX+/vtvVKtWDTVq1MD9+/cxd+5cdOzYkVMIEhEREWmRhIQE+Pr6ws7ODi1btpQs//333wEA3bp1k5oiTpHvvvsOQM6zHq9du6bSvrOysrBv3z4AwMSJE2FiYqK0vYmJCSZOnAggJ7/Jm7sVxc2bN9GwYUPMmzcPoaGhsLW1hbOzM8LDw7Fy5Uo0bdoUt27dUtv+ACA2NhYdOnTA6NGjce7cORgbG6Nhw4Z4//49fv/9d7Ro0QJ//PGHWvdZnPz8/DBs2DAcOHAA79+/h7OzMxwdHfHixQts3LgRH330Ub4FmWnTpmHUqFGIiIhA3bp1YWBgAF9fX/zvf//DqlWrlG47YMAATJs2DfHx8ahfvz4yMjJw9OhRtGnTBvv371fnoRIRFQmLQERERSAemm1lZYVatWpJrdu3bx9mzJgBa2tr+Pj4IC4uDjdu3MDz588RHByM2rVr4/Dhw1iyZInUdkZGRti8eTMiIyMRFRWFmzdv4saNG3j79i327dsHU1NTfPPNN3j+/LnUdmlpaRgwYADi4+PRrl07PHv2DNevX8f9+/dx8eJFPHnyRFLIyc3W1hZ9+vQBAGzdulXuce7ZswcpKSlwdXVF06ZNVTo3Fy5cAAC0bdsWxsbG+bY3MTGRjKwKDAxUaR+q8PT0xPr161G9enX8888/iImJwfXr1/H69WucOHEClSpVwq+//opdu3apbZ+BgYEYOXIkBEHAmjVrEBcXh7CwMDx+/Bh3795FixYtEBQUJElctcHUqVMRFhaGuLg43L17F1euXMGLFy8QHBwMZ2dn7N27V2nCuHTpUtSsWRNPnz7FjRs3cPv2bYSFhaFWrVp48OABxowZo3DbOXPmoEOHDnj58iWuXbuGhw8f4vz586hYsSKCgoIwY8aM4jhkIiIiIioGx44dQ3p6Oj777DOpkfzi/KFTp04q9dOiRQvJaCFV84fQ0FDJjViq7qdjx44AgPfv3yM0NFSlbfITExODHj164MWLFxg3bhxevnyJR48eISwsDFFRURg+fDhevXqFfv36ITMzUy37BIAhQ4bg/PnzaNu2LcLCwvDixQtcv34dcXFxWL16NbKysjBq1Cg8ePBAbfssTs7Ozjhw4ABiY2MRGRmJq1ev4u7du3jz5g3mzJmD+Ph4SV4mz4sXL7B27Vps2rQJr169wpUrVxAVFYU5c+YAAL7//ntcunRJ7rYXL17EsWPHcOjQIURERODKlSt48+YNxowZIzmPikZrERGVNBaBiIgKKDMzE48fP8ZPP/0kmT7g+++/h6mpqVSbH374AQCwfft2DB8+HHp6Hz5yxXdYiUQirFq1SmqEjpGREcaPH4+qVatK7VdfXx/9+/fHlClTkJGRIblTTuzPP//Eo0ePYGJign379qFKlSqSda1bt8aaNWuQkZEh95jED1TdtWuX3NFC27ZtA6D6KCAAkiJVQebNdnZ2BgBERkaqvI0ysbGxWLhwIfT19XHo0CH06NFDan23bt0kc4AvXbpULfsEgB9++AGZmZlYtmwZvv32WxgZGUnW1alTB3/99RfMzc3h4+ODly9fqm2/xWnw4MFo2LChzPIWLVpI5q1W9sBcQRDw559/okaNGpJlDRo0kGxz7NgxXL9+Xe62lpaW+OOPP1C+fHnJsrZt22Lt2rUAAC8vL7x586bgB0VEREREJU7eVHAJCQlISEgAoHr+oKenh5o1awJQPX/IfSOdqvsR5ygF2U9+Vq1ahcjISPTq1QtbtmyBra2tZJ21tTW2b9+Ojz76CPfv38fBgwfVss8zZ87g+PHjsLe3xz///CP1t72enh6+++47fPXVV0hNTcWaNWvUss/i5uLigr59+8LCwkJquaWlJRYsWAB3d3fcvXtX4WigzMxMjB49GhMmTJAUJA0MDLBgwQJ06dIF2dnZMjdtimVkZOCnn36Suo7NzMywZcsWuLi4ICkpKd+RREREJYVFICIiFfz888+SuZcNDQ1Ru3ZtLF68GOXKlcOKFSvw008/SbW/fPkyIiIiUKVKFXz++edy+2zevDkcHBwQFxcnd/qC4OBgzJo1C71790b79u3Rtm1btG3bVjJVWkhIiFT7Y8eOAQD69++PypUry/Q3YMAAqcJQbu3bt4eLiwvevn0r84yca9euISQkBObm5hg0aJCCMyRLfIdd3j/IlRG3FSeARXXs2DEkJibC1dUVrq6uctv07NkThoaGuHv3Ll69elXkfb548QKBgYEwMDDA2LFj5bapUaMGWrRogaysLPj7+xd5nyUlIiICy5cvx4ABA9CpUyfJNTlr1iwAstdkbp9//jkcHBxklru7u6NFixYAgH///VfutmPGjJF7HYmv6YyMDJw6daowh0REREREJSg9PR3Hjx+XPHdFLPc0yYXJH+Lj41VqX5j95G6nrjwl95R08ujr66NXr14AgLNnz6p1n4MGDYKNjY3cNn379lXrPktCVlYWjhw5gsmTJ6N79+7w8PCQ5CkPHz4EoDxPUTQ7g3j56dOn5d5MaWBgIPd5uXp6evjmm28AKM5viIhKmoGmAyAi0gY1atSAvb09gJw//B89eoSUlBTY2NigQ4cOMu3FD9RMSUlB27ZtFfYbHR0NIOeOtNatWwP4cDdSftOTibcVu3fvHoCc0RXy6Ovro27dugqfvTJ+/HhMmzYN27ZtwxdffCFZ7uXlBSDnC3dlD2fNS9w2MTFR5W3EbeU9X6kwxK/D06dPlb4O4ru+nj9/Djs7O7XsU19fH//73/8UthNPsZB3Wj9FJk+erDR5KYwff/xRaYy5rVu3Dt9//73ckWJiea/J3OSNIhJr0KABrly5ovCZVIq2zX1NK9qWiIiIiEqPc+fOISEhAQMGDJAaLZ87zyhM/mBtba1S+7z7UWW73PGoI09JSkrCo0ePAORMe7xo0SK57cQj3VXNF/IjzlMOHjwomXovr9TU1ALtMyQkRO3PV7Wzs1P5eTqvXr1C9+7d882TFOUpBgYGcHFxkbtOnFenpqbi6dOnqFOnjtT6GjVqKLx+xNs+efIE6enpUtc6EZEmsAhERKSC0aNHY/78+ZKf4+LiMG3aNGzfvh1du3bFjRs3JEUiIGcaMiDnjjRV5qdOTk6W/PuXX37Brl27YGJigqVLl6Jbt26wt7eHmZkZRCIRtm/fjjFjxsjcjSS+q03eKCAxZetGjBiB2bNn4/Tp03j27Bns7e2RnJyMvXv3AijYVHAAUL16dYSEhEgSHFWI79RycnIq0L4UEb8OUVFRiIqKyrd97tehqPtMS0sr8GuvTFhYmFqflQRA5SnUgoKC8O233wIAvvrqK4wYMQLOzs6wtLSEvr4+njx5glq1aimdr1yV6zL3nZlF2VZRwe/AgQMKR8MRERERUfGTNxUckPOMVSsrK8kNd6rIzs7GkydPAOTkHqrI3e7Ro0do3rx5vtuIcxRAPXlKXFyc5N9Xr17Nt706chTgQ57y8OFDqWOSJyUlRaU+Vc13C0Le7AGKjBo1CiEhIahZsyYWL16MNm3aoHLlypJn0g4fPhy7du1SOC16xYoVoa+vL3dd7hxEXp6iat79/v17VKhQAdu3b8f27dtl2n766aeYPXu2wr6IiNSBRSAiokKwsbGBl5cX7t27h4sXL2LSpEk4evSoZL14ygAPD48CT/fl7e0NIKcYJG94uaK7mMR3tSn7Yl/ZugoVKqBfv37Ys2cPtm/fjvnz5+PPP/9EQkICGjZsiFatWhXgKHK+iP/nn38QGBiItLQ0yR/iiqSmpuLixYsAgDZt2kitE4/UUfRAz6SkJLnLxa/D8OHDlT6vRp789qlov+J92tvbIyIiokD7VMbPz09tfRWU+Nz169cPv/76q8x6ZSOAxFS5LhWNNCvotooSUfGdjURERERU8gRBwN9//w0jIyN8+umnMuvd3d1x/PhxnD17FtOmTcu3vytXrki+nHd3d1cphiZNmsDS0hLv37/H2bNnVSoCnTt3DkBODli/fn3J8qLmC0DOSJHCFpYKmxtt374do0aNKtQ+82rfvr3S4y9Or1+/xsmTJwEAf//9t9wZMfLLU969e4esrCy5haDcOYi8PEXVvFu87bNnz+TmKQV5hi4RUWHxmUBERIWkp6cneWDmv//+K/UlfaNGjQAAt2/fRnZ2doH6ffr0KYCcApI8ly5dkru8bt26AIA7d+7IXZ+VlYX79+8r3feECRMAADt27EB2dja2bt0KAAqfbaNM//79YWBggNjYWOzcuTPf9jt37kRcXBwMDAwwYMAAqXXiaRcU/aEtnlotL/HrEBoaWpDQVdpnbGws3r17p3CfkZGRiImJKfB+S6PCXpO53b59O9919erVK9C2ua/p3NsKgiD3P0dHx3zjJCIiIqLicfnyZbx69QodOnSAlZWVzPrBgwcDAE6ePCmZ6lqZtWvXAgDq1KmjUjEHyJlOuH///gCAzZs3Iy0tTWn71NRUbN68GUBOfmNoaChZJ84XlM04IC9Psba2Ro0aNQAUT55SHLlRaSTOUcqXLy+3AJSZmZnvSKvMzEyF50ucg5iYmMgt1EVGRip8RpR425o1a0qmgps/f77cHEV8EygRUXFiEYiIqAhatGiBHj16AADmzZsnWd62bVtUrVoV0dHR2LZtW4H6NDMzA5Azv3Fe9+7dwz///CN3O/GzXfbt2yc3Efnzzz/l9pnbxx9/jHr16uHZs2dYt24dAgMDYWxsjGHDhhXoGADA0dFRcofZjBkzlD6z5e7du/jhhx8A5BSick+tBwDOzs4AcqYlk2fjxo1yl/fo0QOmpqa4ceMGTp8+XaD4xfsMCQmRmxxu2LBB7nY1a9ZE8+bNkZ2djZUrVxZon6WVsmsyNTUV69evz7ePQ4cO4dmzZzLLg4KCcOXKFQCQe0coAGzdulXuHY3ia9rQ0BBdunTJNwYiIiIi0hxFU8GJDRw4EPXq1UN2djaGDRumcKpgAPjjjz8k01bPnz8fenqqf701c+ZMmJqa4smTJ/juu++Utp0yZQqePn0Kc3NzzJo1S2pd7dq1IRKJkJqaKveZNIGBgQoLLuJC1KpVq5CVlaVy7IDy3CguLk5yXhTtc+fOnSpPC12aiXOUhIQEuVPm7dy5U6UpwcXFREXLu3TpIlX8E8vIyJCbEwqCIMmPunfvnu/+iYhKhEBERAq1a9dOACDMmzdPYZsrV64IAAQAwtmzZyXL9+zZIwAQjI2NhdWrVwvJyclS271//144cOCAMGbMGKnlvXr1EgAIzZs3F16+fClZfuPGDaF27dqCiYmJAEBo166d1HYpKSlCzZo1BQBChw4dhDdv3kjWBQUFCZUqVRIMDQ3zPZ41a9YIAAQDAwMBgDB48GAlZ0i5xMREoVGjRgIAoWLFioK3t7eQmpoqWZ+Wlibs2rVLsLW1FQAILVu2FJKSkmT6OXfunABAEIlEwt69e6WOedasWZLjkvdrbfHixQIAwdraWvDx8REyMjKk1kdHRws+Pj7C9OnTpZYnJCQI5ubmAgBh8uTJQmZmpmTdH3/8IZiZmUn26+vrK7Wtn5+fYGBgIIhEIuHHH38UYmNjpdanpKQIx44dE/r27ZvvOSwNVq9eLTmHwcHBkuVv3rwRunfvLrkm5Z1/8XvI0NBQaN26tfD8+XPJujt37gjOzs4CAOGTTz6R2dbBwUGy7WeffSbExMRI1gUGBgqVKlUSAAgTJ04s8jG+evVKcgxPnz4tcn9EREREZZWiHMrFxUUQiURSOU5eYWFhgpWVlQBAaNy4seDn5ydkZ2dL1sfExAjz5s2T5CqjRo0qVIze3t6CSCQSAAh9+vQRHjx4ILX+0aNHwhdffCEAEPT09IR9+/bJ7cfDw0MAIHz88cfCu3fvJMuvX78u1KxZU2H+FRUVJVStWlUAIPTq1Ut4/Pix1Prs7GwhODhY+Pbbb6X+/hYEQZg7d64AQLCzsxNu3LghWf7q1Svhf//7n2SfefNFQRCErl27CgCEevXqCefPn5dZ//jxY2H58uWCl5eX3OMtTTIyMoSKFStKroOUlBTJuv379wtmZmaSPCXv+ff19ZXkvPr6+sKWLVsk11lGRoYwf/58yWt/8eJFqW137NghyVHMzMyEI0eOSNYlJSUJ48aNEwAIZmZmwpMnT4p8nBMmTBAACCNGjChyX0RUdrEIRESkhCpFIEEQhO7du0v++M9tzZo1kgTFxMREaNKkidCyZUuhVq1agp6engBAcHBwkNomNDRUUnwwNjYWGjduLLi4uAgAhBo1aghLlixR+Ed9cHCwJGkyMjISmjVrJtm2ZcuWwqBBg/I9npiYGKkv9fMWOAoqNjZW+OSTTyT9WVhYCE2aNBGaNm0qWFpaSpYPGzZMSEhIUNhPnz59JG2rVasmuLq6CpaWloKJiYmwZcsWhUWI7Oxs4fvvv5faf7NmzQQ3NzfBwcFBkvzJO5/r1q2TbGdjYyO4uroKVapUEQAICxYskBQp5J2jffv2SV5HAwMDoUGDBkKrVq0EFxcXpUWr0igxMVGoV6+epBBXp04d4aOPPhIMDQ0FY2NjYevWrfkWgebOnStUrFhRMDAwEJo2bSo0aNBAcu5r164tvHjxQmZb8fldtmyZJIlr3ry5pHAkvq6VXTfKfPTRR0KFChWEChUqCOXLl5f0Wa5cOcnyChUqFKpvIiIiorJKXg519+5dyd9u+QkNDZX6e8/W1lZwdXUV6tevL8mt9PX1he+//17IysoqdJx//PGHYG1tLdmPo6Oj4ObmJrmxDoBQtWpV4dixYwr7uHz5siR3Eud74ti7desmDBkyRGH+FRoaKjg5OUn2VbNmTaFly5ZCo0aNJHmEvFwjLi5OEqOenp7g4uIiNGnSRDAwMBDs7e2FRYsWKcxvYmNjhc6dO0v6rlSpktCiRQuhWbNmkhvzVMl/S4tt27ZJYra2thaaN28uVKtWTXL+hw4dqrQI5ODgIEydOlUAIFSpUkVo0aKFVF6wfPlymX2Ki0Dt2rUT+vbtK+mnRYsWkvxWX19f+P333wt1THv37pXKRcTXl7GxsdRyebERESnC6eCIiNRg/vz5AIDz58/j7NmzkuXffvstwsLC8NVXX8HJyQmPHj3CtWvXkJiYCA8PDyxfvlxmmrJGjRohKCgIvXr1gqmpKe7fv4+MjAx88803CAkJgZ2dncI4WrRogZCQEAwZMgTW1ta4ffs2srKyMHv2bPj6+krmI1amXLly6NevH4CcqQbat29f8BOSi42NDY4fP45Tp05h+PDhqFSpEh4+fIgbN25IpniYNGkSdu7cKfeBm2J79+7FwoULUadOHbx9+xbh4eHo0qULLl++rHQqMJFIhBUrViA4OBijRo1C5cqVcefOHYSEhCAjIwPdunXD+vXrsXv3bpltJ0+ejD/++ANubm5IS0vD/fv34ezsjIMHD2LOnDlKj7t///64d+8eZsyYgQYNGuDZs2e4cuUK3r17hxYtWmDevHlyp40ojczNzXH+/Hl8+eWXsLOzw9OnT/Hq1St8/vnnCA4ORqdOnfLtw8nJCdevX8ewYcMQFRWFhw8fwt7eHlOmTEFwcDCqVq2qcNuWLVvi8uXL6NGjB54/f46IiAjUqVMH8+fPh6+vr9LrRpmYmBhER0cjOjpa6vlNsbGxkuX5PUyWiIiIiPKX31RwuTVq1Ai3b9/Gtm3b0L17dxgaGiI0NBSRkZGoW7euJMdasWJFgaaBy2vAgAF48uQJFi9ejDZt2iAxMRFXr17FkydPAOT8DRwYGCiZdlseNzc3XLhwAd27d4eJiQnu378PIyMjrFixAkePHoWBgYHS4wwLC8Pq1avh4eGBuLg4XL16FeHh4ahVqxa++uornD59Gm3btpXaztraGoGBgRg3bhwqV66MJ0+eIDY2FhMnTsT169dRrVo1hfu0sbHByZMnsX//fvTq1Qv6+vq4ceMG7t69CysrKwwaNAh79+7F1KlTC3g2NWP06NE4dOgQWrdujfT0dNy7dw8VK1aEp6cnjh49Cn19/Xz7WLlyJbZv344aNWrg7t27SE9PR/v27fHvv/9ixowZSrfdt28fVq5cCSsrK9y6dQv6+vro3r07Lly4gEGDBhXqmFJTU6VykdTUVABAWlqa1HJ5U+ARESkiEgRB0HQQRERUunTt2hWnT5/GsmXLJM/qKQ5z587FwoULAQBbtmzBuHHjim1fpBnt27eHv78/duzYgZEjRxZoW0dHR0RERMDX17fIxUgiIiIi0pxWrVrh8uXLuHv3LurWravpcJR6+vQpOnTogIiICDRq1Ah+fn4oX768psMiNfLz80OHDh3g4OCA8PDwAm3r7e2NUaNGoV27dvDz8yuW+IiI1I0jgYiISMrjx49x5swZGBkZFfhL+4JasGAB5s2bBwCYOHEifv/992LdHxERERERlaxXr14hODgYLi4upb4ABOSMYPfz84OjoyPCwsLwySefSGYwICIi0kaKx6USEVGZk5WVhR9++AGCIGDgwIGoXLlyse9z/vz5qFmzJp48eYKnT58iKSkJ5ubmxb5fIiIiIiIqfnZ2dsjOztZ0GAXi6OgoGc0uCAIuXryIbt26aTosIiKiQmERiIiI4O3tjR07duDx48d48eIFLCws8PPPP5fY/ocPH15i+yIiIiIiIsqPvb29ZNYCIiIibcbp4IiICOHh4QgICEB8fDw8PDxw+vRpODo6ajosIiIiIiIiIiIiKgKRIAiCpoMgIiIiIiIiIiIiIiIi9eJIICIiIiIiIiIiIiIiIh3EIhAREREREREREREREZEOYhGIiIiIiIiIiIiIiIhIB7EIREREREREREREREREpIMMNB0AFV3dunURGxuLmjVrajoUIiIiIqJ8PXnyBOXKlcO9e/c0HQppCeY8RERERKRtSkvewyKQDoiNjUVycrJG9p2QkAAAsLKy0sj+qfTgtUAArwPKweuAxHgtECD/OtDU366kvTSZ8wD8PKMcvA4I4HVAH/BaIIDXAX1QmvMeFoF0gPhuuKCgoBLfd0BAAADAw8OjxPdNpQuvBQJ4HVAOXgckxmuBAPnXQevWrTUVDmkpTeY8AD/PKAevAwJ4HdAHvBYI4HVAH5TmvIfPBCIiIiIiIiIiIiIiItJBLAIRERERERERERERERHpIBaBiIiIiIiIiIiIiIiIdBCLQERERERERERERERERDqIRSAiIiIiIiIiIiIiIiIdZKDpAIiIiIhKQmpqKqKiopCQkABBEDQdTplgamoKAAgLC9NwJKRuIpEIJiYmsLa2RoUKFaCnx3vLiIiIiEor5kLFhzmP7tKlnIdFICIiItJ52dnZePr0KTIyMgDk/DFHxc/Y2FjTIVAxyc7ORnJyMpKTk/H+/Xs4OjpqdVJEREREpKuYCxUv5jy6S5dyHhaBiIiISOdFRUUhIyMDZmZmcHR0hIEB/wQqCWlpaQCYGOkiQRCQmJiIyMhIJCYmIjo6Gra2tpoOi4iIiIjyYC5UvJjz6C5dynm0s3RFREREVAAJCQkAgKpVqzLpIVIDkUgES0tLVK9eHQAQHx+v4YiIiIiISB7mQkSFo0s5D4tAREREpPPEUx+YmJhoOBIi3WJhYQEgZ555IiIiIip9mAsRFY0u5DwsAhEREZHOy87Ohkgk0tr5e4lKK5FIBJFIxAcMExEREZVSzIWIikYXch6++4mIiIiIiIiIiIiIiHQQi0BEREREREREREREREQ6iEUgIiIiIiIiIiIiIiIiHcQiEBERERERERERERERkQ5iEYiIiIiIiIiIiIiIiEgHGWg6AFIPQQDSUzNVbm9orA+RSJRrewEZaVkqb69voAd9A+kaYlZGNrKyslXuw8hE+vJjDP/FkC0gI71oMWRmZCE7Syi5GAxl68maiEFfX73nITtbQGZRY0jPQna2ajGIRCIYGutrdQxZGQL09GWXl4bzkJGeBaEoMWRlIzND9fe2gaEe9IoSg54IhkalP4bXCamY//dt6ItEmN+zAWytjJGVkdN/emqm/BjSsiAIhY8hKysbWQU5D0ayF6Wq+5fEket3ZmG2V0cf2hxD7na6fB68vLzw22+/4cGDB7CwsECXLl2wZMkSODg4qNTHli1bcODAAdy9exfR0dEwMzODk5MThg4divHjx8PU1FRme0EQsHPnTmzduhWhoaHIyMhAtWrV0LZtW2zfvl3S/uHDh9izZw/OnDmDx48f4/3793BwcEDnzp0xa9Ys2NnZFfk8ZGVmIytT9r2Z+zNBcrzZAkR6Ipm2RERERESkfby8vPDrr79K5UJLly6VmwspEh0djZ9++glHjhxBdHQ0HB0dMXr0aEybNg0GBrJljNDQUPz444+4cOEC0tPT0ahRI8yYMQN9+vSR2//BgwexYsUKhIWFwcjICG3btsXixYvRuHHjQh+3tmARSEckJ6Rhz7xLKrcfsdQdufN2QUCBtm/a2R4fdbGXWnbj7DOE+kaqtL1IJMLIZe5Sy7IyswsUQ7NuDmjSsYbUsuunInAr4IVK2+sb6GH44jZSyzLSsgoUg+v/HNGofXWpZVePh+NO4EuVtjc01sfQBa2llqWlZGLvgssqx9CyZ03Ub1tVatmVo09x79JrlbY3NjPE4HktpZalJGZg3+JglWNo3buWzLJLR57g4ZU3Km1vZmWEAT+6SS1Lik/D/mVXVY7BvW9t1HGrIrXs4sHHeHw9SqXtLWyM8cWsFlLLEmNS8ZfnNZVj+Lh/HdRuXklq2YX9D/E09J1K21tVMEHfGa5Sy+KjknF4dYjKMbQb5IKaTW2llgX88QARt6NV2t6mkhk+n9ZMalns6yT8vfaGStunp2ehmptsUdDv9/t4fjdGpT7K25mj13cfSS2LjkzE0d9uqrQ9AHQeUR816peXWua78y5ePIxTafuK1S3Rc3ITqWVvnyXi2KZQlWPoOroBqrmUk1p2dscdvHoSr9L2lRys0H2S9B8ib54m4ITXLZVj+GRcQ9jVtpFadmrrbURFJKi0vV1Na3wyoZHUsleP4nFq+23Jz/HJGaj7X+H7wM1gWJkaIv2/gl34qUv4dGJjVHaykurjxJZbeBf5XqUYqjnboOvYhlLLXt6PwxmfOyptDwA9vmoisywtKRPZ2aoVkvQN9GBsZii1LCszG+kpqt98YWJuCJG+9BfeqUkZKhfkSm0MGdlKb0IR1xSy0tL/i8EIojw1udTEDJWLD/qG+jA2lf7zNb8Y8jKxMEKe2kWRY8jMyMacn37Ccs9laN2qNVYs9cS76Hf4bcOv8PX1Q8C586hW7cPfC/JiSEnMwOWgYJSzKY9xYyagkq0tkpKTceHCeUyZMgV/HfgLx/45CX19fRgY6sPI1ACZmZkYOHAgDh8+jD59+qJP734wMjRE5ItIXLp8CSnv0yX9b97ohc1eG/G/Tz5F78/6wMraApeDL2PDhg3YvXs3Ll68CPuqNQGodh4MjPRlbp64c+Elrh4Pl2mb+zNB7F1kImztLVXaFxERERERlV5z5szBokWL4O7ujjVr1uDt27dYs2YN/Pz8EBwcjOrVq+fbx/v37+Hh4YH79+9j0qRJaNy4MQICAjBz5kzcunULu3btkmp/8+ZNtG3bFsbGxpg2bRoqVqyI3bt3o2/fvti6dSvGjBkj1X7btm0YO3YsGjZsiOXLlyM1NRXr16+Hu7s7Lly4gCZNZL830CUsAhEREVGhpeca+ZgmZwQAUVnw4MED/LLKE02bfIQT/56W3KXWpVNXeHRsi3kL5mLr5u359AL8um6DzLJJE7/Cd1O/gde2LbgQeB7tPNpL1i1fvhyHDh3C33//ja6dP0FGmuJi2Oe9Pse0KdNhY2MDADC1MMKEiRPQqlUrTJgwAXPnzoX31t0FO3AiIiIiIirTHjx4gKVLl6JZs2bw8/OT5EKffPIJ3NzcMHv2bOzcuTPffjw9PXHnzh2sXLkSU6dOBQCMHTsW1tbW+PXXXzFq1Ch07NhR0n7y5MlISkqCr68vXF1zbqgeM2YMWrZsialTp6Jv376S3Cc2NhZTp05F9erVERgYCCurnBtV+/fvj/r162Py5MkICAhQ52kpdfhMICIiIirz3u//Ay8H9JH6L+P5M4XtM16/kmmfsGeXwvYA8OL7GXjco4fkv1fjxyhtn3TmlKTv5/0+x+MePZAcovrIwILYtWcnzK1N4Ofvi1VrVqLxRw1QvpI1mrVogj8P7AMAvHz1EkOHDoWtrS1MTU3RtWtXPHr0SG5/u3/fhQ6d26FytQqwtSsHd4/W2LVH9g//U6dOYcSoYWjYpB4qVLZBleq26Pq/Tjh2/F+ZtuO/HAsTM0O8f/8eU6ZMQdWqVWFsbIymHzXBXwcPqPeEFNAf+/YiKysLX06cJDVNQbNmzdHWvS0OHzmElJSUQvdfo0bO6Ou4uDjJsuTkZPzyyy/o0aMHunfvDgBISEhQOMKtWbPmkiQot4EDBwLImUqBiIiIiMqemD17pPKUxz16ID0iQmH7jFevZNpH7/BWuo+8uVDEsOFK2yecOCGzj+LKhby9vSESiXDu3DmsWLECzs7OMDExQb169bB3714AwMuXqudCPj4+aN26NSwsLGBmZobmzZvD29tbpt2pU6cwaNAg1KpVC6amprCysoKHhwf++ecfmbYjR46ESCSSyYUaNmyIP//8U63no6B+//13ZGVl4ZtvvpHKhVxdXeHh4YEDBw6olAvt3LkTZmZm+PLLL6WWT5s2TbJeLDw8HOfPn0e7du0kBSAAMDQ0xDfffIOEhAQcPnxYsvzIkSNISEjA2LFjJQUgALC3t0e/fv1w/vx5hIeHF/TQtQpHAukIMytjDPm5lcrt805BIhKhQNvnfQYNADTtZC8zNVpB6BvoFTmGZl0d0KRTDTmtVWNorF/kGFz/54iPutrLaa0aY1ODIsfQoocTmv/PsdAxmFoYFiwGQz1EBT6UWtaqV0249XAqdAzm1gW7puU9l6hNn1po1atmoWOwKG9S5BjafuGMNn1rq7R93mcrAIB1JbMix+AxsE6BnseTV7kq5irHEBgYKPeZQO0HuxQphgrVLYp8HjoMr1egZwLlZWtfsBgM5MTQaVT9Aj2PJ6/KTlZFjqHr2AZFisGutrVUDC0Xn5Vaf/nHdggMDAQAuLu3khvDJ+MbFuiZQHlVdbEp2Hkw0sfrPLPwGZtL/wmUmJyAjKdPpNsYCjC2NJLbp56QLdNelBgHUwXtASDjxQukP3r8IS5bW6Xt0zKSZfYh5PrjWd9AT+n2qjAxz5neTTyt18+L5iExMRFjxo6BqakpvLy8MHrsSJiaG+OHH35AmzZtsGDBAkRERGDNmjXo178vbt68CT29D6/zhAkT4OXlhe7du2PeF/NgaGiI06dPY+Kk8Yh4/hRLliyRtPX29sa7mLcYOmwoqlevjrdv32Lnzp34YmBf7N27FwMGDPhwvgxzPly6desGMzMzzJgxA1lZWdiwYQOGjxoKl/rOaNFCelpPeRITE5GWlia1TNn1WLFixXz7vHr1CgCgfUcPmdfEva07zl84j0fh9+Hm5iZvcwA5v3vF4uPjkZGRgfj4eFy4cAGr166ElZUVOnXtIOnf7/QFxMXFoWXLlpgxYwa8vLwQFxcHMzMz9OzZE56enipNu/DiRc40upUrV4appWE+rZWr37YqXFpVkVme+zNBbLOfRZH2RURERETqkRUTK5WnAICQnq6gNSBkZsq0z4pWPg1+3lwo21b5FOVZ8QmyMRXhpipVzJo1KycXGpOTC23ZsgVDhgyBvr4+ZsyYIZML9e7dW+ZGqgkTJmDLli3o3r07Fi5cCENDQxw/fhyjRo3Cw4cPsXjxYklbb29vvHnzBkOHfsiFfHx88Nlnn+GPP/6QyoXE5OVCAwYMgJOTk8q5UGpqqsrnRJVc6PLlnEdatGnTRmZdmzZt4O/vj7CwMKW50Js3bxAREYE2bdpIPQcVABwdHWFnZ4fg4A+PrchvnwAQHByMkSNHqtTex8cHwcHBcHR0VHKk2o1FIB0hEsk+1L5g24uKtD3w34PY5XzZxxgKGINe0WMwMNQHivA9DmPIoaeOGOQ8kF6XY9A3lP+Q79JwHgyLGoO+Hoz0izaAVhdjyMgTjpGJgeQ6UPSaGRoXLQZ9fT3oF/E85C30iSB77YpEIrkFQXnb5yyTv7wgceRZW4RtC7Z/8f+Tk5Nx7do1mJiYAAAGDBgAR0dHDBo0CIsXL8asWbMk21aqVAnTpk3DuXPn0KVLFwDA0aNH4eXlhWXLluGHH36QFFu+++47TJo0CStWrMC4cePg5JRzk4CXlxfMzc2lYpoyZQqaNm2KhQsXSkap5Fa3bl1s3/5harV+/frB2dkZa9euxZ49e/I95smTJ8PHx0flc6RKwTIyMueZiDVq1JB5XWrUyLk55cWLF0pfs9zrOnfujGvXPjyTrlWrVli7di0qVfrw3Lm7d+8CANauXYvs7GzMnTsXDg4OOHv2LDZu3IigoCBcv34dFSpUUBr7nDlzAACjRo0q8jWlb6An9+YUeZ8J8gq8RERERESakjcX6t+/PxwdHTFw4ECFudDZs2fh4eEBICcX2rJliyQXEvv6668xadIkLF++HGPHjlWaC3333Xdo2rQpFixYILcIpCgXWrNmjUq50Ndff11suZC8G9DEyyIjI5UWgZT1IV5+7969Au+zsO11EYtARERERAQgp0AiTnoAwM7ODi4uLrh9+zamTJki1bZ9+/YAgPv370uKQD4+PjA2NsaQIUPw7t07SRHI2NgYn3/+OTZu3IgzZ85g3LhxACCV9CQlJSE1NRWCIKBjx47YvHkz3r9/D0tLS6n95k6oAMDBwQF16tTBgwcPVDrGGTNmYOjQoSq1VVVycjKAnOPMS3w+xW1UsWHDBiQkJOD169c4ffo07t+/j9jYWKk279+/BwC8e/cO165dQ9OmTQEAffr0gbW1NZYuXYrVq1dj0aJFCvezZMkS/PXXX+jduzdGjBihcnxERERERLqmsLmQuAiUNxfKjbmQ8lxIWR/ifnL3UdB9qjtf00YsAhEREVGZp1++HIxq15JaJjJSPNWayMBApr1+BeVD5Q2rVUNWwod56QzKlVcek7WVbEx5hsarW61atWSWlS9fHlWrVpVKiMTLASA6Olqy7M6dO0hLS5OMfpHn9evXkn+Hh4djzpw5OHbsGGJiYmTaxsbGyiQ+8mKsWLEiIpTMW55b/fr1Ub9+fZXaqsrMzAwAkJaWJjN9gXi6BXEbVeS+S27o0KFYuXIl/ve//8Hf3x8ff/yxVH/NmzeXFIDExo4di6VLl+LMmTMKi0Br167Fjz/+iPbt22PPnj1qGVlGRERERNqHuVAO5kKFo45cKHcf8qSmpkr1oay9vH0WtL0uYhGIiIiIyrzyQ4ag/JAhKrc3tLNDraNHC7SPap4rCtTe6pNPYPXJJwXapqj09eVP1adoOSA9RUB2djYsLCxw6NAhAED6f3OJG+VKImvWzHlWW2JiIjw8PBAfH49vv/0WjRs3hpWVFfT09LB9+3bs3bsX2dnZMvvL/bBRRXEoEx8fr9KDScWqVJF9xk1e1atXx61btxAZGQlnZ2epdflNbaCKESNGYPr06di8ebOkCCROLqtWrSrT3s7ODgDkJpMAsGrVKkybNg2dOnXC33//rfMJDxEREREpxlwoh7pzIXmYCynuI3f7vCIjI6X6UNZe3j5zt69Xr16hYtR2LAIRERERkVrUqVMH9+7dQ6NGjVC5cmWp6eDyOnfuHJ4/f45t27Zh9OjRUuu8vLyKLcZvv/1W7fNgu7m54cSJEwgKCpJJfIKCgmBqaoqGDRsWOFYxcaKWe0q4Vq1aQSQS4dmzZzLtnz9/DgCoXLmyzLrly5dj5syZ+OSTT3Do0CGZuxqJiIiIiKjg8uZCyjAXkla5cmXY29vjxo0bSElJkRpRFBERgVevXqFr165S+xT3n5d4We7ZFdzc3LBp0yYEBQVJpjLP275Fixb5Hqs2K9pTlYmIiIiI/jNy5EgAwPTp0+XeuRYfHy8pDInvqMubWISGhuLw4cPFFuOMGTNw+vRplf9TxeDBg6Gvr4+1a9ciMzNTsvzq1avw9/dH3759pUbbxMfH4969e1JzhaempiIuLk5u/2vWrAEAtGnTRrKsRo0a6Ny5M0JCQnDhwgWp9uvWrQMA9OzZU2r5kiVLMHPmTPTo0QOHDx9mAYiIiIiISE2YCxU+FwKAYcOGITk5GRs3bpRavnLlSsl6MScnJ7i7u8PPzw/Xrl2TLM/MzMS6detgaWmJXr16SZb37t0blpaW8PLyQkJCgmT5s2fPsH//frRt2xZOTk4qHa+24kggIiIiIlKLzz//HBMnTsSmTZsQFhaGzz77DHZ2doiJiUFoaCj+/vtv3L17F46OjnB3d4ednR2mTZuGJ0+ewNHREXfv3oWXlxcaNWok9ce8OhXHPNguLi6YMWMGli5divbt22PYsGF49+4dVq9ejUqVKmHJkiVS7Q8dOoRRo0Zh3rx5mD9/PoCc+cEbNGiAzz//HA0aNEClSpUQFRWFo0eP4uLFi/joo4/w7bffSvWzfv16tGnTBv/73//w9ddfw97eHufOncOBAwfQrFkzfP3115K2v/32G3788UdUrlwZffr0wf79+2WOQ90PiSUiIiIiKivy5kJ9+vRB1apV8ebNG+ZCucjLhYCcAtWBAwcwY8YMhIeHo0mTJvD398euXbswaNAgdOrUSaqfdevWwcPDA926dcOUKVNQsWJF7Nq1C9evX8fmzZtRrlw5Sdty5crB09MTEydOhLu7OyZMmIC0tDSsX79e0peuYxGIiIiIiNRm48aN6NixIzZv3oz169cjKSkJlSpVgouLC5YsWSKZV9rGxganTp3CDz/8gI0bNyItLQ2NGzfGnj17cP369WJLfIrL4sWL4eDggN9++w3ffvstLCws0KVLFyxZskTpw2HFKlSogPHjx+P8+fM4ceIE4uLiYGFhgXr16sHT0xNfffWVzINWXVxcEBwcjDlz5mDbtm2Ii4tD9erVMWPGDMyZM0fqjrsrV64AAN68eSMz5YQYi0BERERERIWXOxdavXo1cyEVcyEAsLKywvnz5/HTTz9h//792Lx5MxwcHLBkyRJMnz5dpn2zZs0QGBiIH3/8EZ6enkhPT0ejRo2wf/9+9OvXT6b9hAkTUKFCBXh6emLGjBkwMjJC27ZtsXjxYjRp0qTI56C0EwmqPjmKSq3WrVsDkD8PYnELCAgAAHh4eJT4vql04bVAAK+DsqjhvJNSP9/6uVupvA7CwsIAAI0aNdJwJGWLsmcCke7I7/0l7zNBk3+/knbS9DVTGn+3UcnjdUAArwP6QFuuBeZCxYs5T9mgyvuoNOc9fCYQERERERERERERERGRDmIRiIiIiIiIiIiIiIiISAexCERERERERERERERERKSDWAQiIiIiIiIiIiIiIiLSQSwCERERERERERERERER6SAWgYiIiIiIiIiIiIiIiHQQi0BEREREREREREREREQ6iEUgIiIiIiIiIiIiIiIiHcQiEBERERERERERERERkQ5iEYiIiIiIiIiIiIiIiEgHsQhERERERERERERERESkg1gEIiIiIiIiIiIiIiIi0kEsAhERERGRWoSHh0MkEmH+/PmaDoWIiIiIiKjEMBei0oxFICIiIiIiOUJDQ9GzZ0+UK1cO5ubmaNWqFQ4ePFjgfry8vNCkSROYmprC1tYWgwcPRkREhNy2ycnJmDlzJhwdHWFsbAxHR0fMnDkTycnJcttHRERg8ODBsLW1hampKZo0aQIvL68Cx0hERERERCTGXEi3GGg6ACIiIiLSDQ4ODkhJSYGBgfb/iXnz5k20bdsWxsbGmDZtGipWrIjdu3ejb9++2Lp1K8aMGaNSP3PmzMGiRYvg7u6ONWvW4O3bt1izZg38/PwQHByM6tWrS9pmZWXh008/hb+/P4YNGwYPDw/cvHkTv/zyCy5fvowzZ85AX19f0j4yMhKtWrVCfHw8vvvuOzg5OeHIkSMYP348nj17hoULF6r9vBARERERkSzmQrKYC5Ue2n9VEhEREVGpIBKJYGJioukw1GLy5MlISkqCr68vXF1dAQBjxoxBy5YtMXXqVPTt2xc2NjZK+3jw4AGWLl2KZs2awc/PT5IQfvLJJ3Bzc8Ps2bOxc+dOSXsfHx/4+/tj8uTJWLdunWS5o6Mjpk+fDh8fH4wePVqyfPbs2Xj9+jX++usv9OnTBwAwbtw4fPbZZ1i6dCmGDx8OZ2dndZ0SIiIiIiJSgLmQNOZCpQungyMiIiIq47y9vSESiXDu3DmsWLECzs7OMDExQb169bB3714AwMuXLzF06FDJUPuuXbvi0aNHUv3Imwc797LTp0/D3d0dZmZmKF++PIYOHYro6OiSPFSVhIeH4/z582jXrp0k6QEAQ0NDfPPNN0hISMDhw4fz7ef3339HVlYWvvnmG6k7Al1dXeHh4YEDBw4gJSVFslycBE2bNk2qn0mTJsHU1FQqSUpOTsaBAwfg5OQkSXrEpk6diqysLOzZs6dAx01EREREVNYwF5LGXEg3cSQQERERlXl77+3Fvnv7itRH3Qp1sezjZQrXzzw/E/ei7xVpHwPqDsCguoOK1Icys2bNQmJiIsaMGQNTU1Ns2bIFQ4YMgb6+PmbMmIE2bdpgwYIFiIiIwJo1a9C7d2+EhoZCTy//+4pOnDiBdevWYdy4cRg+fDguX74Mb29vxMbG4t9//y10zBkZGYiPj1e5vaWlJYyNjZW2uXz5MgCgTZs2MuvEy4KDgzFy5Mgi9ePv74+wsDC4ublBEARcuXIFVatWhYODg1RbU1NTNG3aFFevXoUgCBCJRAgLC0NKSgpat24t03fr1q0hEokQHBysND4iIiIiIuZCOQqbC6mCuZBsP8yFShaLQIW0e/dunD9/HteuXUNYWBjS09OxY8cOhW+AhIQEzJ8/H3/99Rdev34NOzs7fPHFF5g3bx4sLCxKNngiIiKSEpsai8fxj4vUh5WxldL1LxNfFnkfsamxRdo+P8nJybh27ZpkGoP+/fvD0dERAwcOxOLFizFr1ixJ20qVKmHatGk4e/YsunTpkm/fN2/exI0bN+Di4gIAmDBhAgwMDODl5YWHDx8Weqh+YGAgOnTooHJ7ZX+viUVGRgKA1BzVYuJl4jbq6MfNzQ0xMTFITk5Gw4YN5fZVvXp1BAUFITY2FuXLl1fat7GxMSpWrKhSjERERERUtjEXylHYXMjDwyPfvpkLKe6HuVDJYBGokH766SdERESgYsWKsLOzQ0REhMK2SUlJaNeuHW7cuIGuXbti0KBBCAkJwS+//AJ/f38EBATozJyRREREpL0mT54s9TeJnZ0dXFxccPv2bUyZMkWqbfv27QEA9+/fV6kI1Lt3b0nSI9a1a1d4eXnhwYMHhU58mjRpgtOnT6vcvkGDBvm2SU5OBgC5d8mJz4+4jbr6UdY2b/vy5cur1F6VGImIiIiIqPC5kCpFIOZCyvthLlT8WAQqpK1bt8LZ2RkODg5YtmyZVDU4rxUrVuDGjRv44YcfsGzZh6GRM2fOxPLly7F69Wql2xMRERGVhFq1asksK1++PKpWrSpzw0r58uUBQOV5rOX1XbFiRQDAu3fvChqqRLly5dC5c+dCby+PmZkZACAtLU1mXWpqqlQbVfsxNTVV2o+yfRa2fX4PayUiIiIiohzMhXIwF9JNLAIVkqpvMEEQsHXrVlhYWGDOnDlS6+bMmYPffvsNW7duZRGIiIhIg8qZlEMta9k/zAuiqkXVfNcnpCUUaR/lTMoVafv86OvrF2g5kPO3jipyPwy0sH3Ik56ejpiYGJXbW1tbyyQheSmb5kDZ1APy+rl16xYiIyNl7u7L20/58uVhZmamcNqCyMhImJubo1y5cvnGmJaWhnfv3kk9yJWIiIiISB7mQjmYC+VgLqSbWAQqZg8fPsTLly/RrVs3mJubS60zNzeHu7s7Tp48iefPn6NGjRoailL3PI9JxqGQF2jrXBHN7Iv3lwQREWm/QXUHFetDRgEofVAqFd7FixfVPg+2m5sbACAoKEhmnXiZuE1+/Zw4cQJBQUEyiU9QUBBMTU0l816LRCK4uroiICAAERERUg9ETUlJwY0bN+Dm5gaRSAQAaNSoEUxMTBAUFISsbAEpGVkw0teDkYEeLl26BEEQVIqRdNeVK1cwb948XLx4ERkZGWjUqBGmTp2K/v37q9xHWloali9fjl27duH58+coX748evTogUWLFqFSpUr5bv/pp5/i+PHjMDY2ltzBSURERKULcyHtxVxINkbmQvKxCFTMHj58CAAK53Z0dnbGyZMn8fDhw3yLQK1bt5a7/NatW7C3t0dAQEDRgi2EhIScKr4m9q3M3AtJeJ2cjQ2+D7C2owVMDUSaDknnldZrgUoWr4OyJzMrU+rngICAUnkdmJqawtjYWOFw8bIuIyMDQM6dZHnPUXZ2NgRBkFku/jkzM1Py77zLct/VlrudWHp6umT/hX1t6tati3///Vfl9vXr1893X1WrVkXr1q3h5+eHoKAgNGvWDEDOMaxduxaWlpb45JNPpPq5f/8+DAwMpKZ66NevHxYvXow1a9agb9++kjsAr127Bn9/fwwcOBD6+vqSfgYOHIiAgACsWLECq1atkvSzfv16pKSkYODAgZK2+vr66N27N/744w/s2rsPn/bsjWQAVsYieHp6Ql9fH3379i2Ra158fSh6z8v7TEhISICVlfIHCFPh+fr6olu3bjAxMcHAgQNhaWmJv/76CwMGDMDz588xbdq0fPvIzs5Gr169cPLkSbRq1Qp9+/bFw4cPsXXrVpw9exaXLl2Cra2twu29vLxw8uRJmJiYFOkOVyIiIiKSrzieCeTk5AR3d3f4+fnh2rVraN68OYCcXGjdunWwtLREr169pLa5d+8eDA0NpXKhwYMHY/HixVi7di0GDx4syYWuXr0Kf39/DBkyRGpauWHDhiEgIAArV67EunXrJMs3btyIlJQUDBs2TLLMzMwMffv2xZ49e3Dw4EH06dNHsm7lypXQ19fHoEHFW9jUNiwCFbP4+HgAOcPt5BEnv+J2pB6vk7Ml/74XnYWPKvNSJyIi0kXlypVDp06d1N7vqlWr0LlzZ/Ts2ROTJ09GhQoV8PvvvyMkJAS//vqrZCoCsSZNmsDe3h4PHjyQLKtTpw6mTp0KT09PdOnSBYMHD0Z0dDTWr1+PSpUqYcGCBVJ9jBgxAnv27MGGDRsQHx+Ptm3bIiwsDJs3b4a7uzuGDx8u1X7BggXw9fXFpPFjMP7LENg7OOL08aM4cfwYvv/+e9SpU0ft54VKv8zMTIwbNw56enoICAhA06ZNAQBz586Fm5sbZs+ejX79+kndYSmPj48PTp48iUGDBmHPnj2SOy83bdqEL7/8Ej/99BM2b94sd9vw8HBMmzYNU6dOxf79+/H69Wu1HiMRERERFc8zgQBg3bp18PDwQLdu3TBlyhRUrFgRu3btwvXr17F582aZXKhevXpwcHBAeHi4ZJmLiwtmzJiBpUuXon379hg2bBjevXuH1atXo1KlSliyZIlUH6NGjcLOnTuxfv16xMfHw8PDAzdv3sSGDRvw8ccfy4xgWrJkCc6cOYNhw4bh2rVrcHJywpEjR3D06FHMmjULLi4uaj8v2ozfjGsReUPcgA8jhDw8PEoyHAAf7ujUxL6VMTh7UvLvBg0awKN+ZQ1GUzaU1muBShavg7In9+ctkPPal8brICwsDABgbGys4UhKJ0NDQwCAkZGRzDnS09ODSCSSWS7+2cDAQPLvvMtyj0LJ3U7MyMhIsv/S9tq0atUKgYGB+PHHH7F69Wqkp6ejUaNG2L9/P/r16yd3G3nnafny5ahVqxZ+++03TJ8+HRYWFujSpQuWLFkCJycnmT5OnDiBBQsWYN++ffjzzz9hZ2eHqVOnYu7cuTIPYHV2dkZQUBCmfv8Ddu3YhqSkRDg718GmTZswfvx4yZf2xU0kEsHExAQtWrSQu17eZwJHARWfc+fO4fHjxxg1apSkAATk3JQ2e/ZsjBw5Ej4+Ppg7d67Sfry8vAAAS5culbqWJkyYAE9PT+zZswdr1qyRmVdeEASMHj0adnZ2WLBgAfbv36++gyMiIiKiYtesWTNJLuTp6alSLiTP4sWL4eDggN9++w3ffvutVC6Ud0YsfX19HDt2TJIL7d27VyoXyvtsJnt7ewQFBWH27NnYvHkzEhMTUafOh1yIpLEIVMzEI4AUjfQRT4+haKQQERERUXEbOXKkwrmh/fz85C53dHSUmeJJ1WVi7du3L9XTRDVp0gRHjx5Vqa2i4xCJRJgwYQImTJigUj8WFhZYsWIFVqxYoVJ7JycnbN6+U/KzlakhTAwVP7yWdJ/4Pdu1a1eZdd26dQMA+Pv7K+0jNTUVly9fhouLi8yIIZFIhC5dumDz5s24evUqPv74Y6n169evh7+/PwICAvJ98DARERGRphU1FxLf+MZcSFZJ5EJ79+5VqW1ZxyJQMRM/C0j8bKC88ntmEBERERERkaqU5RdVqlSBhYWFwtxE7PHjx8jOzlb6XFPxvnIXgR4+fIhZs2bhm2++gbu7e6HiL43PQQX43EPKweuAAF4H9IG2XAt8PmrxylsMIt2U33NQgdL9LFQ9TQeg65ydnVG1alUEBgYiKSlJal1SUhICAwPh5OQkMwSOiIiIiIiooFR5Jml+zyMtzHNNs7OzMWLECNjZ2WHx4sUFjpuIiIiIiIoHRwIVM5FIhLFjx2LBggVYuHAhli1bJlm3cOFCJCYmYvbs2RqMkIiIiIiIqGg8PT1x6dIl+Pr6yjy/qiBK43NQAT73kHLwOiCA1wF9oC3XAp+PWrzEI4B4fnVbfs9BBUr3s1BZBCqkrVu34sKFCwA+fJhu3bpVMldk27ZtMXbsWADAjBkzcOTIESxfvhwhISFo1qwZrl+/jlOnTqFFixb47rvvNHEIRERERESkY1R5Jmm5cuWK3Efudg8ePMC8efMwadIktGvXrlBxExERERFR8WARqJAuXLgAHx8fqWWBgYEIDAyU/CwuApmbm8Pf3x/z58/HX3/9BV9fX9jZ2WHatGmYN28eH5hKRERERERqkft5Pc2bN5da9/r1ayQmJsLNzU1pHzVr1oSenp7KzzW9c+cO0tLS8Ntvv+G3336Tu41IJAIAxMbGwsbGRuXjISIiIiKiomERqJC8vb3h7e2tcntra2usXr0aq1evLr6giIiIiIioTGvXrh2WLl2KU6dOYeDAgVLrTp48KWmjjKmpKdzc3HDp0iVERETAwcFBsk4QBJw+fRrm5uZwdXUFADg6OmLMmDFy+9q3bx9SUlIwcuRIAJwqhYiIiIiopLEIREREREREpCM6deqEmjVr4vfff8c333yDpk2bAsiZ2m3JkiUwMjLC8OHDJe1fvXqF+Ph42NnZSaZ3A4Dx48fj0qVLmDVrFvbs2SMZybN582Y8efIE48ePl8xo0LRpU2zdulVuPGfOnMHr168VriciIiIiouKlp+kAiIiIiIiISD0MDAywdetWZGdnw8PDA+PHj8e0adPQpEkTPHjwAEuWLIGjo6Ok/axZs1CvXj0cOnRIqp8RI0agW7du2Lt3L9q0aYOZM2eiX79+mDRpEpycnLBo0aISPjIiIiIiIioMFoGIiIiIiIh0SIcOHXDhwgW4u7tj37592LhxIypXrow//vgD06ZNU6kPPT09HDlyBPPnz8fbt2+xevVqBAYGYsyYMQgKCoKtrW0xHwUREREREakDp4MjIiIiIiLSMW5ubjh+/Hi+7ZQ969TY2Bjz5s3DvHnzCh1HeHh4obclIiIiIqKi40ggIiIiIiIiIiIiIiIiHcQiEBERERERERERERERkQ5iEYiIiIiIiIiIiIiIiEgHsQhERERERKSC+/fv4/vvv0fnzp1RoUIFiEQijBw5UmH706dP48svv0SrVq1gZmYGkUik8Nkr+Tl48CBatWoFc3NzlCtXDj179kRoaKjctpmZmVi+fDlcXFxgbGyMqlWr4ssvv0R0dLTc9tHR0fjyyy9RtWpVGBsbw8XFBcuXL0dmZmahYiUiIiIiIt2TnJyMmTNnwtHREcbGxnB0dMTMmTORnJxcoH5CQ0PRs2dPlCtXDubm5mjVqhUOHjyosH1x5kJlBYtAREREREQqCAoKwi+//IInT56gRYsW+bbfs2cPtm7dipSUFDRq1KjQ+922bRv69u2LpKQkLF++HD/++CNCQ0Ph7u6OmzdvyrQfNWoUZs6ciTp16uDXX3/FyJEj4ePjAw8PD7x//16q7fv37+Hh4QEvLy/069cPv/32G1q2bImZM2di1KhRhY6ZiIiIiIh0R1ZWFj799FMsX74cHh4e+O2339CzZ0/88ssv6N69O7KyslTq5+bNm3B3d0dQUBCmTZuGlStXwsDAAH379sW2bdtk2hdnLlSWGGg6ACIiIiIibdCzZ0/ExMSgXLlyCA8Ph5OTk9L2ixcvxqZNm2BiYgJvb28EBwcXeJ+xsbGYOnUqqlevjsDAQFhZWQEA+vfvj/r162Py5Mk4cPSUpL2f7zns3r0bn332GY4cOSJZ3rx5c/Tr1w+enp5YsGCBZLmnpyfu3LmDlStXYurUqQCAsWPHwtraGr/++itGjRqFjh07FjhuIiIiIiLSHT4+PvD398fkyZOxbt06yXJHR0dMnz4dPj4+GD16dL79TJ48GUlJSfD19YWrqysAYMyYMWjZsiWmTp2Kvn37wsbGBoBquVBAQICk73PnCpYLlSUcCURERERUxnl7e0MkEuHcuXNYsWIFnJ2dYWJignr16mHv3r0AgJcvX2Lo0KGwtbWFqakpunbtikePHkn1k52djSVLlqB9+/aws7ODpaUlatasiREjRuDZs2dSbX18fCASifD1119LLU9PT4ebmxtMTU1x48aNYj3ugqpQoQLKlSuncvtq1arBxMSkSPs8cuQIEhISMHbsWEnSAwD29vbo168fzp8/j2cREZLle3bvBgBJQUesb9++cHR0xM6dO6WW79y5E2ZmZvjyyy+llk+bNk2ynoiIiIhIVxVXLmRkZIRq1arpTC4kzgvEeYLYpEmTYGpqqlLeEB4ejvPnz6Ndu3aSAhAAGBoa4ptvvkFCQgIOHz4sWa5KLhQeHi4To6q5UFnCkUCk8wRNB0BERKVemF8kwvxfFKkP2xoW6DK6gcL1p7ffxtvniUXaR6N21dCoffUi9aHMrFmzkJiYiDFjxsDU1BRbtmzBkCFDoK+vjxkzZqBNmzZYsGABIiIisGbNGvTu3RuhoaHQ08u5ryg9PR3Lly9Hnz590L17d5iZmeHWrVvw8fHB2bNnERoaivLlywMARowYAX9/f/z2229o164dvvjiCwDAjBkzcOXKFWzevBlNmzYt9LHExsaqPCWBoaEhrK2tC72v4nT58mUAQJs2bWTWtWnTBj4+Pgi5dgX2Dg4AgCvBwdDT00OrVq1k2rdu3Rp79+5FVFQUKlWqhDdv3iAiIgJt2rSBqampVFtHR0fY2dkVavQSEREREWkP5kI5CpsLieXNhaytrREaGort27drfS4kCAKuXLmCqlWrwuG/vEPM1NQUTZs2xdWrVyEIAkQikcJ+8sttACA4OFjy3FVVcqHg4GA4OjpK2quaC5U1LAIRERFRmZfyPh2xr5KK1IeJmfI/q95HpxZ5Hynv04u0fX6Sk5Nx7do1yeiV/v37w9HREQMHDsTixYsxa9YsSdtKlSph2rRpOHv2LLp06QIAMDY2xqtXr2BmZgYASEtLA5Bz51WXLl2wbds2fP/995I+fv31V1y5cgVjx47FRx99hFu3bmHt2rUYPHgwxo8fX6Rj+eijjxCRa4SMMu3atYOfn1+R9ldcIiMjAQDVq8smvOJlr15+SNpfvIhExYoVYWxsrLB9ZGQkKlWqpLRv8fJ79+4V7QCIiIiIqFRjLpSjsLmQh4cHANlcSKx3795anwvFxMQgOTkZDRs2lLu+evXqCAoKQmxsrKTQJY8quY24TWHbq5oLlTUsAhERERERgJz5mXNPX2ZnZwcXFxfcvn0bU6ZMkWrbvn17AMD9+/clRSCRSCRJerKzsxEXF4fMzEw0bdoU1tbWkju5xMzMzLB//364urri888/R2RkJFxcXLB58+YiH8uePXuQkpKiUtuCTPFW0pKTkwFAbiIjfq2Scx1ncnKywuORtP+vT2V9i9uL2xARERER6bLC5kLiIlDeXCghIUFnciFV8gZxO2VFIJVym1z5R2Haq5oLlTUsAhERERERAKBWrVoyy8qXL4+qVavKPNtG/Md9dHS01PLDhw9jxYoVuHbtGtLTpe/Wi4mJkem/bt26WLVqFSZMmABDQ0P8+eefsLCwKOqhwN3dvch9lAZ5R1XllpqamtMm11RuZmZmcttKtf+vT2V9i9vnvZORiIiIiEgXMRdSTJW8IXe7wvQjr4/CtC9qjLqKRSAiIiIq80wtjVDOzrxIfVhWMMl3fWpyZpH2YWppVKTt86Ovr1+g5UDO/NBiR44cweeffw5XV1esWrUKdnZ2MDExgZGREQYOHIjs7Gy52//9998AgIyMDNy6dQuNGzcu4pEAb9++VXkebCMjI6V3rGlS7mkL6tWrJ7VOPPWBXdVqkmXVqlXHw4cPkJaWJnPHXN7pFORNoZC3vaKp4oiIiIhINzAXyqHuXMje3l7y3E1tz4XKly8PMzMzpXmDubl5vqOKlOUf8qZ+UyUXytv+wQPVcqGyhkUgIiIiKvMata9erA8ZBaD0Qam6wsfHByYmJvD395e6CyszMxOxsbFyt/H09MS///6LH374AUePHsWECRPg6uqKOnXqFCmWFi1a6MQzgdzc3LBp0yYEBQVJpt0TCwoKAgA0beYqWebaogXu37+Hy5cvS6amyN3ewcFBMgd25cqVYW9vjxs3biAlJUWSpAJAREQEXr16ha5duxbXoRERERFRKcBcSD3y5kJiSUlJWp8LiUQiuLq6IiAgABEREXBwcJCsS0lJwY0bN+Dm5gaRSKS0Hzc3NwAf8pjcxMvEbcT/zi8XatGihVT7e/dUy4XKGhaBSOcp//ghIiIiddHX14dIJJK5y23hwoVy73wLDAzEjz/+iE6dOmHJkiUYMWIEWrRogf79++PSpUsy0y4UhDY+E+jx48fIyMhA3bp1Jct69+6Nb7/9Fl5eXvjuu+9gZWUFAHj27Bn279+Ptm3bwsHRUdJ+8JAh2LN7F1auXCmV+Bw8eBDh4eH46aefpPY5bNgwLF68GBs3bsTUqVMly1euXClZT0REREREyul6LjRs2DAEBARg5cqVWLdunWT5xo0bkZKSIpM3vHr1CvHx8bC3t5cUxZycnODu7g4/Pz9cu3YNzZs3B5Bz0+C6detgaWmJXr16SfpQJRdycnKSinHnzp0q50JlCYtARERERKQWX3zxBQ4cOIB27dph5MiRyMjIwOnTp3Hv3j1UrFhRqm10dDQGDhyIihUrYs+ePdDT00O9evWwceNGDB8+HN999x02bdpU6FiK45lA8fHxWL9+PQAgLi4OABAaGopFixYBAJo0aYKePXtK2oeGhkqmdwgJCQEA/PPPP5KpCD777DOp6R46deqEiIgIqWklypUrB09PT0ycOBHu7u6YMGEC0tLSJHHkTsAAoGOnzhg0aBD27t2Lnj17olevXnj69ClWr16NunXr4vvvv5dqP2PGDBw4cAAzZsxAeHg4mjRpAn9/f+zatQuDBg1Cp06dinzeiIiIiIh0Xd5cSBAEnDx5Enfu3NGJXGjUqFHYuXMn1q9fj/j4eHh4eODmzZvYsGEDPv74Y4wcOVKq/axZs+Dj4wNfX1+0b99esnzdunXw8PBAt27dMGXKFFSsWBG7du3C9evXsXnzZqmiVEFzoc6dC5YLlSUsAhERERGRWvTv3x+JiYlYvXo1ZsyYAUtLS3Ts2BHnz59H27ZtJe0EQcCwYcPw8uVLnD59GpUrV5asGzZsGPz9/bF582a0b98eAwcO1MShyBUbG4s5c+ZILQsJCZEUeEaMGCFVBLp+/bpM+4MHD+LgwYMAcuajVmXO7wkTJqBChQrw9PTEjBkzYGRkhLZt22Lx4sVo0qQJohJSpdr7+PigUaNG2LFjB7766iuUL18ew4YNw6JFiyR3z4lZWVnh/Pnz+Omnn7B//35s3rwZDg4OWLJkCaZPn676ySEiIiIiKsPk5UJdunTRmVxIX18fx44dw4IFC7Bv3z7s3bsXdnZ2mDp1KubOnav02Um5NWvWTDIKytPTE+np6WjUqBH279+Pfv36ybTPLxfKqyC5UFkiEnLfakhaqXXr1gDkz6dY3AICAgBAZp5FTWs476Tk32sGNEXn+pWVtCZ1KK3XApUsXgdlT+7PWwC49XO3UnkdhIWFAQAaNWqk4UjKFvEzgfI+lJPUK3cRyMrUECaGqiVg6pLf+0veZ4Im/34l7aTpa6Y0/m6jksfrgABeB/SBtlwLzIWKF3OeskGV91Fpznv0NLp3IiIiIiIiIiIiIiIiKhYsAhEREREREREREREREekgFoGIiIiIiIiIiIiIiIh0EItAREREREREREREREREOohFIKICysoWcPtlPFLSszQdChFpqUdR7xGdmKbpMIgKRBAEZGRlQxAETYdCRERERERERCoy0HQARNpm1sFQHAt7DefKFvhrYhvo6Yk0HRIRaZFdQeFYfuI+rEwMcOgrd1S2MtF0SEQqiU/JQHpmNgz19VDO3EjT4RARERERERGRCjgSiKiAjoW9BgA8fJOIkOexGo6GiLTN8hP3AQAJqZnY6PdYw9GUHXp6ehAEAdnZ2ZoORSsJgoD0zJxzl5GVjcwsnkfKIQgCBEGASMSbYoiIiIhKI+ZCREWjCzkPi0BERZDMKeGIqAjeJKRqOoQyw9DQEACQmspzrg6cEI7EEhMTAQAmJhzVSERERFQaMRciKhpdyHlYBCIiIiKdZ2VlBQB4+fIlMjMzNRwNkfYTBAHv379HZGQkAMDa2lrDERERERGRPMyFiApHl3IePhOIiIiIdF6lSpUQGxuL5ORk3LlzR6uHcWtKVvaH8T+vRVDpHApCzjY838WrMK9NUYlfWwCwsLBAhQoVin2fRERERFRwzIWKF3Me3aVLOQ+LQKTzOGUNERHp6enByckJUVFRSEhIkPpjjvInCILU9IW2lsYw1M8/yUlLSwOg3cPmtUHu16acmRFMjfSLfZ96enowMTGBtbU1KlSoAD09TjBAREREVBoxFypezHl0ly7lPCwCERERUZlgYmICe3t7TYehlVLSszB48RnJzwe+bI26Vazy3S4gIAAA0KJFi2KLjYBB805K/v3LF03wScMqGoyGiIiIiEob5kLFhzkPaQPtLV8RERERERERERERERGRQiwCERERERERERERERER6SAWgYiIiIiIdASfR0tERERERES5sQhERERERERERERERESkg1gEIiIiIiKlBAhSP4vA4SZERERERERE2oBFICIiIiIiIiIiIiIiIh3EIhARERERkY4QhPzbEBERERERUdnBIhAREREREREREREREZEOYhGIiIiIiAok7zOCiIiIiIiIiKh0YhGIiIhIQ0QiTUdApBoReLESERERERERaSMWgUjn8WsrIiIiIiIiIiIiIiqLWAQiIiIiIiIiIiIiIiLSQSwCERERERERERERERER6SAWgYiIiIiIdASfNUZERERERES5sQhEREREREoJEKR+FvGJe0RERERERERagUUgIiIiIiIiIiIiIiIiHcQiEBERERERERERERERkQ5iEYiIiIiIiIiIiIiIiEgHsQhERERERERERERERESkg1gEIp0n5N+EiIiIiIiIiIiIiEjnsAhEVAQCK0xEVAT8DCEiIiIiIiIiouLEIhAREREREREREREREZEOYhGIiIiIiIiIiIiIiIhIB7EIREREpCEikaYjICIiIiIiIiIiXcYiEBERERGRjmBtmYiIiIiIiHJjEaiECIKAgwcPokOHDrCzs4OZmRlcXFwwYcIEPHnyRNPhERERERERERERERGRjmERqIRMnz4dffv2xf3799G7d29MnjwZTk5O8PLyQtOmTXHr1i1Nh0hERERERERERERERDrEQNMBlAWvX7/GmjVr4ODggJs3b8La2lqybvXq1Zg6dSpWrVqF7du3azBKIiIiIiIiIiIiIiLSJRwJVALCw8ORnZ0Nd3d3qQIQAPTo0QMA8PbtW02ERkREREREREREREREOopFoBLg7OwMIyMjBAYGIiEhQWrd0aNHAQCdOnXSRGikxTb4PUKnlX7wDnyq6VBk/H75GTqt9MPq0w80HYpCuy5FoNNKP/x67qGmQykVPl17Hg3nnUTDeScLtN3Zu2/QdbU/Zv4ViuxsochxXA2Pwadrz+OrPdeRmpElt82r+BQM3BKE/puC8DwmWWb9v6Gv0HmVP+b/fRuCUPSYCiM1Iwtf7bmOT9eex9XwGI3EoG22X3iKTiv9sMn/MbKzBcz8KxRdV/vj9J03mg6t1Lj9Mh6f/XoBY32uICE1Q9PhUAk5ces1uqzyx4+HwiSfab+ee4hOK/2w61KEhqMjIiIiIiKi0o7TwZWAChUqYNmyZZg2bRrq1q2LXr16wcrKCjdv3sS5c+cwadIkfP311/n207p1a7nLb926BXt7ewQEBKg79HyJi1qa2LcymVmZkn/fvn0bxu/uq6XflExBqu8rIaHAa0O19F0Q79MFrPNLBAAsO34HNdKfwVBfVOJx5Jb7Wlhw6j0AYLP/Qzhlv0R509JVb87KFrD4TM75+/XcAzhkvYC1cemKsSSlZAp48jZR8vOOv31Ry0ZfpW2/+u+1fhadiOp4B0fjnKJMYT8Txv/X35O3CViyNwadHY1k2qy/noKwdznvw692BGB6CzOp9dP+6+OP4EQ4IErlY1GnM+HpOPsgDQAwdGsQtnS1lKzL/Rny9u27Uvf5WVC5jwfIee0L+rshPUvAirM51+Ca0/fw/nU4DoelAgAm/35V6vyVZdN8E/E+Q8CD18Cc3X7oW8e4xPadluf337VrV/HGMv/3Vmn9O0GbfPffZ9rzmETY4y3sLPTwq38SAGDx0VuokRYu83ePSXTpuglD3nWQkJAAKysrTYVERERERERUZrAIVEKmTJmCatWqYezYsdi0aZNkedu2bTF48GAYGPCl0AZJGdKjClLlD1Qodgnp2VI/Z2YDhiX/PbdKYlIFlDfVdBTSsvIMDolPE2Bdct+lljrJea7riPisQhVOIuKz4FhJXVEBd2Oy0NlRdrm4AAQAD2KVvwlfJmZrpAh0N0ZDHw5aKi3Pm/L2O54/ed7neq/ejMos0SIQlQ7P32fDzFD6pg81DMIkIiIiIiIiHcbKQwlZsGABFi1ahAULFmDo0KGwsbHBjRs3MGXKFLRv3x5//fUXPvvsM6V9BAUFyV0uHiHk4eGh9rjzI76jUxP7Vsbg7IcprRo0aACP+pXV0u+LuBQYXPxwF6uLiws8mldXS98F8SjqPQwuX5T83Ma9DSxNSn5EUm65r4Xc57/pR03RzL6cpsKSKzUjCwZ+ZyQ/N2vWHPWrlt27kV/mua5rOzvDo5WDStvmfq0dnZxgpf8SQOE/E3L3V7FiRXh4NFfaRt6+cq+vU6cOPFxrFCqWotj77BoMYt9Jfs4dY+74bG3lH6M2kfd6FPR3Q0xSOgzO+0p+trOrAoOoV1J9kvS5trQ0h4dH2xLbd3J6Jgz8z0p+bt7cFS5V8h+hVVr/TtAmuV/32rVqoZlTeRhcuSRZ9vHHH8PA97Tk5/oNGsCjQZUSjTE/8q4DjgIiIiIiIiIqGWV3/qMSdObMGcybNw9ff/01Zs6cierVq8PCwgJt27bFP//8A0NDQ0ybNk3TYRIRERHJlffxWiLNzkBKRERERERERCpiEagEHD9+HADQoUMHmXVVqlRB3bp18ejRIyQmJsqsJyIiIiIiIiIiIiIiKgwWgUpAeno6AODt27dy1799+xZ6enowNNTsdF5EREREpN04SIuIiIiIiIhyYxGoBLi7uwMAVq1ahfj4eKl1mzZtQmRkJFq3bg1jYz7guTjwyxCiguE0T0RERNrvypUr+PTTT2FjYwNzc3O0atUKf/75Z4H6SEtLw4IFC+Ds7AwTExNUrVoV48ePR1RUlEzbGzduYM6cOWjVqhUqVaoEY2Nj1KxZE5MmTcKLFy/UdVhERERERFRABpoOoCz44osvsHHjRgQEBKBOnTr47LPPYGNjg+vXr+PcuXMwNTXFqlWrNB0mERGVMBHL1KSl8j4jiIhKF19fX3Tr1g0mJiYYOHAgLC0t8ddff2HAgAF4/vy5Ss8jzc7ORq9evXDy5Em0atUKffv2xcOHD7F161acPXsWly5dgq2traT9xIkTcfnyZbi5uWHgwIEwNjbG5cuXsXHjRuzfvx/nz59H3bp1i/OwiYiIiIhIDhaBSoC+vj5OnTqF1atX488//8Tvv/+O9PR0VK5cGUOHDsXs2bNRr149TYdJKhD4rRcREZVBHCFIpD0yMzMxbtw46OnpISAgAE2bNgUAzJ07F25ubpg9ezb69esHBwcHpf34+Pjg5MmTGDRoEPbs2QPRfx8EmzZtwpdffomffvoJmzdvlrQfMmQIdu/ejdq1a0v1s3z5csycORPTpk3Dv//+q96DJSIiIiKifHE6uBJibGyMmTNn4vr160hKSkJGRgYiIyOxa9cuFoCKWXGWbfidGNEH/JKYqOQIxfrbjYi02blz5/D48WMMHjxYUgACAGtra8yePRvp6enw8fHJtx8vLy8AwNKlSyUFIACYMGECatasiT179iAlJUWyfPLkyTIFIACYPn06TE1N4e/vX4SjIiIiIiKiwuJIICKiMi7vV8mcoow0jYMuiQqPbx/y8/MDAHTt2lVmXbdu3QAg34JMamoqLl++DBcXF5kRQyKRCF26dMHmzZtx9epVfPzxx0r7EolEMDQ0lCokKdO6dWu5y2/dugV7e3sEBASo1I+6JSQkAIDG9k+lA68DAngd0Ae8FgjgdUAfyLsWEhISYGVlpamQJDgSiKgA8n4xyZEPRERERFSaPHz4EADg7Owss65KlSqwsLCQtFHk8ePHyM7OlttH7r7z6wcADhw4gISEBLlFKSIiIiIiKn4cCURUBCwCERUfvr+IFOOIPSJSJD4+HkDO9G/yWFlZSdoUpY/c7RR5/vw5vvnmG5iammLhwoVK24oFBQXJXS4eIeTh4aFSP+omvqNTU/un0oHXAQG8DugDXgsE8DqgD+RdC6VhFBDAIhARERFpmMD530o9joQtPfh2IW0RHR2NTz/9FFFRUdi5cydcXFw0HRIRERERUZnE6eCIqFjxe0IiKigWGIhUx7cL5SUevaNolE5CQoLCET4F6SN3u7yio6PRqVMn3L59Gxs3bsTQoUNVip2IiIiIiNSPRSAiLcS7gKk48Qt4IiIi7aXseT2vX79GYmKiwmf9iNWsWRN6enoKn/mj7LlD4gLQzZs38euvv2LChAkFPQQiIiIiIlIjFoGIdICI39qTGrHIWHIE8GQTEZF6tWvXDgBw6tQpmXUnT56UaqOIqakp3NzccP/+fUREREitEwQBp0+fhrm5OVxdXaXW5S4ArV+/HpMmTSrKoRARERERkRqwCERERGrBB9UTEWkeP4mpU6dOqFmzJn7//XfcuHFDsjw+Ph5LliyBkZERhg8fLln+6tUr3Lt3T2bqt/HjxwMAZs2aJfXsts2bN+PJkycYMmQITE1NJctjYmLQuXNn3Lx5E2vXrsXXX39dTEdIREREREQFYaDpAIio6PhQddJF2nxZc3AeERFpioGBAbZu3Ypu3brBw8MDAwcOhKWlJf766y9ERETgl19+gaOjo6T9rFmz4OPjgx07dmDkyJGS5SNGjMC+ffuwd+9ePH36FO3atcOjR49w8OBBODk5YdGiRVL77dOnD27cuIG6desiJiYG8+fPl4ntu+++g42NTfEcOBERERERycUiEJEW4hfMVJx4fZGmaXMBsKRwKkFShFcGAUCHDh1w4cIFzJs3D/v27UNGRgYaNWqE5cuXY8CAASr1oaenhyNHjmDZsmXYtWsXVq9ejfLly2PMmDFYtGgRbG1tpdqHh4cDAO7du4eff/5Zbp8jR45kEYiIiIiIqISxCERERFJYAyIiItJ+bm5uOH78eL7tvL294e3tLXedsbEx5s2bh3nz5uXbj7gIREREREREpQufCUREZR5HvhAREREREREREZEuYhGIqAA4RRERqZOI466IiIiIiIiIiKgYsQhEVAB5n8HAL3CJig9HaBEpxt8/RERERERERKQKFoGIioBfUhMRERERERERERFRacUiEBGplcA587ReYYubLIpSYfFTg4iIiIiIiIioeLAIRETFSsTKABEVED82iFTH37NERERERESkDItARFSsODKIiIiIiIiIiIiISDMMNB1AcQkODsaVK1cQFxeHrKwsmfUikQhz5szRQGRERERERSNwEj1SgOOCSgZzDSIiIiIi0hY6VwSKiYlB7969ERgYqHQEAhMz0mYcXEPqpMujtTR1ZDp8SksEzx9R4fHtU7yYaxARERERkbbRuSLQ1KlTceHCBbRv3x4jRoxA9erVYWCgc4dJBaDLX3CL8XkApE4i3kdOREQkF3MNIiIiIiLSNjqXsRw9ehRubm44e/YsvxgntSsD9SQinZpmir8FiEjXlYWbXUoT5hpERERERKRt9DQdgLqlpKTAw8ODSRlJqPNa4NcsRERELLBS2cVcg4iIiIiItI3OFYGaNm2K8PBwTYdBZQS/ACD6QN3vBk5LR1R68CYIohzMNYiIiIiISNvoXBFo3rx5+Pvvv3Hp0iVNh0JEpJVYfCEiIpKPuQYREREREWkbrX8m0M6dO2WWde/eHe3atcOQIUPQrFkzWFlZyd12+PDhxR1emZWVLeD34GdISMnAKHdHmBkV7FJLzcjCzqBw6IlEGN7aEUYGOlevLLBX8SnYFRSBJjVsULOiudw2z6KT8XvwM7SsWR4dXCqVcISly5O3idh39Tk8nG3hXrui0rZ5H6dw+s4bhDyLhWNFczx+m4iBLezhpOCcl6RHUe+x/1ok2tephNa1Kmg6HBn7rjxH03IZ6OZoBOBDvO3q2KJNLeWvgbbIyhawN/gZ4lMyMLKNI8yN5X+2lcQgwdikdOy4GA6H8mbo06xasY5MTMvMws6LERCJgGGtHWBsoK+2vgVBwL+hr5S2CX4aAzen8mrbZ2nwKCoR+689L/T7QxuKtVEJqThwPw32Vnrw0HQw/0lMy8QnawKQnpmN01PbwdrUsET3L/5d3ri6NT5paFeoPt6nZqo5KlKGuQYREREREWk7rS8CjRw5UuaLL/EDcr29veHt7S13vUgkYmJWjP65+RLLj98DACSkZGDWp/UKtP32wKfY4PsYAKCvJ8Iodye1x6htvvvjBm6/TACCIrCqfxOpdeJrfuLua3gWk4zdlyJwdlo7VLYy0USopcLYnVcRlZCGPZee4fyMDihnbqSwbcjzWNSvmvMFzrPoZEzZd0Nq/dm7UTgztV1xhquSEduvID4lA3suPUPQrI6wNCnZLy/zE/U+DcfiMhGfJqBbJ2DkjiuIS86J9+KsjrAqYLxCKZyA6t+wV1j232dbXHI6fuxev2gdFuF7/Hl/38a5e1EAgKo2psVaGPQODMf6c48A5EyDOaat+j6T77xKgOfJ+0rbjPa+gutzuujUDQGjvIMRm1T494emqfLunPFXKC5FpAMAunskoJ6d/C/KS1L3decRl5wBAGjv6YuQuV1LdP9T9t3ArRcJAADnypaoZWtR4D5+OaX8/ULqxVyDiIiIiIi0ndYXgXbs2KHpEEiO5SfuSf695/KzAheBxAUgAFh56gGLQEBOAeg//yi4a/5ZTLLk3773ojDQzb7Y4yqtohLSJP++9CQa/2uk+I5rn4vhGNLSAQDwT+hLmfWv41PVH2AhxKdkSP5943kcPna2VUu/6h5BEvgyJ07xF60AEPIsDu3qqCdeTVqR67Ntb/DzoheBikBcAAJyCufFWQQSF4AAYPXpB2otAv0R/FxmmbxL8kVcSqkYkacusUkf3h/XImJL/ejNwnxKXA2Plfx7/9VIzO2pufeLWHRiuuTfGVklX2gWF4AA4EjIC0zt6lLgPu6/fq/OkCgfzDWIiIiIiEjbaX0RaMSIEZoOgcqw0j8ZT8nLO7UaERGpX2kcKUeki5hrEBERERGRttOdeVX+s3PnToSGhiptc+vWLbnzexPlR2CFo8CK8zklhcWXUZrMdV36XjIiIqJSgbkGERERERFpG50rAo0cORKHDx9W2ubIkSMYNWpUyQRERKWeNjxgvSTxbChWCmuaRERUgphrEBERERGRttG5IpAqsrKyoKdXJg+diIh0EEe3ERGVHsw1iIiIiIioNCmT2UlISAjKly+v6TBIB/B7V93AZ2uQqtQ+aoyXHmkpDoojUoy5BhERERERlSYGmg5AHTp27Cj1s7e3N/z8/GTaZWVlITIyEuHh4ejfv38JRUe6hN/X6gZO6UVEVDD8/UdlGXMNIiIiIiLSZjpRBMqdhIlEIoSHhyM8PFymnZ6eHsqXL48vvvgCa9asKbH4SHdpqpYgcO4nKkaiUlIlU8eoG3W/U0rJqSEiXcAPFK3BXIOIiIiIiLSZThSBsrOzJf/W09PD/PnzMXfuXA1GRFSySsuX9kRE6sA6NxGVJsw1iIiIiIhIm+lEESg3X19fODo6ajoM0lF5v5hk7UU78HUqu9T90vNSotJC7c+nIiKVMNcgIiIiIiJto3NFoHbt2mk6BCIiIqJiJfApPUQawVyDiIiIiIi0jc4VgRYsWJBvGz09PVhZWcHFxQXt27eHsbFxCURGRFR26cqYBU69SMWBVxWR9mCuQURERERE2kbnikDz58+X+pJOyDV/V97lIpEI5cqVw6pVqzB8+PASjZOouPEecVIVn7+iC3TrRZR3TQq8ULUaRy6RrmCuQURERERE2kZP0wGom6+vL3r06AFjY2OMGzcOPj4+OHHiBHx8fDBu3DgYGxujZ8+eOHDgAGbNmoWMjAyMHj0aZ86c0XToVEz4xSFRwXBUgmJqPzc82UREWoW5BhERERERaRudGwn08OFD+Pv74/r166hbt67UumHDhuG7775Dy5Yt8dlnn2HRokUYPHgwmjVrhpUrV6Jz584aipqoYEpzWas0x6YI64RERFTSWAPWTsw1iIiIiIhI2+jcSKC1a9diwIABMkmZWN26dTFgwACsXr0aAFC/fn307NkTwcHBJRkmUZnBL7moLBLxyi8SPnqJiEor5hpERERERKRtdK4I9OjRI5QvX15pmwoVKuDx48eSn2vVqoXExMTiDo10EL/oJV3EL+C1EV80Kl6cWpUoB3MNIiIiIiLSNjpXBLK1tcXx48cVflkhCAKOHz+OChUqSJbFxsbC2tq6pEIkrcYvwYioNOJnExFRSWCuQURERERE2kbnikADBw5EaGgoPvvsM4SGhkqtCw0NRa9evRAWFoZBgwZJlgcHB6NevXolHSppobz5fmkZMVGa79AuvZERFUIpec+TbuHnJJH2YK5BRERERETaxkDTAajbzz//jKtXr+Lff//FsWPHYG5uDltbW7x9+xZJSUkQBAEeHh74+eefAQCvX7+Go6Mj+vfvr+HIiVTH76ELimdMmdJSzCQiIirtmGsQEREREZG20bmRQKampjhz5gy8vLzg4eEBQ0NDPHv2DIaGhmjXrh28vLxw7tw5mJqaAgCqVKmCQ4cOSd2tR0REJA/rZeoncBxMmcBn6JGuYK5BRERERETaRudGAgGAnp4exowZgzFjxmg6FCoFRDo4zIFfmZI6ldZpDtVBU++Vki5slOIZIQtF146HSJ7i+qzl+6f4MdcgIiIiIiJtonMjgYjKIl0sdBUnfkFW8nTlEuV7jYoDryoiIiIiIiIiKi46ORIIADIzM3H//n3ExcUhKytLbhsPD48SjoqISiN+r09EREQFwVyDiIiIiIi0hc4VgQRBwNy5c7F+/Xq8f/9eaVtFCRuRqlg7IFKNpkZf8T1KVDxYPC+64vpc5GtTvJhrEBERERGRttG5ItDChQuxePFi2NjYYPjw4ahevToMDHTuMElDOIsYEZVGZeGzqSwcoy4r6edklSU8syWLuQYREREREWkbnctYtm/fDgcHB1y9ehUVKlTQdDhExaI03+QraOEDd0Sl+oxSacIrhcoq7ftkJyoezDWIiIiIiEjb6Gk6AHV7/fo1evfuzaSMqJTgl+ZEivH9IR+nsyKi0oq5BhERERERaRudKwI5OTkhISFB02GQjtLCQS4EfqFM6sNriSgHfx8WHT9PtBNzDSIiIiIi0jY6VwT68ssvcfToUURFRWk6FCoDNPUFDr97Uy8+q6KU4hekKtPGaRipaPiSE2kGcw0iIiIiItI2OvdMoF69euH8+fNo06YN5s6di2bNmsHKykpuW3t7+xKOjoio9OMzkhTjuSEiKtuYaxARERERkbbRuSKQk5MTRCIRBEHAqFGjFLYTiUTIzMwswchyHDp0CBs2bMD169eRlJQEOzs7tGrVCitWrECNGjVKPB4iItIcDuaQj6Nc8sepxEgRvn+KV2nPNYiIiIiIiPLSuSLQ8OHDISqF34wIgoCJEydiy5YtqFWrFgYOHAhLS0u8fPkS/v7+iIiIYBFIC3DaMNJFeb8wLI6P0FL4sVysSnrEUGn8vUeq4+tHpD1Ka65BRERERESkiM4Vgby9vTUdglzr1q3Dli1bMGnSJKxbtw76+vpS63mnYPHhszKIiIiISB1Ka65BRERERESkiJ6mAygLUlJS8PPPP6NmzZpYu3atTAEIAAwMtL8ed+91AvZcjkByuvoLWvEpGbgSHoOMrOwi9SMIAm48j8ObhFQ1RVYyXsdrPt4Hb97jydvEAm/3KCoRjwuxXWkT/DQGKelZmg6jwMLfJeH+6/cyy2OS0uF3PwqXnkQjPc/7KiktC8FPY5CWqfx4I6KTFK6LT87IN7boxDRci4jFy7gUhEbGKS3YPo9Jxp2XCfn2qeo1eudlAp7HJCtd/io+/7iyswVci4jF2/dp+e5TEASERsapFF9+ohOl95eZLeBqeAxik9IVbqPomEtCfHLOZ3hmET/DC+Jo6Ev43Zf/4PYXcSm49SK+WPabc13HIDtbwLv/rvHs7KLdjCAIAkKexaopQuVex6fi/MO3+f7OFQ+EiEtOx9Vcr21RrzN5v6fTM7NxJTwGCan5f66UNqp8jhSnJ28T8eCN7O8AIiIiIiIiKju0v/KgwOvXr3Hw4EHcu3cPSUlJ2LZtGwDg7du3ePr0KRo1agRTU9MSieXUqVOIjY3FqFGjkJWVhb///hsPHjyAjY0NOnfujNq1a6vUT+vWreUuv3XrFuzt7REQEKDOsFWSkJDzpey2I77wvJLzpc/Cf27B1ECEzKwPX3gUNLbMLOlCUsvFpwAAzSsbYEKT/F+33NvfvnMbJtEPAAB/P0rD0SfpMDUQYaG7GayMC1YHfZ6QlafvOzCLeVigPgoqNjUb8wKTpc7n27dvpeIIDAz875x/WPbgwQMEpIarJYaQN5nYeDMFegCmupqiTnnZjw7xtXD+/HmpOH48dBN6AL5pbor6FUruIyd3DHdu34bpf9cAAKRlCVLrk5KSJdfo06dpMtcfAAzfFoSa1vqY2dKsGKNWLndcYaFhEF4pP5+P47Lwy5VkZAnAuMYmaFHFEACQniVg9vkkJKTnXFPVLPSkvpxf8E8YAKBRRQNMbib//fY0PgsrgnP6lvLfF50tl5ySWpw33rTMnBjeZ3zooI+zsdQxvn37FgEBAYh8n4Ull1KQKQgYXt9E5vURv3b3YjKx5moKcn9t/eDBAwQkP5Vu/zwDu++mwlBPhNktTVHNMqcwfyEyAzvv5Cyf0MQEXqGpSMsS8HltY/yvphEAIDk5SepcfbP1DM48S4eFoQiL25rD1FD0X+wpUnEGBATgxNN0HHwoXbwRH2NBpGUJmHxWutgV/OQthj55i3LGeljU1gyG+tJTFZ2PzMCu/45tVktTVLeUvRlBGUXnXNE68edBQEAAMrMFzLmQjOjUbLSsYogxjU2k2r98mSrTR9jTl8jMki5CXr1yFS8sVPvM3nwzBdfe5PTZx9kYnzgZSda9ScrGwqBkpGcLGOBijE4ORoq6KbC0LAE//vfealnFELejM5GYIaCTvREG1DWWaiv1fg4Lg+i14vfzoYdpOP5UusCX+D5R7b/341Kz8dOFnHMDSP/OTc6Q/ty8cvUqnpnp4acLyYhJzUZrO0O4lNeH9+1UGIhEmNnSNKf9f58JL168QEBAdL4x/PMoDf88SYepvggL2prB2lgPm26k4HpUJiqb6eFndzPoFWEqLmXXsrpFp2Rj/sVkqc+R3Pt/FhGBgIDX+faTe5tHjx/LHEPe37t379yGWcwD3I/JxOr/PhO/bGKKjypr7s/+3J8JuZdZWVlpKqQiK025BhERERERkTI6ORJow4YNcHJywtdff41ff/1VatqGqKgotG7dGrt37y6xeK5duwYA0NfXR+PGjdG3b1/MmjULX375JVxcXDB9+vQSi6W4/BaSIvVzSmbx3PEq/lKvsI4+yfkSLSVTwKlw7bij+NiTdKTKfNNesjbezHl9swF4hRZ8VFI2gI0hmh/NVFRP4rMQl1pyIxmKantYqqRIk/t1C3qZKSkAAcCLRPnHFPZO8fttR66+CyPwRYZUAQiATIFE/AiuPXfSkPnfF8k77yi+jjbdSEXeI5F38/3uuzl9ZGQL+OPeh32K+87IFvBrSArS/jvAQ48Uj/I58yznMyUxQ4B/pPLPFJnjK6Sgl4r3E5uWjZAo2ddtV65j23tXPXGoKuxtFqL/e99cfq3a5+6T+KKNusv9uyLvef/rQZqkyLHvvnrPRdDLDMl76/LrDCT+d42ffaZ4hJYq8haAisuxp+mScwNIn0d5b/eQN5mI+e+1DXqVAe/bOddZpiBgz53Cndt/xL+nswSceJpzvVz/75p+k5yNh7HaMyLz70fpKn2OFBev0A+fieLf46QepS3XICIiIiIiUkbnRgL9888/+Prrr+Hq6oq5c+fi+PHj2LRpk2R9gwYN0LhxYxw+fBjjxo0rkZiionKmo1m1ahWaNWuG4OBg1KtXDyEhIRg/fjxWrlyJWrVq4csvv1TaT1BQkNzl4hFCHh4e6g1cBeI7OtOFFBgoubG8oLEZnD1ZpL5yb9+gfgN4NKgis9yyYhV4eDQqUFz3XifA4MqH16FB/frwaGhXoD4K6uDLEBi8kp7SyNbWFgYxbyU/u7u7w8LYQOr46tSpAw83e7XEkLvfpCz5r4H4Wmjj3hYGvqdl1mehZK9RqWugwYdrAABS0rNg4HdG8rO5uYkktrCsRzCIeKywX1e3lqhqo5k7e3MfU+PGjdHWuaLS9gm+p2Cg/6HWLz7GB+efwOCBaiPYFL1miQGnYaAvWzwS341uoC/966VR40b42NlW8nOY7yMYPFJ8noGc69zDoxkWXPWHgb7i4o84xvSzJ2U+h+q41IGHaw2pZbnPY6ahGTw8PpZZrmgf5tcDEJsu/8tU26r28PCoAwDY9/w6DGLfSm0vr3/xMRbE/QDlr599zTrwaKH4mDMMTIv8mZx7e3nrxJ8HHh4eiLv5Ega3wuRuCwCnY27B4M2LfGNo0cIVNW0tihzvhntBMNBPkLuuqJS9Nnn3kzvGhg0bwsOlksJ+5V07FpYfrl11OfzqBgxevpFaJo47PiUDBgHnJMtbuLoi5FkcDO7ckdtXmp4xDPQ/jKysVq0aPDwa5BuD1O/pCpXh4dFYalndBtKfJQWl7NpQtz0RV2EQ9WH0U97PAQcHR3h4OOfbT+5tateqBYPHD6TWf/zxx1K/d+v/9zsvOc9noib+ThTL/Zkgpq2jgEpjrkFERERERKSMzo0E8vT0hL29PXx9fdGjRw9UqiT7pUqjRo1wR8GXFsUhOzvni1IjIyMcPnwYLVq0gIWFBT7++GPs378fenp6WLlyZYnFQ4UnO6qg8FPSFDcNPX6AiKhY8CNNmrZ9xmtbvESKlMZcg4iIiIiISBmdKwLduHED3bt3h7m5ucI21apVw5s3bxSuVzdra2sAgKurK6pWrSq1rmHDhqhZsyYeP36MuLi4EouJ1KMIjyXQWfyer2QIZeFMq+H9xbcoERGpU2nMNYiIiIiIiJTRuSJQdnY2DA0NlbaJioqCsbGx0jbq5OLiAgCwsbGRu168PCWF87WXdryTmYiIqOB40wTpitKYaxARERERESmjc0UgFxcXnD9/XuH6zMxMBAQEoFGjgj0Lpig6dOgAALh7967MuoyMDDx69Ajm5uawtS38HPdEpLoyMYqGioVIzd9k83txvh+1GV+50ok3rBSv0phrEBERERERKaNzRaAhQ4YgJCQEP//8s8y6rKwsTJ8+HU+ePMHw4cNLLKZatWqha9euePToEbZu3Sq1btmyZYiLi8Pnn38OAwMDBT0QUXES5foqXuC3Z0SkBTiyRvvxNdROpTHXICIiIiIiUkbnqg6TJ0/GP//8gwULFmDPnj0wMTEBAPTv3x9Xr15FeHg4unbtijFjxpRoXBs2bECbNm0wbtw4HD58GHXr1kVISAjOnTsHBwcHeHp6lmg8REQlSZRnzAu//CxGPLdaR90jzEqKsqhZTiddVVpzDSIiIiIiIkV0biSQoaEhTp48iZkzZyI6Ohq3bt2CIAg4cOAAYmJi8MMPP+Dvv/8u8S9catWqhatXr2LkyJG4du0a1q1bh4cPH+Krr75CcHAwqlSpUqLxkJbjt2tqVdamo9LWL5yJqHiVrU9CosIprbkGERERERGRIjo3EggAjIyMsHjxYixatAj3799HTEwMrKysUK9ePejr62ssrho1amDHjh0a2z8RERERERVNac01iIiIiIiI5NHJIpCYSCRC3bp1NR0G6TDe46kd8rsbl48BIlUpu5J407d8PC06QgOfk/xsLhx+FpUc5hpERERERKQNdG46OKK8OB0H5ZX3+TRljcBvVguNZ67gytI5K8mpJUvD27gUhEBERERERERE+dD6kUAdO3Ys1HYikQhnz55VczRE6sciVtGps+jBl6Nwytpzl6j0KutFYGVK25nh5y2VBsw1iIiIiIhI22l9EcjPz+//7N13eBTV/sfxz5b0Ru+9ioogApcaQKXY9SeKFUEF7A0VCwgqqNjQi9fKVRAQUbFxLQGRIkhvSg89lISekF52fn/EbLLZ3WQTkmyy+349jz7szJkz35k5O9lzvlNKtRwD6ygNBrJRlXDHj38q7q8bzQJlhV9S8AdVua+xdu1ajR8/Xn/++aeysrLUvn17PfHEE7r55ps9riMjI0OTJ0/WzJkzFRcXpxo1aujqq6/WxIkTVadOHZfLzJ49W++++662bt2qwMBA9ezZUy+99JI6depUVpsGAAAAoASqfBLIZrN5OwRUUWXRN68MHXzAO86t7XtyN0ZZfLvId/gOkldVC0lo7911xq4vW1W1r7F48WINHDhQwcHBuuWWWxQREaF58+ZpyJAhiouL0+jRo4utw2az6brrrlNMTIy6deumG2+8UbGxsZo2bZoWLVqkVatWqXbt2g7LTJo0SWPHjlXTpk1133336ezZs/ryyy/Vo0cPLVq0SD179iyvTQYAAADgRpVPAgHgauxzVTCX5w+JPX/YxvJSGfYcdySiKiIxAVSc7OxsjRgxQmazWcuWLVPHjh0lSS+88IK6du2q5557ToMHD1bTpk2LrGfGjBmKiYnRrbfeqtmzZ9t/P3z44Ye6//77NXbsWH300Uf28rGxsZowYYLatGmjNWvWKCoqSpL0wAMPqFu3bhoxYoS2bNkis5nX0gIAAAAViSQQgDLFQJ9vMQyDpBHgJ0p6+uZ0XzQStvCW33//XXv27NHw4cPtCSBJioqK0nPPPadhw4ZpxowZeuGFF4qs55NPPpEkvfrqqw6/BUaNGqU33nhDs2fP1jvvvKOQkBBJ0meffabs7Gw9//zz9gSQJHXs2FG33nqrpk+fruXLlys6OrrU25a+d6+23DdKkhQ5oL8i+w9wKnPi44+VHhsrSarZtLnqP/uMfZ7NZlNSSrKSFi9R0s8/2ac3ePllmYODHerJPHJUiW+/pSBDSsvM0ZnO3ZTSopW2xh1XZnamvVzOlDel5LO5Hy7uLMvV1zjUExEWqZy5s2WsW5sbQ/Xqynj0cae4bX//JeP7efbP5vsflqlWLQUGBCkoMEiSZKQkK2fCWGWYpCyzSaaBV8rc9V9OdeV88qEUfzT3Q+s2qnbP/Y7rstl09ufvZSz/I3eCxSLLc87twTiwT7bPpyvAZijIkCz3PShTy9aSpIyMdPt+yHnlJSknR5Jk6tVb5n6XO9UVOvdLGdu35ZZp1Eh66HGlpqc4xrVmtYyYn/P3wegxMoWGSpJ9PxjHEpTzxquSpHSzlHPDYJnbX+S8D6ZOkc6cyf1wUUdZr/8/hYdGOJTJ/PpLpa5fnfshPEKWx590qse2bZuMeXNzY7DZdPzyK5VZo6Z2H8s95mkZacpKSZHt9Un2ZUyXDZS5Rw/nuj6dprCDB3PLtGkjy4gHlJOT47AfbEuWyPhjsf2zZdyLDnUEBYYo4HCccv7z7/ztuOtu5TRv5rwPJk+UMrNy19etu8z9B8lkMjnsh5zPP1XW338p3WKS6tSRZdSDznFvWCfjp/n2zyFPPqegWo53AabEH1bWO2/m74Nrb5C5Q0fnmP7zrkwnTynMZsjU8WJZbr9LkpSdk6209NTcMr/+JK1dk7tAcIgsTz3jVE/A3j2yfj7D/tnyyBNKq11bOTlZ9mlGtk22V/P3n6nv5TL37i1JMpssCgsNy13fB1Nl7N2jbEnpzZvLctdw533wxx8ylvxm/7zn6utlDQi2twNJMuIO6ux7U2T753RpGnKbzG3aOu+DN16T0tNkMqTw7j1luX6wfV7efsj59mtp65bciTVqyPLgo84xbd6kgO/nKdDIXaHl2XEy1aip1PRU5eRk58Z0Nkm2d97K3wdXXSNzp872z3n7Ieet12TEx+fGcOGFyhrs/NhQ28JfZaxamfshMECWMWMlScGBIQoICMhd384dypn2oVLNks1kknnYPTI1buK8D14eb/+3NfpShV/peN7MyspSymcfSnv35k5o2FiWu+91junPP2UsilGQzVCAIVkmviZTUO65PG8/GAnHZPv4P/n74MYhMp9/vkM9FotVgW+8JiUl5Zb5V3fZrvs/pWemOcb9w3fSX5tyP1SrJsvDj2vPqdzvb+3DpxQQECDbhnWyzZklSUoxm2R6IPdcXpCRmirbW5PzYxp4pQK691RocKhDubR33lBG/JHcD63byHLL7c77YPFv9nN5sMwKfu0th/kpqSnK2b9bts+n26eZhw6TqWlzp7qMSS8qNCv3XG6+9HKZr7hamVlZyiiwH3K+nC3F7sr9UK++LCPuc6gjJDhU5pV/yvbDt/Zp6WOelfHPbwX7uk6ckO2Dqfn74PobZW5/kSyWAIUG55fNfvUlZZ4+qUyzWbqooyzX3eAUd87/5ksb1+V+CI9Q+LMvyGpxHO4+u261cr75Mn8fjHxQprqOj7U1MjJle32SzIYUajNkvupamfvmvhuy4H7I+XSadDgud6EWLWS5/S57O4jYd1iSFPTHcpkXLbDXbX3jHSWnnnV4WoIRd1C26f/Nj+m2O2Vq2Sq3vDVAIUG5+yH7+aelzExlmgxl9egpc/9Bzvvgmy+l7dtzP/xzLg8NDpPFYrGXsa36U0nff52/vsdGyxQR6bgPzpyWbeo7uTEYhkJvuk3mzl3t8/P2Q85/3pVOncqdeMGFsvzfTc4x/fqTQlatkkUmKTRU1hdfkSSH/WDbtVPG3C/yY7pnlEwNGuTvN2uAgi0Bynk2/+9zVv+BynZxZ3nOjM+kg/tzPzRpZj+XF9wPtkULFfT7rzpryT1vNnzlFZn+OX/ZtzHuoI79O79tNrj3XtXo3MWhTHpGhvY++4xsqbl/t8J79FC1G3LbZmpGuiTpzNkknZo9W6mbNilj714FtWjhFHNFIwkEAAXwCKPy4a3HIgFVQWm+Hd7PzXo9AABu5L3HaMAA5wTJwIEDJUlLly4tso709HStXr1abdu2dbpjyGQyqX///vroo4+0bt069f5nULW49U6fPl1Lly4tNgnUvXt3l9O3bNmimiHh+tWaO/hhLDZJS353KmeytZSsLSVJl67+XLHLltnn5eTkaN13iZIhmaz5gyjGS386n9YMyZITooHrlikjx9A3ptZac7S+Oq/4Rhcl1c9fnxEt0z/jdsZOydi1tkAVhj6LCtR9G1ar98GNkqQjkTW0/e21csUcepX937bP90napw2RR7XJlDuIGp6Zqo/Wr9dvPS6XJbCnjD9MMpY712UyOtljyjmSo8/+vcxhfoCRoaGJkTL9sz5DklFETObkBeqzfqUmTl+h7bVzk0vdbAd1/tnc/WAKGmTffcYGydjoWFeWOUt1t67RxfE7JUn7dx/VS6bfdHui43CEyTDbY5Ik24db7f9eHXVUW9VE9ZJP6K316yVJMb2ulHVhhrTQ1T7omX9cdkvp7/yh2eHhDmVu37FOIfX+2Qe2oveBJAUm/k/zV59RXGSw9GfuPu2dc1Ctk+s7HDtjpUnGKue6sswtNGj9d5KkLQcT9WraMoWZzmrImfwEpMkIddwHhWJaUS1BthM5mvDPPpCkz+tcpIbpx533gXWATP/sYuMvyfh7rVICUjQ3tJq9zGNr1qhh5hHtvPARGcmu94FJcohp1cyftMXiOJjVP/OAmhaMe1GWtMjVcemuzIhTGvT7VK1MyNJ7J3MHoquZTuv/zoT/U6Z2sW1zh3WbHiywD57/bIVahUtNUhwHdR2OyxqTjLW5dZ0JTNK3ITUlSWOXr1W7E/u0v35d7Y242vU+MIIdj8vibP1eba8mrc6wT2t25rB6hbVSsHITP7b/JUlyUZf5UplCpXRzvCzzV2vGwfyYa5mO69oz1WQymsoUmnvuNdLdt82aSWfVcVdu0vvRj5frRGh1Dco6qgap+UkHh32wxJCxJL+uE8Gn9WNQHb32xzo1TkqQJP2aE6CAg672QQ2Xx2VBtZM6ZNSTJLU/Fqtn1q/Xz/2GKsRoLtvXCZISnOoqGNOZv+L1zW7Hc1R9U4KuPN1OptB2ues77aZtGgEyhV6lugdn6Py9+3XPf/5QujU3aX51RrzqpNd0Wp/t1xTpV8e64kNO6KqV61QtPTep9/tJs2KOmjTgTM1C62soU2jD3JgyHWO6b/2PSjBqq8ehzfa2+cul9yrwn3N5UfvA+MOkwxvm69eA+g5l7t1/WKpxdW6Zw+72Qf65vMHe/+qlQuf769NPqEZGlOM+mHdC0gmnujJCWurKVXMkST+cDddXsZFqZjqiS8/kJ31NRmuZQnMvBjCSnGP6vtpZdd6zU3f9lf/9/Pa/KxSVGaXCHGL651x+MOyYfrM2tE9/d8Va7W/eUGdrD5ax290+qJvfNm3SvPd/0hmjukOZISknFFFwfbMPSDrgMqZ0Y4uuWDpPszPq6Oe/ck+irUyHFH2m7j/ru0im0NyLD4x4x5gW/nPeO5a4RrduyN8Ht/97mYaknlFYVpj7ffDDaeWdM/aEx2uppbEk6b9r1ys4O1MrO3RU2l81ZPztah+0kCk097ycdy6fWy1dKUZ+0v/S/WvUqEa0Am2502yf7HSqp2BMmTkbtP/LP7Xsz3T7vHaKU/fEejIZ3fP/xu5zd1xqq0PsTtVMSlFyYIhG/dM2b09OVlBOkOt98OVhSYftn3dEHNUaNdCMAuf7WVGNVH91oIv1XSBT6AW5MZ3Ij2l2VLYylJtQu27nSg2NXaufeo+RxQiSMf4Pl7//Cv5GzPzfCvVKdUwIr/5rl0yZ0flZlbWSse53+/KS9Pf832Uy6knWQcpKma0geR/34sPnleegfmUZAiNtAV9UFu26snxHgaJU1XM43y+gcor95y6Y1q1bO82rV6+ewsPD7WXc2bNnj2w2m8s6CtZdsJ7Y2FiFh4erXr16HpUHAAAAUDG4Ewioihh5KxFffJwZd9Z4hw82JQBewukE5SUxMVGSHB7JVlBkZKS9zLnUUbBc3r/r1KnjcXl3Vq5c6XJ69+7dFX8gzv7lMRX4vwOTlJder/uvrupU4M6jrOxsrf/up9z5xb0T0iRZq1dTRNcu2nXgtDJCwhVsNctqOF9HaU/mu6gnMiRIJ6vXV2x67mOGToZFOpVxqqcAq9WsyH8eBxdssSm2TkulBoYoXJJRxIkkP6bcGAqyGIaUlO3RxXKGpLPBEYqt01LmiEh7XdY0k1O53PW5DupYjYaKteU+oiohorbCgwJUeIsNk9MkuwCLRZGBQQqyhSq2Tu6dXhkBwUUOaORXlRtT4f1wNrKmHB8CWHQ9SSGRMoKCFWw1KzAw9ypkS6q50Lrk9gRvyGSPPb5GQ0WGBCnESHcsZDIVeVwCLGZlh+fvA0mS2eK2vPNxMTnsh+M1GsjIMBV5QUrhedYAqyKDHPelKcfs8UUtNpNZsXVa6kT1+vZYQm0FHsdTzD6QJCMw2GEfBISFy2xKcS7nEKTDKuzrjq/ZSFazWcerOd4p5sDk/Nhzq8mkyOD8/RCQFa6s9LMKyikydHtcOWaLkqvXdTge+fvB5NFjZU+G17Dvh+DQUEWGBMmU7bwuV//OXUtuezhcq4nSg3O3PyksSjXlgpvjEhRgVaTln20Ij1JsnZbKsVhlZDsVdR2Tyez03QzOsbqM1zmm3ONyLLyWAupYFBYSrEBr7nfTlJl/wIurx2QyaX/tZgrLyH2005lqdRUU4Ors4v64hARYFGkJUnZENfsxyTFbJDftwXEfOLbJPIlh1eT+L4Y9ePtxSYis41SHKd15fe5kWaz22JOr1VZkSJCCcpzPL0XVFRpoVUZkTYfvp7uxC1f1mE2O56gDtZvpVGjYP+d6NyfXQm0zNDBANnOh+y5Siz7PFYwp0xqo2DotlR5Z0x5LULbFqVxR0sOrOeyDyJAgKdU5fnf1FNwPe2s3V0BOts6ERCnI7YCEc9sMDwqQxZS/HzIja8gwFb8f8uZnBAQpM7Kaw/EIyDI7lSvquByo0USngjOVHhCUX09yssv1uWI1mxUR5Hi+zwoMljJcl3dVV3hQgIL+aQ8p1WoptHNnyWySbO5//xWsKTwywuku9r1HT+vETpvDQnnt3DAZ9im5/zBkDnO8A8xbSAIBJVD4N09VvXob8DZfTKaQmHONveIbvPF+G57O6Rn2E/xJnSaNdO8rl3lcPjLsOofPFrNZ907q5/HywYGDFBwUpCaSav7zWLkuXe9SRlZm0QsWMCYiUlL+O3Ly3kvkeQxBCnYYcL9GaenppYghX8ljuFLBQUG6pcC0tPReJYqhWoTj+wIeysnR2VTnQXv3MRTcD7l1paSnKSsry/1CBZhMJo0Ld3wnUE5OvxLFEBJ8paJX5r5DKG9AKCW9Z4liiAq/w/55jHIfUViSGB4NDlJQQJCkO+3TrinhfnjRYT9crqzsbKWkpXocwyP2GPIlp3ZXdo4H2Q/l7YfcdzVM+GdaSWMICb5CQQFP2D/fIik5NaVEMUyy74fLSxzDqlWr1NnaUpf2u9RhekljiCrUJku3H3KPRd7382xqsnJybO4XKhTD5PAIFTxH/V9WllLT09wvVMhjwSEKdHinxvASxWCxmDUp1DEBl1nCGEKDr1ZgQIDDOaqkMUSE3mP/fEsJYli1apUk6bG+V/2zHy6X9IAkKTH5rMdPpsmNwXE/ZGT1Vlq6m9FuF8JCrtHjVsdh3pLEYLX0V3joaEn57SkjK6NEMTweEqoAq1VS/rvvShaDReGhBQfMLy9xDI/ZY8hXshgGKDw0zKE9FRdDXjvo1q2bJCks5GqHGG4pYQwBAQEKy3s30vOXexRDYaNDHd8JJF1ewhgG5cfwj5LGEBF6jT2GYf9MK9V+GDfQPu36jAylZ5Z2P+Tuy1FnkzxePijA+dFzt1w/SOlXuo6hcFuQpHnrvP8+IIkkEADAj/liMgreU5GJQAb+4Q7nNeTdvePurpukpCRVr17d5byS1FGwXN6/S1K+NMwmk6pFFHtdtPvlzeZzWl6SQoKDFRLsyf0jxFAUi8VyzjGEBYdIhQaoiKHkAqzWc47BcdDW92MIDXLd9ivDfiicSCipwICAQkkdYihKXltwVbZwkq+kggKcE64lRQwVE0NeOyjq++sP+6EiYggOKnxxTMmd63m2qBg8aQvewjuB4LcYQENV5o2r8gtHcE5Lezv8f1SWOHyZP+1i738vK5J/bS1QlRT1/p34+HglJye7fddPnhYtWshsNrt9h4+r9w61bt1aycnJio+P96g8AAAAgIrhs0mg7777TjfffLMuuugitWrVyj59x44dev3113X48GEvRgd4zuUFvYy8lSlfTQT44ruQcO53m/h7s/D37S9Kee6a0ux3jhUqs8rc1+jTp48kacGCBU7zYmJiHMq4ExISoq5du2rnzp06cOCAwzzDMLRw4UKFhYWpc+fOZbpeAAAAAGXP55JANptNQ4YM0eDBgzVv3jzt3btX+/bts8+vXr26nn/+eX3++edejBK+gvEpwL8wKA1fVtJ8OF+HyslXL2yoLKpCX+Oyyy5TixYt9MUXX2jTpk326YmJiXrllVcUGBiooUOH2qcfPXpUO3bscHqU28iRIyVJzz77rMOz2z/66CPt3btXt99+u0JC8h9BNXz4cFmtVk2aNMmhrk2bNmnOnDlq166devXqVdabCwAAAKAYPpcEmjJlir7++muNGjVKp0+f1pNPPukwv27duurdu7d++uknL0UIX8KAcNXkLw8x8vRle5UVX6/S4Q4wwL/4y9+0yqIq9DWsVqumTZsmm82m6OhojRw5UqNHj1aHDh20a9cuvfLKK2rWrJm9/LPPPqt27drpu+++c6jnrrvu0sCBAzVnzhz16NFDzzzzjAYPHqwHHnhAzZs318SJEx3Kt2nTRhMmTNCuXbvUoUMHjR49WiNHjlR0dLQk6ZNPPpHZ7HPdTwAAAKDS87lf4dOnT1eXLl30/vvvKzIy0uVgWKtWrRyu2IN/YpwUeWgLFc8X9zkDsaVTxXOVfswHv8QVzBfPg/6gqvQ1+vXrp+XLl6tnz56aO3euPvjgA9WtW1dffvmlRo8e7VEdZrNZP/zwgyZMmKDjx49rypQpWrFihe655x6tXLlStWvXdlrm+eef16xZs1S7dm198MEH+uqrr9S7d2/9+eef6tmzZ1lvJgAAAAAPWL0dQFnbvXu3HnzwwSLL1KxZUydPnqygiOBLGKwEfEtJB2F94RxQdbehygbuszgiRTvX93ehcqpKfY2uXbvql19+Kbbc9OnTNX36dJfzgoKCNH78eI0fP97j9d5+++26/fbbPS4PAAAAoHz53J1AISEhTs+zLuzAgQOqVq1axQQE+JnKeDdESYbhqu4AeUUr2eAmV7wD7vnD16Oszq0kVuBt9DUAAAAAVDU+lwS6+OKLFRMTo/T0dJfzT506pV9//VXdunWr4MiAslMZEy1AZVTcN6WkA9NFJbMYnHaNvVI+KjqxWtLvSnn9leLvH7yNvgYAAACAqsbnkkCPPPKIDh06pBtvvFGHDh1ymLdnzx7dcMMNSkxM1COPPOKlCIGyxyArSoL2AlR9leGuRc4l8Ef0NQAAAABUNT73TqDrrrtOY8aM0eTJk9W0aVOFhYVJkurUqaOTJ0/KMAyNGzdOl156qZcjBQD4rHIcHS/uTggG5uErKkOiCyiMvgYAAACAqsbn7gSSpFdffVUxMTG6+uqrFRoaKovFIpvNpkGDBumXX37Riy++6O0Q4SN4zwmqIsZVUZH8qb35W9LCzza3yuC3SfmjrwEAAACgKvG5O4Hy9O/fX/379/d2GMC5YzAHXmQY5TOgWFHNuqzXw3t/qj4GyKuOqn6sir1rr6pvoJ+jrwEAAACgqvDJO4EAAPCEt8dgGQQGUNb87Y40AAAAAEDRfO5OoIMHD3pctkmTJuUYCQp6cPYG/XX4jMZedb4GXlDPYV52jk2Pzt2kzXFnNKJ3C/24+UiRdb04f6titsRr8CWN9OmK/ZKkdvUj9PV9PbRm3yk9M++vUsVoGIZGf71Zq/eekskk5dgM3d2zuUZEt8gvU+iq3rcX7tIXqw9q1d5TkqQrLqynvw8nKiLYqv/c3kl1IoK1/0SKHpqzQRaTSe/d1kmNa4Q6rXve+kN6e+Eu9WxVU5NvvEgHT6Xq4Tkbtfd4Sqm2RZJ+33FMHy/bo5a1w/Wf2zspOMBS6rqKk56VoynrUrX9VI6si34r8fI2m6Env96sBdsSJEk9WtbU1NsuVpDVs5i3HE7U43M3qXpYoN6/vZNqhQc5zH/ll+26/Py69s/zi2ljRen/9jJJUsfG1fSf2zspKiTAo+W+WX9IE37cKkkafEkjTbj2Ardlk9Kz9ODsDTp8Jk2v33iROjer4VRmZ/xZ9W5d2+XyeW3ZVgYDgRnZNoUEWpSSka0HZm9Q3KlUvXz9hUrPyjn3youxZOdxvTR/W7Hlur+6SA2qhZzTuorbnml/7NW9vVsUWaYou48lu5y+eMcx9Xh1kS4/v65euu5CSdKBkyl6eM5GGYb03m0Xq2nN3PdNfL0uTu/8FqvEtKwi13X4TJqk3PPK+H/aXGEnkzP0wOwNOpWSqbdv7qj2jaJKvE2LtifoRRfH58s1B/X678nqWMeq6OgSV1usV37erv9tPqIR0S00vGdzSdKRM2l66IsNSsuyaeqtHUtU33XvLdd7t3VSjbBAexufdEN7dW9ZU38dOqPRX21WjbBAfXDHJaoRFihJOp2SqQdmb9Dx5Ay9dVMHdWhc7Zy2KSvHJsMw9OTXf2nV3pN6amBbXX9xw1LVZbMZuvfzdVqzL/fv0mfDu6iLi3NIYbuPndXCf87BBV04PsZl+Q0HT5coroOnUvXnnhN6/rstalYzVJ2b1dCsVQd0bYcGevbKdiWqqyxd/58Veu+2i9WouuPf5t3HkvXInI0KCjDrvds6qaEH55iZqw7og8W7NejC+nrhmvPLK2Qnl7zs/Hc3MdX5PJF3LC9oEKmtR5IkSSGBFq19/vLyDdDH0NcAAAAAUNX43J1AzZo1U/PmzYv9r0WL0g/moeSW7jqu0ylZGv3VZqd5C7claOnO4zqTmqU3YnZqZ/zZIuv6et0hJaVn2xNAkrT96FltOZyou6ev1bGzGaWK8c89J7Vga4IS07J0JjVLZ9Oz9e6iWOUUGElPyXAcKN5/ItWeAJKkX7bE69DpNG0/elZvxeySJD333d/afyJVe46nuB2QHf/jViWmZennv+O1/sBpjf1+S4kSQK7G+lftPakTyZlave+UvloX53FdhWVkFz/Y//W6OG0/VfqkwIo9J+wJICn3WPy4yfNEzf2z1+toYrq2HUnS1EWxTvOPJWUo7lSq/fPL/9te6ljzbIo7o/8u3+dx+QkFjv036w8VWfbT5fu08eAZHUvK0LDP1ros885vztuZJ68tF7btn0G/kpi3ITfWmasOaP2B0zp2NkOjZq4vcT2lvTL9q3Vxik9ML7LM2fTsYs8b7uTF9eWaogf1itrfnnj6G+dzX56k9Gx9u+GwdsTnHp+87/++Eyka+/0We7kX528rNgEkSR8v2ytJbs83kvTe4t3aeiRJRxPTdd+skh9PSXr0y006lZLpNH3iT9uVmm3ozyNZ2nI4sVR1u3PodKq+WH1QSenZemvBLvv0ST9t166EZMWdStWTXxd9IUDhtrjneIpe+GGLPl+Z38ZHfL5OknTfzNxzy9YjSfrP4t32Zd5fslt/H05UfGK6vey5+Omvo1q596RitsYrMS3L4biX1OKdx+wJIEka7uYcUlhx+62wl+ZvK/LhiIX385p9pzTy8/U6fjZDa/ef1gdL9uhserZmrz6oQ6dTXVdSAXYfS3aZbB4z7y8dPJWq2IRkTfxf8cloSZr8yw4lpWfrq3Vx2nPcdeK3IKMcb9n5cNket/O2FvhbkJaZo78OnSm3OHwRfQ0AAAAAVY3P3Qk0dOhQl4/XSUxM1ObNm7Vv3z716dNHzZo1q/jg4NL2oyUfmHbl4CnXg0iePm4pNsH1ILLNMGT5Z6grLSvb43iW7DomSfrrUP4gaMGBOXf2nUjRxoNniixT0veSbDp4RkO7l2gRu8xsW7Fliou3OLEJzoNlWw4n6qbOjT1a/nRK/sD4H7EnXJY5djbd5V1Y52LV3pNlWl9Z1euuLR88larzG0SWqPVsjjujO7o11br9Jbvqv6rZcI5tuDi7XLTxwg6dStN59SIdvk/n+t1yZ9mu4/Z/e5JYKq04N+flgjx/Ip5JCUmuE4JLC2yPu7uuirJ2/2mZXQSSlJ5/zv8jNn8dy3fnf0dTM8/9rri/Dyfq4qbVz7keSdpRyoRoafZbWTl2NsPpTpyK9Oce53NuwcSyu78rRSkueV3e/tztecwHT6XqokbVyi8YH0NfAwAAAEBV43NJoOnTp7udZxiG3nrrLb3++uv673//W3FBwavK80pbbynuZdMomYJNhD2LovAKHyAf50v4I/oaAAAAAKoan3scXFFMJpOefPJJXXDBBXrqqae8HQ68rKR30wAovcLJE19MpvjiNpUFdkvxaDuAb6CvAQAAAKAy8qskUJ7OnTvr999/93YYAAAvY/C9KuG+E1QtxV1s4unjalH10NcAAAAAUJn4ZRJoz549ys72/N0u8A9lPbxYnk+h4y6mslVwHI49C19nyKiyg88++HRPFIHjXXrsOu+irwEAAACgMvG5dwK5Y7PZdPjwYU2fPl0//PCDLrvsMm+HhCqIASnAv1XN1IkzX3xXWmVQRXNrpeaNza0qF0F48hXje+hb6GsAAAAAqKx8LglkNpuLvMLZMAxVr15db731VgVGhcrI8PA62YJjNJVlvMbT2KsK39oaeKKivkvFraakcXhcnEZt50+7orL8jago3thcX/v7h6qHvgYAAACAqsbnkkDR0dEuO2Zms1nVq1dXly5dNHz4cNWpU8cL0QHFq6qPaQKqMn8aVs69k8KfttgRp9jKx90h4VihMqKvAQAAAKCq8bkk0JIlS7wdAqooT8aaSjJsWpmGWCtTLN5S1BX6VeXxQp7ieKM4JJsBoHToawAAAACoaszeDgCAI94RAH9ADgJ5SnLKqyxnR5ovKjt+SgAAAAAA8vjcnUB54uPj9e2332rHjh1KSUnRf//7X0nS8ePHtW/fPrVv314hISFejhJS5RnUqyxxoAqh0VR5JU1GMfgPoKxUljvySBiVDn0NAAAAAFWFTyaB3n//fY0ePVoZGRmScjvZeR2zY8eOqXv37vrwww81YsQIb4aJKoi7dKqAyjGmhkqiIpuDye2Hyqciz2WVfFdUCmX5SMqKzCtwbN0zPLhKgN8UVRd9DQAAAABVic89Dm7+/Pl66KGH1L59e/3444+6//77HeZfcMEFuuiii/T99997J0AAlRpDcuWDwWL/VNbfJ2+2o/Icry9N4qYy5A8qQQhAhaOvAQAAAKCq8bk7gd544w01adJEixcvVlhYmNavX+9Upn379vrjjz+8EB38SWUYoAMAVyrLY6gAyXfboyd3A6Hqoa8BAAAAoKrxuTuBNm3apKuuukphYWFuyzRs2FAJCQkVGBWqsooexPHVwbAK4+ZwsVtLx9eHMEnWVi3ePFyV7RxS2eIpjAQIfBV9DQAAAABVjc8lgWw2mwICAoosc+zYMQUFBVVQRKisyvIdDKja/G2wsjIMHle275/H7+YoYuf5VyuqeCTs/A/HvPT87e9aRaKvAQAAAKCq8bkkUNu2bYt8/EJ2draWLVum9u3bV2BUQNnyh4Gxsr4jqqh95g/7E0DRKkNyFL6lsiW7UTboawAAAACoanwuCXT77bdr48aNevHFF53m5eTk6Mknn9TevXs1dOhQL0SHqq6y5gqKu4vB47scKpGqGHNlUdyuK8mu9fUhTH8c+K/oOwSqyje5LE45pa2iLE93nDorB46D76KvAQAAAKCqsXo7gLL28MMPa/78+XrppZc0e/ZsBQcHS5JuvvlmrVu3Tvv379eAAQN0zz33eDlS5KnsY7CV8UreSjdwXdniqSj+ut1AFVYW5/SyPgfz6C7XXO3nyvg3uTIqyX6qdL8pKjn6GgAAAACqGp+7EyggIEAxMTF65plndPLkSW3ZskWGYeibb77RqVOnNGbMGP34449l/qgp+Aeu7C0f3PVTeXFkHPGXw7u8eargNAVAoq8BAAAAoOrxuTuBJCkwMFCTJk3SxIkTtXPnTp06dUqRkZFq166dLBaLt8NDIZVlXI0BPpQYbQZAWfHjP0IMlZe9ktxd5sdNr9ToawAAAACoSnwyCZTHZDLpvPPO83YYqOIcB1Iqx0iJPwzYcAVt5VBeR6GiDm9xX5W871JZtDdarGu+sl8q2ympsv8dKK/4eHQeKhP6GgAAAACqAp97HBxQWFkOF5VsUIuBKlROlW0wuyrhW41ywxcTAAAAAACUA5+7E6hFixYelTOZTNqzZ085RwP4iXIYGS/1e4LOcRy1sl9dj7KVN+7Oe6ngzRyMqQzvlyKXVDlwRvFd9DUAAAAAVDU+lwSy2WwuH+uTmJioM2fOSJLq16+vwMDACo4MlR0DZ97Do99QVdBSS4b95RlOgUDVQV8DAAAAQFXjc0mg/fv3FznviSeeUEJCghYuXFhxQQHwuqp0VTY3pVRO3C1Ucr66xypDU/CHxFFl2M9VFfuu/NDXAAAAAFDV+NU7gZo1a6a5c+fq9OnTev75570dDiqIp+NkDJh4D4PrZYu9mc8Pxsn9WlmeO4qrypNV0d5QOfBXwFvoawAAAACojPwqCSRJAQEB6t+/v7766itvhwKgCDwiDkBlxempbLE/4UvoawAAAACobPwuCSRJqampOnXqlLfDQBVR0TepMBZ2jtwcr6L2KwOQ7vn69eTl9f2mSeUrq11syLt3DXpynvD17wuqCs5A3kZfAwAAAEBl4ndJoD/++ENz5sxR27ZtvR0KqqDKMsDnD0mLihzsNRUYMPOHfYvS84X2YfLzAWJfOIb+oiofK8MwqnT8KD36GgAAAAAqG6u3Ayhrl156qcvp2dnZOnz4sP1lri+88EIFRuXa5MmT9cwzz0iSVq5cqW7dunk5IlQGlSXRhKqLcUfPleUgLQO+rhW3WzjnwVd583V3vGqv/FSlvgYAAAAASD6YBFqyZInL6SaTSdWrV9eAAQP0xBNPqH///hUbWCFbtmzR+PHjFRYWppSUFK/G4m2+OlBRntvlq/vMW4xSDkOXdjlUPv50JGm3rnk9iVfCEzt/B1BWaEolU1X6GgAAAACQx+eSQDabzdshFCsrK0t33XWXOnbsqNatW2vWrFneDgmodExeH5FFQRwOAJWBvz/OEN5XFfoaAAAAAFCQ370TqDKYNGmStm7dqk8//VQWi8Xb4QB+wdMrnbm6vpz4yLitj2xGleXNryfnBgAAAAAAUBX53J1AeY4dO6bDhw/LZrOpYcOGqlevnrdDkiRt2LBBkyZN0ksvvaTzzz/f2+F4ze5jZ3X9f/5UjbBA9WlTu0zqfPqbv1xOf+KrzZI26+Im1Rymf7fxsIKsZo2IbqG6kcHF1p+RneN2Ha7L2/TBkj1O0y8cH6NuLWroyvb19cIPW53mT/jReVphuxLOOnz+bXuClu487rb8b9uP6bEvNyo82KoeLWtpw4HTalE7XK3qhGv+5iOSpJTMbC3YmiBJGtKlsa66qL7u+u8aRYUGONX35NebVS0kQM1rh+mWLk20YFtCsTFLUkpGtsKCHE87fx06o3d+i3Uq+836QwqwmDSidwvV+ef4JCSl6//e/1OJaVmSpDu7N9Wjl7V2WO7Y2Qx1mfSbU32GIQ2cskyHz6Q5zcvItmn9gVO669O1Hm1Hnu1Hz2rhtgT1P7+uTqVk6qOle1Q3Mli3/auJZvy5X4lpWbqvb0u3y+fYDM1adUCHz6RpZHQL1QoPclnu85X79fqvO93Ws/vYWc1ceUD/alFTV7avry1HEl2WW7X3pJ78enOJtjFPelZOqZbLM/Lz9bqlS2ON7NNCYYFWl8e8PLw4f5tenL/N/nnFM67f5eCJD5fu1a6E5CLnf7h0b6nrd+fl/21TZnbJrjw3islYFE5m/brlqH7bfkwpGdm6sGGU7unVXMEB536RwtsLdyk+Md3t/KT0LP246YhHdb33+27tiE9ymLZy70mN/Hx9sctm59g0/c/9OpmSaT9/FLZq7ymHzzNXHXD4fDQxXf9ZvFv39GrulBDq+drvbuvNE5+YrlMpmXp74S7tPe7Yjg6dTtPkQt/xST9tU5Maobr9X03d1rkr4axmrzqg7i1rKSk9SzuOnlVWjnNbmfTTNjWtGabbujbRNxsOacHWBB0+k6a4U6kKDbRo8ZN9i4zdnZcKfLcKO5Na9P4o6K9Difp1S7w+X3nAad4Pmw47fJ7083Y1rRGqmuGBGnxJI13cpLqS0rP04ZI9igoJ0I2XNFL/t5cqK8dQzOPRalgtRL/8fVQxW+OVkun+PLb7WLJa1Ql3O39HfJK+WH1QCUnpalgtVPf0bq6G1ULcln/y681Kz3I8FheOj3H4HJ+Urs4TFyo9y6YrLqynhtVDNCq6pUIC8797hdvKhoNn3K4TFauy9jUAAAAAoDCTUdxIURWSkZGhd999V5988on27nUciKtevbruvPNOPfroo2rWrJnX4rvkkksUEhKiVatWyWKxaNiwYZoxY4ZWrlypbt26Fbl89+7dXU7fsmWLmjRpog8++KA8wi5SUlLugNyTqzy/Pv7jAREaueBs8QUrSNvqFo3uEqqYfZmaF5vhNH9SrzDVDjXr3+vTtOVkthcirNwuaxKoRQcz8y+TL+K5YZc1CdSQ8/ITHYZhaNRC94PqktSuhkWPdw6VJE1YkaIjKY6Dai2jLNqTWHyCoktdq9YmlM/xe6NPmOZsz9CGY7n1t65mUeyZ3Jh6NQxQjk1aedRxQPTjARFan5CljzbnDpBfVMuqhzrlDiiOXpyss1nFn5o/HhAhSXpySbKSMnPLv9I7TM/9UXbvGetS16oRHUI8/84W0w7Or2lV/TBzbpvxgkCzSZm2/H1bL9Ssl3qF6b2NafrruHe/3/d3CNHFda1lcn4c0zVUk9ekupxXM9gsQ9KpdPeJpRtbB2lg80D758IxFXseL6IdvBYdphrBuTciz9qWrmWHPE8WlNZdFwRrxlb3yaiS+L/WQfrWxd8KTwSYTcqylexn14MdQ/SfTc7J6zqhZqVmGUr24FyR5+oWgfrf3gr+7nnwt8GdxhFmxZ0tOgH6Yf9wzdyaoRVHXLejV3uH6VkPzolRgSa90Tc/CVS4fQdZTMrIyd/XTSMser57qEOZsvjuDmoWqP9rk/93sjR1jrgoWD/sztSxVM+Sx3dfGKxuDZwv+ChLeb8XIyMj7dPuv/9+RUZGauXKleW67rJU2fsavi6vL+StNrNs2TJJUnR0tFfWj8qBdgCJdoB8tAVItAPkc9UWvP0bNo/PPA4uLi5OXbp00bPPPqs9e/aofv366tq1q7p27ar69evr1KlTevfdd9W5c2f99lv+XQJHjx7VV199VSExvvDCC4qNjdVnn33GY+AqkZ2ncwfr3Q2j7TiVO58EkGslGcwvzcD/9lP5CZ7CCSBJHiWAJJVbAkiSdp3KsSeAJNkTQJK0/HCWUwIoz4J9+dP/OpG/vCcJoILyEkCStOVE5W6n205mey0BJMkhAeTLVroZEPeUq4R4Wdl+Mv/7UREJIEn6cXfZtbnSJoAklTgBJEm/HXAdu0kqUQJIUsUngM5RcQkgScq2yW0CSJL+9vCcmJhZ9L4smACSpANnz+3uSHd+3V+1jpE/qQp9DQAAAABwxSceB5eVlaUrr7xSW7du1W233aZx48apbdu2DmV27typiRMnavbs2br++uu1ZcsW5eTkaMCAAbrrrrvKPcaVK1fqzTff1IQJE3ThhReWug5X8jKK3sg452U4rRbnq5TdiY6OlnVRTPEFK1B0dLRizftk3bvLaV6bNm0U3blxpYu5ssnOyR1os1qKPq0UbKeGYcj6+4Ji685bprIeg/PPP1/WbZ4/KlDK3ab3d6yUNSXJYZrk+Xa6Kt+mdRtZd20vUSxFqVuvnqKjO3gck6ftoLIIjwhVdHRvzT20QdZT7h+pWBEuuOACRZ9ft0zaeYMGDWU9esjlvLCwYNkMKSmr6DtjCn5XC8dU3Hm8qHZw3nltFX1xI5f1lpfQ0CCdzS6/xFZ5qlGjuqxJp52mh4eH6mSG67u9KpPyPif06tVL1iXOjwDNU5JzYlFtvrjyni5THnEUdsH552vR0d065WH7aNeunaI7NCjxekrC1RVxBe8KquyqQl8DAAAAANypGqN0xfjoo4+0detWjR8/XuPHj3dZpm3btpo5c6batGmj8ePH6/bbb9f+/ft14sQJXXLJJeUaX3Z2tu666y5ddNFFeuaZZ8p1XQAAFKfkD+YCAP9V2fsaAAAAAFAUn3gc3FdffaVWrVrphRdeKLbs2LFj1bp1a61cuVLp6emKiYnRVVddVa7xJScnKzY2Vps2bVJgYKBMJpP9vxkzZkjKvZvHZDLp+++/L9dYAAAu+MdT4gD4BdK8Za2y9zUAAAAAoCg+cSfQtm3bdMstt8jkwUuHTSaTBgwYoN27d2v16tVq1apVuccXFBSke+65x+W8ZcuWKTY2Vtdee61q167Ni2S9iCETAEBVYZC4BCpMZe9rAAAAAEBRfCIJlJycrKioKI/LR0ZGymq1VlinLCQkRNOmTXM5b9iwYYqNjdWzzz6rbt26VUg8AAB4C8kLAFVNZe9rAAAAAEBRfOJxcHXq1NHu3bs9Lr9nzx7VqVOnHCNCVcS4JErLgwuDXS9XBe4/q/wRlhG/2VAAcMTvn+LR1wAAAABQlflEEqh79+765ZdfFB8fX2zZ+Ph4/fTTT+rVq1cFRAZfwOAI/BntHwDg7+hrAAAAAKjKfCIJdN999yk5OVk33HCDTpw44bbcyZMndcMNNyg1NVWjRo2qwAjdmz59ugzD4FFwAMpEae9Kgv/wx8exefIeDwBwpyr3NQAAAADAJ94J1K9fP40YMUKffPKJ2rVrp1GjRunSSy9V48aNJUlxcXFatGiRPvnkE504cUIjR45U3759vRs0qgyGDgEAQNXhh5neckZfAwAAAEBV5hNJIEl6//33FRkZqSlTpujVV1/Vq6++6jDfMAyZzWY9+eSTTvMAAH6OMdMK4493IgGo+uhrAAAAAKiqfCYJZLFY9MYbb2jkyJGaPn26Vq5caX9ud7169dSjRw/dddddat26tZcjBQAAAFCV0NcAAAAAUFX5TBIoT+vWrTVp0iRvhwHAr/juQwO5awOonHjNEeAd9DUAAAAAVDVmbwcAAACAkiFBCwAAAAAAPEESCCgG42wAqhqDDAHgx0z8dgEAAAAA2Pnc4+CAMsdICqoQUxk/mo5HTvkebx9Tb68fAAAAAADAn3AnEPAPrpwHgPLHqRaoXPj9AwAAAAC+jSQQAJwjX76zgbFBAAAAAAAAoOoiCQQA56gyJUoMnl9YKuw3AAAAAAAA+CKSQMA/TO5u5/DhuzzgXVXhDqKqECMAoCCjRD9d3P7+AQAAAAD4BJJAAAC/ZSLLCwDwMUlJSXriiSfUtGlTBQUFqVmzZnrqqaeUnJxc4rpiYmLUp08fRUREKDIyUv369dOiRYucyp08eVIff/yxrr32WrVo0UJBQUGqVauWrrjiCsXExJTFZgEAAAAoJZJAQHF4ShTgs3gMXMVjj6MicZML/E1KSor69OmjKVOm6LzzztPjjz+utm3b6s0339Sll16q9PR0j+uaNWuWBg0apO3bt2vYsGG66667tHXrVvXv31/ffPONQ9mvv/5ao0aN0vr169WrVy898cQTuuKKK7R06VINGjRIb7zxRllvKgAAAAAPWb0dAFBZGJXpxS5AKXFnC4pjGP43MO5nm4sC+NMOf/P6669r06ZNGjNmjF577TX79GeeeUaTJ0/WlClT9OyzzxZbz+nTp/Xwww+rVq1a2rBhgxo1aiRJGjNmjC6++GLdf//9GjhwoCIiIiRJbdq00Y8//qirrrpKZnP+dYZjx47Vv/71Lz3//PO6/fbb1aBBgzLeYgAAAADF4U4gADhH/jagjqqPZCEA+B7DMDRt2jSFh4dr3LhxDvPGjRun8PBwTZs2zaO6vv76a505c0YPP/ywPQEkSY0aNdJDDz2kEydO6LvvvrNPv/TSS3XNNdc4JIAkqW3bthoyZIiysrL0559/nsPWAQAAACgt7gQCAMDP+Ntj8PxrawH4q9jYWB05ckQDBw5UWFiYw7ywsDD17NlTMTExiouLU+PGjYusa8mSJZKkAQMGOM0bOHCgJkyYoKVLl2ro0KHFxhUQECBJslo963p2797d5fQtW7aoSZMmWrZsmUf1lLWkpCRJ8tr6UTnQDiDRDpCPtgCJdoB8rtpCUlKSIiMjvRWSHXcCAQAAAD6DO/38VWxsrCSpdevWLufnTc8rV9q6SlJPUlKSvvnmGwUHB6t3797FlgcAAABQ9rgTCAAAAFUSj+ME8iUmJkqSoqKiXM7PuwIxr1xp6ypJPffdd58SEhL00ksvqWbNmsWWl6SVK1e6nJ53h1B0dLRH9ZS1vCs6vbV+VA60A0i0A+SjLUCiHSCfq7ZQGe4CkkgCAQD8mL++G8eb220YPJwNqEz4TlY+o0ePVkZGhsflH330Ubd3/3jTs88+qzlz5mjQoEF67rnnvB0OAAAA4LdIAgHAOfLlNIKvjw366rtxfHOrAGe+fo4qHV89s/mPjz76SCkpKR6XHzx4sFq3bm2/a8fdHTp5zyh3d6dQQQXrKnwHjyf1jBs3Tq+99pouvfRSffvtt7JYLMVvCAAAAIByQRIIKAZDKahSfDkjBZ9g8sLzu/haAKhKkpOTS7Vcce/qKe6dQYXrWrdunWJjY52SQMXVM27cOE2cOFF9+/bV/PnzFRIS4vE2AAAAACh7Zm8HAAAAKhbJbQDwPa1bt1aDBg20YsUKpzuJUlJStGLFCjVv3lyNGzcutq4+ffpIkhYsWOA0LyYmxqFMQXkJoD59+uinn35SaGhoaTYFAAAAQBkiCQQAXsILzQGgfHGehT8xmUy69957lZycrJdfftlh3ssvv6zk5GSNGDHCYXpqaqp27NihgwcPOky/+eabFRUVpalTp+rQoUP26YcOHdJ7772nWrVq6YYbbnBY5oUXXtDEiRPVu3dvEkAAAABAJcLj4AAA8DMmLz4gjZfQlw32IgBXnn76af3www+aPHmyNm7cqE6dOmnDhg1asGCBunTposcee8yh/Jo1a9SvXz/16dNHS5YssU+vXr263nvvPd15553q1KmThgwZIkmaO3euTp48qblz5yoiIsJefvr06Xr55ZdltVrVtWtXvfHGG06x9e3bV3379i2PzQYAAABQBJJAAAC/5c1kCIDyR84R/iYsLExLly7VhAkTNG/ePC1evFj169fX6NGjNX78+BK9n+eOO+5QrVq19Morr+izzz6TyWTSJZdcorFjx+ryyy93KLt//35JUnZ2tt566y23dZIEAgAAACoeSSBUuMm/7vB2CE6W7TquzByby3k5NiktM6eCI/JdvSb/rn5t66hD42oKD/LsFPTy/7bp3t7Nyzmy0vtzz8kSL3PHtNXaHJfoNP2nv456XEdmtk2BVsenev6vBMt7KjbhbJnXWVnsO5GiL9ccVFJatrdD0cq9J5Xl5jxUUnuPp7iddzQx3aM6jiWl68u1caoTEVQmMeX5et0h/RF7Qq3qhJdpvUXxdJsro7X7T7ucnpHN3yVJWrH7RJHz/4gten5Bfx06o4saVVN6lmf79odNh5WWmaPIkABtOOD6OJXGjD/3q3pYoDo1qVaq5d9fskdxp1I9Lr/nWHKp1oPKKyoqSlOmTNGUKVOKLdu3b98i79AcNGiQBg0aVGw9EyZM0IQJE0oSJgAAAIAKQhII52zbiZINns5ceaCcIim9B2ZvcDtv8q87NOPP/RUXjI87k5ql7zYe1ncbD3u8zNy1cZq7Nq4cozo336w/VHyhQjbFnXGa9tmKfXprwS6P63j227/11s0dHKaV5UCkJJ1Nz9IN7/9ZpnVWNhN/2u7tECSVbTt31b5K6tK3lp57IC5sO5qkbUeT9PuOY+VSv784lpTh7RAqhUe/3FTk/KW7jntc122frNabN12kl//n2Tnh+e+2eFx3SbwRs/Ocli8qCezKpyv2a9CF9XV+g8hzWi8AAAAAoHIyF18EKNoHm6vuFdaeyLEZOnwmzdthwA+UJAEkSTFb48spknylucsJAKqqJ7/+S4lpWd4Oo8K9/L9t3g4BAAAAAFBOSALhnGXk8MB9AACAqup0aqa3QwAAAAAAlBOSQAAAAAAAAAAAAD6IJBAAAAAAAAAAAIAPIgkEAAAAAAAAAADgg0gCAQAAAAAAAAAA+CCSQAAAAAAAAAAAAD6IJBAAAAAAAAAAAIAPIgkEAAAAAAAAAADgg0gCAQAAAAAAAAAA+CCSQAAAAIAfM5lM3g4BAAAAAFBOSAIBAAAAfswwDG+HAAAAAAAoJySBAAAAAAAAAAAAfBBJIAAAAAAAAAAAAB9EEggAAADwY7wTCAAAAAB8F0kgAAAAAAAAAAAAH0QSCAAAAAAAAAAAwAeRBAIAAAAAAAAAAPBBJIEAAAAAAAAAAAB8EEkgAAAAAAAAAAAAH0QSCAAAAPBjJm8HAAAAAAAoNySBAAAAAD9meDsAAAAAAEC5IQkEAAAAAAAAAADgg0gCAQAAAH6Mx8EBAAAAgO8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAgB8z8Tw4AAAAAPBZJIEAAAAAP2YY3o4AAAAAAFBeSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAODHeCcQAAAAAPgukkAV4PDhw3rnnXc0YMAANWnSRIGBgapXr55uvPFGrV692tvhAQAAAAAAAAAAH0QSqAJMnTpVjz/+uPbu3asBAwZo9OjR6tWrl3744Qf16NFDc+fO9XaIAAAAAAAAAADAx1i9HYA/6Nq1q5YsWaI+ffo4TP/jjz902WWX6f7779f111+voKAgL0UIAAAAAAAAAAB8DXcCVYD/+7//c0oASVLv3r3Vr18/nT59Wn///bcXIgMAoORybIa3QwAAAAAAAIAHSAJ5WUBAgCTJaq2aN2U9uyzF2yEAfu3C8THeDgF+qMOLC7wdAgAAAAAAADxQNTMPPuLgwYP67bffVL9+fbVv377Y8t27d3c5fcuWLWrSpImWLVtW1iEWKSvH0Mm0HElSdk52ha4blZCRe2cAbcHP0Q4g0Q6Qj7ZQJaQkJ5fr78ikpCRJclhHUlKSIiMjy22dAAAAAIBc3AnkJVlZWbrzzjuVkZGhyZMny2KxeDukEsvhaUAAAAAAAAAAAFRa3AnkBTabTcOGDdOyZcs0YsQI3XnnnR4tt3LlSpfT8+4Qio6OLrMYPZGSkS39nvsoKquFpuTv8q7ypi34N9oBJNoB8tEWqobwiFBFR/cut/rz7gAq+FuVu4AAAAAAoGJwJ1AFs9lsuvvuu/XFF1/ojjvu0IcffujtkAAAAAAAAAAAgA/isswKZLPZNHz4cH3++ee69dZbNX36dJnN5OEAAAAAAAAAAEDZIwNRQQomgIYMGaKZM2dWyfcAFWQyeTsCAAAAAAAAAADgDkmgCpD3CLjPP/9cN910k2bNmlXlE0AAAADwDSZxZQ8AAAAA+CoeB1cBXnrpJc2YMUPh4eFq06aNJk6c6FTm+uuvV8eOHSs+uHNgGN6OAAAAAOfKED/qAAAAAMBXkQSqAPv375ckJScna9KkSS7LNGvWrMolgQAAAAAAAAAAQOVFEqgCTJ8+XdOnT/d2GAAAAAAAAAAAwI/wTiCUmonHxwMAAFR5vBMIAAAAAHwXSSAAAAAAAAAAAAAfRBIIAAAAAAAAAADAB5EEAgAAAAAAAAAA8EEkgVBqPD8eAAAAAAAAAIDKiyQQSs2Q4e0QAAAAAAAAAACAGySBAAAAAD9m4uZuAAAAAPBZJIEAAAAAAAAAAAB8EEkglBrvBAIAAAAAAAAAoPIiCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAODHeMsjAAAAAPgukkAAAAAAAAAAAAA+iCQQAAAA4McMbwcAAAAAACg3JIEAAAAAAAAAAAB8EEkgAAAAwI/xTiAAAAAA8F0kgVBqJkYMAAAAAAAAAACotEgCAQAAAICPSEpK0hNPPKGmTZsqKChIzZo101NPPaXk5OQS1xUTE6M+ffooIiJCkZGR6tevnxYtWuTRsnPnzpXJZJLJZNKXX35Z4nUDAAAAKBskgVBqBm8RBgAAACqNlJQU9enTR1OmTNF5552nxx9/XG3bttWbb76pSy+9VOnp6R7XNWvWLA0aNEjbt2/XsGHDdNddd2nr1q3q37+/vvnmmyKXjY+P14MPPqiwsLBz3SQAAAAA54gkEAAAAAD4gNdff12bNm3SmDFjFBMTo9dee00xMTEaM2aM1q5dqylTpnhUz+nTp/Xwww+rVq1a2rBhg6ZOnaqpU6dqw4YNqlmzpu6//36dPXvW7fIjR45URESE7rvvvrLaNAAAAAClRBIIAAAAAKo4wzA0bdo0hYeHa9y4cQ7zxo0bp/DwcE2bNs2jur7++mudOXNGDz/8sBo1amSf3qhRIz300EM6ceKEvvvuO5fLTp8+XfPnz7fHAgAAAMC7rN4OAAAAAIAXmUzejgBlIDY2VkeOHNHAgQOdHsMWFhamnj17KiYmRnFxcWrcuHGRdS1ZskSSNGDAAKd5AwcO1IQJE7R06VINHTrUYV5cXJwee+wxjRw5Updddpn++OOPEm9H9+7dXU7fsmWLmjRpomXLlpW4zrKQlJQkSV5bPyoH2gEk2gHy0RYg0Q6Qz1VbSEpKUmRkpLdCsuNOIAAAAACo4mJjYyVJrVu3djk/b3peudLW5a4ewzB0zz33KDIyUm+++abngQMAAAAoV9wJBAAAAABVXGJioiQpKirK5fy8KxDzypW2Lnf1fPjhh1q4cKF+/fVXRUREeB54IStXrnQ5Pe8Ooejo6FLXfS7yruj01vpROdAOINEOkI+2AIl2gHyu2kJluAtIIgkEAAAA+LU9x5K9HQIKGD16tDIyMjwu/+ijj7q9+6ei7N27V0899ZTuvvtuDRw40KuxAAAAAHBEEgilZsjwdggAAACAT/noo4+UkpLicfnBgwerdevW9rt23N3pk/eMcnd3ChVUsK6aNWsWW88999yjatWq6e233/Y4bgAAAAAVg3cCAQAAAEAlkZycLMMwPP6vb9++kop/509x7wwqqKi6XNWzceNGHT58WNWqVZPJZLL/9+KLL0qSbr31VplMJr3zzjue7QQAAAAAZYY7gQAAAACgimvdurUaNGigFStWKCUlRWFhYfZ5KSkpWrFihZo3b67GjRsXW1efPn00Z84cLViwQN26dXOYFxMTYy+TZ+jQoUpNTXWqZ8OGDdq4caP69eunFi1a6MILLyzt5gEAAAAoJZJAAAAAAFDFmUwm3XvvvXrppZf08ssv67XXXrPPe/nll5WcnKznnnvOYZnU1FQdPHhQoaGhatKkiX36zTffrDFjxmjq1Km6++671ahRI0nSoUOH9N5776lWrVq64YYb7OX//e9/u4xpwoQJ2rhxo0aOHKlbbrmlLDcXAAAAgIdIAgEAAACAD3j66af1ww8/aPLkydq4caM6deqkDRs2aMGCBerSpYsee+wxh/Jr1qxRv3791KdPHy1ZssQ+vXr16nrvvfd05513qlOnThoyZIgkae7cuTp58qTmzp2riIiICtwyAAAAAKXFO4EAAAAAwAeEhYVp6dKleuyxx7R9+3a99dZb2rFjh0aPHq1FixYpJCTE47ruuOMO/fLLLzrvvPP02Wefafr06Tr//PO1YMEC3XTTTeW4FQAAAADKEncCAQAAAICPiIqK0pQpUzRlypRiy/bt21eGYbidP2jQIA0aNKjUsUyYMEETJkwo9fIAAAAAzh13AgEAAAAAAAAAAPggkkAotSIuGgQAAAAAAAAAAF5GEggAAAAAAAAAAMAHkQQCAAAAAAAAAADwQSSBAAAAAAAAAAAAfBBJIAAAAAAAAAAAAB9EEggAAAAAAAAAAMAHkQQCAAAAAAAAAADwQSSBUGqGtwMAAAAAAAAAAABukQQCAAAAAAAAAADwQSSBAAAAAAAAAAAAfBBJIAAAAAAAAAAAAB9EEggAAAAAAAAAAMAHkQQCAAAAAAAAAADwQSSBAAAAAAAAAAAAfJDV2wGgbGTs3auDI0dKkqKuuUZR11zjVObYlHeUvn2bJCmoRUvVfWaMU5mkmAU6M+8b++dG//63zMHBDmUyDx1W/EsvKifH0Ng9JzTvvMsUW7e1U10Pr5qp8MxUSdKmeufplzZ9nMpcvXOx2ifskiQlBkXo/X/d5lTmgoRYXbvzd/vnjzoP0anQag5lQrLS9djKGfbPC1v21LqGFzrVNXzDPNVLPiFJ2l2jib6+8AqnMn33rVb3uE2SJJvJrMm9RziVaXLmiG7/a7798+yLrtHBag2cyo354xOZDZskaWXjjlrS/F9OZW7a8otanTooSYoPr6XPOt3oVKbz4S3qv2eF/fM73e9SWoDjcamRekaj1s21f/6x7aXa6uK4PLD6C0VlnJUk/V23jf7Xtp9TmSt2LVXH+B2SpOTAUE3tdqdTmfOO79UN2xfaP3/Y8QYdD6vhUCYwO1Oj//zM/vn35t20unEHp7qGbvxeDc8mSJL2V2ukORdd5VSm1/516n1wvf3zq9GjnMo0SozXnZt/sH/+8sIrta9GY6dyTy7/VAG2LEnSmoYXaVHL7k5l/m/bArU9sU+SdCK0uj7pfLNTmY5Ht+mK2D/sn6f+6w4lB4U5lIlKP6sH1nxh//y/Nn31d722TnXdt+ZLVU9PlCRtq91SP7S73KnMgN3LdcmRrZKkdGuQpvQY5lSm1cn9umlrjP3zZxf/n+IjajuUsdhy9PTyafbPS5t10Z9NOjnVdfvmH9Uk8agk6WBUfc3ucK1TmR4HN6jP/rX2z690H6Ycs8WhTL2zxzV847f2z19fMFC7azZzquvxP6crODtDkrS+wQVa0KqXU5nrtv+m84/vkSSdDo7Sh11vcSrTPn6nrt61xP75/a63KTE4wqFMeEaKHl49y/75l9a9tan++U51jVj3lWqlnpYk7azVXN+eP8CpzGV7Vqrr4b8kSVnmAL3Z626nMs1PxemWLT/bP8/scJ0ORdVzKvfsso/s//6jySVa3qyzU5lb//pJzc4ckiQdjqirzy++3qnMv+I269J9q+yf3+oxXJnWQIcytVNO6t71+ef779r1147aLZzqKs25/N8uvi+cy6vGuXzaJYN1PKymQxnO5f5xLj84cp79c+P//EemgACHMpn79yv+lVfsn2s/+KBCOji3g0OPPy5bSookKaJfP1W/9VanMic++UQZe/cqqIXzOQcAAAAAULZIAvkIW0qK0tZvkCSFXuI8aChJGbGx9jJGVpbLMtnHjtnLSJJycpzKGGmpSlu/QYakdhnZishMcVlXq5MHVS09SVLugJgr9c8e13nH90qSToZWd1kmIjPFXkaSAnOcY7fYchzKrG3gPGgoSc1PH1bTM4cl5Q68uFIr5bS9rsKD2XlCs9Ic1healeayXNsT+2Sx5e7D2BpNXZZplJRgryskK8NlmWppiQ7ry6uzoMCcLIcyi10MUkpSq1MHVfOfQe0TbvZ5veQT9rrOBEe6LBNe6LgEZ2c6lTEbhkOZjfXauayraeIRtTp5QJKUY3K9z2ulnnaoy5Xg7HSHMmFujkubk/sV9E+yYX+1hi7LNCxwXA5FOg/WS1K1tLMO67Pasp3KBORkO5T5o8klLutqcTpOdf8Z1D5TKGGRp27ySXtdKYGhLsuEZ6YWOi7ObcpU6LhsqeM8wCxJTRKPFrvPa6aecShjkuFUJjg7w6FMXkKhsNYnDyjsn3nu9nmDs8fsdSW4Oa9EpTsel4Ac5+NitTkel5WNOrqsq9npw2qUFC8pdxDdlTop+cclw815JazQOSM4O91luYJlttdyPTjauMBxsbo4F0hS9ULnDLPhfFyCsjMdj0tLzuWcy3PbRWGcy/3jXJ62u8DvPxfnDFtamsNvxJzERJd1pW3eLFti7jkjqGUrl2Uy9+23J4oAAAAAAOWLx8EBAAAAAAAAAAD4IO4E8hHmsDCFXJL7CJCABvVdlglq3VpGdu6V10EtWrosY61Tx16PJMnifCWvKSRUIZd0Uk6OoXV7TuhsYJhTGUnaXbOJ/Yp/d1ePH42obX/8UGKQ6ytmzwaGOTyiKNMS4FQmx2xxKHMmJMplXfuqN1RaQO5V44ci67oscyKsur0um8l1njQ1IMRhfakBIS7L7azV3P4IoRNhrq/UPhRZ136Fr7v9dCYkymF9rq5qz7QEOJRxe1xqNNHxf2I5WujRMnniw2vZ63J390NyoeOSXuhRU5JkM5kcypx2c1wORDVQ9j/bFBfluv2eCK3u8lFVBaVbgx3KpLg5LrtqNrM/QuhYocce5TkcWdfeft1dZX8mJMJhfdlm51NqlsXqUKbwY8ny7K3eWKdDcq/UPxJRx2WZhPCa9rrc3f2QHBha6Lg4lzMKHZeThR7JledggWNx0M1xORlazaEuQyanMunWIIcy7tpUbM2m9u9CQrjr43Ikoo69rtPBrttTYrDjccmyOB+XbLO10DnD9XHZX72hkoNy4z3s5pxxLCz/uGSZnc9PUm5bdDwuwS7LFSzjrt3FRdWXxci9g+RwhOuYThc6Z9hMzsclwxpY6LhwLudcntsuCuNc7h/ncofffy7OGeaQEIcylijX7SCkQwf7XT6BTZwf4ydJgc2byRzmum0DAAAAAMqWyTBcPO8BVUr37rnPwF+5cmWFrvdsepa6TFwgSbK6GGSFf8n+55FbtAX/RjuARDtAPtpC1bHlxYHlVveyZcskSdHR0fZp3vr9iqrL223GVTuG/6EdQKIdIB9tARLtAPkqc7+Hx8EBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEEqN5wgCAAAAAAAAAFB5kQQCAAAAAAAAAADwQSSBAAAAAAAAAAAAfBBJoAq0du1aXXnllapWrZrCwsLUrVs3ffXVV94OCwAAAAAAAAAA+CCrtwPwF4sXL9bAgQMVHBysW265RREREZo3b56GDBmiuLg4jR492tshAgAAAAAAAAAAH8KdQBUgOztbI0aMkNls1rJly/Txxx/rrbfe0ubNm9WmTRs999xzOnDggLfDBAAAAAAAAAAAPoQ7gSrA77//rj179mj48OHq2LGjfXpUVJSee+45DRs2TDNmzNALL7xQ6nUYhqGUrBSPy4daQ2UymRyWT81O9Xj5QHOg9h4vvL5syZTtcR0yggtPkEwZJVjeKucm7Asx2CRT5rnFYMqSlONhBSbJCDrHGAJcVOuNGCzE4O0YTDmVqE0W3g+ZufWUOoacf7ajomIwS0Zg1YzB9M+xNmW7iSFDklG+MRRkBMrpupcSxWBxcZ4jBo9iKNgWvBVDYT4bQ0l/fzjHUJLfkgHmAAVaHL+bWTlZyrQ5n6vTbelO9dsMm8wmrkcDAAAAgPJGEqgCLFmyRJI0YMAAp3kDBw6UJC1durTYerp37+5y+pYtWxTVMEoD5w70OKaJjSc6dLxthk1j48Z6vPylUZdKZ6IlI3ewIjsnW+bqi2Wu9qdnFRgmZe9/znGaKUvWZq97HIPtVF/ZEns6TDPXWCRz1CoPY7Aqe/+YQjFkyNrszRLEcKlsiY7HxVxjgcxRaz2sIEjZB550nGZOlbXJFI9jyDnZX0ZSV8cqav4qc+QGDysIUfbBJxynWc7K2vjfnsdwYpCU1ElSbluQJHOtn2SO2OxZBdnhyo571HGaNVHWxu+VIIarZJzt6DDNXHu+zOF/e7S8kR2lnLiHCsVwStbGH3gew/FrZCRf5BhDne9lDtvmWQxZ1ZVz6AHHiQHHZW30secxHLteRsoFDtMsdebJFLbTsxgyaynn8CjHiYEJsjac5tHyVkk5Cf+n7NR2jjHU/Vqm0FgPY6irnMP3Ok4MOixrg+keLS9JOQk3y0ht7RhDvbkyhez1LIaMBso5MtxhmikoTpYGn3seQ/wtMtJaForhC5lCPLvz00hvpJyjdznGELxflvqzPY/h6O0y0ps5xlB/pkzBhzyLIa2pcuLvcIwhZI8s9b4scrmCPy5yjgyVkdHYMYYGn8sUdMTDGFooJ/5WxxhCY2Wp6/k79bKPDJMyGjrG0PAzmQITPIshtbVyEm4uFMMOWerO8zyGw/dKmXULxTBNpsATnsWQ0lY5xwY7xhC2VZY633sew6GRUlZtxxgafSRTwGmPlrelnC/bsRscYwj/S5ba890u43SZRNz9UnYNxxgafyCTNdGzGJLby3b8WscYIjbJUusnj5bPjeEhKTvKMc7G70nWZM9iONtBthNXF4phvSy1fvU8hoOPSDkRjjE0eVeypHkWQ1In2U5e4RhD5BpZai70PIYDj0u2UPvnZcuW6cW4F5VheHYxTPeI7rqm+jUO05YlLdOvZ5z3g82Wm3g2H8r/7bn95HZdUOsCp7IAAAAAgLLF5XcVIDY2d+CzdevWTvPq1aun8PBwe5mqJMRqKr4QAAAAKrVL6nJdGAAAAAD4Knp8FSAxMffq1qioKJfzIyMj7WWKsnLlSpfTu3fvruNpxxUYWPhxOe717t1bFnP+43lybDkK/Mbz5Vu2aKk2wR01Y2vuXTdWi1UymyV5mBgymXKXcZhmeL68JLPZLLNTHSWIQXIRQ/a5x1CS/eAqBrO1RMtbzBbpXGJwdSwsJY3BrOx/Hi9or6skx8JVDGZLyWIwmZ33QwliMMnFsbCUMAZXx8Jk8jwGl8eiLGIowX4452OR+z12/m6VYD+4Wr4svheV4liUJAbzuX8vvNYe8h5pZZLFUg7HooT7wWq2Osegio7B++3BarFIttLHYDaZXPzNKy6G/LZgj8Fw9fPT0xjK4G//OR4LlzGU6m//OcTg8vdHSduDVTLl1vHp/ZcryGpRyHchMrI8eyRdkyZNFH1xtMO0IzuOKPAv59+TmZm5j4gr+Fu14GOJAQAAAADlhySQj6gVXEvzb3D/OJbCCj+D3Wwyl2j5QHOgAiwB+nhA7qNMoqOjlZnTT1k2z5+HHxYQ5vA5971E/UocQ0FlE8PlXo3BZtiUlu386MCSxJCR01fZNs/eC2CSSaEBoQ7TcmO4ws0SLmKwBGrl8twkZXR0dBnGcLWbJVzHEGAu2/2QY8tRes515xRDenYf5RievQvHfQz/VwliGOxmCUcrVqxQQKsA9evj+F0umxiGeLS85Ho/pGVHy2Z49i4cVzFk27KVkXObxzEEWYJykw+ljMFsMivEGuIihju9HMNlysgZVuRyK1askCT17NnTZQypWb1lePjuE1cxZNkuVWbO3R4tL0nBlmCHCx9KGoPFZFGw1fH9bbkxjKgEMdxXCWJ40O0yBdtCWcRgNVsVZHF8X1duDI94tLwkhVhDnH4HlU0Mj3s3hpxLlWkbfU4xzL16rsfLFz7HStKNrW/UNS2vcZpeuB1I0qVvX+rxugAAAAAApUcSqALk3QHk7m6fpKQkVa9e/ZzWYTKZnJIJFbm8lDvoWvgFwcRQcmaT+ZxjCLIEOQ0OEUPJWcwWhZnPLYbCA6a+HkOw2fW6KsN+KJxIKCmr2eqUzCAG1/LagbvvcOEEW0kFmANcDkCXBDFUTAzFtYWKiMETPhGDJcDpopCSOte/u+5icNUOCiegAAAAAADlg95XBch7F5Cr9/7Ex8crOTnZ5fuCAAAAAAAAAAAASoskUAXo06ePJGnBggVO82JiYhzKAAAAAAAAAAAAlAWSQBXgsssuU4sWLfTFF19o06ZN9umJiYl65ZVXFBgYqKFDh3ovQAAAAAAAAAAA4HN4J1AFsFqtmjZtmgYOHKjo6GjdcsstioiI0Lx583TgwAG9+eabatasmbfDBAAAAAAAAAAAPoQkUAXp16+fli9frvHjx2vu3LnKyspS+/btNXnyZA0ZMsTb4QEAAAAAAAAAAB9DEqgCde3aVb/88ou3wwAAAAAAAAAAAH6AdwIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJNhGIa3g8C5qVu3rlJTU3XhhRdW+LqTkpIkSZGRkRW+blQutAVItAPkoh0gD20Bkut2sGXLFoWGhiohIcFbYaGK8WafR+J8hly0A0i0A+SjLUCiHSBfZe73cCeQD6hevbpCQ0O9su6DBw/q4MGDXlk3KhfaAiTaAXLRDpCHtgDJdTsIDQ1V9erVvRQRqiJv9nkkzmfIRTuARDtAPtoCJNoB8lXmfg93AuGcdO/eXZK0cuVKL0cCb6MtQKIdIBftAHloC5BoB/ANtGNItAPkoh0gD20BEu0A+SpzW+BOIAAAAAAAAAAAAB9EEggAAAAAAAAAAMAHkQQCAAAAAAAAAADwQSSBAAAAAAAAAAAAfBBJIAAAAAAAAAAAAB9kMgzD8HYQAAAAAAAAAAAAKFvcCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCYRSWbt2ra688kpVq1ZNYWFh6tatm7766itvh4Vz1KxZM5lMJpf/9e3b16l8RkaGXnrpJbVu3VrBwcFq0KCBRo4cqWPHjrldx+zZs9W1a1eFhYWpevXquvrqq7Vhw4Zy3Cq4M2vWLI0aNUqdO3dWUFCQTCaTpk+f7rZ8UlKSnnjiCTVt2lRBQUFq1qyZnnrqKSUnJ7ssb7PZNHXqVLVv314hISGqXbu2br31Vu3du9ftOmJiYtSnTx9FREQoMjJS/fr106JFi851U1GEkrSDCRMmuD1HmEwm7d+/3+VyJT2uu3bt0s0336xatWopJCREHTp00AcffCDDMMpgi+HK4cOH9c4772jAgAFq0qSJAgMDVa9ePd14441avXq1y2U4J/iekrYDzgnwB/R7fA99Hv9CnwcSfR7kos8DyX/7PNYyqQV+ZfHixRo4cKCCg4N1yy23KCIiQvPmzdOQIUMUFxen0aNHeztEnIOoqCg99thjTtObNWvm8Nlms+m6665TTEyMunXrphtvvFGxsbGaNm2aFi1apFWrVql27doOy0yaNEljx45V06ZNdd999+ns2bP68ssv1aNHDy1atEg9e/Ysxy1DYWPHjtWBAwdUq1Yt1a9fXwcOHHBbNiUlRX369NGmTZs0YMAA3Xrrrdq4caPefPNNLV26VMuWLVNwcLDDMqNGjdK0adN0wQUX6JFHHtGRI0f01VdfacGCBVq1apVat27tUH7WrFm68847Vbt2bQ0bNkySNHfuXPXv319fffWVBg8eXOb7ACVrB3nuuusup3OCJFWrVs1pWkmP67Zt29SjRw+lpaXp5ptvVoMGDfTTTz/pgQce0LZt2zR16tTSbCaKMXXqVE2ePFktW7bUgAEDVLt2bcXGxur777/X999/ry+++EJDhgyxl+ec4JtK2g7ycE6Ar6Lf47vo8/gP+jyQ6PMgF30eSH7c5zGAEsjKyjJatmxpBAUFGRs3brRPP3PmjNGmTRsjMDDQ2L9/v/cCxDlp2rSp0bRpU4/Kfvrpp4Yk49ZbbzVsNpt9+gcffGBIMkaOHOlQfteuXYbVajXatGljnDlzxj5948aNRlBQkNGuXTsjJyenTLYDnlm4cKH9+/rqq68akozPPvvMZdkXXnjBkGSMGTPGYfqYMWMMScYrr7ziMP333383JBnR0dFGRkaGffrPP/9sSDIGDBjgUP7UqVNGtWrVjFq1ahlxcXH26XFxcUatWrWMWrVqGUlJSeeyuXCjJO1g/PjxhiRj8eLFHtVdmuMaHR1tSDJ+/vln+7SMjAyjd+/ehiTjzz//LNkGwiPz5s0zlixZ4jR92bJlRkBAgFG9enUjPT3dPp1zgm8qaTvgnABfRr/Hd9Hn8S/0eWAY9HmQiz4PDMN/+zwkgVAiMTExhiRj+PDhTvOmT59uSDJefPFFL0SGslCSDlH37t0NSU6dX5vNZrRo0cIICwszUlNT7dOfffZZQ5IxY8YMp7qGDRtmSDKWLl16TvGj9Ir6IWyz2YwGDRoY4eHhRnJyssO85ORkIzw83GjRooXD9FtvvdXtMe3bt68hyThw4IB92kcffeT2/DFhwgS3bQdlq6w7RCU9rjt37jQkGf369XMqv2TJErd/f1C+BgwYYEgy1q5daxgG5wR/VbgdGAbnBPg2+j2+iz6P/6LPA8OgzwPX6PPAMHy7z8M7gVAiS5YskSQNGDDAad7AgQMlSUuXLq3IkFDGMjIyNH36dL3yyit67733XD4PMz09XatXr1bbtm3VtGlTh3kmk0n9+/dXSkqK1q1bZ59O26m6YmNjdeTIEfXs2VNhYWEO88LCwtSzZ0/t3btXcXFx9ulLliyxzyvM1fGmfVQty5Yt0+TJk/XGG2/o+++/d/s85JIe16LK9+rVS2FhYbQDLwgICJAkWa25TxHmnOCfCreDgjgnwBdxHvJt9HlQGL9vUBi/b/wLfR5Ivt3n4Z1AKJHY2FhJcnqGpSTVq1dP4eHh9jKomuLj4zV8+HCHaV26dNGcOXPUsmVLSdKePXtks9lctgMpv33Exsaqd+/e9n+Hh4erXr16RZZH5VPU9z5vekxMjGJjY9W4cWOlpKTo6NGjuvDCC2WxWFyWL1hvceugfVQ+48ePd/hcrVo1vfvuuxo6dKjD9JIe16LKWywWNW/eXNu2bVN2drbLH2UoewcPHtRvv/2m+vXrq3379pI4J/gjV+2gIM4J8EX0e3wbfR4Uxu8bFMbvG/9BnweS7/d5uBMIJZKYmCgp90WarkRGRtrLoOoZPny4Fi1apISEBKWkpGjjxo268847tXbtWl122WU6e/asJM/aQcFyef8uSXlUHiU93qVtH+6WoX1UHh06dNCnn36qvXv3Ki0tTfv27dPUqVNlMpk0bNgw/fjjjw7lS3pcPWk7NpvNfi5C+crKytKdd96pjIwMTZ482d6Z4ZzgX9y1A4lzAnwb/R7fRZ8HrvD7Bnn4feNf6PNA8o8+DyllAHaFs9odO3bU559/LkmaOXOmPvnkEz3xxBPeCA1AJXDDDTc4fG7WrJkeeughtWvXTv3799fYsWN17bXXeik6lCWbzaZhw4Zp2bJlGjFihO68805vhwQvKK4dcE4AUBXR5wFQFH7f+A/6PJD8p8/DnUAokbyspLtMdFJSktvMJaquUaNGSZJWrFghybN2ULBc3r9LUh6VR0mPd2nbh7tlaB+V32WXXaaWLVvq77//th8vqeTH1ZO2YzKZFBERUWaxw5nNZtPdd9+tL774QnfccYc+/PBDh/mcE/xDce2gKJwT4Avo9/gf+jz+jd83KA6/b3wLfR5I/tXnIQmEEinqmZTx8fFKTk52+7xMVF21atWSJKWkpEiSWrRoIbPZ7PbZpK6eZ9m6dWslJycrPj7eo/KoPIp7Fm3h4xcWFqb69etr3759ysnJKbZ8ceugfVQNeeeJ1NRU+7SSHteiyufk5Gjfvn1q3rw5z8YuRzabTcOHD9eMGTN06623avr06TKbHX8uck7wfZ60g+JwTkBVR7/H/9Dn8W/8voEn+H3jG+jzQPK/Pg9JIJRInz59JEkLFixwmhcTE+NQBr5j9erVknJveZSkkJAQde3aVTt37tSBAwccyhqGoYULFyosLEydO3e2T6ftVF2tW7dWgwYNtGLFCnunOE9KSopWrFih5s2bq3Hjxvbpffr0sc8rLO94R0dHO5SXaB9VVUpKirZu3aqwsDD7jyCp5Me1qPLLly9XSkoK7aAc5f0I/vzzzzVkyBDNnDnT7UtNOSf4Lk/bQVE4J8AXcB7yP/R5/Bu/b1Acft/4Bvo8kPy0z2MAJZCVlWW0aNHCCAoKMjZu3GiffubMGaNNmzZGYGCgsW/fPq/Fh9Lbvn27kZKS4nJ6vXr1DEnG0qVL7dM//fRTQ5Jx6623GjabzT79gw8+MCQZI0eOdKhn586dhtVqNdq0aWOcOXPGPn3jxo1GUFCQ0a5dOyMnJ6cctgyeePXVVw1JxmeffeZy/gsvvGBIMsaMGeMwfcyYMYYk45VXXnGY/vvvvxuSjOjoaCMjI8M+/eeffzYkGQMGDHAof+rUKSMqKsqoVauWERcXZ58eFxdn1KpVy6hVq5aRlJR0jluJ4hTVDpKSkoydO3c6TU9NTTVuvfVWQ5IxfPhwh3mlOa7R0dGGJOPnn3+2T8vIyDB69+5tSDJWrFhxjlsJV3Jycoy77rrLkGTcdNNNRlZWVpHlOSf4ppK0A84J8HX0e3wTfR7/Rp8HhkGfx5/R54Fh+G+fx2QYhnHuqST4k8WLF2vgwIEKDg7WLbfcooiICM2bN08HDhzQm2++qdGjR3s7RJTChAkT9Pbbbys6OlpNmzZVWFiYdu3apZ9//llZWVl69tln9corr9jL22w2XXnllYqJiVG3bt3Up08f7d69W99++62aNWum1atXq3bt2g7rmDRpksaOHaumTZvqxhtv1NmzZ/Xll18qMzNTixYtUs+ePSt6s/3atGnTtHz5cknS33//rQ0bNqhnz55q1aqVJKlXr1669957JeVe4dCzZ09t3rxZAwYMUKdOnbRhwwYtWLBAXbp00dKlSxUSEuJQ/4gRIzRt2jRdcMEFuuqqq3T06FHNnTtX4eHhWrlypdq0aeNQftasWbrzzjtVu3ZtDRkyRJI0d+5cnThxQnPnztVNN91U3rvEL3naDvbv368WLVqoS5cuateunerVq6eEhAT99ttvOnTokNq3b6/FixerZs2aDvWX9Lhu3bpVPXv2VFpamoYMGaL69evrp59+0tatW/XQQw9p6tSpFbBX/M+ECRP04osvKjw8XI8++qjLW82vv/56dezYURLnBF9VknbAOQH+gH6P76HP43/o80Ciz4Nc9Hkg+XGf55zTSPBLq1evNgYNGmRERkYaISEhRteuXY0vv/zS22HhHCxZssS4+eabjdatWxuRkZGG1Wo16tWrZ1x33XVGTEyMy2XS09ONCRMmGC1btjQCAwONevXqGffee68RHx/vdj2zZs0yOnfubISEhBhRUVHGlVdeaaxfv768NgtFyLvywd1/d911l0P5M2fOGI899pjRuHFjIyAgwGjSpIkxevRot1em5OTkGO+++65xwQUXGEFBQUbNmjWNIUOGGLt373Yb0y+//GL07t3bCAsLM8LDw40+ffoYCxcuLMvNRiGetoPExETjwQcfNLp06WLUrl3bsFqtRkREhNG1a1fj9ddfN1JTU92uo6THdceOHcbgwYONGjVqGEFBQUb79u2N//znPw5X4KJsFdcO5OJqSc4Jvqck7YBzAvwF/R7fQp/H/9DngWHQ50Eu+jwwDP/t83AnEAAAAAAAAAAAgA8yezsAAAAAAAAAAAAAlD2SQAAAAAAAAAAAAD6IJBAAAAAAAAAAAIAPIgkEAAAAAAAAAADgg0gCAQAAAAAAAAAA+CCSQAAAAAAAAAAAAD6IJBAAAAAAAAAAAIAPIgkEAAAAAAAAAADgg0gCAQAAAAAAAAAA+CCSQAAAAAAAAAAAAD6IJBAAAAAAAAAAAIAPIgkEAKhy+vbtK5PJ5O0wPGYYhi655BINGDCgVMuPHTtWERERSkhIKOPIAAAAAFRW9HsAAGWBJBAAwKtMJlOJ/quKPv/8c23YsEEvvfRSqZYfPXq0zGazxo8fX8aRAQAAAKgI9HuKR78HAMqHyTAMw9tBAAD814QJE5ymvfPOO0pMTHT543/ChAk6ePCgUlNTdd5551VAhOfGZrOpZcuWaty4sZYtW1bqekaPHq13331Xe/bsUdOmTcswQgAAAADljX6PZ+j3AEDZIwkEAKh0mjVrpgMHDsgX/kT99NNPuvrqq/XJJ5/o3nvvLXU9GzduVKdOnTR27Fi9/PLLZRghAAAAAG+g3+OMfg8AlD0eBwcAqHJcPRt7+vTpMplMmj59uubPn69//etfCg0NVcOGDTVu3DjZbDZJ0owZM9ShQweFhISoSZMmeuONN1yuwzAMffrpp+rZs6ciIyMVGhqqzp0769NPPy1RrJ999plMJpNuvPFGp3lHjx7Vo48+qtatWyskJETVqlVTu3btdN999ykxMdGh7MUXX6xWrVpp+vTpJVo/AAAAgKqJfg8AoCxYvR0AAABl6bvvvtOCBQt0/fXXq2fPnvrpp580ceJEGYahqKgoTZw4Udddd5369u2refPm6emnn1bdunU1dOhQex2GYej222/XnDlz1Lp1a912220KDAzUwoULdc8992jbtm168803i43FMAwtXrxYbdu2VfXq1R3mpaamqmfPntq/f78GDBigG264QZmZmdq3b59mzpypJ598UlFRUQ7LdO/eXTNnztSuXbvUpk2bstlhAAAAAKoc+j0AAE+RBAIA+JRffvlFK1asUJcuXSRJL774olq1aqUpU6YoMjJSGzduVIsWLSRJTz75pFq1aqU333zToTM0bdo0zZkzR8OHD9dHH32kgIAASVJmZqYGDx6st956S7feeqsuueSSImPZvn27Tp06pSuuuMJp3qJFi7Rv3z499thjmjJlisO85ORk+zoL6ty5s2bOnKkVK1bQGQIAAAD8GP0eAICneBwcAMCn3HHHHfaOkCRFRETo6quvVmpqqu6//357R0iSGjdurF69emnbtm3Kzs62T3/vvfcUFham//znPw6dksDAQE2aNEmSNGfOnGJjOXTokCSpbt26bsuEhIQ4TQsPD1dQUJDT9Lx68uoFAAAA4J/o9wAAPMWdQAAAn9KxY0enafXr1y9yXk5OjhISEtSwYUOlpqbq77//VoMGDTR58mSn8llZWZKkHTt2FBvLyZMnJUnVqlVzmhcdHa369evrtdde0+bNm3X11VerT58+ateundNzv/PUqFFDknTixIli1w0AAADAd9HvAQB4iiQQAMCnREZGOk2zWq3Fzsvr5Jw+fVqGYejw4cN68cUX3a4nJSWl2FjyrnZLT093mhcVFaVVq1bphRde0Pz58/Xzzz9Lyr1K75lnntEDDzzgtExaWpokKTQ0tNh1AwAAAPBd9HsAAJ7icXAAABSQ12G65JJLZBiG2/8WL15cbF21a9eWJJ06dcrl/CZNmmj69Ok6fvy4Nm7cqMmTJ8tms+nBBx90+diFvHry6gUAAACA0qDfAwD+gyQQAAAFREREqF27dtq+fbvOnDlzTnVdcMEFMpvN2rlzZ5HlzGazOnbsqKefftreCfrxxx+dyuXV0759+3OKCwAAAIB/o98DAP6DJBAAAIU88sgjSk1N1YgRI1w+/mDfvn3av39/sfVUq1ZNF110kdatWyebzeYwb+vWrUpISHBaJm9acHCw07zVq1fLarWqR48eHm4JAAAAALhGvwcA/APvBAIAoJBRo0Zp1apVmjFjhlasWKHLL79cDRo0UEJCgnbs2KHVq1friy++ULNmzYqt64YbbtD48eO1atUqh07MwoUL9dRTT6lnz55q06aNatasqb179+rHH39UcHCwHnzwQYd6kpOTtWrVKvXv319hYWFlvckAAAAA/Az9HgDwD9wJBABAISaTSdOnT9fcuXN1wQUX6H//+5/efvttLVy4UMHBwXrzzTd1+eWXe1TXvffeK6vVqlmzZjlMHzhwoB588EElJSXp22+/1ZQpU7Ru3ToNGTJE69evV+fOnR3Kz5s3T2lpaRo1alSZbScAAAAA/0W/BwD8g8kwDMPbQQAA4MvuvPNO/fTTTzpw4IAiIiJKVUfv3r2VkJCg7du3y2KxlHGEAAAAAHBu6PcAQOXEnUAAAJSziRMnKi0tTVOnTi3V8osWLdLy5cs1efJkOkIAAAAAKiX6PQBQOZEEAgCgnDVt2lQzZswo9dVwiYmJevPNN3XDDTeUcWQAAAAAUDbo9wBA5cTj4AAAAAAAAAAAAHwQdwIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAAAAAAAAAAAAPogkEAAAAAAAAAAAgA8iCQQAAAAAAAAAAOCDSAIBAAAAAAAAAAD4IJJAAFDG+vbtK5PJ5PCfxWJRtWrV1LVrV7344os6ffq0R3UtXrzYXsfll19ebPkJEyY4rDMuLq7I8uPHj3eIMz4+3qO4JGnJkiX25fbv3+9RXM2aNfO4fqAk4uPjNWvWLD322GPq1auXwsLCaHMAAAAAAMDvWb0dAAD4qsaNG6tJkyaSpKysLB08eFBr167V2rVr9fHHH2vp0qVq1apVkXV8+umn9n///vvvOnDggJo2berR+m02m2bMmKGxY8e6nG8YhmbMmOHh1gCV25dffqnHH3/c22EAAAAAAABUKtwJBADl5O6779by5cu1fPlyrV69WkePHtWCBQtUvXp1HTlyRKNGjSpy+aSkJM2bN0+SVL16dRmGoc8++8yjdbdt21Ymk0nTp093WyYvqdSuXTuPtwmorCIjI3XZZZdpzJgx+vrrr/XWW295OyQAAAAAAACvIwkEABWof//+mjhxoqTcR70dO3bMbdk5c+YoLS1NTZo00YQJEyRJ06dPl2EYxa6nWbNm6tOnj/bs2aNly5a5LJOXUBo+fHgJtwKofO6++2799ttveu211zR48GA1aNDA2yEBAAAAAAB4HUkgAKhgPXr0kJT7OLZ9+/a5LZf3KLg777xTt99+uwIDA3XgwAEtWrTIo/XkJXdc3Q2UlJSkb7/9VjVq1NC1115bwi0oW/Hx8XriiSd0/vnnKzQ0VMHBwWrYsKF69OihsWPHKiEhwaH8oUOH9O6772rQoEFq2bKlQkJCFBkZqUsuuUQTJ07U2bNn3a7LZrPpgw8+UKdOnRQaGqpatWrpqquu0ooVK7R//377O47cWbx4sW666SY1bNhQgYGBqlmzpgYOHKgffvihzPZHRTAMQ7/88oseeughXXzxxapdu7aCgoLUsGFDDR48WH/88YfbZQu+B2r58uW66qqrVKtWLYWEhKhjx4567733lJOT47Rc4f07f/589e3bV9WrV1d4eLi6deum2bNnl9s2AwAAAAAA+COSQABQwVJTU+3/DgsLc1lm69atWrNmjSRp6NChqlmzpq6++mpJju8JKsrgwYMVERGhr7/+WikpKQ7zvvzyS6Wlpem2225TUFBQaTajTBw6dEidOnXSlClTFBsbq6ZNm+qiiy6S2WzWmjVrNGnSJP39998Oy7zzzjt67LHHtGzZMhmGofbt26t27dravHmzxo0bp27duun06dNO6zIMQ7fddpseeOABbdy4UTVr1lTz5s21YsUK9enTR99//73bOA3D0COPPKJLL71U33zzjdLS0nThhRcqICBACxYs0PXXX6+HH364rHdPuUlJSdGVV16p999/X4cPH1aDBg3Url07paWlad68eerTp48+/PDDIuv4/vvv1bdvXy1btkzNmze3H4OHH35YgwcPdpkIyjN16lRde+21+vvvv9WqVSuFh4dr9erVuuOOO/TII4+U9eYCAAAAAAD4LZJAAFDBvvvuO0m57zBp2bKlyzJ5iZ7u3burTZs2kqS77rrLvvyZM2eKXU9oaKhuvvlmJScn6+uvv3aYV1keBffmm2/q6NGjuuyyy3TkyBFt375da9asUVxcnE6dOqXPPvtMjRo1cljmiiuu0JIlS3T27Fnt3btXa9as0Z49e7Rv3z5de9sxbpkAAIbvSURBVO212rZtm5599lmndX3wwQeaO3euAgMD9eWXXyouLk5r165VfHy87rvvPj399NNu43zjjTc0depUNWrUSPPnz9epU6e0YcMGxcfH69dff1WdOnX03nvvaebMmWW+j8pDYGCgPvroIx06dEjHjh3T5s2btWnTJh0/flxz585VSEiIHnnkEcXFxbmt4+mnn9awYcOUkJCgtWvX6uDBg/ruu+8UEhKi77//Xm+//bbbZUePHq1x48bZlz169Kg++OADmc1mTZ061am9AgAAAAAAoHRIAgFABcjOztaePXs0duxYTZkyRZL01FNPKSQkxKlsVlaWZs2aJSk/8SNJV155perUqaP09HR98cUXHq03L8mTl/SRpB07dmjVqlW66KKL1KlTp1JvU1nYsWOHJOnhhx9W7dq1HeZFRkZq2LBhOu+88xymX3bZZerTp48sFovD9MaNG2vOnDkKCAjQ7NmzHe5EMQxDb7zxhiRp3LhxGjJkiH1ecHCwpk6dqksuucRljKdPn9bLL78si8Wi7777zn5HVp6BAwfqgw8+kCS9+uqrJdl8rwkMDNTIkSOd3ptjsVh088036/HHH1dWVlaR7axFixb6+OOPFRoaap92/fXXa+zYsZKk119/XRkZGS6X7du3r1566SVZrVZJuY+Yu++++3TPPfdIkl5++eVz2j4AAAAAAADkIgkEAOXkxRdftL8DJSAgQK1atdKkSZNUvXp1vf766/bB8sJ++uknHTt2TEFBQQ7JCqvVqttuu02SY1KnKD179lTr1q31xx9/aO/evQ7L3n333eeyeWWiadOmkqRvvvlGmZmZHi+XlJSkTz75RMOHD9fAgQPVu3dv9erVSwMGDJDZbFZycrJiY2Pt5Xfs2KH9+/dLku69916n+kwmk0aMGOFyXT///LOSk5PVuXNnde7c2WWZa665RgEBAdq+fbuOHj3q8XZ425o1a/Tss8/q+uuvV9++fdWrVy/16tVLX331lSRp48aNbpd95JFHZDY7/4x48MEHZbVadeLECfsjDQt77LHHipz+999/F3kXEgAAAAAAADxj9XYAAOCrGjdurCZNmkjKTVrs3r1baWlpqlatmvr16+d2ubxHwV133XWqVq2aw7xhw4bpnXfe0bp167RlyxZdeOGFxcYxbNgwPf/885o+fbrGjx+vmTNnKiAgQLfffnvpN66MPProo/r88881a9Ys/fLLLxowYIB69OihXr16qUOHDjKZTE7LLFu2TDfddJOOHTtWZN0nT560/3vnzp2SpLp166pevXouy1988cUup2/evFmStG/fPvXq1cvt+vJijYuLU/369YuMTVKRdZXWN99843b7CsrOztbdd99d7OPrCu7Dwty1vaioKDVq1Ej79+/X9u3b1bt3b4+Xbdu2raxWq7Kzs7V9+3Y1bty4yPgAAAAAAABQNJJAAFBO7r77bk2YMMH++cyZMxo9erQ+/fRTDRgwQJs2bbInifLEx8frl19+kSQNHTrUqc4OHTqoQ4cO2rx5s/773//aHy1XlKFDh2rcuHGaMWOGunTpoqNHj+r//u//VKtWrXPavoKPYyv46DVXsrOzJcn++K88559/vlatWqUXX3xRv/76q+bMmaM5c+ZIyr1L6Nlnn9WoUaPs5ZOSkjR48GAdP35cl112mZ555hlddNFFql69ugICAiRJTZo0UVxcnLKysuzLJScnS5IiIiLcxuhu3unTpyVJx44dKzbxJEmpqanFlpGkFStWeFSuJNLT0z0q9+abb2rmzJkKDg7Wq6++qoEDB6pJkyYKDQ2VyWTSp59+qnvuucdhHxZWt27dIuft379fZ8+eLdGyFotFNWvWVEJCgn3ZjRs36uGHH3YqW79+fd4dBAAAAAAAUAySQABQQapVq6ZPPvlEO3bs0J9//qkHHnhA//vf/xzKfP755/aESeF3zxQ2a9Ysvf766/bkhzuNGjVS//79FRMTo0ceeURS/ruCzkXBu5TyEiXu5M0vfGeTlJvY+vbbb5WZmal169Zp+fLl+vHHH7VixQrdd999stlsuv/++yXlPprt+PHjaty4sebPn+/0TiXDMFzGEh4eLklukxJFzctbdujQoZoxY0aR21kShmGUWV0lNX36dEm5yaAHH3zQaX5RdwDlSUhIUNu2bd3Ok9wn1hISEpwSoFJuMjFv3XnLJiYmukyY5T1KEAAAAAAAAO7xTiAAqEBms1nvvPOOpNx3/yxZssRhft77eiIjI1W3bl23/5nNZp04cUI//vijR+sdNmyYJGn//v2qV6+eBg0adM7b0rJlS3sCatOmTUWWzZvfrl07t2UCAwPVo0cPPf3001q+fLmefPJJSdL7779vL7Nv3z5JUpcuXZwSQJK0ZcsW+10/BeUlKxISEuwJCncxFta+fXtJ0l9//eU29qombz9GR0e7nL9q1api69i6davL6YmJiTp06JAk98fb3bI7d+60J0Hzlu3bt68Mw3D6L+8dTwAAAAAAAHCPJBAAVLAuXbrY7/IZP368ffqff/6pHTt2SJKWLFmi+Ph4t/9dd911kvLfH1Sc66+/XldccYX9EWqFH8tWGqGhoerbt6+k/DtLXNm+fbs9qXDllVd6XH/Pnj0lSYcPH3ZYpyQdPXrU5TJvvPGGy+nnnXeemjVrJkn673//67LMtGnTXE6/+uqrFRISok2bNmnhwoUexV7ZFbUfd+zYofnz5xdbx9SpU13ezfT+++8rOztbtWrVUteuXV0u++677xY5vX379rwPCAAAAAAAoAyQBAIAL8hL/ixbtky///67pPyETocOHXTxxRcXuXze49xiYmJ05MiRYtcXHBysn3/+Wb/99pseffTRcwndwQsvvCCLxaIVK1ZoxIgROnXqlMP8devW6YYbbpDNZtOFF16om266yWH+yJEjNXPmTJ05c8Zhenx8vP19R126dLFPz7tzZeXKlfr444/t0zMzMzVu3DjNnj1bgYGBTnGaTCY9/fTTkqSXXnpJ33zzjX1eRkaGHn30Ua1du9blNtapU0djx46VJN10000Oj+zLc+rUKX3++ed66qmnXNZR2fTp00eS9NxzzzkkgjZv3qxrrrnG4X1P7uzevVv33Xef0tLS7NN+/PFHTZw4UZL05JNPKigoyOWyv//+u1566SX7fjQMQ5988ok9Qff888+XbsMAAAAAAADgyAAAlKk+ffoYkozx48cXWe6qq64yJBm9e/c2kpOTjYiICEOS8e677xa7jqysLKNevXqGJOOVV16xTx8/frwhyRg4cKDH8e7bt8+QZEgyjh496vFyeaZNm2YEBAQYkgyr1WpceOGFxr/+9S+jcePG9nrbtGlj7N6922nZDh06GJIMk8lktGzZ0vjXv/5lnHfeeYbVajUkGXXq1DG2bdvmsMydd95pr7dBgwZG586djaioKEOSMXHiRKNp06aGJGPx4sUOy9lsNmPIkCH2ZRs3bmx06dLFiIqKMiwWi/H2228bkgyz2ewUp81mM5566in7suHh4UanTp2Mrl27Gk2bNjVMJpMhyejTp0+J9583/PXXX0ZYWJghyQgKCjIuuugio23btvb98sorr7jdnrx98PbbbxsWi8WIiIgwOnfubDRp0sQ+79prrzWysrIclivYzv79738bkowaNWoYXbp0sbdlScYDDzxQqm06ePCgUbNmTft/ed8ns9nsMP3aa68tVf0AAAAAAABVEXcCAYCXTJgwQZL0xx9/6JtvvtHZs2cVGBio22+/vdhlrVarhg4dKin/PULecs899+jvv//Www8/rPPOO08HDhzQ+vXrlZaWpn79+unf//63Nm7cqJYtWzot+84772j06NHq0qWLUlNTtWHDBsXFxen888/XM888oy1btji9V+azzz7T5MmT1bZtWx0/flx79uxRp06d9N133xV5B4nJZNIXX3yh999/Xx06dNDx48e1e/dudevWTYsXL1b//v0l5b6PydWyr7/+utasWaPhw4erbt262rZtmzZu3KisrCwNHDhQU6dO1axZs85xb1aM9u3ba+XKlbruuusUEhKinTt3KisrS4888og2btyo+vXrF1vHDTfcoCVLlqhXr17au3evEhIS1L59e7377rv69ttvi3zk4P+zd+/xOdf/H8ef1w622ZnNYV9saA5FJBbGNuSQb6Xim1NCCvVNhRARP0LCV1FfhJhIIpEO3ymHTRpyPhTmsCEko83Om12/P9Yuu+y8axrXHvfbre+t6/15f96f1+dzvXe1757X+/MZNmyYNmzYoMaNG+vEiROKj49XQECAli9frg8//LBE53Tjxg3Fxsaa/rl+/bokKTMz06w9Li6uROMDAAAAAADcjQxGYx439AcAoJxZs2aNnn76aT3wwAPat29fWZdzxzIYDJKkM2fOmJ6zVBTR0dGqXbu2JOX5LCEAAAAAAACUPlYCAQAgafHixZJuPncIAAAAAAAAuNsRAgEAyo13331X+/fvN2uLi4vTsGHDtGnTJtnb22vIkCFlVB0AAAAAAABQuvK/YT8AAFbm888/15gxY1SlShX5+fkpJSVFx44dU1pammxsbDR37txczyACAAAAAAAA7laEQACAcmP06NH67LPPtG/fPv3yyy9KS0tTlSpV1KZNG7322mt66KGHyrpEAAAAAAAAoNQYjDydGQAAAAAAAAAAwOrwTCAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBWyK+sCYLkGDRro2rVrqlOnTlmXAgAAABTq9OnT8vT01LFjx8q6FAAAAACwaoRAVuDatWtKSkoqk2PHx8dLktzc3Mrk+LhzMBcgMQ+QhXmAbMwFSHnPg7L63RUAAAAAyhtCICuQvQIoMjLybz92RESEJCkoKOhvPzbuLMwFSMwDZGEeIBtzAVLe86BVq1ZlVQ4AAAAAlCs8EwgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVsivrAgAAAMpKZmamYmNjFRcXp5SUFBmNxrIuyao4OTlJkg4fPlzGlaC0GQwGOTo6yt3dXZUrV5aNDd8tAwAAAIA7ESEQAAAolzIzMxUdHa2EhARTm8FgKMOKrI+Dg0NZl4DbJDMzU0lJSUpKStL169fl5+dHEAQAAAAAdyBCIAAAUC7FxsYqISFB9vb2qlGjhlxcXAiBSllqaqokwiBrZDQalZCQoPPnzyshIUGxsbHy9vYu67IAAAAAALfg63oAAKBciouLkyTVqFFDrq6uBEBAMRgMBrm6uqpGjRqSbv48AQAAAADuLIRAAACgXEpJSZEkubi4lHElwN0r++cn++cJAAAAAHBnIQQCAADlktFolMFgYAUQYIHsnyGj0VjWpQAAAAAA8kAIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAwG2yaNEiNWnSRE5OTvL29lafPn0UExNTrDFiY2P14osvysfHRw4ODqpfv75mzJihjIyMPPsfOnRIjz32mDw9PeXs7KyWLVtq3bp1+Y6/bt06tWzZUs7OzvL09NRjjz2mQ4cOFatGAAAAAMCdiRAIAAAAuA0mTJigwYMHy9XVVe+9955effVVbdq0Sa1atdL58+eLNMb169cVFBSkRYsWqUePHvrwww/10EMP6Y033tDAgQNz9T948KACAwMVGRmpkSNHavbs2bKzs1P37t21ZMmSXP2XLFmi7t27KzExUTNmzNCbb76pQ4cOKTAwUAcPHrT4GgAAAAAAypZdWRcAAAAAWJsTJ05o+vTpatasmbZt2yY7u6xfu7t06aKAgACNGzdOy5cvL3ScmTNn6pdfftHs2bM1YsQISdLzzz8vd3d3ffDBBxo4cKDat29v6j9s2DAlJiZq69atat68uSRp0KBBeuihhzRixAh1795dHh4ekqRr165pxIgRqlGjhnbs2CE3NzdJ0tNPP617771Xw4YNU0RERGleFgAAAADA34yVQAAAAMhl2bJlMhgM2rJli9599135+/vL0dFRDRs21KpVqyRJFy5c0DPPPCNvb285OTmpU6dOOnnyZJ7jhYaGqlWrVnJxcVHFihX14IMPatmyZbn6bdq0Sb1791bdunXl5OQkNzc3BQUFaePGjbn6DhgwQAaDQdevX9fw4cNNt0tr1KiRPv/881K9HsX16aef6saNG3rllVdMAZAkNW/eXEFBQVq7dq2Sk5MLHWf58uWqWLGiXnzxRbP2kSNHmrZni46O1vbt2xUcHGwKgCTJ3t5er7zyiuLj47V+/XpT+4YNGxQfH6/nn3/eFABJUq1atdSjRw9t375d0dHRxT11AAAAAMAdhJVAAAAA+bi6cqWu/RV4ZKv54Yeq4OubZ//0ixd19oUXzNo8uvdQ5YED8j3Gb6NGK+XXX0yv7TwryfeT/FeIxP/vf/rjgw/M2qpPmaKKDzyQ7z6WGDt2rBISEjRo0CA5OTnpo48+Ut++fWVra6vRo0erdevWmjx5smJiYvTee+/piSee0KFDh2Rjc/O7RkOGDNFHH32kf/7zn5oyZYrs7e313XffaeDAgYqKitLUqVNNfZctW6bff/9dzzzzjGrUqKE//vhDoaGhevzxx/XZZ5+pZ8+euWrs3LmzKlasqNGjR+vGjRv673//q549e6p27dpq0aJFoeeYkJCglJSUIl8TLy+vQvvs2rVLktS6detc21q3bq3w8HAdPnxYAQEB+Y7x+++/KyYmRq1bt5aTk5PZNj8/P1WvXl27d+8u8jElaffu3RowYECR+oeGhmr37t3y8/Mr4EwBAAAAAHcyQiAAAIB83Lh6TWknT5m1GdPS8u1vzMjI1f9G7JUCj5H+229m+2R6xxdcU1x87pqKsKKkpJKSkrR37145OjpKyrpVmJ+fn3r16qWpU6dq7Nixpr5VqlTRyJEjtXnzZnXs2FGS9O233+qjjz7SO++8ozFjxpj6vvzyy3rppZc0Y8YMPf/886pdu7YkadGiRXJ2djar4bXXXlPTpk01efLkPEOgBg0a6OOPPza97tGjh/z9/fXee+9p5cqVhZ7jyy+/rNDQ0CJfE6PRWGif7Gf+1KhRI9e27Lbz588XGAIVNEZ2+7Fjx4p9zJL2BwAAAADcfQiBAAAAkK9hw4aZAiBJql69uurXr6+jR49q+PDhZn1DQkIkScePHzeFQCtWrJCDg4P69u2rK1fMA7Enn3xS8+fP1w8//KAX/lpBlTMASkxMVEpKioxGo9q3b6+FCxfq+vXrcnV1NRsnZ7gkSb6+vqpXr55OnDhRpHMcPXq0nnnmmSL1LaqkpCRJkoODQ65t2dczu09JxsgeJ+cYxT1madQIAAAAALizEQIBAAAgX3Xr1s3VVqlSJfn4+JiFQ9ntkhQbG2tq+/XXX5WamqqaNWvme4xLly6Z/j06OloTJkzQt99+q6tXr+bqe+3atVwhUF41enl5KSYmJt9j5nTvvffq3nvvLVLfoqpYsaIkKTU1Ndet3LJvPZfdpyhj5CUlJcVsjIL653XM4vYHAAAAANx9CIEAAADyYVvJUxXuMQ8YDBUq5NvfYGeXq79t5YKfH2P/j3/oRnyc6bWdZ6WCa3J3y13TLSFDabK1tS1Wu2R+u7TMzEy5uLjoyy+/zLd/nTp1JGU9mycoKEhxcXF69dVXdf/998vNzU02Njb6+OOPtWrVKmVmZuba384u719pi3LbNkmKi4tTcjFuqVetWrVC+9SoUUNHjhzR+fPn5e/vb7atsNu85RwjZ/9bnT9/3myMgvrndcyc/Rs2bFiiGgEAAAAAdzZCIAAAgHxU6ttXlfr2LXJ/++rVVffrr4t1jH/MfLdY/d26dJFbly7F2qcs+fv76/jx42rcuLGqVq1aYN8tW7bo3LlzWrJkiZ577jmzbYsWLbptNb766qul/kyggIAA/e9//1NkZGSuECgyMlJOTk5q1KhRgWNUrVpVtWrV0oEDB5ScnGy2oigmJkYXL15Up06dzI6ZPf6tsttyPoMoICBACxYsUGRkpOn2fbf2b9GiRaHnCgAAAAC4c9mUdQEAAACwXv369ZMkvf7663mu4omLizPdjix7ddGtIcuhQ4e0fv3621bj6NGj9f333xf5n6Lo06ePbG1t9f777ysjI8PUvmfPHoWHh6t79+5mt1qLi4vTsWPHcj03qV+/fkpKStL8+fPN2mfPnm3anq127doKDAzUtm3btHfvXlN7RkaG5s6dK1dXV3Xr1s3U/sQTT8jV1VWLFi1SfHy8qf3s2bNas2aN2rRpo9q1axfpfAEAAAAAdyZWAgEAAOC26datm4YOHaoFCxbo8OHDeuqpp+Tj46Pff/9dhw4d0ldffaVff/1Vfn5+CgwMVPXq1TVy5EidPn1afn5++vXXX7Vo0SI1btzYLNgoTbfjmUD169fX6NGjNX36dIWEhKhfv366cuWK5syZoypVqmjatGlm/b/88ksNHDhQEydO1KRJk0zto0eP1tq1azV69GhFR0erSZMmCg8P1yeffKLevXurQ4cOZuPMnTtXQUFB6ty5s4YPHy4vLy998skn2rdvnxYuXChPT09TX09PT82cOVNDhw5VYGCghgwZotTUVM2bN880FgAAAADg7kYIBAAAgNtq/vz5at++vRYuXKg5c+YoMTFRVapUUf369TVt2jTTM3Y8PDy0adMmjRkzRvPnz1dqaqruv/9+rVy5Uvv27bttIdDtMnXqVPn6+urDDz/Uq6++KhcXF3Xs2FHTpk1TzZo1izSGm5ubtm/frvHjx2vNmjVauHChfH19NW3aNL3++uu5+jdr1kw7duzQm2++qZkzZyotLU2NGzfWmjVr1KNHj1z9hwwZosqVK2vmzJkaPXq0KlSooDZt2mjq1Klq0qSJxdcAAAAAAFC2DMaiPjEXd6xWrVpJyvv+77dbRESEJCkoKOhvPzbuLMwFSMwDZLlb5sHhw4clSY0bNy7jSqxX9m3eHBwcyrgS3E6F/Szl9ZlQlr+/AgAAAEB5wjOBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAADgtomOjpbBYNCkSZPKuhQAAAAAAModQiAAAACgiA4dOqTHHntMnp6ecnZ2VsuWLbVu3bpij7No0SI1adJETk5O8vb2Vp8+fRQTE5Nn36SkJL3xxhvy8/OTg4OD/Pz89MYbbygpKSnP/jExMerTp4+8vb3l5OSkJk2aaNGiRcWuEQAAAABw97Mr6wIAAABgvXx9fZWcnCw7u7v/186DBw+qTZs2cnBw0MiRI+Xl5aUVK1aoe/fuWrx4sQYNGlSkcSZMmKC3335bgYGBeu+99/THH3/ovffe07Zt27R7927VqFHD1PfGjRvq2rWrwsPD1a9fPwUFBengwYOaNWuWdu3apR9++EG2tram/ufPn1fLli0VFxen1157TbVr19aGDRs0ePBgnT17VlOmTCn16wIAAAAAuHPd/f9vHAAAAHcsg8EgBweHsi6jVAwbNkyJiYnaunWrmjdvLkkaNGiQHnroIY0YMULdu3eXh4dHgWOcOHFC06dPV7NmzbRt2zZTONalSxcFBARo3LhxWr58ual/aGiowsPDNWzYMM2dO9fU7ufnp9dff12hoaF67rnnTO3jxo3TpUuX9MUXX+ipp56SJL3wwgt6/PHHNX36dD377LPy9/cvrUsCAAAAALjDEQIBAADkY9WxVVp9bLVFYzSo3EDvtH0n3+1vbH9Dx2KPWXSMng16qneD3haNcatly5Zp4MCB2rx5s/bs2aNFixbp3Llzql27tt566y317t1bFy5c0OjRoxUWFqaEhAS1bdtW//3vf3XPPfeYxomOjlaDBg00ceJE03OBoqOjVbt2bU2cOFGBgYGaNGmS9u/fL0dHR3Xt2lXvv/++KleuXKrnY6no6Ght375dISEhpgBIkuzt7fXKK69o4MCBWr9+vQYMGFDgOJ9++qlu3LihV155xWx1VPPmzRUUFKS1a9dq4cKFcnJykiRTIDRy5EizcV566SVNmDBBy5cvN4VASUlJWrt2rWrXrm0KgLKNGDFCGzdu1MqVK3k+EwAAAACUI4RAAAAA+biWck2n4k5ZNIabg1uB2y8kXLD4GNdSrlm0f0HGjh2rhIQEDRo0SE5OTvroo4/Ut29f2draavTo0WrdurUmT56smJgYvffee3riiSd06NAh2dgU/ujJ//3vf5o7d65eeOEFPfvss9q1a5eWLVuma9eu6Ztvvilxzenp6YqLiytyf1dX10JXK+3atUuS1Lp161zbstt2795daAhU2Djh4eE6fPiwAgICZDQa9fPPP8vHx0e+vr5mfZ2cnNS0aVPt2bNHRqNRBoNBhw8fVnJyslq1apVr7FatWslgMGj37t0F1gcAAAAAsC6EQAAAAMhXUlKS9u7dK0dHR0nS008/LT8/P/Xq1UtTp07V2LFjTX2rVKmikSNHavPmzerYsWOhYx88eFAHDhxQ/fr1JUlDhgyRnZ2dFi1apKioqBLftmzHjh1q165dkfsvXbq00PDm/PnzkmT2vJ5s2W3ZfUpjnICAAF29elVJSUlq1KhRnmPVqFFDkZGRunbtmipVqlTg2A4ODvLy8ipSjQAAAAAA60EIBAAAgHwNGzbMFABJUvXq1VW/fn0dPXpUw4cPN+sbEhIiSTp+/HiRQqAnnnjCFABl69SpkxYtWqQTJ06UOARq0qSJvv/++yL3v++++wrtk5SUJEl5rhjKvj7ZfUprnIL63tq/UqVKRepflBoBAAAAANaDEAgAACAfno6equte16IxfFx8Ct0enxpv0TE8HT0t2r8gdevmPv9KlSrJx8fHLBzKbpek2NjYEo/t5eUlSbpy5UpxSzXx9PTUww8/XOL981KxYkVJUmpqaq5tKSkpZn2KOk72c3/yG6egY5a0v4eHR6E1AgAAAACsByEQAABAPno36K3eDXrf1mO80/ad2zq+pWxtbYvVLklGo7FIY9vZ5f+raFHHyEtaWpquXr1a5P7u7u65AplbFXTLt4Juw5bXOEeOHNH58+dzrXS6dZxKlSqpYsWK+d7C7fz583J2dpanp2ehNaampurKlStq3rx5oTUCAAAAAKxH4U/stTI///yzunbtKg8PDzk7O6tly5b6/PPPizVGamqqJk+eLH9/fzk6OsrHx0eDBw/W5cuXi7R/165dZTAYcn17FgAAAJb76aefVL169SL/s3r16kLHDAgIkCRFRkbm2pbdlt3HknGcnJxMzwAyGAxq3ry5Lly4oJiYGLO+ycnJOnDggJo3by6DwSBJaty4sRwdHfMce+fOnTIajUWqEQAAAABgPcrVSqCtW7eqc+fOcnR0VK9eveTq6qovvvhCPXv21Llz5zRy5MhCx8jMzFS3bt0UFhamli1bqnv37oqKitLixYu1efNm7dy5U97e3vnuv2jRIoWFhcnR0dGib7gCAAAgb7fjmUC1a9dWYGCgtm3bpr179+rBBx+UJGVkZGju3LlydXVVt27dzPY5duyY7O3tzW5716dPH02dOlXvv/+++vTpY1oNtWfPHoWHh6tv375mt5Xr16+fIiIiNHv2bM2dO9fUPn/+fCUnJ6tfv36mtooVK6p79+5auXKl1q1bp6eeesq0bfbs2bK1tVXv3rd3ZRsAAAAA4M5SbkKgjIwMvfDCC7KxsVFERISaNm0qSXrrrbcUEBCgcePGqUePHvL19S1wnNDQUIWFhal3795auXKl6ZuXCxYs0Isvvqjx48dr4cKFee4bHR2tkSNHasSIEVqzZo0uXbpUqucIAACA2/NMIEmaO3eugoKC1LlzZw0fPlxeXl765JNPtG/fPi1cuNB0W7ZsDRs2lK+vr6Kjo01t9evX1+jRozV9+nSFhISoX79+unLliubMmaMqVapo2rRpZmMMHDhQy5cv17x58xQXF6egoCAdPHhQ//3vf9W2bVsNGDDArP+0adP0ww8/qF+/ftq7d69q166tDRs26Ouvv9bYsWNVv379Ur8uAAAAAIA7V7m5HdyWLVt06tQp9enTxxQASVn3gB83bpzS0tIUGhpa6DiLFi2SJE2fPt0UAEnSkCFDVKdOHa1cuVLJycm59jMajXruuedUvXp1TZ482fITAgAAwN+qWbNm2rFjh1q2bKmZM2dq+PDhSk9P15o1azR48OAijzN16lQtWLBA8fHxevXVVzVnzhx17NhRkZGRqlmzpllfW1tbffvttxo1apS2bdumF198URs2bNCIESP07bff5no2U61atRQZGanHH39cCxcu1Msvv6yYmBgtWLBAU6dOLZXrAAAAAAC4exiM5eSeZOPGjdP06dO1atUq9erVy2zbpUuXVL16dbVv316bN2/Od4yUlBQ5OzvL399fx44dy7V96NChWrhwoSIiItS2bVuzbXPnztXw4cMVERGhwMBA+fn56dKlS0pJSSnyObRq1SrP9iNHjqhWrVqaP39+kccqLfHx8ZIkNze3v/3YuLMwFyAxD5DlbpkHTk5OcnBwYGXEbZT9a2bOL87A+hw/flypqal5fhFKyvsz4cUXX5Sbm1uezy8CAAAAAJSecrMSKCoqSpLk7++fa1u1atXk4uJi6pOfU6dOKTMzM88xco596zhRUVEaO3asXnnlFQUGBpakfAAAAAAAAAAAgGIpN88EiouLk5R1+7e8uLm5mfpYMkbOfpKUmZmp/v37q3r16hbfgiO/b0pmrxAKCgqyaPySiIiIKLNj487CXIDEPECWu2UeHD58WJLk4OBQxpVYr9TUVElcY2tnMBjk6OioFi1a5Lk9r8+EO32lIAAAAABYi3ITApWVmTNnaufOndq6dasqVqxY1uUAAAAAAAAAAIByotzcDi579U5+q33i4+PzXeFTnDFy9jtx4oQmTpyol156ScHBwSWqGwAAAAAAAAAAoCTKTQiU3/N6JOnSpUtKSEjI91k/2erUqSMbG5t8nx1063OHfvnlF6WmpurDDz+UwWAw+ycmJkapqamm13/++acFZwcAAAAAAAAAAGCu3NwOLjg4WNOnT9emTZvUq1cvs21hYWGmPgVxcnJSQECAdu7cqZiYGPn6+pq2GY1Gff/993J2dlbz5s0lSX5+fho0aFCeY61evVrJyckaMGCAJO6VDwAAAAAAAAAASle5CYE6dOigOnXq6NNPP9Urr7yipk2bSsq6tdu0adNUoUIFPfvss6b+Fy9eVFxcnKpXr252m7jBgwdr586dGjt2rFauXCmDwSBJWrhwoU6fPq3BgwfLyclJktS0aVMtXrw4z3p++OEHXbp0Kd/tAAAAAAAAAAAAlig3t4Ozs7PT4sWLlZmZqaCgIA0ePFgjR45UkyZNdOLECU2bNk1+fn6m/mPHjlXDhg315Zdfmo3Tv39/de7cWatWrVLr1q31xhtvqEePHnrppZdUu3Ztvf3223/zmQEAAAAAAAAAAORWbkIgSWrXrp1+/PFHBQYGavXq1Zo/f76qVq2qzz77TCNHjizSGDY2NtqwYYMmTZqkP/74Q3PmzNGOHTs0aNAgRUZGytvb+zafBQAAAAAAAAAAQOHKze3gsgUEBOi7774rtN+yZcu0bNmyPLc5ODho4sSJmjhxYonriI6OLvG+AAAAAAAAAAAAhSlXK4EAAAAAAAAAAADKC0IgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAALJCUl6Y033pCfn58cHBzk5+enN954Q0lJScUa59ChQ3rsscfk6ekpZ2dntWzZUuvWrcu3/7p169SyZUs5OzvL09NTjz32mA4dOpRn34yMDM2YMUP169eXg4ODfHx89OKLLyo2NrZYNQIAAAAA7i6EQAAAAEAJ3bhxQ127dtWMGTMUFBSkDz/8UI899phmzZqlf/7zn7px40aRxjl48KACAwMVGRmpkSNHavbs2bKzs1P37t21ZMmSXP2XLFmi7t27KzExUTNmzNCbb76pQ4cOKTAwUAcPHszVf+DAgXrjjTdUr149ffDBBxowYIBCQ0MVFBSk69evW3wdAAAAAAB3JruyLgAAAAC4W4WGhio8PFzDhg3T3LlzTe1+fn56/fXXFRoaqueee67QcYYNG6bExERt3bpVzZs3lyQNGjRIDz30kEaMGKHu3bvLw8NDknTt2jWNGDFCNWrU0I4dO+Tm5iZJevrpp3Xvvfdq2LBhioiIMI29ZcsWrVixQo8//rg2bNhgan/wwQfVo0cPzZw5U5MnTy6NywEAAAAAuMMQAgEAAOTj8LbzOhz+m0VjeNd0Ucfn7st3+/cfH9Uf5xIsOkbj4H+ocUgNi8a41bJlyzRw4EBt3rxZe/bs0aJFi3Tu3DnVrl1bb731lnr37q0LFy5o9OjRCgsLU0JCgtq2bav//ve/uueee0zjZGZmatq0adq0aZOOHz+u2NhYeXt76+GHH9aUKVNUq1YtU9/Q0FANGDBA//73v/XBBx+Y2tPS0tSmTRsdPnxYkZGRatq0aameqyWWL18uSRo5cqRZ+0svvaQJEyZo+fLlhYZA0dHR2r59u0JCQkwBkCTZ29vrlVde0cCBA7V+/XoNGDBAkrRhwwbFx8drxIgRpgBIkmrVqqUePXooNDRU0dHR8vPzM6txxIgRZsft3r27/Pz8tHz5ckIgAAAAALBShEAAAAD5SL6epmsXEy0aw7Fiwb9uXY9NsfgYydfTLNq/IGPHjlVCQoIGDRokJycnffTRR+rbt69sbW01evRotW7dWpMnT1ZMTIzee+89PfHEEzp06JBsbLLuOpyWlqYZM2boqaee0j//+U+5u7vr0KFD+vjjj7V582YdOnRIlSpVkiT1799f4eHh+vDDDxUcHKx//etfkqTRo0fr559/1sKFCy0KgK5du1bk27PZ29vL3d29wD5Go1E///yzfHx85Ovra7bNyclJTZs21Z49e2Q0GmUwGPIdZ9euXZKk1q1b59qW3bZ7925TCFRY/9DQUO3evdsUAu3atUs2NjZq2bJlrv6tWrXSqlWrdPnyZVWpUqXA8wUAAAAA3H0IgQAAAJCvpKQk7d27V46OjpKybjnm5+enXr16aerUqRo7dqypb5UqVTRy5Eht3rxZHTt2lCQ5ODjo4sWLqlixotm4TzzxhDp27KglS5Zo1KhRpvYPPvhAP//8s55//nk98MADOnLkiN5//3316dNHgwcPtuhcHnjgAcXExBSpb3BwsLZt21Zgn6tXryopKUmNGjXKc3uNGjUUGRmpa9eumYKuvJw/f97UP68xcvYpaX8vLy85ODgU2J8QCAAAAACsDyEQAAAA8jVs2DBTACRJ1atXV/369XX06FENHz7crG9ISIgk6fjx46YQyGAwmAKgzMxMxcfHKyMjQ02bNpW7u7tpVUu2ihUras2aNWrevLmefPJJnT9/XvXr19fChQstPpeVK1cqOTm5SH09PT0L7ZOUlCRJeYYrkkzXLSkpqcAQqKBxco5hSf/8ziev/gAAAAAA60EIBAAAkA8n1wryrO5s0RiulR0L3Z6SlGHRMZxcK1i0f0Hq1q2bq61SpUry8fExC4ey2yUpNjbWrH39+vV69913tXfvXqWlmd+67urVq7nGb9Cggf7zn/9oyJAhsre31+effy4XFxdLT0WBgYEWj5FTdriVmpqa5/aUlBSzfiUZJ68xStLf0hoBAAAAAHcnQiAAAIB8NA6pocYhuW+5VZo6PnffbR3fUra2tsVql7KelZNt48aN+te//qXmzZvrP//5j2rVqiUnJydJUq9evZSZmZnn/l999ZUkKT09XUeOHNH9999vyWlIkv74448iPxOoQoUKBa7ekbJCr4oVK5rdei2n8+fPy9nZudBVRXndwi3nGDn73Nq/YcOGRep/4sQJpaam5lo9VNCt5QAAAAAAdz9CIAAAANw2K1askKOjo8LDw81WmyQmJuratWt57jNz5kx98803GjNmjL7++msNGTJEzZs3V7169SyqpUWLFqX6TCCDwaDmzZsrIiJCMTEx8vX1NW1LTk7WgQMHFBAQIIPBUOA4AQEBkqTIyMhc27Lbsvtk//uCBQsUGRlpuu3erf1btGhh1v/YsWPatWuXgoKCcvX39fXleUAAAAAAYKUIgQAAAHDb2NraymAw5FrxM2XKlDxXAe3YsUNvvvmmOnTooGnTpql///5q0aKFnn76ae3cuTPXLeiKo7SfCSRJ/fr1U0REhGbPnq25c+ea2ufPn6/k5GT169fPrP/FixcVFxenWrVqmUKx2rVrKzAwUNu2bdPevXv14IMPSpIyMjI0d+5cubq6qlu3bqYxnnjiCb366qtatGiRXnvtNbm5uUmSzp49qzVr1qhNmzaqXbu2WY3Lly/X7NmzzUKgdevWKTo6WuPHjy/SuQIAAAAA7j6EQAAAALhtnnrqKa1bt07BwcEaMGCAjEajwsLC9Msvv8jLy8usb2xsrHr16iUvLy+tXLlSNjY2atiwoebPn69nn31Wr732mhYsWFDiWkr7mUCSNHDgQC1fvlzz5s1TXFycgoKCdPDgQf33v/9V27ZtNWDAALP+Y8eOVWhoqLZu3aqQkBBT+9y5cxUUFKTOnTtr+PDh8vLy0ieffKJ9+/Zp4cKFZqGUp6enZs6cqaFDhyowMFBDhgxRamqq5s2bZxorp4cffli9e/fWqlWr9Nhjj6lbt246c+aM5syZowYNGmjUqFGlfl0AAAAAAHcGQiAAAADcNj169FBqaqrmzJmj0aNHy9XVVR07dtT27dvVpk0bUz+j0ah+/frpwoUL+v7771W1alXTtn79+ik8PFwLFy5USEiIevXqVRankidbW1t9++23mjx5slavXq1Vq1apevXqGjFihN56660Cn52UU7NmzUyroGbOnKm0tDQ1btxYa9asUY8ePXL1HzJkiCpXrqyZM2dq9OjRqlChgtq0aaOpU6eqSZMmufqHhoaqcePGWrp0qf7973+rUqVK6tevn95++23TSiIAAAAAgPUxGHM+uRd3pVatWknK+z7yt1tERIQk5bq/PMof5gIk5gGy3C3z4PDhw5Kkxo0bl3El1is1NVWS5ODgUMaV4HYq7Gcpr8+Esvz9FQAAAADKE5uyLgAAAAAAAAAAAACljxAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAolwwGg4xGozIyMsq6FOCulZGRIaPRKIPBUNalAAAAAADyQAgEAADKJTc3N0lSdHS0kpKSlJmZWcYVAXePzMxMJSUlKTo6WtLNnycAAAAAwJ3FrqwLAAAAKAtVqlRRYmKikpKSdPLkSUliNUMpMxqNkriu1ij7vZUke3t7ValSpQyrAQAAAADkhxAIAACUS46Ojqpfv74uX76s+Ph4paensxqolKWmpkrKutawLra2trK3t5e7u7u8vb1lY8MNBgAAAADgTkQIBAAAyi0bGxtVq1ZN1apVK+tSrFJERIQkqUWLFmVcCQAAAAAA5RNf2QMAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVogQCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYoXIXAv3888/q2rWrPDw85OzsrJYtW+rzzz8v1hipqamaPHmy/P395ejoKB8fHw0ePFiXL1/O1ffAgQOaMGGCWrZsqSpVqsjBwUF16tTRSy+9pN9++620TgsAAAAAAAAAAMCMXVkX8HfaunWrOnfuLEdHR/Xq1Uuurq764osv1LNnT507d04jR44sdIzMzEx169ZNYWFhatmypbp3766oqCgtXrxYmzdv1s6dO+Xt7W3qP3ToUO3atUsBAQHq1auXHBwctGvXLs2fP19r1qzR9u3b1aBBg9t52gAAAAAAAAAAoBwqNyFQRkaGXnjhBdnY2CgiIkJNmzaVJL311lsKCAjQuHHj1KNHD/n6+hY4TmhoqMLCwtS7d2+tXLlSBoNBkrRgwQK9+OKLGj9+vBYuXGjq37dvX61YsUL33HOP2TgzZszQG2+8oZEjR+qbb74p3ZMFAAAAAAAAAADlXrm5HdyWLVt06tQp9enTxxQASZK7u7vGjRuntLQ0hYaGFjrOokWLJEnTp083BUCSNGTIENWpU0crV65UcnKyqX3YsGG5AiBJev311+Xk5KTw8HALzgoAAAAAAAAAACBv5SYE2rZtmySpU6dOubZ17txZkgoNZFJSUrRr1y7Vr18/14ohg8Ggjh07KjExUXv27Cm0HoPBIHt7e9nZlZvFWAAAAAAAAAAA4G9UbhKIqKgoSZK/v3+ubdWqVZOLi4upT35OnTqlzMzMPMfIOXZUVJTatm1b4Fhr165VfHy8/vWvfxWlfElSq1at8mw/cuSIatWqpYiIiCKPVVri4+MlqUyOjTsLcwES8wBZmAfIxlyAlPc8iI+Pl5ubW1mVBAAAAADlRrlZCRQXFycp6/ZveXFzczP1sWSMnP3yc+7cOb3yyitycnLSlClTCuwLAAAAAAAAAABQEuVmJdCdIjY2Vl27dtXly5e1fPly1a9fv8j7RkZG5tmevUIoKCioVGosjuxvdJbFsXFnYS5AYh4gC/MA2ZgLkPKeB6wCAgAAAIC/R7lZCZS9eie/VTrx8fH5rvApzhg5+90qNjZWHTp00NGjRzV//nw988wzRaodAAAAAAAAAACguMpNCJTzeT23unTpkhISEvJ91k+2OnXqyMbGJt9nBxX03KHsAOjgwYP64IMPNGTIkOKeAgAAAAAAAAAAQJGVmxAoODhYkrRp06Zc28LCwsz65MfJyUkBAQE6fvy4YmJizLYZjUZ9//33cnZ2VvPmzc225QyA5s2bp5deesmSUwEAAAAAAAAAAChUuQmBOnTooDp16ujTTz/VgQMHTO1xcXGaNm2aKlSooGeffdbUfvHiRR07dizXrd8GDx4sSRo7dqyMRqOpfeHChTp9+rT69u0rJycnU/vVq1f18MMP6+DBg3r//ff18ssv36YzBAAAAAAAAAAAuMmurAv4u9jZ2Wnx4sXq3LmzgoKC1KtXL7m6uuqLL75QTEyMZs2aJT8/P1P/sWPHKjQ0VEuXLtWAAQNM7f3799fq1au1atUqnTlzRsHBwTp58qTWrVun2rVr6+233zY77lNPPaUDBw6oQYMGunr1qiZNmpSrttdee00eHh6358QBAAAAAAAAAEC5VG5CIElq166dfvzxR02cOFGrV69Wenq6GjdurBkzZqhnz55FGsPGxkYbNmzQO++8o08++URz5sxRpUqVNGjQIL399tvy9vY26x8dHS1JOnbsmP7v//4vzzEHDBhACAQAAAAAAAAAAEpVuQqBJCkgIEDfffddof2WLVumZcuW5bnNwcFBEydO1MSJEwsdJzsEAgAAAAAAAAAA+DuVm2cCAQAAAAAAAAAAlCeEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVogQCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAK2ZXWQElJSfrpp5+0Y8cOnT9/XleuXFHFihXl7e2txo0bKzg4WPfcc09pHQ4AAAAAAAAAAAAFsDgEioyM1IIFC7R27VqlpKTIaDTm2c9gMKhhw4YaOnSonn32Wbm5uVl6aAAAAAAAAAAAAOSjxCHQ0aNHNWrUKIWFhcnW1lYhISFq1aqVmjdvrqpVq6pSpUpKTk7W1atXdfz4ce3cuVNbtmzRK6+8ov/7v//ThAkT9NJLL8nOrtQWIwEAAAAAAAAAAOAvJU5gmjRpIl9fX73//vvq1auXvLy88u0bHByswYMHS5LCw8O1aNEijRw5UtevX9ebb75Z0hIAAAAAAAAAAACQjxKHQAsXLlT//v2LvZInODhYwcHBmjhxos6fP1/SwwMAAAAAAAAAAKAAJQ6BBg0aZNGB/f395e/vb9EYAAAAAAAAAAAAyJtNWRcAAAAAAAAAAACA0lfilUBFce7cOe3fv1+ZmZlq1aqVqlatejsPBwAAAAAAAAAAgL9YvBJo3759GjBggB599FFNnDhR8fHxkqRRo0apbt26evLJJ9W9e3f5+vrq3XfftbhgAAAAAAAAAAAAFM6ilUBHjhxRUFCQkpKSJEnfffeddu7cqV69emn27Nny8/NTs2bNdO3aNW3fvl1jx47V/fffry5dupRK8QAAAAAAAAAAAMibRSHQ9OnTlZycrHfffVddunRRWFiYxowZo5MnT6pHjx769NNPZWeXdYiff/5Zbdq00YcffkgIBAAAAAAAAAAAcJtZFAJt375dHTp00Ouvvy5JatSokTZt2qQffvhBX331lSkAkqQWLVroscce048//mhZxQAAAAAAAAAAACiURc8EunTpkpo2bWrW1qRJE0nSPffck6u/v7+/YmNjLTkkAAAAAAAAAAAAisCiECgjI0MuLi5mbc7OzpIkBweHXP0dHR2VmZlpySEBAAAAAAAAAABQBBaFQAAAAAAAAAAAALgzWfRMIElKTEzU5cuXTa8TEhIkSX/88YeMRqNZ3+xtAAAAAAAAAAAAuL0sDoFmzZqlWbNmmbUZjUZVq1bN0qEBAAAAAAAAAABQQhaFQEFBQTIYDKVVCwAAAAAAAAAAAEqJRSHQtm3bSqkMAAAAAAAAAAAAlCabsi4AAAAAAAAAAAAApY8QCAAAAAAAAAAAwApZdDu4yZMnF3sfg8GgCRMmWHJYAAAAAAAAAAAAFMKiEGjSpEkyGAySJKPRWKR9CIEAAAAAAAAAAABuP4tCIEmys7NT165d9eSTT8rBwaE0agIAAAAAAAAAAICFLAqBRo0apU8++UQbNmzQ9u3b1adPHz333HNq2rRpKZUHAAAAAAAAAACAkrCxZOcZM2bo3LlzWr9+vdq0aaMFCxbowQcfVLNmzfThhx/q2rVrpVUnAAAAAAAAAAAAisGiEEiSbG1t9fjjj2v9+vU6f/683nnnHaWmpmrYsGHy8fFR79699f3335dGrQAAAAAAAAAAACgii0OgnKpUqaJRo0bp6NGj2rFjh/r166dvv/1WXbp00caNG0vzUAAAAAAAAAAAAChAqYZAZgPb2MhgMEiSjEbj7ToMAAAAAAAAAAAA8mBXmoP98ccfWr58uZYuXapff/1V9vb26tatm5577jl16tSpNA8FAAAAAAAAAACAAlgcAmVmZurrr7/Wxx9/rO+++07p6em6//77NWfOHD3zzDOqVKlSadQJAAAAAAAAAACAYrAoBBo9erRWrFih33//Xe7u7nr++ec1aNAgNWvWrLTqAwAAAAAAAAAAQAlYFALNmjVL9vb2euyxx/TUU0/J0dFRJ0+e1MmTJwvc7+mnn7bksAAAAAAAAAAAACiExbeDS09P18aNG7Vx48ZC+xqNRhkMBkIgAAAAAAAAAACA28yiEGjixImlVQcAAAAAAAAAAABKESEQAAAAAAAAAACAFbIp6wIAAAAAAAAAAABQ+kocAhmNRosPXhpjAAAAAAAAAAAAILcSh0CNGjXSmjVrSrTvuXPnNHToUM2YMaOkh7fIzz//rK5du8rDw0POzs5q2bKlPv/882KNkZqaqsmTJ8vf31+Ojo7y8fHR4MGDdfny5Xz3WblypQICAuTs7CxPT089+uij2rdvn6WnAwAAAAAAAAAAkEuJQyB/f3/17NlTderU0cSJE3X48OECV/bExsbqs88+06OPPqp77rlHGzZsUPPmzUt6+BLbunWrAgMD9eOPP+rpp5/W0KFDdenSJfXs2VOzZ88u0hiZmZnq1q2bJk6cKC8vL7322mtq1aqVFi9erFatWumPP/7Itc/UqVP1zDPP6PLlyxo6dKj+9a9/KSIiQq1bt9aOHTtK+zQBAAAAAAAAAEA5Z1fSHdevX6/w8HBNmDBBU6ZM0dtvvy1nZ2c1bdpUVatWlYeHh1JSUnT16lUdP35cZ86ckSR5enpqzJgxGj16tFxcXErtRIoiIyNDL7zwgmxsbBQREaGmTZtKkt566y0FBARo3Lhx6tGjh3x9fQscJzQ0VGFhYerdu7dWrlwpg8EgSVqwYIFefPFFjR8/XgsXLjT1j4qK0qRJk1SvXj3t3r1b7u7ukqSXXnpJLVu21AsvvKAjR47IxoZHNAEAAAAAAAAAgNJhUeoQHBysiIgIHT58WMOHD9c999yjn376SV988YWWLFmilStX6rvvvlNcXJy6deumZcuW6bffftPkyZP/9gBIkrZs2aJTp06pT58+pgBIktzd3TVu3DilpaUpNDS00HEWLVokSZo+fbopAJKkIUOGqE6dOlq5cqWSk5NN7UuXLlVGRobefPNNUwAkSU2bNlXv3r3166+/6scffyyFMwQAAAAAAAAAAMhS4pVAOd13332aNWuWJCkxMVEXLlxQbGysnJyc5O3tLR8fn9I4jMW2bdsmSerUqVOubZ07d5YkhYeHFzhGSkqKdu3apfr16+daMWQwGNSxY0ctXLhQe/bsUdu2bYt03GXLlik8PFxBQUHFPaWbdZ0+rSNDh0iS3Dp1lFvH3Me68tFHSomKkiRV9q2t6mPfMG3LzMxUfGKC4rduU/y335jafaZMkY2jo9k4aRcuKu4/s5WcmK64y3Ha8WBHrb/oJuONNGVmZpj6tf5mqSqkJkmSLvrdp+PNQszGsbWvqMY/fSOf00ckSYnObgp/tH+uuqueO66GP/9ger27Yx8luXrKYGMvG1t7SZJ9SpLar52ndBsp3dZGUfe31W/33J9rrOZbPpfLn1m364ut6qtfQp42227MzJTfoa2qdTzrWU1GGxuFP/FirnE8L/+mJj+ul31GpuyN0s8P99LValnzIed1CF4/X4bMTEnS2frNdPq+VrnGavHjt/L+7ZQkKb5SVf3UpZ8yb6Sa9fnHyUPyP7Td9HrHo4OUXiHrfcm+Ds5xsWqzcbEkKc3GoMMtO+r3mvVzHa/ld8vlmHxdkvR7rQb6tfnDsrV3MuvTMPI7eZ3Nel/SHCrqp38OzDWO928ndd+uMElShYxMffPQY4pzq6z1Fw9IkjIzUmWTlqy2GxeZ9jnVqLXO1Xsg11gPblurqr9flCTFVvPTnod7yph5w+w6+P2yW37Hfja93vbUv83GMNjYq1Ls73po00pT266QJxVbtUau4wVt+Eg2N9IlSefvaaKT97eRZDC7Dk3Dv5TXuRNKtbdRkmsl7e7YO9c4PmeOqt7+babXO//5vNJdPM36OMRfVsB3N8PlYw+21yXfhrnGahm2Qk4JcXLKyNQl34Y62PZxSTK7DvUORMjn9GFJUoadg358/Plc41S5dE7Nw9ebXkc+8qz+dK8ko/HGzWt1I0PBG26uVjxzb0vFNHgwa5vBIBu7rOsQsOlTeV4+pxuSLlevof1BT+Y6nu+xvar9y07T63WBPZRp72CaB5LkFntRzcI+0Q3brND8cOt/KraaX66x2ny1WHYZqTIYpT/qNNWvAR1N27Kvw327Nsn7t6zPsRRnd+3s/EyucarF/Kr7d/0gu7/uUBrxxBAlu3goMyNFRmPWz6NDSqJafbvMtM+JB0J0ofZ9N6/RX9chcOMSucRdkSRdqOGvA4Fdch3vnkM/qsbJg5KkTFt7RXQbnDWGTQXZ2Gb9Z7byhTNqvuVzpdjaKNNG2h/0lOK8qucaK2Tdh6Z/j2nYQmfvDzHbnnkjQ/dHrJXn5XOSpPhK1bQvpHuucWqe2K+6R35ShYxM2RmlH3oO1w37Cllj/HUdnONi1WLzZ6Z9jj7UWX/84x6zcQwGG7XfsFgOyYmSsn5eDrd4WMbMNLN+DfdsVtWzxyRJKU6u+rrFI5KkL87+ZLoO1c8c1f07vpYkJdvZaFenrM/ynOzTUhT49RLT66j72+qCf1PZ2Jn/d6jFd0vlGJ/1vsRW9dXhwEdzXYM6RyNNn+UVbkib+4wyv5YZyfL4/bya/Lje1HawzRO6VuUfucZq/8V/5ZiR9TN0+r6WinogWJk30mXMTDf1abzja1X+PUaSlODhrT3tzf/7YmPrIN8T+9Vwz2ZT2/dPvmD6LM9W8fo1BXz/qen1ry0e1u8168tgsJWNnYOpPejLBbJPilOanc1fn+UdctVdf982VY8+Kinrs3zn40NlsLE161P5zGHdu/t/ptc/d+ilRPfKZn1s09PUduMi2d4wyiHTqOPNQhR970OSZHYdmm37Qm5XL0mSrlWpqYNtHteVK9ckZc0FSbrnlz2qdzjSNHbYM2N0Iz1Z0s1bCrtfuagHItaZXh8KfFxXq9aUJLPr8PBn/5FtRroyDNLpBg/89VlurlHkd/K6eFqSTJ/lNrYOZtehRtQB1dm7Sca/vtgT2XWAUh2dzcZxSorXQ//7RJJkd8Oo4w89ogt1G5u2Z1+HlmEr5JgYJ0n64x/+OvpQ7t/H6h2IUO3jB2Qrg9IrOGrL069Kktl1qHwpWo1/uvn72N52PXTds6rptcFgK1uDrTqtunkr42NNAnW6QbNcx3sg4ku5X7kgSYrz8jF9lue8Dv+MPSL/AxGKt8m6Bv+YNk0Ge3uzcdLOndXlufNMr32ef16Vmrcw65OSmqrTY99QZlLW738urVvL48knlZSaIkn683q8JOnqypVKOn1aFevUyVUvAAAAAKB0GYwFPcjHyvzrX//S2rVrtWfPHj344IO5tru6usrT01Nnz57Nd4yjR4+qUaNGevTRR7Vx48Zc22fPnq3XX39dS5Ys0XPPPSdJ8vb2VkpKiq5fv56r/969e9W8eXP169dPy5cvL7D+Vq1yBwiSdOTIEVV2ctHLT/9XkrL+iGHI3c+QefOtbn9+uRJGDDe9vnHjhvZ8GScZJUOOKZHnWEbJNnmrHt4dofRMo95v0Uu7/9FYzY1ndX/8zT9qGoxG067G7LFMr41a6l5BQ/etVduz+yVJF9wq6dcHX8nzHG1y1JT51zj73C7qgKGWJMklLUkLv52qH1o/LNsKgTLKIGNe1yBHTTcMN7TU3Tz8sDem6tk4Q75131qTTcImBe+J1NuBg/Srd9YfMlpmntW916sXeg0kKd0mXVWPrtUDl45LkqLdfTS53XPqG2eezxqMkkG5r4Ek7XK/qKOqpWoJVzT7hzmSpLA2XWVnH5Bn3bfWlGKXppW3rMzre+wrOVXrUqRrIEkV4r7WRo9WOudWTfqrb9sbZ+WfUN3svcvvfUm3ua4um7P+kHXE+x5NDxwoZ8N19fzz5h9Hc9Z96zWQpB0evyvzyg1N2v6RqW35IwP1j5Tct3fM631JtE/U6ooepj6v7f5U/0i7oOONXsn3Ghhk/vOy0/W8jtia/0GrY1qMfJNu/lzcWnfOmtJsrqrLlnmKrHG/PmjeU5LkYbimp/50ybfuWx2z+0X//v5z0+s3Q17SPS5SrcQqZv3ye1/+rBCvdU5ZfwAe/+NiNbxyRtHVq+p0/aF5X4M85uYWj8uKNt78Q7rfn7+pja7KUfULvQYGSSk2l2R75qBCmzxm2uZl+EOP/+lRpGsgSZV/W6mmJ7LColc7va4rFT3VJf2ifJK88r4GhpxnIV1xvKavHKronS1zVTP+d0nS/5q2lL1n7hAov5o2ecTqvLGaJKnx5Si98dMyfdvuWTkZa+d7DXLW9GeFS1pbsZbZ9uqG39X1mmeh1yD7fal6NlT3no7WoEffUspffzh/NPWSqqRUznW8vGq65HRF/9wSKo+UrP9+bfFrobAHWqrTn+YhQUHvyzcef+p3o7danz+of+/JmpvftX9eFYy5A9pbazLKoN+cr+h/9uaB2fOn10mVHi3kGtysyef0Ek1uZh7oP5FyRZVS3Qu9BpKUquPqunWVJGlDvWB9fm8n+RkuqP2f3kW6BpK03uO6mp86rv6Hvja1res8XO5p7rpVXjWddb6sH+xu/ly9v2mmomv/Q9e9exTpGhglfeGZqD+N5sFbz8Qrck13K/Qa2BiNSjEe0SPhX2hlo0f07T1Zgcs9hvMK+rNqka6BJF2O267e+24GYX2fmKqeSX/KOd08dMnvfTnlcknhtlmB0JKv/0+OGWmKbNJUyZ7dinQNjAaDVnukKNHoaurTPnq3alSqqwqZroVeA0lKu7FP0YkVFFHrZuDSUOfUKq5aka6BwWhUk32zVDk+UQkVnDSk6/isa5GQIIcbN4O+gubmMdeL2i0fhX410dS2on03VTfm/qJFfjWtdM9QqrJ+Dxp1ebta7g7T123HyNbokO/vfzn/m5fmFaM27c1Dp12HTshwLMfng+Gv4xlvvs6uad6aN+RTu5IiIyMFAAAAALh9ytVDaOLisr6ZmfOWbDm5ubmZ+lgyRs5+2f9enP4AAAAAAAAAAACWKpXbweHvkd83JVu1aqVLMedufrsyx/+aMUjZX8Ws+lCAmuW4/Vx6Rob2fvlN1vYcuxry+jasQbLz9FCFB5rpjyt/qvk9nurQ7j6d2n1Vhus5+xtl+sKowZBrrLFd71M12+NKc866dZqju0fexzMazb6hb/hrvPrVXfVIs6zbN9kkJyrtTGNlOrvIJj2rU55jSTItfjNk1ZBTamqC4tadVM4FcgXVlOnuobSGjdW7fSMl16wtSTr50xUZEgy5a8/jGtjaGOTXrLHSzmTdpqlSFR8NDfFXwlfRtx5QOUqSQTe/odu4hocev/8+2V/9Q2m//XVrGqeKMmTItCon37EMBtnaGHJdB0e7X3T2iulghb4vNzwqqYO/qxI9HHXPPVm3kzoZ8YcMiQaza5nfWAaDjdIaZtVeo1Zdje16n67HXVbydxdvOWT+78uDtTxV//6qSrty8/Y8Hi6OMqQWMqf+el/sbW3MrkP1G42UeMExq18e712ucSQ19a2sx+43v5anfrgkY1KOc/1rvDwGk2yyrkO9+o1MtVy9ck4ZP1zNccib8zevmur7epuupSQN6HCfjh6JkiHJvG9+74uj/c3rUD2xkdLOuyjd1TH/a5Brbkr3VrZT74Cb18Hhdw9Fbd8lY1rh18BolGRrq6YtG8mn3c0x/rh4SsbwhCJdAxmNulGlmtJss1aSvdjxPmW4e+pU2BUZkvP42cyuPcdYFSvYamzX++RxpZHSYrNWUXn7+ijueiGfKznG6dCwmnz8ss6hYoyD0q41luztZUzL/xrkHMfe3i7Xz+alczbSj6k5rkHB70tGNR+lObhqRJf7ZKyQtcLg9LexWT8X+Xy25uTqaK8KjRorLTFrJVDjRo2U4V9Nhp0ZupXZ+3LzYuif9/uo6j/qyfXXDKUlZs1No52tDOl5XANj1krRnEW5OdprbGfz65C4bocSU24eo7DP+8waNXNdy+iNP8qQqkKvgSTJzt70c/VQi0aq2+Y+nT+ZIcOe/K5B7pp6PFhTdavZKy09xtTmYGcrQ/qt1yDv98XTuYLGdrh5Dk4X79cNB5uCP6Nk/r70bOGrSl41zbafXfejjDfvalfg3DQ6OCitYWOFtL5PTZpn1RJzLFmGAwazfmbXIMdrSWp0Xx2lJV829R/b9T6d+zJShowcxyxgblZxddTYkL+uw+nGSktP0w1PryJeg6w+A1vXkav7zdWR7oeS9MuxVP11t8i8r0GOmoyOTnqkWUMF3nfz/ThzJEGGIwYV9rtPtvQ69ZSWmiFbx4qmufnb2t0yZOb9GXVrTf/wcNLolvcpLerm530Vb08Z/ijaNZCkoSH+qlgx60tK90clylVXJRuDlJn/7385f2Jc3Fxz3cr49MVrunI802wngwwyGoymVwAAAACAvxe3g8vhTr8dXH5atWqlTKNRYd9vKvI+bs4usrG5uRAs+5lAReVYwUGODg6KiIiQJAUFBSk5JUWp6WmF7HmTh6ub2euS1pCTNdRw48YNXU9KtKiGxJRkpaen57OHOYPBIHcXV7O24tbg5OigXZG7JMn0B6GyqMHBvnSvQ3pGhhKTk/LZo2g1JCQlKuPGjXz2sL4adu7cqQp2dmrfrn2Z1SDlfR2uJyXoxo3MfPYovIa09HQlpSQXuYaKjk6qcMszNYpTg62tjVwrmt+q8W6pYefOrOdEtWzZMs8a4hKuq6i/fuRVQ2p6qpJTUvPZIzdnp4qytzP/3ktxarCztZVLRfPblVFD0WrIORdKowZ7e3s5O5rfyrW418G1orNsbc2fjWQNNaSkpiolzbIasp/ZUxQO9hXkdMtzI/Or4dZ5IEmdOjwsW1tbbgcHAAAAALdZuVoJ5O/vL0mKiorKFQJdunRJCQkJCgjI+zkq2erUqSMbGxtFRUXluT27PftY2f8eGRmpS5cuqVq1aoX2LwkbgyFXmFCs/W1sLNpfkpwcHXP9MYAais/W1tbiGpwdnaRb/jhEDcVnb2dncQ23/sHU2muo6JD33L8TrsOtQUJxVbC3zxVmUEPesudBfu/ZrQFbcTnY5w75iosa/p4aCpsLf0cNRWENNTg65P5SSHFZ+jmbXw15zYNbAygAAAAAwO1Rrp4JFBwcLEnatCn3ipmwsDCzPvlxcnJSQECAjh8/rpiYGLNtRqNR33//vZydndW8efNSPS4AAAAAAAAAAEBxlKsQqEOHDqpTp44+/fRTHThwwNQeFxenadOmqUKFCnr22WdN7RcvXtSxY8cUFxdnNs7gwYMlSWPHjjW7bcfChQt1+vRp9e3bV05ON1cfDBw4UHZ2dpo6darZWAcOHNCqVavUsGFDtWnTprRPFwAAAAAAAAAAlGPl6nZwdnZ2Wrx4sTp37qygoCD16tVLrq6u+uKLLxQTE6NZs2bJz8/P1H/s2LEKDQ3V0qVLNWDAAFN7//79tXr1aq1atUpnzpxRcHCwTp48qXXr1ql27dp6++23zY5br149TZo0SePHj1eTJk3UvXt3Xb9+XZ999pkkadGiRWbP5wEAAAAAAAAAALBUuUse2rVrpx9//FGBgYFavXq15s+fr6pVq+qzzz7TyJEjizSGjY2NNmzYoEmTJumPP/7QnDlztGPHDg0aNEiRkZHy9vbOtc+bb76pFStWyNvbW/Pnz9fnn3+utm3b6qefflJgYGBpnyYAAAAAAAAAACjnLFoJVJIHuhoMBmVkZFhyWIsFBATou+++K7TfsmXLtGzZsjy3OTg4aOLEiZo4cWKRj9u3b1/17du3yP0BAAAAAAAAAABKyqIQyGg0yt7eXnXq1CmtegAAAAAAAAAAAFAKLAqBHBwclJqaKoPBoIEDB+rZZ59V1apVS6s2AAAAAAAAAAAAlJBFzwS6ePGi5s6dKycnJ40ZM0Y1a9bUk08+qY0bNyozM7O0agQAAAAAAAAAAEAxWRQCeXh46OWXX9bevXu1f/9+DR06VNu3b9cTTzyhf/zjHxozZoyOHz9eWrUCAAAAAAAAAACgiCwKgXJq0qSJ5s6dqwsXLujTTz/V/fffr9mzZ+vee+9VmzZtdOzYsdI6FAAAAAAAAAAAAApRaiFQtgoVKqhnz54KCwvT9u3b5ePjo8jISJ04caK0DwUAAAAAAAAAAIB8lHoIlJ6erjVr1uiRRx5RUFCQfvvtNwUEBKhevXqlfSgAAAAAAAAAAADkw660Bjpw4ICWLl2qTz/9VLGxsapSpYpeffVVDRo0SA0bNiytwwAAAAAAAAAAAKAILAqBrl27ppUrV2rp0qU6cOCAbGxs9Mgjj+i5557To48+Kju7UsuYAAAAAAAAAAAAUAwWpTTVq1dXenq66tWrp+nTp6t///6qWrVqadUGAAAAAAAAAACAErIoBEpLS5O9vb0MBoOWLVumZcuWFbqPwWDQ0aNHLTksAAAAAAAAAAAACmHx/drS09N17Nix0qgFAAAAAAAAAAAApcSiECgzM7O06gAAAAAAAAAAAEApsinrAgAAAAAAAAAAAFD6/rYQKD09XWvWrFGXLl3+rkMCAAAAAAAAAACUWxY/E6gwR44c0ZIlS7RixQpdvXr1dh8OAAAAAAAAAAAAuk0h0PXr1/Xpp5/q448/1p49eyRJjo6O6t27twYOHHg7DgkAAAAAAAAAAIAcSjUEioiI0JIlS/TFF18oOTlZRqNRktSlSxd99tlncnNzK83DAQAAAAAAAAAAIB8Wh0CXLl3SsmXL9PHHH+vUqVMyGo2qVauWnnnmGfXr108NGzZUjRo1CIAAAAAAAAAAAAD+RhaFQI899pjCwsKUkZEhV1dXDRgwQP369VNISEgplQcAAAAAAAAAAICSsCgE+uabb2RjY6NRo0Zp8uTJcnBwKK26AAAAAAAAAAAAYAEbS3auU6eOMjMzNWvWLD300EP6z3/+o0uXLpVWbQAAAAAAAAAAACghi0KgkydPasuWLerdu7dOnDih119/XTVr1tQjjzyiVatWKSUlpbTqBAAAAAAAAAAAQDFYdDs4SQoJCVFISIji4uK0cuVKLVmyRGFhYdq0aZNcXFxkMBgUHx9fGrUCAAAAAAAAAACgiCxaCZSTu7u7XnrpJe3du1f79+/Xiy++KFtbWxmNRq1Zs0Z169bVlClTFBMTU1qHBAAAAAAAAAAAQD5KLQTKqUmTJvrggw908eJFrVixQiEhIYqOjtbEiRN1zz333I5DAgAAAAAAAAAAIIfbEgJlc3BwUJ8+fbR582adOnVKb775pqpXr347DwkAAAAAAAAAAACVwjOBisrPz08DBw7UuXPn/q5DAgAAAAAAAAAAlFu3dSVQtrNnz+qFF15Qw4YN9cknn/wdhwQAAAAAAAAAACjXLA6BfvzxR7Vr105ubm6qVKmSunXrpuPHj0uSkpKSNGLECNWrV09LliyRt7e35s6da3HRAAAAAAAAAAAAKJhFt4Pbu3evHn74YaWlpZnaNm7cqD179mj79u16/PHH9csvv8jHx0djxozR4MGD5eDgYHHRAAAAAAAAAAAAKJhFK4HeffddpaWlafr06bp8+bIuX76sqVOn6uLFi2rbtq2OHTum8ePH6+TJkxo2bBgBEAAAAAAAAAAAwN/EopVAO3bsUPv27TVmzBhT29ixY/XDDz9o27ZtmjlzpkaMGGFxkQAAAAAAAAAAACgei1YCXb58WQ8++GCu9uy2/v37WzI8AAAAAAAAAAAASsiiECgjI0POzs652rPbKleubMnwAAAAAAAAAAAAKCGLQiAAAAAAAAAAAADcmSx6JpAkrVixQjt37jRrO3nypCSpa9euufobDAZ98803lh4WAAAAAAAAAAAABbA4BDp58qQp9LnV//73v1xtBoPB0kMCAAAAAAAAAACgEBaFQGfOnCmtOgAAAAAAAAAAAFCKLAqBfH19S6sOAAAAAAAAAAAAlCKbsi4AAAAAAAAAAAAApY8QCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVqhchUDx8fEaMWKEfH195eDgID8/P40aNUoJCQnFHissLEzBwcFydXWVm5ub2rVrp82bN+fqFxsbq48++kiPP/646tSpIwcHB3l5eemRRx5RWFhYaZwWAAAAAAAAAABALuUmBEpMTFRwcLDmzJmjBg0aaPjw4apfv75mzZql9u3bKyUlpchjrVixQl26dNGvv/6qAQMGqH///jp69Kg6duyotWvXmvVds2aNhgwZor1796pNmzYaMWKEHnnkEYWHh6tLly6aOXNmaZ8qAAAAAAAAAACA7Mq6gL/Lu+++qwMHDmjMmDF65513TO1vvPGGZsyYoTlz5mjs2LGFjnPt2jUNGzZMXl5e2rdvn2rUqCFJGjNmjB544AG9+OKL6ty5s1xdXSVJ9erV01dffaV//vOfsrG5mbmNHz9eDz30kN5880317dtXPj4+pXzGAAAAAAAAAACgPCsXK4GMRqMWL14sFxcXTZgwwWzbhAkT5OLiosWLFxdprDVr1ujPP//UsGHDTAGQJNWoUUMvv/yyrly5oi+//NLU3r59ez322GNmAZAk1a9fXz179lR6erp++uknC84OAAAAAAAAAAAgt3IRAkVFRenChQsKDAyUs7Oz2TZnZ2cFBgbq9OnTOnfuXKFjbdu2TZLUqVOnXNs6d+4sSQoPDy9SXfb29pIkO7tysyALAAAAAAAAAAD8TcpF+hAVFSVJ8vf3z3O7v7+/wsLCFBUVpZo1a5Z4rOy27D4FiY+P19q1a+Xo6Ki2bdsW2l+SWrVqlWf7kSNHVKtWLUVERBRpnNIUHx8vSWVybNxZmAuQmAfIwjxANuYCpLznQXx8vNzc3MqqJAAAAAAoN8rFSqC4uDhJkru7e57bs/8PaHa/ko5VnHGGDh2q33//XePGjVPlypUL7Q8AAAAAAAAAAFAcd9VKoJEjRyo1NbXI/V999dV8V/+UpbFjx2rVqlXq0qWLxo0bV+T9IiMj82zPXiEUFBRUKvUVR/Y3Osvi2LizMBcgMQ+QhXmAbMwFSHnPA1YBAQAAAMDf464KgRYuXKjExMQi9+/Ro4f8/f1Nq3byW6GTfYuK/FYK5ZRzrFtX8BRlnAkTJuidd95R+/bttW7dOtna2hZ+IgAAAAAAAAAAAMV0V4VACQkJJdqvsGf1FPbMoFvH2rNnj6KionKFQIWNM2HCBL399tsKCQnRxo0b5eTkVORzAAAAAAAAAAAAKI5y8Uwgf39/+fj4aMeOHblWEiUmJmrHjh2qXbu2atasWehYwcHBkqRNmzbl2hYWFmbWJ6fsACg4OFjffPONKlasWJJTAQAAAAAAAAAAKJJyEQIZDAY9//zzSkhI0JQpU8y2TZkyRQkJCXrhhRfM2pOSknTs2DGdPXvWrP3pp5+Wu7u75s2bp/Pnz5vaz58/rw8++EBeXl568sknzfZ566239Pbbb6tt27YEQAAAAAAAAAAA4G9xV90OzhKjR4/Whg0bNGPGDO3fv1/NmjXTvn37tGnTJrVo0UKvvfaaWf/du3erXbt2Cg4O1rZt20ztnp6e+uCDD9SvXz81a9ZMPXv2lCStXr1asbGxWr16tVxdXU39ly1bpilTpsjOzk4BAQGaOXNmrtpCQkIUEhJyO04bAAAAAAAAAACUU+UmBHJ2dlZ4eLgmTZqkL774Qlu3blX16tU1cuRITZw4sVjP53nmmWfk5eWladOmaenSpTIYDHrwwQc1fvx4Pfzww2Z9o6OjJUkZGRmaPXt2vmMSAgEAAAAAAAAAgNJUbkIgSXJ3d9ecOXM0Z86cQvuGhITIaDTmu71Lly7q0qVLoeNMmjRJkyZNKk6ZAAAAAAAAAAAAFisXzwQCAAAAAAAAAAAobwiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVogQCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVogQCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIXKVQgUHx+vESNGyNfXVw4ODvLz89OoUaOUkJBQ7LHCwsIUHBwsV1dXubm5qV27dtq8eXOR9l29erUMBoMMBoM+++yzYh8bAAAAAAAAAACgMOUmBEpMTFRwcLDmzJmjBg0aaPjw4apfv75mzZql9u3bKyUlpchjrVixQl26dNGvv/6qAQMGqH///jp69Kg6duyotWvXFrjvpUuX9O9//1vOzs6WnhIAAAAAAAAAAEC+yk0I9O677+rAgQMaM2aMwsLC9M477ygsLExjxozRzz//rDlz5hRpnGvXrmnYsGHy8vLSvn37NG/ePM2bN0/79u1T5cqV9eKLL+r69ev57j948GC5urpq6NChpXVqAAAAAAAAAAAAuZSLEMhoNGrx4sVycXHRhAkTzLZNmDBBLi4uWrx4cZHGWrNmjf78808NGzZMNWrUMLXXqFFDL7/8sq5cuaIvv/wyz32XLVumjRs3mmoBAAAAAAAAAAC4XcpFCBQVFaULFy4oMDAw123YnJ2dFRgYqNOnT+vcuXOFjrVt2zZJUqdOnXJt69y5syQpPDw817Zz587ptdde0+DBg9WhQ4cSnAUAAAAAAAAAAEDR2ZV1AX+HqKgoSZK/v3+e2/39/RUWFqaoqCjVrFmzxGNlt2X3yWY0GjVo0CC5ublp1qxZxa4/W6tWrfJsP3LkiGrVqqWIiIgSj11S8fHxklQmx8adhbkAiXmALMwDZGMuQMp7HsTHx8vNza2sSgIAAACAcqNchEBxcXGSJHd39zy3Z/8f0Ox+JR0rv3EWLFig77//Xv/73//k6upa9MIBAAAAAAAAAABK6K4KgUaOHKnU1NQi93/11VfzXf3zdzl9+rRGjRql5557znS7uJKKjIzMsz17hVBQUJBF45dE9jc6y+LYuLMwFyAxD5CFeYBszAVIec8DVgEBAAAAwN/jrgqBFi5cqMTExCL379Gjh/z9/U2rdvJb6ZN9i4r8VgrllHOsypUrFzrOoEGD5OHhof/85z9FrhsAAAAAAAAAAMBSNmVdQHEkJCTIaDQW+Z+QkBBJ+T+rJ1thzwzKqaCx8hpn//79+u233+Th4SGDwWD65//+7/8kSb1795bBYNB7771XtIsAAAAAAAAAAABQBHfVSqCS8vf3l4+Pj3bs2KHExEQ5OzubtiUmJmrHjh2qXbu2atasWehYwcHBWrVqlTZt2qSWLVuabQsLCzP1yfbss88qKSkp1zj79u3T/v371a5dO9WpU0eNGjUq6ekBAAAAAAAAAADkUi5CIIPBoOeff16TJ0/WlClT9M4775i2TZkyRQkJCRo3bpzZPklJSTp79qwqVqyoWrVqmdqffvppjRkzRvPmzdNzzz2nGjVqSJLOnz+vDz74QF5eXnryySdN/efOnZtnTZMmTdL+/fs1ePBg9erVqzRPFwAAAAAAAAAAoHyEQJI0evRobdiwQTNmzND+/fvVrFkz7du3T5s2bVKLFi302muvmfXfvXu32rVrp+DgYG3bts3U7unpqQ8++ED9+vVTs2bN1LNnT0nS6tWrFRsbq9WrV8vV1fVvPDMAAAAAAAAAAIDc7qpnAlnC2dlZ4eHheu211/Trr79q9uzZOnbsmEaOHKnNmzfLycmpyGM988wz+u6779SgQQMtXbpUy5Yt07333qtNmzbpX//61208CwAAAAAAAAAAgKIpNyuBJMnd3V1z5szRnDlzCu0bEhIio9GY7/YuXbqoS5cuJa5l0qRJmjRpUon3BwAAAAAAAAAAKEi5WQkEAAAAAAAAAABQnhACAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVogQCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCFCIAAAAAAAAAAAACtECAQAAAAAAAAAAGCFCIEAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgQAAAAAAAAAAAKwQIRAAAAAAAAAAAIAVIgQCAAAAAAAAAACwQoRAAAAAAAAAAAAAVogQCAAAAAAAAAAAwAoRAgEAAAAAAAAAAFghQiAAAAAAAAAAAAArRAgEAAAAAAAAAABghQiBAAAAAAAAAAAArBAhEAAAAAAAAAAAgBUiBAIAAAAAAAAAALBChEAAAAAAAAAAAABWiBAIAAAAAAAAAADAChECAQAAAAAAAAAAWCG7si4Aljt9+rSSkpLUqlWrv/3Y8fHxkiQ3N7e//di4szAXIDEPkIV5gGzMBUh5z4MjR46oYsWKZVUSAAAAAJQbrASyAp6enmX2f6LPnj2rs2fPlsmxcWdhLkBiHiAL8wDZmAuQ8p4HFStWlKenZxlVBAAAAADlh8FoNBrLugjcvbJXH0VGRpZxJShrzAVIzANkYR4gG3MBEvMAAAAAAMoSK4EAAAAAAAAAAACsECEQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKGYxGo7GsiwAAAAAAAAAAAEDpYiUQAAAAAAAAAACAFSIEAgAAAAAAAAAAsEKEQAAAAAAAAAAAAFaIEAgAAAAAAAAAAMAKEQIBAAAAAAAAAABYIUIgAAAAAAAAAAAAK0QIBAAAAAAAAAAAYIUIgVAiP//8s7p27SoPDw85OzurZcuW+vzzz8u6LFjIz89PBoMhz39CQkJy9U9NTdXkyZPl7+8vR0dH+fj4aPDgwbp8+XK+x1i5cqUCAgLk7OwsT09PPfroo9q3b99tPCvkZ8WKFRoyZIiaN28uBwcHGQwGLVu2LN/+8fHxGjFihHx9feXg4CA/Pz+NGjVKCQkJefbPzMzUvHnz1LhxYzk5Ocnb21u9e/fW6dOn8z1GWFiYgoOD5erqKjc3N7Vr106bN2+29FRRgOLMg0mTJuX7GWEwGBQdHZ3nfsV9X0+cOKGnn35aXl5ecnJyUpMmTTR//nwZjcZSOGPk5bffftN7772nTp06qVatWqpQoYKqVaum7t27a9euXXnuw2eC9SnuPOAzAQAAAADufHZlXQDuPlu3blXnzp3l6OioXr16ydXVVV988YV69uypc+fOaeTIkWVdIizg7u6u1157LVe7n5+f2evMzEx169ZNYWFhatmypbp3766oqCgtXrxYmzdv1s6dO+Xt7W22z9SpUzV+/Hj5+vpq6NChun79uj777DO1bt1amzdvVmBg4G08M9xq/PjxiomJkZeXl6pXr66YmJh8+yYmJio4OFgHDhxQp06d1Lt3b+3fv1+zZs1SeHi4IiIi5OjoaLbPkCFDtHjxYt1333165ZVXdOHCBX3++efatGmTdu7cKX9/f7P+K1asUL9+/eTt7a0BAwZIklavXq2OHTvq888/V48ePUr9GqB48yBb//79c30mSJKHh0eutuK+r7/88otat26t5ORkPf300/Lx8dE333yjl156Sb/88ovmzZtXktNEIebNm6cZM2aobt266tSpk7y9vRUVFaX169dr/fr1+vTTT9WzZ09Tfz4TrFNx50E2PhMAAAAA4A5mBIohPT3dWLduXaODg4Nx//79pvY///zTWK9ePWOFChWM0dHRZVcgLOLr62v09fUtUt+PP/7YKMnYu3dvY2Zmpql9/vz5RknGwYMHm/U/ceKE0c7OzlivXj3jn3/+aWrfv3+/0cHBwdiwYUPjjRs3SuU8UDTff/+96ed1+vTpRknGpUuX5tn3rbfeMkoyjhkzxqx9zJgxRknGadOmmbVv2bLFKMkYFBRkTE1NNbV/++23RknGTp06mfW/evWq0cPDw+jl5WU8d+6cqf3cuXNGLy8vo5eXlzE+Pt6S00U+ijMPJk6caJRk3Lp1a5HGLsn7GhQUZJRk/Pbbb01tqampxrZt2xolGX/66afinSCK5IsvvjBu27YtV3tERITR3t7e6OnpaUxJSTG185lgnYo7D/hMAAAAAIA7H7eDQ7Fs2bJFp06dUp8+fdS0aVNTu7u7u8aNG6e0tDSFhoaWXYH42yxatEiSNH36dBkMBlP7kCFDVKdOHa1cuVLJycmm9qVLlyojI0Nvvvmm3N3dTe1NmzZV79699euvv+rHH3/8+04Aevjhh+Xr61toP6PRqMWLF8vFxUUTJkww2zZhwgS5uLho8eLFZu3Z82PKlCmqUKGCqf2RRx5RSEiINm3apLNnz5ra16xZoz///FPDhg1TjRo1TO01atTQyy+/rCtXrujLL78s0XmiYEWdByVR3Pf1xIkTioiIULt27fTII4+Y2itUqKApU6ZIujm3ULqeeuopBQcH52pv27at2rVrp2vXrunw4cOS+EywZsWZByXBZwIAAAAA/P0IgVAs27ZtkyR16tQp17bOnTtLksLDw//OklDKUlNTtWzZMk2bNk0ffPBBns8ASElJ0a5du1S/fv1cfzw2GAzq2LGjEhMTtWfPHlM7c+fuFRUVpQsXLigwMFDOzs5m25ydnRUYGKjTp0/r3LlzpvZt27aZtt0qr/eb+XF3iYiI0IwZMzRz5kytX78+32fAFPd9Lah/mzZt5OzszDwoA/b29pIkO7usuwjzmVA+3ToPcuIzAQAAAADuXDwTCMUSFRUlSbnu2y9J1apVk4uLi6kP7k6XLl3SwIEDzdpatGihVatWqW7dupKkU6dOKTMzM895IN2cH1FRUWrbtq3p311cXFStWrUC++POU9DPfXZ7WFiYoqKiVLNmTSUmJurixYtq1KiRbG1t8+yfc9zCjsH8uPNMnDjR7LWHh4fef/99Pfvss2btxX1fC+pva2ur2rVr65dfflFGRkaef4hG6Tt79qx++OEHVa9eXY0bN5bEZ0J5lNc8yInPBAAAAAC4c7ESCMUSFxcnSWa388rJzc3N1Ad3n4EDB2rz5s36/ffflZiYqP3796tfv376+eef1aFDB12/fl1S0eZBzn7Z/16c/rhzFPf9Lun8yG8f5sedo0mTJvr44491+vRpJScn68yZM5o3b54MBoMGDBigr776yqx/cd/XosydzMxM02cRbq/09HT169dPqampmjFjhinA4TOhfMlvHkh8JgAAAADA3YCvzAEwufWbvE2bNtXy5cslSZ988okWLVqkESNGlEVpAO4ATz75pNlrPz8/vfzyy2rYsKE6duyo8ePH6/HHHy+j6lCaMjMzNWDAAEVEROiFF15Qv379yroklIHC5gGfCQAAAABw52MlEIol+5uY+X37Nj4+Pt9va+LuNWTIEEnSjh07JBVtHuTsl/3vxemPO0dx3++Szo/89mF+3Pk6dOigunXr6vDhw6b3Syr++1qUuWMwGOTq6lpqtSO3zMxMPffcc/r000/1zDPPaMGCBWbb+UwoHwqbBwXhMwEAAAAA7hyEQCiWgu7Df+nSJSUkJOT7jADcvby8vCRJiYmJkqQ6derIxsYm3+cx5HUPf39/fyUkJOjSpUtF6o87R2HP37j1/XN2dlb16tV15swZ3bhxo9D+hR2D+XF3yP6cSEpKMrUV930tqP+NGzd05swZ1a5dm2d/3EaZmZkaOHCgQkND1bt3by1btkw2Nua/LvKZYP2KMg8Kw2cCAAAAANwZCIFQLMHBwZKkTZs25doWFhZm1gfWY9euXZKybvMiSU5OTgoICNDx48cVExNj1tdoNOr777+Xs7Ozmjdvbmpn7ty9/P395ePjox07dpiCwGyJiYnasWOHateurZo1a5rag4ODTdtulf1+BwUFmfWXmB93q8TERB09elTOzs6mP/xKxX9fC+r/448/KjExkXlwG2X/4X/58uXq2bOnPvnkE7Pnv2TjM8G6FXUeFITPBAAAAAC4gxiBYkhPTzfWqVPH6ODgYNy/f7+p/c8//zTWq1fPWKFCBeOZM2fKrL7/b+/+Y6qu/jiOvy5dhcvvVCbqFKZAMWaZgP24gv5hWMamTI2ozLkwK1q6YVqbKRZaFEnOXGsxhGAhf2CbBk6JyCYLNpU5p6CzwLQZy0hILwrB+f7RYN1AUcT4+vH52O4/55zPOe/PvZ997h+vez4Xg1dfX28uX77cb3twcLCRZA4cONDbnpeXZySZlJQU093d3dv+6aefGknmpZdecpvn5MmTxm63m4iICHPx4sXe9rq6OuPp6WkiIyNNV1fXbTgz3Ij33nvPSDI7duzot3/9+vVGklm7dq1b+9q1a40ks3nzZrf2b7/91kgy8fHx5urVq73t5eXlRpJJSEhwG9/S0mICAgLMmDFjzNmzZ3vbz549a8aMGWPGjBlj2trabvEsMZDrXQdtbW3m5MmTfdpdLpdJSUkxksyyZcvc+gbzucbHxxtJpry8vLft6tWrJi4uzkgy1dXVt3iW6E9XV5dZunSpkWQWL15sOjs7rzuee4I13cx1wD0BAAAAAO4MNmOM+U9TJ9zxqqqqNHfuXHl5eemZZ56Rn5+fSktLdebMGWVnZys9PX24S8QgZGRkaMuWLYqPj1dISIh8fHx06tQplZeXq7OzU2+99ZY2b97cO767u1vz5s3Tvn379Mgjj2jWrFk6ffq0du3apdDQUNXW1iooKMhtjU2bNmndunUKCQnRwoUL9eeff2rnzp3q6OhQZWWlnE7nf33ad7Xc3FwdPHhQknTs2DEdOXJETqdTYWFhkqSZM2cqNTVV0t+/6nY6nTp69KgSEhI0ffp0HTlyRPv371dsbKwOHDggh8PhNv/y5cuVm5urqKgoPfXUUzp//rxKSkrk6+urH374QREREW7ji4qKtGTJEgUFBSk5OVmSVFJSogsXLqikpESLFy++3W/JXelGr4OmpiZNnjxZsbGxioyMVHBwsJqbm/XNN9/o3Llzmjp1qqqqqjR69Gi3+W/2cz1+/LicTqfa29uVnJyscePGqaysTMePH9drr72mbdu2/Qfvyt0nIyNDGzdulK+vr1auXNnv47UWLFigadOmSeKeYFU3cx1wTwAAAACAO8Rwp1C4M9XW1ponnnjC+Pv7G4fDYWbMmGF27tw53GXhFnz33Xfm6aefNuHh4cbf39/Y7XYTHBxs5s+fb/bt29fvMVeuXDEZGRlmypQpZuTIkSY4ONikpqaaX3/99ZrrFBUVmZiYGONwOExAQICZN2+eOXz48O06LVxHz6+9r/VaunSp2/iLFy+aVatWmYkTJ5oRI0aYSZMmmfT09Gv+Gr+rq8ts3brVREVFGU9PTzN69GiTnJxsTp8+fc2a9u7da+Li4oyPj4/x9fU1s2bNMhUVFUN52viXG70OWltbTVpamomNjTVBQUHGbrcbPz8/M2PGDPPBBx8Yl8t1zTVu9nNtaGgwixYtMqNGjTKenp5m6tSpZvv27W67DjG0BroO1M8OMe4J1nMz1wH3BAAAAAC4M7ATCAAAAAAAAAAAwII8hrsAAAAAAAAAAAAADD1CIAAAAAAAAAAAAAsiBAIAAAAAAAAAALAgQiAAAAAAAAAAAAALIgQCAAAAAAAAAACwIEIgAAAAAAAAAAAACyIEAgAAAAAAAAAAsCBCIAAAAAAAAAAAAAsiBAIAAAAAAAAAALAgQiAAAAAAAAAAAAALIgQCAAAAAAAAAACwIEIgAMAdZ/bs2bLZbMNdxg0zxig6OloJCQmDOn7dunXy8/NTc3PzEFcGAAAAAAAAKyMEAgAMK5vNdlOvO9EXX3yhI0eO6J133hnU8enp6fLw8NCGDRuGuDIAAAAAAABYmc0YY4a7CADA3SsjI6NP28cff6zW1tZ+Q4+MjAz9/PPPcrlcuv/++/+DCm9Nd3e3pkyZookTJ+r7778f9Dzp6enaunWrfvzxR4WEhAxhhQAAAAAAALAqQiAAwP+d0NBQnTlzRlb4iiorK1NiYqI+//xzpaamDnqeuro6TZ8+XevWrdO77747hBUCAAAAAADAqngcHADgjtPffwLl5+fLZrMpPz9fe/bs0cMPPyxvb29NmDBBb7/9trq7uyVJBQUFevDBB+VwODRp0iR9+OGH/a5hjFFeXp6cTqf8/f3l7e2tmJgY5eXl3VStO3bskM1m08KFC/v0nT9/XitXrlR4eLgcDocCAwMVGRmpl19+Wa2trW5jH3roIYWFhSk/P/+m1gcAAAAAAMDdyz7cBQAAMJS++uor7d+/XwsWLJDT6VRZWZkyMzNljFFAQIAyMzM1f/58zZ49W6WlpVqzZo3Gjh2rF154oXcOY4yee+45FRcXKzw8XM8++6xGjhypiooKvfjiizpx4oSys7MHrMUYo6qqKt13332699573fpcLpecTqeampqUkJCgpKQkdXR0qLGxUYWFhVq9erUCAgLcjnn00UdVWFioU6dOKSIiYmjeMAAAAAAAAFgWIRAAwFL27t2r6upqxcbGSpI2btyosLAw5eTkyN/fX3V1dZo8ebIkafXq1QoLC1N2drZbCJSbm6vi4mItW7ZMn332mUaMGCFJ6ujo0KJFi/TRRx8pJSVF0dHR162lvr5eLS0tevLJJ/v0VVZWqrGxUatWrVJOTo5b36VLl3rX/KeYmBgVFhaqurqaEAgAAAAAAAAD4nFwAABLef7553sDIEny8/NTYmKiXC6XXnnlld4ASJImTpyomTNn6sSJE/rrr7962z/55BP5+Pho+/btbmHMyJEjtWnTJklScXHxgLWcO3dOkjR27NhrjnE4HH3afH195enp2ae9Z56eeQEAAAAAAIDrYScQAMBSpk2b1qdt3Lhx1+3r6upSc3OzJkyYIJfLpWPHjmn8+PHKysrqM76zs1OS1NDQMGAtv//+uyQpMDCwT198fLzGjRun999/X0ePHlViYqJmzZqlyMjIPv931GPUqFGSpAsXLgy4NgAAAAAAAEAIBACwFH9//z5tdrt9wL6ecOePP/6QMUa//PKLNm7ceM11Ll++PGAtPbt8rly50qcvICBANTU1Wr9+vfbs2aPy8nJJf+9OevPNN/Xqq6/2Oaa9vV2S5O3tPeDaAAAAAAAAAI+DAwDgH3qCoujoaBljrvmqqqoacK6goCBJUktLS7/9kyZNUn5+vn777TfV1dUpKytL3d3dSktL6/dxcz3z9MwLAAAAAAAAXA8hEAAA/+Dn56fIyEjV19fr4sWLtzRXVFSUPDw8dPLkyeuO8/Dw0LRp07RmzZre8Gf37t19xvXMM3Xq1FuqCwAAAAAAAHcHQiAAAP7l9ddfl8vl0vLly/t97FtjY6OampoGnCcwMFAPPPCADh06pO7ubre+48ePq7m5uc8xPW1eXl59+mpra2W32/XYY4/d4JkAAAAAAADgbsZ/AgEA8C8rVqxQTU2NCgoKVF1drTlz5mj8+PFqbm5WQ0ODamtr9eWXXyo0NHTAuZKSkrRhwwbV1NS4hTcVFRV644035HQ6FRERodGjR+unn37S7t275eXlpbS0NLd5Ll26pJqaGj3++OPy8fEZ6lMGAAAAAACABbETCACAf7HZbMrPz1dJSYmioqL09ddfa8uWLaqoqJCXl5eys7M1Z86cG5orNTVVdrtdRUVFbu1z585VWlqa2tratGvXLuXk5OjQoUNKTk7W4cOHFRMT4za+tLRU7e3tWrFixZCdJwAAAAAAAKzNZowxw10EAABWtmTJEpWVlenMmTPy8/Mb1BxxcXFqbm5WfX297rnnniGuEAAAAAAAAFbETiAAAG6zzMxMtbe3a9u2bYM6vrKyUgcPHlRWVhYBEAAAAAAAAG4YIRAAALdZSEiICgoKBr0LqLW1VdnZ2UpKShriygAAAAAAAGBlPA4OAAAAAAAAAADAgtgJBAAAAAAAAAAAYEGEQAAAAAAAAAAAABZECAQAAAAAAAAAAGBBhEAAAAAAAAAAAAAWRAgEAAAAAAAAAABgQYRAAAAAAAAAAAAAFkQIBAAAAAAAAAAAYEGEQAAAAAAAAAAAABZECAQAAAAAAAAAAGBBhEAAAAAAAAAAAAAWRAgEAAAAAAAAAABgQYRAAAAAAAAAAAAAFkQIBAAAAAAAAAAAYEH/A1FHjfDc8qrxAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -408,7 +418,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABoEAAARRCAYAAADpZCsvAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAViAAAFYgBxNdAoAABAABJREFUeJzs3XdUFFcbBvBnl7J0VMCCSNEgWLBiJQKxJ7bYoliiWDBqLNHYsIA1YjQaNSpqIhaiJlFjSYzYgGiwYEnUiKKxRiwggkiH+f7g2wnrLrDAwlKe3zmcMDN37rwzs5h59869VyIIggAiIiIiIiIiIiIiIiKqUKTaDoCIiIiIiIiIiIiIiIg0j41AREREREREREREREREFRAbgYiIiIiIiIiIiIiIiCogNgIRERERERERERERERFVQGwEIiIiIiIiIiIiIiIiqoDYCERERERERERERERERFQBsRGIiIiIiIiIiIiIiIioAmIjEBERERERERERERERUQXERiAiIiIiIiIiIiIiIqIKiI1AREREREREREREREREFRAbgYiIiIiIiIiIiIiIiCogNgIRERERERERERERERFVQGwEIiIiIiIiIiIiIiIiqoDYCERERFrj7+8PiUSCkSNHajsUIiIiIiKiUufp6QmJRIKgoCBth1IsQUFBkEgk8PT01HYoRET0FjYCEREVUmxsLPz9/dGmTRtUqVIFenp6qF69Oho3boxBgwbhm2++wcOHD7UdZqUVFBQEf39/XL16VduhUCXw999/Y+PGjRg9ejSaNm0KPT09NmwSERFRmXT37l3MmTMHbdq0QfXq1aGnpwdzc3M0bdoU48ePR3h4uNI+8pe23v4xNTWFi4sLpk2bhgcPHijtJ2/YUOeZSF5neW8Eqch+/vln+Pv7IzQ0VNuhUDkUGRmJNWvWYNiwYXB2doZUKoVEIoG/v7+2QyOqNHS1HQARUXly7tw59OzZE3FxcQCAmjVrol69esjKysKdO3dw48YN/PDDD4iPj8e8efO0HG3lFBQUhLCwMNjb26NZs2baDocqOF9fXxw8eFDbYRARERHlKSsrC7Nnz8aaNWuQmZkJAHBwcIC9vT1ev36N27dv46+//sKmTZvg7u6OsLAwpTrMzMzg4uICABAEAY8ePcKNGzdw/fp1bNmyBYcOHcJ7771XqudVUdja2sLJyQnm5ubaDiVPP//8M7Zv3w4Aefb0MTc3h5OTE2xtbUsxMioPxowZgz///FPbYRBVamwEIiJSU1JSEvr164e4uDi0adMG69atQ6tWrcTt2dnZiIyMxJ49e1C1alUtRkpEpcXa2hoffvghXF1d4erqiu3bt2P37t3aDouIiIgIQE6DzcCBA3HgwAHo6+tj/vz5mDBhAmrWrCmWSU5OxtGjR/HFF1+o7A0EAM2bN1fqBXL16lV4eXkhKioKQ4YMwd27d2FkZFSSp1Mh7dixQ9shaETfvn3Rt29fbYdBZVDdunXh7OyMli1bwtXVFQsXLlTZ2ExEJYeNQEREavr1118RExMDHR0dHDhwALVq1VLYLpVK0bp1a7Ru3VpLERJRaduwYYPC8oEDB7QUCREREZGyVatW4cCBA9DT08PRo0fRsWNHpTJGRkbo378/+vXrh6VLl6pdd7NmzRAUFIS2bdvi6dOnOHHiBHr37q3J8ImoAti/f7/CckBAgJYiIaq8OCcQEZGa7t69CwCwtLRUagBSV0pKCtasWQM3NzdUrVoVMpkMDg4OGDduHO7du6dyn9wThcbExGDChAlwcHCATCaDp6cnfv/9d0gkEpibmyM1NTXPYwcGBkIikaBx48alEldxXblyBQsWLICbmxtsbGygr68PCwsLdOzYETt27IAgCArlQ0NDIZFIxDeKvL29FcYtVxXT5cuXMWLECNjb28PAwABVqlSBu7s7goKCkJ2drVRefgx7e3sAwKFDh+Dp6YkqVarA2NgYbdq0wZ49e/I9r5iYGMyePRvNmjWDmZkZjIyM4OjoiMGDB+Pw4cNiuR49ekAikWDu3Ll51pWdnQ17e3tIJBL8+OOP+R63LEhKSsKuXbvg5eWFBg0awNzcHIaGhnB0dMSECRPy/Ky9fd2DgoLQpk0bmJqawszMDB07dsRvv/2mct/cE9RmZWXhq6++QpMmTWBsbIxq1aqhV69euHDhQkmdMhEREZHWvHnzBl988QUAYObMmSobgHKTSCSFHtK6devWMDExAQDcunWraIEW0Z07d+Dj44N33nkHBgYGMDIygq2tLd577z0sXboUb968Ubnf/v370bNnT9SoUQP6+vqoUaMGPvzwwzx7QcnnRRo5ciTS0tKwbNkyNGnSBCYmJpBIJEhOToaZmRkkEgn++OOPPOO9desWJBIJdHV18fTpU3F97rxKlVevXmHJkiVo06YNqlatCgMDAzg4OKBPnz559iKKiYnBzJkz0bhxY5iYmMDY2BhNmjTBwoUL8fr16zxjfNv9+/chkUjEoeAWLlyokGPJn88Bxefut8lzltDQUNy6dQteXl6oWbMmjIyM0LRpU7F+AEhMTISvry8cHR1hYGCAOnXqYMaMGUhOTs4zzqLks2VVbGwstmzZgg8//BD169eHsbExjI2N0bhxY8ycORPPnz9XuV9x8p7cn/HU1FQsWLAATk5OMDQ0RPXq1eHl5VXqf99EpGECERGpZf369QIAAYBw+/btQu//4MEDoWHDhgIAQSqVCra2tkLTpk0FIyMjAYBgamoqnD59Wmk/Dw8PAYAwd+5cwdLSUtDR0RFcXFyEZs2aCV26dBGys7MFBwcHAYCwe/fuPI/fvn17AYAQEBBQKnGpw8/PTwAgjBgxQmlby5YtBQCCubm54OzsLLi6ugrW1tbiPfDy8lIof/nyZcHNzU0wMzMTAAiOjo6Cm5ub+PPpp58qlF+xYoUgkUjEc2zatKlgY2Mj1v/hhx8KmZmZCvucPn1aACDY2dkJCxcuFAAINWrUEFq2bClUqVJF3HfdunUqz/fo0aNifFKpVGjQoIHQokULoVq1amK9cgcPHhQACNbW1kpxyP32228CAMHKykpIS0tT44pr1+HDhwUAgq6urlC7dm2hZcuWgrOzs2BoaCje6/Pnzyvtl/u6T5s2Tbzurq6uQtWqVcXrvmrVKqV9t23bJgAQPDw8hP79+wsABFtbW8HV1VUwMTERAAg6OjrCDz/8oJFzHDduXJ6faSIiIqLS9MMPP4jPnc+ePStSHfLndQ8PD5Xbs7OzBWNjYwGAsGLFCnG9PFdQ55lI/iy3bds2teO6fPmyYGpqKgAQDAwMhIYNGwotW7YUatasKUilUgGAEB0drbBPamqq+Dwof4Zu3ry5+CwukUiEL7/8Ms9rMGjQIKFt27YCAKFevXqCq6urYGZmJgiCIIwcOVIAIIwbNy7PmH19fQUAwvvvv6+wXn6tVJ1/ZGSkUKtWLTHmd955R3B1dRWqV68urnvbiRMnBHNzcwGAoK+vLzg5OQlOTk6Cjo6OAEBwcnIS/v33X3UusxATEyO4ubmJx6tTp45CjjVgwACxbO7n7rfZ2dkJAISVK1cKJiYmgomJidCyZUuhRo0aCs/ysbGxQsOGDQUdHR2hSZMmQt26dcWc7YMPPlAZY1Hz2bJq3bp14r2T5y2Ojo6Cnp6emB/+888/SvsVJ++Rf8a9vLyEdu3aiZ+1Fi1aCDKZTAAgGBsbC+Hh4Ro5x27dugkABD8/P43UR0QFYyMQEZGa7t69Kz4429vbC5s2bRIePnyo1r5paWlC06ZNBQBCnz59hPv374vbUlNThVmzZgkABEtLSyEuLk5hX3lSoKOjI3Tu3Fl48uSJuC05OVkQBEFYsGCByoRC7s6dO+JDce4H/pKOqyD5NQIFBwcL165dU1p/4cIFwdHRMc9Gr/ySKLk9e/YIAIQqVaoI27dvF7KyshTqf+eddwQAwqJFixT2kzdG6OnpCYaGhkJwcLC4LSMjQ5gwYYIAQDAxMRESExMV9r1x44aYiAwYMEAp8bpx44awfPlycTkzM1OoXbu2AEA4dOiQyvMYMGCAAED4/PPP8zzXsiQqKkr46aefhNevXyusT0xMFObPny8AEBo0aCBkZ2crbJdfd11dXUFHR0fYtGmTWCYjI0PcVyqVChEREQr7ypMh+T07cOCAuO3NmzfC6NGjxaTm3r17xT5HNgIRERFRWTF58mQBgODi4lLkOgpqBDp37pz4Jf7PP/8sri/pRqA+ffoIAIRhw4YJCQkJCtueP38urF+/Xqnha/z48QIAoVGjRsKZM2cUtu3atUswMjISJBKJEBoaqrBNfg10dHQEW1tb4eLFi+I2ed5z6tQpAYBQtWpVITU1VSne7OxssSFkz549Ctvyyl+ePn0qNpJ4enoqvYh4//59Yf78+QrroqOjxcaxuXPnKjx3P3nyRHj//fcFAELHjh2VYszPiBEjCvzSXp1GID09PeGTTz4R3rx5I26T57ImJiZCt27dhPbt2wuPHj0Stx89elTQ1dUVAAjHjx9XqLc4+WxZdf78eeHXX39V+hy9ePFCGDt2rABA6Natm9J+xcl75J9xPT09wdLSUuHvIy4uTujRo4cAQKhVq5bw6tWrYp8jG4GISh8bgYiICmHt2rXim2Xynxo1agjvv/++sGzZsjx7CG3ZskUAILi6ugrp6ekqy/Tq1UtlTx15UmBlZZXnA5e8kUdHR0d4+vSp0nb5Q13Xrl1LNa6C5NcIlJ/jx48LAITu3bsrbSuoESgjI0NMQvbv36+yTGRkpCCRSIQqVaoo9LCRN0YAEBYvXqy0X0pKimBlZSUAEA4ePKiwrV+/fmJSlLvRKT/y69O7d2+lbc+fPxf09fUFAEJUVJRa9ZV1bm5uAgDh3LlzCutzX/exY8eq3LdLly4CAKFXr14K6+XJEABh6dKlSvtlZWUJTk5OAgBh0qRJxT4HNgIRERFRWSF//uzTp0+R68ivEejKlSuCs7OzAECoWbOmwhf7Jd0IJH9+u3r1qlrlo6KiBKlUKpiZmSk0FOS2atUqlS/Wya8BAOHs2bMq983OzhZsbW0FAMKPP/6otF3+PGtubi6kpKQobMsrf5H3gHdyclL7JbuhQ4cKAITJkyer3J6YmCi+aKaqB35eNNUI5OLiopQLZWRkiCM+GBgYqHzRUv7y29SpUxXWFyefLa9q164tSCQSISYmRmF9cfKe3J/x3C86yr1+/VocgUHV6AuFxUYgotLHOYGIiAph0qRJuHDhAoYMGQJTU1MAwLNnz3D06FH4+vrCyckJ3t7eSuNP7927FwAwevRo6Onpqay7f//+AICTJ0+q3D5gwACYm5ur3FavXj20b98eWVlZCA4OVtq+a9cuAMCIESNKNa7ievDgAQICAjBo0CB06tQJ7777Lt59913MmTMHQM68QYV1/vx5PHjwADVr1kTfvn1VlmnZsiXs7Ozw6tUrXLp0SWWZCRMmKK0zMDBA8+bNAeSMUS6XmpqKX375BQDg6+sLqVS9//2OGTMGOjo6+PXXXxETE6OwbceOHUhPT0eHDh3g5OSkVn1lQVZWFg4ePIhJkyahR48ecHd3F+9rdHQ0gPzv69SpU/Ndf/z4cWRkZCht19XVxcSJE5XWS6VSTJ48GQDEe0RERERUESQmJgKAOGdPcVy5ckV8ZnNzc4OdnR1atGiBqKgomJiYIDg4GEZGRsU+jrrs7OwAAHv27FE5l+fbfvrpJ2RnZ+P9998X932bPO8JDQ1FVlaW0vYGDRqgffv2KveVSCQYNmwYAKicp2fnzp0AgI8++ggGBgYFxgsA+/btAwBMmzYNhoaGBZbPyMjAgQMHAADjx49XWcbU1BRdunQBkHd+V5JGjx6tlAvp6uqiSZMmAIDu3bujTp06Svu5uroCUMyxAM3ks2VRamoqvv/+e4wbNw7du3dHhw4dxL+/169fQxAEXL16VeW+xcl7atasiUGDBimtNzExwZgxY/Ldl4jKNl1tB0BEVN60bNkSwcHByMrKwvXr13H58mWcPn0av/zyC16+fImgoCC8ePECR44cEff5888/AQAbNmwQG2Te9urVKwDAo0ePVG5v1KhRvnF9/PHH+OOPP7Bjxw5MmzZNXH/27FncvXsXpqamSo0epRFXUa1duxYzZsxAenp6nmXi4uIKXa/8nFNSUvDuu+8WWPejR4/Qrl07hW2WlpaoVq2ayv1q1KgBAAoTrkZHRyMtLQ0A8kwcVbGxscEHH3yAw4cPY/v27Zg9e7a4bevWrQCAsWPHql3flStXMGnSJLXLq6NWrVr48ccf1SobExODHj16FNh4l9d91dXVzbPBS/45TE1Nxb1791C/fn2F7XXq1MmzsVK+7z///IP09HTo6+vnGx8RERFReWBmZgYASEpKKnZdiYmJOHv2rLhsbGyMRo0aoXPnzpg6dWqeDSslZcaMGThx4gSWL1+OHTt2oFu3bmjXrh06dOgAZ2dnpfLyHCAiIiLPHEAQBAA5eUJcXByqV6+usF2dfGzZsmX47bff8OLFC1hZWYn1/fTTT2IZdbx+/RoPHjwAoH7+EB0djeTkZAAQv7BXRV5vXvldSXrnnXdUrpdf64K2v/1Z1kQ++7ajR49i6dKlapVVV/PmzbFu3Tq1yt68eRM9evTAvXv38i2XV85UnLynQYMG0NHRyXffmzdv5hsXEZVNbAQiIioiHR0dNG3aFE2bNoW3tzcSEhLg7e2NAwcO4JdffsG5c+fQtm1bAEB8fDwA4Nq1awXWK39wf5uxsXG++w0aNAhTpkzBn3/+iWvXrsHFxQXAf2+dDRw4UOkNstKIqygiIiIwZcoUAMDEiRMxYsQIODo6wtTUFDo6Ovjnn39Qr149ZGZmFrpu+TknJCQoJLJ5UXXe+Z2z/M02eRIJ/PcWpo6OTqHfxBw3bhwOHz6M7777TmwEOnPmDKKiolClShUMGDBA7brUPefCKEzC7+3tjStXrqBu3bpYunQp2rdvjxo1akAmkwHISYp37typsicPkNP4lldSIm98AxQb4FRtL2hfCwsLfPfdd/juu++Uyn7wwQfw9fXNsy4iIiKissLGxgZAzhe+xeXh4YHQ0FC1y8uf2VT1qMkt9/O8rq76X1F17twZp06dwtKlSxEaGopt27Zh27ZtAICGDRti0aJFYg8Q4L8c4OHDh3j48GGB9Rc2BwAAJycntGnTBufPn8fu3bvFXhcHDx5EYmIi6tWrl+9LaLnJ8wcAqFKlilr7yM8RQJHznJKW1zWUSCRqbc+dYwGayWff9uzZM43nTOp+trOzs9G/f3/cu3cPzZs3x8KFC9GyZUtYWlqKDTbu7u74/fff88yZCpv3FHbf3LnWsmXL8OuvvyqVHTVqFEaNGpVnXURU+jgcHBGRhpibm2Pbtm1iI8C5c+fEbfIv/k+dOgUhZz62PH/u379fpONXqVIFvXv3BgBs374dAJCWloYffvgBgOq3zkojrqKQxz9gwACsX78erVq1QpUqVcRksig9gOTk5+zu7l7gOQuCgJEjRxb7fORvYWZlZRX6Tcz3338ftra2iI6OFhNveS+gYcOGqTU0hJynp6da51yYH3U/F0+fPsWxY8cAAIcOHcLgwYNha2srNgABBd/X2NjYPL9IePbsmfi7fKjGvLars+/Dhw9x9uxZpZ/bt2/nGyMRERFRWSFvcLhx4waeP39eqseWN1zkbphQJfd2dRs75Dw8PBASEoJXr17h5MmTWLhwIZo0aYK///4bAwYMwNGjR8Wy8hxgwYIFaj3j2tvbFyoWOXnOlXtIOPnvw4cPV7seef4A/NeTpSDyc5RIJMjMzCzwHIOCgtSOp6wqiXx25MiRGs+Z1G1AvXDhAm7evAlDQ0OEhISgV69esLa2VuixU1DOVNi8p7D75t7v9u3bKnMmdRpaiah0sRGIiEiDzM3NxW7/uYcxk/fK+euvv0r0+PKk4/vvv0dWVhaOHDmC+Ph42Nvbw93dXal8acVVWPKu76piBhQb2N4mf0ssL/JzvnHjhlrjh2tC/fr1xbG///jjj0LtK5VKxeEctm7disTERHH4tfyGeShr5Pe0WrVqKofSyMzMRGRkZL51ZGZm5tkIc+PGDQA58zI5ODgobX/8+LHCG5Wq9q1bt66YYPn7+1fYZJmIiIgqh/fffx/VqlVDdnY21q5dW6rHlg/JJh+uKy+55zVp0KBBkY5lZGSEjh07YsGCBbh69arYU37Dhg1imdLKewYPHgx9fX1cunQJf//9N549e4aQkBBIJBK1h4IDcr5olzdEqZs/1K9fHzKZDIIg4Pr160UJP08F5VjaUlbz2aKS50wNGjSApaWl0vb4+PgCX0orbN6TW1RUVJ4v3cn3zf13GhQUpDJn8vf3zzdGIip9bAQiIlJTbGxsgY0Gt27dEt+yyz0nyUcffQQA+Oabb0q023337t1RvXp1xMTE4MSJEwpvnal6cC+tuApLPqlsTEyM0rbU1NR8x1OW75vX+bz77ruwtrZGXFwcvv32Ww1EWzCZTIaePXsCAJYvX640jEFBRo8eDV1dXezbt0+8V61atULTpk1LItwSIb8viYmJKu/Njh071HpD9euvv853fZcuXVROCpuRkaHwRYCcIAji56lHjx4FHp+IiIiovDAxMcGsWbMAACtWrMCpU6fyLS8IgsbmQpE/Vz1+/BjHjx/Ps5x8+N369eujXr16xT6uRCKBm5sbAODff/8V1w8cOBASiQS//PIL/v7772IfJy/VqlUTz33nzp3iy3nvvvuuyheV8iNvzFq9ejVSU1MLLG9oaCjmHF9++WUhI89fQTmWtpTVfLao5Nf52bNnKnPG1atXFzgkenHynpiYGJXzvSYlJYm5M3MmovKJjUBERGras2cPGjVqhK+//hqPHz9W2CYIAo4dO4Y+ffpAEATY2dmhW7du4vaxY8fCxcUF0dHR6Nq1q8o3lW7cuIH58+fj8OHDRY5RV1cXXl5eAHIeEOVDIOT11llpxVVYHh4eAHLe3rt48aK4/vnz5xgwYEC+k3rKJxM9ffq0ykY7fX19MSmaNGkS1qxZg5SUFIUySUlJ2Ldvn0Z72ixatAhGRkY4ffo0vLy8lBq4/v77bwQEBKjc19raGj179kRqaioWLFgAIOfelSeNGjWCpaUlMjMz8emnnyoksj/99BMmTZok9pbKi66uLrZu3YotW7aISVFmZiYWLlyIkJAQSKVSzJkzR+W+enp6WLx4MQ4dOiSuS05Oxrhx4xAVFQUjIyN89tlnGjhTIiIiorJjxowZ6N27NzIyMvD+++/Dz88PT58+VSiTmpqKgwcPok2bNpg3b55Gjtu+fXt07doVQE4u8nZDUHJyMhYsWIA9e/YAABYuXFio+gcOHIj9+/crffF/9+5dbN68GQDQqlUrcb2LiwvGjBmDjIwMdO3aFUeOHFH6kv3JkyfYsGEDli9fXqhY3ibPvXbt2iW+lDdixIhC1zNjxgzUqFEDUVFR6NGjB+7cuaOw/cGDB/Dz81NYt3TpUpiamiI4OBg+Pj5K9zozMxNhYWEYNWqUQiNZQeQ51u+//64w4oW2ldV8tqjatWsHPT09/Pvvv1iwYIHYKyc7OxvffPMNli1bVmDOVJy8R09PD1OmTEFERIS4Lj4+HkOHDsXLly9Rs2ZNzvVDVF4JRESklvXr1wsAxJ+aNWsKLVu2FJo0aSJUrVpVXF+rVi3h8uXLSvs/fPhQaN68uViuTp06Qps2bYRmzZoJVapUEddv27ZNYT8PDw+V6/Ny6dIlhTjbt2+fb/nSiksVPz8/AYAwYsQIhfVJSUlCgwYNBACCRCIR6tevLzRv3lzQ09MTZDKZsHXrVjGut50/f16QSqUCAKF27dqCm5ub4OHhIUyZMkWh3Jo1awRdXV0BgGBgYCA0bdpUaNOmjVCvXj1xfzs7O4V9Tp8+rXJ9biNGjBAACH5+fkrbjh49KpiamgoABKlUKjRs2FBo0aKFYGFhUWC9R48eFc/ZxMREeP36dZ5ly6pvv/1WPAdzc3OhZcuWQu3atQUAQrdu3YRhw4apvHa5r/u0adPEv79WrVoJ1apVE+sMCAhQOua2bdsEAIKHh4fQv39/sZ5WrVqJ90JHR0f4/vvvi3ROu3fvFiwsLMQfAwMDAYAgk8kU1quKjYiIiKg0ZGRkCFOnThV0dHTE5+u6desKrVu3Fho0aCA+vwAQOnbsqLCv/Hndw8Oj0Md9/vy50KZNG7HuGjVqCK1btxaaNm0qyGQyMZaFCxcWum5zc3MBgKCrqys4OTkJbdq0ERwdHQWJRCIAEBwdHYWnT58q7JOWliYMHTpUjKdq1aqCq6ur4OrqKlhbW4vr385N8spZ8pKeni4+3wMQDA0NhYSEhDzL55dXXbx4UahZs6ZYl6Ojo+Dq6irUqFEjz3zo9OnTgqWlpZhzODk5CW3bthUaNWokXncAwr1799Q6H0HIyRmNjIwEAIKVlZXQvn17wcPDQxg0aJBYJvdz99vs7OwEAMLp06dV1p9fDlVQ3UXNZ8uq+fPnizFbWVkJrq6ugpWVlQBAGDNmTJ6fl+LkPfLPuJeXl9CuXTvxs9ayZUvx3wcjI6M8719BAgICFHIjPT098W8j9/rdu3cXqX4iKhh7AhERqWncuHEIDw/H/Pnzxblq/vrrL0RFRUFfXx8dO3bEqlWrcOvWLTRv3lxp/zp16uDcuXP49ttv0bVrV6SmpuLSpUuIjo4W36g5ePAgBg8eXKw4W7RogcaNG4vLBY09XVpxFYaxsTF+//13jB8/HrVq1cK9e/cQExODvn374sKFC+jUqVOe+7Zu3Ro///wzPD098ebNG0RERCAsLExhvHEAmDJlCq5du4aJEyfCwcEBd+7cwaVLl5CUlAR3d3cEBATkO3RFUXTv3h03b97EtGnT4OzsjPv37+PWrVuoWrUqhgwZorLbvlzXrl1ha2sLIGescfkkqOXJqFGjcODAAbRr1w7p6emIioqCpaUlvvzySxw5cgQ6OjoF1rFq1Sp89913qFOnDm7evIn09HR4enril19+wcyZM/Pdd+/evVi1ahXMzMxw/fp16OjooEePHjhz5ozYg66wUlNTERcXJ/7IezilpaUprK8Iw1MQERFR+aSrq4vVq1cjKioKs2bNgqurKxITE3H58mX8+++/cHJywvjx43HmzBmcPHlSY8e1srLC77//jm3btqF79+4AgCtXruDOnTuws7PD6NGjcfHiRbGne2Hs2LEDEydOhIuLC+Lj43Hp0iU8e/YMrq6uWLp0KS5duoQaNWoo7KOvr49du3bh+PHjGDRoEExNTXHt2jVcu3YNenp6+PDDD/Htt99i5cqVxTpvPT09hWfLPn36wMzMrEh1ubq64saNG/Dz80Pz5s0RExOD69evw8jICB9++CF27dqltI+npyeioqKwaNEitGrVCk+fPsXFixfx77//onHjxpgxYwbOnj0LOzs7teOoU6cOQkJC8P7770MQBJw7dw5hYWH5ztVaWspiPlscixYtwtatW9GsWTMkJibi9u3bqFevnjgigjqKmvfo6+vj1KlTmDdvHiQSCa5fvw4TExN89NFHiIyMhKenZ5HOKTk5WSE3ysjIAACkpKSozKWISPMkglDIiQmIiIio1KWkpKBWrVpISEjAuXPn0KZNG22HVGpCQ0Px3nvvwc7ODvfv3y/UvkFBQfD29oaHhwdCQ0NLJD4iIiIiIiJtKk7e4+/vj4ULF2LEiBEICgoqkfiISLvYE4iIiKgc2LNnDxISEtCkSZNK1QBERERERERERERFx0YgIiKiMu7ly5dYsmQJAGDq1KnaDYaIiIiIiIiIiMoNXW0HQERERKpNnToVkZGRuH79OhISEtCsWTMMHz5c22EREREREREREVE5wZ5AREREZdTVq1dx9uxZ6OrqYtCgQThy5Ah0dfn+BhERERERERERqUciCIKg7SCIiIiIiIiIiIiIiIhIs9gTiIiIiIiIiIiIiIiIqAJiIxAREREREREREREREVEFxEYgIiIiIiIiIiIiIiKiCoiNQERERERERERERERERBWQrrYDIM1xdnZGfHw86tatq+1QiIiIiIhKzT///IOqVasiKipK26FQKWDeQ0RERESVUVHzHjYCVSDx8fFITk7W2vETExMBAGZmZlqLQV26EgEDbV+Kyz8+rIZMQVLseqe+ToJjZiYAIFpXF2tMTYpdpyaUp3tTWQhSARmNM5CalgoAMI02hSS7+J9B0pyy8ncjlejAybKtuHwr9hyyhSwtRqR9ZeXekDLem7Krot8bbT4DU+lj3lM6SiK3qSzXrqRo+vrJcxI5vet6FTonKSufv/L6fF9Wrl95xetXdLx2xcPrVzxl7foV9RlYIgiCoOFYSEvatWsHAIiIiNDK8cPDwwEA7u7uWjl+oaS9Bta5/rc8KRKQmRa72oc+Pki5dBkAYNiyBWw3by52nZpQru5NJfEm4w16HeiF9PR0AMCxQcdgrGes5agot7Lyd5Oemolgv3Pi8tCFbaFvULnf4Sgr94aU8d6UXRX93mj7OZhKl7bvd0X/e5Iridymsly7kqLp6yfPSeQO9z1coXOSsvL5K6/P92Xl+pVXvH5Fx2tXPLx+xVPWrl9Rn4M5JxAREREREREREREREVEFVPZfNSAqR2p/9RXw/yEToMs/LyIiIiIiKp+Y2xARERFVDHySI9IgHZOyMQcQERERERFRcTC3ISIiIqoYOBwcERERERERERERERFRBcRGICIiIiIiIiIiIiIiogqIw8ERERERaUh2djbi4uKQkJCA1NRUCIKg7ZBKlaGhIQDg2rVrWo6E3lbW741EIoGZmRmqV68OAwMDbYdDRERERPlITU3F8+fPkZiYWOI5T1l/ji3reP2KR5PXTyKRwMDAAObm5rCwsIBUWnr9c9gIRKRBGU+fQkhLAwBIZDLo1ayp5YiIiKi0ZGdn4/79+0hKShLXSSQSLUZU+mQymbZDoDyU9XuTnZ2NV69e4c2bN3BycirVhIiIVGNuQ0REqmRnZ+PevXvIyMgAUPI5T1l/ji3reP2KR5PXLzs7G8nJyUhOTsbr169hb29fankPG4GINChmwQKkXLoMADBs2QK2mzdrOSIiIiotcXFxSEpKgp6eHmxsbGBiYlLpGoHS/v9lIRONsqes35vMzEzcv38fycnJePHiBWrUqKHtkIgqPeY2RESkyvPnz5GRkQEjIyPY29tDV7dkv14u68+xZR2vX/Fo8voJgoCkpCQ8fvwYSUlJiIuLg5WVVbHrVQcbgahykkiBmi6Ky0SlSAIJnKo54eXLl+IykSoSiQSWNqYKy1Q2JSQkAABsbGxgampaQGkiyk1XVxfW1ta4c+cOEhIS2AhERFQK5DlJ7mUqeXy+p/IuMTERAGBtbV3iDUBEFYlEIoGpqSlsbGxw7949JCQksBGIqETpGwPDftJ2FFSJGekZYWPnjQgPDxeXiVTRk+mg16Sm2g6D1JCamgoAMDEx0XIkROWTfC4g+dAiRERUsuQ5CZUuPt9TeSd/VuM8jkRFI//OQP4dQmlg9wciDbIYNRq1li5BraVLYDFqtLbDISKiUiQIAiQSCd/mJCoiqVQKiUSC7OxsbYdSbh04cABdunSBhYUFDAwM4ODgAC8vLzx69EihXGJiIqZNmwY7OzvIZDLY29tjxowZCnOa5ZadnY1169bBxcUFhoaGsLKygpeXF/755588Yzl27Bg8PDxgamoKMzMzvPfeezh58qRGz5dKFnMbIiJSJTs7GxKJhHM4EhWR/HsDQRBK7ZjsCUSkQcZt22g7BCIiIiKqZARBwCeffILNmzejXr16GDx4MExNTfHkyROEhYXhwYMHqFOnDgDgzZs38PDwwNWrV9G1a1d4eXnhypUrWLlyJcLCwhAeHq70Zu+4ceOwdetWNGrUCJMnT8aTJ0/www8/ICQkBOfOnYOjo6NC+V27dmH48OGwsrLCyJEjAQB79+5Fly5d8MMPP2DAgAGlcl2oeJjbEBEREVUMbAQiIiIiIiIqx9auXYvNmzdjwoQJWLt2LXR0dBS2Z2Zmir+vWLECV69exaxZs7B8+XJx/ezZsxEQEIDVq1djzpw54vrTp09j69atcHd3x/Hjx6Gvrw8AGDJkCD744AN8+umnOHbsmFg+Pj4ekyZNgqWlJS5fvgwbGxsAwKxZs9C8eXOMHz8e3bp149xpRERERESlhP32qHLKygQeX/rvJyuz4H2INCgzOxPXXlzD/bT7uJ92H5nZ/AySatlZ2Xh2L1H8yc7iMElERPSflJQULFy4EHXr1sXXX3+t1AAEQJy0WRAEbN26FSYmJpg/f75Cmfnz58PExARbt25VWL9lyxYAwOLFi8UGIAB4//334enpiZCQEDx8+FBc/+OPP+LVq1eYNGmS2AAEADY2Nvj0008RGxuLAwcOFP/EiajY5DmJ/Ic5Seng8z0REZU29gSiyikzBdgz5L/lSZGADt9GpNKTlpWGKaenID09HQDQP6s/dKX8J5mUZWZk49dNf4nLQxe2hb4O3+EgIqIcISEhiI+Ph7e3N7KysnDo0CHcvn0bVapUQefOnfHOO++IZaOjo/HkyRN069YNxsbGCvUYGxvDzc0Nx44dw6NHj8Th40JDQ8Vtb+vWrRtCQ0MRFhaG4cOHi+UBoGvXrirL+/v7IywsDB9//HGB59auXTuV669fvw5bW1uEh4cXWEdJSExMBACtHb8847UrHk1fv9TsVCx6vEhcXmCzAAbSijvRe1n5/GVlCLh9JEtcrt9TBzp6ZX9OybJy/cqrinT9DA0NIZPJkJaWVirHk8+bUlrHq2h4/YqnpK6fIAhIS0sr9L8JiYmJMDMzK/Tx+I0jERERERFROXXp0iUAgI6ODpo0aYLbt2+L26RSKT777DOsXLkSQE4jEAClOXzkHB0dcezYMURHR6NOnTp48+YNYmJi0LhxY5U9jOT1yOst6BiqyhMRERERUcliIxBVUhLArJbisgY8meOLlGs5b+wbujSB9RfLNFIvEREREZAzNNf69etx+/ZtmJiYoEuXLvjiiy9gZ2endh1xcXGYN28eDh48iLi4ONjb22PUqFGYPn26OGyY3NSpU3Hu3Dncu3cPr169goWFBRo0aIBPP/0Uffv2VSgbHR2N4OBgHD9+HHfv3sXr169hZ2eHzp07Y86cOahVqxZI854/fw4A+Oqrr9CiRQtcuHABDRo0wJUrV+Dj44NVq1ahXr16GD9+PBISEgAA5ubmKuuSv1UoL1fY8gXto6p8fiIiIlSul/cQcnd3V6seTZO/samt45eWkshtKsu1Kymavn5vMt5A/8B/wzy6ubnBWM84nz3Kt7Ly+UtPzcT9kHPisptbW+gblP2v58rK9SuvKtL1u3btGgBAJpOVyvHkPTBK63gVTXm9fqWd9/z444/47bffcPnyZdy4cQMZGRk4ffq0+Nz59vWTSPL+LvnatWto3LhxvrFJJBIYGBigVatWap8PgCL1AgLYCESVlcwE8AnVeLWZcbHIjHma87u1tcbrJyIiospr/vz5WLJkCdzc3LBmzRq8ePECa9asQWhoKC5cuKAw/0peXr9+DXd3d9y6dQsTJkxAkyZNEB4ejtmzZ+P69evYuXOnQvmIiAg0b94cAwcORNWqVREbG4sff/wR/fr1w9y5c7FkyRKx7Lfffov169ejV69e+Oijj2BoaIhz585hw4YN2LVrF/744w84Oztr/LpUdtnZOXNJ6Ovr4+eff4b1/59BO3TogB9//BFNmzbFqlWrMH78eG2GSeUQcxsiIiLSBm3kPd988w3OnTsHFxcXODs7i42d+enQoQN8fHyU1suHVS5L2AhERERERFTG3b59G1988QVatGiB0NBQ8c217t27o3Xr1vD19cWOHTsKrOfLL7/E33//jVWrVmHatGkAgDFjxsDc3Bzr16+Ht7c3OnbsKJY/f/68Uh3Tpk1Dy5YtsXLlSsydOxeGhoYAgAEDBmD27NmoUqWKWNbHxwdt27bFuHHjsGDBAvzwww/FuQykgrzHjaurq9gAJNe4cWPUrVsXd+7cwatXr8SyefXEkc9XIC9X2PJv72NhYVFgeSIiIiIiOW3lPdu3b4e1tTX09PTg7++vViNQ3bp1MWzYsCKeaenizNKkUbFJafj+/MNC/VQkxu3aw6xnT5j17Anjdu21HQ4REZUhL4ODcbdnT4Wf9AcP8iyfEROjVD5uW1C+x/h3xkyF8g+G5z/xeuJvvykdI/nKlaKcXoGCgoIgkUhw6tQprFixAo6OjjAwMECDBg2we/duAMCTJ08wbNgwWFlZwdDQEF27dsWdO3dU1rd9+3a0a9cOJiYmMDIyQsuWLREUFKRULiQkBF5eXqhXrx4MDQ1hZmYGd3d3HD58WKnsyJEjIZFI8Pr1a3z22WewtraGTCZD48aNtd548f333yMrKwuTJ09WGLrA1dUV7u7u+Omnn5CSklJgPTt27ICRkZFSr5Dp06eL2wuiq6sLa2trpKWlKRzT1dVVoQFIbvDgwQCAv/76q8C6qfCcnJwAQOW1z70+JSWlwDl53p7Px9jYGLVq1cK9e/eQlZVVYPncv6s6RkFzEpUnlSHvYW5DRERFwbynbOU9v/zyi1JZ5j3KeY+dnR309PQKHW9GRgZev35d6P1KG3sCEWmQhfdIbYdARERlVNbLeKTfuauwTkhPz7O8kJmpVD4rLjbfY2T8+6/CPtlWifnHlJCoHJMaD9TFMWfOHCQlJWH06NEwNDTE5s2bMXToUOjo6GDmzJlo3749Fi1ahAcPHmDNmjX48MMP8ddff0Eq/e/dpXHjxmHz5s3o0aMHFi9eDD09PRw9ehTe3t6Ijo7G0qVLxbJBQUF49uwZhg0bBhsbG7x48QLbt29H7969sWfPHgwaNEgpxm7dusHIyAgzZ85EVlYWNmzYgEGDBsHBwUGtMZuTkpKQmpqq9jWxtLQssIy8R0779spfxLZv3x5hYWG4du0aWrdunWcdz549w4MHD9C+fXux946cvb09atWqhQsXLqjcNzY2FoIg4Pnz5/jhhx9w7NgxtGvXDtWqVSsw9n///RcAUKNGjQLLUuG99957AICbN28qbcvIyMCdO3dgbGwMKysr1KxZE9bW1jh79izevHkDY+P/5v548+YNzp49CwcHB4UhLDw8PLBnzx6cPXtWaR6DY8eOAVCc38DDwwO7d+9GSEgI2rZtq7K8h4dHMc+aSgNzGyIiKgrmPTnKSt7Tv39/7Ny5U2WPFeY9xfPTTz9h165dyMrKgrm5OXr27IklS5bA3t6+2HVrGhuBqHLKzgISHv23bF4HkOpoLx4iIqJKIjk5GZcuXYKBgQEA4KOPPoK9vT0GDx6MpUuXYs6cOWLZ6tWrY/r06Th58iS6dOkCADhy5Ag2b96M5cuXY9asWWLZTz/9FBMmTEBAQADGjBkDBwcHADkTiub+ohsApk6dimbNmmHRokUqG4GcnZ3x3XfficsDBgyAo6Mj1qxZg+Dg4ALP8dNPP8X27dvVviaCIBRY5vHjxwCgcvxr+brHjx/nmwzJG2PyGkPbxsYGUVFRSuuTkpJgZWUlLuvp6aF///5Yv359gXEDOWN6A4C3t7da5alw6tWrh65duyIkJARbt27FmDFjxG3Lly/Hq1evMGzYMPFNyjFjxmDRokVYvHgxli9fLpZdvHgxkpKS4Ovrq1C/j48P9uzZg/nz5+P48ePQ18+ZRP7o0aMIDQ1F165dFSbo/eijjzBr1iysW7cOo0aNUvh8rl+/HpaWlujbt2+JXQ8iIiKisqCs5D1NmzbFsmXLVDYCVdS8J7865OtV5T2F4erqiv79+6N+/fpIS0vD77//ji1btuDo0aM4e/ZsmZsLlY1AVDllJAPfdvtveVIkIDPVXjxERESVxKRJk8RECABq1aoFJycn3LhxA5999plCWU9PTwDArVu3xGRo+/btkMlkGDp0KGJjFd8Q7Nu3LzZu3IgTJ05g7NixAKDU0yE1NRWCIKBjx44IDAzE69evYWqq+AyQO8kCcoYGqF+/Pm7fvq3WOc6cOVPjY0MnJycDAGQymdI2+fWUlylKHfJ6VNVhaGiI48ePIysrC48ePcKePXuQmpqK169fF9i7Z9myZdi3bx8+/PBDjBgxIt+yVHQbNmxA+/btMXbsWPz8889wdnbGlStXcOrUKdjZ2eHLL78Uy86cORMHDx5EQEAArly5ghYtWuDy5csICQlBq1atMHXqVIW633vvPYwZMwZbt25FixYt0KNHD8TExGDv3r2oVq0a1q1bp1C+atWqWL9+PYYPH44WLVqIDa179+5FXFwc9u7dq/Q3R0RERFTRlJW8x9PTE1u3bmXe81Y9BdVRkIsXLyose3l54f3330fv3r0xdepU/Pbbb8WqX9PYCERERERUCnSqVYX+O/UU1kn+/0a9KhJdXaXyOhb5d5/Xq10bWYn/TeCuWzX/obp0zM2UY3qru7ym1atXT2ldtWrVYG1trZAkydcDQFxcnLju77//RlpamsJwVW97+vSp+Pv9+/cxf/58/Prrr3j58qVS2fj4eKVkSFWMlpaWeJDPWOa5NWzYEA0bNlSrrLqMjIwAAGlpaUpDGsiHYJCXUacOVVJTU1XWoaOjg86dO4vLY8aMQe/eveHm5oabN2/mOSTc119/jblz58LT0xPBwcGQSCT5xkdFV69ePURGRmLBggX47bffEBISgpo1a2LixIlYsGABqlevLpY1NjZGWFgY/P39sW/fPpw+fRq1atXC9OnT4efnp/T5AoDAwEC4uLhg8+bN+Prrr2FiYoK+ffti6dKlKv9ehg0bBktLSyxbtgzbtm2DRCJBy5YtMW/ePIXPEhEREVU8zHtyMO8pGm3mPcXVq1cvtGzZEidPnkRqaqrSfdYmNgIRERERlYJqQ4ei2tChapfXq1UL9Y4cKdQxan+5olDlzbp3h1n37oXap7h0dFQPv5rXekBx2IDs7GyYmJjgwIEDeZavW7cugJxhzNzd3ZGQkIApU6agSZMmMDMzg1QqxXfffYfdu3cjOztbaf/cE5DmFUd+EhIS1JqsVK5mzZoFlrGxscH169fx+PFjODo6KmwraLgDudq1ayuUf9vjx48LrEPu448/xuHDh7F//36F4cfkvvrqK0yfPh2dOnXCoUOHSiTJIkV16tTBtm3b1Cprbm6O1atXY/Xq1WqVl0qlmDx5MiZPnqx2PN27d0f3Uv73hYiIiLSPeU+OspL3bNmyBT/88EOlyntyDxunSmHynsJycHDApUuX8PLlS1hbW5fIMYqCjUBEGvRyx06kP3wIANC3tUW1j4drOSIqq2Q6MgS4B+DPP/8Ul4lU0dWTouuoRgrLRJVZ/fr1ERUVBRcXlwKHIjt16hQePXqEb7/9FqNGjVLYtmXLlhKLccqUKRofG7t169b47bffEBERoZQMRUREwNDQEI0bN863jho1asDW1hZXr15FSkqKwpt1Dx48QExMDLp27apWzPJkLz4+XmlbQEAAZs+eje7du+PAgQNl6g04IlIfc5uKT56T5F6mksfneyJSh6bynsDAwBKLsTLkPYV1+/Zt6OnpwcLCokTqLyo2AhFpUNKZ35Fy6TIAwLBlCyZKlCddqS5a1WyFlNsp4jKRKlIdKWo7VdV2GERlxsiRI3Ho0CF8/vnn2L59O6RSxS9OEhISYGBgAJlMJr5l93ay8ddff+Hnn38usRhLYmzsIUOGYOnSpfj6668xZMgQ8a29yMhIhIWFYejQoQq9bRISEhATEwNLS0tYWv43nMbw4cOxdOlSbNy4EdOmTRPXr1q1StwuFxcXB3Nzc6U3BNPT07FhwwYAQPv27RW2LVu2DHPnzkXPnj3x008/5TkONxGVfcxtKj55TkKli8/3RKQOTeU9hw4dKrEYK0reU1hxcXEqG3l27tyJv/76C7169SpzeRC/dSQiIiKicqNv37745JNPsGnTJly7dg39+vWDtbU1nj17JiY5N2/ehL29Pdzc3MS5Tv755x/Y29vj5s2b2LJlC1xcXHDp0qUSibEkxsZ2cnLCzJkz8cUXX8DT0xPDhw9HbGwsVq9ejerVq2PZsmUK5Q8cOABvb2/4+fnB399fXD9z5kz89NNPmDlzJu7fv4+mTZsiLCwMO3fuhJeXFzp16iSWPXz4MHx9fdGvXz/Uq1cPJiYmePDgAb7//nvcu3cPY8aMgZubm1j+m2++wdy5c1GjRg3069cPP/74o9J5aDpJJCIiIiKqiDSV9zRu3BiXL18ukRgrSt4DAOHh4QgPDxd/B3IadUJDQwEA3t7esLOzAwAsWbIEZ8+eRceOHWFra4v09HScOXMG+/btQ61atbBmzRqNXhNNYCMQkQbpmFeB7v9bnXXMq2g3GCIiogpq48aN6NixIwIDA7F69Wq8efMG1atXh5OTE5YtWyaONV2lShWEhIRg1qxZ2LhxI9LS0tCkSRMEBwfj8uXLJdYIVFKWLl0KOzs7fPPNN5gyZQpMTEzQpUsXLFu2LN8JY3MzMzPD77//jnnz5uHHH39EYGAg7OzssGzZMnz++ecKZVu1aoVu3brhxIkT2LlzJ5KTk1GtWjW0aNECAQEBGDhwoEL5ixcvAgCePXumNAyFHBuBiMoP5jZERETapYm858KFCyXWCFRSSjvvAXKG1Fu4cKHCuu+++0783dPTU2wEeu+99xAVFYXg4GDExsZCEATY29tj2rRpmDVrFqpXr16Msy8ZEkHdmZ6ozGvXrh2AnPERtSE8PByxSWlItXAq1H5D2tiWUET5SHsNrHP9b3lSJCAzLf04Som8Bdvd3V3LkdDbeG/KLt6bsqus3ptr164BAFxcXLQcifakpaUBQJnr+k7l594U9e9I28/BVLq0fb/LVd5TxpTV/4eXF7x+xcPrVzy8fsVTka5faec95eU5tqzi9Suekrp+pZ33sCcQEZEWpGSmYO6ZuXjx4gUAoFVmKxjqGhawF1VGGelZOLntb3G5k3dD6OnraDEiIiIiIqoI5DmJ3NJ3lzInKQV8viciotLGRiAiIi3IFrJx9flVpKeni8tEqgjZAmL+SVBYJiIiIiIqLnlOknuZSh6f74mIqLRJtR0AERERERERERERERERaR4bgYiIiIiIiIiIiIiIiCogDgdHpEHJly4h69UrAIBOlSowatlSuwEREREREREVAXMbIiIiooqBjUBEGhQbGIiUS5cBAIYtW8B282YtR0RERERERFR4zG2IiIiIKgYOB0dERERERERERERERFQBsRGIiIiIiIiIiIiIiIioAuJwcEQaVHOBH4SUZACAxNBIy9EQEREREREVDXMbIiIiooqBjUBEGqRvU1vbIRARERERERUbcxsiIiKiioHDwREREREREREREREREVVA7AlElZNEB6jdQnGZqBRJJVI0smyEuLg4cZlIFYlUgup2ZgrLRERERETFJc9Jci9TyePzPRERlTY2AlHlpG8EeO3WdhRUiRnqGmJdx3UIDw8Xl4lU0dPXQY8JTbQdBhERERFVMPKchEoXn++JiKi08TUPIg3KTk1F9ps3OT+pqdoOh4iIqMy4f/8+JBKJwo+BgQGcnJwwY8YMxMfHK5S3t7dXKi//OXLkiMpjbNmyBU2bNoWhoSGsrKwwZMgQPHjwoDROr8g0EXNcXBzGjx8Pa2tryGQyODk5ISAgAJmZmQrl4uPjsW7dOnzwwQews7ODgYEBHBwcMGDAAFy5ckVl3Zs3b8bw4cPRqFEj6OrqQiKR4P79+0U9XSIqR5jbEBERFV5h8543b97A19cXjo6OkMlksLKywqBBgxAdHa1Ud2hoaJ45kqWlZWmdYqFlZmYiICAATk5OkMlksLa2xvjx48XRcdT14MEDDBkyBFZWVjA0NETTpk2xZcsWtfYdOHAgJBIJ7O3tlbapume5711SUlKh4iyL2BOISIMeT56MlEuXAQCGLVvAdvNmLUdERERUtnTo0AE+Pj4Achovjhw5gpUrVyIkJAQXL16Evr6+WNbZ2Rlz585VqqN58+ZK6+bPn48lS5bAzc0Na9aswYsXL7BmzRqEhobiwoULsLGxKbmTKiJNxPz69Wu4u7vj1q1bmDBhApo0aYLw8HDMnj0b169fx86dO8WyFy9exNSpU9GxY0d88sknqF69OqKjo7Fp0ybs378f33//PQYPHqxQ/7JlyxAbG4tmzZrB3t4ed+/e1fh1IKKyibkNERFR0amT96SkpMDT0xORkZH48MMP8dlnn+HFixfYsGED2rZtiz/++ANOTk5Kdfv4+KBDhw4K6wwMDErlvIrC29sbu3btQs+ePfH555/j3r17WLNmDcLDw3Hu3DmYmpoWWMfjx4/Rtm1bJCQkYOrUqXBwcMDBgwfh4+ODhw8fYvHixXnue+DAARw4cACGhvmPwtO3b1/069dPYV1GRkaZvrbqYiMQEREREZWaunXrYtiwYeLylClT0LNnT/zyyy84ePAgBg4cKG6rUaOGQtm83L59G1988QVatGiB0NBQ6OrmPOJ2794drVu3hq+vL3bs2KH5kykGTcX85Zdf4u+//8aqVaswbdo0AMCYMWNgbm6O9evXw9vbGx07dgQA1K9fH7du3cI777yjUMewYcPQokULTJ06FR999BGk0v8GCzh9+jTs7OwglUoxcuRINgIREREREalBnbxn8+bNiIyMhI+PDwIDA8Wyw4cPR+PGjTFp0iSEhIQo1d2uXTu18qSy4NSpU9i1axd69+6NgwcPiutbtmyJAQMG4Msvv8SiRYsKrMfX1xdPnz7Fvn37xIaasWPHonfv3vjiiy/w8ccfw9HRUWm/V69eYeLEiZg0aRIOHDiQ7zGaNGmidF3T0tLUOc0yj8PBUeWUlQk8PPffT1ZmwfsQaVBmdiauPL+Cu6l3cTf1LjKz+Rkk1bKzshFz55X4k52Vre2QiDSue/fuAIA7d+4obcvMzERiYiIEQchz/++//x5ZWVmYPHmy2JgCAK6urnB3d8dPP/2ElJQUzQdeDJqKeceOHTAyMsL48eMV1k+fPl3cLmdvb6/UAAQAjRs3RuPGjfHs2TM8f/5cYZuDg4NCoxAREVUc8pxE/sOcpHTw+Z6o8no77zl16hSAnJ4yudWtWxcdOnTAiRMn8OjRI5V1JScnl7kcRxV5PiJ/YU2uf//+sLe3V+vFt+TkZPz0009wcHBQ6qkzbdo0ZGVlITg4WOW+06ZNg56eHpYsWaJWvKmpqRVi+Le3sScQVU6ZKcAPI/5bnhQJ6BTc9bAgVfoPgEkHdwCAbvXqxa6PKq60rDRMD52O9PR0AMBHWR9BV8p/kklZZkY2fttyXVweurAt9HX4hWy5dGELcHFr6R+30wLAuYfqbXF3gT1DFNe1GgO0HlvyceVy+/ZtAFAax/r8+fMwMjJCRkYGjIyM0LlzZyxatAhNmzZVKgcA7du3V6q7ffv2CAsLw7Vr19C6desixZeUlITUQsyHoc543JqI+dmzZ3jw4AHat2+vNLSBvb09atWqhQsXLhQYS3Z2Np4+fQp9fX1UqVKlwPJEVDkwt6n45DmJ3OG+h5mTlAI+31NFtztqN/ZG7S1WHc4WzljeYXme22f/PhtRcVHFOsYg50HwcvYqVh2F9XbeI+9lYmRkpFTWyMgIgiDg/PnzqFOnjsK2KVOmiA1HNjY2GDZsGObPn6+ynsJISEhARkaGWmV1dHRQtWrVAsudP38eUqkUbdu2VdrWrl077N69G8+fP0f1fJ41rl27hpSUFLRr105lHRKJRGXec/z4cWzbtg1HjhyBsbFxgbGuWrUKixYtgiAIsLKyQv/+/TFv3rwyPd+Suvh/dyINMuvWVdshEBFRWfUmFnhRvESlSFIT896Wla4c05vYEg0nLS0NsbE5x3j58iUOHTqEjRs3wtzcHH369BHLNWzYEN7e3mjQoAGkUikuXryI9evXIyQkBCEhIQpjYD9+/BgAVM6hI1/3+PHjIjcCffrpp9i+fbva5fPrtSSniZjzq0O+Piqq4M/cN998g5iYGIwYMaJCjHdNRJrB3IaIiIoiPjUedxOKN4Swmcws3+1Pkp4U+xjxqfHF2r8g6uQ9jRo1wrFjx3Dq1Ck0adJE3Dc5OVl8aezhw4fiej09PfTo0QMffPAB6tSpg+fPn2P//v1Yvnw5Tpw4gbCwsGI1BPXp0wdhYWFqlbWzs8P9+/cLLPf48WNYWlpCJpMpbcud9+TXCJRf3iOTyWBpaSmWkXvz5g18fHwwaNAg9OiRx0uR/yeVSuHp6Yk+ffrAwcEBCQkJOHbsGDZt2oTffvsN4eHhSg1x5Q0bgahykkiBKraKy0RERFTi9uzZgz179iisa9asGQIDAxUe/H/99VeFMgMGDMCgQYPQtm1b+Pj44ObNm+K25ORkAFCZWMgbNeRlimLmzJkaH3NbEzHnV4e8noLqCA0Nxeeffw4HBwd89dVXBcZNREREREQFUyfvmTBhAgIDA7FgwQIYGxujc+fOiI2NhZ+fH+Li4gAo5gRubm44cuSIQp2jR4/G559/jlWrVmHt2rWYPXt2kWNetWoV4uPVaxx7eySCvCQnJ+fZY6gk8x5fX18kJCTg66+/LjBGW1tbnD59WmHdxx9/jHbt2mHSpElYtGgRtmzZUmA9ZRkbgahy0jcGxhzXdhRERESVTteuXTFjxgxIJBLIZDLY2dmp/VZVixYt0Lt3b+zbtw937twR57eRv+2WlpamlIzIh3ErzhtxDRs2RMOGDYu8vyqaiDl3HaqkpqbmW8fZs2fRq1cvWFlZISQkBNWqVVM7fiIiIiIiyps6eU+9evVw9OhRjBkzBj4+PuL6jh07Yvbs2Vi0aBHMzPLvFQUAfn5++Oqrr3DkyJFiNQK1bNmyyPvmxcjIKN98RV6moDqA/POe3MNa//HHH1i/fj0CAwNRo0aNIkSdY+LEiVi4cCGOHj1a5DrKCjYCEREREZUGY0vAyrn0j2uQT9Kgo68ck3HJjndcq1YtdO7cucj7Ozg4AACeP38uNgLZ2Njg+vXrePz4MRwdHRXKFzRkmjoSEhIKNelqzZo1CyyjiZhzD5+gyuPHj/OsIzw8HD169EDVqlVx6tQp8VoSERERERVHVYOqqGder1h1WJtYF7g9MS2fYa/VUNWg4PlsikPdvKdDhw6IiorCrVu38Pz5c9jY2KBu3bqYOXMmAKBBgwYF1mFqagoLCws8f/68WDG/fPlSnLu6IDo6OrCysiqwnI2NDW7fvo20tDSlnjyayHvkw+65urqK68aPH4+GDRvCw8MDd+7cEddnZmYCAO7cuQMDA4MCjyuRSGBnZ4e//vor33LlARuBiIiIiEpD67E5P2WJRT1g4nltR1Eo8slUcze0tG7dGr/99hsiIiKUGlQiIiJgaGiIxo0bF/mYU6ZM0ficQJqIuUaNGrC1tcXVq1eRkpKi0KPowYMHiImJQdeuynN6nD59Gj179kT16tVx6tQpsWGNiIiIiKi4vJy94OXsVaLHWN5heYnWX9okEgmcnZ3h7PzfC3pHjx6Fubk53NzcCtz/5cuXiI2NVavBKD/9+vXT+JxArVu3RlRUFM6fPw93d3eFbREREbCzs8t3PiAAcHFxgYGBASIiIpS2nTt3DoIgKMyl+uDBAyQkJKB+/foq63N0dETLli0RGRmZ73GzsrLwzz//FKs3UVnBRiAiDXq2PACpt3ImYDZwckaN2bO0HBEREVH5ExcXBwsLC6X1oaGhOHLkCFxcXFC3bl1x/ZAhQ7B06VJ8/fXXGDJkCHR1cx5xIyMjERYWhqFDhxZrOLiSmBOosDEnJCQgJiYGlpaWsLT8r7fW8OHDsXTpUmzcuBHTpk0T169atUrcntvJkyfRq1cvWFtb49SpU7C1tQURkSrMbYiIiLRj7dq1uH79OhYuXKiQE6jKkwRBEHsNffjhh8U6bknMCTR8+HDs2LEDq1atUmgE2r9/P+7fv4958+YplI+NjUVsbCxq1aoFc3NzADnDwfXv3x/BwcHYv38/+vXrpxCzjo4OvLz+a3jcsWOHyh5NEyZMAABs2LBBYSjsvPLPZcuWIT4+XqHu8oqNQFQ5ZWcBL//5b7laXUCqU+xq0/65i9S/rgEAJHp6xa6PiIioMtq5cyc2b96M7t27w8HBAVKpFJGRkdi1axeMjY3x7bffKpR3cnLCzJkz8cUXX8DT0xPDhw9HbGwsVq9ejerVq2PZsmXFiqck5gQqbMwHDhyAt7c3/Pz84O/vL66fOXMmfvrpJ8ycORP3799H06ZNERYWhp07d8LLywudOnUSy166dAm9evVCRkYGxo4di/DwcKW4unTpovCm2+HDh/Hnn38CgDgMwvr168UxtydNmiQmZ0RUsTC3ISIiKnnu7u5o3rw5nJ2dIQgCjh07hkOHDqFPnz7w9fVVKNu9e3fUqFEDrq6usLGxwYsXL/Dzzz/jwoULcHd3x8SJE4sVS0nMCdS5c2d4eXlh9+7d6NWrF/r06YN79+5h9erVcHZ2xowZMxTKr1+/HgsXLsS2bdswcuRIcf2yZctw4sQJDB8+HJcuXYKDgwMOHjyII0eOYM6cOXBychLL9u7dW2Usn3/+OQBgwIABCuvHjh2LV69eoX379rC1tUViYiJCQkJw/PhxNGjQQKmhqjxiIxBVThnJQFDP/5YnRQIyU+3FQ0RERKJWrVohNDQU+/fvx4sXL5CZmYnatWtj1KhRmD17tsrhy5YuXQo7Ozt88803mDJlCkxMTNClSxcsW7ZMaQLWskITMZuZmeH333/HvHnz8OOPPyIwMBB2dnZYtmyZmOTI3bhxQ5zbKK8JY0+fPq3QCLRv3z6lofDkvYwAYNiwYWwEIiIiIiIqonbt2uHQoUPYunUrJBIJGjVqhMDAQIwZMwZSqVSh7IABA3D48GFs3LgR8fHxkMlkaNCgAVavXo2JEydCr4y+tLF9+3a4uLhg27ZtmDhxIqpVq4bhw4djyZIlMDPLZw7bXGxtbREREQFfX18EBgYiKSkJ9evXx6ZNm+Dj41Os+Hr27Ildu3bh22+/xcuXL6Grq4t33nkH/v7++PTTT2FiYlKs+ssCNgIRaZBBg4aQ6Ob8gyt7a3x/IiKiysze3l6tuXIAwM3NTa2xr3OTSCQYN24cxo0bV5TwtKIwMY8cOVLhTbjcrKysEBgYiMDAwHzr+PjjjzF2bOHmpQoKCkJQUFCh9iGiioG5DRERUeEVJu8BgICAAAQEBKhVdtasWZg1q/wNz6qnp4c5c+Zgzpw5BZb19/dXGPkgNwcHB+zevbvIceQ1h9GoUaMwatQoldvS0tKKfLyyhI1ARBpU/bOp2g6BiIiIiIio2JjbEBEREVUMbAQiItICmY4MqzxX4erVq+IykSq6elJ0H9tYYZmIiIiIqLjkOUnuZSp5fL4nIqLSxkYgIiIt0JXqonn15nht8FpcJlJFqiNFrXeqaDsMIiIiIqpg5DkJlS4+3xMRUWnj6wZEREREREREREREREQVEBuBiIiIiIiIiIiIiIiIKiCOP0SkQQmHDyPjSQwAQM+6Fsx79dJyRERERERERIXH3IaIiIioYqjwPYHs7e0hkUhU/nh6eiqVT0tLw6JFi+Do6AgDAwNYW1vDx8cHz58/z/MYwcHBaN26NYyNjVG1alX07NkTly9fzrP8xYsX8cEHH6BKlSowNjZG27Zt8cMPP2jidEnLEg4fRtzmzYjbvBkJhw9rOxwqw1IyUzDp1CRserYJm55tQkpmirZDojIqIz0Lv2z4S/zJSM/SdkhERERUCTC3qfjkOYn8hzlJ6eDzPRERlbZK0RPI3NwcU6dOVVpvb2+vsJydnY0+ffrg2LFjaNu2Lfr374/o6Ghs3boVJ0+exLlz52BlZaWwz9KlSzFv3jzY2dnhk08+wevXr7Fnzx60b98eJ0+ehJubm0L506dPo1u3bjAwMMDgwYNhamqKffv2YdCgQXj06BGmT5+u6dMnojIoW8jGjdgbSE9PF5eJVBGyBTx/kKiwTERERERUXPKcJPcylTw+3xMRUWmrFI1AVapUgb+/f4Hltm/fjmPHjsHLywvBwcGQSCQAgE2bNmH8+PGYN28eAgMDxfLR0dHw9/dH/fr1ceHCBZibmwMAJkyYgLZt22Ls2LG4fv06pNKcDleZmZkYO3YspFIpwsPD0axZMwDAggUL0Lp1a/j6+mLAgAGws7PT7AUgIiIiIiIiIiIiIqJKp8IPB1cYW7ZsAQB88cUXYgMQAIwbNw5169ZFcHAwUlL+6x69bds2ZGZmYu7cuWIDEAA0a9YMXl5euHnzJs6cOSOuP3XqFO7evYshQ4aIDUBATk8lX19fpKenY/v27SV4hlTSbDdvhtOlSDhdioTt5s3aDoeIiIiIiKhImNsQERERVQyVoidQWloagoKC8OTJE5iZmaFVq1Zo06aNQpnU1FScP38eTk5OSj1xJBIJunTpgsDAQERGRqJDhw4AgNDQUABA165dlY7ZrVs3BAUFISwsDO7u7mqVB4CwsLACz6ddu3Yq11+/fh22trYIDw8vsI6SkJiYCGm2AIO4W4XaLzz8fskElA+dzGS4/n8YLgCIPHsWWbpGpR5HaUlMzOlqrq3PBilLzU5Feno6srNzhlw4e/YsDKQGWo6KcisrfzdZGQLSc40TfvbsWejoSfLZo+IrK/fmbYaGhpDJZEhLS9N2KFojCDnDmVTma1BWlZd7IwgC0tLSCv33nZiYCDMzsxKKioiIiIiIqPyqFI1AT58+hbe3t8K6Vq1aYffu3ahXrx4A4O7du8jOzoajo6PKOuTro6OjxUag6OhomJiYoGbNmvmWl5P/ruoYNWvWhImJiUJ5IiIiIiIiIiIiIiKioqrwjUDe3t7o0KEDGjduDBMTE9y+fRtfffUVdu7ciU6dOuHatWswNTVFQkICACgM65ab/M1CeTn579WrVy9U+YKOkbt8XiIiIlSul/cQkvc8Km3h4eGITUpDqoVTofZzb2NbQhHlI+01cFlfXHRzcwNkpqUfRymRv02rrc8GKXuT8Qb6B/SR/v8eaW5ubjDWM9ZyVJRbWfm7SU/NxP2Qc+Kym1tb6BtU+P9956us3Ju3Xbt2DQAgk8m0HIn2yHuZVOZrUFaVl3sjkUhgYGCAVq1aFWo/9gIiIiIiIiJSrcLPCeTn54eOHTuievXqMDIyQrNmzbBjxw4MHz4cDx48EOcBIiIiIqKSc//+fUgkEoUfAwMDODk5YcaMGYiPj1co/+bNG/j6+sLR0REymQxWVlYYNGiQyl7ToaGhSnXLfywtLUvrFAstMzMTAQEBcHJygkwmg7W1NcaPH4+4uLhC1fPgwQMMGTIEVlZWMDQ0RNOmTfN8xi3MdQWAP//8E/369YOlpSVkMhmcnJywePHiMj+sHBERERGRNpRk3gOUz+fz5ORkzJ49G/b29pDJZLC3t8fs2bORnJxcqHr++usv9OrVC1WrVoWxsTHatm2L/fv351k+KSkJCxcuROPGjWFkZARzc3M0b94cq1evVipbHq9rYVTaV4nHjRuHnTt34uzZs5g2bZrYOyevnjjy+Qdy9+IxNzcvdPmCjlG1atVCngmVJWl37iD7zRsAgNTYGLJ33tFyRERERGVLhw4d4OPjAwCIi4vDkSNHsHLlSoSEhODixYvQ19dHSkoKPD09ERkZiQ8//BCfffYZXrx4gQ0bNqBt27b4448/4OSk3PPYx8dHHLZXzsCg7M635u3tjV27dqFnz574/PPPce/ePaxZswbh4eE4d+4cTE0L7qX8+PFjtG3bFgkJCZg6dSocHBxw8OBB+Pj44OHDh1i8eLFYNiUlBV26dFH7up45cwadO3eGnp4eJk6cCAcHB0RERMDPzw/nz5/H4cOHIZFU7jnKiCoy5jZERERFVxJ5T3l8Ps/KysIHH3yAsLAwDB8+HO7u7vjzzz+xcuVKnD9/HidOnICOjk6B9fz555949913IZPJMH36dFhaWmLXrl3o378/tm7ditGjRyuUj4mJQadOnfDkyROMGDECU6dORVpaGu7evYt79+4plM3vukZEROTb0FReVNpGIPlboW/+/1Bbt25dSKXSPFtZVc3n4+joiIiICDx9+lRpXqC8ysu3tWzZUqH806dPkZSUhNatWxfntEjLnq1YgZRLlwEAhi1bwHbzZi1HREREVLbUrVsXw4YNE5enTJmCnj174pdffsHBgwcxcOBAbN68GZGRkfDx8UFgYKBYdvjw4WjcuDEmTZqEkJAQpbrbtWunUHdZdurUKezatQu9e/fGwYMHxfUtW7bEgAED8OWXX2LRokUF1uPr64unT59i37596NevHwBg7Nix6N27N7744gt8/PHH4jPot99+W6jrOmnSJKSnp+PUqVNo3749gJwXqZycnODr64vdu3djyJAhGrkeRFT2MLchIiIqupLIe8rj8/n27dsRFhaGSZMmYe3ateJ6e3t7fP7559i+fTtGjRpVYD2TJk3CmzdvcPr0abi6ugIARo8ejTZt2mDatGno378/qlSpIpb/+OOP8fLlS1y9ehX29vYF1p3fdd27dy9GjBhR+JMvQyr8cHB5OX/+PACIHwJDQ0O0bt0at27dwoMHDxTKCoKA48ePw9jYWPyQAYCHhwcAqPwS4tixYwplilKeiIiIqDLo3r07AODOnTsAchpIgJyeMrnVrVsXHTp0wIkTJ/Do0SOVdSUnJyMlJaUEo9WMHTt2AACmTZumsL5///6wt7cXt+cnOTkZP/30ExwcHMQGILlp06YhKysLwcHB4rrQ0FAA6l3X+Ph4XL16FfXr1xcTIbmRI0cCAL777ruCT5SIiIiIiAAUL+8pr8/n8rxm+vTpCusnTJgAQ0NDtfKe+/fv4/fff4eHh4fCd/N6enqYPHkyEhMT8fPPP4vrIyIicOLECcyaNQv29vbIysrC69evVdatznXdvn27OqdaplXonkBRUVGwtbWFkZGR0vpZs2YBgELrqI+PD86dO4c5c+YgODhY7D4XGBiIf/75Bz4+PjA0NBTLe3t7Y+XKlVi6dCn69OkjDvd29epV7N69Gw0aNMC7774rlu/UqRPq1q2L77//HpMnT0azZs0A5AwPt2zZMujr6+Pjjz8ukWtBb5HoAHVaKy4TlSKpRIpm1ZvhxYsX4jKRKhKpBLXqmissU/m0O2o39kbtLVYdzhbOWN5heZ7bZ/8+G1FxUcU6xiDnQfBy9ipWHYV1+/ZtAP/11JaPu/z2M5x8nSAIOH/+POrUqaOwbcqUKWICZWNjg2HDhmH+/Pkq6ymMhIQEZGRkqFVWR0dHreF9z58/D6lUirZt2ypta9euHXbv3o3nz5+jevXqedZx7do1pKSkoF27dirrkEgkuHDhgriuMNe1oLLycxAEocwNOUFEROqR5yS5l6nk8fmeKrproY9xLezfYtVhVccEXUY1ynP78e9u4MWjpGIdw8WjNlw8bYpVR2EVJ+8pjefz+Ph4ZGVlqVVWT09PYRoUVQRBwMWLF2FtbQ07OzuFbYaGhmjWrBkiIyMLjFnemePtRprc6y5cuCA22hw+fBgA8M4772DgwIE4dOgQ0tPTUb16dYwcORKLFi2CTCYDUPA9AICLFy+W+7ynQjcC7dmzB1999RXc3d1hZ2cHY2Nj3L59G7/++isyMjIwZ84cuLu7i+VHjBiBvXv3Yvfu3bh37x48PDxw584d7N+/Hw4ODliyZIlC/fXr14e/vz/mzZuHpk2bon///nj9+jX27NkDANiyZQuk0v8eonR1dbF161Z069YN7u7uGDx4MExNTbFv3z48ePAAK1euLLB7GmmIvhEwaKfGq7WaMgXZ/29Zlqoxjj9VXoa6hvjK8yuEh4eLy0Sq6OnroPs4F22HQRoQnxqPuwl3i1WHmcws3+1Pkp4U+xjxqfEFFyqGtLQ0xMbGAgBevnyJQ4cOYePGjTA3N0efPn0AAI0aNcKxY8dw6tQpNGnSRNw3OTlZTAAePnwortfT00OPHj3wwQcfoE6dOnj+/Dn279+P5cuX48SJEwgLCytWQ1CfPn0QFhamVlk7Ozvcv3+/wHKPHz8WJx19m42NjVgmv0agx48fK5TPTSaTwdLSUiwDAA0bNsTx48fVuq41atSApaUlbt68qTT08enTpwHkTLQaHx+PatWqFXi+RFT+MLep+OQ5CZUuPt9TRZfyOh3xMW+KVYeBUf5fWb+OSy32MVJepxdr/4JoOu8pjefz5s2bK42QlRcPDw9xpIG8vHz5EsnJyWjcuLHK7TY2NoiIiCgw5vzynty5k9zNmzcBAGPGjEHt2rWxadMmGBgYICgoCCtWrMCNGzdw5MgRAJUn76nQjUDvvfcebt68iStXruD3339HcnIyLC0t8cEHH2DChAno2rWrQnmpVIqDBw9i+fLl2LlzJ1avXo1q1aph9OjRWLJkCaysrJSOMXfuXNjb22PNmjXYuHEj9PX10aFDByxevBgtWrRQGdOZM2fg5+eHvXv3IiMjAy4uLggICMCgQYNK7FpQ6TBslPdbCkRERJTzko78hRm5Zs2aITAwUGzwmDBhAgIDA7FgwQIYGxujc+fOiI2NhZ+fH+Li4gDkJEZybm5u4kO83OjRo/H5559j1apVWLt2LWbPnl3kmFetWoX4ePUax3L3Gs9PcnJynj2GDAwMxDIF1QFAZUOSvJ7cdfj4+GDr1q1qXVeJRILp06djzpw56NOnD1asWAF7e3ucP38eU6ZMgb6+PtLT05GcnFyukyEiyhtzGyIioqLTdN5TGs/nwcHBag+trc7oB+rkK/Jy+cWcXz2qcif50G/6+vo4c+aM+ELg4MGD0aFDB/zyyy84ceIEOnfuXGnyngrdCOTh4VHoOXZkMhn8/Pzg5+en9j5Dhw7F0KFD1S7funVrHD16tFBxEREREVUEXbt2xYwZMyCRSCCTyWBnZ6c0rFu9evVw9OhRjBkzBj4+PuL6jh07Yvbs2Vi0aBHMzPLvFQUAfn5++Oqrr3DkyJFiNQK1bNmyyPvmxcjISBx64G2pqalimYLqAJBvPbknRy3sdZ01axbS0tLw5ZdfwtPTE0DOs/K8efNw6NAhXLx4Ua37QERERERU2ZRE3lPSz+dubm5F3lcVdfKV3OWKUo+qOuS/e3l5KayXSCQYNWoUzp49KzYCAflf14MHDyIyMrLc5z0VuhGIiIiIqKyoalAV9czrFasOaxPrArcnpiUW6xhVDQp+o6s4atWqJT5s56dDhw6IiorCrVu38Pz5c9jY2KBu3bqYOXMmAKBBgwYF1mFqagoLCws8f/68WDG/fPkS6enqDReho6Ojsvf422xsbHD79m2kpaUpvdGW33AHb9eRu3xu8uEnck+cChTuukokEvj5+WHmzJm4du0aMjMz0ahRI5ibm2Pt2rWwtrYu98kQEREREWmWoak+qtYyLlYdphYGBW5PTc4s1jEMTfWLtX9BSiLvKenn8xcvXqg9J5C+vn6BPWOqVasGIyMjlfkKkJPHGBsbF9irKL+8R1XuJG9ss7ZWzp9r1aoFICfHk6sMeQ8bgahyysoEHkb8t2zbDtDhnwOVnszsTFx5fgW3U3ImBWyf3R66Un4GSVl2VjZi7iSIy7XeMYdUh5P2lkdezl7wcvYq0WMs77C8ROsvbRKJBM7OznB2dhbXHT16FObm5mq9pfby5UvExsaq1WCUn379+ml8TqDWrVsjKioK58+fV5ijEgAiIiJgZ2eX73xAAODi4gIDAwNEREQobTt37hwEQUDr1q2VthX2uhoaGirUExkZiRcvXmDMmDEFnicREZVd8pxErnn15sxJSgGf76mic/G0gYtn/i8zFVeXURVryNKy8nzeqlUrjc4JJJFI4OrqivDwcDx48AB2dnbitpSUFFy9ehWtW7eGRCLJtx75uarKe+Trcl+Pdu3aYcOGDQrzyMo9evQIQM5cQG/L67p6e3vnG195wP+7U+WUmQLsy/UP46RIQIeTnVLpSctKw6zwWeKb5V5ZXky4SKXMjGyEfHdDXB66sC30mSRSJbV27Vpcv34dCxcuVOjWHxcXBwsLC4WygiCIb899+OGHxTpuScwJNHz4cOzYsQOrVq1SaATav38/7t+/j3nz5imUj42NRWxsLGrVqgVzc3MAOcMc9O/fH8HBwdi/fz/69eunELOOjg68vApueMzruqqSkpKCqVOnwsDAADNmzFDrXKnk2dvb55mwq0rQ09LSEBAQgJ07d+LRo0eoVq0aevbsiSVLluTZ+BgcHIyvv/4aN27cgL6+Ptzc3LBo0SKV86ACwMWLF+Hn54c//vhDnAd12rRp+Oijj4p1rkSkOfKcRO5w38PMSUoBn++JqCDaej7X9JxAQE7eEx4eLs7VKrdx40akpKRg+PDhCuVjYmKQkJAAW1tb8dwdHBzg5uaG0NBQXLp0SRyuOzMzE2vXroWpqSn69Okj1tGnTx9YWFhg165dmD9/vhhrRkYGNm3aBADo1atXvnHnvq7Tpk1T61zLMv7fnUiDHk+ahOSrVwEARs2awWbdOu0GREREVE65u7ujefPmcHZ2hiAIOHbsGA4dOoQ+ffrA19dXoWz37t1Ro0YNuLq6wsbGBi9evMDPP/+MCxcuwN3dHRMnTixWLCUxJ1Dnzp3h5eWF3bt3o1evXujTpw/u3buH1atXw9nZWSmBW79+PRYuXIht27Zh5MiR4vply5bhxIkTGD58OC5dugQHBwccPHgQR44cwZw5c+Dk5KRQT2Gu69mzZzFz5kx0794dtWvXRkxMDIKCgnD//n3s2LED9evX1/h1oaIzNzfH1KlTldbb29srLGdnZ6NPnz44duwY2rZti/79+yM6Ohpbt27FyZMnce7cOaUhDZcuXYp58+bBzs4On3zyCV6/fo09e/agffv2OHnypNIbqqdPn0a3bt1gYGCAwYMHw9TUFPv27cOgQYPw6NEjTJ8+XdOnTyWAuQ0REVHJK0vP55qeEwgAvL29sWPHDqxbtw4JCQlwd3fHn3/+iQ0bNqBDhw4KuQ0AzJkzB9u3b8fp06fF+XmAnIYxd3d3dOvWDZ999hksLS2xc+dOXL58GYGBgQqNUqamptiwYQMGDx4MV1dX+Pj4QCaTITg4GFeuXMEnn3yi0OMnv+v67bffwtHRUePXpbSxEYgqJ4kUsHhHcVkDstPSICSniL8TERFR0bRr1w6HDh3C1q1bIZFI0KhRIwQGBmLMmDGQShX/vz1gwAAcPnwYGzduRHx8PGQyGRo0aIDVq1dj4sSJ0NPT09JZ5G/79u1wcXHBtm3bMHHiRFSrVg3Dhw/HkiVL1B5z2tbWFhEREfD19UVgYCCSkpJQv359bNq0SWFyWbnCXNfatWujWrVq2LhxI2JjY1G1alW4u7tj7969efb+IO2pUqUK/P39Cyy3fft2HDt2DF5eXggODhaH39i0aRPGjx+PefPmITAwUCwfHR0Nf39/1K9fHxcuXBB7ok2YMAFt27bF2LFjcf36dfHzk5mZibFjx0IqlSI8PBzNmjUDACxYsACtW7eGr68vBgwYoDAcCJVNzG2IiIhKXkV/PtfR0cGvv/6KRYsWYe/evdi9ezdq1aqFadOmYcGCBdDR0VGrnhYtWuDs2bOYO3cuvvzyS6Snp8PFxQU//vgjBgwYoFT+o48+goWFBZYtW4alS5ciPT0dDRo0UJkn5XddGzWqGEMPshGIKid9Y8D7F21HQUREVGnY29tDEAS1ywcEBCAgIECtsrNmzcKsWbMKLljG6OnpYc6cOZgzZ06BZf39/fP8gt/BwQG7d+9W65iFua729vY4fPiwWmWp/NiyZQsA4IsvvlAYf33cuHH48ssvERwcjDVr1ohDG27btg2ZmZmYO3eu2AAEAM2aNYOXlxeCgoJw5swZcVjDU6dO4e7du/D29hYbgICcnkq+vr4YOXIktm/fjgULFpTC2RIRERGVrpLMe8rr87mJiQlWrFiBFStWFFg2KCgIQUFBKrc1bdoUR44cUfu4nTp1QqdOnQosl991TasgL8KwEYhIg0w7d4aBc87k03o2tbUcDRERERFVFmlpaQgKCsKTJ09gZmaGVq1aoU2bNgplUlNTcf78eTg5OSn1xJFIJOjSpQsCAwMRGRmJDh06AIA4n1DXrl2VjtmtWzcEBQUhLCxMbAQqqDwAhIWFqXVO7dq1U7n++vXrsLW1RXh4uFr1aFpiYiKk2QIM4m4Var/w8PslE1AJMbCzg46xMQAgwdIS9zVwvRMTEwFAa/euvNP09UvNThXnKAVyhsMxkBpopO6yqKx8/rIyBKSnZ4nLZ8+ehY5e/pOilwVl5fqVVxXp+hkaGkImk5Xal+PyBpWK8mV8aeP1K56Sun6CICAtLa3Q/yYkJiaqPWpEbmwEItKgqpzoloiIiIi04OnTp/D29lZY16pVK+zevRv16tUDANy9exfZ2dl5jmsuXx8dHS02AkVHR8PExAQ1a9bMt7yc/HdVx6hZsyZMTEwUylPZlfr/zwARERERlW9sBCIiIiIiIirHvL290aFDBzRu3BgmJia4ffs2vvrqK+zcuROdOnXCtWvXYGpqioSEBABQGNYtN/lbhfJy8t+rV69eqPIFHSN3+fxERESoXC/vISTvfVTawsPDEZuUhlQLp0Lt597GtoQiKj/kb7tq696Vd5q+fm8y3kD/gL647ObmBmM9Y43UXRaVlc9femom7oecE5fd3NpC36Dsfz1XVq5feVWRrt+1a9cAADKZrFSOJ++BUVrHq2h4/YqnpK6fRCKBgYEBWrVqVaj9itILCGAjEFVW2VlA7O3/li3rA1L1JiIjIiIiIipL/Pz8FJabNWuGHTt2AAB27tyJLVu2YNq0adoIjYiIiIiItEyq7QCItCIjGdjx4X8/GclaDoiIiIiISLPGjRsHIGe+CeC/3jl59cSRz1eQuxePubl5ocsXdIy8egkREREREZHmsRGIiIiIiIioArK0tAQAvHnzBgBQt25dSKXSPOfkUTWfj6OjI5KSkvD06VO1y+feltvTp0+RlJSU55xERERERESkeWwEItKg2E2b8O+Mmfh3xkzEbtqk7XCIiIiIqBI7f/48AMDe3h4AYGhoiNatW+PWrVt48OCBQllBEHD8+HEYGxvD1dVVXO/h4QEACAkJUar/2LFjCmWKUp7KLuY2RESkilQqhSAIyM7O1nYoROWSIAgQBAESiaTUjsk5gYg0KPnyZaRcugwAyEp4pd1gqEyT6cjw9Xtf48rVK+IykSq6elJ88EkThWUiIiK5qKgo2NrawsjISGn9rFmzAABDhgwR1/v4+ODcuXOYM2cOgoODxeQzMDAQ//zzD3x8fGBoaCiW9/b2xsqVK7F06VL06dNHHMrt6tWr2L17Nxo0aIB3331XLN+pUyfUrVsX33//PSZPnoxmzZoByBkebtmyZdDX18fHH39cIteCNIu5TcUnz0lyL1PJ4/M9lXd6enrIyspCamqq0vMHERUsKSkJAGBgYFBqx2QjEBGRFuhKdeFi5YJ4Wby4TKSKVEeKGg5m2g6DiIjKqD179uCrr76Cu7s77OzsYGxsjNu3b+PXX39FRkYG5syZA3d3d7H8iBEjsHfvXuzevRv37t2Dh4cH7ty5g/3798PBwQFLlixRqL9+/frw9/fHvHnz0LRpU/Tv3x+vX7/Gnj17AABbtmyBVPrfF5i6urrYunUrunXrBnd3dwwePBimpqbYt28fHjx4gJUrV4o9k4hIu+Q5CZUuPt9TeWdmZobU1FQ8efIE9vb20NXl9xlE6hAEAUlJSXj8+DEAlOo8mfwrJdIgPWtrZP1/Elw9a2stR0NEREREFd17772Hmzdv4sqVK/j999+RnJwMS0tLfPDBB5gwYQK6du2qUF4qleLgwYNYvnw5du7cidWrV6NatWoYPXo0lixZAisrK6VjzJ07F/b29lizZg02btwIfX19dOjQAYsXL0aLFi1UxnTmzBn4+flh7969yMjIgIuLCwICAjBo0KASuxakWcxtiIhIlerVqyM+Ph7Jycn4+++/S3xIK0EQAKBUh86qSHj9ikeT109eFwCYmJjAwsKi2HWqi41ARBpUy99f2yEQERERUSXi4eFR6Dl2ZDIZ/Pz84Ofnp/Y+Q4cOxdChQ9Uu37p1axw9erRQcVHZwtyGiIhUkUqlcHBwwPPnz5GYmKjwxXZJSEtLA1C6Q2dVJLx+xaPJ6yeVSmFgYABzc3NYWFgo9KYvaWwEIiIiIiIiIiIiIiK1GBgYwNbWtlSOFR4eDgBo1apVqRyvouH1K56Kcv3YCEREpAXJGcmYHjYdL1++BAC4ZrjCSI8TKpKyjLQs/Lb5urjc3acx9GQ6WoyIiIiIiCoCeU4it8pjFXOSUsDneyIiKm1sBCIi0gIBAm69vIX09HRxmUgVQRAQ+/i1wjIRERERUXHJc5Lcy1Ty+HxPRESlrfQGniMiIiKiSuv+/fuQSCQKPwYGBnBycsKMGTMQHx+vUP7Nmzfw9fWFo6MjZDIZrKysMGjQIERHR6us/88//0S/fv1gaWkJmUwGJycnLF68WBzDuSxKTk7G7NmzYW9vD5lMBnt7e8yePRvJyclq1/Hjjz9i9OjRaN68OfT19SGRSBAaGprvPklJSVi4cCEaN24MIyMjmJubo3nz5li9erVCOU9PT6V7lvvH0dGxKKdNREREREREpYg9gYg0KCk8HJkvYgEAulaWMHF313JEREREZUuHDh3g4+MDAIiLi8ORI0ewcuVKhISE4OLFi9DX10dKSgo8PT0RGRmJDz/8EJ999hlevHiBDRs2oG3btvjjjz/g5OQk1nnmzBl07twZenp6mDhxIhwcHBAREQE/Pz+cP38ehw8fhkQi0dYpq5SVlYUPPvgAYWFhGD58ONzd3fHnn39i5cqVOH/+PE6cOAEdnYKHhvnmm29w7tw5uLi4wNnZGdeuXcu3fExMDDp16oQnT55gxIgRmDp1KtLS0nD37l3cu3dPoezcuXMxZswYpTp+++03BAcHo3fv3oU7aSIqV5jbEBEREVUMbAQi0qCXu3Yh5dJlAIBhyxZMlIiIiN5St25dDBs2TFyeMmUKevbsiV9++QUHDx7EwIEDsXnzZkRGRsLHxweBgYFi2eHDh6Nx48aYNGkSQkJCxPWTJk1Ceno6Tp06hfbt2wMAxo0bBycnJ/j6+mL37t0YMmRI6Z2kGrZv346wsDBMmjQJa9euFdfb29vj888/x/bt2zFq1Ci16rG2toaenh78/f0LbAT6+OOP8fLlS1y9ehX29vb5lu3SpYvK9fJ7Mnbs2ALjI6Lyi7kNERERUcXARiDSuu/PPyz0PkPa2JZAJERERCXnWuhjXAv7t1h1WNUxQZdRjfLcfvy7G3jxKKlYx3DxqA0XT5ti1VFY3bt3xy+//II7d+4AAE6dOgUA8Pb2VihXt25ddOjQAcePH8ejR49Qp04dxMfH4+rVq3BychIbgORGjhwJX19ffPfdd2WuEWjHjh0AgOnTpyusnzBhAubPn48dO3ao1QhkZ2en9jHPnTuHEydO4KuvvoK9vT2ysrKQnJwMU1NTteuIiorCmTNn0KFDBzg7O6u9HxEREREREWkHG4GIiIiISkHK63TEx7wpVh0GRvk/ur2OSy32MVJepxdr/6K4ffs2AMDS0hIAxHl8jIyMlMoaGRlBEAScP38ederUKbAsAJw/fx6CIBR5SLj4+HhkZWWpVVZPTw/m5ub5lhEEARcvXoS1tbVSI46hoSGaNWuGyMjIYsWsyi+//AIAeOeddzBw4EAcOnQI6enpqF69OkaOHIlFixZBJpPlW8fWrVsBsBcQERERERFRecFGICINsg4IgJCRAQCQ6OlpORoiIqKyJy0tDbGxOXNMvHz5EocOHcLGjRthbm6OPn36AAAaNWqEY8eO4dSpU2jSpIm4b3JyMs6fPw8AePgwpydxjRo1YGlpiZs3b+Lp06eoWbOmWP706dMAgKSkJMTHx6NatWpFirl58+Z48OCBWmU9PDwQGhqab5mXL18iOTkZjRs3VrndxsYGERERxYpZlVu3bgEAxowZg9q1a2PTpk0wMDBAUFAQVqxYgRs3buDIkSN57p+eno7t27ejatWqGDhwoMbiIqKyibkNERERUcXARiAiDdKtWlXbIRAREZVpe/bswZ49exTWNWvWDIGBgahevTqAnCHRAgMDsWDBAhgbG6Nz586IjY2Fn58f4uLiAOQ0CAGARCLB9OnTMWfOHPTp0wcrVqyAvb09zp8/jylTpkBfXx/p6elITk4ucoNKcHAwUlJS1CpbVY1nAXnsefW6MTAwEMtpshHo9evXAAB9fX2cOXNG7Ck1ePBgdOjQAb/88gtOnDiBzp07q9z/559/RmxsLCZNmiTGSETqK+ww2NoeApu5DREREVHFwEYgIiIiolJgaKqPqrWMi1WHqUX+X7ybWhggNTmzWMcwNNUv1v4F6dq1K2bMmAGJRAKZTAY7OzvUqVNHoUy9evVw9OhRjBkzBj4+PuL6jh07Yvbs2Vi0aBHMzMzE9bNmzUJaWhq+/PJLeHp6AshpYJk3bx4OHTqEixcvKpQvLDc3tyLvq4q88UU+lN3bUlNTFcpp+rheXl4KdUskEowaNQpnz57NtxGIQ8ERERERERGVP2wEIiIiIioFLp42cPG0KdFjdBnVqETr14RatWrl2ciQW4cOHRAVFYVbt27h+fPnsLGxQd26dTFz5kwAQIMGDcSyEokEfn5+mDlzJq5du4bMzEw0atQI5ubmWLt2LaytrYvVCPTixQu15wTS19cvsPdOtWrVYGRkhMePH6vc/vjxYxgbG6vVq6gwbGxyPn/W1tZK22rVqgUgZ6g6Ve7du4cTJ06gbdu2cHFx0WhcREREREREVHLYCESVk0QHsHdTXCYqRVKJFK41XPH8xXNxmUgViVSC2o5VFJaJKguJRAJnZ2c4OzuL644ePQpzc3OVvXMMDQ3RunVrcTkyMhIvXrzAmDFjihVHq1atNDonkEQigaurK8LDw/HgwQPY2dmJ21JSUnD16lW0bt0aEolm/97btGmDwMBAcT6l3B49egQgZ44lVb799lsIgsBeQEREFYg8J8m9TCWPz/dERFTa2AhElZO+ETDgO41XmxkbCyE9HQAg0deHrqWlxo9BFYOhriFWeKxAeHi4uEykip6+DrqOUT15PFFls3btWly/fh0LFy4scKi0lJQUTJ06FQYGBpgxY0axjqvpOYEAYPjw4QgPD8eqVauwdu1acf3GjRuRkpKC4cOHK5SPiYlBQkICbG1tizxMXK9evWBhYYFdu3Zh/vz5YqwZGRnYtGmTWOZtWVlZCAoKgpmZGQYNGlSkYxNR+cPcpuKT5yRUuvh8T0REpY2NQEQa9MTXFymXLgMADFu2gO3mzVqOiIiIqHxyd3dH8+bN4ezsDEEQcOzYMRw6dAh9+vSBr6+vQtmzZ89i5syZ6N69O2rXro2YmBgEBQXh/v372LFjB+rXr1+sWDQ9JxAAeHt7Y8eOHVi3bh0SEhLg7u6OP//8Exs2bECHDh0wcuRIhfJz5szB9u3bcfr0aXHeIwAIDw8XXyiQ/3fnzp04c+YMgJzGJnlPI1NTU2zYsAGDBw+Gq6srfHx8IJPJEBwcjCtXruCTTz5R6Ekl9+uvv+Lff//FJ598AmPj4s1rRUTlB3MbIiIiooqBjUBEREREVOa0a9cOhw4dwtatWyGRSNCoUSMEBgZizJgxkEoVh6upXbs2qlWrho0bNyI2NhZVq1aFu7s79u7dixYtWmjpDPKno6ODX3/9FYsWLcLevXuxe/du1KpVC9OmTcOCBQugo6PeULWnTp3CwoULFdZ9991/vZ3fffddheHmPvroI1hYWGDZsmVYunQp0tPT0aBBA2zatAk+Pj4qj7FlyxYA4FBwRERERERE5RAbgYiIiIioxNnb20MQBLXLBwQEICAgQO26Dx8+XNTQtMbExAQrVqzAihUFD8UTFBSEoKAgpfX+/v7w9/cv1HE7deqETp06qV3+0KFDhaqfiIiIiIiIyg42AlHllJUB3P/9v2X7DoCOXrGrtRg5Epn/H0tf18Ki2PVRxZWRnYGLTy/iZspNAEC77HbQkxb/M0gVT1ZWNp7ceiUuWztVgY4OJ+0lIiKiksXcpuKT5yRyrWq2Yk5SCvh8T0REpY2NQFQ5ZaYCB8b/tzwpUiONQMbt2xe7Dqoc0rPSMe/MPKT/f7LdYVnDmHCRSlkZ2Tix/W9xeejCtkwSiYiIqMQxt6n45DmJ3OG+h5mTlAI+3xMRUWnj/2WIiIiIiIiIiIiIiIgqIPYEospJIgWsnBSXiYiIiIiIiIiIiIgqEDYCUeWkbwyM4CTHRERERERERERERFRxsfsDERERkQZIJBIIggBBELQdClG5lJ2dDUEQIJUyRSEiIiIiItIU9gQi0qAn8+Yh9UbOBI8GjRrCeskSLUdERESlxcDAAMnJyUhKSoKpqam2wyEqd1JTUwEAenqclJyoLGBuQ0RERFQxsBGISIMynz9HxsOHAABdK0stR0NERKXJ3NwcycnJePz4MWxsbGBiYgKJRKLtsIjKhczMTDx58gRAzt8SEWkfcxsiIiKiioGNQFQ5ZWcBz67/t1yjMSDV0V48RERU7llYWOD169dISkrCvXv3AKDSNQLJh8KrbOddHpT1eyOPT09PD1ZWVlqOhoiIiIiIqOJgIxBVThnJQPBH/y1PigRkxR+6x6hVK+ha5nxxoe9gX+z6iIio/JBKpbC3t0dcXBwSEhKQmppa6eYHSktLA5AzNB6VLWX93kilUpiZmaF69eqcE4iojGBuQ0RERFQxsBGISIMsx47VdghERKRFUqkUVlZWlbYnQ3h4OACgVatWWo6E3sZ7Q0SFxdyGiIiIqGLga3ZEREREREREREREREQVEHsCERFpgYGOAb7p9A0uX74sLhOpoquvg54TmyosExEREREVlzwnyb1MJY/P90REVNrYCEREpAU6Uh00sGiAF7IX4jKRKlKpBFa2xZ+zjIiIiIgoN3lOQqWLz/dERFTaOBwcERERERERERERERFRBcSeQEQaFL97N9IfPgIA6NvWQVUvLy1HREREREREVHjMbYiIiIgqBjYCEWnQ69OnkXIpZ44Xw5YtmCgREREREVG5xNyGiIiIqGJgIxARkRYkZyRj8unJeBX/CgDgmuEKIz0j7QZFZVJGWhZ+3fiXuPzB+CbQk3EOKSIiIiIqHnlOIrf2vbXMSUoBn++JiKi0sRGISIOkxsaQmpuJvxPlRYCAf179g/SMdHGZSBVBEPAy5o3CMhEREVFJY25T8clzktzLVPL4fE9ERKWNjUBEGmSzerW2QyAiIiIiIio25jZEREREFYNU2wEQERERERERERERERGR5rERiIiIiIiIiIiIiIiIqAJiIxAREREREREREREREVEFxEYgIiIiIiIiIiIiIiKiCkhX2wEQVSQpf/6JrIQEAICOuTkMmzbVckRERERERESFx9yGiIiIqGKodD2BAgICIJFIIJFIcO7cOaXtiYmJmDZtGuzs7CCTyWBvb48ZM2YgKSlJZX3Z2dlYt24dXFxcYGhoCCsrK3h5eeGff/7JM4Zjx47Bw8MDpqamMDMzw3vvvYeTJ09q7BxJe1588w3+/Wwa/v1sGl588422wyEiIiIiIioS5jZEREREFUOlagS6fv06/Pz8YGxsrHL7mzdv4OHhgdWrV8PZ2RmfffYZnJycsHLlSnTs2BGpqalK+4wbNw6TJ0+GIAiYPHkyunfvjv3796NVq1aIjo5WKr9r1y50794dN2/exMiRIzFixAjcuHEDXbp0wU8//aTxcyYiIiIiIiIiIiIiosqp0jQCZWRkYMSIEWjWrBn69u2rssyKFStw9epVzJo1C8eOHcPy5ctx7NgxzJo1CxcvXsTq1asVyp8+fRpbt26Fu7s7Ll++jICAAOzcuRM///wzXr58iU8//VShfHx8PCZNmgRLS0tcvnwZ69atw7p163D58mVYWFhg/PjxeP36dYldAyIiIiIiIiIiIiIiqjwqzZxAS5cuxY0bN3D58mWsWLFCabsgCNi6dStMTEwwf/58hW3z58/HN998g61bt2LOnDni+i1btgAAFi9eDH19fXH9+++/D09PT4SEhODhw4ewtbUFAPz444949eoVFi5cCBsbG7G8jY0NPv30U/j7++PAgQP4+OOPNXrupIJUF6j3nuKyBtT09UV2SkpOlYaGGqmTKiYdiQ7aWbfDs2fPxGUiVaRSCeo0qKawTERERFTSmNtUfPKcJPcylTw+3xMRUWmrFI1Aly9fxtKlS7Fo0SI0bNhQZZno6Gg8efIE3bp1UxouztjYGG5ubjh27BgePXqEOnXqAABCQ0PFbW/r1q0bQkNDERYWhuHDh4vlAaBr164qy/v7+yMsLKzARqB27dqpXH/9+nXY2toiPDw83/1LSmJiIqTZAgzibpX4scLD7xe/Eosh//0ecbH49any8GHJ1FtIiYmJAKC1zwap1g3dkCjLuTcX/rig5WjobWXp70a/7n+//3EuVnuBlBFl6d6QIt6bsqui35vExESYmZlpOwyiCkXf3l7bIVAJM9A1wNJ3l2o7jEpHV18HnUeq/m6KiIioJFT44eDS0tLw8ccfo1mzZpg5c2ae5eTz9zg6OqrcLl8vL/fmzRvExMTAwcEBOjrKb8u8Xb6gY6gqT0REREREREREREREVFQVvifQggULEB0djUuXLqlsrJFLSEgAAJibm6vcLn+zUF6usOUL2kdV+bxERESoXC/vIeTu7l5gHSUhPDwcsUlpSLVwKvFjubexLfFjVCTyt3619dmgvPHelF28N2UX703ZxXtTdlX0e8NeQERERERERKpV6J5AERERWLlyJebNm4fGjRtrOxwiIiIiIiIiIiIiIqJSU2F7AmVmZmLEiBFo0qQJZs+eXWB5ee+cvHriyMdRl5crbPm397GwsCiwPJWgrAzg7un/luu9B+joFbtaISMDEIScBYkEEr3i10kVU0Z2BiKeROB68nUAQLvsdtCT8vNCyrKysvHo75ficp2G1aCjU6Hf4SAiIqIygLlNxSfPSeTaWTMnKQ18viciotJWYRuBkpKSxPl19PX1VZaRD5924MABNGyYMylfXnPyvD2fj7GxMWrVqoV79+4hKytLaag5VfP/ODo6IjIyEtHR0UqNQAXNSUQalpkKHJr03/KkSI00Aj2aOBEply4DAAxbtoDt5s3FrpMqpvSsdPj/4Y/09HQAwIisEUy4SKWsjGyc3hUlLg9d2JZJIhEREZU45jYVnzwnkTvc9zBzklLA53siIiptFbYRSCaTYfTo0Sq3hYeHIzo6Gr1794aVlRXs7e3h6OgIa2trnD17Fm/evIGxsbFY/s2bNzh79iwcHBxQp04dcb2Hhwf27NmDs2fPKo2vfuzYMQCK4657eHhg9+7dCAkJQdu2bVWW9/DwKN6JExERERERERERERERoQLPCWRoaIitW7eq/Gnfvj0AYM6cOdi6dSuaNWsGiUSCMWPGICkpCYsXL1aoa/HixUhKSsLYsWMV1vv4+AAA5s+fL77NDwBHjx5FaGgounbtCjs7O3H9Rx99BHNzc6xbtw6PHz8W1z9+/Bjr16+HpaUl+vbtq/FrQSpIpEBNl/9+JBX2T4GIiIiIiIiIiIiIKqkK2xOoKGbOnImDBw8iICAAV65cQYsWLXD58mWEhISgVatWmDp1qkL59957D2PGjMHWrVvRokUL9OjRAzExMdi7dy+qVauGdevWKZSvWrUq1q9fj+HDh6NFixYYNGgQAGDv3r2Ii4vD3r17YWpqWlqnW7npGwPDftJ4tVU+/BDGbXJ6eenVqqnx+omIiIiIiEoDcxsiIiKiioHdH3IxNjZGWFgYpk6dips3b2LVqlWIiorC9OnTcfLkSRgaGirtExgYiK+//hoA8PXXX+PXX39F3759ceHCBdSvX1+p/LBhw3D06FE4Oztj27ZtCAoKQsOGDRESEoKBAweW+DlSyTL74ANYjB4Fi9GjYPbBB9oOh4iIiIgqqYCAAEgkEkgkEpw7d05pe2JiIqZNmwY7OzvIZDLY29tjxowZSEpKUllfdnY21q1bBxcXFxgaGsLKygpeXl74559/8ozh2LFj8PDwgKmpKczMzPDee+/h5MmTGjtHKlnMbYiIiIgqhkrZE+h/7N15XFRl///x9wy7bC5ooiguoZVLhnumaCWatmiLW5laapt6l5ZWv0zKNO1rmV/r251xF5a3hWVmm4GVwB2ZaWrd2Ubu612uCC4DzPn94T2TIyACM3NgeD0fDx5xnbnOOZ9znZk4Hz9zrpOSkqKUlJQSX4uMjNT8+fM1f/78C9qW1WrVpEmTNGnSpAvef//+/dW/f/8L7g8AAAAAF+rHH3/UjBkzFBoaqvz8/GKv5+fnKyEhQZs3b1ZiYqKGDx+uTZs2ad68ecrMzFRWVpaCg4Nd1rnnnnuUnJysNm3aaNKkSdq3b5+WLVum9PR0ffPNN4qLi3Ppv2TJEo0cOVL169fX6NGjJZ2ZAaFv375atmyZbr31Vo8dPwAAAIC/cCcQAAAAAPiIgoICjRo1Sh06dCj1eaPPPfecNm/erGnTpiktLU1z5sxRWlqapk2bpvXr1xf7QtyaNWuUnJysXr16aePGjZo7d67eeustffDBBzp8+LAmTJjg0v/IkSOaOHGioqKitHHjRi1cuFALFy7Uxo0bVa9ePd133306fvy4x8YAAAAAwF8oAqFmKiqU9nz3109RodkRAQAAAJU2a9YsbdmyRa+//rr8/PyKvW4YhpKTkxUWFqbp06e7vDZ9+nSFhYUpOTnZZflrr70mSZo5c6YCAwOdy6+77jr17t1b6enp2rVrl3P5u+++q6NHj2rixImKiYlxLo+JidGECRN08OBBrVixwi3HCwAAAOD8KAKhZio8Kb0z4q+fwpNmRwQAAABUysaNGzVr1izNmDFDl112WYl9cnJytG/fPvXo0UOhoaEur4WGhqpHjx7atm2bdu/e7VyekZHhfO1c/fr1kyRlZma69JekxMTEC+oPAAAAwHNq5DOBAE/5Y948nfrtN0lScKtWavDwwyZHBAAAgJrg9OnTuvPOO9WhQwdNnTq11H45OTmSVOwZPg5xcXFKS0tTTk6OmjRpovz8fO3fv19t27Yt8c4ix3Yc2y1rHyX1L0337t1LXP7jjz+qadOmysrKKnMbnpCbmyur3VDwoV89up+srB0e3X5ZQpcvl9/efZKkosaNlH/LLZXeZm5uriSZdu6qO3eP3yn7KdlsNmc7Oztbwdbg86xRvVWV919RgSGbrcjZzs7Oll+AxcSILkxVGb/qivGrOMauchi/yqlq45ebm6uIiIhyr0cRCHCjU7/9ppPfbTQ7DAAAANQwTz75pHJycvTdd9+VWKxxOHbsmCQpMjKyxNcdSaWjX3n7l7VOSf1RNfnt3aeA3383OwwAAABUEkUgADBBsF+wFvVdpA3fbXC2gZL4B/rpxr91cGkDAHC2tWvXat68eUpKSlLbtm3NDsdt1q5dW+Jyxx1CvXr18mY4TllZWTqYd1qn6rX26H56dW3q0e2XZdeSJTr534JieN066uCG8XZ8i9asc1fduXv8iuxFanGshbPdPLK5/Ky+e61ZVd5/druh9pfmO9t1GobKaq36dwJVlfGrrhi/imPsKofxq5yqNn4VuQtIoggEuFVwq1Yl/g6cy8/qp4vrXKx9gfucbaAkVqtF9RqFmR0GAKCKKiws1KhRo9S+fXs9+uijZfZ33J1T2p04jikvHP3K2//cderVq1dmf1RN5Da+z5GTwLu4vgcAeBtFIMCNeAYQAAAAvCkvL8/5fJ3AwMAS+zjunFmxYoUuu+wySaU/k+fc5/mEhoYqOjpa27dvV1FRUbGp5kp6/k9cXJw2bNignJycYkWgsp5JhKqD3AYAAMA3UAQCAAAAgGoqKChId999d4mvZWVlKScnRzfeeKPq16+vZs2aKS4uTo0aNVJ2drby8/MVGhrq7J+fn6/s7Gw1b95cTZo0cS5PSEjQO++8o+zs7GJTYaSlpUlynSIjISFBb7/9ttLT09WtW7cS+yckJFTuwAEAAABcEKvZAQAAAAAAKiYkJETJyckl/lx55ZWSpMcee0zJycnq0KGDLBaLxo4dq7y8PM2cOdNlWzNnzlReXp7GjRvnsnz8+PGSpOnTp8tmszmXr1q1ShkZGUpMTFRsbKxz+ZAhQxQZGamFCxdqz549zuV79uzRSy+9pKioKA0ePNjtYwEAAACgOO4EQrW0dN2ucq8zwuQHqwJnO1FwQg988YBzfv1OBZ1UK6CWyVGhKio4XaSPX/re2b5+wuUKCOIZUgCAips6dapWrlypuXPnatOmTYqPj9fGjRuVnp6uzp0768EHH3Tp36dPH40dO1bJycmKj4/XwIEDtX//fqWmpqpu3bpauHChS/86deropZde0siRIxUfH6+hQ4dKklJTU3Xo0CGlpqYqPDzcW4cLoBSOnMTh5WteJifxAq7vAQDeRhEIAExgyNDO3J2yFdicbaAkhmHo6B8nXNoAAFRGaGioMjMzlZSUpOXLl2vNmjWKjo7WlClTNGPGDIWEhBRb59VXX1W7du20aNEiLViwQGFhYRo8eLBmzZqlli1bFut/xx13KCoqSrNnz9Ybb7whi8Wijh076oknntC1117rjcMEUAZHTnJ2G57H9T0AwNsoAgFulPvppyrYf0CSFBDdUBEDBpgcEQAAAGqqlJQUpaSklPhaZGSk5s+fr/nz51/QtqxWqyZNmqRJkyZd8P779++v/v37X3B/VC3kNgAAAL6BIhDgRkc/+EAnv9soSQrpGE+iBAAAAKBaIrcBAADwDRSBAAAAAACoYngOKgAAANzBanYAAAAAAAAAAAAAcD/uBALcqMnLL0uOhzpaLOYGAwAAAAAVRG4DAADgGygCAW5kCQgwOwQAAAAAqDRyGwAAAN/AdHAAAAAAAAAAAAA+iCIQAAAAAAAAAACAD6IIBAAAAAAAAAAA4IN4JhBqJqu/FHeta9sNbDt2yH7y5JlNhoQosFkzt2wXvsfP4qerGl+lAwcOONtASaxWi2Lb1HNpAwAAeBq5je9z5CRnt+F5XN8DALyNIhBqpoAQ6aaX3b7ZA7Nn6+R3GyVJIR3j1XTRIrfvA74h2D9YT/d4WllZWc42UBL/QD9dfeelZocBAABqGHIb3+fISeBdXN8DALyN6eAAAAAAAAAAAAB8EEUgAAAAAAAAAAAAH8R0cIAb1X/gARUdOyZJ8ouMNDkaAAAAAKgYchsAAADfQBEINVNRgZST/lc7LlHyC6j0ZkMuv7zS20DNUGAv0L/2/Etb8rdIkrrbuyvAWvn3IHxPUZFdO/99yNmObVdPfn7cyAsAADyL3Mb3OXISh54xPclJvIDrewCAt1EEQs1UeEr6ePJf7Ykb3FIEAi6UrcimZ755RjabTZJ0V9FdJFwoUVGBXZlv/+ps335JN5JEAAAAVJojJ3H4aPBH5CRewPU9AMDb+CsDAAAAAAAAAADgg7gTCDWTxU9qHO/aBgAAAAAAAADAh1AEQs0UWEsa/rbZUQAAAAAAAAAA4DEUgQA32vPQQzr5/feSzjxINWb+fJMjAgAAAIDyI7cBAADwDRSBADey5+fLfizX+TsAAAAAVEfkNgAAAL7BanYAAAAAAAAAAAAAcD/uBELNVFQo7d3wV7txJ8mv8h+H8D59FNTyYklSYNMmld4eAAAAAJiB3AYAAMA3UARCzVR4Ulo26q/2xA2SX3ilN1tn+PBKbwMAAAAAzEZuAwAA4BuYDg4AAAAAAAAAAMAHUQQCAAAAAAAAAADwQUwHBwAmCPYL1j/6/UMb1m9wtoGS+Af6adBDV7i0AQAAgMpy5CRnt+F5XN8DALyNIhAAmMDP6qfmkc21O3C3sw2UxGq1qE7DULPDAAAAgI9x5CTwLq7vAQDeRhEIcKODr70m2/YdkqTA5s0UNW6cuQEBAAAAQAWQ2wAAAPgGikCAG51Yv14nv9soSQrpGC+RKAEAAACohshtAAAAfIPVzJ2/+eab+uGHH87b58cff9Sbb77ppYgAAAAAwH3IeQAAAACYydQi0OjRo/XBBx+ct8/KlSs1ZswY7wQEVJJ/gwYKaNpUAU2byr9BA7PDQRV2ouCE7vj0Ds3bN0/z9s3TiYITZoeEKqrgdJGWP7fB+VNwusjskAAA5UDOg+qK3Mb3OXISxw85iXdwfQ8A8LYqPx1cUVGRrFZTa1XABWv0zDNmh4BqwpChfXn7ZCu0OdtASQzDUO6hUy5tAIBvIedBVURu4/scOcnZbXge1/cAAG+r8pnGpk2bVLduXbPDAAAAAACPIOcBAAAA4ClevxPo6quvdmmnpKQoIyOjWL+ioiLt2bNHO3bs0JAhQ7wUHQAAAABUDjkPAAAAgKrC60Wgs5Mfi8WiHTt2aMeOHcX6Wa1W1a1bV7fddptefPFFr8UHAAAAAJVBzgMAAACgqvB6Echutzt/t1qtSkpK0pNPPuntMAAAAADAI8h5AAAAAFQVXi8CnW3NmjVq1qyZmSEAbpX/9dcqPHRIkuRfr55Cr7zS5IgAAABgJnIeVFfkNgAAAL7B1CJQQkKCmbsH3O5QSopOfrdRkhTSMZ5ECQAAoIYj50F1RW4DAADgG0wtAkmSzWbTBx98oPXr1+vo0aMqKioq1sdisegf//iHCdEBAAAAQOWQ8wAAAAAwi6lFoJ07d6pv377aunWrDMMotR8JEQAAAIDqiJwHAAAAgJlMLQI99NBD+v333zVy5EjdddddiomJkb+/6TcnARXWaPZsGTabJMkSGGhyNAAAADAbOQ+qK3IbAAAA32Bq9vHll1/qmmuu0eLFi80MAzWR1V9qfZ1r2w38o6Lcsh34Pj+Ln3o36a39+/c720BJrFaLmrePcmkDAKoPch5UV+Q2vs+Rk5zdhudxfQ8A8DZTi0B2u11XXHGFmSGgpgoIkW540ewoUIMF+wfrye5PKisry9kGSuIf6Kfet19idhgAgAoi5wFQVTlyEngX1/cAAG+zmrnzrl276ueffzYzBAAAAADwGHIeAAAAAGYytQg0Z84cffnll3rvvffMDAMAAAAAPIKcBwAAAICZTJ0O7pNPPlGfPn00dOhQJSQkKD4+XhEREcX6WSwWTZ8+vdzbP3XqlB5//HFt2LBBv//+uw4fPqzatWurZcuWGjt2rO644w4FBAS4rJObm6ukpCQtX75cBw4cUHR0tG677TbNmDFDYWFhxfZht9v18ssva9GiRfr9998VFhama6+9VrNmzVKLFi1KjCstLU2zZ8/Wxo0bZbFY1LFjRz3xxBO65ppryn2MqFoKjxyRUVAgSbIEBMi/Th2TIwIAAICZPJ3zAJ5CbgMAAOAbTC0CJSUlOX/PyMhQRkZGif0qmhDl5eXplVdeUZcuXTRw4EDVr19fR44c0apVq3TXXXfpnXfe0apVq2S1nrkhKj8/XwkJCdq8ebMSExM1fPhwbdq0SfPmzVNmZqaysrIUHOz63I577rlHycnJatOmjSZNmqR9+/Zp2bJlSk9P1zfffKO4uDiX/kuWLNHIkSNVv359jR49WpKUmpqqvn37atmyZbr11lvLfZyogKIC6ZeP/2pfcr3kF1B6/wu0b9o0nfxuoyQppGO8mi5aVOltwjcV2Av05a4v9XP+melhutu7K8Ba+fcgfE9RkV3bNx90tpt3iJKfn6k38gIAysHTOQ/gKeQ2vs+Rkzhc3fRqchIv4PoeAOBtphaB1qxZ49Ht161bV8eOHVNgYKDL8sLCQvXt21fp6elatWqVBg4cKEl67rnntHnzZk2bNk1z5sxx9n/00Uc1d+5czZ8/X4899phL/MnJyerVq5dWr17t3M+IESM0YMAATZgwQWlpac7+R44c0cSJExUVFaWNGzcqJiZGkjRt2jRdccUVuu+++9SvXz+Fh4d7bEzwX4WnpFWP/tW++Fq3FIGAC2Ursmnut3Nls9kkSeOKxpFwoURFBXb9a9lvznbTNnVJEgGgGvF0zgMAFeXISRyuanwVOYkXcH0PAPA2U4tACQkJHt2+1WotVgCSJH9/fw0ePFgZGRn6/fffJUmGYSg5OVlhYWHFvoE3ffp0vfzyy0pOTnYpAr322muSpJkzZ7rs57rrrlPv3r2Vnp6uXbt2qWnTppKkd999V0ePHtVTTz3lLABJUkxMjCZMmKCkpCStWLFCd955p/sGAQAAAIBpPJ3zAAAAAMD51MivGtjtdn322WeSpLZt20qScnJytG/fPvXo0UOhoaEu/UNDQ9WjRw9t27ZNu3fvdi7PyMhwvnaufv36SZIyMzNd+ktSYmLiBfWHB1n8pCZd/vqx+Llls3XvuEMXPf64Lnr8cdW94w63bBMAAAAAvI3cBgAAwDeYeidQVlbWBfft1atXhfdjs9k0e/ZsGYahQ4cO6YsvvtAvv/yiMWPG6JprrpF0pggkqdgzfBzi4uKUlpamnJwcNWnSRPn5+dq/f7/atm0rP7/iBQTHdhzbLWsfJfUvTffu3Utc/uOPP6pp06blGld3ys3NldVuKPjQr6bsvyxZWTtcF0SP++v3bza4b0f1o87eqfu2Wwm5ubmSyveZg2edsp+SzWaT3W6XJGVnZyvYGlzGWvCmqvK5KSowZLMVOdvZ2dnyC7CYGJH5qsq5QXGcm6rL189Nbm6uIiIizA6jRN7KeQB3C+P9CAAA4BNMLQL17t1bFsuF/UNWUVFR2Z1KYbPZ9NRTTznbFotFDz/8sJ599lnnsmPHjkmSIiMjS9yGI6l09Ctv/7LWKak/AAAAgOrNWzkPAAAAAJTE1CLQk08+WWJCdOzYMW3cuFFZWVkaOHCgOnXqVKn9hIWFyTAM2e127du3Tx999JEef/xxrV27Vp9++mmV/dZgadauXVvicscdQmZ9gzArK0sH807rVL3Wpuy/LHsqsM6Irk3dHocZHN9A5dulVUd+Qb4CVwTKZrNJ0pmpKANCy1gL3lRVPje2U4Xakf6Ns92jRzcFBpv659t0VeXcoDjOTdXl6+emKl/PeyvnASRp6bpd5V7HV3IeAAAAlMzUf0VKSko67+vvvfeeRo8e7XIXT2VYrVbFxMTovvvuU1RUlIYMGaJZs2Zp7ty5zrtzSrsTxzGFhqNfefufu069evXK7A8AAACgevN2zgMAAAAAZ7OaHcD53HrrrerTp48ee+wxt287MTFRkpSRkSGp7GfynPs8n9DQUEVHR2v79u0lTttQ0vN/zrePsp5JBPey2AvV4NB654/FXmh2SAAAAKiBPJnzAAAAAECVLgJJ0qWXXlrq9GeVsW/fPklSQECApDPFl0aNGik7O1v5+fkuffPz85Wdna3mzZurSZMmzuUJCQnO186VlpYmyXXKjYSEBElSenp6qf0dfeBZfvbTuvL7ac4fP/tpt2x3f1KStg8dqu1Dh2p/Gd/6BAAAACTP5TxAZZDbAAAA+IYqXwTatGmTrNaKhfnTTz/pxIkTxZafOHFCkydPliQNGDBAkmSxWDR27Fjl5eVp5syZLv1nzpypvLw8jRs3zmX5+PHjJUnTp093PtdDklatWqWMjAwlJiYqNjbWuXzIkCGKjIzUwoULtWfPX0+o2bNnj1566SVFRUVp8ODBFTpWVA0F+/bJ9vtW2X7fqoL/FhoBAACA86lMznPq1ClNnjxZvXr1UqNGjRQcHKyGDRuqR48eeuONN1RQUFBsndzcXE2ePFmxsbEKCgpSs2bN9MgjjygvL6/Efdjtdi1cuFDt2rVTSEiI6tevr+HDh2vbtm2lxpWWlqaEhASFh4crIiJCffr00RdffFGhY4Q5yG0AAAB8g6nPBNq1q+SHVhYWFmrv3r1KSUnRl19+qUGDBlVo+8uWLdMLL7ygq666Ss2aNVNERIT27t2rVatW6dChQ+rZs6ceeughZ/+pU6dq5cqVmjt3rjZt2qT4+Hht3LhR6enp6ty5sx588EGX7ffp00djx45VcnKy4uPjNXDgQO3fv1+pqamqW7euFi5c6NK/Tp06eumllzRy5EjFx8dr6NChkqTU1FQdOnRIqampCg8Pr9CxAgAAAKh6PJ3z5OXl6ZVXXlGXLl00cOBA1a9fX0eOHNGqVat011136Z133tGqVaucRab8/HwlJCRo8+bNSkxM1PDhw7Vp0ybNmzdPmZmZysrKUnBwsMs+7rnnHiUnJ6tNmzaaNGmS9u3bp2XLlik9PV3ffPNNsSmtlyxZopEjR6p+/foaPXq0pDM5T9++fbVs2TLdeuutFTpWAAAAAOVnahGoWbNmslgspb5uGIZatmyp+fPnV2j7119/vfbt26evv/5aa9euVV5eniIjI9W+fXsNGzZMd911l/z9/xqC0NBQZWZmKikpScuXL9eaNWsUHR2tKVOmaMaMGQoJCSm2j1dffVXt2rXTokWLtGDBAoWFhWnw4MGaNWuWWrZsWaz/HXfcoaioKM2ePVtvvPGGLBaLOnbsqCeeeELXXntthY4TVUet+Hj5RdaWJAW1bGFuMKjSgv2C9eZ1b+rbb791toGS+Af66ZZHOrq0AQDVh6dznrp16+rYsWMKDAx0WV5YWKi+ffsqPT1dq1at0sCBAyVJzz33nDZv3qxp06Zpzpw5zv6PPvqo5s6dq/nz57s8n2jNmjVKTk5Wr169tHr1aud+RowYoQEDBmjChAnOqa0l6ciRI5o4caKioqK0ceNGxcTESJKmTZumK664Qvfdd5/69evHl9+qAXIb3+fISc5uw/O4vgcAeJupRaA777yzxITIarWqTp066ty5s2666aZi30S7UJ06dVKnTp3KtU5kZKTmz59/wUmY1WrVpEmTNGnSpAveR//+/dW/f/9yxYXqIeree80OAdWEn9VPMeEx2hawzdkGSmK1WhQRVfxLCACA6sHTOY/Vai1WAJIkf39/DR48WBkZGfr9998lnSk4JScnKywsTNOnT3fpP336dL388stKTk52KQK99tprks5MkX32fq677jr17t1b6enp2rVrl5o2bSpJevfdd3X06FE99dRTzgKQJMXExGjChAlKSkrSihUrdOedd1boeOE95Da+z5GTwLu4vgcAeJupRaCUlBQzdw8AAAAAHmVWzmO32/XZZ59Jktq2bStJysnJ0b59+9SvXz+Fhoa69A8NDVWPHj2Ulpam3bt3q0mTJpKkjIwM52vn6tevnzIyMpSZmamRI0c6+0tSYmJiif2TkpKUmZl5QUWg7t27l7j8xx9/VNOmTZWVlVXmNjwhNzdXVruh4EO/mrJ/d8vK2uG1feXm5v53n+acu+qO8ascxq9yGL/KYfwqjrGrHMavcqra+OXm5ioiIqLc65laBAIAAAAAVJ7NZtPs2bNlGIYOHTqkL774Qr/88ovGjBmja665RtKZIpCkYs/wcYiLi1NaWppycnLUpEkT5efna//+/Wrbtq38/IrftezYjmO7Ze2jpP4AAAAAPKtKFIHy8/P1wQcfaPPmzc5qVocOHTRo0KBi31ADAAAAgOrG0zmPzWbTU0895WxbLBY9/PDDevbZZ53Ljh07JunMFNglcXyr0NGvvP3LWqek/uezdu3aEpc77hDq1avXBW3H3bKysnQw77RO1Wttyv7drVfXpl7bl+NbtGadu+qO8ascxq9yGL/KYfwqjrGrHMavcqra+FXkLiCpChSBli9frvHjx+vo0aMyDMO53GKxqHbt2nrttdd08803mxghALjfiYITuivtLh0/flyS1Kmgk2oF1DI5KlRFtlOFWjl/k7N900NXKDDY9D/fAIBy8EbOExYWJsMwZLfbtW/fPn300Ud6/PHHtXbtWn366acVThgB+C5HTuLwer/XyUm8gOt7AIC3mfpX5uuvv9awYcPk5+ensWPHqk+fPoqOjtaBAwe0Zs0aLV68WMOGDVNmZmap80EDVcmRZctUsGevJCkgprHqDBlickSoqgwZ+uPEH7IV2ZxtoDR5R0+bHQIAoIK8nfNYrVbFxMTovvvuU1RUlIYMGaJZs2Zp7ty5zrtzSrsTxzHnuaNfefufu069evXK7I+qi9zG9zlykrPb8A6u7wEA3mRqEWj27NkKCgpSdna2Lr/8cpfXhg4dqvvvv19XXnmlZs+erY8++sikKIELd/zzz3Xyu42SpJCO8SRKAAAANZyZOU9iYqIkKSMjQ1LZz+Q593k+oaGhio6O1vbt21VUVFTsuUAlPf8nLi5OGzZsUE5OTrEiUFnPJELVQm4DAADgG6xm7nzt2rUaOnRosWTIoX379hoyZIi+/vprL0cGAAAAAJVnZs6zb98+SVJAQICkM8WXRo0aKTs7W/n5+S598/PzlZ2drebNm6tJkybO5QkJCc7XzpWWlibJdY70hIQESVJ6enqp/R19AAAAAHieqUWgEydO6KKLLjpvn4suukgnTpzwUkRA5ViDgmSpFSJLrRBZg4LMDgcAAAAm83TO89NPP5W47okTJzR58mRJ0oABAySdeQbR2LFjlZeXp5kzZ7r0nzlzpvLy8jRu3DiX5ePHj5ckTZ8+XTabzbl81apVysjIUGJiomJjY53LhwwZosjISC1cuFB79uxxLt+zZ49eeuklRUVFafDgwRU6VngXuQ0AAIBvMHU6uGbNmmn16tWaPXt2qX2++OILNWvWzHtBAZUQs3Ch2SEAAACgCvF0zrNs2TK98MILuuqqq9SsWTNFRERo7969WrVqlQ4dOqSePXvqoYcecvafOnWqVq5cqblz52rTpk2Kj4/Xxo0blZ6ers6dO+vBBx902X6fPn00duxYJScnKz4+XgMHDtT+/fuVmpqqunXrauE517916tTRSy+9pJEjRyo+Pl5Dhw6VJKWmpurQoUNKTU1VeHh4hY4V3kVuAwAA4BtMvRNoyJAh+u677zRq1CjnVAUO+/fv1+jRo/Xdd985EwcAAAAAqE48nfNcf/31GjZsmHbt2qW3335bzz//vFatWqX27dvr1Vdf1ZdffqmQkBBn/9DQUGVmZurBBx/Uzz//rOeff16//PKLpkyZoi+++MKlr8Orr76qBQsWSJIWLFigTz/9VIMHD9a3336rVq1aFet/xx13aNWqVbrkkkv0xhtvKCUlRZdddpnS09N12223Veg4AQAAAFSMqXcCTZs2TZ999pneeustpaam6uKLL9ZFF12k//znP/r9999ls9nUpUsXTZs2zcwwAQAAAKBCPJ3zdOrUSZ06dSrXOpGRkZo/f77mz59/Qf2tVqsmTZqkSZMmXfA++vfvr/79+5crLgAAAADuZ+qdQLVq1VJWVpaSkpIUExOjn376SWvWrNFPP/2kmJgYPfXUU8rMzCzx22gAAAAAUNWR8wAAAAAwk6l3AklSUFCQnnzyST355JM6fvy4cnNzFRERwTzRAAAAAHwCOQ8AAAAAs5h6J1B2drYmT56sAwcOSJLCw8PVuHFjZzK0f/9+TZ48Wd98842ZYQIX7OSWLcr/5hvlf/ONTm7ZYnY4AAAAMBk5D6orchsAAADfYOqdQC+88IJ++OEHvfDCCyW+Hh0drY8//lh79+5Vamqql6ODL7Nb/LW7YV+Xtjv8uWCBTn63UZIU0jFeTRctcst24Xv8rf7qG9tXe/ftdbaBklj9LGoZ38ClDQCoPsh5UF2R2/g+R05ydhuex/U9AMDbTP0Lv379el1zzTXn7dOrVy+tXr3aSxGhprD7Bem7yx4zOwzUYEF+QXqs62PKyspytoGS+Af4qdfQVmaHAQCoIHIeAFWVIyeBd3F9DwDwNlOng/vjjz/UuHHj8/Zp2LCh/vjjDy9FBAAAAADuQ84DAAAAwEym3glUu3Zt7dq167x9du7cqbCwMC9FBFTORVOnyp6fL0myhoaaHA0AAADMRs6D6orcBgAAwDeYWgTq1q2bVqxYod27d6tJkybFXt+1a5c++OADXX311SZEB5Rf0MUXmx0CAAAAqhByHlRX5DYAAAC+wdTp4CZPnqwTJ06oR48eevPNN7V//35J0v79+7V48WL16NFDJ0+e1JQpU8wMEz7IYi9Q7L5PnD8We4HZIaGGKbAX6JNtn2h93nqtz1uvAt6DKEVRkV2/fXvA+VNUZDc7JABAOZDzAKiqHDmJ44ecxDu4vgcAeJupdwL16tVLL7zwgqZMmaIxY8ZIkiwWiwzDkCRZrVYtWLBAvXr1MjNM+CA/u01X/PK8s723QW8VWgNMjAg1ja3Ipuc3PC+bzSZJurfoXgXwHkQJigrsyl7+u7PdrH2U/PxM/Q4HAKAcyHkAVFWOnMShd5Pe5CRewPU9AMDbTC0CSdLf/vY39enTR3//+9+1fv16HTt2TLVr11aXLl107733qm3btmaHCAAAAAAVRs4DAAAAwCymF4EkqX379vq///s/s8NADWJYrPqjbieXNgAAAOAp5DwAAAAAzFAlikCAtxX5hejrDs+5fbu7xo/Xye82SpJCOsar6aJFbt8HAAAAAHgauQ0AAIBv4PYHAAAAAAAAAAAAH0QRCAAAAAAAAAAAwAcxHRzgRpE33KBaHc88ayigUbTJ0QAAAABAxZDbAAAA+AaKQKiRLPYCXXR4vbP9n7qdZVgDKr3dyBtuqPQ2AAAAAMBs5DYAAAC+gSIQaiQ/u03dfnjC2f6410cqdEMRCAAAAAAAAACAqoJnAgEAAAAAAAAAAPggikAAAAAAAAAAAAA+iOnggPNYum5XufqP6NrUQ5HA14T4h2jpwKVat26dsw2UJCDQT7c92smlDQAAAFSWIyc5uw3P4/oeAOBtFIEAN/pj/os6nZMjSQqKi1ODhx40NyBUWVaLVQ1DG6qOfx1nGyiJxWpRWJ1gs8MAAAA+qrQvvkW/94aC9+yQJJ2Kaab9t45xvsaX33yDIyeBd3F9DwDwNopAgBud+vknnfxuoyTJKCwwORoAAAAAqJiQnVsV9tsWSZKlqMjkaAAAAFBRfPUcAAAAAAAAAADAB3EnEOBGQS1ayigocP4OAAAAANXR6UZNZP3v7AanGzUxORoAAABUFEUgwI0uenSa2SGgmjhRcEKjPhulvLw8SVKngk6qFVDL5KhQFdlOFWrF8xud7cFT4hUYzJ9vAADgWXuH32N2CPAwR07isLj/YnISL+D6HgDgbfyVAQATGDJ06OQh2YpszjZQmhO5NrNDAAAAgI9x5CRnt+EdXN8DALyJZwIBAAAAAAAAAAD4IIpAAAAAAAAAAAAAPogiEAAAAAAAAAAAgA/imUCAG+Wmpavwjz8kSf4NGiiiX6LJEQEAAABA+UWu/5cCjh6WJBXUrqtjnXuaHBEAAAAqgiIQ4EZHl7+nk99tlCSFdIynCAQAAACgWqqXlaaw37ZIkvJataEIBAAAUE0xHRwAAAAAAAAAAIAPoggEAAAAAAAAAADgg5gODnCjmP/9X6mo6EzDz8/cYAAAAACggrZPnC6L3S5JMqx8fxQAAKC6oggEuJE1ONjsEAAAAACg0ozAIBlmBwEAAIBKowiEGslu8dfO6Otc2oA3+Vv9dV3z67Rnzx5nGyiJ1c+iuM4XubQBAACAynLkJGe34Xlc3wMAvI2/8KiR7H5B2nTpI2aHgRosyC9Ij3R+RFkns5xtoCT+AX666tY4s8MAAACAj3HkJPAuru8BAN7GxL4AAAAAAAAAAAA+iDuBADey7dkr4+QJSZIlpJYCYxqbHBEAAAAAlF/gnwdkPX1KkmQPCpatfkOTIwIAAEBFUAQC3OjA00/p5HcbJUkhHePVdNEikyMCAAAAgPKLefMlhf22RZKU16qNtk15xuSIAAAAUBEUgVAjWewFarbvU2d7R6MBMqwBJkaEmqbAXqBPt32qX4//Kknqbu+uAN6DKEFRkV053/7H2Y7rcpH8/JjNFQAAAJXjyEkcBrQYQE7iBVzfAwC8jSIQaiQ/u02X/7bA2d7d8FoVcrELL7IV2bRg4wLZbDZJ0gNFD5BwoURFBXat/WCrs93iivokiQAAAKg0R07icG3steQkXsD1PQDA2ygCAW4Udc89Kjp6VJLkV7u2qbEAAAAAQEX954ZhOpSXK0kqDIswORoAAABUFEUg1EiGxU8Horq7tN2hVseObtkOAAAAAJgpv1Vbs0MAAACAG1AEQo1U5Besb9rPMjsMAAAAAAAAAAA8hklHAQAAAAAAAAAAfBBFIAAAAAAAAAAAAB/k00WgvXv36sUXX1RiYqKaNm2qwMBANWzYULfccovWrVtX4jq5ubmaPHmyYmNjFRQUpGbNmumRRx5RXl5eif3tdrsWLlyodu3aKSQkRPXr19fw4cO1bdu2UuNKS0tTQkKCwsPDFRERoT59+uiLL75wyzEDAAAAAAAAAABIPv5MoIULF2ru3Llq2bKlEhMTVb9+feXk5OiDDz7QBx98oKVLl2ro0KHO/vn5+UpISNDmzZuVmJio4cOHa9OmTZo3b54yMzOVlZWl4OBgl33cc889Sk5OVps2bTRp0iTt27dPy5YtU3p6ur755hvFxcW59F+yZIlGjhyp+vXra/To0ZKk1NRU9e3bV8uWLdOtt97q8XGBZLEXKPrgWmd7f1R3GdaASm937yNTdeqHHyRJwe3bq/H/PFfpbQIAAACAt8X+fa5qbftVknSiRWvtvHeayREBAACgIny6CNSlSxdlZGQoISHBZfm//vUvXXPNNbrvvvs0aNAgBQUFSZKee+45bd68WdOmTdOcOXOc/R999FHNnTtX8+fP12OPPeZcvmbNGiUnJ6tXr15avXq1AgMDJUkjRozQgAEDNGHCBKWlpTn7HzlyRBMnTlRUVJQ2btyomJgYSdK0adN0xRVX6L777lO/fv0UHh7usTHBGX52m7r8mORsf9zrIxW6oQhUdOyoCg8edP4OAAAAANWRX/5xBRw74vwdAAAA1ZNPTwd38803FysASVLPnj3Vp08fHTlyRP/+978lSYZhKDk5WWFhYZo+fbpL/+nTpyssLEzJyckuy1977TVJ0syZM50FIEm67rrr1Lt3b6Wnp2vXrl3O5e+++66OHj2qiRMnOgtAkhQTE6MJEybo4MGDWrFiReUPHAAAAAAAAAAA1Hg+XQQ6n4CAM3d9+PufuRkqJydH+/btU48ePRQaGurSNzQ0VD169NC2bdu0e/du5/KMjAzna+fq16+fJCkzM9OlvyQlJiZeUH9UP2FX9VTk4MGKHDxYYVf1NDscAAAAAKiQ4+066VDPvjrUs6+Ot+tkdjgAAACoIJ+eDq40u3bt0ueff67o6Gi1a9dO0pkikKRiz/BxiIuLU1pamnJyctSkSRPl5+dr//79atu2rfz8/Ersf/Z2y9pHSf1L07179xKX//jjj2ratKmysrLK3IYn5Obmymo3FHzoV1P2Xx7+RSdlsRc628GHc1ToF1Lp7f7YLFZqFvvXApPOxblyc3MlybT3BoqzG3ZNrj9Zx4+fmVpj/dfrZbXU2Lp8lVRVPjeGYajp1X+1167LlsViMS+gKqCqnBsUx7mpunz93OTm5ioiIsLsMACf8mfiILNDgIeF+Ido2Q3LXNrwvIBAPw39f11c2gAAeFKNKwIVFBRo5MiROn36tObOness4Bw7dkySFBkZWeJ6jqTS0a+8/ctap6T+AHyX1WJVhF+E835MCkAojcViUQD5OAAAANzMarEqKiTK7DBqHIvVoloRgWV3BADATWpUEchut2v06NHKysrSuHHjNHLkSLNDqpC1a9eWuNxxh1CvXr28GY5TVlaWDuad1ql6rU3Zf3n4F+bLsP719j9VN06F/qHnWePC9OratNLb8ATHt37Nem+gdJybqotzU3Vxbqouzk3V5evnpibfBbR37169++67+vTTT/XLL7/owIEDqlu3rnr06KGpU6eqa9euxdbJzc1VUlKSli9frgMHDig6Olq33XabZsyYobCwsGL97Xa7Xn75ZS1atEi///67wsLCdO2112rWrFlq0aJFiXGlpaVp9uzZ2rhxoywWizp27KgnnnhC11xzjdvHAAAAAEDpasxXz+12u+666y4tXbpUd9xxh/7+97+7vO64O6e0O3EcU2g4+pW3f1nrlNQfAAAAAM5n4cKFeuihh7Rt2zYlJiZqypQpuuqqq7Ry5UpdeeWVSk1Ndemfn5+vhIQEzZ8/X5dccokeeughtW7dWvPmzdPVV1+tU6dOFdvHPffco0mTJskwDE2aNEn9+/fX+++/r86dO5c4nfWSJUvUv39//fzzzxo9erRGjRqlLVu2qG/fvnrvvfc8NhYAAAAAiqsRdwLZ7XaNGTNGb775poYPH66UlBRZra71r7KeyXPu83xCQ0MVHR2t7du3q6ioqNhzgUp6/k9cXJw2bNignJwc1atXr8z+AAAAAHA+Xbp0UUZGhhISElyW/+tf/9I111yj++67T4MGDVJQUJAk6bnnntPmzZs1bdo0zZkzx9n/0Ucf1dy5czV//nw99thjzuVr1qxRcnKyevXqpdWrVysw8MwURiNGjNCAAQM0YcIEpaWlOfsfOXJEEydOVFRUlDZu3KiYmBhJ0rRp03TFFVfovvvuU79+/RQeHu6xMQEAAADwF5+/E+jsAtDQoUP11ltvFSvYSGeKL40aNVJ2drby8/NdXsvPz1d2draaN2+uJk2aOJcnJCQ4XzuXIxE6e8oNR2KWnp5eav9zkzdUL4feSNH+GUnaPyNJh95IMTscVGEnCk5o0AeDNHPPTM3cM1MnCk6YHRKqKNupQi19ap3zx3aq0OyQAABVyM0331xiDtGzZ0/16dNHR44c0b///W9JkmEYSk5OVlhYmKZPn+7Sf/r06QoLC1NycrLL8tdee02SNHPmTGcBSJKuu+469e7dW+np6dq1a5dz+bvvvqujR49q4sSJzgKQJMXExGjChAk6ePCgVqxYUfkDh8fV/2y5mqQsUJOUBar/2XKzw4EHOHISxw85iXdwfQ8A8DafvhPIMQXcm2++qdtuu01LliwpsQAknXnw9tixY/X0009r5syZLt+KmzlzpvLy8vT444+7rDN+/Hi98847mj59usu34latWqWMjAwlJiYqNjbW2X/IkCGaNm2aFi5cqLvuusuZFO3Zs0cvvfSSoqKiNHjwYHcPA7wof+3XOvndRklSSMd41Rsz2tyAUGUZMpRry5XNbnO2gdKcPlFgdggAgGooICBAkuTvfybty8nJ0b59+9SvXz+Fhro+DzM0NFQ9evRQWlqadu/e7fzyW0ZGhvO1c/Xr108ZGRnKzMx0Pm81IyNDkpSYmFhi/6SkJGVmZurOO+8sM37HM0/P9eOPP6pp06bOZ115W25urqx2Q8GHfjVl/95Se9NXCtm+VZJ0snlLHe/c1vlaVtaOCm3TMQ26WeeuunP3+J2yn9LBvIPO9lfZXynYGuyWbVdFVeX9V1Rg6PjRImc7OztbfgEWEyO6MFVl/Korxq/iGLvKYfwqp6qNX25uboWeh+rTRaCnn35aixcvVlhYmFq1aqVnnnmmWJ9BgwapQ4cOkqSpU6dq5cqVmjt3rjZt2qT4+Hht3LhR6enp6ty5sx588EGXdfv06aOxY8cqOTlZ8fHxGjhwoPbv36/U1FTVrVtXCxcudOlfp04dvfTSSxo5cqTi4+M1dOhQSVJqaqoOHTqk1NRUpkWo5vYdPaWwojP/mH/k6Cl9tW5XGWtII7o29XRYAAAAqGF27dqlzz//XNHR0WrXrp2ksqegjouLU1pamnJyctSkSRPl5+dr//79atu2bamzKZy93bL2UdYU3Kg+DuadLvc6UWFBHogEAAAAZfHpItCOHTskSXl5eZo1a1aJfZo1a+YsAoWGhiozM1NJSUlavny51qxZo+joaE2ZMkUzZsxQSEhIsfVfffVVtWvXTosWLdKCBQsUFhamwYMHa9asWWrZsmWx/nfccYeioqI0e/ZsvfHGG7JYLOrYsaOeeOIJXXvttW47dpijMKK2bHWjnL8DAAAA3lZQUKCRI0fq9OnTmjt3rrOAc+zYMUlSZGRkies5vlXo6Ffe/mWtU1L/81m7dm2Jyx13CJ099bY3ZWVl6WDeaZ2q19qU/XvL6ajG8svNc/5e2ePt1fWvu7fMOnfVnbvHL78gX4Er/prmsUePHgoNCD3PGtVbVXn/2U4Vakf6N852jx7dFBhc9f95rqqMX3XF+FUcY1c5jF/lVLXxq8hdQJKPF4FSUlKUkpJSrnUiIyM1f/58zZ8//4L6W61WTZo0SZMmTbrgffTv31/9+/cvV1yoHnaNe9jsEAAAAFCD2e12jR49WllZWRo3bpxzmjagvMhtAAAAfIPV7AAAAAAAAJXneCbq0qVLdccdd+jvf/+7y+uOu3NKuxPHMee5o195+5e1Tkn9AQAAAHgWRSAAAAAAqObsdrvGjBmjxYsXa/jw4UpJSZHV6prulfVMnnOf5xMaGqro6Ght375dRUVFZfYvax9lPZMIAAAAgPtRBAIAAACAasxRAHrzzTc1dOhQvfXWW87nAJ0tLi5OjRo1UnZ2tvLz811ey8/PV3Z2tpo3b64mTZo4lyckJDhfO1daWpok1znSExISJEnp6eml9nf0AQAAAOB5FIEAAAAAoJpyTAH35ptv6rbbbtOSJUtKLABJksVi0dixY5WXl6eZM2e6vDZz5kzl5eVp3LhxLsvHjx8vSZo+fbpsNptz+apVq5SRkaHExETFxsY6lw8ZMkSRkZFauHCh9uzZ41y+Z88evfTSS4qKitLgwYMrfdwAAAAALoy/2QEAviTs583yP35mrvPC8AjlXdrB3IAAAADg055++mktXrxYYWFhatWqlZ555plifQYNGqQOHTpIkqZOnaqVK1dq7ty52rRpk+Lj47Vx40alp6erc+fOevDBB13W7dOnj8aOHavk5GTFx8dr4MCB2r9/v1JTU1W3bl0tXLjQpX+dOnX00ksvaeTIkYqPj9fQoUMlSampqTp06JBSU1MVHh7ukbGAe5HbAAAA+AaKQIAbNfj0PYX9tkWSlNeqDYkSAAAAPGrHjh2SpLy8PM2aNavEPs2aNXMWgUJDQ5WZmamkpCQtX75ca9asUXR0tKZMmaIZM2YoJCSk2Pqvvvqq2rVrp0WLFmnBggUKCwvT4MGDNWvWLLVs2bJY/zvuuENRUVGaPXu23njjDVksFnXs2FFPPPGErr32WrcdOzyL3AYAAMA3UARCjWS3+Gt74xtc2oA3+Vv9dUPLG7R7925nGyiJ1c+iS7o1dGkDAOCQkpKilJSUcq0TGRmp+fPna/78+RfU32q1atKkSZo0adIF76N///7q379/ueIC4F2OnOTsNjyP63sAgLfxFx41kt0vSN+3fsjsMFCDBfkF6aGODykrP8vZBkriH+Cn7oMvNjsMAAAA+BhHTgLv4voeAOBtFIEAN9o95m+yFJx5YK4REGhyNAAAAABQMeQ2AAAAvoEiEOBGBXXrmx0CAAAAAFQauQ0AAIBvsJodAAAAAAAAAAAAANyPO4FQI1ntBWq+90Nne3vjG2W3BpgYEWqagqICfbj1Q/12/DdJUvei7grw4z2I4ooK7fr1mwPOdutuDeXnz3c4AAAAUDmOnMThxpY3kpN4Adf3AABvowiEGslqt6ldzsvO9s7o/hSB4FU2u00vb35ZNtuZedYn2SeRcKFERYV2rftom7N9cacGJIkAAACoNEdO4tC/eX9yEi/g+h4A4G0UgQA3sp7Ml6WoSJJk+PnJHhJqckQAAAAAUH7kNgAAAL6BIhBqJMPip/31r3Jpu0Oz/3tWYb9tkSTltWqjbVOecct2AQAAAMCbyG0AAAB8A0Ug1EhFfsFa1+5ps8MAAAAAAAAAAMBjmHQUAAAAAAAAAADAB3EnEOBGB/sM1LH47pKkgsi6JkcDAAAAABVDbgMAAOAbKAIBbpT73yQJAAAAAKozchsAAADfQBEINZLFXqBGf/7L2d5Xv6cMa4CJEQEAAAAAAAAA4F4UgVAj+dlt6rzlGWf7414fqZAiEAAAAAAAAADAh1AEAky2dN2ucq8zomtTD0QCAAAAAAAAAPAlVrMDAAAAAAAAAAAAgPtxJxDgRo2X/J9q7fxdknQi9mLtveN+kyNCVRXiH6IVN63Q119/7WwDJQkI9NPwJ7u6tAEAADyN3Mb3OXKSs9vwPK7vAQDeRhEIcKOg/+xTyK7tkqSi4FomR4OqzGqxKjIoUqF+oc42UBKL1aLgUJ5ZBgAAvIvcxvc5chJ4F9f3AABv418dAQAAAAAAAAAAfBB3AgFudKJFa9mDgiVJpxrHmhwNAAAAAFQMuQ0AAIBvoAgEuNGBwSPNDgEAAAAAKo3cBgAAwDdQBAIAE+QX5Gvox0N18sRJSdKHBR8qNCDU5KhQFdlOFWrZ7PXO9pDHOyswmD/fAAAAqBxHTuKQen0qOYkXcH0PAPA2/soAgElOFJyQzbCZHQaqgYLTRWaHAAAAAB90ouCE2SHUSFzfAwC8yWp2AAAAAAAAAAAAAHA/ikAAAAAAAAAAAAA+iOngADeq+690BR78Q5Jki2qgwz0TTY4IAAAAAMrP3bnN0nW7FJx32vn7hRjRtWml9gkAAACKQIBb1f42S2G/bZEk5bVqQxEIAAAAQLVEbgMAAOAbmA4OAAAAAAAAAADAB3EnEOBOVj8Zfn7O3wEAAACgWiK3AQAA8AkUgQA32vbQU2aHAAAAAACVRm4DAADgG5gODgAAAAAAAAAAwAdRBAIAAAAAAAAAAPBBTAeHGsluCdC2mMEu7epk6bpd5eofnHdaUWFBHooGFRFgDdDguMHatWuXsw2UxM/Pqst6NHJpAwAAAJXlyEnObsPzuL4HAHgbRSDUSHa/QP3QaqLZYaAGC/QL1MQrJirreJazDZTEL8Cqrje2MDsMAAAA+BhHTgLv4voeAOBtFIEANwretU1+J/MlSUUhoTrVlAs7AAAAANUPuQ0AAIBvoAgEuFGjd19X2G9bJEl5rdpo25RnTI4IAAAAAMqP3AYAAMA3MPEoAAAAAAAAAACAD+JOINRIVnuBWu5e7mxvbXKL7DwEE15UUFSg5TnL9Xvu75Kk7kXdFeDHexDFFRXa9dNX+5zty65qJD9/vsMBAACAynHkJA63xN1CTuIFXN8DALyNIhBqJKvdpjZbFznb2xvf4JYi0L7b7nKZNxsojc1u06IfFslms0mSHrI/RMKFEhUV2rVh1Q5nu3W3hiSJAADA46pCbrN03a5y9R/RtamHIvFNjpzE4YaWN5CTeAHX9wAAb6MIBLgRD0sFAAAA4AvIbQAAAHwDRSDUSIbFT3sb9HZpAwAAAAAAAADgSygCoUYq8gvW+rZPmh0GAAAAAAAAAAAew6SjAAAAAAAAAAAAPogiEAAAAAAAAAAAgA9iOjjAjVrMn6HQnC2SpPy4Ntr20FMmRwQAAAAA5UduAwAA4BsoAqFGstgLFPOfL53tPRddLcMaUPkN24tkKSpy/g4AAAAA1RK5DQAAgE+gCIQayc9uU8ef5zrb++tfpUJ3FIEAAAAAAAAAAKgiKAIBbnS0Sy+daHGJJMkW1cDkaAAAAACgYshtAAAAfANFIMCNDvdMNDsEAAAAAKg0chsAAADfQBEIAExQy7+WPhr8kbKzs51toCQBQX66/aluLm0AAACgshw5ydlteB7X9wAAb6MIBNQQB/NOa+m6XeVaZ0TXph6KBhaLRaEBoQq2BjvbQEksFosCg/lzDQAAAPdy5CTwLq7vAQDeZjU7AAAAAAAAAAAAALifTxeBlixZonvuuUedOnVSUFCQLBaLUlJSSu2fm5uryZMnKzY2VkFBQWrWrJkeeeQR5eXlldjfbrdr4cKFateunUJCQlS/fn0NHz5c27ZtK3UfaWlpSkhIUHh4uCIiItSnTx998cUXlT1UAAAAAAAAAAAAFz59/+kTTzyhnTt3KioqStHR0dq5c2epffPz85WQkKDNmzcrMTFRw4cP16ZNmzRv3jxlZmYqKytLwcHBLuvcc889Sk5OVps2bTRp0iTt27dPy5YtU3p6ur755hvFxcW59F+yZIlGjhyp+vXra/To0ZKk1NRU9e3bV8uWLdOtt97q9jGAdzVc8ZaC9555n51qHKsDg0eaHBEAAAAAlB+5DQAAgG/w6SJQcnKy4uLiFBsbqzlz5uixxx4rte9zzz2nzZs3a9q0aZozZ45z+aOPPqq5c+dq/vz5LuuvWbNGycnJ6tWrl1avXq3AwEBJ0ogRIzRgwABNmDBBaWlpzv5HjhzRxIkTFRUVpY0bNyomJkaSNG3aNF1xxRW677771K9fP4WHh7t7GOBFtbb9qrDftkiSrKdPmRwNqrL8gnzd8uEtOnXqzPvkk4JPmI8bJbKdKtQ7M791todN78Ic4gAAwOPIbXyfIydxWH7jcnISL+D6HgDgbT49Hdy1116r2NjYMvsZhqHk5GSFhYVp+vTpLq9Nnz5dYWFhSk5Odln+2muvSZJmzpzpLABJ0nXXXafevXsrPT1du3btci5/9913dfToUU2cONFZAJKkmJgYTZgwQQcPHtSKFSsqdJwAqidbkU2FRqEKjUKzQ0EVV1Rod/4AAHAupsEGzli6ble5f2o6W5HN+QPv4foeAOBNfNVAUk5Ojvbt26d+/fopNNT1Wy+hoaHq0aOH0tLStHv3bjVp0kSSlJGR4XztXP369VNGRoYyMzM1cuRIZ39JSkxMLLF/UlKSMjMzdeedd5YZb/fu3Utc/uOPP6pp06bKysoqcxuekJubK6vdUPChX03Zf3n4F52Uxf7XP7wHH85RoV9IpbdbFBGi09ENnb9XlbGwFp755l5548nK2uGBaCBJp+ynZLPZZLefuejPzs5WsDW4jLXgTbm5uZJk2v9THYoKDNlsRc52dna2/AIsJkZkvqpyblAc56bq8vVzk5ubq4iICLPDMA3TYMMTTl/USH6nTjh/BwAAQPVEEUhnikCSiiUvDnFxcUpLS1NOTo6aNGmi/Px87d+/X23btpWfn1+J/c/ebln7KKk/qqf/3ExCCwAAAO9iGmx4wt477jc7BAAAALgBRSBJx44dkyRFRkaW+LrjW4WOfuXtX9Y6JfU/n7Vr15a43HGHUK9evS5oO+6WlZWlg3mndapea1P2Xx7+hfkyrH+9/U/VjVOhv+/Ofey4A6i856ZX16aeCAc6M/924IpA2Wxnpl3o0aMH829XMY5vy5v1/1QH26lC7Uj/xtnu0aNbjZ8zvKqcGxTHuam6fP3c1OS7gKQz02BfiLKmwX755ZeVnJzsUgS60GmwmzY9c93omAb7qaeeKnEa7KSkJK1YseKCZkAAAAAAUHk+/UwgAAAAAMAZjmmwe/ToUeo02Nu2bdPu3budy8uaBluSMjMzXfpLpU+DfW5/AAAAAJ5Vs79K/F+Ou3NKuxPHMYe6o195+5+7Tr169crsDwAAAADuVN2mweZZqL6nos8q9aTq9BxUdz/fzfGcUgdff05pVXk+XnV95mdVGb/qivGrOMauchi/yqlq41fRZ6FyJ5DKTkbOTWRCQ0MVHR2t7du3q6ioqMz+Ze2jrGQMAAAAACqruk2DDQAAAKDyuBNIZ4ovjRo1UnZ2tvLz812mRsjPz1d2draaN2+uJk2aOJcnJCTonXfeUXZ2drG51R0PRj17eUJCgt5++22lp6erW7duJfZPSEhw+7HBuyI2rlXAscOSpILIusqNL/nbiwAAAADOj2ehmssTuU1Fn1XqSdXpOajufr6b4zmlDr7+nNKq8ny86vrMz6oyftUV41dxjF3lMH6VU9XGr6LPQuVOIEkWi0Vjx45VXl6eZs6c6fLazJkzlZeXp3HjxrksHz9+vKQzD1A9+/bpVatWKSMjQ4mJiYqNjXUuHzJkiCIjI7Vw4ULt2bPHuXzPnj166aWXFBUVpcGDB3vi8OBFUWs+UeN3ktX4nWRFrfnE7HAAAAAAJ29Pg30h/VF1kdsAAAD4hqr/VYNKSE5O1ldffSVJ+ve//+1c5nhY6VVXXaWxY8dKkqZOnaqVK1dq7ty52rRpk+Lj47Vx40alp6erc+fOevDBB1223adPH40dO1bJycmKj4/XwIEDtX//fqWmpqpu3bpauHChS/86deropZde0siRIxUfH6+hQ4dKklJTU3Xo0CGlpqYqPDzcg6MBAAAAoCar7DTY5z4XqLRpsDds2KCcnJxiz0JlGmwAAADA+3y6CPTVV19p8eLFLsuys7OVnZ3tbDuKQKGhocrMzFRSUpKWL1+uNWvWKDo6WlOmTNGMGTMUEhJSbPuvvvqq2rVrp0WLFmnBggUKCwvT4MGDNWvWLLVs2bJY/zvuuENRUVGaPXu23njjDVksFnXs2FFPPPGErr32WjcfPc7HbgnQ702HuLQBbwqwBmhI6yHauWOnsw2UxM/Pqra9Gru0AQCoCKbBBnA2R05ydhuex/U9AMDbfLoIlJKSopSUlAvuHxkZqfnz52v+/PkX1N9qtWrSpEmaNGnSBe+jf//+6t+//wX3h2fY/QL148X3un27O+5/TJaiIkmScc43JYGzBfoF6t7L71XWsSxnGyiJX4BVnQc2NzsMAIAPcEyD/fTTT2vmzJmaM2eO8zXHNNiPP/64yzrjx4/XO++8o+nTp2v16tUKDDxzzXK+abCnTZumhQsX6q677lJMTIwkpsGujshtfJ8jJ4F3cX0PAPA2ny4CAd5mD/Gth2guXber3OuMqEYPVgUAAPAFTIMNT/C13AYAAKCmoggEAAAAANUY02ADAAAAKA1FIAAAAACoxpgGGwAAAEBpKAKhRrLaC3TxrmXO9u9Nh8jOQzDhRQVFBVr22zL9fux3SVL3ou4K8OM9iOKKCu36MWuvs922V2P5+fPwWAAAAFSOIydxGNJqCDmJF3B9DwDwNopAqJGsdpsu2/YPZ3tbzCC3FIECDv8pS4FNkmQEBKqgbv1KbxO+yWa36R///odstjPvl4ftD5NwoURFhXZtTNvpbF96ZTRJIgAA8DhyG9/nyEkcBl08iJzEC7i+BwB4G0UgwI2avLFAYb9tkSTltWqjbVOeMTkiAAAAACg/chsAAADfQBEINZLd4q/dDfu6tAEAAAAANcvSdbvKvc6Irk09EAkAAIBn8C/fqJHsfkH67rLHzA4DAAAAAAAAAACPoQgEuNEfA27V4Z6JkqTC8AiTowEAAACAiiG3AQAA8A0UgQA3yru0g9khAAAAAEClkdsAAAD4BqvZAQAAAAAAAAAAAMD9uBMINZLFXqCmB9Kd7V0NE2VYA0yMCAAAAAAAAAAA96IIhBrJz27TFb8872zvbdBbhRSB3GLpul3l6j+ia1MPRQIAAAAAAAAANRvTwQEAAAAAAAAAAPgg7gQC3Kjpa/NUa9uvkqQTLVpr17iHTY4IAAAAAMqP3KZ05Z39QGIGBAAAYB6KQIAb+eceVeDhg5IkW9RFJkeDqqyWfy2tumWVvvrXV842UJKAID+NfKa7s+3nz028AADA88htfJ8jJ3EItAaaGE3NwfU9AMDbKAIBgAksFouC/IIU8N9nUVksFpMjQlVlsVjkH+BndhgAAADwMY6cBN7F9T0AwNsoAgFudLzNFSqoV1+SdKphjMnRAAAAAEDFkNsAAAD4BopAgBv92f8Ws0MAAAAAgEojtwEAAPANFIEAmIqHqgIAAAAAAACAZ1AEAgAT5Bfk68YPbpTttE2S9FnBZwoNCDU5KlRFtlOFWpq0ztkekdRVgcH8+QYAAEDlOHIShw8HfUhO4gVc3wMAvI2/MgBgEsMwZMgwOwxUA4bB+wQAAADux3WmORh3AIA3Wc0OAAAAAAAAAAAAAO7HnUCAG9VP/0CBf+yTJNkaNNKfiYPMDQgAAAAAKoDcBgAAwDdQBALcKPzfGxT22xZJUl6rNiRKAAAAAKolchsAAADfwHRwAAAAAAAAAAAAPog7gQA3KgoNV0FkHefvAAAAAFAdkdsAAAD4BopAgBvtvHea2SEAAAAAQKWR27jX0nW7yr3OiK5NPRAJAACoaZgODgAAAAAAAAAAwAdRBAIAAAAAAAAAAPBBFIEAAAAAAAAAAAB8EM8EQo1ktwTot9gRLm1UH74wn3aANUAjLh2h7du3O9tASfz8rGrfJ8alDQAAAFSWIyc5uw3P4/oeAOBtFIFQI9n9AvVTy7Fu327obz/KPy9XklQYFqH8Vm3dvg/4hkC/QI1tN1ZZR7KcbaAkfgFWdezfzOwwAABADUNu4/scOQm8i+t7AIC3UQQC3Oiij95R2G9bJEl5rdpo25RnTI4IAAAAAMqP3AYAAMA3UAQCAAAAAACoYs6dBjs473SJy89W1abBBgAA5mPiUQAAAAAAAAAAAB/EnUCokaz2ArXaudTZ/i12hOxueAjmnjsnyHr6lCTJHhRc6e3Bfc73bbnSePJbdAVFBVr6y1JtPbZVktS9qLsC/HgQK4orKrTrhzV7nO32fWLk5893OAAAgGeR2/g+R07iMOKSEeQkXsD1PQDA2ygCoUay2m26ZPtiZ/v3Jre6pQhkq9+w0ttAzWCz27R4y2LZbDZJ0jT7NBIulKio0K7Nn/9VxGzTsxFJIgAA8DhyG9/nyEkcbm11KzmJF3B9DwDwNv7KAAAAAAAAAAAA+CDuBEKNZLf4a2f0dS5tAAAAAAAAAAB8Cf/yjRrJ7hekTZc+YnYYqOKq2nOEAAAAAOB8ypPDnC46oZMFRQoJ8PNgRAAAwGwUgQA3sthOy2K3S5IMq1VGYJDJEcHbLjTpciRcFsOQ1WLxcFQAAABA+ZDbAAAA+AaKQIAbNV84U2G/bZEk5bVqo21TnjE5IgAAAAAoP3IbAAAA30ARCAAAAAAAoIY6WVAkSVq2freC/GqV2Z8psAEAqF4oAqFGstgL1Gzfp872jkYDZFgDTIwIAAAAAAAAAAD3ogiEGsnPbtPlvy1wtnc3vFaFbigCHerVT7ntO0uSCmrXrfT2AAAAAMAM5DYAAAC+gSIQ4EbHOvc0OwRUQ3bDuOCpFySmXwAAAIDnkdsAAAD4BqvZAQAAAAAAAAAAAMD9uBMIAEwQaA3RAy1TFHzoN0nSaWuIyRGhqgoI8tOoZ3s42xaLicEAAADAZzhyEgfLBX5PeOm6XeXeF7MZ/IXrewCAt1EEAgATWCwWWeQnq8XqbAMlsVgsJIYAAABwO0dO4g0Ujv7C9T0AwNuYDg4AAAAAAAAAAMAHcScQ4EaN335VIbu2SZJONm2hvcPvMTki+KKKfIuuInz1m3cAAAAoG7kNAACAb6AIBLhR0L7dqrXtzDNe7P4BJkeDqswwDBmyy27YnW2mhENJDMOQYfzVtliYPhAAAHgeuY3vc+QkDhZZq9R1pq9OIcf1PQDA2ygCAYAJbPaTWrT9HlnshZKkcXX+oSC/WiZHhaqo4HSR/jnjG2f79qe6KTCYP98AAACoHEdO4jC++avkJF7A9T0AwNv4KwO40cnYljL8zjxY81RMM3ODAQAAAIAKIrcBAADwDRSBADfaf+sYs0MA3MZXp18AAABA2chtUB2dL4cJzjtdYh9yGACAr6MIBABwGwpHAAAAAAAAQNVBEQgAYKqKFI4qgmITAAAAgHPxRTYAgK+jCAQAAAAAAABcoPIWjigaAQDMZDU7gJpo/fr1GjBggGrXrq3Q0FB169ZNy5YtMzssAAAAAHAb8h4AAADAfNwJ5GVr1qxRv379FBwcrGHDhik8PFzLly/X0KFDtXv3bk2ZMsXsEFEJdb7+UoGH/pAk2eo10JErrzY5IgAO5f22XmkPjj0fvuEHAMAZ5D3VH7kN4D5n5xRGgV0nbUXO9rsb9sgS4J7vaJOPAABKQhHIiwoLCzVu3DhZrVZlZWWpQ4cOkqQnn3xSXbp00eOPP65bb71VsbGx5gaKCquz9kuF/bZFkpTXqg2JElDDVOX5xKtybAAA30Le4xvIbYDqh2t+AEBJKAJ50ZdffqmtW7dqzJgxzkRIkiIjI/X4449r9OjRWrx4sZ588knzggQAeFVZiZonvylYFm/MdV6RRLUid2lVBAkxAFQMeQ8AVB8Xek1d2Wtwrq0BwDwUgbwoIyNDkpSYmFjstX79+kmSMjMzy9xO9+7dS1y+YcMGBQQEqE2bNhUPshKKiopkSJKl6j9qKtTfrt4DDjnbc+4drPzCysc93TB06X9///2H9Zo5un+lt+kWhv3Mf6vBuakxAqWAcX+djzn33SzZTIwHxVWRz02AX5BGdv7rH8n+794HVVB02sSISveUt3bkpXPjtePxAn+rxSv7KSz6b8GyHOfGW7HVdEX/PTd+fn4mR+IZ27dvV3h4uNlh4L/Ie3yDR3KbKnJ9VW25e/zOzUme8/GcpIq8/6rT9b2LSo6fL11bV4Tlv+Pnq9dinuTr17GexvhVTlUbv4rmPRSBvCgnJ0eSFBcXV+y1hg0bKiwszNmnIvz9/RUeHq6IiIgKb6MyfvzxR0lS27ZtTdl/ed2UVcf5e1CYFOSGbb58TruuG7bpDtXt3NQY/zzn3NQyOR64qEqfmw9+ec75e3h4sKRg84KpAqrSuYErzk3V5evnJjw8XHXq1Cm7I7yCvMc3eCK3qSlj5ykeGb9/nvV7Lfl0TlKV3n/V8fq+Ko1fdcT4VRxjVzmMX+VUtfGraN5DEciLjh07JunMNAgliYiIcPY5n7Vr17o1LndxfFOvqsZXk3Fuqi7OTdXFuam6ODdVF+em6uLcwJvIe1Aaxq5yGL/KYfwqh/GrHMav4hi7ymH8KsdXxo97sAEAAAAAAAAAAHwQRSAvcnwTrrRvveXm5pb6bTkAAAAAqA7IewAAAICqgyKQFznmxC5p/usDBw4oLy+vxHmzAQAAAKC6IO8BAAAAqg6KQF6UkJAgSUpPTy/2WlpamksfAAAAAKiOyHsAAACAqoMikBddc801atGihZYuXarNmzc7lx87dkyzZ89WYGCg7rzzTvMCBAAAAIBKIu8BAAAAqg6LYRiG2UHUJGvWrFG/fv0UHBysYcOGKTw8XMuXL9fOnTs1b948TZkyxewQAQAAAKBSyHsAAACAqoEikAm+/fZbzZgxQ19//bUKCgrUrl07TZ48WUOHDjU7NAAAAABwC/IeAAAAwHwUgQAAAAAAAAAAAHwQzwQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIEiS1q9frwEDBqh27doKDQ1Vt27dtGzZsnJt4/Tp03r66acVFxen4OBgNWrUSOPHj9cff/xR6jr//Oc/1aVLF4WGhqpOnTq6/vrrtXHjxsoejk/x9rnZsWOHLBZLqT9JSUluOrLqr7LnZuvWrUpKStKNN96oxo0by2KxqFmzZmWul5aWpoSEBIWHhysiIkJ9+vTRF198UYkj8T1mnJvzfW5Gjx5duQPyIZU5N4ZhaNWqVbrvvvvUvn17RUZGqlatWrr88ss1e/ZsnTp1qtR1+dyUzYxzw+fmwlT2/2mrVq3SsGHDdMkll6h27dqqVauWLrnkEt1999367bffSl2Pzw18DTlP5Xh7/DZv3qzp06erW7duatCggYKCgtSiRQvdf//92rt3r7sOy2vMev+dbcCAAbJYLAoODq7IIZjKrPGz2Wx64YUX1KlTJ4WHhys8PFxt27bVAw88UNlD8hozxu7kyZN64YUXFB8frzp16qh27dq6/PLLNWvWLB07dswdh+U15P2V4+3xy8nJ0ezZs9WrVy81atRIgYGBatKkie6880798ssvbjgi7zLr/Xe2++67z5mjHThwoJxHYB6zxs5ut+v111/XVVdd5cy9WrVqpTFjxuj48eOVOKJKMlDjffnll0ZAQIARHh5ujBs3zpg8ebIRGxtrSDLmzZt3QdsoKioy+vXrZ0gyunXrZkybNs24+eabDYvFYrRo0cL4448/iq3zzDPPGJKM2NhYY/Lkyca4ceOM8PBwIygoyPjqq6/cfZjVkhnnZvv27YYk4/LLLzdmzJhR7GfNmjUeONLqxx3n5o033jAkGX5+fkbbtm0Nq9VqxMbGnnedt956y5Bk1K9f35gwYYIxYcIEo379+obFYjHeffddNxxZ9WfWuXH8/6ykz82KFSsqf2A+oLLn5uTJk4YkIygoyOjXr5/x8MMPGxMmTDDi4uIMSUbnzp2N/Pz8YuvxuSmbWeeGz03Z3PH/tAkTJhixsbHGkCFDjAcffNB45JFHjOuvv97w8/MzgoKCjC+++KLYOnxu4GvIeSrHjPHr2rWrIcno0qWLMXHiROPhhx82evbsaUgyoqKijJ9//tkTh+oRZr3/zrZo0SLDarUawcHBRlBQkDsOy2vMGr/Dhw8bXbp0MSQZV155pTFlyhRjypQpxs0332zUq1fP3YfpEWaMnc1mc35+O3ToYDz44IPGgw8+aFx++eWGJKNNmzYlXhdWReT9lWPG+A0dOtSQZLRt29a49957jalTpxrXXXedIckICQkxMjMz3XR0nmfW++9s6enphiQjNDTUkGTs37+/gkfjXWaN3alTp4zrr7/ekGS0b9/e+Nvf/mZMnTrVGDZsmNGgQQNj9+7dbji6iqEIVMMVFBQYLVu2NIKCgoxNmzY5lx89etRo1aqVERgYaOzYsaPM7bz++uuGJGP48OGG3W53Ln/llVcMScb48eNd+v/222+Gv7+/0apVK+Po0aPO5Zs2bTKCgoKMSy+91CgqKqr8AVZjZp0bRxFo1KhR7joUn+Ouc7N161Zj7dq1xokTJwzDMIygoKDz/kE5fPiwUbt2bSMqKsrlD8fu3buNqKgoIyoqysjNza3wcfkCs86NYZz5x+yEhIRKRO/b3HFubDab8cwzzxiHDx8utvyGG24wJBnPPfecy2t8bspm1rkxDD43ZXHX/9NOnjxZ4vLPP//ckGR06tTJZTmfG/gacp7KMWv8/vd//9fIyckptp05c+YYkowBAwZU/KC8yKzxO9v27duN8PBw4+GHHzZiY2OrVRHIzPEbNGiQYbFYjH/+858lxlXVmTV2qamphiRj8ODBxbZ10003GZKMxYsXV/zAvIS8v3LMGr833njD2LhxY7Hlb7/9tiHJuOyyy8p9LGYw8982zt5XTEyMceuttxoJCQnVpghk5tg9+OCDhiRjzpw5xV4rKioy9bqPIlANl5aWZkgyxowZU+y1lJQUQ5Lx1FNPlbmd7t27G5KKfYjsdrvRokULIzQ01PmhMQzDeOyxx0r9wz969GhDUrWqznuCWeeGIlDZ3HVuzlXWH5RXX3211G0nJSVVm4tpTzLr3BgG/5hdFk+dG4evv/7akGQMHDjQZTmfm7KZdW4Mg89NWTx9bgzDMOrUqWPUrl3bZRmfG/gacp7KMWv8SlNYWGiEhIQYoaGhF34QJjJ7/Ox2u9GnTx+jVatWxokTJ6pdEcis8Vu7dq0hyRg5cmTlD8IkZo3ds88+a0gyFi1aVGxbixYtKtc38c1E3l85ZubmpWnVqpUhyfjzzz8rtL43VYXxGzVqlFGvXj3jP//5T7UqApk1dnv27DH8/f2Nnj17lnvb3sAzgWq4jIwMSVJiYmKx1/r16ydJyszMPO82Tp06pXXr1ql169aKjY11ec1isahv377Kz8/Xhg0b3LpfX2fWuXHYt2+fXn75Zc2ePVv/+Mc/tHXr1goeie8x6/3L56ZsZo/R0aNHtWjRIs2ePVt///vf9e9//9tj+6puPH1uAgICJEn+/v5e3a8vMOvcOPC5KZ2nz83atWt15MgRtW3b1qv7BbyNnKdyzM5LzmWxWBQQEFDq35WqxuzxW7hwoTIzM/X6668rJCSkgkdhHrPGLzU1VZJ022236eDBg3r99df17LPPasmSJTp06FBlDslrzBo7x3XFqlWrim3vk08+kcViUZ8+fcp1LGYg76+cqngcZeUlVYnZ4/fRRx9p8eLFWrhwoRo0aOCx/XiCWWP33nvvqbCwULfddpuOHz+uf/7zn3r22Wf1+uuvV4lnGVb9dz08KicnR5IUFxdX7LWGDRsqLCzM2ac0W7duld1uL3EbZ287JydHPXv2dP4eFhamhg0bnrd/TWbWuXFYvXq1Vq9e7WxbLBbdfvvt+vvf/67Q0NByHYuvcce5cfd++dycYda5cfj+++91zz33uCzr37+/Fi9eXO0unNzN0+fm9ddfl1T8Qo/PTdnMOjcOfG5K5+5zk56erq+//lqnT59WTk6OPv74Y0VFRWn+/PkXvF8+N6iOyHkqx+y85FzvvfeecnNzddttt11I+KYzc/xycnL02GOPadKkSerRo0dFD8FUZo3fd99951x2xx13KDc319k/LCxMycnJGjp0aPkPyIvMGruBAwdq0KBBWrFiha644gr17t1bkrRmzRpt375dixYtUnx8fEUPy2vI+yvH7Nz8XN9++622bNmizp07q3bt2l7bb0WZOX6HDh3SuHHjNGjQIA0fPtwj+/Aks8bO8Xfj6NGjat26tfbv3+98LTAwUHPmzNFDDz3k9v1eKO4EquGOHTsmSYqMjCzx9YiICGefymzj7H6O38vTvyYy69zUqlVL06dP13fffaejR4/q8OHD+vzzz9WlSxctWbJEd955Z7mPxde449y4e798bs4w69xI0pQpU/T111/r4MGDys3N1ddff63rrrtOn332ma6//noVFRV5ZL/VhSfPzapVq/Tqq6/q0ksv1d13333B++Vzc4ZZ50bic1MWd5+b9PR0PfXUU5ozZ46WL1+uJk2a6LPPPlOnTp0ueL98blAdkfNUjlnjV5Ldu3dr0qRJCgkJ0cyZM8/bt6owa/zsdrtGjRql6OhozZo1q9xxVxVmjd8ff/whSZo6daoGDRqkrVu36siRI1qyZImsVqtGjhypH374oXwH42VmjZ3FYtHy5cs1bdo0ff/993rxxRf14osv6vvvv9fgwYPVt2/fch+LGcj7K8fM3LykWEaNGiWr1arnnnvOK/usLDPH7/7775fNZtMrr7zike17mllj5/i78dRTT+nyyy/Xli1blJub6/zi3eTJk0u8Q9JbKAIBcNGgQQM9/fTTio+PV2RkpOrUqaNrrrlGX375pVq3bq33339fGzduNDtMoMqZN2+eunfvrnr16ik8PFzdu3fXxx9/rISEBK1fv14rV640O0SftH79eg0dOlSRkZF69913FRQUZHZI+K8LOTd8brxr3rx5MgxDx48fd07t0qNHDy1dutTs0ACgTIcOHdKAAQP0xx9/aNGiRWrdurXZIVVp//M//6NvvvlG//jHP1SrVi2zw6l27Ha7JKldu3ZKSUlRixYtVLt2bd1+++2aM2eOCgoK9L//+78mR1k1nThxQoMHD1ZKSorefvttHTx4UAcPHtQ777yjzz77TF26dNGOHTvMDhM1xMmTJzV48GD98ssvmjlzpvPONJQsNTVVy5Yt04IFC0q8kxmlc/zdaNCggZYvX67LLrtM4eHhGjhwoJKTkyVJzz//vGnxUQSq4RxV0dIqoLm5uaVWTsuzjbP7OX4vT/+ayKxzU5patWpp5MiRkqTs7Owy+/syd5wbd++Xz80ZZp2b0litVo0bN04SnxtPnJsNGzYoMTFRVqtVaWlpatOmTbn2y+fmDLPOTWn43PzFU/9PCwsLU5cuXfTBBx/okksu0fjx4/Xnn39e0H753KA6IuepnKqQlxw6dEjXXHONtmzZoldeeUV33HHHBcVeFZgxfr/99ptmzJih+++/XwkJCRWKu6ow8/MrSTfccIMsFotL/xtvvFGSLugZVmYya+xmz56tDz/8UIsWLdLQoUNVr1491atXT0OHDtWrr76qP/74o1rcnUbeXzlVITc/deqUbrrpJq1Zs0aPPfaYHn/8cY/uz53MGL/Dhw/rgQce0MCBA53//lcdmf3Zvfbaa4t9+aJfv34KCgoy9e8GRaAa7nzziR44cEB5eXmlzv3q0KJFC1mt1lLnUyxpLsa4uDjl5eXpwIEDF9S/JjLr3JxPVFSUJCk/P/+C+vsqd5wbd++Xz80ZZp2b8+Fzc4a7z82GDRvUt29f2e12paWlqXPnzuXeL5+bM8w6N+fD5+YMT/8/zd/fX3369Cn2QGc+N/A15DyVY3Ze4igAff/993rppZeKPUeuqjNj/H766SedPn1aL7/8siwWi8vPzp07dfr0aWf76NGjlTg6zzPr/ee406ykZ4c4lp08ebLM+M1k1tg5pjvq06dPsf6OZZs2bbqAIzAXeX/lmJ2bnzx5UjfeeKNWr16tqVOnavbs2R7blyeYMX67du3SoUOH9MknnxT725GZmSlJio6OlsVi0ebNm926b3cy6713vr8bVqtV4eHhpv7doAhUwzm+FZSenl7stbS0NJc+pQkJCVGXLl3066+/aufOnS6vGYah1atXKzQ01GW+eXfs19eZdW7OZ926dZKkZs2aXVB/X2XW+5fPTdmq4hjxuTnDnefGUWQoKirSZ599pq5du3plv77KrHNzPnxuzvDG+3ffvn2SpICAAK/uF/Amcp7KMTMvObsAtHDhQt1///2VORRTmDF+zZo10913313iT1hYmPz8/Jztqj6Vrlnvv6uvvlrSmYLauRzLqvp1illjZ7PZJMnlLmMHx7Kq/r6TyPsry8zjOHnypG666SatXr1aDz/8sObOneuR/XiSGeNXr169Uv92OKaGGzFihO6++27Vq1fPrft2J7Pee+f7u/Hnn3/q4MGD5v7dMFCjFRQUGC1atDCCgoKMTZs2OZcfPXrUaNWqlREYGGhs377duXzfvn3Gzz//bBw9etRlO6+//rohyRg+fLhht9udy1955RVDkjF+/HiX/r/++qvh7+9vtGrVymVbmzZtMoKCgoxLL73UKCoqcu/BVjNmnZuNGze69HNYvny5YbVajTp16hTbR03jrnNzrqCgICM2NrbU1w8fPmxERkYaUVFRxu7du53Ld+/ebURFRRlRUVFGbm5uRQ/LJ5h1bn744QfDZrMVW56dnW3UqlXLCAgIMH7//ffyHo5Pcde52bBhg1G7dm0jLCzM+Oqrr8rcL5+bspl1bvjclM1d52b9+vUlbv+zzz4zAgICjNq1axt5eXnO5Xxu4GvIeSrHrPE7dOiQ0aFDB0OSsWDBAo8cmzeYNX6liY2NNYKCgip1TN5k1vgdO3bMiIqKMoKDg40ffvjBufz06dPGddddZ0gykpOT3XuwbmbW2N1zzz2GJOPOO+90+X9cYWGhcfvttxuSjP/3//6few/WA8j7K8es8Tt58qTRt29fQ5IxefLkSh6Fecwav9IkJCQYkoz9+/eXe11vM2vsCgsLjUsvvdSQZKSnpzuX2+12Y+zYsYYk44knnqjoYVUaRSAYX375pREQEGCEh4cb48aNMyZPnmzExsYakox58+a59B01apQhyXjjjTdclhcVFRn9+vUzJBndunUzpk2bZtxyyy2GxWIxmjdvbvzxxx/F9vvMM88YkozY2Fhj8uTJxrhx44zw8HAjKCjogv7xqCYw49wkJCQYMTExxm233WY89NBDxqRJk4yrrrrKkGQEBQUZK1eu9PRhVwvuODd//vmnMWrUKOeP1Wo1QkNDXZb9+eefLuu89dZbhiSjfv36xoQJE4wJEyYY9evXNywWi7Fs2TJPH3a1YMa5GTVqlBEVFWUMGjTImDhxojF58mSjX79+hsViMaxWq/HKK69449CrvMqem0OHDhl16tQxJBn9+/c3ZsyYUexn/vz5xfbL56ZsZpwbPjcXxh3/T5NktG3b1hgxYoQxdepU44EHHjB69uxpSDICAgKM999/v9h++dzA15DzVI5ZeYkk45JLLinx78qMGTOMI0eOePjI3cOs919JqlsRyDDMG78VK1YYfn5+Rq1atYw777zT+Nvf/ma0adPGkGQMGDDAKCws9ORhu4UZY7dz506jYcOGhiSjTZs2xsSJE42JEycal112mSHJiIuLMw4fPuzpQ3cL8v7KMSs3l2Q0bNiw1L8dZxcAqjKz3n8lqU5FIMMwb+y++eYbo1atWoa/v78xZMgQY/LkyUaXLl0MSUZ8fLzLF++8jSIQDMMwjHXr1hn9+/c3IiIijJCQEKNLly7GO++8U6xfaR8MwzCMU6dOGUlJSUbLli2NwMBAo2HDhsbYsWONAwcOlLrfJUuWGJ06dTJCQkKMyMhIY8CAAcZ3333nzkOr9rx9bl577TWjf//+RpMmTYyQkBAjKCjIaNGihTF27Fjj559/9sQhVluVPTfbt283JJ33p6SLk1WrVhk9e/Y0QkNDjbCwMCMhIcFYvXq1h46yevL2uXn//feNm266yWjevLkRGhpqBAQEGE2aNDGGDx9urFu3zsNHW71U5txcyHkp7Zs5fG7K5u1zw+fmwlX2/2mzZ882+vbtazRu3NgIDAw0goODjVatWhnjx483fvrpp1L3y+cGvoacp3K8PX6Of6wp77VyVWXW++9c1bEIZBjmjd9XX31l9O/f36hdu7YRGBhotGnTxpg7d65RUFDgzsPzKDPGbu/evcaECROMiy++2AgMDDSCgoKM1q1bG4888ki1KQA5kPdXjrfHz1GsON/PmjVrPHvQbmTW++9c1a0IZBjmjd2PP/5o3HLLLUa9evWMgIAAo2XLlsZjjz1mHD9+3ENHemEshmEYAgAAAAAAAAAAgE+xmh0AAAAAAAAAAAAA3I8iEAAAAAAAAAAAgA+iCAQAAAAAAAAAAOCDKAIBAAAAAAAAAAD4IIpAAAAAAAAAAAAAPogiEAAAAAAAAAAAgA+iCAQAAAAAAAAAAOCDKAIBAAAAAAAAAAD4IIpAAAAAAAAAAAAAPogiEAAAAAAAAAAAgA+iCAQAQDVisVjUu3dvs8MAAAAAAI8h7wEA96EIBAAAAAAAAAAA4IMoAgEAAAAAAAAAAPggikAAAAAAAAAAAAA+iCIQAKDaWb58uRISEtSgQQMFBwerUaNGuvbaa7V8+XKXfj/88IOGDRum6OhoBQYGKjY2VhMnTtShQ4dK3O7333+v22+/XTExMQoKClJ0dLT69++vjz76yKVfYWGhXnjhBV1++eUKCQlRZGSk+vTpU6yfJKWkpMhisSglJUXp6em68sorVatWLdWrV0+jRo0qNZbk5GS1bdtWwcHBatKkiaZOnapTp06V2Hf//v3629/+pri4OIWEhKh27dq69NJLde+99+rYsWMXMqQAAAAAqhjyHlfkPQBQMRbDMAyzgwAA4EK98soruv/++xUdHa0bbrhB9erV04EDB/Ttt9+qQ4cOWrJkiSTpww8/1JAhQ2S1WnXTTTepSZMm+umnn/TJJ58oLi5O69atU506dZzbXb58uUaMGCHDMHTDDTeodevW+uOPP7Ru3Tq1bNlSH3zwgSTJMAwNHjxYK1euVKtWrXTDDTcoPz9fqampOnLkiF544QU99NBDzu2mpKRozJgxGjx4sD755BPdcMMNatasmbKysrR+/Xr16NFDX331lcsxzpw5U08++aQuuugi3XbbbQoICNDy5cvVvn17ffzxx0pISFBGRoYk6cSJE2rbtq127NihxMREtW/fXjabTdu3b9fnn3+u77//XhdffLFnTwoAAAAAtyLvIe8BALcxAACoRuLj443AwEDjP//5T7HXDh486PxvRESE0bhxY2PHjh0ufd5++21DkjFhwgTnsgMHDhihoaFGaGiosXHjxmLb3b17t/P3xYsXG5KMhIQE4/Tp087lO3fuNKKiogx/f39j69atzuVvvPGGIcnw9/c3vvrqK+fywsJCo3fv3oYkY+3atc7lOTk5hr+/v9G4cWOXYzx27JjRunVr574dPvzwQ0OS8eCDDxaL+/jx48apU6eKLQcAAABQtZH3kPcAgLswHRwAoNoJCAhQQEBAseX16tWTJL355pvKzc3Vs88+q9jYWJc+w4YNU3x8vN555x3nssWLFys/P19TpkzRFVdcUWy7MTExLn0l6bnnnlNgYKBzedOmTfXQQw+psLBQ//znP4ttY8SIEerRo4ez7efnp1GjRkmS1q9f71y+dOlSFRYWavLkyWrQoIFzeUREhJ544olSRkQKCQkptiwsLExBQUGlrgMAAACg6iLvKY68BwDKz9/sAAAAKI9hw4Zp6tSpatu2rUaMGKE+ffroqquuUkREhLPPN998I0lat26dtm7dWmwbp06d0sGDB3Xw4EFFRUXp22+/lSQlJiaWuf9NmzapVq1a6tKlS7HX+vTpI0navHlzsdc6duxYbJkjyTp69Khz2ffffy9J6tmzZ7H+JS3r1auXoqOjNWfOHH3//fe6/vrrlZCQoEsvvVQWi6XM4wEAAABQ9ZD3uCLvAYCKowgEAKhWHn74YdWrV0+vvPKKnn/+ec2bN0/+/v4aOHCg5s+fr+bNm+vw4cOSpJdffvm828rPz1dUVJTzIaKNGzcuc/+5ublq0qRJia9FR0c7+5zr7GTNwd//zJ/hoqIi5zJHLGd/G87hoosuKrYsMjJS33zzjZ588kl99NFH+vTTTyVJTZo00aOPPqr777+/rEMCAAAAUMWQ97gi7wGAimM6OABAtWKxWHTXXXdp/fr1+vPPP7VixQrdfPPNWrlypa6//noVFRU5E49///vfMgyj1B/HlAm1a9eWJO3du7fM/UdEROiPP/4o8bUDBw44+1RUZGSkJJW4j//85z8lrtO0aVOlpKTozz//1KZNmzR37lzZ7XY98MADevvttyscCwAAAABzkPcUR94DABVDEQgAUG3Vq1dPgwYNUmpqqq6++mr99NNP+v3339W1a1dJ0tq1ay9oO44pDtLT08vse8UVV+jEiRPOqRTOlpGRIUnq0KHDhR1ACS6//HJJ0r/+9a9ir5W07GxWq1UdOnTQ1KlTnUnQhx9+WOFYAAAAAJiPvMcVeQ8AlA9FIABAtZKRkSHDMFyWFRQUOKdCCA4O1pgxYxQeHq7/9//+n7Zs2VJsGydOnHDOny1Jo0aNUlhYmJ5//vkS57U++5tyjoeaPvbYYyooKHAu3717t1544QX5+/vr9ttvr/DxjRgxQn5+fnrhhRdcvhWXm5urZ555plj/LVu2lPhNOcey4ODgCscCAAAAwBzkPa7IewCg4ngmEACgWhk0aJAiIiLUrVs3xcbGqqCgQKtXr9ZPP/2kW2+91TnVwdtvv63bbrtNl19+ufr3769LLrlEp0+f1o4dO5SZmakrr7xSn332maQz81C/+eabGjZsmLp06aIbb7xRrVu31sGDB7Vu3To1a9ZMH3zwgSRp5MiRev/997Vy5Uq1b99e119/vfLz85WamqrDhw/r+eefV4sWLSp8fBdffLGefPJJzZgxQ+3bt9eQIUPk7++v5cuXq3379vr1119d+q9evVqPPPKIevTooVatWqlevXratm2bPvzwQwUHB+uBBx6ocCwAAAAAzEHeQ94DAO5CEQgAUK08++yz+uyzz/Ttt9/qo48+UmhoqFq2bKlXXnlFd999t7PfwIEDtWnTJv3P//yPPv/8c61evVqhoaGKiYnRmDFjdMcdd7hsd/DgwVq3bp2effZZZWZm6sMPP1RUVJQ6dOigcePGOftZLBa99957WrBggRYvXqyFCxcqMDBQ8fHxmjx5sm688cZKH+OTTz6pRo0aaf78+Xr11VfVoEEDDRs2TE8//bRq1arl0rdfv37asWOHsrKy9P777ysvL0+NGzfW0KFDNXXqVF122WWVjgcAAACAd5H3kPcAgLtYjHPvLQUAAAAAAAAAAEC1xzOBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAAAAAAAAAAAAfBBFIAAAAAAAAAAAAB9EEQgAAAAAAAAAAMAHUQQCAAAAAAAAAADwQRSBAABVRkZGhiwWi5o1a2Z2KAAAAABQqtGjR8tisSgpKalC6zdr1kwWi0UZGRlujcssO3bskMVikcViMTsUAMA5KAIBgI/o3bv3BSUhc+bMkcVi0Zw5c4q9VlhYqJSUFN14442KiYlRcHCw6tSpo/bt22vy5Mn65ZdfKhxfRkaGkpKS9MEHH1R4G6i5fvrpJ73yyiu6++67dfnllysgIEAWi0WjR482OzQAAIAqb+vWrXrsscfUtWtXNWjQQAEBAYqMjNTll1+u++67T1lZWcXWSUpKcv6j/tk/4eHhateunSZPnqydO3cWW8+Rl1zIdZpjmykpKW44yqrh6NGjSkpKqnBxqCravHmzkpKSfOo8wXt27Nihf/zjH7rvvvvUuXNnBQUFyWKxqHfv3maHBtQY/mYHAADwLkcRZtCgQS7Lt2zZoltuuUW//vqrJKl+/fpq166dTpw4oZ9//ln//ve/9b//+7+aOnWqZs2aVe5veGVkZOipp57SqFGjiu3boVatWmrdurUaN25c3sOCj3v88ce1cuVKs8MAAACoVoqKivToo4/qxRdfVGFhoSSpefPmatasmY4fP67ffvtNP/zwg/7+97+rV69eyszMLLaNiIgItWvXTpJkGIZ2796tLVu26Mcff9Rrr72mDz/8UH369PHqcVUF0dHRat26taKiolyWHz16VE899ZQknbcQ1LJlSwUHB6tWrVqeDNMtNm/erKeeekoJCQmlFvcCAgLUunVr7waGauHFF1/UggULzA4DqNEoAgFADbJ//359++23at26tS655BLn8p9++kk9evTQsWPH1L59ey1YsEAJCQnOQs+RI0e0YMECzZo1S88++6wOHjyoRYsWuT2+Ll26VOpuI/iuRo0aadCgQerUqZM6deqkxYsX6+233zY7LAAAgCrLMAzddtttWrFihQIDAzV9+nTdf//9atiwobPPiRMntGrVKj377LMl3g0kSVdccUWxKcs2b96s4cOH65dfftGIESO0devWalHMcKdnn31Wzz77bIXX/+KLL9wYjfkaN25MLocSRUVFacCAAerYsaM6deqkrKwsPf/882aHBdQoFIEAoAZZuXKlDMNwuROnsLBQQ4YM0bFjx9SpUyd9+eWXCg8Pd1mvTp06SkpK0iWXXKLhw4frtdde0zXXXKOhQ4d6+QhQU/3f//2fS3vFihUmRQIAAFA9PP/881qxYoUCAgK0atUqXX311cX61KpVS7fccotuvvlmzZo164K33aFDB6WkpKhbt246cOCAPv/8c914443uDB+Aj3jiiSdc2j/99JNJkQA1F88EAoAapKSp4FJTU7VlyxZZrVa99dZbxQpAZxs2bJiGDRsmSZoxY4bsdvsF7ddisTinRFi8eHGxecUdMjIyZLFY1KxZs2LbcMwtnpKSov3792v8+PGKiYlRSEiILrnkEj3//PMyDEOSZLPZNHfuXLVp00a1atXSRRddpHHjxunQoUOlxkqmytoAAPmzSURBVFhUVKQ33nhD11xzjaKiohQYGKjGjRvr9ttv1/fff39Bx1lV5OXlacmSJRo+fLguvfRSRUZGKiQkRHFxcbr//vu1ffv2Etc7d/xTUlLUtWtXhYeHKyIiQldffbU+++yzEtdNSUlxzutcVFSkF154Qe3bt1doaKjq1q2rG264Qd9++62nDhkAAABnyc/Pd96lMnXq1BILQGezWCzF/qG2LF26dFFYWJgkOaeU9rStW7fKYrEoMjJSRUVFLq8dPXpU/v7+slgsuuWWW4qt+/bbb8tisahnz54uyzdt2qQnn3xSPXr0UExMjAIDA1WvXj1dffXVevPNN505xrlGjx5d7Jmso0ePVvPmzZ3tc/Oes5+p06xZM1kslmJ3WZ19Xe1od+3aVWFhYYqIiFCfPn20evXqUsfIbrfrlVdeUXx8vGrVqqWoqCgNHDhQ2dnZ2rFjR7EcrCzNmjXTmDFjJEmZmZnFjmnHjh2SdN5tnz1Wubm5evjhh9WiRQuFhISoefPmeuKJJ3T69GlJZ+5ge/XVV9WxY0eFhYWpbt26Gjp0aInPnzrb+++/r+uvv14XXXSRAgMDddFFF2nQoEGl3uFWVdlsNr3//vu666671K5dO9WtW1fBwcFq1qyZ7rzzTv3www8lrnfu+H/00Ufq3bu36tSpo7CwMHXr1k3//Oc/S1y3MnkggOqBIhAA1BC5ublas2aNoqOj1bVrV+fypUuXSpL69evnMkVcaR588EFJZxK977777oL23aNHDzVp0kSS1KBBA/Xo0cPlpzx27typ+Ph4vfnmm7rooosUFRWlX3/9VQ8//LD+9re/6fTp0+rbt68ee+wxGYah2NhYHTx4UMnJybr22mtls9mKbfPIkSPq06eP7rrrLn355ZcKCgpS27Ztdfz4cS1dulSdO3fWO++8U644zZSRkaGRI0fqvffe0/HjxxUXF6dmzZpp7969euWVV3TFFVeUWZCZMmWKxowZo507d+qSSy6Rv7+/1qxZo+uuu04vvPDCedcdOnSopkyZomPHjumyyy5TQUGBPv74Y1155ZV699133XmoAAAAKMGnn36qw4cPy2q1atKkSR7bT2kFEk9p2bKlmjZtqtzcXG3YsMHltYyMDGdhKCMjo1hsX375pSQVK4iNGzdOM2fO1JYtWxQeHq7LL79cwcHBWrNmjUaNGqXbb7/9guNr1aqVOnXq5Gyfm/dcdNFF5Treu+++W2PGjNH+/fvVunVr2e12ZWRkqH///iU+L9MwDI0YMUL333+/Nm3apHr16ql58+bKzs5WQkKC80uB5dG5c2fFxcVJOvN8qHOPKTg4+IK3dezYMXXr1k0vvviiIiIi1KhRI+3cuVOzZs3Sbbfd5oz/3nvvVW5urlq0aKG8vDwtW7ZMV111lQ4fPlxsm6dPn9att96qW265RZ988okMw1Dbtm1VWFj4/9m777AorrYN4PeyVGnSVBABNYhGsWCJFbGXxBZ7IWrEghF7DyhqNKLmM4kVxa6xxd6CjaJEsaDRaFSMohIrSEB62fn+IDsv6y69LOX+XRdXmJlnzjy7s5E5+8ycg2PHjsHFxQWrVq3K9+tWl0ePHqF///7YsWMHoqKiYGdnh08++QTR0dHYtWsXmjdvjhMnTuTYxpo1a9C7d2/cvXsXn3zyCQwMDBAaGooRI0bk+u9BYfqBRFSKCUREVC60b99eACAsXLhQ5fa9e/cKAITx48crrDcyMhIACKtWrcrTcTIyMgRDQ0MBgLB69eo857dw4UIBgDBy5MhsYwICAgQAgq2trdI2+evT0tIS+vbtK0RHR4vbtmzZIgAQNDQ0hH79+gkODg7C/fv3xe3Xr18XjI2NBQDC5s2bldru0aOHAEBo27atcPfuXYXXunr1akFDQ0PQ1dUVHj58mOfXq04PHjwQfv31V+HDhw8K6+Pi4gQvLy8BgFCvXj1BJpMpbJe//5qamoJUKhU2btwoxqSlpYn7amhoCFeuXFHYd9u2beL50dPTE44cOSJuS0hIEMaMGSMAEPT19YWnT58W+jWOHz8+188TERERUUU1efJkAYDg6OhY4Dbk1+/t27dXuf3q1asCAAGAcPToUXG9/Lo9L9dp8v23bduW57xGjhwpABCWLVumsN7Dw0MAIFhbWwsAhLCwMIXttWrVEgAIgYGBCuv37Nmj0AeQu3btmmBvby8AEPbu3ZttHh/3v54+fSq+rpzY2toKAISAgACF9Vmvq83MzISzZ8+K2+Lj44V+/foJAAQ7Ozul6/l169YJAARtbW1h37594vqkpCThm2++EbS0tPKU28fkOWX3WRCEnF+3/L3S0tISWrduLbx48ULc9ttvvwmampoCAKF///5CtWrVhJCQEHH748ePBRsbGwGA8O233yq17e7uLgAQ6tevL1y+fFlh2+7du4VKlSoJEolE6byXVq9fvxZ27dql0N8VBEFITk4W1q5dK0ilUsHU1FRISEhQ2J71/dfS0hK8vLyEtLQ0QRAEQSaTCRs2bBA0NDQEAMKBAwcU9i1MP7Agvv/++1w/T0RUtPgkEBFRBaFqKLi4uDjExcUBAD755JM8taOhoYFatWoBACIjI4s0x7wwNTXFrl27YGpqKq77+uuv0bx5c8hkMhw9ehQ7d+5EvXr1xO3NmjXD2LFjAQCnTp1SaO/8+fM4c+YMbGxscOLECTRo0EDcpqGhgalTp+Kbb75BcnIyfvzxx+J9cUXEwcEB/fv3F4fnkDM0NMTixYvRpk0b/PXXX9k+DZSeno6vv/4a48ePF4cT0NTUxOLFi9GlSxfIZDIsW7ZM5b5paWnw9PRU+JxVqlQJmzZtgoODAxISEngHGREREVExk1+ny6/bi9rt27cxatQoAEC1atXQpUuXYjmOKvIneeRP9sjJn+ifPXu20vZnz57hyZMn0NPTQ6tWrRT2GzZsmEIfQK558+bivJQ7duwo0teQF2lpafjxxx8V3lt9fX2sX78eWlpaiIiIwN27d8VtgiBg5cqVAAAvLy+F+Vt1dXWxZs0aNG3atORegApSqRT79u2DtbW1uK5bt27o168fAODQoUP4+eef0bp1a3F77dq1xXP6cV/u4cOH8PX1hZGREU6dOqU0ysTw4cOxZMkSCIIAHx+f4npZRapq1aoYMWKEQn8XAHR0dPDNN99gyJAheP/+fY5PA7m4uGDx4sXQ1MycCl4ikWDChAkYM2YMAGDJkiUq9ytMP5CISjcWgYiIKoDU1FScOXNGHM9X7sOHD+LvHxcMciKPjY2NLbok82jo0KEqc5V3aBo1aoQWLVoobZcPy/D48WOF9fv37xfbrVy5sspjyscUv3DhQoHzLmkZGRk4duwYPDw88Pnnn8PZ2Rlt27ZF27ZtER4eDiBz/PPsyIf9y279uXPnkJaWprRdU1MT33zzjdL6rEORfNx5IyIiIqKiJb/RKz/X+Nm5deuWeB3Zpk0b2NrawsnJCQ8ePICBgQH27NmDSpUqFfo4eSXvz4SEhIjzyLx58wb37t1Dy5Yt8fnnnwNQvHaXF4TatGkDbW1tpTafPXsGHx8fDB48GJ06dRJf77x58wDkfN1cXIyNjVUORVetWjVx3qGsfZsHDx6I8/O4ubkp7SeRSMQb49Sle/fu4jDhWcn7ciYmJhg4cKDS9uz6cr/++itkMhl69OgBW1tblceU9+WyDhdYFly4cAEzZsxAr1690L59e/EzKZ/jqDB9ubt37+LFixcF2je7fiARlW6a6k6AiIiK38WLFxEXF4fBgwcrdHoMDQ3F3+Pj4/PcnjzW2Ni46JLMo+yeWKpSpUqetn/8Ov/44w8AmROJXr58WeW+ycnJAJDthfLHbt26BQ8PjzzF5pWlpWWe59N59eoVPv/881w7q9HR0SrXa2pqwsHBQeW2+vXrA8h8T54+fYo6deoobK9Ro0a2nwv5vk+ePEFqaqrKDjgRERERFZ6RkRGA/F3jZycuLg4hISHisr6+PurXr4/OnTtj6tSp2X75Xlysra1hb2+P8PBwXLlyBS4uLgrz/dSqVQu2tra4dOkS0tPToampme18QADw888/Y9asWSrnDpXL7rq5ONnb24tPY3ysatWqePTokcJNfQ8fPhS3VatWTeV+TZo0KfpE8yG3vlrt2rVz3J5dX+7KlSto27atyn2F/+aGSkpKQnR0tNhWdl6/fo0BAwbkGFMQ2fU1PxYfH48vv/wS586dyzEup8+kqifbgMwRIzQ1NZGeno6//vpLqSBXmH4gEZVuLAIREVUAqoaCAzI7h0ZGRoiLi1O6qyo7MpkMT548AQCFx/hLir6+vsr18g5SbtuFjyaIjYmJAQCEh4eLT8hkJykpKU85xsbGKnSUi0J+OtejR4/GrVu3UKtWLSxduhStW7dG1apVoaOjAwD46quvsGvXrmzv4DI3N4dUKlW5Letktlk7naq257avmZkZtm7diq1btyrF9uzZE/Pnz8+2LSIiIiLKnvw6XX7dXhjt27dHYGBgnuPl15G5PXWRnp4u/i4ftiqvOnbsiPDwcFy8eFGhCNSpUydx+7Zt23Dt2jW0bt0aAQEB4vqsrly5gilTpgAAvvnmG4wcORL29vYwNDSEVCrFkydPULt2bYVcS0p2/Rog8yl7QLFvIy+QZL3R72M5bSsJhe3LfUzel3v+/DmeP3+e6/ETExNzjUlOTi7yvlx+zJw5E+fOnYO5uTmWL18OFxcXWFlZQU9PDwCwYMECLFmyJMencbLrk0mlUpiZmeHNmzcq+3L57QeeOXMGS5cuVYpt0qQJ1qxZk/2LJKISx+HgiIjKOUEQcPz4cWhra6Nnz55K2+XjJud1qLPr16+LF30fj7lcFsmHyNi6dSsEQcj1Jy9cXFzy1FZ+fuRDO+Tm9evX8Pf3BwAcP34cQ4YMgY2NjVgAAnK/kzEqKirbTvubN2/E31V1IrNuz8u+z58/R0hIiNLPo0ePcsyRiIiIiLInfyri3r17ePv2bYkeWz7EsvwL+uxk3Z7dsMzZ6dChA4D/DfN28eJFGBgYiMNCZ5036NGjR/jnn39gaGioNCeOfK6fAQMGYO3atWjevDkqV64sfhGujieACkrer1H15b5cTtvKIvlrXrBgQZ76VHZ2drm2aWdnV+R9ubz2I9PT07Fnzx4AwPbt2zFmzBjUrl1bLAABeftMZtcny8jIEPdX1ZfLbz/wzZs3KvtyWeeqIqLSgUUgIqJyLjQ0FK9evUKHDh3EYSGyGjZsGADA398fDx48yLW9n376CQBQp06dfE0smt3dW+rm6OgIALhz546aMykaT58+BQCYmpqKj+xnlZ6ejhs3buTYRnp6erZFmHv37gHInFxWPhZ5VpGRkeIY9NntW6tWLXEoOG9vb5WdpO3bt+eYIxERERFlr0ePHjA1NYVMJsPPP/9coseuW7cugP8N1ZWd27dvi7/Xq1cvX8fo0KEDJBIJrl27hj///BNPnjxBu3btoKWlBeB/RaALFy6IhSJnZ2elJ47k187Ozs4qj3P16tV85QWor98jH8brzZs32RYBsr7n+cG+XMl49+6d+ERXYT6T8n7Xxx4+fCg+1abq/7n89gNHjRqlsi+XnycHiahksAhERFTOZTcUnNyQIUNQr149yGQyuLq65nh32L59+7B3714AmV/ey4chyAv5ZLF5eQS/JA0aNAgAsHPnzhyfYikr5O9zXFycyvd6586debobVF7sy259ly5dxE52VmlpaVi/fr3SekEQxCEB5JP1EhEREVHxMDAwwJw5cwAAK1asEAsh2REEQeWwTgUhv9aLjIzMcV4T+ZDAderUyXYumOxUqVIF9evXR1paGhYtWgRAcag3KysrODg44MqVKzh9+rTSdjn5tfOrV6+UtiUnJxdoSCt5m0DJ9n3q1q0rPumyZcsWlTF+fn4Faru09uUGDhwIiUSCU6dO4f79++pOp9CyfnZUfSYvXryIsLCwXNvJrS/n6OioNB9QXvfNrh9IRKUbi0BEROXc0aNHIZFI0KdPH5XbNTU1ceDAARgZGeHGjRto27YtgoKCFB5Zj4mJgbe3N1xdXQFkzjkzdOjQfOUhnwQ0NDS0SCaoLSpffPEFunbtivfv36NDhw4qJ+x88uQJVqxYUeBOU0mqX78+zM3NkZ6ejkmTJiE5OVnc9uuvv8LDwwO6uro5tqGpqQk/Pz9s3rxZ/Bykp6dj0aJFOHv2LDQ0NDBv3jyV+2ppaWHJkiU4fvy4uC4xMRHjx4/HgwcPUKlSJUybNq0IXikRERER5WTWrFno3bs30tLS0KNHDyxcuBCvX79WiElOTsaxY8fw2WefwdPTs0iO27p1a3Tt2hVA5lyUHxeCEhMTsWDBAuzbtw8AxCJOfsmLOocOHQLwv/mAsm5PSUnByZMnFeKzat++PQBg/fr1uH79urj+7du3GDBgAF68eJHvvMzNzWFsbAwAOH/+fL73LyiJRILZs2cDABYvXoxff/1V3JaSkoIpU6YovMb8kPfl7t27p/QZUidHR0e4ubkhLS0NXbt2xcmTJ5WGXnv58iXWr1+P5cuXqynLvDM2NkajRo0AAFOnTsW///4rbgsMDMSQIUNy7csBmcWixYsXi0/9CIKAzZs3i8XBb7/9VuV+hekHElHpxiIQEVE59uDBAzx8+BAtWrSApaVltnENGjTA5cuXYW9vjzt37sDFxQVVq1ZF8+bNUb9+fVSpUgWLFi2CIAiYNWtWgYohXbt2RdWqVfH8+XPUqFEDLVu2hIuLC1xcXArxCovG/v370blzZ/z1119o164dqlatihYtWqBp06aoUqUKateujTlz5iAyMlLdqeZKU1MTPj4+AIBt27ahWrVqaNasGaytrTFw4EC0a9cOAwYMyLGN6tWrY8qUKRg3bhysrKzQokULVK1aFd7e3gCA77//Hq1atVK5b+vWrdGjRw/06dMHdnZ2aNGiBapVq4bNmzdDKpXCz89P5TByudm3bx/Mzc3FH/n47R+vX7FiRb7bJiIiIiqPJBIJDh06hKlTpyIjIwOLFy+GlZUVateujc8++wyffvopTExM0LdvX1y/fl1lkaSgdu/ejc8++wyvX79G165dUa1aNXz22Wdo3LgxTE1NsWTJEkgkEixatAhDhgwp0DHk+QqCAFNTUzRu3Djb7WZmZuKX61mNHTsW9erVQ2xsLD777DM4ODjAyckJ1tbWOH/+PNauXZvvvCQSiXjzXL9+/dCwYUOx3/Pbb7/lu738mDBhAgYPHoyUlBQMHDgQNjY24rX8unXrxH5CfkZ0AIDGjRvD0dERiYmJqF27Npo3by6+JnUXhdauXYvhw4fjn3/+Qa9evWBmZobmzZujefPmqF69OqpXr45vvvkmT0OflwYrVqyAVCrFmTNnYG1tDScnJ9SqVQsdOnRA9erVMWnSpFzb+OGHH7Bw4UKxX2tlZYVx48YhIyMDEydOxODBg1XuV5h+YE5CQkIU+mxLlixRud7DwyPfbRNR3rAIRERUjuU2FFxWjo6OuHfvHrZs2YLPP/8cWlpauHPnDiIjI1G3bl1MmTIFd+/exYoVK/LdaQAAfX19XLhwAf3794euri5u3ryJoKAgBAUF5butola5cmX4+/vj4MGD6NOnD6RSKW7fvo2//voLRkZGGDp0KPbu3Yvp06erO9U8+frrr3HkyBG0atUKqampePDgAczNzbFy5UqcPHlSnOg2Jz/88AO2bt2KGjVq4K+//kJqaipcXFxw6tQp8Q7D7Ozfvx8//PADjIyM8Oeff0IqleLzzz/H5cuX8/0EmVxycjKio6PFH/kTTikpKQrrS9sQFURERETqpKmpidWrV+PBgweYM2cOmjVrhri4OISFheGff/6Bg4MD3N3dcfnyZVy4cKHIjmthYYFLly5h27Zt6N69OwDg1q1bePz4MWxtbTFmzBhcv34dCxYsKPAx2rdvL17Xuri4KM1bI583KLvtQGYf5dKlS3B3d4elpSWePn2KV69eoV+/frh27ZrS00V5tXLlSnz77beoU6cOwsPDxX5PcRdMJBIJfvnlF6xfvx6NGjXCu3fv8PjxY7Rs2RIBAQHo0qULAKicKza3dk+fPo2RI0fCzMwMf/zxh/iaso48oA7a2trYvXs3zp07h8GDB8PQ0BB3797F3bt3oaWlhb59+2LLli1YtWqVWvPMq65duyIgIACdO3eGRCLBgwcPoKOjA09PT4SEhEBfXz/XNjw8PHDs2DE4Ojri0aNHiIuLQ4sWLbBz506sW7cux30L0w/MTlpamso+W3p6usL6nIamJ6LCkQgfPydJRETlRsuWLREaGoq//vpLnKCVKDuBgYHo0KEDbG1tERERka99t2/fjtGjR6N9+/acCJSIiIiIqBQ6ePAgBg0ahCZNmuRpbhkqOyIiIsQRF/L7VW9h+oFEVDbwSSAionLq1atXuHbtGhwcHFgAIiIiIiIiquDkw3o7OzurORMiIipJLAIREZVTlpaWkMlkZWbsYyIiIiIiIiqcFStW4NatWwrrYmNj4eHhgbNnz0JLSwvjx49XU3ZERKQOmupOgIiIiIiIiIiIiArvwIEDmDNnDqpUqQI7OzskJyfjwYMHSE1NhYaGBn7++WfUq1dP3WkSEVEJYhGIiIiIiIiIiIioHJg9ezb27duHsLAw3L9/H6mpqahSpQratm2LqVOn4rPPPlN3ikREVMIkQn5nCyMiIiIiIiIiIiIiIqJSj3MCERERERERERERERERlUMsAhEREREREREREREREZVDLAIRERERERERERERERGVQywCERERERERERERERERlUOa6k6Aik7dunURExODWrVqqTsVIiIiIqIS8+TJE5iYmODBgwfqToVKAPs9RERERFQRFbTfwyJQORITE4PExER1p1FhxcXFAQCMjIzUnAmpCz8DFVejjAzoOH4GAJBpaODmXzcgZMjUnBWVNP4bULHx/KsXr4ErFnX3e0rb/++NU9NgLGRed8RKNHBbW0vNGZUupe18lSRBQ0BagzRxWetPLUhkEjVmlLuKfL5KMw2JFA7mLcXlh1FXIRMyeL7KGJ6vsoXnq2wpqfNV0GtgFoHKEfmdcFeuXFFzJhVTcHAwAMDZ2VnNmZC68DNQcf05YTx+0+yYuSABlpxZgsqGvFCraPhvQMXG869erVq1UncKVILU3e8pbf+/Px83Dkk3wwAAek2dYLNpk5ozKl1K2/kqSQlpCeh1pJe4fGLtCehr6asxo9xV5PNVmqUmp2PPwqvi8sZFy6Gtq8nzVcbwfJUtPF9lS0mdr4L2ezgnEBERERERERERERERUTnEIhAREREREREREREREVE5xOHgiIiICsnSeyGEpdcAABJJ6R5nnYiIiMqX6v/3f0B6euaCJrv4RERERKSIV4hERESFJNU3AFj7ISIiIjWQGhioOwUiIiIiKsU4HBwREREREREREREREVE5xCIQERERERERERERERFROcTh4IiIiIiK0Lt37xAbG4vk5GQIgqDudKiE6OnpAQDu3r2r5kzKJolEAiMjI1SpUgW6urrqToeIiIiIcpCcnIy3b98iLi6OfZ5iwv5F2ZKX8yWRSKCrqwtjY2OYmZlBQ6Pkns9hEYiIiKiQ0t6+BeTXvZwbqELT0dHBq1evxGWJhB+IikJHR0fdKZRpMpkM//77LxISEuDg4FCiHSKisi7t9WsIKSkAAImODrSqVVNzRkREVJ7JZDI8ffoUaWlpANjnKS7sX5QteTlfMpkMiYmJSExMxIcPH2BnZ1di/R4WgYiIiArpzcqVkGh2/2+Jd0FVVJqamtDU1ISWlhasra1hYGDADlEFkvLfF7DsrBVMeno6IiIikJiYiHfv3qFq1arqTomozHi1YAGSboYBAPSaOsFm0yY1Z0REROXZ27dvkZaWhkqVKsHOzg6amvx6uTiwf1G25OV8CYKA+Ph4REZGIj4+HtHR0bCwsCiR/Ph/KRERUSFJISBZ4x8AgIaWJr/4r6CkUimkUimsra1haGio7nSIyhRNTU1YWVnh8ePHiI2NZRGIiKgISCCBg6mDwjJRQUgkEphbGyosU8UVFxcHALCysmIBiCgfJBIJDA0NYW1tjadPnyI2NpZFICIiorJCXwb0C94CADBs0RzGBhPUnBGpg4aGBiQSCQwMDNSdClGZJJ8LSD60CBERFU4lrUrY0HmDutOgckBLR4peHo3UnQaVEvJrNc7jSFQw8u8MkpOTS+yYLAIREREVktnXY/Cybj0AgF3r1mrOhtRJIpHwzkiiApIXUmUymbpTISpTzL4eg4wvvwQASCubqDkbIiIq72QyGSQSCedwJCog+fcGglBy0wmwCERERFRI+i0/Q2pqivg7ERERUUnhtQcRERER5YQlWyIiIiIiIiIiIiIionKITwIREREVUmpaGv5+9Q8AQHorDM0bOEJbS0vNWRERERFRRZYuS8df0X+Jy/XM6kFTg18DUf7JMmR49zxeXLawMYCGlPeVExGVFfzrT0REVEiJyUmICtEDAESHvED9pZ+wCEREREREapWSkYIpAVPE5RP9TrAIRAWSnibD6Y13xOXhi1pCm0UgIqIyg/9iExERERGVEZs3b0ajRo2gp6cHCwsLDBs2DM+ePctXG9HR0XB3d4eVlRV0dHTg4OAAHx8fpKenq4y/c+cOevXqBRMTE+jr66Nly5Y4fPhwtu0fPnwYLVu2hL6+PkxMTNCrVy/cuXMn23hStHv3bowfPx7NmjWDjo4OJBIJtm/frjJWPqlsTj8vXrwQ4yMiInKM9fb2VnmcV69eYcyYMbC0tISuri4cHBywdOlSpKWlqYxPSUnB4sWLYW9vD11dXVhZWWHcuHF4+/ZtYd8eIiIiIqoASrrfc/DgQYwZMwZNmjSBtrY2JBIJAgMDVbbr7e2tdB2tq6sLXV1dcfmff/4pyMsuNrwFhIiIqJBef/89JLIWmQsS9eZCROWXl5cXvvvuO7Rp0wY//vgj3r17hx9//BGBgYG4du0arK2tc23jw4cPcHZ2xsOHDzFx4kQ0bNgQwcHBmDt3Lv7880/s2rVLIf6PP/5A27ZtoaOjgxkzZsDc3By7d+9G//794efnhzFjxijEb9myBW5ubmjQoAF8fHyQnJyMNWvWoE2bNrh8+TIaNWpUpO9JeeTp6Ylnz57B3NwclpaWOXZ2Fy5cqHL948ePsWfPHnz66aeoUaOG0vZGjRqhb9++SutdXFyU1r1+/RqfffYZIiMj0a9fP9jb2yMoKAienp64du0ajh49Conkf3/8ZDIZ+vTpA39/f7Rs2RL9+/dHeHg4/Pz8cOHCBVy9ehUWFha5vxGUZy/nzUfS3cxCq55jQ1h9v0zNGREREREVnDr6PevWrcPVq1fh6OiIunXr4u7du9m2/eWXX+KTTz5RWJeWlobnz5/D29sbTk5OqF69esFefDFhEYiIiKiQ0t+/z/IXVVBnKkRUTj169Ajff/89nJycEBgYCE3NzH90unfvjhYtWmD+/PnYuXNnru2sXLkS9+/fxw8//IDp06cDANzc3GBsbIy1a9di9OjR6Nixoxjv4eGBhIQEBAQEoFmzZgCAMWPG4LPPPsP06dPRv39/VK5cGQAQExOD6dOnw9raGiEhITAyMgIADBo0CJ9++ik8PDwQHBxclG9LueTn5wd7e3vY2tpi+fLlmDdvXrax2T254+HhAQBKRTq5xo0bZ7vvx+bMmYMXL15gw4YNmDBhAgBAEAQMGzYM+/btw759+zB06FAxfseOHfD398fQoUOxZ88esUC0ceNGuLu7w9PTE76+vnk6NuVNenQU0l+9zvzdykrN2RAREREVnLr6PTt27ICVlRW0tLTg7e2dYxGoYcOGaNiwocK6lJQU8fp63Lhx+X3ZxY7DwRERERUhQQAOh0Xil9Dnefohqii2b98OiUSCixcvYsWKFeIwUfXq1cPevXsBAC9fvsSIESNgYWEBPT09dO3aFY8fP1bZ3o4dO9CqVSsYGBigUqVKaNq0qcohs86ePYuhQ4eidu3a0NPTg5GREZydnXHixAml2FGjRkEikeDDhw+YNm2aOGxAgwYNcODAgSJ9P/Lrl19+QUZGBiZPnix2hACgWbNmcHZ2xq+//oqkpKRc29m5cycqVaoEd3d3hfUzZswQt8tFRETg0qVLaN++vVgAAgAtLS1MnjwZcXFxOHr0qLj+2LFjiIuLg5ubm1gAAgAbGxsMGDAAly5dQkRERH5feoXTuXNn2NraFnj/5ORk7NmzB9ra2nB1dS1ULh8+fMD+/ftRq1YtjB8/XlwvkUiwfPlyAJlDdWQlX/7+++8VnhAaP348atWqhT179uTps1raRcWn5PlvPf/mExERVRzs9xSOOvo9AGBrawutQsztnJGRgV27dkFfXx/Dhg0rcDvFhU8CERERFZJ+s2bAH/JngDgeHKn2fs8exPx30S9XY906aGfzZW/aq1d4PnaswrrK/QfAbPSobI/xz6zZSP7rvrisaWIK213Z3yUV99tveLd2rcI6yyVLUKlJk2z3Kax58+YhPj4eY8aMgZ6eHjZt2oThw4dDKpVi9uzZaN26NRYvXoxnz57hxx9/RN++fXHnzh1oaPzv3qXx48dj06ZN+Pzzz7FkyRJoaWnhzJkzGD16NMLDw7F06VIxdvv27Xjz5g1GjBgBa2trvHv3Djt27EDv3r2xb98+DB48WCnHbt26oVKlSpg9ezYyMjKwfv16DB48GDVr1kTz5s1zfY3x8fFITk7O83tibm6ea0xoaCgAoHXr1krbWrdujaCgINy9exctWrTIto03b97g2bNnaN26NfT09BS22dnZwdLSEteuXcvzMQHg2rVrGDVqVJ7id+zYgWvXrsHOzi6HV0qFdfjwYcTExGDAgAHZDrv28uVLrFu3DrGxsahatSpcXFxQu3ZtpbgrV64gJSUFXbp0USjoAJkdZQcHB4SEhCAjIwNSqRTJyckIDQ2Fg4ODUiFLIpGgS5cu8PX1xY0bN9CuXbtcX0urVq1Urv/zzz9hY2OjtifL4uLioCEToBv9MF/7BQdHFEs+elWrQtq0KQAgrmoVRPCJOwVxcXEAUCGfREyWJSM1NVVcDgkJga6Grhozyl1FPl+lWUaagNTUDHE5JCQEUi0Jz1cZU1TnS09PDzo6OkhJSVG5PXbfPsTtVywkVPvpR2jZ2KiMT3/9Gq/cJyqsM+zXD5W/yv5mlrfz5iPlwQNxWWpqAqstW7KNjz97FjEbNiqss/BeCN1iGKpYPmfi3LlzER8fj5EjR0JPTw9btmzB8OHDIZPJMH/+fLRs2RILFizA8+fPsWbNGvTp0wc3btwQ+z2CIGDSpEnYsmULevTogYULF0JLSwv+/v4YPXo0/vrrLyxevFg87pYtW/DmzRsMGTIE1atXR1RUFHbv3o3evXtj165dGDhwoBibkZH5/3PXrl2hp6eH6dOnIyMjA76+vhg8eDCqV6+ucBNYdoqj33PlyhUAmUWfjz9jLVq0QFBQEG7evJljv0ze72nZsiU0NDQU2rG0tISlpSVCQ0Oz/QzL5wxKTU3NNuZjv/32G/755x+MHDkS2traue4nCAJSUlLy/f9jXFycwg13eVWmikDJycmYP38+bty4gcePH+P9+/eoXLkyateuDTc3N4wYMUKpYhcXFwdvb28cOnQIr1+/hqWlJQYOHIiFCxfCwMBA6RgymQzr1q3Dpk2b8PjxYxgYGKBz585YunQpatWqpTIvf39/LFu2DGFhYZBIJGjatCk8PT3RqVMnlfGPHj2Cp6cnLl68iISEBNSpUwcTJkzAhAkTlDpXRERU+pkMHgzhzsXMKhD/HadsZLyPQerjvxXWCVm+mPmYkJ6uFJ8RHZXjMdL++UdhH5lFXM45xcYp51TMd+gnJibi5s2b0NXN/BJq0KBBsLOzw5AhQ7B06VKFoa+qVKmCGTNm4MKFC+jSpQsA4OTJk9i0aROWL1+OOXPmiLGTJk3CxIkT4ePjAzc3N9SsWRNA5lMJ+vr6CjlMnToVjRs3xuLFi1UWgerWrYutW7eKywMGDIC9vT1+/PFH7NmzJ9fXOGnSJOzYsSPP74kg5D6MZGRkJACoHP9avi4yMjLHIlBObcjXP8jSmc7rMQsaT8Vjy39fgLi5uWUbc+7cOZw7d05clkgkGD58ODZu3Kjw/0t4eDgAwN7eXmU79vb2ePjwIZ49e4ZatWrh77//hkwmyzFe3m5eikCUN0n//ftIRERUGmTExCDtyROFdbn1ez6Oz4iOzvEYaS9fKuwj+5DzfIOyuDilY8hKoN9z5coVsd/Tv39/ODg4wNXVFYsWLcLs2bPFWAsLC8yZMwcXL15E586dAQCnT5/Gli1b8N1332HmzJlirLu7OyZPnowffvgBo0ePFvs9GzZsUOr3eHh4oEWLFli2bJlCEUiuTp062LRpk7jcr18/NGjQAGvWrMlTf2bq1KnYvXt3nt+TvBSM/vnnHwBQOaeOvE/xzz//5FgEkreRXb+nevXqePgwfzfz5Gbbtm0Ash+OWd3KVBEoPj4eGzZsQIsWLfD555/DwsICMTExOHPmDL7++mvs27cPZ86cESumCQkJaN++PW7fvo2uXbti6NChuHXrFlatWoWgoCAEBweL/yPKjR8/Hn5+fqhfvz4mT56Mly9f4sCBAzh79iyuXr2q1KHZvXs3XF1dYWFhId4FuX//fnTp0gUHDhzAgAEDFOLv37+P1q1bIykpCYMGDYKVlRVOnTqFiRMn4v79+1izZk3xvYFEREREaubh4aFw/WVpaQkHBwfcu3cP06ZNU4iVT1L/8OFDsQi0Y8cO6OjoYPjw4YiKUiyK9evXDxs2bMD58+cx9r+nqLJ2hBISEpCcnAxBENCxY0f4+vriw4cPMDQ0VGgna3EJyHzioU6dOnj06FGeXuPs2bMxYsSIPMXmVWJiIgBAR0dHaZv8/ZTHFKQNeTtZ28jvMYsiRyqcp0+fIiAgADY2NuL/M1lVqlQJXl5e6Nu3L2rXrg2ZTIawsDB8++232L17NxITE3Ho0CExPjY2FgBgbGys8njyuxDlcfmNz438TtCPyZ8QcnZ2zlM7RS04OBhR8SlINnPI137On6m+A5qKl/wOW3V9XtQpIS0B2ke0xeU2bdpAX0s/hz3UryKfr9IsNTkdEWevistt2rSEtq4mz1cZU1TnSz5XSnbXlJpS5a+btbW1s42XaGsrrdPUlGYbD0BhlAAgczyOnOI1NZWH+dLW0spxn4KSP6AwefJkhWsiOzs7sd8za9YshWPLCz9Pnz4V1+/Zswc6OjoYOXIkPnz4oHCMAQMGYNOmTbh06RLq1q0LQPH1Z+33dOrUCb6+vkhNTRX7PVKpFAAwf/58hf3q1KmDOnXq4O+//87TezNv3jyMHDkyz+9NXtqUD/VmZGSkdJ7lD3SkpaXl2Jb8SR75U2sf09PTQ2JiYvaf4f+Gocvpc5vVq1evcObMGTRo0CDPNzpJJBLo6urmaaSJrAryFBBQxopApqamiI2NhfZH/zikp6ejS5cuOHv2LM6cOYPPP/8cALBixQrcvn0bc+bMEcesBjIfx/Px8cHq1asV7jYNCAiAn58fnJ2dce7cOfE4w4YNQ8+ePTFp0iT4+/uL8TExMfDw8IC5uTnCwsLE6uKcOXPQpEkTuLu7o1u3bgpfLLi7uyM2NhanT59Gjx49AABLlixB586dsXbtWgwbNizbYQ+IiIiIyjpVQ06ZmprCyspK6eYcU1NTAEB0ljsB79+/j5SUFNSoUSPbY7x+/Vr8PSIiAl5eXjh9+jTev3+vFBsTE6NUBFKVo7m5OZ49e5btMbP69NNP8emnn+YpNq8qVaoEIHPC0Y+HcpPfUSePyUsbqiQnJyu0kVO8qmPmN56K3tatWyEIAkaPHq3UaQYyn67LOmwIAHTq1AmtWrWCk5MTDh8+jLCwMDg5OZVUykRERETlUmH7PX/99Rf7PSXU7ymsbdu2ISMjA19//XWRtVnUylQRSENDQ6kABGRW5/r164fAwEBxEi1BEODn5wcDAwN4eXkpxHt5eWHdunXw8/NTKALJJzFdsmSJwnF69OgBFxcXnD17Fs+fP4fNf2NYHjx4EP/++y8WLVqk8HiZtbU1Jk2aBG9vbxw5cgRfffUVgMxh4IKDg9GhQwexAARkVhWXLFkCFxcXbN68mUUgIiKickhqagLtTxQvslXd9SZu09RUipea5TyGslb16siI+98d9pompjnnZGyknNNHF9pFTX7XWV7XA4rDpclkMhgYGODIkSPZxsuH8I2Pj4ezszNiY2MxZcoUNGzYULyjbOvWrdi7dy9kMpnS/lknIM0uj5zExsbma+L7atWq5RpjbW2NP//8E5GRkUpPpuc2zFvWNrLGfywyMlLpmja7eFXHzBpfr169AuVIBSeTybB9+3ZoaGjkuwNaqVIluLq6wtPTEyEhIWIRSH73anZP7sjnFpDH5TeeiIiIyh/2e/47Jvs9Skprv6cwBEHAli1boKenh2HDhhVJm8WhTBWBsiOTyfDbb78BABo0aAAgc5zply9folu3bkrjIerr66NNmzbw9/fHixcvxIpqYGCguO1j3bp1Q2BgIIKCguDq6irGA5mTaKmK9/b2RlBQkFgEyim+bdu20NfXR1BQUK6vt7ROkFrRcUJE4meg4kpMSc6cDwgABAG6MX9DVztvk+4W1yTRVPLkj4lnd7eR/oAB0P9omFghh3iYmsI6y7BMcjlNMGn+3ZJ8xet06ADrDh3ytU9BySdIVTW5pkwmEyfGVJVHenq6+Psnn3yCBw8eoE6dOqhatWq2x0tJSRGv9TZu3CgO2yvn6+srxsnblk+Qqur1Z5ejnLyjlJKSgkmTJhX52NhOTk747bffEBwcLN6QJBcSEgI9PT3Y29vneO4qV66MGjVq4Pbt2/j3338V7qx79uwZXr16hU6dOoltNPpvotyQkBClduV/65o0aSJua9KkCQDg0qVLSsOMXL58GQDQsGHDHHMs6QlSy5PffvsNkZGR6Natm9JnJC/kE/UmJCSI67LO4aNKeHg4tLW1xePVqlULGhoaOcZnbZeIiIjKH9Phw2E6fHie47UsLVH75Ml8HaP6yhX5ijfq3h1G3bvnax91k8+96OjomGO/BwAuXryIFy9eYMuWLUo3A8kfeigOU6ZMKfK5UFu0aIHffvsNV65cUbpmvHLlCvT09MTv/7NTtWpV2NjY4Pbt20hKSlLZ71H1/XxBXLhwAU+ePMGwYcNQuXLlImmzOJTJIlBqaiqWLVsGQRAQHR2NCxcu4MGDBxg9ejQ6deoEIG+TmPr7+yM8PBw1atRAQkICXr16hQYNGqisyKrqAOV0jPzGS6VS1KxZE/fv30d6enq2lVgiIip9jC+FwFQaC0EA0g0MoSlVvpmAiIqGq6srTp48iblz52LLli1KQ17FxsZCV1cXOjo64jXdx52Nu3fv4vjx48WW44wZMzB06NAibXPIkCHw8fHBunXrMGTIEPFa8ebNm7h06RKGDBmiMKRBbGwsXr9+DTMzM/HLfSBzmGMfHx9s2rQJU6ZMEdf/9NNP4na5mjVrolWrVggODlYYIiw9PR3r16+HoaEhevXqJcb37t0bM2fOxNatW+Hh4SEWZZ4/f47Dhw+jdevW4sS1VPS2bNkCAHBzcyvQ/qGhoQAyx6uXa9myJbS1tXHu3DkIggCJRCJue/bsGR4+fIgOHTqIn0c9PT20aNECV69exbNnz2BrayvGC4KAc+fOQV9fH82aNStQjqTa+527kPr8OQBA28YGpl+5qjkjKi10pDrwcfZRWCYqCE0tDXT9ur7CMhEVL3m/Z+bMmdixY0eB+j137tzB0aNHiy3H4pgLddiwYVi6dCl++uknDBs2TLzOvHHjBoKCgjB8+HClfs+rV69gbm6u0O9xdXXF0qVLsWHDBkyfPl1c/8MPP4jbi4Kfnx8AlOqh4IAyXARatGiRuCyRSDBz5kx8//334rqSmMQ0p33yGy/fRyaT4cOHDzAxMVEZA5TeCVIrOk6ISPwMVFzPd++G0bXrEAQB8Q4N8aT3WKTncV9OEl1+XL9+HUDeJrusiOQTpKqaXFNDQwMSiURpvXxZU1NT/H3QoEEICAjAxo0bcf/+fXz55ZewsrLCmzdvcOfOHRw/fhx//fUX7Ozs4OLiAktLS8ydOxcvXryAnZ0d/vrrL2zevBmOjo64efMmdHR0xLblnSdV5zC7HOXkT7fo6OigcePGaNy4cQHfKdUcHR0xe/ZsfP/99+jWrRtcXV0RFRWF1atXo0qVKvDx8VHI7fTp0xg9ejQWLlwIb29vcf38+fNx9OhRzJ8/H5GRkWjUqBGCgoKwa9cuDB06VGHIYgBYu3YtnJ2d0atXL0ybNg3m5ubYtWsXbt26BV9fX4UhHapVq4aVK1diwoQJ6NixI8aPH4+UlBSsWbNGbCu3/z9KeoLU8uLdu3c4ceIELCws0Lt372zjbt26hcaNGysUcwDg8OHD2LFjB0xMTBQ+A0ZGRhgyZAh27twJX19fTJgwAUDmFwzyYbXHjh2r0Na4ceNw9epVzJs3D3v27BGP5evriydPnmDcuHFK47tT4cRfvoSkm2EAAL2mTiwCkUhTQxPNq+Xv31MiVTSkGqjukP33VERU9Pr06YOxY8di8+bNuHv3bo79njZt2sDS0hIzZszAkydPVPZ7ikNxzAnk4OAg9ntcXFyU+j3Lli1TiD9y5IjKfs/s2bPx66+/Yvbs2YiIiFDq98gfJJELDg4Wv9eT/3fXrl3iiAaurq4KNzgBQFRUFI4cOYK6deuibdu2Rfo+FLUyWQQyMDCAIAiQyWR4+fIlTpw4gfnz5+PKlSs4ffp0he8EEhEREZVnGzZsQMeOHeHr64vVq1cjISEBVapUgYODA5YtWyYWJipXroyzZ89izpw52LBhA1JSUtCwYUPs2bMHYWFhxdYZKi5Lly6Fra0t1q1bhylTpsDAwABdunTBsmXLcpwwNisjIyNcunQJnp6eOHjwIHx9fWFra4tly5Zh5syZSvFOTk4ICQnBt99+i5UrVyI1NRWOjo44ePAgBnw0vCEAjB8/HmZmZli5ciVmz54NbW1ttG3bFkuXLhWHl6Oc+fn5iZ3Nu3fviuvkQ0u3bdtW6WmfnTt3Ii0tDa6urirnUJWbNm0a/v77b7Rq1QrW1tbIyMhAWFgYLl++DB0dHWzfvl3phrXly5cjICAAEydOxPnz5/HJJ58gKCgIV69eRa9evTBkyBCF+JEjR2L//v3Yu3cvnj59ivbt2+Px48c4fPgwatasie+++66wbxERERFRhbBmzRp06dKF/Z4S6PdcvHhR4aETANi6dav4e9u2bZWKQDt37kRqaqrSTVGlkUTI60xPpdzBgwcxaNAgzJ49Gz4+Pjh16hS++OILTJo0Sbz7MCsPDw+sXbsWFy5cQMeOHZGQkAADAwM0aNBA7GxldejQIQwYMABeXl5YvHgxAKB58+a4ceMGoqKiYGZmphAfHR0Nc3NztGvXTqwezpo1C6tWrcKvv/6K/v37Kx3D0dER9+7dQ2pqaoGGg5M/CZTdk0JUvPgUCPEzUHH9M2s23oeGIkMQkPCJI55NmJPnfYfxSaBy4/r169DR0UHDhg3VnQqpQdYngajg5Nfhjo6O+dqvPF0Hjxo1Ksex1UeOHInt27crrPv000/x119/4f79+6hXr162+/r5+eHQoUO4d+8eoqKiIJPJUL16dXTs2BEzZsxA3bp1Ve736tUreHp64tSpU4iJiYGtrS2++uorsdD3sZSUFCxfvhy7du3CixcvYGpqii+++ALfffddrmPa54W6z3dwcDCi4lOQbOaQr/2K62/+P7NmI/nOHQCAbsOG+Z4nobzjNXrZwvNVtvB8lS1Fdb4Ker1G+cP+RdmS3/NV0v2eMvkkkCryyZzkd8jlZRLTrHH6+vqwtLTE06dPkZGRoTQvkKr5fOzt7XHjxg2Eh4crFYGyi88up4yMDDx9+hQ1a9bkfEBERGVM9ZUr8HcBvxAiIiLKavv27UpFntzcv38/T3Fubm4FmjPI0tJSnHMoL3R0dLBw4UIsXLgw38ei/GPRh4iIiIhyUm5mcnv58iWA/403b29vDysrK4SEhCAhIUEhNiEhASEhIahZs6bCI2Tt27cXt33M398fgGK1vH379gCAs2fPZhsvj8kt/vLly0hISFCIJyKisuFDYjwCzz3Gnd+f4+GpAKSmJqo7JSIiIiKq4JLSkzA9cLr4k5SepO6UqIxKS83Ab753xZ+01Ax1p0RERPlQpopA9+/fR2Ki8hdriYmJmD59OgCgZ8+eADInlXVzc0N8fDyWLFmiEL9kyRLEx8ernMQUALy8vJCamiquP3PmDAIDA9G1a1eFsf8GDRoEY2NjrFmzBpGRkeL6yMhIrF27Fubm5ujXr5+43sHBAc7OzggICMCZM2fE9ampqfDy8gKAAt2ZR0RE6pWRIYNerCn0Y81g8G9lyGQydadERERERBWcTJDh9tvb4o9M4DUqFYwgE/DqSaz4I8jKxcwSREQVRpkad+zAgQP4v//7P7Rt2xZ2dnYwMjLCP//8gzNnziA6Ohrt2rXDtGnTxPjZs2fj2LFj8PHxwa1bt+Dk5ISwsDCcPXsWzZs3x9SpUxXa79ChA9zc3ODn5wcnJyd8/vnnePXqFfbv3w9TU1OluYVMTEywdu1auLq6wsnJCYMHDwYA7N+/H9HR0di/fz8MDQ0V9lm/fj3atGmDvn37YvDgwbC0tMSpU6dw7949TJo0Ca1bty6eN4+IiIiIiIiIiIiIiCqUMlUE+uKLL/Dy5Uv8/vvvuHLlCuLj42FsbIyGDRtiyJAh+PrrrxXm09HX10dQUBC8vb1x6NAhBAQEwNLSEjNmzMDChQuhp6endAxfX184Ojpi06ZN+Omnn2BgYIB+/fph6dKlqF27tlL8iBEjYG5ujmXLlmHbtm2QSCRo2rQpPD090blzZ6X4+vXrIzQ0VJxYNSEhAXXq1MG6devg7u5etG8YERERERERERERERFVWGWqCNSsWTM0a9YsX/sYGxtj9erVWL16dZ7iNTQ0MHnyZEyePDnPx+jevTu6d++e53gHBwccPHgwz/FERFS6Jd75A5CPiCBwaAQiIiIqOYk3byLj338BANLKlVGpaVP1JkREREREpUqZKgIRERGVRu937YZEM/NmAJaAiIiIqCRF+foi6WYYAECvqRNsNm1Sc0ZEREREVJpoqDsBIiIiIiIiIiIiIiIiKnosAhEREREREREREREREZVDHA6OiIiokKpMmw5h7V/qToOIiIgqoGoLFkJISgQASPQqqTkbIiIiIiptWAQiIiIqJG0rS0DyV+aEQBKJutMhIiKiCkTburq6UyAiIiKiUozDwREREREREREREREREZVDfBKIiIiokKRSDSQZxUAmCICGJiw0eI8FEREREamXhkQD9c3rKywTFYREQ4IqtkYKy0REVHawCERERFRIhpUM4NK1NqLiU5Bs5qDudIiIiIiIoKephzUd16g7DSoHtLSl+HxiQ3WnQUREBcTbQIiIiApJlpwMJCdDkpICSWqKutMhKpUiIiIgkUgUfnR1deHg4IBZs2YhJiZGIT4hIQHz58+Hvb09dHR0YGFhgcGDByM8PFyp7cDAQKW25T/m5uYl9RLzLT09HT4+PnBwcICOjg6srKzg7u6O6OjofLXz7NkzDBs2DBYWFtDT00OjRo2wefPmbOODg4PRsWNHGBoawtDQEB07dkRwcHC28Zs3b0ajRo2gp6cHCwsLDBs2DM+ePctXjkRUfGTJyZAlJGT+JCerOx0iIqIKraj6PY8fP1Zqm/2evPd7UlJSsGbNGjRt2hSVK1eGsbExGjZsiO+//x7x8fEq9ynP/R4+CURERFRIkZMnw+zadZgKAuIdGuLJjO/UnRJRqdWuXTuMGzcOABAdHY2TJ09i1apVOHv2LK5fvw5tbW0kJSXBxcUFN27cQN++fTFt2jS8e/cO69evR8uWLfH777/DwUH5qbtx48ahXbt2Cut0dXVL5HUVxOjRo7F792588cUXmDlzJp4+fYoff/wRwcHBuHr1KgwNDXNtIzIyEi1btkRsbCymTp2KmjVr4tixYxg3bhyeP3+OJUuWKMT7+/vjiy++QPXq1bFw4ULo6Ohg06ZN6NSpE06ePIlu3bopxHt5eeG7775DmzZt8OOPP+Ldu3f48ccfERgYiGvXrsHa2rpI3xMiyr/IyZORdDMMAKDX1Ak2mzapOSMiIiIqbL/n/PnzCAwMhKOjo1Lb7Pfk3u8ZMmQIjh49ir59+2LMmDEAgLNnz2L+/Pk4deoULl26BInkf0Nblvd+D4tARERERFRiatWqhREjRojLU6ZMwRdffIFTp07h2LFjGDhwIDZt2oQbN25g3Lhx8PX1FWNdXV3RoEEDeHh44OzZs0ptt2rVSqHt0uzixYvYvXs3evfujWPHjonrmzZtigEDBmDlypVYvHhxru3Mnz8fr1+/xqFDh/Dll18CAMaOHYvevXvj+++/x1dffQV7e3sAQEZGBiZMmAAdHR0EBwfDxsYGAPDVV1+hfv36cHd3R3h4OKRSKQDg0aNH+P777+Hk5ITAwEBoamZ2Hbp3744WLVpg/vz52LlzZ5G+L0RERERE5UFR9HumTZuG8+fPK7XNfk/O/Z7Hjx/j6NGj6NOnD44cOSK2MXHiRPTu3RsnTpzAnTt30KhRIwAVo9/DIhAREVEhpQG4a2cLAUCKiQGkGemQSvknlhTtfbAX+x/sL1Qbdc3qYnm75dlun3tpLh5EPyjUMQbXHYyhdYcWqo386t69O06dOiUOeXDx4kUAmXeMZVWrVi20a9cO586dw4sXL1CjRg2lthITEyGRSKCnp1f8iReCvBMxffp0hfX9+/eHnZ0ddu7cmWtnKDExEb/++itq1qwpdoTkpk+fjhMnTmDPnj3w9vYGAFy6dAkREREYNWqUWAACAGNjY7i5uWHRokW4dOkSXFxcAAC//PILMjIyMHnyZLEjBADNmjWDs7Mzfv31V/j6+pb695qIqKJKl6XjbtRdcdnR3BGaGrxGpfyTZcjw5mmcuFy1phE0pJxhglRjvyd7+en3tGnTBhcuXGC/B/nv98TGxgIArKyslNqqXr06AKBSpUriuorQ7+FffyIiokLS+uILvDgnE5fN0pIhlRqoMSMqjWKSY/B37N+FasNIxyjH7S/jXxb6GDHJMbkHFbFHjx4BgDiOdUpK5txaWS/M5SpVqgRBEBAaGqrUGZoyZYrYgbK2tsaIESPg5eWlsp38iI2NRVpaWo4xWXM2MTHJtc3Q0FBoaGigZcuWSttatWqFvXv34u3bt6hSpUq2bdy9exdJSUlo1aqVyjYkEgmuXbumcEwAaN26tVK8fN21a9fEIlBu8UFBQbh79y5atGiRwyslouJWuf8AGLRzBgBo5vBvBlU8KRkpmBE4Q1w+0e8Ei0BUIOlpMvy2+U9xefiiltBmEYiywX5P9spDv0dOKpWW2n5PgwYNUKNGDWzbtg2NGjVCly5dAGQOjb1t2zaMGjVKfGpIniNQvvs9/OtPRERUSEYdXIDzFwEBQJYxZYlIWUpKCqKiogAA79+/x/Hjx7FhwwYYGxujT58+AID69evD398fFy9eRMOGDcV9ExMTxQv058+fi+u1tLTw+eefo2fPnqhRowbevn2Lw4cPY/ny5Th//jyCgoIK1SHq06cPgoKC8hRra2uLiIiIXOMiIyNhbm4OHR0dpW3y8aYjIyNz7AxFRkYqxGelo6MDc3NzMSa3+KzHzG98We4MEZUHRt26qjsFIiIi+khh+z3Xr18HwH6PfHvW+KxU9Xt0dHRw8uRJfP3115gwYYK4XkNDAwsXLsSCBQvy3H556fewCEREREREJWbfvn3Yt2+fwrrGjRvD19dXvPCfOHEifH19sWDBAujr66Nz586IiorCwoULER0dDSCzYyTXpk0bnDx5UqHNMWPGYObMmfjhhx/w888/Y+7cuQXO+YcffkBMTM53CqampgLIHFotLxITE7O9c04+qWvW15hdGwBUdqjk7WRtI6d4VcfMbzwREREREWUqr/0eubwOjaaOfg8A6Ovr45NPPkGtWrXQt29faGlp4cyZM/D29sbbt2+xdu3aPLVfXvo9LAIRERERlQATXRPUNq5dqDasDJTHNP54e1xKXI4xuTHRzf2R/sLo2rUrZs2aBYlEAh0dHdja2ioNb1C7dm2cOXMGbm5uGDdunLi+Y8eOmDt3LhYvXgwjo5yHiACAhQsX4v/+7/9w8uTJQnWGmjZtmmuMfCiH7DomH6tUqZK4z8eSk5PFmNzayHpsVe1Urlw5T/Gqjpk1/uNOXl5zJCIiIqKKhf2eTIXt98ycORPLli0rdf2e/FJHv+fly5do0aIFOnXqhAMHDojrBw4cCDMzM6xatQo9e/ZEz549ldovr/0eFoGIiIiISsDQukOLfeLRnCZPLS0sLS3RuXPnXOPatWuHBw8e4OHDh3j79i2sra1Rq1YtzJ49GwBQr169XNswNDSEmZkZ3r59W6ic379/Lz7pk52s43lbWFjk2qa1tTUePXqElJQUpcJRTsMRfNxG1viP84mKikKzZs3yFK/qmNbW1vjzzz8RGRmpMGZ2fnIkIiIiooqF/Z5Mhe33zJiROadbaev3yEml0lLb7/Hz88P79+8xePBgpfjBgwdj1apVOH/+vFgEqgj9Hs7iRkRERESlkkQiQd26deHs7IxatWoBAM6cOQNjY2O0adMm1/3fv3+PqKgoVKtWrVB5fPnll7C0tMzxx87ODnZ2dmjevHme2mzRogVkMpk4x1FWV65cga2tbY7jYgOAo6MjdHV1ceXKFaVtV69ehSAICuNWy39XFS9fl594PT09NGjQIMcciYiIiIgoZ6r6Pf7+/qWy3yP/Kc39npcvXwIAMjIylOLT09MBAGlpaQo5yvNRlWN56PfwSSAiIqJCerd2LSSyzLtzBDXnQlSe/fzzz/jzzz+xaNEihcfxo6OjYWZmphArCIL41FDfvn0LddzimBPI1dUVO3fuxA8//ABnZ2dx/eHDhxEREQFPT0+F+KioKERFRcHS0lI8RqVKldC/f3/s2bMHhw8fxpdffqmQs1QqxdCh/7sL09nZGba2tjhw4AAWLVokDkcRFxcHPz8/2Nraol27dmL8sGHDsHTpUvz0008YNmwYNDUzuw43btxAUFAQhg8fXuaHRSAqD94s90HywwcAAF2Huqg6d46aMyIiIqLC+Pnnn3Hv3j14eXmVun6PXF7nBFJHv6d+/foAgK1bt2LgwIGQSCTiNj8/PwBAy5YtxXUVod/DIhAREVEhpTx7Bmj+94i2wDIQUVFwdnZGkyZNULduXQiCAH9/fxw/fhx9+vTB/PnzFWK7d++OqlWrolmzZrC2tsa7d+9w9OhRXLt2Dc7Ozvjmm28KlUtxzAnUuXNnDB06FHv37kWvXr3Qp08fPH36FKtXr0bdunUxa9Yshfi1a9di0aJF2LZtG0aNGiWuX7ZsGc6fPw9XV1fcvHkTNWvWxLFjx3Dy5EnMmzcPDg4OYqxUKsX69evRu3dvtGvXDpMnT4a2tjZ8fX3x6tUrnDhxAlKpVIx3cHDA7Nmz8f3338PFxQWurq6IiorC6tWrUaVKFSxbtixPr5WIilfKk7+RfOcuAECipaXmbIiIiCg/suv39OrVC3PmKN7YURr6Pfmljn7PqFGjsGbNGvj7+6Nt27YYMGAANDU1cerUKfj7+6NFixYYNGiQGF8R+j0sAhERERFRqdOqVSscP34cfn5+kEgkqF+/Pnx9feHm5gYNDcURjQcMGIATJ05gw4YNiImJgY6ODurVq4fVq1fjm2++gVYp/VJ0x44dcHR0xLZt2/DNN9/A1NQUrq6u+O677/I0ASwA2NjY4MqVK5g/fz58fX0RHx+POnXqYOPGjQqTy8r17NkT586dw+LFi7FgwQIAQPPmzXHu3Dl06NBBKX7p0qWwtbXFunXrMGXKFBgYGKBLly5YtmyZ0sS2RERERESUP9n1e1xdXdnvySI//R5DQ0NcuXIFy5Ytw4kTJzB37lxIJBLUrFkTnp6emDt3rtJ7Vd77PRJB4C3L5UWrVq0AqB6/kIpfcHAwACg82kgVCz8DFdfjH1bh6NPamUPBSSQwG1AHuroGedp32Gc2xZoblZzr169DR0cHDRs2VHcqpAb5fRKIVLt7N/NpBkdHx3ztx+vgikXd5zs4OBhR8SlINnPIPTiL4vqb/3b1j0gJDwcA6Njbo8q0qcVynLKqIl+jJ6QloNeRXuLyiX4noK+lr8aMcleRz1dplpqcjj0Lr4rLwxe1hLauJs9XGVNU56ug12uUP+xflC35PV8l3e/hk0BERESFZD5uHIRvL2ZOCJRlrFkiIiKi4saiDxERERHlhEUgIiKiQqqkqweTVolISElHWqWq0NLSVXdKRERERFTB6Uh18IPLDwrLRAWhqaWB7mMbKCwTEVHZwSIQERFRIWlraaFOdesCDQ1DRERERFQcNDU00aRKE3WnQeWAhlQDlp9UVncaRERUQCzdExERERERERERERERlUMsAhEREREREREREREREZVDHA6OiIiokGJPnIDe77/DLCUdiTX+QUzrjupOiYiIiCqI2BMnkPbyFQBAy8oSxr16qTkjIiIiIipNWAQiIiIqpJenTsBfuz4AQHiRgBqpidDWrqTmrIiIiKgiiD1xAkk3wwAAek2dWAQiUVJ6EmYHzxaXVzivgJ6mnhozorIqLTUDZ/3uictd3epDS1uqxoyIiCg/WAQiIiIqpAxIoCuzAQAIqYBMJlNzRkRERERU0ckEGe5F3VNYJioIQSbg7bM4hWUiIio7OCcQERERERERERERERFROcQngYiIiArJeuVKCN9eBAQAEom60yEiIqIKxGbTJnWnQERERESlGJ8EIiIiIiIiIiIiIiIiKodYBCIiIiIiIiIiIiIiIiqHWAQiIiIiIiIiIiIiIiIqh1gEIiIiIqJiFxERAYlEovCjq6sLBwcHzJo1CzExMQrxCQkJmD9/Puzt7aGjowMLCwsMHjwY4eHhKtv/448/8OWXX8Lc3Bw6OjpwcHDAkiVLkJKSUhIvr0ASExMxd+5c2NnZQUdHB3Z2dpg7dy4SExPz1c6dO3fQq1cvmJiYQF9fHy1btsThw4ezjT98+DBatmwJfX19mJiYoFevXrhz547K2PT0dPj4+MDBwQE6OjqwsrKCu7s7oqOj85UjEREREVFFUFT9nsePH6tsv6L2ew4ePIgxY8agSZMm0NbWhkQiQWBgYJ72lclkaNmyJSQSCVxcXFTGPH36FGPHjsUnn3wCPT09WFlZoVu3bjh9+nSecyzNNNWdABERUVmX8vQpIPy3IAg5xhJVdO3atcO4ceMAANHR0Th58iRWrVqFs2fP4vr169DW1kZSUhJcXFxw48YN9O3bF9OmTcO7d++wfv16tGzZEr///jscHBzENi9fvozOnTtDS0sL33zzDWrWrIkrV65g4cKFCA0NxYkTJyCRSNT1klXKyMhAz549ERQUBFdXVzg7O+OPP/7AqlWrEBoaivPnz0Mqlebazh9//IG2bdtCR0cHM2bMgLm5OXbv3o3+/fvDz88PY8aMUYjfsmUL3Nzc0KBBA/j4+CA5ORlr1qxBmzZtcPnyZTRq1EghfvTo0di9eze++OILzJw5E0+fPsWPP/6I4OBgXL16FYaGhkX6vhBR/qU8fgxZQgIAQENfHzqffKLmjIiIiKiw/Z7z588jMDAQjo6OYpsVud+zbt06XL16FY6Ojqhbty7u3r2b5xx+/PFH3Lt3L9vtERERcHJygiAIGDduHBwcHPDmzRts2bIFn3/+OXx9fcVzWVaxCERERFRI79avh0SzO4D/1YKISLVatWphxIgR4vKUKVPwxRdf4NSpUzh27BgGDhyITZs24caNGxg3bhx8fX3FWFdXVzRo0AAeHh44e/asuN7DwwOpqam4ePEiWrduDQAYP348HBwcMH/+fOzduxfDhg0ruReZBzt27EBQUBA8PDzw888/i+vt7Owwc+ZM7NixA19//XWu7Xh4eCAhIQEBAQFo1qwZAGDMmDH47LPPMH36dPTv3x+VK1cGAMTExGD69OmwtrZGSEgIjIyMAACDBg3Cp59+Cg8PDwQHB4ttX7x4Ebt370bv3r1x7NgxcX3Tpk0xYMAArFy5EosXLy6Kt4OICuHNihVIuhkGANBr6gSbTZvUnBEREREVRb9n2rRpOH/+vLi+Ivd7duzYASsrK2hpacHb2zvPRaAnT57Ay8sLy5Ytw9SpU1XG+Pn54d9//8WRI0fQt29fcb2bmxuqV6+ODRs2sAhERERERLm7GxiJu0H/FKoNixoG6PJ1/Wy3n9t6D+9exBfqGI7tq8PRxbpQbeRX9+7dcerUKXHIg4sXLwLIfAolq1q1aqFdu3Y4d+4cXrx4gRo1aiAmJga3b9+Gg4OD2BGSGzVqFObPn4+tW7eWus7Qzp07AQAzZsxQWD9x4kR4eXlh586duXaGIiIicOnSJbi4uIgFIADQ0tLC5MmTMXr0aBw9ehSjRo0CABw7dgxxcXGYPn26WAACABsbGwwYMAA7duxAREQE7OzsFHKcPn26wnH79+8POzs77Ny5k0UgIiIiIlLAfk/28tPvadOmDS5cuMB+z39sbW0LdPyxY8eifv368PDwyLYIFBsbCwCwsrJSWG9mZgZdXV1UqlSpQMcuTVgEIiIiKiQpBCRrPAUACJpa0NCop+aMqDRK+pCKmFcJhWpDt1LOl24fopMLfYykD6mF2r8gHj16BAAwNzcHAHE8a1UX25UqVYIgCAgNDUWNGjVyjQWA0NBQCIJQ4KERYmJikJGRkWOMPA8DAwMYGxvnGCsIAq5fvw4rKyulzoyenh4aN26MGzdu5JpzaGgoACh1ArOuu3btmlgEyi1+x44duHbtmlgECg0NhYaGBlq2bKkU36pVK+zduxdv375FlSpVcny9lD+7d+/GpUuXcPPmTdy9exepqanYtm2beB6z8vb2xqJFi7Jt6+nTp+L5zMrf3x/Lli1DWFgYJBIJmjZtCk9PT3Tq1EllO48ePYKnpycuXryIhIQE1KlTBxMmTMCECRNUfkbj4uLg7e2NQ4cO4fXr17C0tMTAgQOxcOFCGBgY5Pm9IKLC0ZBooHGVxgrLRAUh0ZDAspaxwjJRdtjvyV556PfIaWlplVi/p6A2b96M4OBg3LhxAxoa2f8N7NGjB9auXQt3d3esWrUKderUwdu3b+Hj44P09HQsWLCgyHMraSwCERERFZKdxxR0CglBbFIakqrVRZJ22b9LhKi4pKSkICoqCgDw/v17HD9+HBs2bICxsTH69OkDAKhfvz78/f1x8eJFNGzYUNw3MTFRLGQ8f/4cAFC1alWYm5vjr7/+wuvXr1GtWjUxPiAgAAAQHx+PmJgYmJqaFijnJk2a4NmzZ3mKbd++fa4TlL5//x6JiYlo0KCByu3W1ta4cuVKrjlHRkaK8arayBpT0Hj5hLM5xbMIVLQ8PT3x7NkzmJubw9LSMk+fvZEjR6os9siHAsxq9+7dcHV1hYWFhVhY2r9/P7p06YIDBw5gwIABCvH3799H69atkZSUhEGDBsHKygqnTp3CxIkTcf/+faxZs0YhPiEhAe3bt8ft27fRtWtXDB06FLdu3cKqVasQFBSE4OBg6Orq5vn9oNxZTJkC2YcPAAANztNFWehp6uH/XP5P3WlQOaClLUX38Y65BxKRqLD9nuvXrwNgv6egXr58iVmzZmHGjBlK855+rGfPnvjpp5+wePFidOzYUSG/ixcvolWrVkWamzqwCERERFRIevXrIy06GonxKUg2s1d3OkSl2r59+7Bv3z6FdY0bN4avr69YTJg4cSJ8fX2xYMEC6Ovro3PnzoiKisLChQsRHR0NILNjBAASiQQzZszAvHnz0KdPH6xYsQJ2dnYIDQ3FlClToK2tjdTUVCQmJha4Y7Fnzx4kJSXlGJOamnknYdWqVXNtT567quIKAPEL8txyzqmdrG0UJt7ExCTXHKlo+fn5wd7eHra2tli+fDnmzZuX6z6jRo2Ci4tLrnExMTHw8PCAubk5wsLCxGLenDlz0KRJE7i7u6Nbt24wzFJIcHd3R2xsLE6fPo0ePXoAAJYsWYLOnTtj7dq1GDZsmELHeMWKFbh9+zbmzJmD5cuXi+vnzp0LHx8frF69Ok+vifJOr372w+UQERGRepTXfo9cdv2ErIqq31MQ7u7uMDc3x8KFC/MUX6VKFXz66adwcXFB06ZN8fbtW6xduxbdu3fHkSNHFIpDZRGLQEREREQlQM9QGyaW+oVqw9As57vnDc10kZyYXqhj6BlqF2r/3HTt2hWzZs2CRCKBjo4ObG1tUaNGDYWY2rVr48yZM3Bzc1OYgLNjx46YO3cuFi9erDCnzZw5c5CSkoKVK1eKX4Tr6OjA09MTx48fx/Xr1xXi86tNmza5xsiHZ8iug5OVfLgG+T4fS05OVogrSDuq2ihIfGFzpPzr3LlzsbV98OBB/Pvvv1i0aJHCE2HW1taYNGkSvL29ceTIEXz11VcAMocsCQ4ORocOHcQCEABoa2tjyZIlcHFxwebNm8UikCAI8PPzg4GBAby8vBSO7eXlhXXr1sHPz49FICIionKM/Z5Mhe33zJw5E8uWLSt1/Z78KKp+T37t27cPx48fx7lz56Cnp5dr/MaNG+Hu7o5Tp06hZ8+e4vphw4ahQYMG+Oqrr/DkyRNoaxfvZ6Y4sQhEREREVAIcXayLfeLRnCZPLS0sLS3z9CV3u3bt8ODBAzx8+BBv376FtbU1atWqhdmzZwMA6tX739xbEokECxcuxOzZs3H37l2kp6ejfv36MDY2xs8//wwrK6tCdYbevXuX5zmBDA0Nc72LzdTUFJUqVVIYei2ryMhI6Ovr53p3naoh3LK2kTXm4/is719O8Y8ePUJKSopScSunoeWo5AUHB4tzONnb26Nz584q596RD9nRtWtXpW3dunWDt7c3goKCxCJQTvFt27aFvr4+goKCxHXh4eF4+fIlunXrBn19xS9/9PX10aZNG/j7+4sTHBMREVH5w35PpsL2e2bMmAGg9PV75LS1tUus35MfKSkpmDx5Mrp27Qo7Ozs8fvxYYXtSUhIeP34MAwMDcUi9FStWwNDQUKEABGRev37++edYt24dHjx4oDBkX1nDIhAREVEhpaal4cHz50hISUdaXBosbepCKuWfWKLCkkgkqFu3LurWrSuuO3PmDIyNjVXepaanp4cWLVqIyzdu3MC7d+/g5uZWqDyaN29epGNjSyQSNGvWDMHBwXj27JnCJKlJSUm4ffs2WrRokevkqPLXeuXKFaVt8nVZ348WLVpg48aNuHLlCrp06aIyvnnz5grxDx48QGhoKJydnZXibW1tOR9QKfHxMBeVK1fGTz/9JBZz5MLDwwEA9vbKQ5fK18ljcouXSqWoWbMm7t+/j/T0dGhqauYYL1/v7++P8PDwPBWBsht//c8//4SNjQ2Cg4NzbaM4xMXFQUMmQDf6Yb72Cw6OKJ6EKEdxcXEAoLbPizplCBn4O/lvcbm2bm1IJVI1ZpS7iny+SjNBJiDhnSAu61tIINGQ8HyVMUV1vvT09KCjo5Pt0x0Vnfx9ycjIyNd7VLNmTdSsWVNsw9/fH8bGxmjWrJlSOxoaGgrz3Pz+++949+4dRo8eXajz0qxZM3EOoty0a9cO586dyzXOyckJly9fxqNHj1T2e5o1ayYOrZ1X6emZT4GlpqYqvd5///0X7969w9mzZ1Vek167dg329vbo168f9u7dCyBz/iBNTU0kJycr9cHk7SckJOT43gqCoBCfG0EQkJKSku//H+Pi4gpU6OM3VERERIWUmJyE2GsGgABIJGlIs0yGVKp8BzYRFc7PP/+MP//8E4sWLcp1yICkpCRMnToVurq6mDVrVqGOW9RzAgGAq6srgoOD8cMPP+Dnn38W12/YsAFJSUlwdXVViH/16hViY2NhY2MjvvaaNWuiTZs2CAwMxM2bN9G0aVMAmZ2in3/+GYaGhuKkswDQt29fTJkyBZs3b8bUqVPFzsPz589x8OBBtG3bVux4ynPcuXMnfvjhB4Ui0OHDhxEREQFPT888vVYqPo0aNcLWrVvh4uICS0tLvH79GidPnsSCBQswatQoVK5cGb179xbjY2NjAQDGxsZKbck/D/KY3OLl+8hkMnz48AEmJiZ5iv/4GERUfNKENGx/t11cXmC9oNQXgah0kmUAL36Xict1vpBCqqHGhIjKuXXr1uHevXvw8vLKU79n5syZ0NXVxfTp0wt13O3btxfpnEBA5pBqly9fxk8//YT/+7//E9dv2rQJSUlJGDZsmEL8q1evEBcXhxo1ahRomDh9fX388ssv2eZSr149eHl5oXr16uL6Tz/9FLdu3cKBAwcwePBgcX1UVBROnDgBAwMDfPrpp/nOpTRhEYiIiKiQXn77LSSyzEkC5Xd/EFHhODs7o0mTJqhbty4EQYC/vz+OHz+OPn36YP78+QqxISEhmD17Nrp3747q1avj1atX2L59OyIiIrBz507UqVOnULkU9ZxAADB69Gjs3LkTa9asQWxsLJydnfHHH39g/fr1aNeuHUaNGqUQP2/ePOzYsQMBAQHi+N9AZmHM2dkZ3bp1w7Rp02Bubo5du3YhLCwMvr6+Cp0zExMTrFy5EhMmTECbNm0wfvx4pKSkYM2aNWJbWXXu3BlDhw7F3r170atXL/Tp0wdPnz7F6tWrUbdu3UIX16jw+vXrp7BsZ2eHSZMmoV69eujSpQs8PT0VikBljaqn3ID/PSH08RNqJSU4OBhR8SlINnPI137On9kUSz6RHh5IvH0bAFCpcWNY//f/NGWS32Grrs+LOiWkJUD7yP/mL2jTpg30tQo3T0dxq8jnqzRLTU5HxNmr4nKbNi2hravJ81XGFNX5unv3LoC8X/dWNPL3RSqV5uk9yq7f06tXL8yZM0ehjdz6PQ0aNChU7h06dCjU/qqMGzcOe/fuxfr16xEfH6/U7xk7diyk0v/doODt7a2y3xMcHCx+hn///XcAwP79+3Ht2jUAmTew2draQkdHB0OHDlWZy7Bhw1ClShWl7d999x169+6NMWPGICQkBE2bNsWbN2+wadMmvHnzBj/99FO2NznJ5bc/KJFIoKurqzASQ14UdLg/FoGIiIgKSZaayr+oREWsVatWOH78OPz8/CCRSFC/fn34+vrCzc0NGhqKt55Wr14dpqam2LBhA6KiomBiYgJnZ2fs378fTk5OanoFOZNKpTh9+jQWL16M/fv3Y+/evbC0tMT06dOxYMEChY5QTpycnBASEoJvv/0WK1euRGpqKhwdHXHw4EEMGDBAKX78+PEwMzPDypUrMXv2bGhra6Nt27ZYunSpwpAScjt27ICjoyO2bduGb775BqampnB1dcV3331XqPHGqXh16tQJtWvXxt27dxWGjJB3XmNjY2FmZqawj3yImKwd3KzxqsTFxUEikcDQ0DDP8R8fgwpPlpICITFJ/J2IiIjKjuz6Pa6uruz3ZHHx4kUsWrRIYd3WrVvF39u2basw3Fx+9OzZE4GBgVi5ciWOHDmCLVu2wMDAAE5OTlizZg369u1boHZLE35lRURERETFzs7OLl9Pyvn4+MDHxyfPbZ84caKgqamNgYEBVqxYgRUrVuQau337dmzfvl3ltkaNGuHkyZN5Pu6AAQNUFohU0dLSwrx58zBv3rw8t0+lg7m5OR4/fozExESxCGRvb48bN24gPDxcqQikaj4fVfMEyWVkZODp06eoWbMmNDU1c43P7hhERERE5UlR9XtUzS1Tkfs93t7e8Pb2LlQeOZ2Xtm3bom3btoVqvzTjCJ5ERESFZNCuHSABBAmAXCZyJyIiKm4JCQm4d+8e9PX1YW5uLq5v3749AODs2bNK+/j7+yvE5BZ/+fJlJCQkKMTb29vDysoKISEhSEhIUMopJCQENWvWRI0aNQrx6uhjhp07w2T4cJgMHw7Dzp3VnQ4RERERlTIsAhERERVS5d69IUgkACQsAhERUYn48OEDHj16pLQ+KSkJY8eOxYcPHzBo0CDxKR0AGDRoEIyNjbFmzRpERkaK6yMjI7F27VqYm5srzDPk4OAAZ2dnBAQE4MyZM+L61NRUeHl5AQDc3NzE9RKJBG5uboiPj8eSJUsU8lqyZAni4+MxduzYwr94UmAyaBCqTJ+GKtOnwWTQIHWnQ0RERESlDIeDIyIiIiIiKiX8/Pxw+fJlAP+beNnPzw+BgYEAMoeqcHNzQ3R0NOrWrYvmzZujXr16qFatGt68eYPz588jMjISjo6OWLlypULbJiYmWLt2LVxdXeHk5ITBgwcDyJxUNzo6Gvv37xfn95Fbv3492rRpg759+2Lw4MGwtLTEqVOncO/ePUyaNAmtW7dWiJ89ezaOHTsGHx8f3Lp1C05OTggLC8PZs2fRvHlzTJ06tRjeNSIiIiIiyg6LQERERERERKXE5cuXsWPHDoV1ISEhCAkJEZfd3NxgamqKiRMn4tq1azh9+jRiYmKgp6eHevXqYfLkyZg0aRL09PSU2h8xYgTMzc2xbNkybNu2DRKJBE2bNoWnpyc6qxhKrH79+ggNDYWnpydOnTqFhIQE1KlTB+vWrYO7u7tSvL6+PoKCguDt7Y1Dhw4hICAAlpaWmDFjBhYuXKgyJyIiIiIiKj5lZji4f/75Bz/++CO6du0KGxsbaGtro1q1aujfvz9CQ0OV4r29vSGRSLL9iYiIUHkcf39/tG/fHoaGhjAyMkKHDh1w4cKFbPN69OgRBg0aBHNzc+jp6aFRo0bYsGFDthNNxcXFYfr06bC1tYWOjg7s7Owwa9YsxMfHF+h9ISIiIiKi8mP79u0QBCHbH/lEuUZGRli7di2uXbuGt2/fIi0tDXFxcQgNDcWsWbNyLLZ0794dwcHBiI+Px4cPHxAYGKiyACTn4OCAgwcPIjo6GsnJybhz5w4mTpwISTZDoBobG2P16tV4/vw5UlNT8ezZM6xatUrpKSMiIiIiIip+ZeZJoDVr1sDHxwe1a9dG165dYWFhgfDwcBw9ehRHjx7FL7/8Ig5nkNXIkSNhZ2entL5y5cpK63bv3g1XV1dYWFhg1KhRADKHRujSpQsOHDiAAQMGKMTfv38frVu3RlJSEgYNGgQrKyucOnUKEydOxP3797FmzRqFePnEqbdv30bXrl0xdOhQ3Lp1C6tWrUJQUBCCg4Ohq6tb4PeIiIiIiIiIiIiIiIhIrswUgVq0aIHAwEC0b99eYf2lS5fQqVMnuLu7o2/fvtDR0VHYPmrUKLi4uOTafkxMDDw8PGBubo6wsDBYW1sDAObMmYMmTZrA3d0d3bp1U7h7zd3dHbGxsTh9+jR69OgBIHPC086dO2Pt2rUYNmwYWrVqJcavWLECt2/fxpw5c7B8+XJx/dy5c+Hj44PVq1dj3rx5+X5viIhIvd7v3AmJUB3ZPARKFYggCEhPT1eYiJ2I8iYjIwOCIEAqlao7FaIyJWrjRqT8/QQAoFO7FswnTFBzRkREVJ5paGggIyMDGRkZvG4jKoD09HQIggANjZIbpK3MDAf35ZdfKhWAAKBdu3bo0KEDYmJixIlTC+LgwYP4999/4eHhIRaAAMDa2hqTJk1CVFQUjhw5Iq5/9OgRgoOD0aFDB7EABADa2tpYsmQJAGDz5s3iekEQ4OfnBwMDA3h5eSkc28vLCwYGBvDz8ytw/kREpD7CH3dgG7ENts+2olqyP7S0+FRnRZSRkQGZTIaIiAgkJiZCJpOpOyWiMiMjIwPPnj0DAD4ZT5RPiWFhiL94EfEXLyIxLEzd6VApoiPVwU8dfhJ/dKQ6ue9EpIKmlgZ6Tmgo/mhqlZmvE6kYyK/Vnj17hoyMDDVnQ1R2yGQyJCYmitPUGBkZldixy8VtqlpaWgCg8q7b4OBghIaGQkNDA/b29ujcuTMMDAyU4gIDAwEAXbt2VdrWrVs3eHt7IygoCF999VWu8W3bthUnRJULDw/Hy5cv0a1bN+jr6yvE6+vro02bNvD398eLFy9Qo0aNvL1wIiIqFbQAfPriBQRBQLyeCZ5Iy8WfV8qntLQ0aGhoIDExEY8fPwaAbOfLoPJHPh8kz3nByN8/LS0tXgsTERURTQ1NOFo4qjsNKgc0pBqoWrPkvqyk0q1GjRr4+++/ER8fj3v37vH6t5iwf1G25OV8CVmGj9HS0kKVKlWKPS+5Mv8t1fPnz3H+/HlYWlrC0VH54mbhwoUKy5UrV8ZPP/0kFnPkwsPDAQD29vZKbcjXyWNyi5dKpahZsybu378vDgmTU7x8vb+/P8LDw3Pt+GYdYi6rP//8EzY2NggODs5xfyoecXFxAMD3vwLjZ6DiMpBIIKlSBQIAmYE2dKMf5nnf4OCIYsuLSpb83wBTU1NoamryYr2CkT/5VZKP9Jc3MpkMsbGxePfuXb73jYuLK9E76YhKEy0rK2TExoq/ExERFSdtbW3Url0bL168QHJyMkdAKCYpKSkA+JR8WZGX8yWVSqGlpQVjY2NYWFiUaN+xTBeB0tLS4OrqipSUFPj4+CiMQ9moUSNs3boVLi4usLS0xOvXr3Hy5EksWLAAo0aNQuXKldG7d28xPva/i2ZjY2Ol48g7lPKY3OLl+8hkMnz48AEmJiZ5iv/4GEREVDbEDx+OuLg4pMsEyDR5gVbRpaenIz09Xd1pUAmTFwFZiCCikmbp7a3uFIiIqIKRF4Ko+MhvMG7evLmaM6G8KO3nq8wWgWQyGUaNGoXg4GCMHTsWrq6uCtv79eunsGxnZ4dJkyahXr166NKlCzw9PRWKQGXJlStXVK6XPyHk7OxckunQf+T/s/P9r7j4GajYgoODERWfgmQzh3zt5/yZTTFlRCWN/wZUbDz/6sXiGxERERERkWplsggkk8nw9ddf45dffsGIESOwcePGPO/bqVMn1K5dG3fv3lUYNkL+hE5sbCzMzMwU9pHf2Zn1KZ6s8arExcVBIpHA0NAwz/EfH4OIiMqG2PgPCPJ/ApkgQJC8hm235tDRqaTutIiIiIioAktMS8SMoBni8g/tf0AlLV6jUv6lpWTgt01/isvdxzWAlo40hz2IiKg0KXNFIJlMhtGjR2Pnzp0YOnQotm/fnu/x88zNzfH48WMkJiaKRSB7e3vcuHED4eHhSkUgVfP5qJonSC4jIwNPnz5FzZo1oampmWt8dscgIqKyQRAE6H6oDAgAJBIIAsdEJiIiIiL1EiDg4fuHCstEBSEIAqIiPygsExFR2VGmZq7NWgAaPHgwdu3apTAPUF4kJCTg3r170NfXh7m5ubi+ffv2AICzZ88q7ePv768Qk1v85cuXkZCQoBBvb28PKysrhISEICEhQSmnkJAQ1KxZEzVq1MjX6yEiIiIiIiIiIiIiIlKlzBSB5EPA7dy5EwMHDsTu3buzLQB9+PABjx49UlqflJSEsWPH4sOHDxg0aJD4lA4ADBo0CMbGxlizZg0iIyPF9ZGRkVi7di3Mzc0V5hlycHCAs7MzAgICcObMGXF9amoqvLy8AABubm7ieolEAjc3N8THx2PJkiUKeS1ZsgTx8fEYO3ZsPt8VIiIqDeKvXoV4YyXviiMiIqISFB8cjH8PHca/hw4j/r/5yYiIiIiI5MrMcHCLFy/Gjh07YGBggDp16uC7775Tiunbty8aN26M6Oho1K1bF82bN0e9evVQrVo1vHnzBufPn0dkZCQcHR2xcuVKhX1NTEywdu1auLq6wsnJCYMHDwYA7N+/H9HR0di/f784v4/c+vXr0aZNG/Tt2xeDBw+GpaUlTp06hXv37mHSpElo3bq1Qvzs2bNx7Ngx+Pj44NatW3ByckJYWBjOnj2L5s2bY+rUqUX7phERUYn499AhSDS7AwAH2SAiIqIS9X73biTdDAMA6DV1goGzs5ozIiIiIqLSpMwUgSIiIgAA8fHxWLp0qcoYOzs7NG7cGKamppg4cSKuXbuG06dPIyYmBnp6eqhXrx4mT56MSZMmQU9PT2n/ESNGwNzcHMuWLcO2bdsgkUjQtGlTeHp6onPnzkrx9evXR2hoKDw9PXHq1CkkJCSgTp06WLduHdzd3ZXi9fX1ERQUBG9vbxw6dAgBAQGwtLTEjBkzsHDhQpU5ERERERERERERERERFUSZKQJt374d27dvz1OskZER1q5dW6DjdO/eHd27d89zvIODAw4ePJjneGNjY6xevRqrV68uSHpERERERERERERERER5UmaKQERERKVVNU9PCD431Z0GERERVUBWPj4Q0tIAABItLTVnQ0RERESlDYtAREREhaRpbAxIkDkhkESi7nSIiIioAtE0MVF3CkRERERUimmoOwEiIiIiIiIiIiIiIiIqeiwCERERERERERERERERlUMcDo6IiKiQpFINJJlEQyYIEDS0YKHBeyyIiIiISL00JBpoVrWZwjJRQUg0JKhuX1lhmYiIyg4WgYiIiApJLzEZHRub4X1iCpIt6iJdu5K6UyIiIqIKIj0qCkJqKgBAoq0NTXNzNWdEpYWeph5WtF+h7jSoHNDSlqKrWwN1p0FERAXEIhAREVEhvZw/HybXrqOyICDeoSGezPhO3SkRERFRBfFy/nwk3QwDAOg1dYLNpk1qzoiIiIiIShM+C0xERERERERERERERFQOsQhERERERERERERERERUDnE4OCIiokIydB0Bf1tbpKZnINWoKswy0qAp1VJ3WkRERFQBmI0ahfRevQAAmmZmas6GSpM0WRquv74uLjev1hxaGrxGpfzLyJDh5cN/xWUrh8qQSnlfORFRWcEiEBERUSFJGjfGvwffAwKAaAnSnVJYBCIiIqISod+6tbpToFIqNSMVnpc9xeUT/U6wCEQFkpEmw/kd98Xl4YtasghERFSG8F9sIiIiIiIiIiIiIiKicohFICIiIiIiIiIiIiIionKIRSAiIiIiIiIiIiIiIqJyiEUgIiIiIiIiIiIiIiKickhT3QkQERGVda+XL4dE1hwAIEBQczZERERUkbz09ETyvcwJ23Xrfwqr775Tc0ZEREREVJqwCERERFRI6dHR//uLyhoQERERlaD0t2+R9vw5AEDTwlzN2RARERFRacPh4IiIiIiIiIiIiIiIiMohPglERERUSJUaNwbuyR8Ckqg3GSIiIqpQKjVvDk1zCwCAdk079SZDRERERKUOi0BERESFZDp8OIRvL2ZWgSQsAhEREVHJMR87Vt0pEBEREVEpxuHgiIiIiIiIiIiIiIiIyiE+CURERFRI+nqVUKVdCuKT0pBqaAUtLV11p0REREREFZyuVBfrOq1TWCYqCE1tKb74ppHCMhERlR0sAhERERWSlqYmala1RFR8CpLNPlF3OkREREREkGpIUc+snrrToHJAQ0MCCxtDdadBREQFxOHgiIiIiIiIiIiIiIiIyiE+CURERFRIMXv3Qv/3K9BIy0CizaeI6tRL3SkRERFRBRGzdy9Sn78AAGjb1IDJ0KFqzoiIiIiIShMWgYiIiArpQ0AAdK9dh44gQPP9BxaBiIiIqMR8CAhA0s0wAIBeUycWgYiIiIhIAYtAREREhZSgARxtPw4QAEEqRfWUROjoVFJ3WkRERERUgSWmJWJywGRx+ecOP6OSFq9RKf/SUjJwesMdcbmne0No6UjVmBEREeUHi0BERESFJFTSh05qtczfBUAQZGrOiIiIiCoKDX19aBgbib8TyQkQ8OTfJwrLRAUhCALev0pQWCYiorKDRSAiIqJCslq0CMK3FwEBgESi7nSIiIioArFevVrdKRARERFRKaah7gSIiIiIiIiIiIiIiIio6LEIREREREREREREREREVA6xCERERERERFRK7N69G+PHj0ezZs2go6MDiUSC7du3K8WlpaXh0KFDGDlyJOrVqwcDAwMYGhris88+w4YNG5CRkaG0T0REBCQSSbY/3t7eKnN69eoVxowZA0tLS+jq6sLBwQFLly5FWlqayviUlBQsXrwY9vb20NXVhZWVFcaNG4e3b98W5q0hIiIiIqIC4JxAREREREREpYSnpyeePXsGc3NzWFpa4tmzZyrj/v77bwwYMAAGBgbo1KkTevfujdjYWJw4cQITJ07E6dOncfz4cUhUzFXXqFEj9O3bV2m9i4uL0rrXr1/js88+Q2RkJPr16wd7e3sEBQXB09MT165dw9GjRxWOIZPJ0KdPH/j7+6Nly5bo378/wsPD4efnhwsXLuDq1auwsLAo8PtDRERERET5wyIQERFRISXduwcI/y0IQo6xREREOfHz84O9vT1sbW2xfPlyzJs3T2WcoaEh1q1bh5EjR0JfX19c/8MPP8DFxQUnT57Er7/+ioEDByrt27hx42yf+vnYnDlz8OLFC2zYsAETJkwAAAiCgGHDhmHfvn3Yt28fhg4dKsbv2LED/v7+GDp0KPbs2SMWiDZu3Ah3d3d4enrC19c3r28H5UHSH38gIzYWACA1NoZeo0ZqzoiIiIiIShMOB0dERFRI0du3QyIIkAgCi0BERFQonTt3hq2tba5x1atXx8SJExUKQACgr6+P6dOnAwCCgoIKlcuHDx+wf/9+1KpVC+PHjxfXSyQSLF++HACwefNmhX3ky99//73CE0Ljx49HrVq1sGfPHiQlJRUqL1L0bt06/DNtOv6ZNh3v1q1TdzpEREREVMrwSSAiIiIiIqJyREtLCwCgqam6u/fy5UusW7cOsbGxqFq1KlxcXFC7dm2luCtXriAlJQVdunRRGlbO1tYWDg4OCAkJQUZGBqRSKZKTkxEaGgoHBwelQpZEIkGXLl3g6+uLGzduoF27drm+jlatWqlc/+eff8LGxgbBwcG5tlEc4uLioCEToBv9MF/7BQdHFEs+Ru9joPXfHFDv38cgQk3vS2kVFxcHAGr7vKhTsiwZqamp4nJISAh0NXTVmFHuKvL5Ks0y0gSkpv5vrrmQkBBItSQ8X2UMz1fZwvNVtpTU+YqLi4ORkVG+92MRiIiIiIiIqBzZunUrAKBr164qt587dw7nzp0TlyUSCYYPH46NGzcqPFkUHh4OALC3t1fZjr29PR4+fIhnz56hVq1a+PvvvyGTyXKMl7eblyIQEREREREVHotAREREhWQ1dRqS9gRCJhMgk2rDQkOq7pSIiKiC2rRpE86cOYOOHTuiZ8+eCtsqVaoELy8v9O3bF7Vr14ZMJkNYWBi+/fZb7N69G4mJiTh06JAYH/vfPDPGxsYqjyW/C1Eel9/43Fy5ckXlevkTQs7Oznlqp6gFBwcjKj4FyWYO+drP+TObYskn1cYGsv+G2NPQ04O2nV2xHKeskt+Rq67Pizolpyej/dX24rJzS2foapbuJ4Eq8vkqzdJTM5Dx4n9PP7Zr5wBNbSnPVxnD81W28HyVLSV1vgryFBDAIhAREVGhmdati/Zd3hboCyEiIqKicvLkSUyaNAm2trbYvXu30vYqVapg8eLFCus6deqEVq1awcnJCYcPH0ZYWBicnJxKKmUqAiz6UHZ0NXWxtO1SdadB5YCmthSdR32q7jSIiKiANNSdABERERERERXO6dOnMWDAAFStWhUXL16EpaVlnvetVKkSXF1dAWTO8yAnf6Inuyd35GOfy+PyG09ERERERMWPRSAiIiIiIqIy7NSpU/jyyy9hbm6OgIAA1KpVK99tmJubAwASEhLEdVnn8FElPDwc2trasLHJHOasVq1a0NDQyDE+a7tERERERFT8WAQiIiIiIiIqo06dOoX+/fvD1NQUAQEB+OSTTwrUTmhoKADALsvQYi1btoS2tjbOnTsHQRAU4p89e4aHDx+iTZs20NTMHGVcT08PLVq0wMOHD/Hs2TOFeEEQcO7cOejr66NZs2YFypGIiIiIiPKPRSAiIqJCSk6Mx93Hf+Pv5xF49vAm0jPS1J0SERFVAGfOnEH//v1hYmKCgICAXJ+wuXXrllIxBwAOHz6MHTt2wMTEBD169BDXGxkZYciQIXjy5Al8fX3F9YIgYN68eQCAsWPHKrQ1btw4AMC8efMUjuXr64snT55g+PDh0NPTy/+LpWwJaWkQUlMzf9J4DUL/kyZLQ3BksPiTJuPngwomI0OGiLtR4k9GhkzdKRERUT5oqjsBIiKisu7x9BlI0uwOCTL/sKbbpkBTqqXutIiIqAzy8/PD5cuXAQB3794V1wUGBgIA2rZtCzc3Nzx48AD9+vVDSkoKXFxcsHfvXqW27OzsMGrUKHF52rRp+Pvvv9GqVStYW1sjIyMDYWFhuHz5MnR0dLB9+3al+XqWL1+OgIAATJw4EefPn8cnn3yCoKAgXL16Fb169cKQIUMU4keOHIn9+/dj7969ePr0Kdq3b4/Hjx/j8OHDqFmzJr777rsifLcIAF588w2SboYBAPSaOsFm0yY1Z0SlRWpGKrx/9xaXT/Q7AS0NXqNS/mWkyRCw+4G4PHxRS0ilvK+ciKisYBGIiIiIiIiolLh8+TJ27NihsC4kJAQhISHispubG16/fo2UlBQAwL59+1S21b59e4Ui0IgRI3Do0CFcvXoVUVFRkMlkqF69Otzc3DBjxgzUrVtXqQ1LS0uEhobC09MTp06dwokTJ2Bra4slS5Zg9uzZkEgkCvEaGho4duwYli9fjl27dmH16tUwNTXFmDFj8N1338HCwqKgbw0RERERERUAi0BERERERESlxPbt27F9+/Zc41xcXFQO7ZYTNzc3uLm55TsnS0tLbNmyJc/xOjo6WLhwIRYuXJjvYxERERERUdFiEYiIiKiQjLp3h3BBknsgERERURGr3Lcv9D9rCQDQsqym5myIiIiIqLRhEYiIiKiQjDp1Ai5eBAQAEhaDiIiIqOQY9eyp7hSIiIiIqBTjLG5ERERERERERERERETlEItARERERERERERERERE5RCLQEREREREREREREREROUQi0BERERERERERERERETlkKa6EyAiIirrojZugERWB4K6EyEiIqIK5+2qVUh+9AgAoFunDqrMnKnmjIiIiIioNGERiIiIqJCS/34CaNaBBIAgsBREREREJSf50SMk3QxTdxpEREREVEqVmeHg/vnnH/z444/o2rUrbGxsoK2tjWrVqqF///4IDQ1VuU9cXBymT58OW1tb6OjowM7ODrNmzUJ8fLzKeJlMhjVr1sDR0RF6enqwsLDA0KFD8eTJk2zz8vf3R/v27WFoaAgjIyN06NABFy5cyDb+0aNHGDRoEMzNzaGnp4dGjRphw4YN/NKQiKgMqyQTUOfvjbB/vBE1ks5AS0tX3SkRERERUQWnK9XFpi6bxB9dKa9RqWA0taXoPaWx+KOpLVV3SkRElA9l5kmgNWvWwMfHB7Vr10bXrl1hYWGB8PBwHD16FEePHsUvv/yCwYMHi/EJCQlo3749bt++ja5du2Lo0KG4desWVq1ahaCgIAQHB0NXV/ECaPz48fDz80P9+vUxefJkvHz5EgcOHMDZs2dx9epV2NvbK8Tv3r0brq6usLCwwKhRowAA+/fvR5cuXXDgwAEMGDBAIf7+/fto3bo1kpKSMGjQIFhZWeHUqVOYOHEi7t+/jzVr1hTPm0dERMXKoE4d2LyPQVq6DAnG1fBSWmb+vBIREVEZp1unjsrfiaQaUnxi8om606ByQENDAjMrA3WnQUREBVRmvqVq0aIFAgMD0b59e4X1ly5dQqdOneDu7o6+fftCR0cHALBixQrcvn0bc+bMwfLly8X4uXPnwsfHB6tXr8a8efPE9QEBAfDz84OzszPOnTsHbW1tAMCwYcPQs2dPTJo0Cf7+/mJ8TEwMPDw8YG5ujrCwMFhbWwMA5syZgyZNmsDd3R3dunWDoaGhuI+7uztiY2Nx+vRp9OjRAwCwZMkSdO7cGWvXrsWwYcPQqlWrIn7niIiouFWZORMPgoMRFZ+CZDMHdadDREREFQjnACIiIiKinJSZ4eC+/PJLpQIQALRr1w4dOnRATEwM7t69CyBzPgY/Pz8YGBjAy8tLId7LywsGBgbw8/NTWL9582YAmUUZeQEIAHr06AEXFxecPXsWz58/F9cfPHgQ//77Lzw8PMQCEABYW1tj0qRJiIqKwpEjR8T1jx49QnBwMDp06CAWgABAW1sbS5YsUciBiIiIiIiIiIiIiIiosMrMk0A50dLSAgBoama+nPDwcLx8+RLdunWDvr6+Qqy+vj7atGkDf39/vHjxAjVq1AAABAYGits+1q1bNwQGBiIoKAiurq5iPAB07dpVZby3tzeCgoLw1Vdf5Rrftm1b6OvrIygoKE+vN7unhf7880/Y2NggODg4T+1Q0YqLiwMAvv8VGD8DFVtcXBw0ZAJ0ox/ma7/g4IjiSYhKHP8NqNh4/tUrLi4ORkZG6k6DiIiIiIio1CnzRaDnz5/j/PnzsLS0hKOjI4DMIhAApTl85Ozt7eHv74/w8HDUqFEDCQkJePXqFRo0aACpVHlyO3k78nZzO0Z+46VSKWrWrIn79+8jPT1dLGYREVHZkJSagluX3ovLn7Q2hY6WjhozIiIiIqKKLjEtEd9c+EZcXtdpHSppVVJjRlRWpaVk4OTaP8TlLyY1gpaO8vdnRERUOpXpakNaWhpcXV2RkpICHx8fsYATGxsLADA2Nla5n/wuQXlcfuNz2ye/8fJ9ZDIZPnz4ABMTE5UxcleuXFG5Xv6EkLOzc477U/GQ3/nL97/i4meg4vr3QxzuHL8ICAAkEiRVrgVBN28Tpzp/ZlO8yVGJ4b8BFRvPv3rxKSAiImUCBDyLe6awTFQQgiDg37eJCstERFR2lNkikEwmw6hRoxAcHIyxY8eKw7QRERGVtLgLFwBBkrnADhERERGVoLjTp5H26jUAQMuyGox69lRzRkRERERUmpTJIpBMJsPXX3+NX375BSNGjMDGjRsVtsuftsn6JE5W8jHb5XH5jf94HzMzs3zFZ3cMiUQCQ0NDlduJiKj0ivvtN0g0uwMA768kIiKiEvXv0aNIuhkGANBr6sQiEBEREREp0FB3Avklk8kwevRo7NixA0OHDsX27duhoaH4MlTNyZPVx/Pz6Ovrw9LSEk+fPkVGRkau8bkdI7/xGRkZePr0KWrWrMn5gIiIiIiIiIiIiIiIqEiUqSKQvAC0c+dODB48GLt27RLnAcrK3t4eVlZWCAkJQUJCgsK2hIQEhISEoGbNmqhRo4a4vn379uK2j/n7+wNQHOO9ffv2AICzZ89mGy+PyS3+8uXLSEhIUIgnIiIiIiIiIiIiIiIqjDJTBJIPAbdz504MHDgQu3fvVlkAAgCJRAI3NzfEx8djyZIlCtuWLFmC+Ph4jB07VmH9uHHjAABeXl5ITU0V1585cwaBgYHo2rUrbG1txfWDBg2CsbEx1qxZg8jISHF9ZGQk1q5dC3Nzc/Tr109c7+DgAGdnZwQEBODMmTPi+tTUVHh5eQEA3Nzc8vu2EBFRKVB92TIIEgkEiQTQKDN/WomIiKgcqLFuHepc+R11rvyOGuvWqTsdIiIiIiplyszYY4sXL8aOHTtgYGCAOnXq4LvvvlOK6du3Lxo3bgwAmD17No4dOwYfHx/cunULTk5OCAsLw9mzZ9G8eXNMnTpVYd8OHTrAzc0Nfn5+cHJywueff45Xr15h//79MDU1xZo1axTiTUxMsHbtWri6usLJyQmDBw8GAOzfvx/R0dHYv3+/0vw+69evR5s2bdC3b18MHjwYlpaWOHXqFO7du4dJkyahdevWRfeGERFRiZFoaQEScEIgIiIiKnESLS11p0BEREREpViZKQJFREQAAOLj47F06VKVMXZ2dmIRSF9fH0FBQfD29sahQ4cQEBAAS0tLzJgxAwsXLoSenp7S/r6+vnB0dMSmTZvw008/wcDAAP369cPSpUtRu3ZtpfgRI0bA3Nwcy5Ytw7Zt2yCRSNC0aVN4enqic+fOSvH169dHaGgoPD09cerUKSQkJKBOnTpYt24d3N3dC/7mEBERERERERERERERfaTMFIG2b9+O7du352sfY2NjrF69GqtXr85TvIaGBiZPnozJkyfn+Rjdu3dH9+7d8xzv4OCAgwcP5jmeiIiIiIiIiIiIiIioIDhxARERERERERERERERUTlUZp4EIiIiKq1k/7xEcuVXyJAJEDS1YaFRV90pERERUQWRGhEBWVISAEBDTw/adnbqTYhKDalEirbV2yosExWEhoYEtvXNFJaJiKjsYBGIiIiokOL/7//w5bXrEAQB8Q4N8aRHV3WnRERERBXE62XLkHQzDACg19QJNps2qTkjKi10NXWxuM1idadB5YCmthQdv6qn7jSIiKiAOBwcERERERERERERERFROcQiEBERERERERERERERUTnE4eCIiIgKyeKbb/CyUQhik9OQZMlhEoiIiKjkWHzzDTJiYwEAUmNjNWdDRERERKUNi0BERESFpPFpXVy/eQtJmhlIT0+AdUYaNKVa6k6LiIiIKgC9Ro3UnQKVUmmyNFyKvCQut7NuBy0NXqNS/mVkyPDsbrS4bOtoBqmUgwsREZUVLAIREREVUlJyCpJvV4ZEALQkEqTbprAIRET0/+3de5yN5f7/8fdac7bmyBDCzNCQbzlE5NQMOcx0Zmc7lfANxcYufqWDw5RS2u3svpRd7KKUhhSVNOQwEzmGvUNlEmIjEcasMcd1//7QrKxmMIc1c68183o+HuvBfa3Pfd+fe13rdM1nXfcNADBVbkGunt38rHP5kz6fUARCmRTkOZS66Hvn8r3XdqAIBABehHdsAAAAAAAAAACAKogiEAAAAAAAAAAAQBVEEQgAAAAAAAAAAKAK4ppAAACU09GpU2VxxEmSDBkmZwMAAKqTI488ovP//rckKahVKzWYOdPkjAAAAOBJKAIBAFBOjqys3z9RqQEBAIBK5LDb5Tib4fw/AAAAcDFOBwcAAAAAAAAAAFAFMRMIAIByCu7USdpWOAnIYnI2AACgOgnp1k0BTa6RJPk3amhyNgAAAPA0FIEAACin8D59ZGxfe6EKZKEIBAAAKk/EwIFmpwAAAAAPxungAAAAAAAAAAAAqiCKQAAAAAAAAAAAAFUQp4MDAKCcbEE11KBbgTLO5yk3tIH8/ALNTgkAAADVXKBPoP6V8C+XZaAsfP191PuRG1yWAQDegyIQAADl5Ofrq6tr1VZAZo6yazUyOx0AAABAPlYfxYTFmJ0GqgCr1aKIujaz0wAAlBFFIAAAyunk3LkK3rRZfvkFskdfpxO39zc7JQAAUE2cnDtXuQcOSpL8Y6IVOWKEuQkBAADAo7jtmkBvv/22/vOf/1w2Zvfu3Xr77bfdtUsAADxC1rZtCtixQyH/3qXg774xOx0AQAWqjHHPwoUL9eCDD+rGG29UQECALBaL5s+ff8n4jIwMjR8/XlFRUQoICFB0dLQeffRRZWZmFhvvcDg0a9YstWjRQkFBQapdu7YGDhyoH3/88ZL7SElJUXx8vEJCQhQaGqpu3bppzZo1l4zft2+f+vXrp8jISAUFBalVq1aaM2eODMMo8eOAksnatk3nUlJ0LiVFWdu2mZ0OAAAAPIzbikBDhw7VsmXLLhuzfPlyDRs2zF27BAAAAIBKVRnjnkmTJumNN97QoUOHVK9evcvG2u12xcfHa+bMmbr22mv1yCOPqFmzZnrppZd0yy23KDs7u8g6Dz74oMaNGyfDMDRu3DglJibqww8/VLt27ZSenl4kfuHChUpMTNS3336roUOHasiQIdqzZ4969uypDz74oEj83r171b59ey1fvly33nqrxo0bp4KCAo0ePVrjxo0r8+MCAAAAoPQq9XRwBQUFslrdVncCAMAjZNeprWVdx0qGZFitujonSwEBNcxOCwBgkvKOe+bNm6fY2FhFRUXphRde0BNPPHHJ2BdffFG7du3SxIkT9cILLzjbH3/8cc2YMUMzZ850WX/dunWaN2+e4uLitHr1avn7+0uSBg0apNtuu01jxoxRSkqKM/706dMaO3asIiMjtWPHDjVo0ECSNHHiRN1www0aNWqUEhISFBIS4lxn1KhROnv2rD777DPdeuutkqRp06apR48emj17tgYNGqSOHTuW+fGBK986deTXqJHz/0ChrLwsjVw90rn8Rs83VMOP76govbycAn38yk7n8l1/vUF+AT4mZgQAKI1Krcjs3LlTNWvWrMxdAgBQ4epMnCh/R035O2oqoCBChuEwOyUAgInKO+7p0aOHoqKirhhnGIbmzZun4OBgTZ482eW+yZMnKzg4WPPmzXNpnzt3rqQLRZnCApAk3XrrreratatWrVqln376ydm+ZMkSnTlzRmPHjnUWgCSpQYMGGjNmjE6ePKmPPvrI2b5v3z6lpaWpW7duzgKQJPn7+2vatGkuOcA96j/7rBp/9KEaf/Sh6j/7rNnpwIMYMnQ086jzZojTMaJsDMNQxqls541TewKAdynXTKBbbrnFZXn+/Plav359kbiCggIdOXJEBw8eVL9+/cqzSwAAAACoVJ467klPT9fRo0eVkJAgm83mcp/NZlPnzp2VkpKiw4cPq2HDhpKk9evXO+/7o4SEBK1fv16pqakaPHiwM16SevXqVWx8UlKSUlNTdf/9918xvkuXLrLZbEpNTS3zMQMAAAAonXIVgS4e+FgsFh08eFAHDx4sEme1WlWzZk39+c9/1j/+8Y/y7BIAAAAAKpWnjnsKr98TGxtb7P2xsbFKSUlRenq6GjZsKLvdrmPHjun666+Xj0/R0/gUbufi6wJdbh+ljffx8VFMTIz27t2r/Px8+fpefjh6qVPG7d69W40aNVJaWtpl168oGRkZsjoMBZ76vlTrpaUdrJiEcFkZGRmSZNrzxUzZjmzl5uY6lzdu3KhAa6CJGV1Zde4vT1aQZyg3t8C5vHHjRvn4WegvL0N/eRf6y7tUVn9lZGQoNDS01OuVqwjkcPx+uhur1aqkpCRNmTKlPJsEAAAAAI/iqeOes2fPSpLCwsKKvb9wgFgYV9r4K61T2vjCdRwOh86dO6eIiIhiYwAAAAC4T7mKQBdbt26doqOj3bU5AAAAAPA4jHsqz6ZNm4ptL5whFBcXV5npOKWlpelkZo6yazUr1XpxNzWqoIxwOYW/yDXr+WIme55d/h/9fu2vzp07y+Znu8wa5qvO/eXJcrPzdXDVZudy584d5B/oS395GfrLu9Bf3qWy+qsss4AkNxaB4uPj3bUpAAC8in37djmvs8tFUgGgSvOkcU/hbJuLZ+JcrPC0FIVxpY3/4zq1atUqVfyl9mGxWBQSEnKpw0Ip2b/6SvmnTkmSfGvVkq1TJ5MzAgAAgCdxWxFIknJzc7Vs2TJt27ZNZ86cUUFBQZEYi8Wif/3rX+7cLQAApjqdnCyLb6Kk32tBAICqy1PGPcVdk+dif7w+j81mU7169XTgwAEVFBQUuS5QcdfziY2N1fbt25Wenl6kCHSp+EvlVFBQoAMHDigmJuaK1wNCyZ2aP1/nv94hSQpq24YiEAAAAFy47Zv3oUOH1LNnT+3fv1/GZX4FTREIAAAAgLfypHFPbGys6tevr40bN8put8tm+/00T3a7XRs3blRMTIwaNmzobI+Pj9f777+vjRs3FjldRUpKiiTX01jEx8dr0aJFWrVqlTp06FBs/MWzowr/v2rVKj3++OMu8Rs2bJDdbveo2VQAAABAVWd114YeeeQR/fDDD7rvvvu0bt06paen68CBA0VuP/74o7t2CQAAAACVypPGPRaLRcOHD1dmZqamTZvmct+0adOUmZmpESNGuLSPHDlSkjR58mTl5uY621euXKn169erV69eioqKcrb369dPYWFhmjVrlo4cOeJsP3LkiGbPnq3IyEj16dPH2d6sWTPFxcVp3bp1WrlypbM9NzdXkydPliQNHz7cDUcPAAAAoCTcNhNo7dq16t69uxYsWOCuTQIA4BXqPvGEjJd2mZ0GAKASVMa4Z968edqwYYMk6ZtvvnG2rV+/XpLUpUsXZyHlscce0/LlyzVjxgzt3LlTbdq00Y4dO7Rq1Sq1a9dODz/8sMu2u3XrpuHDh2vevHlq06aNbr/9dh07dkzJycmqWbOmZs2a5RIfERGh2bNna/DgwWrTpo369+8vSUpOTtapU6eUnJxc5Po+r732mjp37qzevXurf//+qlevnlasWKE9e/ZozJgx6sTpytyq/vTpMn4r6Fn8/U3OBgAAAJ7GbUUgh8OhG264wV2bAwDAawTWrq3sq35RvsOQ4eOv2lafK68EAPBKlTHu2bBhQ5Ei08aNG7Vx40bncmERyGazKTU1VUlJSVq6dKnWrVunevXqacKECZo6daqCgoKKbP/1119XixYt9MYbb+iVV15RcHCw+vTpo+eee05NmjQpEn/fffcpMjJS06dP11tvvSWLxaK2bdtq0qRJ6tGjR5H46667Tlu2bNGkSZO0YsUK2e12NW3aVK+++qpGjRpV3ocHf+AbGWl2CvBQPhYfdW3Y1WUZKAur1aKYlpEuywAA7+G2ItBNN92kb7/91l2bAwDAawTXsCk+rplOZuYou1Yzs9MBAFSgyhj3zJ8/X/Pnzy9xfFhYmGbOnKmZM2eWKN5qtWrcuHEaN25cifeRmJioxMTEEsc3a9ZMS5YsKXE8APcL9A3UlI5TzE4DVYCvv4+63nut2WkAAMrIbdcEeuGFF7R27Vp98MEH7tokAAAAAHgUxj0AAAAAvInbZgKtWLFC3bp1U//+/RUfH682bdooNDS0SJzFYnFeEBQAAAAAvAnjHgAAAADexG1FoKSkJOf/169f77xo6R8xGAIAVDX5p0/LeuasfLNy5BOQoYLgon8MBABUDYx74GnyT5+WkZcnSbL4+ck3IsLkjAAAAOBJ3FYEWrdunbs2BQCAVzn4+GPam5kjw5Dyan6l0EF/ka+Pn9lpAQAqAOMeeJqjEyfq/Nc7JElBbduo0RtvmJwRPEWeI09rf1rrXL6l0S3ys/IdFaVXUODQgV0nncsxrSPl4+O2K0wAACqY24pA8fHx7toUAABeJdtiVUZEH0mSIalGXg5FIACoohj3APAWuQW5mrF1hnO5y9VdKAKhTAryHPpy8T7ncqPralIEAgAvwjs2AAAAAAAAAABAFeS2mUBpaWkljo2Li3PXbgEAMF34PffI+DjL7DQAAJWAcQ88Tc377lN+QqIkybd2pMnZAAAAwNO4rQjUtWtXWSyWEsUWFBS4a7cAAJguuEMH6ZO1F84FV8LPQgCAd2LcA08TTLERAAAAl+G2ItCUKVOKHQydPXtWO3bsUFpamm6//XbdeOON7tolAAAAAFQqxj0AAAAAvInbikBJSUmXvf+DDz7Q0KFD9fTTT7trlwAAAABQqRj3AAAAAPAm1sraUd++fdWtWzc98cQTlbVLAAAAAKhUjHsAAAAAeJJKKwJJUvPmzbVp06bK3CUAAAAAVCrGPQAAAAA8hdtOB1cSO3fulNVaqXUnAAAq3M8vvSSL4wZJkmFyLgAA8zHuQWU6lpSk7G+/lSQFNm+uelc4ZSEAAACqF7cVgX766adi2/Pz8/Xf//5X8+fP19q1a9W7d2937RIAAI+Q9/PPv3+iGpSBAKAqY9wDT5N39Khyf9gvSfIJCzM5GwAAAHgatxWBoqOjZbFYLnm/YRhq0qSJZs6c6a5dAgAAAEClYtwDAAAAwJu4rQh0//33FzsYslqtioiIULt27XT33XcrMDDQXbsEAMAjRLZqpea7PlNuvkPZ9WKU79fK7JQAABWEcQ88TY02beQTFi5JCmjS2Nxk4FECfQL19q1vuywDZeHr76N7Hm3rsgwA8B5uKwLNnz/fXZsCAMCr1B01WiFpaTqZmSOjVjMxJAKAqotxDzxN5EMPmZ0CPJSP1UcNQhqYnQaqAKvVotDIILPTAACUkVddrXThwoV68MEHdeONNyogIEAWi+WSg7CkpCRZLJZL3g4ePFjseikpKYqPj1dISIhCQ0PVrVs3rVmz5pI57du3T/369VNkZKSCgoLUqlUrzZkzR8YlrgmRkZGh8ePHKyoqSgEBAYqOjtajjz6qzMzM0j4cAAAAAAAAAAAAl+S2mUCF7Ha7li1bpl27dikjI0OhoaFq3bq1evfuLZvNVq5tT5o0SYcOHVJkZKTq1aunQ4cOXXGdIUOGKDo6ukh7eHh4kbaFCxdq8ODBql27toYOHSpJSk5OVs+ePbV48WL17dvXJX7v3r3q1KmTzp8/r379+ql+/fpasWKFRo8erb1792rWrFku8Xa7XfHx8dq1a5d69eqlgQMHaufOnXrppZeUmpqqtLQ0ThsBAAAAeIGKHPcAAAAAgLu4tQi0dOlSjRw5UmfOnHGZCWOxWBQeHq65c+fqT3/6U5m3P2/ePMXGxioqKkovvPCCnnjiiSuuM3ToUHXt2vWKcadPn9bYsWMVGRmpHTt2qEGDC1OmJ06cqBtuuEGjRo1SQkKCQkJCnOuMGjVKZ8+e1WeffaZbb71VkjRt2jT16NFDs2fP1qBBg9SxY0dn/Isvvqhdu3Zp4sSJeuGFF5ztjz/+uGbMmKGZM2eW6JgAAAAAmKeixz0AAAAA4C5uOx3cV199pQEDBshut2v48OF67733tG7dOi1atEgjRoxQVlaWBgwYoE2bNpV5Hz169FBUVJS7UnaxZMkSnTlzRmPHjnUWgCSpQYMGGjNmjE6ePKmPPvrI2b5v3z6lpaWpW7duzgKQJPn7+2vatGmSpLlz5zrbDcPQvHnzFBwcrMmTJ7vse/LkyQoODta8efMq5NgAABXrbOY5ffnJEe1d+4t+/GCjcnLsZqcEAKgglTHuAQB3yMrL0oBPBzhvWXlZZqcEL5Wbna8lz29z3nKz881OCQBQCm6bCTR9+nQFBARo48aNatWqlct9/fv31+jRo9WpUydNnz5dn3zyibt2e0VpaWnasmWLrFarYmNj1aNHDwUHBxeJW79+vSSpV69eRe5LSEhQUlKSUlNTdf/9918xvkuXLrLZbEpNTXW2paen6+jRo0pISChyegibzabOnTsrJSVFhw8fVsOGDct6uAAAE5xevlwB2TZd+C245ZLXhQMAeD9PHfeg+jq9eLHyjvxXkuTX4GpF9OtnckbwFIYMncg64bIMlFXmmRyzUwAAlJHbikCbNm1S//79iwyECrVs2VL9+vXT8uXL3bXLEpk6darLcnh4uF555RVnMadQenq6JCk2NrbINgrbCmOuFO/j46OYmBjt3btX+fn58vX1vWx8YXtKSorS09OvWAS6+BRzF9u9e7caNWqktLS0y66PipGRkSFJPP7VGM+B6sv68SdS7QGy6MLgOvD0fgX6l+wab2lpBys0N1Qe3gOqN/rfXIXX5KkMnjruQfV17osvdP7rHZKkoLZtKAIBAADAhdtOB5eVlaWrrrrqsjFXXXWVsrIqZ/pxq1at9Oabb+rHH3/U+fPndeDAAc2aNUsWi0VDhw7Vxx9/7BJ/9uxZSVJYWFiRbRUOKAtjrhRfuI7D4dC5c+dKHP/HfQAAAADwLJ427gEAAACAy3HbTKDo6GitXr1a06dPv2TMmjVrFB0d7a5dXlafPn1clqOjozVmzBg1b95cPXv21KRJk3TXXXdVSi7udqnzixfOEIqLi6vMdPCbwl/+8vhXXzwHqq+9HyyRHL8vZ0c0kQKLnnq0OHE3NaqgrFDZeA+o3uh/c1XWLCDJ88Y9gDUgQJYaQc7/AwAAABdz20ygfv366euvv9aQIUN09OhRl/uOHTumoUOH6uuvv1b//v3dtcsy6d69u5o0aaJvvvnGedoO6fcZOsXNxCmMu3gWz+XiC9exWCwKCQkpcfwf9wEA8A71n3tOhtUiw2KRrG77aAUAeCBvGfeg+mgwa5aafvmlmn75pRrMmmV2OgAAAPAwbpsJNHHiRH3++ed65513lJycrGuuuUZXXXWVfv75Z/3www/Kzc1V+/btNXHiRHftsswiIyP1ww8/KCsry/mrwdjYWG3fvl3p6emqVauWS3xx1/Mp7jpBhQoKCnTgwAHFxMTI19f3ivGX2gcAAAAAz+JN4x4AAAAAcNvPlWvUqKG0tDQlJSWpQYMG2rt3r9atW6e9e/eqQYMGevrpp5WamqqgoCB37bJM7Ha79uzZI5vNpsjISGd7fHy8JGnVqlVF1klJSXGJuVL8hg0bZLfbXeJjY2NVv359bdy4UXa7vUhOGzduVExMjBo2bFiOowMAAABQkbxl3AMAAAAAkhuLQJIUEBCgKVOm6IcfftDZs2d1+PBhnT17Vj/88IMmT56sgEo6P/G5c+e0b9++Iu3nz5/XiBEjdO7cOfXr1885S0e6cFqHsLAwzZo1S0eOHHG2HzlyRLNnz1ZkZKTLdYaaNWumuLg4rVu3TitXrnS25+bmavLkyZKk4cOHO9stFouGDx+uzMxMTZs2zSWvadOmKTMzUyNGjCj/wQMAAACoUJ4y7gEAAACAK3Hb6eA2btyopUuX6rHHHlPdunUVEhLivB6OdOH82H/729/Ur18/dejQoUz7mDdvnjZs2CBJ+uabb5xt69evlyR16dJFw4cP16lTp3TttdeqXbt2at68uerWrauff/5ZX3zxhY4cOaIWLVrob3/7m8u2IyIiNHv2bA0ePFht2rRxnsM7OTlZp06dUnJyssvxSNJrr72mzp07q3fv3urfv7/q1aunFStWaM+ePRozZow6derkEv/YY49p+fLlmjFjhnbu3Kk2bdpox44dWrVqldq1a6eHH364TI8LAAAAgMpRGeMeAAAAAHAXtxWBXn75Zf3nP//Ryy+/XOz99erV06effqr//ve/Sk5OLtM+NmzYoAULFri0bdy4URs3bnQuDx8+XDVr1tTo0aO1detWffbZZzp9+rSCgoLUvHlzjRs3TmPGjCn29Az33XefIiMjNX36dL311luyWCxq27atJk2apB49ehSJv+6667RlyxZNmjRJK1askN1uV9OmTfXqq69q1KhRReJtNptSU1OVlJSkpUuXat26dapXr54mTJigqVOncsoIAPBS57//XjJ+WzCMy8YCALxbZYx7gNI4v2ePHOfOSZKsISEKuu46kzMCAACAJ3FbEWjbtm3q3r37ZWPi4uK0evXqMu9j/vz5mj9//hXjQkNDNXv27DLtIzExUYmJiSWOb9asmZYsWVLi+LCwMM2cOVMzZ84sS3oAAA+UMXeu8n3ry5DkCAiUjw9/fAGAqqoyxj1Aafzyyis6//UOSVJQ2zZq9MYbJmcET+Fr9VXPqJ4uy0BZWH0satKmjssyAMB7uO0bwIkTJ3T11VdfNqZu3bo6ceKEu3YJAIBHCDKkuzYul2EYymzWUj/6DTI7JQBABWHcA8BbBPgE6ImbnjA7DVQBvn4+iuvf1Ow0AABlZHXXhsLDw/XTTz9dNubQoUMKDg521y4BAAAAoFIx7gEAAADgTdw2E6hDhw766KOPdPjwYTVs2LDI/T/99JOWLVumW265xV27BADAI1z12GM6smGjzpzPVfZV15qdDgCgAjHugae56rHH5LDbJUlWm83kbAAAAOBp3DYTaPz48crKylLnzp319ttv69ixY5KkY8eOacGCBercubPOnz+vCRMmuGuXAAB4hIBrrlF+4xhlR0Ur++oos9MBAFQgxj3wNAHXXKOgVq0U1KqVAq65xux0AAAA4GHcNhMoLi5OL7/8siZMmKBhw4ZJkiwWiwzDkCRZrVa98soriouLc9cuAQDwCDl5Ofr6ux+UnVeggmNn1Kh5G/n6+JmdFgCgAjDuAeAt8hx5WnVwlXO5V3Qv+Vn5jorSKyhwaP/Xv1/rrknbOvLxcdvvygEAFcxtRSBJ+utf/6pu3brpn//8p7Zt26azZ88qPDxc7du310MPPaTrr7/enbsDAMAjnM/OUf7umvI1JF+LRfnX5FAEAoAqjHEPAG+QW5Crv2//u3O5a8OuFIFQJgV5Dm1c+oNzObplJEUgAPAibi0CSVLLli312muvuXuzAAAAAOAxGPcAAAAA8AaU7QEAAAAAAAAAAKogikAAAJTTkUcflcVhyGIYksNhdjoAAKAa+WnkSH3f9kZ93/ZG/TRypNnpAAAAwMNQBAIAAAAAAAAAAKiCKAIBAAAAAAAAAABUQb5mJwAAgLcL7dVTxjqL2WkAAIBqKOzOO1Wj7Y2SJL/69UzOBgAAAJ6GIhAAAOUU2rOXtH6tZEiyUAwCAACVJ+zOO81OAQAAAB6M08EBAAAAgJeaP3++LBbLZW/du3d3xiclJV029uDBg8XuJyUlRfHx8QoJCVFoaKi6deumNWvWXDKvffv2qV+/foqMjFRQUJBatWqlOXPmyDAMdz8EAAAAAC6DmUAAAAAA4KVat26tqVOnFnvfBx98oD179ighIaHIfUOGDFF0dHSR9vDw8CJtCxcu1ODBg1W7dm0NHTpUkpScnKyePXtq8eLF6tu3r0v83r171alTJ50/f179+vVT/fr1tWLFCo0ePVp79+7VrFmzSn2cAAAAAMqGIhAAAAAAeKnWrVurdevWRdpzc3M1e/Zs+fr6asiQIUXuHzp0qLp27XrF7Z8+fVpjx45VZGSkduzYoQYNGkiSJk6cqBtuuEGjRo1SQkKCQkJCnOuMGjVKZ8+e1WeffaZbb71VkjRt2jT16NFDs2fP1qBBg9SxY8eyHTAAAACAUqEIBABAOYXUsKlxL6vOZOUpNyxK/v5BZqcEAKjmli1bplOnTql379666qqryrydJUuW6MyZM3r66aedBSBJatCggcaMGaOkpCR99NFHuv/++yVdOA1cWlqaunXr5iwASZK/v7+mTZumrl27au7cuRSBgEoQ5Buk925/z2UZKAs/fx/9+fEbXZYBAN6DIhAAAOV06v9mqcnmzcrNL5C98fU61neY2SkBAKq5efPmSZKGDx9e7P1paWnasmWLrFarYmNj1aNHDwUHBxeJW79+vSSpV69eRe5LSEhQUlKSUlNTnUWgy8V36dJFNptNqampJTqGSxWKdu/erUaNGiktLa1E23G3jIwMWR2GAk99X6r10tIOVkg+NT5aJt+jRyVJ+fXrK6tP7wrZj7fKyMiQJNOeL55kn/aZncIV0V/ehf7yLvSXd6G/vEtl9VdGRoZCQ0NLvR5FIAAAyin7273y+/57+RqGHD78whIAYK5Dhw5pzZo1atCggRITE4uN+eN1hMLDw/XKK684izmF0tPTJUmxsbFFtlHYVhhzpXgfHx/FxMRo7969ys/Pl68vw1F38D18WH4//HBhoaDA3GQAAADgcfjWDQAAAABVyFtvvSWHw6GhQ4fKx8f1lD2tWrXSm2++qa5du6pevXo6fvy4Pv30U02ZMkVDhw5VeHi47rrrLmf82bNnJUlhYWFF9lP4K8TCmCvFF67jcDh07tw5RUREXPY4Nm3aVGx74QyhuLi4y65fUdLS0nQyM0fZtZqVar24mxpVSD4/LVyo87/1c0jNCLU26XHxVIW/yDXr+YLSob+8C/3lXegv70J/eZfK6q+yzAKSKAIBAFBuAY2b6PSJX5RX4FBO/YZmpwMAqMYcDofeeustWSwW/e///m+R+/v06eOyHB0drTFjxqh58+bq2bOnJk2a5FIEgucLaNxERl6e8/8AAADAxSgCAQBQToFjRmvFyUYyDEkWi+rn2BUQYDM7LQBANfTFF1/op59+Uvfu3RUTE1Pi9bp3764mTZrom2++cTnXeOGMnrNnz6pWrVou6xSe+/ziWT8XxxcnIyNDFotFISEhJT8oXNZVj080OwV4qKy8LA35fIhzeUHiAtXwq2FiRvBWudn5+ujvO5zLfSa0kX8gf1IEAG9hNTsBAAC8nWEY8ssNkv9vN8MwzE4JAFBNzZs3T5I0fPjwUq8bGRkpScrKynK2FXfdn0LFXf/ncvEFBQU6cOCAYmJiuB4QUAkMGTp1/pTzZojvqCi7rIxc5w0A4F0oAgEAAABAFXDq1CktX75cNWvWLHLatyux2+3as2ePbDabsxgkSfHx8ZKkVatWFVknJSXFJeZK8Rs2bJDdbneJBwAAAFCxKAIBAAAAQBXwzjvvKDc3V/fdd58CAgKK3H/u3Dnt27evSPv58+c1YsQInTt3Tv369XOZpdOvXz+FhYVp1qxZOnLkiLP9yJEjmj17tiIjI10KTs2aNVNcXJzWrVunlStXOttzc3M1efJkSWWbpQQAAACgbJiDDwAAAABVwL/+9S9Jly6ynDp1Stdee63atWun5s2bq27duvr555/1xRdf6MiRI2rRooX+9re/uawTERGh2bNna/DgwWrTpo369+8vSUpOTtapU6eUnJxc5Po+r732mjp37qzevXurf//+qlevnlasWKE9e/ZozJgx6tSpUwUcPQAAAIDiUAQCAKCcMtatl/MU61wPCABggq1bt2r37t1q3769WrRoUWxMzZo1NXr0aG3dulWfffaZTp8+raCgIDVv3lzjxo3TmDFjFBQUVGS9++67T5GRkZo+fbreeustWSwWtW3bVpMmTVKPHj2KxF933XXasmWLJk2apBUrVshut6tp06Z69dVXNWrUKLcfe3WXkbJK+SdOSJJ869RRaEIvkzMCAACAJ6EIBABAOWV8tkIW30RJ4nK7AABTtG/fXsYVfogQGhqq2bNnl2n7iYmJSkxMLHF8s2bNtGTJkjLtC6VzZukHOv/1DklSUNs2FIEAAADggmsCAQAAAAAAAAAAVEEUgQAAAAAAAAAAAKogTgcHAEA51Z82TcYzX11YsFjMTQYAAFQrDf7v/6SCggsLPj7mJgMAAACPQxEIAIBysgYGShZxQSAAAFDprIGBZqcAAAAAD0YRCACAcvLz81N2vRPKdxgyfANVx8fP7JQAAABQzflafXVrzK0uy0BZWH0sim13lcsyAMB78A0AAIBysgUGKb7ztTqZmaPsWs3MTgcAAABQgE+AHm33qNlpoArw9fNRl76xZqcBACgjq9kJAAAAAAAAAAAAwP2YCQQAQDnlHvmvfI4elX9WrhyOMOXWrmt2SgAAoJrIPfJfGeezJEmWoBryb3C1yRkBAADAk1AEAgCgnI4/87TCt25TmGEos1lL/TjhWbNTAgAA1cTxZ57W+a93SJKC2rZRozfeMDkjAAAAeBKKQAAAlFOuxdD6Vm0lw1BeWE3VLMiTr4+f2WkBAACgGstz5OmzHz9zLt/W+Db5WfmOitIrKHAofevPzuXY9lfJx4crTACAt6AIBABAOWVbrDofkihJMgwpPy+HIhAAAABMlVuQq1d2vOJc7hHVgyIQyqQgz6FNy/Y7lxvfUJsiEAB4EYpAAACUU83B98l4/5TZaQAAgGoo8sEHVXDmjCTJJzzc1FwAAADgeSgCAQBQTjVatpKS10qGJIvF7HQAAEA1UqNtW7NTAAAAgAdj7iYAAAAAAAAAAEAVRBEIAAAAAAAAAACgCqIIBAAAAAAAAAAAUAVRBAIAAAAAAAAAAKiCfM1OAAAAb3ds2jRZHJ0kSYYMk7MBAADVyX8ffUzZ//mPJCmwZUtd/bcXTc4IAAAAnoQiEAAA5VSQkfH7Jyo1IAAAUIkKzp5R/smTzv8DAAAAF+N0cAAAAAAAAAAAAFUQM4EAACgnW/v20s7CSUAWk7MBAADVSXCXm+XfKEqS5N+okcnZAAAAwNNQBAIAoJwaDRmq2HordTorT7lhUfL3DzI7JQAAUE3UvH+w2SnAQwX5BmnxnYtdloGy8PP3Uf+n2rssAwC8B0UgAADKycfHRxG2UBUYOcoOqWV2OgAAAICsFqsigyLNTgNVgMVqUY1Qf7PTAACUEdcEAgAAAAAAAAAAqIIoAgEAAAAAAAAAAFRBFIEAAAAAAAAAAACqIK8qAi1cuFAPPvigbrzxRgUEBMhisWj+/PmXjM/IyND48eMVFRWlgIAARUdH69FHH1VmZmax8Q6HQ7NmzVKLFi0UFBSk2rVra+DAgfrxxx8vuY+UlBTFx8crJCREoaGh6tatm9asWXPJ+H379qlfv36KjIxUUFCQWrVqpTlz5sgwjBI/DgAAz3Jg3lxtXPpffZ9yUocWfaWcHLvZKQEAgGri1FvzdWxqko5NTdKpt+abnQ48SFZelnov6+28ZeVlmZ0SvFRudr7ee3qL85abnW92SgCAUvA1O4HSmDRpkg4dOqTIyEjVq1dPhw4dumSs3W5XfHy8du3apV69emngwIHauXOnXnrpJaWmpiotLU2BgYEu6zz44IOaN2+errvuOo0bN05Hjx7V4sWLtWrVKm3evFmxsbEu8QsXLtTgwYNVu3ZtDR06VJKUnJysnj17avHixerbt69L/N69e9WpUyedP39e/fr1U/369bVixQqNHj1ae/fu1axZs9zzQAEAKpV9+3b5+SZKkgyJwj4AAKg09k1f6fzXOyRJQW3bqNawoeYmBI9hyFBGbobLMlBWOVl5ZqcAACgjr5oJNG/ePB08eFC//PKLHnroocvGvvjii9q1a5cmTpyolJQUvfDCC0pJSdHEiRO1bds2zZw50yV+3bp1mjdvnuLi4rRjxw7NmDFD77zzjpYtW6Zff/1VY8aMcYk/ffq0xo4dq8jISO3YsUOzZs3SrFmztGPHDtWqVUujRo3SuXPnXNYZNWqUzp49q2XLlumdd97RjBkztGPHDt18882aPXu2Nm3a5J4HCgAAAAAAAAAAVHteVQTq0aOHoqKirhhnGIbmzZun4OBgTZ482eW+yZMnKzg4WPPmzXNpnzt3riRp2rRp8vf3d7bfeuut6tq1q1atWqWffvrJ2b5kyRKdOXNGY8eOVYMGDZztDRo00JgxY3Ty5El99NFHzvZ9+/YpLS1N3bp106233ups9/f317Rp01xyAAB4F9+aNX9fsJiXBwAAqH58a0XKt17dC7dakWanAwAAAA/jVaeDK6n09HQdPXpUCQkJstlsLvfZbDZ17txZKSkpOnz4sBo2bChJWr9+vfO+P0pISND69euVmpqqwYMHO+MlqVevXsXGJyUlKTU1Vffff/8V47t06SKbzabU1NQSHV/Hjh2Lbd+9e7caNWqktLS0Em0H7pWRcWGaPY9/9cVzoPrK6tZNxse/n2M98PR+BfoHXmaN36WlHaygrFDZeA+o3uh/c2VkZCg0NNTsNABT1H9+utkpAAAAwIN51UygkkpPT5ekItfwKVTYXhhnt9t17NgxxcTEyMfH54rxV9pHaeN9fHwUExOjgwcPKj+fi+sBAAAAAAAAAIDyq5Izgc6ePStJCgsLK/b+wl8JFsaVNv5K65Q2vnAdh8Ohc+fOKSIiotiYQpe6dlDhDKG4uLjLro+KUfjLXx7/6ovnQPV15lyGvvlkrWRIsliUHdFECgwu0bpxNzWq2ORQaXgPqN7of3MxCwgAAAAAilclZwIBAAAAAAAAAABUd1WyCFQ42+bimTgXKzxne2FcaeOvtE5p4wvXsVgsCgkJKfZ+AAAAAAAAAACA0qiSp4Mr7po8F/vj9XlsNpvq1aunAwcOqKCgoMh1gYq7nk9sbKy2b9+u9PR01apVq0Txl8qpoKBABw4cUExMjHx9q2SXAECVZt+x48Kp4CTJMC4bCwAA4E72zVtUcOa0JMknPEK2DjeZnBEAAAA8SZWcCRQbG6v69etr48aNstvtLvfZ7XZt3LhRMTExatiwobM9Pj7eed8fpaSkSHI9x3t8fLwkadWqVZeML4y5UvyGDRtkt9td4gEA3uP0okWyGIYshkERCAAAVKpTb/5Lx56apGNPTdKpN/9ldjoAAADwMFWyCGSxWDR8+HBlZmZq2rRpLvdNmzZNmZmZGjFihEv7yJEjJUmTJ09Wbm6us33lypVav369evXqpaioKGd7v379FBYWplmzZunIkSPO9iNHjmj27NmKjIxUnz59nO3NmjVTXFyc1q1bp5UrVzrbc3NzNXnyZEnS8OHD3XD0AIDK5mcYyi/YpvyCbcrz2yMfHz+zUwIAAEA152v11Z1N7nTefK2ceQRlY/Wx6NoOdZ03q4/F7JQAAKXgVd8A5s2bpw0bNkiSvvnmG2fb+vXrJUldunRxFlIee+wxLV++XDNmzNDOnTvVpk0b7dixQ6tWrVK7du308MMPu2y7W7duGj58uObNm6c2bdro9ttv17Fjx5ScnKyaNWtq1qxZLvERERGaPXu2Bg8erDZt2qh///6SpOTkZJ06dUrJyclFru/z2muvqXPnzurdu7f69++vevXqacWKFdqzZ4/GjBmjTp06ufshAwBUgiBDunPTShmGocxmLfWjX4DZKQEAAKCaC/AJ0CNtHzE7DVQBvn4+6tjnGrPTAACUkVcVgTZs2KAFCxa4tG3cuNHlFG6FRSCbzabU1FQlJSVp6dKlWrdunerVq6cJEyZo6tSpCgoKKrL9119/XS1atNAbb7yhV155RcHBwerTp4+ee+45NWnSpEj8fffdp8jISE2fPl1vvfWWLBaL2rZtq0mTJqlHjx5F4q+77jpt2bJFkyZN0ooVK2S329W0aVO9+uqrGjVqVHkfHgCASeo984x+2rBBp+25yq7TzOx0AABANVLvmWdk5ORIkiwB/BAFAAAArryqCDR//nzNnz+/xPFhYWGaOXOmZs6cWaJ4q9WqcePGady4cSXeR2JiohITE0sc36xZMy1ZsqTE8QAAz+dXt64cdeooLzNHeTVrm50OAACoRvzq1jU7BQAAAHiwKnlNIAAAAAAAAAAAgOrOq2YCAQDgibJzcrR19z7l5DlUcPiUoq+/Ub6+/manBQAAgGosryBPH+//2Ll8V5O75OfjZ2JG8FYF+Q59v/m4c7lZh7ry8eV35QDgLSgCAQBQTtm5OTK+i5S/IcliUf61uRSBAAAAYKpcR65e3fWqczkxJpEiEMqkIN+hLZ/86Fy+5sY6FIEAwIvwjg0AQDkV2DMlw+wsAADVVXR0tCwWS7G3rl27FonPycnRM888o9jYWAUGBqp+/foaOXKkTpw4ccl9vPvuu2rfvr1sNpsiIiJ0xx13aMeOHZeM37Ztm2677TaFh4fLZrOpQ4cOWrx4sTsOF39QkJmpgjNnLtwyM81OBwAAAB6GmUAAAJTTsaSnZfFNlCQZBtUgAEDlCwsL08MPP1ykPTo62mXZ4XDo7rvvVkpKijp06KB77rlH6enpmjdvntasWaPNmzerdu3aLus899xzmjRpkqKiovTQQw/p3Llzev/999WpUyetWbNGnTt3dolft26dEhISFBgYqAEDBigkJERLly5V//79dfjwYU2YMMHdh1+t/Xf8eJ3/+kJBLqhtGzV64w2TMwIAAIAnoQgEAAAAAF4uPDxcSUlJV4xbsGCBUlJSNHDgQL377ruyWCySpH/+858aNWqUJk2apNdff90Zn56erqSkJDVt2lRbt25VWFiYJGn06NHq0KGDRowYod27d8tqvXCSifz8fI0YMUJWq1VpaWlq3bq1JGnKlClq3769nnzySfXt21dRUVHufQAAAAAAFIvTwQEAAABANTF37lxJ0vPPP+8sAEnSgw8+qMaNG+vdd9/V+fPnne1vvfWW8vPz9dRTTzkLQJLUunVrDRw4UN9++602bNjgbF+7dq3279+vQYMGOQtA0oWZSk8++aRyc3O1YMGCCjxCAAAAABejCAQAQDmF3X23DItFhsUiXfQHNQAAKktOTo7mz5+v6dOna/bs2dqyZUuRmOzsbG3ZskXNmjUrMhPHYrGoZ8+estvt2r59u7N9/fr1kqRevXoV2V5CQoIkKTU1tczxKL+IAQNU59FHVefRRxUxYIDZ6QAAAMDDcDo4AADKKaRLF2nlWskQRSAAgCmOHz+uYcOGubS1a9dOixYtUpMmTSRJ+/fvl8PhUGxsbLHbKGxPT0/XzTff7Px/cHCw6tate9n4QoX/L24fdevWVXBwsEv85XTs2LHY9t27d6tRo0ZKS0sr0XbcLSMjQ1aHocBT35dqvbS0gxWTkK+vVL/exTuqmP14qYyMDEky7flipmxHtnJzc53LGzduVKA10MSMrqw695cnK8gzlJtb4FzeuHGjfPws9JeXob+8C/3lXSqrvzIyMhQaGlrq9ZgJBAAAAABebNiwYVqzZo1+/vln2e127dy5U4MHD9a2bdvUvXt3nTt3TpJ09uxZSXI5rdvFCgeUhXGF/y9t/JX2cXE8AAAAgIrFTCAAAAAA8GJTp051WW7durXefvttSdI777yjuXPnavz48WakVi6bNm0qtr1whlBcXFxlpuOUlpamk5k5yq7VrFTrxd3UqIIywuUU/iLXrOeLmex5dvl/5O9c7ty5s2x+NhMzurLq3F+eLDc7XwdXbXYud+7cQf6BvvSXl6G/vAv95V0qq7/KMgtIYiYQAAAAAFRJDz74oKQLp+2Rfp+dc6mZOIWnsbh4Fk9YWFip46+0j0vNEgIAAADgfhSBAAAAAKAKioyMlCTZ7XZJUuPGjWW1Wi95TZ7irucTGxurzMxMHT9+vMTxF993sePHjyszM/OS1yQCAAAA4H6cDg4AgHKy/+P/dNORHcpzOJQV1Uxn/VuanRIAANqyZYskKTo6WpIUFBSk9u3ba/PmzTp06JCioqKcsYZhaPXq1bLZbLrxxhud7fHx8dq0aZNWrVql+++/32X7KSkpzpiL459//nmtWrVKAwYMuGI8yu/4s88p+9tvJUmBzZur7qSnTM4IniLIN0gf3f2RyzJQFn7+Pho45SaXZQCA92AmEAAA5VRw+CfV+vGArjpwULWPHZPVyqAIAFA5vvvuO2VlZRXbPnHiREnSoEGDnO0jR46UJD3xxBMyDMPZ/vrrr+vHH3/Uvffeq6Cg3/9QPGzYMPn6+uq5555zOcXbrl27tGjRIjVv3lxdunRxtnfv3l2NGzfWe++9p127djnbz549q+nTp8vf379IMQnlk/vTIeV8951yvvtOuT8dMjsdeBCrxaqwgDDnzWrhT0AoG4vVokCbn/NmsVrMTgkAUArMBAIAAAAAL/X+++/r5ZdfVlxcnKKiomSz2bRv3z599tlnysvL0xNPPOFygdohQ4YoOTlZixYt0oEDBxQfH68ffvhBH374oWJiYvTss8+6bL9p06ZKSkrSpEmT1KpVK91zzz06d+6c3n//fUnS3LlzZbX+/odlX19fzZs3TwkJCYqLi9OAAQMUEhKipUuX6tChQ3rppZecM5MAAAAAVDyKQAAAlFNQi5Y6Zc9Sbn6BsmKamZ0OAKAa6datm7799lvt3LlTX375pbKyshQZGanbbrtNo0ePVq9evVzirVarli9frhdeeEHvvPOOZs6cqZo1a+qBBx7Qs88+q9q1axfZx1NPPaXo6Gj94x//0Jw5c+Tv76+bb75Z06ZNU5s2bYrNacOGDZo6daqSk5OVl5enFi1aaMaMGerfv3+FPRbVVVCLlrLWsEmSApo0MTkbAAAAeBqKQAAAlFPtsWP0bauWOpmZo+xaFIEAAJUnPj6+1NfYCQgI0NSpUzV16tQSr3Pvvffq3nvvLXF8+/bttXLlylLlhbKpPXaM2SkAAADAg1EEAgCgnM6cy9BXH/0sGZIsW1Wn9/8oMDDY7LQAAABQjdnz7Or/6e+z75LvSJbNz2ZiRvBWudn5Wjx9m3O535Pt5B/InxQBwFvwjg0AgBv4FPj9VgTiIqkAAADwDFl5WWangCoiL6fA7BQAAGVkvXIIAAAAAAAAAAAAvA1FIAAAAAAAAAAAgCqI08EBAFBOZz9bKYsRIEPGhVPCAQAAVJIzH36kvKNHJUl+9esr/E99TM4IAAAAnoQiEAAA5XRu3VrJN1EW6UIhCAAAoJJkfL5S57/eIUkKatuGIhAAAABccDo4AAAAAAAAAACAKoiZQAAAlJPF6mN2CgAAoJqy+PjK4uvr/D8AAABwMb4hAgBQTlfPeEHGU2svXA/IYjE7HQAAUI00nPOa2SkAAADAg3E6OAAAAAAAAAAAgCqIIhAAAAAAAAAAAEAVxOngAAAopwA/f+U2PKG8AoccfjVUx8ff7JQAAABQzflZ/dQnto/LMlAWPj5W/U/n+i7LAADvQREIAIByCgoM1M03XauTmTnKrtXM7HQAAAAA+fv4a+wNY81OA1WAj59VN93V2Ow0AABlRBEIAIByyv7+e/mlpyvofJ5k91N2IwZIAACgcmR//70c585JkqwhIQpsxg9SAAAA8DuKQAAAlNOJv/9doVu3KcQwlNmspX6c8KzZKQEAgGrixN//rvNf75AkBbVto0ZvvGFyRgAAAPAknMQTAAAAAAAAAACgCmImEAAA5ZRjkb5o01GGDOWHhKtOfq58ff3NTgsAAADVWF5BnpamL3Uu3xN7j/x8/EzMCN6qIN+hvRuOOpf/p0t9+fjyu3IA8BYUgQAAKKeQUaOU+69DFxYcUj5FIAAAUEnqTJjgck0goFCuI1dv/Of30wPe2eROikAok4J8h7avPOhcbtahLkUgAPAiFIEAACinwCZNJMshyZBksZidDgAAqEYCmzUzOwUAAAB4MMr2AAAAAAAAAAAAVRBFIAAAAAAAAAAAgCqIIhAAAAAAAAAAAEAVRBEIAAAAAAAAAACgCvI1OwEAALzdfyc+Lou1pyTJMAyTswEAANXJ4VGjdX7HDklSUJs2ajjnNZMzAgAAgCehCAQAQDkZjgLm1gIAAFMYBfky8vOd/wcAAAAuxp+sAAAAAAAAAAAAqiBmAgEAUE4h3W6RNlhkyJBkMTsdAABQjYQm3qqglq0kSX7165ucDQAAADwNRSAAAMop7LZbZWxcKxkWyUIRCAAAVJ7wP/UxOwUAAAB4MIpAAACUU6gtWC3urKFf7TnKjmgif/8aZqcEAACAaq6Gbw190ucTl2WgLPwCfHTv0x1clgEA3oMiEAAA5WS1WlUjIFBZeRYpMNjsdAAAAABZLBbZ/Gxmp4EqwGKxyD+QPyECgLeymp0AAAAAAAAAAAAA3I8iEAAAAAAAAAAAQBXEXE4AAMrpl1mzFbJ5swLyC2SPuV7H+ww2OyUAAFBN/DJrtnL275ckBTRpotpjx5icEQAAADwJRSAAAMrp5z3faHXNuy8sZFkUmZ2pQK4NBAAAKsH5b/6j81/vkCQ5suwmZwNPYs+z656P73EuL71rKdcIQpnkZufr/WlbncsDJrfnGkEA4EV4xwYAwA2sxoWPVMMwOREAAADgN7kFuWangCqiIN9hdgoAgDKiCAQAQDn5X91A+vm3BYvF1FwAAED14t8oSg57lvP/AAAAwMWsZidQ0aKjo2WxWIq9de3atUh8Tk6OnnnmGcXGxiowMFD169fXyJEjdeLEiUvu491331X79u1ls9kUERGhO+64Qzt27Lhk/LZt23TbbbcpPDxcNptNHTp00OLFi91xuAAAE9R5+K8yrBYZFgtFIAAAUKnqTnpK0e8uVPS7C1V30lNmpwMAAAAPUy1mAoWFhenhhx8u0h4dHe2y7HA4dPfddyslJUUdOnTQPffco/T0dM2bN09r1qzR5s2bVbt2bZd1nnvuOU2aNElRUVF66KGHdO7cOb3//vvq1KmT1qxZo86dO7vEr1u3TgkJCQoMDNSAAQMUEhKipUuXqn///jp8+LAmTJjg7sMHAAAAAAAAAADVULUoAoWHhyspKemKcQsWLFBKSooGDhyod999V5bffs39z3/+U6NGjdKkSZP0+uuvO+PT09OVlJSkpk2bauvWrQoLC5MkjR49Wh06dNCIESO0e/duWa0XJlzl5+drxIgRslqtSktLU+vWrSVJU6ZMUfv27fXkk0+qb9++iopiCj8AAAAAAAAAACifKn86uNKYO3euJOn55593FoAk6cEHH1Tjxo317rvv6vz58872t956S/n5+XrqqaecBSBJat26tQYOHKhvv/1WGzZscLavXbtW+/fv16BBg5wFIOnCTKUnn3xSubm5WrBgQQUeIQAAAAAAAAAAqC6qxUygnJwczZ8/X0ePHlVoaKjatWunm266ySUmOztbW7ZsUbNmzYrMxLFYLOrZs6def/11bd++XTfffLMkaf369ZKkXr16FdlnQkKC5s+fr9TUVMXFxZUoXpJSU1OveDwdO3Ystn337t1q1KiR0tLSrrgNuF9GRoYk8fhXYzwHqq+snGzJ+G3BMBR4er8C/QNLtG5a2sEKywuVi/eA6o3+N1dGRoZCQ0PNTgMAAAAAPE61KAIdP35cw4YNc2lr166dFi1apCZNmkiS9u/fL4fDodjY2GK3Udienp7uLAKlp6crODhYdevWvWx8ocL/F7ePunXrKjg42CUeAOAd/HbvkRRjdhoAAKAaOrd2rfJP/CJJ8q1TWyG33GJyRgAAAPAkVb4INGzYMN188826/vrrFRwcrH379unll1/WO++8o+7du+ubb75RSEiIzp49K0kup3W7WOEvCwvjCv9fp06dUsVfaR8Xx1/Kpk2bim0vnCFUOPMIlavwl788/tUXz4Hqa/d778riGy3pwoSg7IgmUmBwidaNu6lRxSWGSsV7QPVG/5uLWUCozk6//77Of71DkhTUtg1FIAAAALio8kWgqVOnuiy3bt1ab7/9tiTpnXfe0dy5czV+/HgzUgMAAAAAAAAAAKgwVb4IdCkPPvig3nnnHW3cuFHjx493zs651EycwvO8XzyLJywsrNTxV9pHREREKY8EAGC2AMOQkbdRMqQCW7B8fFqYnRIAAACqOT+rn/o16+eyDJSFj49V18dd7bIMAPAe1fZdOzIyUpJkt9slSY0bN5bVar3kNXmKu55PbGysMjMzdfz48RLHX3zfxY4fP67MzMxLXpMIAOC5Gv/9ZXXo3V2xPbso+u7+8vPzNzslAEA18d///lf/+Mc/1KtXLzVq1Ej+/v6qW7eu7rnnHm3ZsqVIfFJSkiwWyyVvBw8eLHY/KSkpio+PV0hIiEJDQ9WtWzetWbPmknnt27dP/fr1U2RkpIKCgtSqVSvNmTNHhmG469Dxm6tfflnXrPlC16z5Qle//LLZ6cCD+Pv466FWDzlv/j58R0XZ+PhZ1e72GOfNx6/a/jkRALxStZ0JVDggio6OliQFBQWpffv22rx5sw4dOqSoqChnrGEYWr16tWw2m2688UZne3x8vDZt2qRVq1bp/vvvd9l+SkqKM+bi+Oeff16rVq3SgAEDrhgPAPAOPsHBMmw2OQxfOYJsZqcDAKhGZs2apRkzZqhJkybq1auXateurfT0dC1btkzLli3Te++9p/79+xdZb8iQIc6x0MXCw8OLtC1cuFCDBw9W7dq1NXToUElScnKyevbsqcWLF6tv374u8Xv37lWnTp10/vx59evXT/Xr19eKFSs0evRo7d27V7NmzXLHoeM3PsEluw4hAAAAqqcqXQT67rvv1KhRI9WoUaNI+8SJEyVJgwYNcraPHDlSmzdv1hNPPKF3331XFotFkvT666/rxx9/1MiRIxUUFOSMHzZsmF566SU999xzuvvuu52ne9u1a5cWLVqk5s2bq0uXLs747t27q3Hjxnrvvfc0btw4tW7dWtKF08NNnz5d/v7+RYpJAAAAAHAp7du31/r164v8mOzLL79U9+7dNWrUKPXu3VsBAQEu9w8dOlRdu3a94vZPnz6tsWPHKjIyUjt27FCDBg0kSRMnTtQNN9ygUaNGKSEhQSEhIc51Ro0apbNnz+qzzz7TrbfeKkmaNm2aevToodmzZ2vQoEHq2LFjOY8cAAAAQElU6fmb77//vurWras77rhDf/nLX/TYY4+pd+/eatmypY4fP64nnnhCcXFxzvghQ4YoISFBixYtUqdOnfT444+rb9++Gj16tGJiYvTss8+6bL9p06ZKSkrSvn371KpVK02YMEEjR450bnPu3LmyWn9/iH19fTVv3jw5HA7FxcVp5MiRmjBhglq1aqV9+/Zp+vTpxf4aDwAAAACK86c//anYswncfPPN6tatm06fPq1vvvmmzNtfsmSJzpw5o7FjxzoLQJLUoEEDjRkzRidPntRHH33kbN+3b5/S0tLUrVs3ZwFIkvz9/TVt2jRJF8ZJAAAAACpHlZ4J1K1bN3377bfauXOnvvzyS2VlZSkyMlK33XabRo8erV69ernEW61WLV++XC+88ILeeecdzZw5UzVr1tQDDzygZ599VrVr1y6yj6eeekrR0dH6xz/+oTlz5sjf318333yzpk2bpjZt2hSb04YNGzR16lQlJycrLy9PLVq00IwZM4o9TQMAwPNl5+Ro067vlZtfoAL/X9T4hvby9eWc6wAAc/n5XbgIvK9v0WFfWlqatmzZIqvVqtjYWPXo0UPBxZxWbP369ZJUZOwkSQkJCUpKSlJqaqrzjAaXi+/SpYtsNptSU1NLlP+lZgvt3r1bjRo1UlpaWom2424ZGRmyOgwFnvq+VOulpR2smIRwWRkZGZJk2vPFTPlGvr7M+NK5fHPozfK1ePafgapzf3kyR4GhX3/4/ZpuNa+xyOpjob+8DP3lXegv71JZ/ZWRkaHQ0NBSr+fZn/7lFB8fX+pr7AQEBGjq1KmaOnVqide59957de+995Y4vn379lq5cmWp8gIAeK5zRw7Lml5bgb8t57fIpQgEADDVTz/9pC+++EL16tVTixYtitz/x/FOeHi4XnnllSKnp05PT5ckxcbGFtlGYVthzJXifXx8FBMTo7179yo/P7/Y4hRKz3r6tJSXd2HBz0+OiAhzE4LHyDfytfrsaudyx5COHl8EgmcyHNIvex3O5YjGPpKPiQkBAEqFT38AAMrp57/9TRbfREmScYVYAAAqWl5engYPHqycnBzNmDFDPj6//6WuVatWevPNN9W1a1fVq1dPx48f16effqopU6Zo6NChCg8P11133eWMP3v2rCQ5r396scJfIRbGXCm+cB2Hw6Fz584p4grFik2bNhXbXjhD6OJTe1emtLQ0nczMUXatZqVaL+6mRhWSz08jR+r81zskSUFt26jRG29UyH68VeEvcs16vpjJnmeX/0e//zCpc+fOsvnZTMzoyqpzf3my3Ox8HVy12bncuXMH+Qf60l9ehv7yLvSXd6ms/irLLCCJIhAAAAAAVBkOh0NDhw5VWlqaRowYocGDB7vc36dPH5fl6OhojRkzRs2bN1fPnj01adIklyIQAAAAAO9mNTsBAAAAAED5ORwO/e///q/ee+893XffffrnP/9Z4nW7d++uJk2a6JtvvnGe01z6fUbPxbN9ChXGXTzr53LxhetYLBaFhISUODcAAAAAZcdMIAAAyili4EAZH5wxOw0AQDXmcDg0bNgwvf322xo4cKDmz58vq7V0v/mLjIzUDz/8oKysLOepJmJjY7V9+3alp6erVq1aLvHFXf+nuOsEFSooKNCBAwcUExPD9YDcqNb/PqCCP/1JkuQTzvWAAAAA4IqZQAAAlJOtTRvJ8tuCxXLZWAAA3O3iAlD//v31zjvvuFwHqCTsdrv27Nkjm82myMhIZ3t8fLwkadWqVUXWSUlJcYm5UvyGDRtkt9td4lF+tg43KTQxUaGJibJ1uMnsdAAAAOBhKAIBAAAAgJcqPAXc22+/rT//+c9auHDhJQtA586d0759+4q0nz9/XiNGjNC5c+fUr18/l1k6/fr1U1hYmGbNmqUjR444248cOaLZs2crMjLS5TpDzZo1U1xcnNatW6eVK1c623NzczV58mRJ0vDhw8t93AAAAABKhjn4AAAAAOClnnnmGS1YsEDBwcFq2rSpnn322SIxvXv3VuvWrXXq1Clde+21ateunZo3b666devq559/1hdffKEjR46oRYsW+tvf/uaybkREhGbPnq3BgwerTZs26t+/vyQpOTlZp06dUnJycpHr+7z22mvq3Lmzevfurf79+6tevXpasWKF9uzZozFjxqhTp04V94B4sPe2/FSq+EE3NaqgTAAAAFCdUAQCAAAAAC918OBBSVJmZqaee+65YmOio6PVunVr1axZU6NHj9bWrVv12Wef6fTp0woKClLz5s01btw4jRkzRkFBQUXWv++++xQZGanp06frrbfeksViUdu2bTVp0iT16NGjSPx1112nLVu2aNKkSVqxYoXsdruaNm2qV199VaNGjXLr8QMAAAC4PIpAAAAAAOCl5s+fr/nz55coNjQ0VLNnzy7TfhITE5WYmFji+GbNmmnJkiVl2hcAAAAA96EIBABAOR1//nlZHO0lSYYMk7MBAADVydEnntT5b/4jSQpq0VL1n59uckYAAADwJBSBAAAop8CTJ9Vtx3MyDEP22Ot12P9ps1MCAADVRP6pk8o/dvzC/+vXNzkbeJIavjW08p6VzmV/q7+J2cCb+QX4aPCzHZ3LPr5WE7MBAJQWRSAAAMrJKosC8wtkGIbyHYasVgZFAAAAMJfFYlGAT4DZaaAKsFgs8vXzMTsNAEAZUQQCAKCcbB076aQsys4rkD36OrPTAQAA1YitYyf51bswA8g/OtrcZAAAAOBxKAIBAFBOtYYN1Z4mjXUyM0fZtZqZnQ4AAKhGag0banYKAAAA8GCcrwYAAAAAAAAAAKAKYiYQAADldOZchrZ8cOq3pR2qdU9TBQYGm5oTAADwbu9t+anU6wy6qVEFZAJvZc+z665ldzmXP+79sWx+NhMzgrfKzc7Xe0lbnMuDkm6SfyB/UgQAb8E7NgAAbmGRDEkWi9mJAAAAAJIkwzDMTgFVBM8lAPBenA4OAAAAAAAAAACgCmImEAAA5XR6yRJZjJoypAuzgQAAACpJ7VXL5H/iqCTp1++vU837B5ucEQAAADwJRSAAAMrJvnWr5JsoiySDKhAAAKhEId9sV/C+PZKkzJxfKQIBAADABaeDAwAAAAAAAAAAqIKYCQQAQDn5hIZKWb8tWExNBQAAVDMFthDlhUVIknzCws1NBgAAAB6HIhAAAOVUb/JkGU+tvXA9IAtVIAAAUHkOPTTR+f8bbmpkYiYAAADwRBSBAAAAAACoAt7b8lOp1xlE4QgAAKBK45pAAAAAAAAAAAAAVRBFIAAAAAAAAAAAgCqI08EBAFBOAX7+yo8+odwChxz+NtXx8Tc7JQAAAFRzflY/DWo+yGUZKAsfH6tadmvgsgwA8B4UgQAAKCdjzx51881WRn6eztdsJLsfRSAAAFA5bPt2yzczQ5KUHxwqe9PrTc4InsLfx1/DWww3Ow1UAT5+VrVNjDY7DQBAGVEEAgCgnE6+/rpCtm5TsGEos1lL/TjhWbNTAgAA1cRVn7yv4H17JEmZTa/jewgAAABcUAQCAAAAAKCaem/LT6VeZ9BNjSogEwAAAFQETuIJAAAAAAAAAABQBTETCACAcgp/4gktSv5UeQ6HCvyDFZOfK19frgsEAAAq3pH7x8iaky1JcgQEmpwNPEleQZ7e++495/KgawfJz8fPxIzgrQryHfrPuiPO5ZbdGsjHl9+VA4C3oAgEAEA5OSJryXq0oQIMSRaL8ttRBAIAAJUjt3Zds1OAh8p15GrBngXO5b5N+1IEQpkU5Du064vfTx153c31KQIBgBfhHRsAAAAAAAAAAKAKYiYQAAAAAAAosfe2/HTloD8YdFOjCsgEAAAAV8JMIAAAAAAAAAAAgCqImUAAAJSTIztbMszOAgAAVEeW3BxZHA5JkmG1yvAPMDkjAAAAeBKKQAAAlNPRyZNl8U2UJBkG1SAAAFB5YmZNU/C+PZKkzKbX6ccJz5qcEQAAADwJp4MDAAAAAAAAAACogpgJBAAAAAAAKtR7W34q9TqDbmpUAZkAAABULxSBAAAop9Dbbpex2mF2GgAAoBo6FZegjJbtJEl54TVNzgYAAACehiIQAADlFNqtq/TFWsmQZLGYnA0AAKhOzra72ewUAAAA4MEoAgEAAAAAAI9T2lPIcfo4AACAoigCAQBQTqG2YN3YJ0wn7bnKrhkri8VqdkoAAACo5mr41tDqvqudy1a+o6KM/AJ8NOT5zs5lTn4AAN6FIhAAAOVktVrl4+MjH6tVPj58tAIAAMB8FotFPhYfs9NAFWCxWCj8AIAX42cgAAAAAAAAAAAAVRA/VwYAoJx+fmGGwjZvVo0Ch+xNrtd/Bz5odkoAAKCauHrR6wr66UdJ0vlGjav195DiriEUmJlzyfskriMEAACqPopAAACU0/kff5Dl0EH5GYZ8g8LkcDhktTLZFgAAVLyAo4dV48d9kiSHr5/J2XifSxWHLsdbCkeGYchhOJzLVotVFs7phTIwDEOG8fuyxSKeSwDgRSgCAQBQTplWq1Z1niJJMiTVys1SYGCwuUkBAACgWsvKz9KdH93pXP6kzyey+dlMzAjeKi+nQO9O3excvvfpDvIP5E+KAOAteMcGAKCcAmNjpQMXCkBcMRUAAFSm81FNZPj4SJKyG0Sbm0w1UZVnDwEAgKqHIhAAAOUUOXKkjKfWXqgCUQQCAACV6FjfYWanAAAAAA9GEQgAAAAAAKACMXsIAACYhatWAwAAAAAAAAAAVEHMBDLBtm3bNHXqVH311VfKy8tTixYtNH78ePXr18/s1AAAAADALRj3AOVTltlDF8spyNL5vALn8uJthxXgU6NIHDOOAACo2igCVbJ169YpISFBgYGBGjBggEJCQrR06VL1799fhw8f1oQJE8xOEQAAAADKhXEP4D3KW2wqCQpNAACYhyJQJcrPz9eIESNktVqVlpam1q1bS5KmTJmi9u3b68knn1Tfvn0VFRVlbqIAgFLJWL1KMn77SDUMc5MBAMBkjHsqV8RXa+V/6oQkKbdWHZ3udIvJGQFFlbTQFJiZ44yncAQAgHtQBKpEa9eu1f79+zVs2DDnQEiSwsLC9OSTT2ro0KFasGCBpkyZYl6SAIBSy1i1WhbfREkSJSAAQHXHuKdyRWxaq+B9eyRJmU2vowiEKqMyZiiVFQUqAIA3oQhUidavXy9J6tWrV5H7EhISJEmpqamVmRIAAAAAuBXjHgBVnacWqChOAQCKQxGoEqWnp0uSYmNji9xXt25dBQcHO2Mup2PHjsW2b9++XX5+frruuuvKlyjKpKDgwgU3fXx8TM4EZuE5UH2N9/OTuiQ6l19++F7lZeeUaN3nrJaKSguVjPeA6o3+N9eBAwcUEhJidhr4TVUf9xQUFFyY+WuxmrL/P5psGGr+2/9/+M82TRuaeNn4asdwXPjXQ/qrUvlLfiN+P+4XXvyTlGtiPiVRnfvLDZ6uoO36+QRocLvfZ2+2ubGd8gpy6C9vQ38Vy7cSxuT5jjKcM8SD+6syHjNvU1njwbKOeygCVaKzZ89KunAahOKEhoY6Y8rC19dXISEhCg0NLfM2UHa7d++WJF1//fUmZwKz8ByovuZJ2r3gfkkX+j8kMFAKDDQ3KVQ63gOqN/rfXCEhIYqIiDA7Dfymqo97PO31/uoflmuakoXn8rT+qnTvXvT/Gr/dPFi17y8Ptuy7F53/DwkJlBRIf3kZ+su70F/epbL6q6zjHopAXmjTpk1mp4BiFP5Skf6pvngOVG/0P3gOVG/0P+B+nvp64vXuXegv70J/eRf6y7vQX96F/vIunt5fnjefrAor/CXcpX71lpGRcclfywEAAACAN2DcAwAAAHgOikCVqPCc2MWd//r48ePKzMws9rzZAAAAAOAtGPcAAAAAnoMiUCWKj4+XJK1atarIfSkpKS4xAAAAAOCNGPcAAAAAnoMiUCXq3r27GjdurPfee0+7du1ytp89e1bTp0+Xv7+/7r//fvMSBAAAAIByYtwDAAAAeA5fsxOoTnx9fTVv3jwlJCQoLi5OAwYMUEhIiJYuXapDhw7ppZdeUnR0tNlpAgAAAECZMe4BAAAAPIfFMAzD7CSqm61bt2rq1Kn66quvlJeXpxYtWmj8+PHq37+/2akBAAAAgFsw7gEAAADMRxEIAAAAAAAAAACgCuKaQAAAAAAAAAAAAFUQRSAAAAAAAAAAAIAqiCIQAAAAAAAAAABAFUQRCAAAAAAAAAAAoAqiCAQAAAAAAAAAAFAFUQQCAAAAAAAAAACogigCAWWUkZGh8ePHKyoqSgEBAYqOjtajjz6qzMzMcm131KhRslgsslgsOn78uJuyhbu5o//T09M1ffp0xcXFqX79+vL391fDhg11//3367vvvqvA7FFS27Zt02233abw8HDZbDZ16NBBixcvLtU2cnJy9Mwzzyg2NlaBgYGqX7++Ro4cqRMnTlRQ1nCX8vS/YRhauXKlRo0apZYtWyosLEw1atRQq1atNH36dGVnZ1dw9nAHd7wHXOz06dO6+uqrZbFYlJiY6MZMAZSEWZ/r7777rtq3by+bzaaIiAjdcccd2rFjR3kPp8qr7P46ePCgcxxW3C0pKclNR1Z1lbfP9u/fr6SkJN11113Oz8vo6OgrrpeSkqL4+HiFhIQoNDRU3bp105o1a8pxJNWDGf11udfY0KFDy3dAVZxZYxNeX2VjRn/x+iq78r4frly5UgMGDNC1116r8PBw1ahRQ9dee60eeOAB7du375LrVebry2IYhlEhWwaqMLvdri5dumjXrl3q1auXbrjhBu3cuVOrVq1Su3btlJaWpsDAwFJvd/Xq1erVq5dsNpvsdruOHTumunXrVsARoDzc1f8DBgxQcnKyrr/+enXp0kWhoaH65ptvtHLlSgUFBenzzz9XXFxcJRwRirNu3TolJCQoMDBQAwYMUEhIiJYuXapDhw7ppZde0oQJE664DYfDodtuu00pKSnq0KGD4uPjlZ6ero8++kgxMTHavHmzateuXQlHg9Iqb/9nZ2crKChIAQEB6tq1q1q0aKHs7GylpKQoPT1d7dq10/r161WjRo1KOiKUljveA/7o3nvv1fLly2W325WQkKDPP/+8AjIHUByzPtefe+45TZo0SVFRUbrnnnt07tw5vf/++8rNzdWaNWvUuXPnijpkr2ZGfx08eFAxMTFq1aqVevfuXWR7Xbt2VdeuXd14lFWLO/ps/vz5GjZsmHx8fNS8eXPt3btXDRs21MGDBy+5zsKFCzV48GDVrl1b/fv3lyQlJyfr5MmTWrx4sfr27euuQ6xSzOovi8WiqKioYv8g3bp162JfezBvbMLrq2zM6i9eX2XjjvfDsWPH6pNPPtFNN92k+vXry8/PT99++61WrlwpX19fffbZZ7rllltc1qn015cBoNSmTJliSDImTpzo0j5x4kRDkjF9+vRSb/PMmTNGgwYNjL59+xrx8fGGJOPYsWPuShlu5K7+f+utt4wdO3YUaV+0aJEhyfif//kft+SL0svLyzOaNGliBAQEGDt37nS2nzlzxmjatKnh7+9vHDx48IrbefPNNw1JxsCBAw2Hw+FsnzNnjiHJGDlyZEWkj3JyR//n5uYazz77rPHrr78Wab/zzjsNScaLL75YEenDDdz1HnCxDz74wJBkzJ4925BkJCQkuDlrAJdi1uf6vn37DF9fX6Np06bGmTNnnO07d+40AgICjObNmxsFBQXlP8Aqxqz+OnDggCHJGDJkiLsOpdpwV5/t37/f2LRpk5GVlWUYhmEEBAQYUVFRl4z/9ddfjfDwcCMyMtI4fPiws/3w4cNGZGSkERkZaWRkZJT5uKoqs/rLMAxDkhEfH1+O7Ksfs8YmvL7KxsyxJK+v0nPX++H58+eLbf/iiy8MScaNN97o0m7G64siEFBKDofDqF+/vhEcHGxkZma63JeZmWkEBwcbjRs3LvV2hwwZYtSqVcv4+eefKQJ5sIrq/z9q2rSpIcn45Zdfyr0tlF5KSoohyRg2bFiR++bPn29IMp5++ukrbqdjx46GpCJfGhwOh9G4cWPDZrM5B03wHO7q/0v56quvDEnG7bffXp40UYHc/Rw4ceKEUbt2bWPw4MHOPzJSBAIqj1mf60888YQhyViwYEGRbQ0dOtSQZKSmppbhiKo2s/qLIlDZVdR3pysVFV5//fVLbjspKemSr7/qzqz+Mgz+SF0WZo1NeH2VjZljSV5fpVfR/WUYhhEREWGEh4e7tJnx+uKaQEAppaen6+jRo+rcubNsNpvLfTabTZ07d9aPP/6ow4cPl3ibn3zyiRYsWKBZs2apTp067k4ZblQR/V8cPz8/SZKvr2+5toOyWb9+vSSpV69eRe5LSEiQJKWmpl52G9nZ2dqyZYuaNWumqKgol/ssFot69uwpu92u7du3uydpuI07+v9yeH17Pnc/Bx566CH5+PjolVdecUt+AErHrM/1iv48qarM/h529OhRvfrqq5o+fbr+9a9/af/+/WU8kurDrOc6r7GyMftxO3PmjN544w1Nnz5d//znP/XNN99U2L6qArPGJmY/T7yV2WNJXl+lU9H9tWnTJp0+fVrXX399pe63OPz1ASil9PR0SVJsbGyx98fGxjrP09mwYcMrbu/UqVMaMWKEevfurYEDB7o1V7ifu/u/OFu3btWePXvUrl07hYeHlzVVlMPl+rlu3boKDg52xlzK/v375XA4LvtcKdzXzTffXM6M4U7u6P/LefPNNyUV/4UPnsGdz4GFCxfqww8/1LJlyxQREaGzZ8+6NVcAV2bW53p6erqCg4OLvcbnxfFwZfb3sNWrV2v16tXOZYvFonvvvVf//Oc/i/wIDBdU9HensuyX19ilmdVfhf7973/rwQcfdGlLTEzUggUL+FFsMcwam/D6Khuzx5K8vkrH3f21atUqffXVV8rJyVF6ero+/fRTRUZGaubMmSXeb0W9vpgJBJRS4R9vwsLCir0/NDTUJe5KRo8erdzcXM2ZM8c9CaJCubv/i9v+kCFDZLVa9eKLL5YtSZRbSfr5Sn1c0c8VVBx39P+lrFy5Uq+//rqaN2+uBx54oMw5omK56zlw9OhRjRs3TgMHDtTdd9/t1hwBlJxZn+tnz57le0AZmNVfNWrU0OTJk/X111/rzJkz+vXXX/XFF1+offv2Wrhwoe6///5SH0t1UZHfncq6X15jl2ZWf0nShAkT9NVXX+nkyZPKyMjQV199pVtvvVWff/657rjjDhUUFFTIfr2ZWWMTXl9lY+ZYktdX6bm7v1atWqWnn35aL7zwgpYuXaqGDRvq888/14033lji/VbU64uZQKi2JkyYoJycnBLH//Wvf73kL8nKKjk5WYsXL9bbb79d7C8EUXE8of//6Pz58+rTp4++++47Pffcc+ratWuF7g9A5dq2bZv69++vsLAwLVmyRAEBAWanhAo2fPhw+fn56f/+7//MTgUAcAV16tTRM88849LWvXt3dezYUW3atNGHH36oHTt2qE2bNiZlCHi/l156yWW5Y8eO+vTTT3XLLbcoNTVVy5cv15/+9CeTsqteGJt4l5L0F68v87300kt66aWXlJmZqb179+qZZ55R586d9eabb2rQoEGm5kYRCNXW66+/LrvdXuL4vn37KjY21lmlvVRFNiMjQ9Klq8iFfv31V/3lL3/R7bffrsGDB5c4D7iH2f3/R9nZ2br77ru1bt06PfHEE3ryySdLtT7cqyT9HBERUe5tXBwHz+GO/v+j7du3q1evXrJarUpJSdF1111X7jxRcdzxHFiwYIFWrlypJUuWKDIy0u05Aig5sz7Xw8LC+B5QBp72PaxGjRoaPHiwJk2apI0bN1IEKkZFfHcq7X5r1apVZJ8Xx+B3ZvXXpVitVo0YMUKpqanauHEjf6T+A7PGJry+ysbTxpK8vi6vot4Pg4OD1b59ey1btkw33nijRo4cqZ49e6p27dpF9ltZry9OB4dqKzMzU4ZhlPhWOCvjSudmvNI1Ywr99NNPOnXqlFasWCGLxeJyK7z4V7169WSxWLRr1y73HDSczO7/i50/f1533XWXVq9erccee0zTp08v38Gh3C7Xz8ePH1dmZuYV+7hx48ayWq1ufa6gcrij/y+2fft29ezZUw6HQykpKWrXrp3bckXFcMdzYOfOnZKkP//5zy6f8TExMZKklJQUWSwWtW7d2r3JAyjCrM/12NhYZWZm6vjx4yWKxwWe+D2ssJhfmh+RVSfu/u7kjv3yGrs0s/rrcniNXZpZYxNeX2XjiWNJXl+XVtHvh76+vurWrZvsdru2b99eov1W1OuLIhBQSrGxsapfv742btxY5A3Ubrdr48aNiomJUcOGDS+7nVq1aumBBx4o9lZ4arhBgwbpgQceKFIVhnnc1f+Fzp8/r7vvvlurV6/W//t//08zZsyoiLRRSvHx8ZIunM/1j1JSUlxiLiUoKEjt27fX999/r0OHDrncZxiGVq9eLZvNVuTcsDCfO/q/UOGX9oKCAn3++ee66aab3JcoKow7ngMdO3Ys9jO+f//+kqQGDRrogQce4Nd4QCUw63PdnZ8n1Yknfg/bsmWLJCk6OrpE8dWNWc91XmNl44mPG6+xSzNrbOKJzxNv4IljSV5fl1YZz/OjR49Kkvz8/Cp1v0UYAEptypQphiRj4sSJLu0TJ040JBnTp093abfb7ca3335rHDp0qETbj4+PNyQZx44dc1vOcB939f/58+eNnj17GpKM8ePHV3jeKLm8vDyjcePGRkBAgLFz505n+5kzZ4ymTZsa/v7+xoEDB5ztR48eNb799lvjzJkzLtt58803DUnGwIEDDYfD4WyfM2eOIckYOXJkRR8KysBd/b99+3YjPDzcCA4ONjZs2FBJ2cMd3PUcKM6BAwcMSUZCQkIFZA6gOGZ9rn///feGr6+v0bRpU5dt7dy50wgICDCaN29uFBQUuPdgqwCz+mvHjh0ucYWWLl1qWK1WIyIiokTv89VRRX1uBgQEGFFRUZe8/9dffzXCwsKMyMhI4/Dhw872w4cPG5GRkUZkZKSRkZFR1sOqsszqr//85z9Gbm5ukfaNGzcaNWrUMPz8/IwffvihtIdT5Zk1NuH1VTZm9Revr7JxV39t27at2O1//vnnhp+fnxEeHm5kZmY62814fVEEAsogMzPTaNWqlSHJ6NWrl/H4448bvXr1MiQZ7dq1M7Kyslzi161bZ0gy4uPjS7R9ikCezV39P2TIEEOSUbduXWPq1KnF3i7+sEHlWrt2reHn52eEhIQYI0aMMMaPH29ERUUZkoyXXnrJJbawL9966y2X9oKCAiMhIcGQZHTo0MGYOHGicc899xgWi8WIiYkxTpw4UYlHhNIob/+fOnXKiIiIMCQZiYmJxb6+Z86cWbkHhVJxx3tAcSgCAeYw63P92WefNSQZUVFRxvjx440RI0YYISEhRkBAAD8QuAwz+is+Pt5o0KCB8ec//9l45JFHjHHjxhldunQxJBkBAQHG8uXLK/qwvZo7+uyXX34xhgwZ4rxZrVbDZrO5tP3yyy8u67zzzjuGJKN27drGmDFjjDFjxhi1a9c2LBaLsXjx4oo+bK9lRn8NGTLEiIyMNHr37m2MHTvWGD9+vJGQkGBYLBbDarUac+bMqYxD90pmjU14fZWNGf3F66vs3PF+KMm4/vrrjUGDBhmPPfaY8Ze//MW4+eabDUmGn5+f8eGHHxbZb2W/vigCAWV05swZ4+GHHzYaNmxo+Pn5GY0aNTImTJhQbKWWIlDV447+L+zny93WrVtXOQeEYm3ZssVITEw0QkNDjaCgIKN9+/bG+++/XyTucn8Azs7ONpKSkowmTZoY/v7+Rt26dY3hw4cbx48fr4QjQHmUp/8L/9B/udvlfikJz+CO94A/oggEmMesz/WFCxcaN954oxEUFGSEhYUZt912m/H111+789CqpMrur7lz5xqJiYlGw4YNjaCgICMgIMBo3LixMXz4cOPbb7+tiEOscsrbZyX5/lTcj+RWrlxp3HzzzYbNZjOCg4ON+Ph4Y/Xq1RV0lFVHZffXhx9+aNx9991GTEyMYbPZDD8/P6Nhw4bGwIEDjS1btlTw0Xo/s8YmvL7KprL7i9dX+ZT3/XD69OlGz549jauvvtrw9/c3AgMDjaZNmxojR4409u7de8n9Vubry2IYhiEAAAAAAAAAAABUKVazEwAAAAAAAAAAAID7UQQCAAAAAAAAAACogigCAQAAAAAAAAAAVEEUgQAAAAAAAAAAAKogikAAAAAAAAAAAABVEEUgAAAAAAAAAACAKogiEAAAAAAAAAAAQBVEEQgAAAAAAAAAAKAKoggEAAAAAAAAAABQBVEEAgAAAAAAAAAAqIIoAgEAAAAAAAAAAFRBFIEAAPAiFotFXbt2NTsNAAAAAKgwjHsAwH0oAgEAAAAAAAAAAFRBFIEAAAAAAAAAAACqIIpAAAAAAAAAAAAAVRBFIACA11m6dKni4+NVp04dBQYGqn79+urRo4eWLl3qEvef//xHAwYMUL169eTv76+oqCiNHTtWp06dKna7//73v3XvvfeqQYMGCggIUL169ZSYmKhPPvnEJS4/P18vv/yyWrVqpaCgIIWFhalbt25F4iRp/vz5slgsmj9/vlatWqVOnTqpRo0aqlWrloYMGXLJXObNm6frr79egYGBatiwoR577DFlZ2cXG3vs2DH99a9/VWxsrIKCghQeHq7mzZvroYce0tmzZ0vykAIAAADwMIx7XDHuAYCysRiGYZidBAAAJTVnzhyNHj1a9erV05133qlatWrp+PHj2rp1q1q3bq2FCxdKkj7++GP169dPVqtVd999txo2bKi9e/dqxYoVio2N1ZYtWxQREeHc7tKlSzVo0CAZhqE777xTzZo104kTJ7RlyxY1adJEy5YtkyQZhqE+ffpo+fLlatq0qe68807Z7XYlJyfr9OnTevnll/XII484tzt//nwNGzZMffr00YoVK3TnnXcqOjpaaWlp2rZtmzp37qwNGza4HOO0adM0ZcoUXXXVVfrzn/8sPz8/LV26VC1bttSnn36q+Ph4rV+/XpKUlZWl66+/XgcPHlSvXr3UsmVL5ebm6sCBA/riiy/073//W9dcc03FdgoAAAAAt2Lcw7gHANzGAADAi7Rp08bw9/c3fv755yL3nTx50vlvaGiocfXVVxsHDx50iVm0aJEhyRgzZoyz7fjx44bNZjNsNpuxY8eOIts9fPiw8/8LFiwwJBnx8fFGTk6Os/3QoUNGZGSk4evra+zfv9/Z/tZbbxmSDF9fX2PDhg3O9vz8fKNr166GJGPTpk3O9vT0dMPX19e4+uqrXY7x7NmzRrNmzZz7LvTxxx8bkoyHH364SN7nzp0zsrOzi7QDAAAA8GyMexj3AIC7cDo4AIDX8fPzk5+fX5H2WrVqSZLefvttZWRk6Pnnn1dUVJRLzIABA9SmTRu9//77zrYFCxbIbrdrwoQJuuGGG4pst0GDBi6xkvTiiy/K39/f2d6oUSM98sgjys/P17vvvltkG4MGDVLnzp2dyz4+PhoyZIgkadu2bc729957T/n5+Ro/frzq1KnjbA8NDdWkSZMu8YhIQUFBRdqCg4MVEBBwyXUAAAAAeC7GPUUx7gGA0vM1OwEAAEpjwIABeuyxx3T99ddr0KBB6tatm7p06aLQ0FBnzObNmyVJW7Zs0f79+4tsIzs7WydPntTJkycVGRmprVu3SpJ69ep1xf3v3LlTNWrUUPv27Yvc161bN0nSrl27itzXtm3bIm2Fg6wzZ8442/79739Lkm6++eYi8cW1xcXFqV69enrhhRf073//W3fccYfi4+PVvHlzWSyWKx4PAAAAAM/DuMcV4x4AKDuKQAAAr/L//t//U61atTRnzhz9/e9/10svvSRfX1/dfvvtmjlzpmJiYvTrr79Kkl599dXLbstutysyMtJ5EdGrr776ivvPyMhQw4YNi72vXr16zpg/uniwVsjX98LHcEFBgbOtMJeLfw1X6KqrrirSFhYWps2bN2vKlCn65JNP9Nlnn0mSGjZsqMcff1yjR4++0iEBAAAA8DCMe1wx7gGAsuN0cAAAr2KxWPS///u/2rZtm3755Rd99NFH+tOf/qTly5frjjvuUEFBgXPg8c0338gwjEveCk+ZEB4eLkn673//e8X9h4aG6sSJE8Xed/z4cWdMWYWFhUlSsfv4+eefi12nUaNGmj9/vn755Rft3LlTM2bMkMPh0F/+8hctWrSozLkAAAAAMAfjnqIY9wBA2VAEAgB4rVq1aql3795KTk7WLbfcor179+qHH37QTTfdJEnatGlTibZTeIqDVatWXTH2hhtuUFZWlvNUChdbv369JKl169YlO4BitGrVSpL05ZdfFrmvuLaLWa1WtW7dWo899phzEPTxxx+XORcAAAAA5mPc44pxDwCUDkUgAIBXWb9+vQzDcGnLy8tzngohMDBQw4YNU0hIiJ566int2bOnyDaysrKc58+WpCFDhig4OFh///vfiz2v9cW/lCu8qOkTTzyhvLw8Z/vhw4f18ssvy9fXV/fee2+Zj2/QoEHy8fHRyy+/7PKruIyMDD377LNF4vfs2VPsL+UK2wIDA8ucCwAAAABzMO5xxbgHAMqOawIBALxK7969FRoaqg4dOigqKkp5eXlavXq19u7dq759+zpPdbBo0SL9+c9/VqtWrZSYmKhrr71WOTk5OnjwoFJTU9WpUyd9/vnnki6ch/rtt9/WgAED1L59e911111q1qyZTp48qS1btig6OlrLli2TJA0ePFgffvihli9frpYtW+qOO+6Q3W5XcnKyfv31V/39739X48aNy3x811xzjaZMmaKpU6eqZcuW6tevn3x9fbV06VK1bNlS33//vUv86tWr9eijj6pz585q2rSpatWqpR9//FEff/yxAgMD9Ze//KXMuQAAAAAwB+Mexj0A4C4UgQAAXuX555/X559/rq1bt+qTTz6RzWZTkyZNNGfOHD3wwAPOuNtvv107d+7U3/72N33xxRdavXq1bDabGjRooGHDhum+++5z2W6fPn20ZcsWPf/880pNTdXHH3+syMhItW7dWiNGjHDGWSwWffDBB3rllVe0YMECzZo1S/7+/mrTpo3Gjx+vu+66q9zHOGXKFNWvX18zZ87U66+/rjp16mjAgAF65plnVKNGDZfYhIQEHTx4UGlpafrwww+VmZmpq6++Wv3799djjz2m//mf/yl3PgAAAAAqF+Mexj0A4C4W449zSwEAAAAAAAAAAOD1uCYQAAAAAAAAAABAFUQRCAAAAAAAAAAAoAqiCAQAAAAAAAAAAFAFUQQCAAAAAAAAAACogigCAQAAAAAAAAAAVEEUgQAAAAAAAAAAAKogikAAAAAAAAAAAABVEEUgAAAAAAAAAACAKogiEAAAAAAAAAAAQBVEEQgAAAAAAAAAAKAKoggEAAAAAAAAAABQBVEEAgAAAAAAAAAAqIIoAgEAAAAAAAAAAFRBFIEAAAAAAAAAAACqIIpAAAAAAAAAAAAAVRBFIAAAAAAAAAAAgCro/wPX5vMkNJrzPgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABoAAAARRCAYAAAAGpkARAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAViAAAFYgBxNdAoAABAABJREFUeJzs3Xl4DefbB/Dvyb5HiCUR2YjEEmsQQsSudpWWWGqnqFJqiyCotfyotSEllKJq3yo0G2nEVoo2thJUgkSaRfZk3j/ynpHjnCQn68ny/VxXrmZmnnnmnjlJzZ175nkkgiAIICIiIiIiIiIiIiIiokpDTdUBEBERERERERERERERUcliAYiIiIiIiIiIiIiIiKiSYQGIiIiIiIiIiIiIiIiokmEBiIiIiIiIiIiIiIiIqJJhAYiIiIiIiIiIiIiIiKiSYQGIiIiIiIiIiIiIiIiokmEBiIiIiIiIiIiIiIiIqJJhAYiIiIiIiIiIiIiIiKiSYQGIiIiIiIiIiIiIiIiokmEBiIiIiIiIiIiIiIiIqJJhAYiIiIiIiIiIiIiIiKiSYQGIiIiIiIiIiIiIiIiokmEBiIiIiIiIiIiIiIiIqJJhAYiIiMqMt7c3JBIJxowZo+pQiIiIiIiISpSbmxskEgn8/PxUHUqx+Pn5QSKRwM3NTdWhEBFRMbEARERUgJiYGHh7e6Ndu3aoVq0aNDU1UatWLTRt2hRDhw7F1q1b8ezZM1WHWWX5+fnB29sbt27dUnUoVAX89ddf2L59O8aPH4/mzZtDU1OTRU0iIiIqc48fP8aCBQvQrl071KpVC5qamjA2Nkbz5s0xZcoUhISEyO0jfRjrwy9DQ0M4Ojpi1qxZiIyMlNtPWtRQ5n5H2mdFL4BUZsePH4e3tzeCgoJUHQpVQNevX8fGjRsxcuRIODg4QE1NDRKJBN7e3qoOjYjyoKHqAIiIyrMrV66gX79+iI2NBQDUqVMH9evXR1ZWFh49eoR79+7h559/RlxcHLy8vFQcbdXk5+eH4OBgWFtbo0WLFqoOhyo5T09PnDhxQtVhEBERURWVlZWF+fPnY+PGjcjMzAQA2NjYwNraGomJiXjw4AH+/PNPfP/993B1dUVwcLBcH0ZGRnB0dAQACIKA58+f4969e7h79y527tyJkydPokuXLmV6XpWFpaUl7O3tYWxsrOpQ8nT8+HHs2bMHAPJ8w8fY2Bj29vawtLQsw8ioIpgwYQJu376t6jCIqBBYACIiykNSUhI+/vhjxMbGol27dti8eTPatGkjbs/Ozsb169dx8OBBmJiYqDBSIior5ubmGDRoEJycnODk5IQ9e/bgwIEDqg6LiIiIqgBBEPDJJ5/g2LFj0NLSwqJFizB16lTUqVNHbJOcnIxz585h1apVCt8CAoCWLVvKvf1x69YteHh4ICIiAsOHD8fjx4+hp6dXmqdTKe3du1fVIZSIwYMHY/DgwaoOg8ohW1tbODg4oHXr1nBycsLSpUsVFpqJqPxgAYiIKA9nz55FVFQU1NXVcezYMZiZmclsV1NTQ9u2bdG2bVsVRUhEZW3btm0yy8eOHVNRJERERFTVrF+/HseOHYOmpibOnTuHrl27yrXR09PDkCFD8PHHH2PFihVK992iRQv4+fnB2dkZ0dHRuHjxIgYMGFCS4RNRJXD06FGZ5TVr1qgoEiJSFucAIiLKw+PHjwEApqamcsUfZaWkpGDjxo1wcXGBiYkJtLW1YWNjg8mTJ+PJkycK98k9cWhUVBSmTp0KGxsbaGtrw83NDZcuXYJEIoGxsTFSU1PzPLaPjw8kEgmaNm1aJnEV1x9//IHFixfDxcUFFhYW0NLSQo0aNdC1a1fs3bsXgiDItA8KCoJEIhGfNho7dqzMWOaKYrp58yZGjx4Na2tr6OjooFq1anB1dYWfnx+ys7Pl2kuPYW1tDQA4efIk3NzcUK1aNejr66Ndu3Y4ePBgvucVFRWF+fPno0WLFjAyMoKenh7s7OwwbNgwnDp1SmzXt29fSCQSLFy4MM++srOzYW1tDYlEgsOHD+d73PIgKSkJ+/btg4eHBxo1agRjY2Po6urCzs4OU6dOzfNn7cPr7ufnh3bt2sHQ0BBGRkbo2rUrfv31V4X75p6wNisrC//73//QrFkz6Ovro3r16ujfvz+uXr1aWqdMREREVCrevXuHVatWAQDmzp2rsPiTm0QiKfQQ1W3btoWBgQEA4P79+0ULtIgePXqESZMmoUGDBtDR0YGenh4sLS3RpUsXrFixAu/evVO439GjR9GvXz/Url0bWlpaqF27NgYNGpTn20/SeZDGjBmDtLQ0rFy5Es2aNYOBgQEkEgmSk5NhZGQEiUSC33//Pc9479+/D4lEAg0NDURHR4vrc+dMivz333/45ptv0K5dO5iYmEBHRwc2NjYYOHBgnm8PRUVFYe7cuWjatCkMDAygr6+PZs2aYenSpUhMTMwzxg89ffoUEolEHP5t6dKlMvmT9N4bkL2n/pA0HwkKCsL9+/fh4eGBOnXqQE9PD82bNxf7B4CEhAR4enrCzs4OOjo6qFevHubMmYPk5OQ84yxKrlpexcTEYOfOnRg0aBAaNmwIfX196Ovro2nTppg7dy5ev36tcL/i5DS5f8ZTU1OxePFi2NvbQ1dXF7Vq1YKHh0eZ/34TkYoJRESk0JYtWwQAAgDhwYMHhd4/MjJSaNy4sQBAUFNTEywtLYXmzZsLenp6AgDB0NBQCAwMlNuvc+fOAgBh4cKFgqmpqaCuri44OjoKLVq0EHr06CFkZ2cLNjY2AgDhwIEDeR6/Q4cOAgBhzZo1ZRKXMpYsWSIAEEaPHi23rXXr1gIAwdjYWHBwcBCcnJwEc3Nz8TPw8PCQaX/z5k3BxcVFMDIyEgAIdnZ2gouLi/j1xRdfyLRfu3atIJFIxHNs3ry5YGFhIfY/aNAgITMzU2afwMBAAYBgZWUlLF26VAAg1K5dW2jdurVQrVo1cd/NmzcrPN9z586J8ampqQmNGjUSWrVqJVSvXl3sV+rEiRMCAMHc3FwuDqlff/1VACDUrFlTSEtLU+KKq9apU6cEAIKGhoZQt25doXXr1oKDg4Ogq6srftbh4eFy++W+7rNmzRKvu5OTk2BiYiJe9/Xr18vtu3v3bgGA0LlzZ2HIkCECAMHS0lJwcnISDAwMBACCurq68PPPP5fIOU6ePDnPn2kiIiKikvLzzz+L95SvXr0qUh/Se/HOnTsr3J6dnS3o6+sLAIS1a9eK66V5gDL3O9L7tN27dysd182bNwVDQ0MBgKCjoyM0btxYaN26tVCnTh1BTU1NACA8fPhQZp/U1FTxXk96f9yyZUvxPlsikQjffvttntdg6NChgrOzswBAqF+/vuDk5CQYGRkJgiAIY8aMEQAIkydPzjNmT09PAYDw0UcfyayXXitF53/9+nXBzMxMjLlBgwaCk5OTUKtWLXHdhy5evCgYGxsLAAQtLS3B3t5esLe3F9TV1QUAgr29vfDvv/8qc5mFqKgowcXFRTxevXr1ZPInd3d3sW3ue+oPWVlZCQCEdevWCQYGBoKBgYHQunVroXbt2jL36TExMULjxo0FdXV1oVmzZoKtra2Yj/Xp00dhjEXNVcurzZs3i5+dNCexs7MTNDU1xdzvn3/+kduvODmN9Gfcw8NDaN++vfiz1qpVK0FbW1sAIOjr6wshISElco69evUSAAhLliwpkf6IqOSxAERElIfHjx+LN9bW1tbC999/Lzx79kypfdPS0oTmzZsLAISBAwcKT58+FbelpqYK8+bNEwAIpqamQmxsrMy+0qRBXV1d6N69u/Dy5UtxW3JysiAIgrB48WKFCYfUo0ePxJvm3AlBacdVkPwKQPv37xfu3Lkjt/7q1auCnZ1dngWv/JIsqYMHDwoAhGrVqgl79uwRsrKyZPpv0KCBAEBYtmyZzH7SQoSmpqagq6sr7N+/X9yWkZEhTJ06VQAgGBgYCAkJCTL73rt3T0xU3N3d5RKze/fuCatXrxaXMzMzhbp16woAhJMnTyo8D3d3dwGA8PXXX+d5ruVJRESE8MsvvwiJiYky6xMSEoRFixYJAIRGjRoJ2dnZMtul111DQ0NQV1cXvv/+e7FNRkaGuK+ampoQFhYms680WZJ+ZseOHRO3vXv3Thg/fryY9Dx58qTY58gCEBEREZWFL7/8UgAgODo6FrmPggpAV65cEf+Af/z4cXF9aReABg4cKAAQRo4cKcTHx8tse/36tbBlyxa5oteUKVMEAEKTJk2Ey5cvy2zbt2+foKenJ0gkEiEoKEhmm/QaqKurC5aWlsK1a9fEbdKcJiAgQAAgmJiYCKmpqXLxZmdni0WQgwcPymzLKzeJjo4WCyRubm5yDxg+ffpUWLRokcy6hw8fioWxhQsXytxTv3z5Uvjoo48EAELXrl3lYszP6NGjC/yDvTIFIE1NTeHzzz8X3r17J26T5qkGBgZCr169hA4dOgjPnz8Xt587d07Q0NAQAAgXLlyQ6bc4uWp5FR4eLpw9e1bu5+jNmzfCxIkTBQBCr1695PYrTk4j/RnX1NQUTE1NZX4/YmNjhb59+woABDMzM+G///4r9jmyAERU/rEARESUj02bNolPnUm/ateuLXz00UfCypUr83wzaOfOnQIAwcnJSUhPT1fYpn///grf0JEmDTVr1szzhkxa4FFXVxeio6Pltktv+nr27FmmcRUkvwJQfi5cuCAAEHr37i23raACUEZGhpikHD16VGGb69evCxKJRKhWrZrMmzXSQgQAYfny5XL7paSkCDVr1hQACCdOnJDZ9vHHH4tJU+6CU36k12fAgAFy216/fi1oaWkJAISIiAil+ivvXFxcBADClStXZNbnvu4TJ05UuG+PHj0EAEL//v1l1kuTJQDCihUr5PbLysoS7O3tBQDC9OnTi30OLAARERFRWZDeWw4cOLDIfeRXAPrjjz8EBwcHAYBQp04dmT/ql3YBSHpvduvWLaXaR0RECGpqaoKRkZFMkSC39evXK3xgTnoNAAihoaEK983OzhYsLS0FAMLhw4fltkvvVY2NjYWUlBSZbXnlJtK32u3t7ZV+eG7EiBECAOHLL79UuD0hIUF8gEzRW/V5KakCkKOjo1yek5GRIY7ioKOjo/ABSulDbTNnzpRZX5xctaKqW7euIJFIhKioKJn1xclpcv+M536AUSoxMVEcVUHRiAqFxQIQUfnHOYCIiPIxffp0XL16FcOHD4ehoSEA4NWrVzh37hw8PT1hb2+PsWPHyo1JfejQIQDA+PHjoampqbDvIUOGAAB+++03hdvd3d1hbGyscFv9+vXRoUMHZGVlYf/+/XLb9+3bBwAYPXp0mcZVXJGRkVizZg2GDh2Kbt26oWPHjujYsSMWLFgAIGeeoMIKDw9HZGQk6tSpg8GDByts07p1a1hZWeG///7DjRs3FLaZOnWq3DodHR20bNkSQM645VKpqak4c+YMAMDT0xNqasr9czthwgSoq6vj7NmziIqKktm2d+9epKeno1OnTrC3t1eqv/IgKysLJ06cwPTp09G3b1+4urqKn+vDhw8B5P+5zpw5M9/1Fy5cQEZGhtx2DQ0NTJs2TW69mpoavvzySwAQPyMiIiKi8i4hIQEAxDl6iuOPP/4Q78dcXFxgZWWFVq1aISIiAgYGBti/fz/09PSKfRxlWVlZAQAOHjyocF7OD/3yyy/Izs7GRx99JO77IWlOExQUhKysLLntjRo1QocOHRTuK5FIMHLkSABQOC/Pjz/+CAD49NNPoaOjU2C8AHDkyBEAwKxZs6Crq1tg+4yMDBw7dgwAMGXKFIVtDA0N0aNHDwB5526lafz48XJ5joaGBpo1awYA6N27N+rVqye3n5OTEwDZ/AkomVy1PEpNTcVPP/2EyZMno3fv3ujUqZP4+5eYmAhBEHDr1i2F+xYnp6lTpw6GDh0qt97AwAATJkzId18iqlw0VB0AEVF517p1a+zfvx9ZWVm4e/cubt68icDAQJw5cwZv376Fn58f3rx5g9OnT4v73L59GwCwbds2sRjzof/++w8A8Pz5c4XbmzRpkm9cn332GX7//Xfs3bsXs2bNEteHhobi8ePHMDQ0lCt4lEVcRbVp0ybMmTMH6enpebaJjY0tdL/Sc05JSUHHjh0L7Pv58+do3769zDZTU1NUr15d4X61a9cGAJkJWB8+fIi0tDQAyDOxVMTCwgJ9+vTBqVOnsGfPHsyfP1/c5uvrCwCYOHGi0v398ccfmD59utLtlWFmZobDhw8r1TYqKgp9+/YtsHCX1+eqoaGRZ7FL+nOYmpqKJ0+eoGHDhjLb69Wrl2ehUrrvP//8g/T0dGhpaeUbHxEREZGqGRkZAQCSkpKK3VdCQgJCQ0PFZX19fTRp0gTdu3fHzJkz8yyqlJY5c+bg4sWLWL16Nfbu3YtevXqhffv26NSpExwcHOTaS+/vw8LC8ry/FwQBQE4OEBsbi1q1aslsVybXWrlyJX799Ve8efMGNWvWFPv75ZdfxDbKSExMRGRkJADlc4OHDx8iOTkZAMQ/1isi7Tev3K00NWjQQOF66bUuaPuHP8slkat+6Ny5c1ixYoVSbZXVsmVLbN68Wam2f//9N/r27YsnT57k2y6vfKg4OU2jRo2grq6e775///13vnERUeXAAhARkZLU1dXRvHlzNG/eHGPHjkV8fDzGjh2LY8eO4cyZM7hy5QqcnZ0BAHFxcQCAO3fuFNiv9Mb+Q/r6+vnuN3ToUMyYMQO3b9/GnTt34OjoCOD9E2mffPKJ3NNlZRFXUYSFhWHGjBkAgGnTpmH06NGws7ODoaEh1NXV8c8//6B+/frIzMwsdN/Sc46Pj5dJdPOi6LzzO2fpU2/SJBN4/4Smurp6oZ/SnDx5Mk6dOoVdu3aJBaDLly8jIiIC1apVg7u7u9J9KXvOhVGYPwiMHTsWf/zxB2xtbbFixQp06NABtWvXhra2NoCcpPnHH39U+AYPkFN4yytpkRbeANnim6LtBe1bo0YN7Nq1C7t27ZJr26dPH3h6eubZFxEREVFZsLCwAJDzx97i6ty5M4KCgpRuL70fU/QmTW6579U1NJT/c1P37t0REBCAFStWICgoCLt378bu3bsBAI0bN8ayZcvENz+A9/f3z549w7Nnzwrsv7D39wBgb2+Pdu3aITw8HAcOHBDftjhx4gQSEhJQv379fB8uy02aGwBAtWrVlNpHeo4AipzDlLa8rqFEIlFqe+78CSiZXPVDr169KvF8SNmf7ezsbAwZMgRPnjxBy5YtsXTpUrRu3RqmpqZiscbV1RWXLl3KMx8qbE5T2H1z51ErV67E2bNn5dqOGzcO48aNy7MvIir/OAQcEVERGRsbY/fu3WIB4MqVK+I26R/9AwICIOTMt5bn19OnT4t0/GrVqmHAgAEAgD179gAA0tLS8PPPPwNQ/ERaWcRVFNL43d3dsWXLFrRp0wbVqlUTk82ivPkjJT1nV1fXAs9ZEASMGTOm2OcjfUIzKyur0E9pfvTRR7C0tMTDhw/FxFz69s/IkSOVGjJCys3NTalzLsyXsj8X0dHROH/+PADg5MmTGDZsGCwtLcXiD1Dw5xoTE5PnHxpevXolfi8dnjGv7crs++zZM4SGhsp9PXjwIN8YiYiIiMqCtNhw7949vH79ukyPLS1a5C5KKJJ7u7KFDqnOnTvD398f//33H3777TcsXboUzZo1w19//QV3d3ecO3dObCu9v1+8eLFS96/W1taFikVKmk/lHgZO+v2oUaOU7keaGwDv32ApiPQcJRIJMjMzCzxHPz8/peMpr0ojVx0zZkyJ50PKFk+vXr2Kv//+G7q6uvD390f//v1hbm4u86ZOQflQYXOawu6be78HDx4ozIeUKbISUfnGAhARUTEYGxuLwwHkHrpM+jbOn3/+WarHlyYlP/30E7KysnD69GnExcXB2toarq6ucu3LKq7Ckr4SryhmQLa49iHpE2R5kZ7zvXv3lBpTvCQ0bNhQHA/8999/L9S+ampq4jAPvr6+SEhIEIdcy2/4h/JG+plWr15d4RAbmZmZuH79er59ZGZm5lmAuXfvHoCceZhsbGzktr948ULmaUtF+9ra2ooJmLe3d6VNpomIiKji++ijj1C9enVkZ2dj06ZNZXps6TBs0iG68pJ7HpNGjRoV6Vh6enro2rUrFi9ejFu3bolvv2/btk1sU1Y5zbBhw6ClpYUbN27gr7/+wqtXr+Dv7w+JRKL08G9Azh/ZpUUoZXODhg0bQltbG4Ig4O7du0UJP08F5U+qUl5z1aKS5kONGjWCqamp3Pa4uLgCHzYrbE6TW0RERJ4P00n3zf176ufnpzAf8vb2zjdGIir/WAAiIspDTExMgQWD+/fvi0/g5Z6D5NNPPwUAbN26tVRfx+/duzdq1aqFqKgoXLx4UeaJNEU39mUVV2FJJ5mNioqS25aamprvGMvSffM6n44dO8Lc3ByxsbH44YcfSiDagmlra6Nfv34AgNWrV8sNb1CQ8ePHQ0NDA0eOHBE/qzZt2qB58+alEW6pkH4uCQkJCj+bvXv3KvX06nfffZfv+h49eiicJDYjI0PmDwVSgiCIP099+/Yt8PhERERE5YGBgQHmzZsHAFi7di0CAgLybS8IQonNfSK9Z3rx4gUuXLiQZzvpcLoNGzZE/fr1i31ciUQCFxcXAMC///4rrv/kk08gkUhw5swZ/PXXX8U+Tl6qV68unvuPP/4oPnTXsWNHhQ8g5UdayNqwYQNSU1MLbK+rqyvmE99++20hI89fQfmTqpTXXLWopNf51atXCvPBDRs2FDjEeXFymqioKIVztyYlJYl5MfMhoqqBBSAiojwcPHgQTZo0wXfffYcXL17IbBMEAefPn8fAgQMhCAKsrKzQq1cvcfvEiRPh6OiIhw8fomfPngqfYrp37x4WLVqEU6dOFTlGDQ0NeHh4AMi5gZQOjZDXE2llFVdhde7cGUDOk33Xrl0T179+/Rru7u75TvIpnVw0MDBQYcFOS0tLTJqmT5+OjRs3IiUlRaZNUlISjhw5UqJv2Cxbtgx6enoIDAyEh4eHXHHrr7/+wpo1axTua25ujn79+iE1NRWLFy8GkPPZVSRNmjSBqakpMjMz8cUXX8gkur/88gumT58uviWVFw0NDfj6+mLnzp1i0pSZmYmlS5fC398fampqWLBggcJ9NTU1sXz5cpw8eVJcl5ycjMmTJyMiIgJ6enr46quvSuBMiYiIiMrGnDlzMGDAAGRkZOCjjz7CkiVLEB0dLdMmNTUVJ06cQLt27eDl5VUix+3QoQN69uwJICfP+LAIlJycjMWLF+PgwYMAgKVLlxaq/08++QRHjx6V+6P/48ePsWPHDgBAmzZtxPWOjo6YMGECMjIy0LNnT5w+fVruD+wvX77Etm3bsHr16kLF8iFpXrVv3z7xYbvRo0cXup85c+agdu3aiIiIQN++ffHo0SOZ7ZGRkViyZInMuhUrVsDQ0BD79+/HpEmT5D7rzMxMBAcHY9y4cTIFsoJI86dLly7JjGKhauU1Vy2q9u3bQ1NTE//++y8WL14svo2TnZ2NrVu3YuXKlQXmQ8XJaTQ1NTFjxgyEhYWJ6+Li4jBixAi8ffsWderU4dw+RFWFQERECm3ZskUAIH7VqVNHaN26tdCsWTPBxMREXG9mZibcvHlTbv9nz54JLVu2FNvVq1dPaNeundCiRQuhWrVq4vrdu3fL7Ne5c2eF6/Ny48YNmTg7dOiQb/uyikuRJUuWCACE0aNHy6xPSkoSGjVqJAAQJBKJ0LBhQ6Fly5aCpqamoK2tLfj6+opxfSg8PFxQU1MTAAh169YVXFxchM6dOwszZsyQabdx40ZBQ0NDACDo6OgIzZs3F9q1ayfUr19f3N/Kykpmn8DAQIXrcxs9erQAQFiyZInctnPnzgmGhoYCAEFNTU1o3Lix0KpVK6FGjRoF9nvu3DnxnA0MDITExMQ825ZXP/zwg3gOxsbGQuvWrYW6desKAIRevXoJI0eOVHjtcl/3WbNmib9/bdq0EapXry72uWbNGrlj7t69WwAgdO7cWRgyZIjYT5s2bcTPQl1dXfjpp5+KdE4HDhwQatSoIX7p6OgIAARtbW2Z9YpiIyIiIiqujIwMYebMmYK6urp472xrayu0bdtWaNSokXhvAkDo2rWrzL7Se/HOnTsX+rivX78W2rVrJ/Zdu3ZtoW3btkLz5s0FbW1tMZalS5cWum9jY2MBgKChoSHY29sL7dq1E+zs7ASJRCIAEOzs7ITo6GiZfdLS0oQRI0aI8ZiYmAhOTk6Ck5OTYG5uLq7/MO/IKx/JS3p6unjvDkDQ1dUV4uPj82yfX8507do1oU6dOmJfdnZ2gpOTk1C7du08c53AwEDB1NRUzCfs7e0FZ2dnoUmTJuJ1ByA8efJEqfMRhJx8UE9PTwAg1KxZU+jQoYPQuXNnYejQoWKb3PfUH7KyshIACIGBgQr7zy8/Kqjvouaq5dWiRYvEmGvWrCk4OTkJNWvWFAAIEyZMyPPnpTg5jfRn3MPDQ2jfvr34s9a6dWvx/w96enp5fn4FWbNmjUzeo6mpKf5u5F5/4MCBIvVPRCWPbwAREeVh8uTJCAkJwaJFi8S5af78809ERERAS0sLXbt2xfr163H//n20bNlSbv969erhypUr+OGHH9CzZ0+kpqbixo0bePjwofi0zYkTJzBs2LBixdmqVSs0bdpUXC5oPOqyiqsw9PX1cenSJUyZMgVmZmZ48uQJoqKiMHjwYFy9ehXdunXLc9+2bdvi+PHjcHNzw7t37xAWFobg4GCZMcgBYMaMGbhz5w6mTZsGGxsbPHr0CDdu3EBSUhJcXV2xZs2afIe0KIrevXvj77//xqxZs+Dg4ICnT5/i/v37MDExwfDhwxW+zi/Vs2dPWFpaAsgZf1w6KWpFMm7cOBw7dgzt27dHeno6IiIiYGpqim+//RanT5+Gurp6gX2sX78eu3btQr169fD3338jPT0dbm5uOHPmDObOnZvvvocOHcL69ethZGSEu3fvQl1dHX379sXly5fFN+cKKzU1FbGxseKX9M2mtLQ0mfWVYdgKIiIiKn80NDSwYcMGREREYN68eXByckJCQgJu3ryJf//9F/b29pgyZQouX76M3377rcSOW7NmTVy6dAm7d+9G7969AQB//PEHHj16BCsrK4wfPx7Xrl0T314vjL1792LatGlwdHREXFwcbty4gVevXsHJyQkrVqzAjRs3ULt2bZl9tLS0sG/fPly4cAFDhw6FoaEh7ty5gzt37kBTUxODBg3CDz/8gHXr1hXrvDU1NWXuGwcOHAgjI6Mi9eXk5IR79+5hyZIlaNmyJaKionD37l3o6elh0KBB2Ldvn9w+bm5uiIiIwLJly9CmTRtER0fj2rVr+Pfff9G0aVPMmTMHoaGhsLKyUjqOevXqwd/fHx999BEEQcCVK1cQHByc77yrZaU85qrFsWzZMvj6+qJFixZISEjAgwcPUL9+fXGUA2UUNafR0tJCQEAAvLy8IJFIcPfuXRgYGODTTz/F9evX4ebmVqRzSk5Olsl7MjIyAAApKSkK8yQiUj2JIBRyYgIiIiIqdSkpKTAzM0N8fDyuXLmCdu3aqTqkMhMUFIQuXbrAysoKT58+LdS+fn5+GDt2LDp37oygoKBSiY+IiIiIiKi0FCen8fb2xtKlSzF69Gj4+fmVSnxEVLHwDSAiIqJy6ODBg4iPj0ezZs2qVPGHiIiIiIiIiIhKBgtARERE5czbt2/xzTffAABmzpyp2mCIiIiIiIiIiKhC0lB1AERERJRj5syZuH79Ou7evYv4+Hi0aNECo0aNUnVYRERERERERERUAfENICIionLi1q1bCA0NhYaGBoYOHYrTp09DQ4PPahARERERERERUeFJBEEQVB0EERERERERERERERERlRy+AURERERERERERERERFTJsABERERERERERERERERUybAAREREREREREREREREVMmwAERERERERERERERERFTJaKg6ACo5Dg4OiIuLg62trapDISIiIiIqMf/88w9MTEwQERGh6lColDGnISIiIqLKSFU5DQtAlUhcXBySk5NVdvyEhAQAgJGRkcpiUIaGRMAnlm/F5cPPqiNTkBSpr5mJSbDLzAQAPNTQwEZDgxKJsTyoKJ9nWRLUBGQ0zRCXNe9qQpJdtJ+dslbRP081iTrsTZ3F5fsxV5AtZKkwItWq6J8nyeLnWbnw8ywdqrzHpbLFnKZ0lOe8pbJe85JSGjkIr3neSjPv4HUve7zmZY/XXDV43cteUa65qu5xJYIgCCo5MpW49u3bAwDCwsJUcvyQkBAAgKurq0qOr7S0RGCz0/vl6dcBbcMidfVs0iSk3LgJANBt3QqWO3aURITlQoX5PMvQu4x36H+sv7h8avAp6GvqqzAi5VX0zzM9NRP7l1wRl0csdYaWTtV9hqGif54ki59n5cLPs3So+j6Xyo6qP+vK+jtcnvOWynrNS0pp5CC85nkrzbyD173s8ZqXPV5z1eB1L3tFueaqus/lHEBERERERERERERERESVTNV9fJqoBNT93/+A/x9KARr8dSIiIiIiovKHeQsRERFR1cQ7P6JiUDcoP2NnExERERERKcK8hYiIiKhq4hBwRERERERERERERERElQwLQERERERERERERERERJUMh4AjIiIiUlJqaipev36NhIQECIJQIn3q6uoCAO7cuVMi/ZFq8fOUJ5FIoKOjA2NjY9SoUQNqanwGjYiIiEhVSiOnkeK9sGrwupe+D3OaioQFIKJiyIiOhpCWBgCQaGtDs04dFUdERESlJTs7G0+ePEFGRgaAnBvAkqCtrV0i/VD5wM9TXnZ2NpKTk5GcnIzExERYW1uzCERUxpi3EBERUHo5jRTvhVWD1730fZjTVCQsABEVQ9TixUi5cRMAoNu6FSx37FBxREREVFpev36NjIwM6OnpwdraGhoaJXMblfb/f5DjTXvlwM9TniAISEpKwosXL5CUlITY2FjUrFlT1WERVSnMW4iICCi9nEaK98Kqwete+j7MaTQ0NJCZmanqsJTCAhBVPRI1oI6j7DKREiSQwL66vcwylQ2JRAJTC0OZZaKylpCQAAAwNzcv8USJqDKTSCQwNDSEhYUFnjx5gvj4eBaAiIiUxBykbDHvoMqOOQ1R0XyY06irq7MARFRuaekDI39RdRRUAelp6mF79+2qDqNK0tRWR//pzVUdBlVx0mESdHR0VBwJUcVkYGAAIGfceSIiUg5zkLLFvIMqO+Y0RMUjzWkq0pDWLAARFUONceOR9fHHAAD1aiYqjoaIiEpTdnY2JBJJhbrRIypPJBIJJBJJiU82TEQFY95CREQAcxqi4pLmNBUJC0BExaDv3E7VIRAREREREeWLeQsRERFR1cRyLxERERERERERERERUSXDN4Co6snKBKJuv182aw6o81eBCpaZnYm/Y/8WlxvVaAQNNf7slIXsrGy8eZYkLte0NICaOp9hICIiIqLKjTlI2WLeQURElQ3vGqjqyUwBDg5/vzz9OqBuqLp4qMJIy0rDjMAZ4vKpwaeYfJWRzIxsnP3+T3F5xFJnaDERIyIiIqJKjjlI2WLeQURElQ3/FSMiIiIiIiIiIiIiIqpkWACiKkgCGJm9/4KkyD29XOCJx/364XG/fni5wLPkQiQiIqIqaefOnWjevDl0dXVRs2ZNDB8+HJGRkYXqIzY2FlOmTIG5uTm0tbVhb2+PNWvWIDMzU6ZdXFwcNm/ejD59+sDKygo6OjqwsbGBu7s7/vjjD7l+/fz8IJFI8v0KDQ0t1vkTUelg3kJERERlpSxzGgA4fPgwxo8fj5YtW0JLSwsSiQRBQUF59p1fPnP37t3Cnm65x/eGqerRNgAmBZVIV5mxMciMis753ty8RPokIiKiqmnRokX45ptv4OLigo0bN+LNmzfYuHEjgoKCcPXqVVhYWBTYR2JiIlxdXXH//n1MnToVzZo1Q0hICObPn4+7d+/ixx9/FNuGh4dj5syZ6Nq1Kz7//HPUqlULDx8+xPfff4+jR4/ip59+wrBhw8T2rq6uMvtLvXv3DlOmTEGtWrXQtm3bkrkYRFSimLcQERFRWSjrnAYAtm7diitXrsDR0REODg64c+dOgcfo1KkTJk2aJLe+Xr16yp9sBcECEBERERGRij148ACrVq1Cq1atEBQUBA2NnNv03r17o23btvD09MTevXsL7Ofbb7/FX3/9hfXr12PWrFkAgAkTJsDY2BhbtmzB2LFj0bVrVwCAg4MD7t+/jwYNGsj0MXLkSLRq1QozZ87Ep59+CjW1nEEDbG1tYWtrK3fMH374AYIgYOzYsdDU1CzWdSAiIiIioopJFTkNAOzZswfm5ubQ1NSEt7e3UgUgW1tbjBw5sohnWrFwCDgqUTFJafgp/JnSXxWdfvsOMOrXD0b9+kG/fQdVh0NERCr0dv9+cXgd6Vd6Pq+5Z0RF4XG/fng++GM8H/wxHvfrh9jdfvke4985c2X6jxz1Wb7tE379VS6mZAVDe5UE6fBgAQEBWLt2Lezs7KCjo4NGjRrhwIEDAICXL19i5MiRqFmzJnR1ddGzZ088evRIYX979uxB+/btYWBgAD09PbRu3Rp+fn5y7fz9/eHh4YH69etDV1cXRkZGcHV1xalTp+TajhkzBhKJBImJifjqq6/E4QSaNm2Kn3/+uUSvR2H99NNPyMrKwpdffikmSgDg5OQEV1dX/PLLL0hJSSmwn71790JPTw9TpkyRWT979mxxu5S1tbVc8QcAmjZtiqZNm+LVq1d4/fp1gcfcuXMnJBIJJkyYUGBbooqgMuY0zFuIiEgZRc1ppF/PB3+M//bKvzGeG3MaP7l2xc1pjIyM0KpVqyqZ0wCAlZVVkR5Ey8jIQGJiYqH3q2j4BhBRMdQYO0bVIRARUTmR9TYO6Y8ey6wT0tPzbC9kZsq1z4qNyfcYGf/+K7NPds2E/GOKT5CPSYkb7uJYsGABkpKSMH78eOjq6mLHjh0YMWIE1NXVMXfuXHTo0AHLli1DZGQkNm7ciEGDBuHPP/8U3zIBgMmTJ2PHjh3o27cvli9fDk1NTZw7dw5jx47Fw4cPsWLFCrGtn58fXr16hZEjR8LCwgJv3rzBnj17MGDAABw8eBBDhw6Vi7FXr17Q09PD3LlzkZWVhW3btmHo0KGwsbFBmzZtCjzHpKQkpKamKtyWlpYGANDW1hbXmZqaFthneHg4AKBDB/k/zHbo0AHBwcG4c+dOvkOsvXr1CpGRkejQoQN0dXVltllbW8PMzAxXr14tMJbs7GxER0dDS0sL1apVy7ft3bt3ER4ejq5du6J+/foF9k1EqsG8hYiIlFEyOU1svsdgTlPyOU1aWhp8fHxKLKdRpKLlNAX55ZdfsG/fPmRlZcHY2Bj9+vXDN998A2tr62L3Xd6wAERVT3YWEP/8/bJxPUBNXXXxEBERVSLJycm4ceMGdHR0AACffvoprK2tMWzYMKxYsQILFiwQ29aqVQuzZ8/Gb7/9hh49egAATp8+jR07dmD16tWYN2+e2PaLL77A1KlTsWbNGkyYMAE2NjYAct4+0dfXl4lh5syZaNGiBZYtW6YwWXJwcMCuXbvEZXd3d9jZ2WHjxo3Yv39/gef4xRdfYM+ePUpfE0EQCmzz4sULAFA4JrZ03YsXL/JNlvLrQ7o+IiKiwFi2bt2KqKgojB49Wvwc87Jz504AUDh+NhERERFRRVTRcpq0tDQMHjwYTZs2ZU6jBCcnJwwZMgQNGzZEWloaLl26hJ07d+LcuXMIDQ2Fg4NDsfovb1gAoqonIxn4odf75enXAW1D1cVDRERUiUyfPl2maGBmZgZ7e3vcu3cPX331lUxbNzc3AMD9+/fFZGnPnj3Q1tbGiBEjEBMj+0bU4MGDsX37dly8eBETJ04EAJlE6d27d0hNTYUgCOjatSt8fHyQmJgIQ0PZf+dzJ2FAzpABDRs2xIMHD5Q6x7lz5+Y5XnT6/z8hqaWlpVRfUsnJyQBk3xySkl5PaZui9CHtp6A+goKC8PXXX8PGxgb/+9//8m2blpaGffv2wdTUFIMHD863LRERERFRRVHVc5qiKi85TUGuXbsms+zh4YGPPvoIAwYMwMyZM/Hrr78Wq//yhgUgIiIiohKgXt0EWg1kh8CS5FMEkGhoQKtBfQjZOU9SSdQkUK+R/2v1mnXrIishXlzWMKmef0zGRvIxffAafUlTNAxY9erVYW5uLvc2SfXqOfHH5hom4q+//kJaWhrq1auX5zGio6PF758+fYpFixbh7NmzePv2rVzbuLg4uWRJUYympqaIzGd889waN26Mxo0bK9ymaAg4Zejp6Yn7fzjUgXRoBmkbZfpQJDU1Nd8+QkND0b9/f9SsWRP+/v7i55OXI0eO4O3bt5g1a1ahC15EREREVP4UNaeRErIFqNeoke8xmNPkKM85TVGVh5ymqPr374/WrVvjt99+Q2pqaoEjIVQkLAARERERlYDqI0ag+ogRSrfXNDND/dOnC1UwqPvt2kLFZNS7N4x69y7UPsWlrq54WNW81gOywwlkZ2fDwMAAx44dy7O9ra0tgJxxq11dXREfH48ZM2agWbNmMDIygpqaGnbt2oUDBw4gOztbbv/cE5LmFUd+4uPj85y8VNHnWadOnQL7tLCwwN27d/HixQvY2dnJbCtoGITcfeRu/6EXL17k2UdISAj69u0LExMTBAQEoEGDBgXGLB3+TfrkIhERERFVbEXNaaTy+qN9bsxpcpTnnEaRipDTFJeNjQ1u3LiBt2/fwtzcvFSOoQosABEVw9u9PyL92TMAgJalJap/NkrFEVFp0lbXxhrXNTLLVDY0NNXQc1wTmWUiqpwaNmyIiIgIODo6onbt2vm2DQgIwPPnz/HDDz9g3LhxMtukxYnSMGPGjBIfL7tt27b49ddfERYWJpcshYWFQVdXF02bNs23j9q1a8PS0hK3bt1CSkqKzFN3kZGRiIqKQs+ePeX2CwwMRL9+/VCrVi0EBASIY5Hn59GjRwgKCkKnTp0q3RjZRJUR85aKizlI2WLeQUQlgTlN2ec0JeHBgwfQ1NREjQLeYqtoWAAiKoaky5eQcuMmAEC3dSsmUpWchpoG2tRpo+owqiQ1dTXUtTdRdRhEVAbGjBmDkydP4uuvv8aePXugpib7h5f4+Hjo6OhAW1tbfALvw2Tkzz//xPHjx0stxtKYA2j48OFYsWIFvvvuOwwfPlx8ou/69esIDg7GiBEjZIY6iI+PR1RUFExNTWFq+n7owFGjRmHFihXYvn07Zs2aJa5fv369uD233377Df3794e5uTkCAgJgaWmpVLy+vr4A+PYPUUXBvKXiYg5Stph3EFFJqOg5TVGpKqcpjNjYWIUFnh9//BF//vkn+vfvX+jhvMs7FoCIiIiIqNwYPHgwPv/8c3z//fe4c+cOPv74Y5ibm+PVq1f4888/cfLkSfz999+wtraGi4sLzMzMMHv2bPzzzz+wtrbG33//jZ07d8LR0RE3btwolRhLYw4ge3t7zJ07F6tWrYKbmxtGjRqFmJgYbNiwAbVq1cLKlStl2h87dgxjx47FkiVL4O3tLa6fO3cufvnlF8ydOxdPnz5F8+bNERwcjB9//BEeHh7o1q2b2Pb69evo378/MjIyMHHiRISEhMjF1aNHD7mnFjMyMuDn5wcTExN88sknhTpPIiIiIqLKrqLnNEWlipwGyBnOWprLSP/7448/4vLlywByCkZWVlYAgG+++QahoaHo2rUrLC0tkZ6ejsuXL+PIkSMwMzPDxo0bS/SalAcsABEVg7pxNWj8f4Va3biaaoMhIiKqJLZv346uXbvCx8cHGzZswLt371CrVi3Y29tj5cqV4vjT1apVg7+/P+bNm4ft27cjLS0NzZo1w/79+3Hz5s1SS5ZKy4oVK2BlZYWtW7dixowZMDAwQI8ePbBy5cp8J5DNzcjICJcuXYKXlxcOHz4MHx8fWFlZYeXKlfj6669l2t69e1cc93v+/PkK+wsMDJQrAJ06dQqvXr3C9OnTK9XkqESVGfMWIiKissWcpmxyGiBnGL2lS5fKrNu1a5f4fceOHcUCUJcuXRAREYH9+/cjJiYGgiDA2toas2bNwrx581CrVq1inH35JBGUnRmKyr327dsDyBlTURVCQkIQk5SG1Br2Su8zvJ1yw4yUqLREYLPT++Xp1wFtw7KPo5yTVsxdXV1VHAmVBH6elQs/T9W4c+cOAMDR0bFE+y3qGyNUPvHzzF9Rf49UfZ9LZUfVn3WFyWkqEd7XlD1ec9XgdS97vObySiunkeK9sGrwupetO3fuIDU1FSkpKYX6/4uq7nP5BhARkZJSMlOw8PJCcXlFxxXQ1dDNZw8qKRnpWfht91/icrexjaGppa7CiIiIiIiISh9zkLLFvIOIiCobFoCIiJSULWTj1utbMstUNoRsAVH/xMssExERERFVdsxByhbzDiIiqmzUVB0AERERERFRVbFv3z5MnjwZTk5O0NbWhkQigZ+fn1L7/vPPPzAwMIBEIsHnn3+eZ7v9+/ejbdu20NfXh4mJCfr164ebN2/m2f7atWvo06cPqlWrBn19fTg7O+Pnn3/Os31UVBTGjx8PMzMz6OjowN7eHitWrEBGRoZS50FERERERGWDbwARERERERGVES8vL0RGRsLU1BRmZmaIjIxUar/s7GyMGTOmwHYrVqyAl5cXrKys8PnnnyMxMREHDx5Ehw4d8Ntvv8HFxUWmfWBgIHr16gUdHR0MGzYMhoaGOHLkCIYOHYrnz59j9uzZMu2jo6PRrl07vHjxAoMHD4adnR2Cg4Ph5eWFq1ev4vjx45BIJEpfDyIiIiIiKj18A4ioGJJv3EDib78h8bffkHzjhqrDISIiIqJyztfXF0+fPsWbN2/yfYvnQxs2bEBYWBi++eabPNs8fPgQ3t7eaNiwIW7fvo3169djx44d4iTYEydORHb2++GjMjMzMXHiRKipqSEkJAQ7duzA+vXrcfv2bTRs2BCenp5yBap58+bh+fPn2LZtG44cOYLVq1fj999/x7Bhw3Dy5EkcPHiwkFeEygLzFiIiIqKqiQUgomKI8fHBy7nz8HLuPMT4+Kg6HCIiIiIq57p37w4rK6tC7RMREQEvLy8sWLAALVq0yLPd7t27kZmZiYULF8LY2Fhc36JFC3h4eODvv//G5cuXxfUBAQF4/Pgxhg8fLtOvsbExPD09kZ6ejj179ojrExMTcejQIdja2mLy5MnieolEgtWrVwMAdu7cWahzo7LBvIWIiIioauIQcEREREREROVUVlYWRo8eDTs7O3h5eeH333/Ps21QUBAAoGfPnnLbevXqBT8/PwQHB8PV1VWp9gAQHBwsrgsLC0NaWhp69OghN8yblZUV7O3tERoaiqysLKirq+d7Xu3bt1e4/u7du7C0tBTfWiprCQkJUMsWoBN7X+l9QkKell5AJcTobRw0s7IAAG/fxuGpiq6vIgkJCQCgss+8vEvNTkV6erq4HBoaCh01nWL1yWuet6wMAenpWeJyaGgo1DVLZlhLXveyx2suT1dXF9ra2khLSyuV/gVBAIBS658U43UvW4IgIDs7GwkJCYX6/0tCQgKMjIxKMTLF+AYQERERERFRObVq1SrcvHkTu3fvhpaWVr5tHz58CAMDA9SpU0dum52dndgmd/vc23KrU6cODAwMlG4vXZ+enq70vEZERERERFS6+AYQUTHUWbwEQkoyAECiq6fiaIiIiIioMrl9+zaWLVuGOXPmoHXr1gW2j4+PR61atRRukz5tGB8fL9MegMxwcR/uU9j2Hx4jL2FhYQrXS98Mkr6lVNZCQkIQk5SG1Br2Su/j2s6yFCMqGem29WXyFi2LuiqO6D3pk7Oq+szLu3cZ76B17H3x18XFBfqa+sXqk9c8b+mpmXjqf0VcdnFxhpZOyfzpjNe97PGay7tz5w4AQFtbu1T6l76BUlr9k2K87mVLIpFATU0NRkZGhfr/iyre/gFYACIqlvKUOBERERFR5ZGeno7Ro0ejQYMGWLJkiarDoQqOeQsRERFR1cQCEBERERERUTmzatUq3LlzB7///rvST3MaGxvn+faNdB6E3G/vSL/Pbx8TE5NCtf/wGEREREREpDosAFHVI1EH6raSXSZSgppEDU1Mm8gsU9mQqElQy8pIZpmIiKgy++OPP5CdnQ1nZ2eF2318fODj44OBAwfi+PHjAHLm4AkLC0N0dLTcPECK5u/JPS/Qh0PMRUdHIykpCW3btlXYXpGHDx9CS0sLlpblf0g0ooqCOUjZYt5BRESVDQtAVPVo6QEeB1QdBVVAuhq62Nx1s6rDqJI0tdTRd2ozVYdBRERUZnr06AFTU1O59VFRUTh79iwcHBzg4uKCli1bits6d+6MsLAw+Pv747PPPpPZ7/z582Kb3O1XrVoFf39/DBs2rMD2zs7O0NLSwoULFyAIAiSS938YjYyMxP3799GlSxdoaDDNJCopzEHKFvMOIiKqbPjoCFExZKemIvvdu5yv1FRVh0NERKQyT58+hUQikfnS0dGBvb095syZg7i4OJn21tbWcu2lX6dPn1Z4jJ07d6J58+bQ1dVFzZo1MXz4cERGRpbF6RVZScQcGxuLKVOmwNzcHNra2rC3t8eaNWuQmZkp1/bw4cMYP348WrZsCS0tLUgkEgQFBeXZ95s3bzBt2jRYWVlBS0sL5ubmmDhxIqKjowt7qlTCpk2bBl9fX7mvOXPmAMgpzPj6+mLatGniPmPHjoWGhgZWrFghM0zbrVu3cODAATRq1AgdO3YU13fr1g22trb46aefcOvWLXF9fHw8Vq5cCS0tLZlCkpGREYYNG4Z//vkHPj4+4npBELBgwQIAwMSJE0v8WlDxMW8hIiIqWGFzmnfv3sHT0xN2dnbQ1tZGzZo1MXToUIVvSwcFBeWZ/yh66Ke8yMzMxJo1a2Bvbw9tbW2Ym5tjypQpiI2NLVQ/kZGRGD58OGrWrAldXV00b94cO3fuVGrfTz75BBKJBNbW1nLbFH1mub+SkpIKFWdlxEeziIrhxZdfIuXGTQCAbutWsNyxQ8URERERqVanTp0wadIkADmFi9OnT2PdunXw9/fHtWvXoKWlJbZ1cHDAwoUL5frI/UaD1KJFi/DNN9/AxcUFGzduxJs3b7Bx40YEBQXh6tWrsLCwKL2TKqKSiDkxMRGurq64f/8+pk6dimbNmiEkJATz58/H3bt38eOPP8q037p1K65cuQJHR0c4ODjgzp07efb95s0btGvXDk+fPsVnn32G9u3b48mTJ9i6dSsuXryI8PBw1KpVq9jXgWT5+vri8uXLACB+Pr6+vmKhrmPHjpgwYUKR+m7YsCG8vb3h5eWF5s2bY8iQIUhMTMTBgwcB5BQk1dTePwOooaEBX19f9OrVC66urhg2bBgMDQ1x5MgRREZGYt26dXKJ9urVqxEYGIipU6fi4sWLaNCgAYKDg3HlyhX0799f7k0iKh+YtxARESlPmZwmJSUFbm5uuH79OgYNGoSvvvoKb968wbZt2+Ds7Izff/8d9vb2cn1PmjQJnTp1klmno6NTJudVFGPHjsW+ffvQr18/fP3113jy5Ak2btyIkJAQXLlyBYaGhgX28eLFCzg7OyM+Ph4zZ86EjY0NTpw4gUmTJuHZs2dYvnx5nvseO3YMx44dg66ubr7HGDx4MD7++GO59eX52pYVFoCIiIiIqMTY2tpi5MiR4vKMGTPQr18/nDlzBidOnMAnn3wibqtdu7ZM27w8ePAAq1atQqtWrRAUFCQOL9W7d2+0bdsWnp6e2Lt3b8mfTDGUVMzffvst/vrrL6xfvx6zZs0CAEyYMAHGxsbYsmULxo4di65du4rt9+zZA3Nzc2hqasLb2zvfAtDKlSvx5MkTrFy5Unx7AwAGDBiAjh07wsvLCzv4R+ISd/nyZezZs0dmXWhoKEJDQ8XlohaAAGDhwoWwtrbGxo0bsX37dmhpaaFTp05Yvnw5WrVqJde+S5cuuHz5MpYsWYJDhw4hIyMDjo6OWLNmDYYOHSrX3szMDOHh4fDy8sKZM2dw6tQpWFlZYfny5Zg7d67MsHBEREREFZEyOc2OHTtw/fp1TJo0SebN6FGjRqFp06aYPn06/P395fpu3769UjlQeRAQEIB9+/ZhwIABOHHihLi+devWcHd3x7fffotly5YV2I+npyeio6Nx5MgRsUgzceJEDBgwAKtWrcJnn30mM0+l1H///Ydp06Zh+vTpOHbsWL7HaNasWYW5rmWNQ8BR1ZOVCTy78v4rS374FCJFMrMz8cfrP8SvzGz+7JSV7KxsRD36T/zKzspWdUhEVAi9e/cGADx69EhuW2ZmJhISEiAIQp77//TTT8jKysKXX34pM7eIk5MTXF1d8csvvyAlJaXkAy+Gkop579690NPTw5QpU2TWz549W9yem5WVFTQ1NZWKMSAgAEDOU325dejQAXZ2djhw4ABSOVRUifPz84MgCHl++fn55bu/m5sbBEHA999/n2ebESNG4Nq1a0hOTsZ///2HM2fOKCz+SLVt2xbnzp1DfHw8kpOTER4errD4I2VmZoYffvgB0dHRSEtLw4MHD+Dl5SXzhh8RlQzmIGWLeQcR5eXDnCave2lbW1t06tQJFy9exPPnzxX2lZycXO7yF0WkuYb0QTSpIUOGwNraWqkH2pKTk/HLL7/AxsZG7g2dWbNmISsrC/v371e476xZs6CpqYlvvvlGqXhTU1M55JsCFeoNoH379uHSpUu4ceMG7ty5g/T0dOzevRtjxoyRaZeRkYGTJ0/i5MmTuHr1Kp4/fw6JRILGjRtjzJgxmDRpEtTV1RUeY//+/fjuu+9w7949aGlpwcXFBcuWLcszYbp27RqWLFmC33//XXxabtasWfj0008Vto+KioKXlxfOnj2LuLg4WFlZ4bPPPsPcuXOVTtapmDJTgJ9Hv1+efh1QL/h1RUWqDXGHQSdXAIAGh0ip9NKy0jA7aLa4fGrwKWioVaj/jVZYmRnZ+HXnXXF5xFJnaKnzGQYqZ67uBK75Fno3TWnho6hPzXdbDDj0Vbwt9jFwcLjsujYTgLZlO0fHgwcPAEBubOvw8HDo6ekhIyMDenp66N69O5YtW4bmzZvLtQNyChMf6tChA4KDg3Hnzh20bdu2SPElJSUVqtChzBjdJRHzq1evEBkZiQ4dOsgNeWBtbQ0zMzNcvXpV6bg/lJaWBgDQ09OT26anp4ekpCTcvXsXTk5ORT4GEZUPzFsqLuYgZYt5B1V1ByIO4FDEoSLvLwgC7E3ssdZtbZ5t5l+aj4jYiCIfAwCGOgyFh4NHsfoorA9zmoLupQVBQHh4OOrVqyezbcaMGWLRyMLCAiNHjsSiRYsU9lMY8fHxMkP95kddXR0mJiYFtgsPD4eamhqcnZ3ltrVv3x4HDhzA69ev8x02+s6dO0hJSUH79u0V9iGRSBTmNBcuXMDu3btx+vRp6OvrFxjr+vXrsWzZMgiCgJo1a2LIkCFYvnx5uZ5fqaxUqLsGLy8vREZGwtTUFGZmZnlOoPv48WO4u7vDwMAA3bp1w4ABAxAfH49Tp05h6tSpOHv2LE6ePCk3PMGKFSvg5eUFKysrfP755+J42R06dMBvv/0GFxcXmfaBgYHo1asXdHR0ZMbLHjp0KJ4/fy4+mSkVHR2Ndu3a4cWLFxg8eDDs7OwQHBwMLy8vXL16FcePH+eQCRWMUa+eqg6BiIjKi3cxwJvCJzLF/pNCakLe27LS5WN6F1PcI+YrLS0NMTE5x3j79i1OnjyJ7du3w9jYGAMHDhTbNW7cGGPHjkWjRo2gpqaGa9euYcuWLfD394e/v7/MuNgvXrwAAIVz5kjXvXjxosgFoC+++EJuSK785Pe2klRJxJxfH9L1ERFFT56bNGmC+/fvIyAgAIMGDRLXR0VFif0+e/aMBSCiSoB5CxERKSMuNQ6P4x8Xqw9Drfwfsn6Z9LLYx4hLjSvW/gVRJqdp0qQJzp8/j4CAADRr1kzcV/o2NZBzLy2lqamJvn37ok+fPqhXrx5ev36No0ePYvXq1bh48SKCg4OLVQRyd3fHpUuXlGprZWWFp0+fFtjuxYsXMDU1hba2tty23DlNfgWg/HIabW1tmJqaim2k3r17h0mTJmHo0KHo2zePhx3/n5qaGtzc3DBw4EDY2NggPj4e58+fx/fff4/z58/jypUrVX5e0wpVAPL19YWdnR2srKywevVqmbHKczM0NMTWrVsxevRomQrh+vXr4ebmhtOnT+OXX36RGYP+4cOH8Pb2RsOGDXH16lUYGxsDAKZOnQpnZ2dMnDgRd+/eFSupmZmZmDhxItTU1BASEoIWLVoAABYvXiyO6+7u7g4rKyvxGPPmzcPz58+xfft2fP755wBy/oAwfPhwHDx4EAcPHoSHR9lWr6skiRpQzVJ2mYiIiEqE9J4mtxYtWsDHx0fmxvvs2bMybdzd3TF06FA4Oztj0qRJ+Pvvv8VtycnJAKAw8ZBO6iltUxRz584t8fGiSyLm/PqQ9lOc8541axZOnDiBKVOmIC0tDc7OzoiMjMScOXOQnZ2tVIxERERERJWNMjnN1KlT4ePjg8WLF0NfXx/du3dHTEwMlixZgtjYWACy99IuLi44ffq0TJ/jx4/H119/jfXr12PTpk2YP39+kWNes2YN3r17p1TbD0cXyEtycnKebwqVZk7j6emJ+Ph4fPfddwXGaGlpicDAQJl1n332Gdq3b4/p06dj8eLF+Q6dXBVUqAJQ9+7dlWpXt25dTJ06VW69vr4+Zs2aheHDhyM4OFimALR7925kZmZi4cKFYvEHyPnl9vDwgJ+fHy5fvgxX15zX5gMCAvD48WOMHTtWLP4AgLGxMTw9PTFmzBjs2bMHixcvBgAkJibi0KFDsLW1xeTJk8X2EokEq1evxsGDB7Fz504WgMqClj4w4YKqoyAiIqqUevbsiTlz5kAikUBbWxtWVlZywx7kpVWrVhgwYACOHDmCR48eoUGDBgDeD6uQlpYml6xIh24rztNyjRs3RuPGjYu8vyIlEXPuPhRJTU0t1nm7uLjg8OHDmD59OoYNGwYg597U3d0dTk5O2LZtG4yMjIrcPxERERFRRaRMTlO/fn2cO3cOEyZMwKRJk8T1Xbt2xfz587Fs2TKl7qWXLFmC//3vfzh9+nSxCkCtWrXKs8hSVHp6evnmItI2BfUB5J/TVKtWTVz+/fffsWXLFvj4+KB27dpFiDrHtGnTsHTpUrmiW1VUoQpAJUE6z07uyXgBICgoCEDOL/iHevXqBT8/PwQHB4sFoILaA0BwcLC4LiwsDGlpaejRo4fcMG9WVlawt7dHaGgosrKy8pyfiIiIiMoxfVOgpkOhd8v+/+HE1Io6DKxOPkmFupZ8TPqlOwaymZmZ0g/tKGJjYwMAeP36tVgAsrCwwN27d/HixQvY2dnJtC9omDRlxMfHF2oS1jp16hTYpiRizj2sgiIvXrwo1nkDwODBgzFgwAD89ddfiIuLQ/369VG3bl1xPstGjRoVq38iIiIiqjhMdExQ37h+kfcXBAHm+ub5tjE3MEdCWj7DWCvBRKfg+WuKQ9mcplOnToiIiMD9+/fx+vVrWFhYwNbWFnPnzgWg3L20oaEhatSogdevXxcr5rdv3yo9tYi6ujpq1qxZYDsLCws8ePAAaWlpcsWlkshppEPt5R5yesqUKWjcuDE6d+6MR48eieszMzMBAI8ePYKOjk6Bx5VIJLC2tsbt27fzbVcVVLkC0K5duwDIF24ePnwIAwMDhQm9NGl/+PChTPvc23KrU6cODAwMlG4vXX///n1ERkbC1tY233NQNGkWANy9exeWlpYICQnJd//SkpCQALVsATqx95XeJyTkaekFRMWSkJDzj7Gqfp7Ko9TsVKSnp4vLoaGh0FHTUWFEyqvon2dWhoD09CxxOTQ0FOqaVXfOtIr+eVZUurq60NbWzvPJJTT/LOerkKTzyRRrHsC8YjKwACYo+DnJq30xSK9LVlZW3tdICdK5Z0xMTMR+WrVqhV9//RUhISGwtLSUaR8aGgpdXV3Y2dkV+bhffPEF9u3bp3R76dNuikg/z5KIuVq1aqhXrx5u3bqF//77T+ZNosjISERFRaFbt2559iFNktLT0wu8Ng0bNhS/T0hIQEBAABo0aABLS8tifZ4fEgQBaWlphf7/V0JCAt9GIiIiIiplHg4e8HAo+uhEytw3ru60usj9l0cSiQQODg5wcHj/4N25c+dgbGwsN5+8Im/fvkVMTEyxH7waOnRoic8B1LZtW0RERCA8PFx8KUIqLCwMVlZWBc6v4+joCB0dHYSFhcltu3LlCgRBkJkXNTIyEvHx8TL5SW52dnZo3bo1rl+/nu9xs7Ky8PjxY6Ue3qvsqlQBaMeOHTh37hy6du2KPn36yGyLj4/P8wdWmmzGx8fLtAcgM1zch/sUtv2Hx6DyT//wYWg8z6lgZ9azwLtcwwoSERGRYrGxsahRo4bc+uDgYJw9exZNmzaVeSBm2LBhWLNmDbZu3Yphw4aJb3LfuHEDly5dwrBhw4o1FNrs2bNLfBjewsYcHx+P6Oho1KhRA6am79/SGj58ONasWYMdO3ZgxowZ4nrpeNjDhw8v0biBnDktY2NjsWbNmhLvm4hU49XqNUi9n1Ng17F3QO3581QcERERUeW0adMm3L17F0uXLpW531eUAwmCIL4tNGjQoGIdtzTmABo1ahT27t2L9evXyxSAjh49iqdPn8LLy0umfUxMDGJiYmBmZib+DVxPTw9DhgzB/v37cfToUXz88cdi+/Xr10NdXV0mF9u7d6/Mw9dS0uletm3bhurVq4vr88otV65cibi4uBKf67UiqjIFoNOnT+OLL76AlZVVoZ7wLI8UVUyB928GfViRLSshISGISUpDag17pfdxbWdZcKOSlp0FvP3n/XJ1W0CtaMPuPdu3DynPnwMAdGvVRGsVXfvSIH0yV1U/T+XRu4x30DqmJS67uLhAX1NfhREpr6J/numpmXjqf0VcdnFxhpZOlfknTE5F/zwrqjt37gDIe/LKopI+JVfS/ZY1afzq6uoFnsvPP/+MHTt2oHfv3rCxsYGamhquX7+Offv2QV9fH7t27ZLpw9HREXPnzsWqVavQq1cvjBo1CjExMdiwYQNq1aqFNWvWFOv6tWjRQmZOx+KQfp6Fjfns2bMYO3YslixZAm9vb3G9p6cnjh8/Dk9PT7x48QLNmzdHcHAwfvzxR3h4eOCjjz6SOX5ISIj4/4jff/8dAHDo0CFcvXoVQE4SZ2VlJbZ3cHDAgAED0KBBA6SkpODYsWMIDg7G1KlTMX78+BK5JrlJJBLo6OigTZs2hdqPb/8QFU/aP4+R+mfOv2OS/x8WnYiIiIrH1dUVLVu2hIODAwRBwPnz53Hy5EkMHDgQnp6eMm179+6N2rVrw8nJCRYWFnjz5g2OHz+Oq1evwtXVFdOmTStWLKUxB1D37t3h4eGBAwcOoH///hg4cCCePHmCDRs2wMHBAXPmzJFpv2XLFixduhS7d+/GmDFjxPUrV67ExYsXMWrUKNy4cQM2NjY4ceIETp8+jQULFsDe/v3fkgcMGKAwlq+//hoA4O7uLrN+4sSJ+O+//9ChQwdYWloiISEB/v7+uHDhAho3biyTW1VVVeKvZ2fPnoW7uztq166NgIAAmJmZybUxNjbO8+0b6VA7ud/ekX6f3z4mJiaFav/hMaiUZCQDfv3eL0+/Dmgbqi4eIiKiKqZNmzYICgrC0aNH8ebNG2RmZqJu3boYN24c5s+fL84DlNuKFStgZWWFrVu3YsaMGTAwMECPHj2wcuVKuQlZy4uSiNnIyAiXLl2Cl5cXDh8+DB8fH1hZWWHlypViEpRbQEAAli5dKrNOOgQyAHTs2FGmAOTs7IyjR4/i33//hZaWFlq2bImff/4Zn/CtZiIiIiKifLVv3x4nT56Er68vJBIJmjRpAh8fH0yYMAFqamoybd3d3XHq1Cls374dcXFx0NbWRqNGjbBhwwZMmzZNnLe+vNmzZw8cHR2xe/duTJs2DdWrV8eoUaPwzTffKP2QlqWlJcLCwuDp6QkfHx8kJSWhYcOG+P777zFp0qRixdevXz/s27cPP/zwA96+fQsNDQ00aNAA3t7emD17NgwMDIrVf2VQ6QtAZ86cwZAhQ2BqaorAwMA859exs7NDWFgYoqOj5cYGVDR/T+55gVq3bi3TPjo6GklJSTLjFyqaR+jDY2hpacmNEU/lm06jxpBo5PwPWjuP+Z2IiIiqAmtra3H+m4K4uLgoNR52bhKJBJMnT8bkyZOLEp5KFCbmMWPGyDwll1vNmjXh4+MDHx+fAvvx9vYu1FNufn5+SrclooqLeQsREVHBCpPTADnDrik7bPK8efMwb17FG4JVU1MTCxYswIIFCwpsm18uYmNjgwMHDhQ5jrzmLBo3bhzGjRtX5H6rgkpdAJIWf6pXr47AwEA0aNAgz7adO3dGWFgY/P398dlnshM4nz9/XmyTu/2qVavg7++PYcOGFdje2dkZWlpauHDhAgRBkJnoOTIyEvfv30eXLl3E8eGpYqj11UxVh0BERERERJQv5i1EREREVVOlrTacO3cOQ4YMgYmJCQIDA2Xe3lFk7NixWLduHVasWIGBAweKQ7HdunULBw4cQKNGjdCxY0exfbdu3WBra4uffvoJX375pThufHx8PFauXAktLS2ZQpKRkRGGDRuGvXv3wsfHB59//jmAnMm+pBXUiRMnluQlIKISpq2ujfVu62WWqWxoaKqh98SmMstERERERJUdc5CyxbyDiIgqmwpVAPL19cXly5cBvJ+I2dfXF0FBQQByxjSfMGECIiIiMHjwYKSlpcHNzU3h62XW1tYyw2w0bNgQ3t7e8PLyQvPmzTFkyBAkJibi4MGDAICdO3fKjN2ooaEBX19f9OrVC66urhg2bBgMDQ1x5MgRREZGYt26dbC2tpY55urVqxEYGIipU6fi4sWLaNCgAYKDg3HlyhX0799f7k0iIipfNNQ00LJWS1WHUSWpqavBrEE1VYdBRERERFSmmIOULeYdRERU2VSoAtDly5exZ88emXWhoaEIDQ0VlydMmIDo6GikpaUBgFjA+VDnzp3lxllfuHAhrK2tsXHjRmzfvh1aWlro1KkTli9fjlatWsn10aVLF1y+fBlLlizBoUOHkJGRAUdHR6xZswZDhw6Va29mZobw8HB4eXnhzJkzOHXqFKysrLB8+XLMnTtXZlg4IiIiIiIiIiIiIiKioqpQBSA/Pz+lJqp1c3Mr1IRduY0YMQIjRoxQun3btm1x7tw5pdubmZnhhx9+KEpoRERERERERERERERESqlQBSCi8ib+1ClkvIwCAGiam8G4f38VR0RERERERCSLeQsRERFR1cQCEFExxJ86hZQbNwEAuq1bMZGq5FIyUzA3ZK64vNZ1LXQ1dFUYUdWRkZ4Ff9974nLPCU2gqaWuwoiIiIiIKg7mLRUXc5CyxbyDiIgqGxaAiIiUlC1k417MPZllKhtCtoDXkQkyy0RERERElR1zkLLFvIOIiCobNVUHQERERERERERERERERCWLbwARFYPljh2qDoGIiIiIiChfzFuIiIiIqia+AURERERERERERERERFTJsABERERERERERERERERUybAAREREREREREREREREVMmwAERERERExfb06VNIJBKZLx0dHdjb22POnDmIi4uTaf/u3Tt4enrCzs4O2traqFmzJoYOHYqHDx/K9R0UFCTXt/TL1NS0rE6x0DIzM7FmzRrY29tDW1sb5ubmmDJlCmJjYwvVT2RkJIYPH46aNWtCV1cXzZs3x86dOxW2TUtLw+bNm9G6dWtUq1YNxsbGaNasGVatWoWkpCSZtklJSVi2bBkGDRoEKysrSCQSWFtbF/V0iYiIiIgqtNLMaQDg9u3b+Pjjj2FqagptbW3Y29tj+fLlSEtLK4vTK5Lk5GTMnz8f1tbW0NbWhrW1NebPn4/k5ORC9fPnn3+if//+MDExgb6+PpydnXH06NE82yclJWHp0qVo2rQp9PT0YGxsjJYtW2LDhg1ybSvidS1LGqoOgKgiS3v0CNnv3gEA1PT1od2ggYojIiIiUq1OnTph0qRJAIDY2FicPn0a69atg7+/P65duwYtLS2kpKTAzc0N169fx6BBg/DVV1/hzZs32LZtG5ydnfH777/D3t5eru9JkyahU6dOMut0dHTK5LyKYuzYsdi3bx/69euHr7/+Gk+ePMHGjRsREhKCK1euwNDQsMA+Xrx4AWdnZ8THx2PmzJmwsbHBiRMnMGnSJDx79gzLly+XaT9s2DAcP34cgwYNwvjx4wEA/v7+8PT0xJkzZ3Dp0iVIJBIAQExMDJYsWYJatWqhZcuWePv2bclfBCIqF5i3EBERKa80cprLly+je/fu0NTUxLRp02BjY4OwsDAsWbIE4eHhOHXqlHifXl5kZWWhT58+CA4OxqhRo+Dq6orbt29j3bp1CA8Px8WLF6Gurl5gP7dv30bHjh2hra2N2bNnw9TUFPv27cOQIUPg6+sr5i1SUVFR6NatG16+fInRo0dj5syZSEtLw+PHj/HkyROZthXxupY1FoCIiuHV2rVIuXETAKDbuhUsd+xQcURERESqZWtri5EjR4rLM2bMQL9+/XDmzBmcOHECn3zyCXbs2IHr169j0qRJ8PHxEduOGjUKTZs2xfTp0+Hv7y/Xd/v27WX6Ls8CAgKwb98+DBgwACdOnBDXt27dGu7u7vj222+xbNmyAvvx9PREdHQ0jhw5go8//hgAMHHiRAwYMACrVq3CZ599Bjs7OwDAo0ePcPz4cQwcOBDHjh0T+5g6dSoGDBiAU6dO4c8//0Tz5s0BAGZmZnj27Bnq1asHAHz7h6gSY95CRESkvNLIaaZPn4709HQEBASgQ4cOAIDJkyfD3t4enp6eOHDgAIYPH152J6mEPXv2IDg4GNOnT8emTZvE9dbW1vj666+xZ88ejBs3rsB+pk+fjnfv3iEwMBBOTk4AgPHjx6Ndu3aYNWsWhgwZgmrVqontP/vsM7x9+xa3bt0qMEepiNe1rHEIOCIiIiIqVb179waQU6AAcoojQM4bMrnZ2tqiU6dOuHjxIp4/f66wr+TkZKSkpJRitCVj7969AIBZs2bJrB8yZAisra3F7flJTk7GL7/8AhsbG7H4IzVr1ixkZWVh//794rr4+HgAgLm5uVxfdevWBQDo6emJ67S1tcXiDxERERER5a04OU1cXBxu3bqFhg0bikUKqTFjxgAAdu3aVZrhF4k0Z5k9e7bM+qlTp0JXV1epnObp06e4dOkSOnfuLBZ/AEBTUxNffvklEhIScPz4cXF9WFgYLl68iHnz5sHa2hpZWVlITExU2HdFva5ljW8AUdUjUQfqtZVdJlKCmkQNLWq1kFmmsiFRk8DM1lhmmai8ORBxAIciDhV6P0EQAAASiQQONRywutPqPNvOvzQfEbERRY4RAIY6DIWHg0ex+iisBw8eAIA4X490LObcxQgpPT09CIKA8PBwueLEjBkzxATLwsICI0eOxKJFixT2Uxjx8fHIyMhQqq26ujpMTEwKbBceHg41NTU4OzvLbWvfvj0OHDiA169fo1atWnn2cefOHaSkpKB9+/YK+5BIJLh69aq4rmnTpqhXrx52796N5s2bo0ePHgCA8+fPY/fu3RgzZoz4thAREVUMzEHKFvMOquruBL3AneB/i7y/IGSjRl0D9J7omGebC7vu4c3zpDy3K8Oxc104ulkUq4/CKk5OU1BbICd/EAShyMOVxcXFQUNDuT/1a2pqwtjYON82giDg2rVrMDc3h5WVlcw2XV1dtGjRAtevXy8w5vDwcACQK9DkXnf16lWxYHPq1CkAQIMGDfDJJ5/g5MmTSE9PR61atTBmzBgsW7YM2traAAr+DKTHL851rQxYAKKqR0sPGPpjiXRVc8YMZP9/FVpNiXH8qWLT1dDF/9z+p+owqiRNLXX0npz3DSRReRCXGofH8Y+L1YeRtlG+218mvSz2MeJS4wpuVAxpaWmIiYkBALx9+xYnT57E9u3bYWxsjIEDBwIAmjRpgvPnzyMgIADNmjUT901OThYThGfPnonrNTU10bdvX/Tp0wf16tXD69evcfToUaxevRoXL15EcHBwsYpAAwcORHBwsFJtrays8PTp0wLbvXjxQpyE9EMWFhZim/wKQC9evJBpn5u2tjZMTU3FNtJ1p0+fxrhx4/D555+L69XU1LBkyRIsXry4wLiJqHJi3lJxMQcpW8w7qKpLSUxHXNS7YvWhrZv/n5sTY1OLfYyUxPRi7V+Qks5pateuDVNTU/z999+Ijo5GnTp1xPaBgYEAgKSkJMTFxaF69epFirldu3YyOVR+OnfujKCgoHzbvH37FsnJyWjatKnC7RYWFggLCysw5vxymtx5kdTff/8NAJgwYQLq1q2L77//Hjo6OvDz88PatWtx7949nD59GkDZXNfKgAUgomLQbdJE1SEQERGVKwcPHsTBgwdl1rVo0QI+Pj5isWPq1Knw8fHB4sWLoa+vj+7duyMmJgZLlixBbGwsgJzEScrFxUW8yZcaP348vv76a6xfvx6bNm3C/Pnzixzz+vXrERenXGFMV1dXqXbJycl5vimko6MjtimoDwAKi0jSfj7sQ19fHw0aNICtrS0GDRoETU1NnDt3Dt7e3nj9+jW2bNmiVPxEVLkwbyEiIlJeSec0EokEs2fPxoIFCzBw4ECsXbsW1tbWCA8Px4wZM6ClpYX09HQkJycXuVDh5+eHrKwspdoqM6KBMrmItF1+MefXj6K8SDrcm5aWFi5fviw+6Dds2DB06tQJZ86cwcWLF9G9e/cyua6VAQtARERERFRievbsiTlz5kAikUBbWxtWVlZyQ7nVr18f586dw4QJEzBp0iRxfdeuXTF//nwsW7YMRkb5vw0FAEuWLMH//vc/nD59ulgFoNatWxd537zo6emJQxJ8KDU1VWxTUB8A8u0n92SpL1++RNu2bdGtWzf8/PPP4vpPPvkENWrUwLp169CnTx/06dOnMKdCRERERFSllEZOM2/ePKSlpeHbb7+Fm5sbgJyiiJeXF06ePIlr164plQPlpUOHDnkWa4pCmVwkd7ui9KOoD+n3Hh4eMuslEgnGjRuH0NBQsQAElP51rQxYACIiIiIqASY6JqhvXL/Q++WeA8jcwDzftuYG5khISyhSfFImOgU/7VUcZmZm4s14fjp16oSIiAjcv38fr1+/hoWFBWxtbTF37lwAQKNGjQrsw9DQEDVq1MDr16+LFfPbt2+Rnq7cMBLq6uqoWbNmge0sLCzw4MEDpKWlySVi+Q2D8GEfudvnJh2WIvdEqr6+vnj79i2GDh0q137o0KFYt24dLl68yAIQERERESmka6gFEzP9Iu8vCNkwqK6TbxvDGjpITc4s8jGAnDhLU2nkNBKJBEuWLMHcuXNx584dZGZmokmTJjA2NsamTZtgbm5erELFmzdvlJ4DSEtLq8A3YqpXrw49PT2FuQiQk6Po6+sX+DZRfjmNorxIWmgzN5fPjc3MzADk5G9SpX1dKwMWgKjqycoEnoW9X7ZsD6jzV4EKlpmdiT9e/yEut6zVEhpq/NkpC9lZ2Yh6FC8umzUwhpo6J8Cl8sXDwQMeDh6F3k/6JJQyT2ut7rS60P2XZxKJBA4ODnBwcBDXnTt3DsbGxnBxcSlw/7dv3yImJkapYlF+Pv744xKfA6ht27aIiIhAeHg4XF1dZbaFhYXBysoq3/l/AMDR0RE6OjoICwuT23blyhUIgoC2bduK616+fAkACod+yMzMSbIzMjIKjJ2IiMoP5iBli3kHVXWObhZwdMv/IaX85PW2SG49xlWuYUkLm9Po6urK3MNfv34db968wYQJE4oVh4uLS4nOASSRSODk5ISQkBBERkbCyspK3JaSkoJbt26hbdu2kEgk+fYjPVdFOY10Xe7r0b59e2zbtk3huTx//hxAztw/Hyqt61oZ8K6Bqp7MFOBIrl/+6dcBdU6ESgVLy0rDvJB54vKpwaeYfJWRzIxs+O+6Jy6PWOoMLSZiRJXOpk2bcPfuXSxdulTmdf/Y2FjUqFFDpq0gCOKTdYMGDSrWcUtjDqBRo0Zh7969WL9+vUwB6OjRo3j69Cm8vLxk2sfExCAmJgZmZmYwNjYGkDP8wZAhQ7B//34cPXoUH3/8sUzM6urq8PB4X3Rs8v9zfOzatQuffPKJTDLm6+sLAHB2dlYqfiIiKh+Yg5Qt5h1EVFx55TSKpKSkYObMmdDR0cGcOXOKddySngMIyMlpQkJCxHlXpbZv346UlBSMGjVKpn1UVBTi4+NhaWkpnruNjQ1cXFwQFBSEGzduiMNvZ2ZmYtOmTTA0NMTAgQPFPgYOHIgaNWpg3759WLRokRhrRkYGvv/+ewBA//798427JK9rZcC7BqJieDF9OpJv3QIA6LVoAYvNm1UbEBERUQXh6uqKli1bwsHBAYIg4Pz58zh58iQGDhwIT09Pmba9e/dG7dq14eTkBAsLC7x58wbHjx/H1atX4erqimnTphUrltKYA6h79+7w8PDAgQMH0L9/fwwcOBBPnjzBhg0b4ODgIJeIbNmyBUuXLsXu3bsxZswYcf3KlStx8eJFjBo1Cjdu3ICNjQ1OnDiB06dPY8GCBbC3txfbjhkzBps3b8b58+fRsWNHuLu7Q0NDA2fOnMH58+fRtm1bfPrpp3LH/e+//wAA8fE5Tzx/8803AIBq1arhiy++KPFrQ0Rlj3kLERFRyStMThMaGoq5c+eid+/eqFu3LqKiouDn54enT59i7969aNiwYbFiKek5gABg7Nix2Lt3LzZv3oz4+Hi4urri9u3b2LZtGzp16iSTtwDAggULsGfPHgQGBorz8QA5RTFXV1f06tULX331FUxNTfHjjz/i5s2b8PHxkSlIGRoaYtu2bRg2bBicnJwwadIkaGtrY//+/fjjjz/w+eefy7zpU9rXtTJgAYiqHokaUKOB7HIRZaelQUhOEb8nIiIi5bRv3x4nT56Er68vJBIJmjRpAh8fH0yYMAFqarL/Nru7u+PUqVPYvn074uLioK2tjUaNGmHDhg2YNm0aNDU1VXQW+duzZw8cHR2xe/duTJs2DdWrV8eoUaPwzTffKD0OtaWlJcLCwuDp6QkfHx8kJSWhYcOG+P7772UmmwVykqWwsDCsXLkSp06dwvz58yGRSGBjYwMvLy/Mnz9f7lqtW7cOkZGRMusWLVoEIGe4OxaAiCoH5i1EREQlrzA5Td26dVG9enVs374dMTExMDExgaurKw4dOoRWrVqp6Azyp66ujrNnz2LZsmU4dOgQDhw4ADMzM8yaNQuLFy+Gurq6Uv20atUKoaGhWLhwIb799lukp6fD0dERhw8fhru7u1z7Tz/9FDVq1MDKlSuxYsUKpKeno1GjRgpzoIp4XcsaC0BU9WjpA2PPqDoKIiKiSsXa2hqCICjdfs2aNVizZo1SbefNm4d58+YV3LCc0dTUxIIFC7BgwYIC23p7e8Pb21vhNhsbGxw4cECpY9aoUQPr16/H+vXrlWqvzHxGRERERERVQWnmNNbW1jh16lRRQ1MZAwMDrF27FmvXri2wrZ+fH/z8/BRua968OU6fPq30cbt164Zu3boV2K6iXteyxAIQUTEYdu8OHYeciac1LeqqOBoiIiIiIiJ5zFuIiIiIqiYWgIiKweSDcfSJiIiIiIjKG+YtRERERFVT0Sc/ISIiIiIiIiIiIiIionKJbwBR1ZOdBcQ8eL9s2hBQU27SMiIiIiIiIiIiIiKiioAFIKp6MpKBvYPeL0+/DmgbqiwcIiIiIiIiIiIiIqKSxiHgiIiIiIiIysi+ffswefJkODk5QVtbGxKJBH5+fnLtMjIycOTIEYwePRqNGjWCgYEBDA0N0a5dO2zfvh1ZWVl5HmP//v1o27Yt9PX1YWJign79+uHmzZt5tr927Rr69OmDatWqQV9fH87Ozvj555/zbB8VFYXx48fDzMwMOjo6sLe3x4oVK5CRkVGoa0FERERERKWLbwARFUPM998j7fE/AADt+rYw/fxzFUdEREREROWZl5cXIiMjYWpqCjMzM0RGRips9/jxY7i7u8PAwADdunXDgAEDEB8fj1OnTmHq1Kk4e/YsTp48CYlEIrPfihUr4OXlBSsrK3z++edITEzEwYMH0aFDB/z2229wcXGRaR8YGIhevXpBR0cHw4YNg6GhIY4cOYKhQ4fi+fPnmD17tkz76OhotGvXDi9evMDgwYNhZ2eH4OBgeHl54erVqzh+/LhcTKR6zFuIiAgA1NTUkJWVhezsbKip8b0AosISBAGCIKg6jEJhAYioGJJv3kTKjZynKbPi/1NtMFTqtNW18V2X72SWqWxoaKqhz+fNZJaJiIgqIl9fX9jZ2cHKygqrV6/GggULFLYzNDTE1q1bMXr0aOjr64vr169fDzc3N5w+fRq//PILPvnkE3Hbw4cP4e3tjYYNG+Lq1aswNjYGAEydOhXOzs6YOHEi7t69K/7BJzMzExMnToSamhpCQkLQokULAMDixYvRtm1beHp6wt3dHVZWVuIx5s2bh+fPn2P79u34/P+LCIIgYPjw4Th48CAOHjwIDw+PEr1mVHzMWyou5iBli3kHVXaamprIyspCamoq9PT0VB0OUYWTlJQEAMjOzlZxJMpjAYhU6qfwZ4XeZ3g7y1KIhKhgGmoacKzpqOowqiQ1dTXUtjFSdRhERETF1r17d6Xa1a1bF1OnTpVbr6+vj1mzZmH48OEIDg6WKQDt3r0bmZmZWLhwoVj8AYAWLVrAw8MDfn5+uHz5MlxdXQEAAQEBePz4McaOHSsWfwDA2NgYnp6eGDNmDPbs2YPFixcDABITE3Ho0CHY2tpi8uTJYnuJRILVq1fj4MGD2LlzJwtARCWIOUjZYt5BlZ2RkRFSU1Px8uVLWFtbQ0ODfxomUoYgCEhKSsKLFy8AIN/hmMsb/pYTFYOmuTmy4uPF74mIiIiISpumpiYAyP3RJigoCADQs2dPuX169eoFPz8/BAcHiwWggtoDQHBwsLguLCwMaWlp6NGjh9wwb1ZWVrC3t0doaCiysrKgrq6e7zm0b99e4fq7d+/C0tISISEh+e5fWhISEqCWLUAn9r7S+4SEPC29gEqIgUQCjVq1AADvJBI8VdH1VSQhIQEAVPaZV0W85qrB6172eM0V09HRQVZWFu7du8dhW4mUJB36LSsrC5mZmXj79i2Awv3/JSEhAUZGZf+QAQtARMVg5u2t6hCIiIiIqIrZtWsXAPnCzcOHD2FgYIA6derI7WNnZye2yd0+97bc6tSpAwMDA6XbS9ffv38fkZGRsLW1LcwpUSlLGjFC1SEQEVE5kZaWhuzs7AIf1igK6bBYnF+obPG6l43s7GyxAFSRsABERERERERUQezYsQPnzp1D165d0adPH5lt8fHxqPX/b3l8SPq0Yfz/v72e+/vcw8V9uE9h2394jLyEhYUpXC99M0j6llJZCwkJQUxSGlJr2Cu9jyuHqC4W6ZOzqvrMqyJec9XgdS97vOZlj9dcNXjdy15Rrrkq3v4BWAAiIlJackYyZgfPFpfXd14PPU1OmlgWMtKy8OuOu+Jy70lNoald8k8rERERlWenT5/GF198ASsrK+zbt0/V4RBRGWAOUraYdxARUWXDAhARkZIECLj/9r7MMpUNQRAQ8yJRZpmIiKgqOXv2LNzd3VG7dm0EBATAzMxMro2xsXGeb99I50HI/faO9Pv89jExMSlU+w+PQUTFwxykbDHvICKiyoYDAxIRERFRsT19+hQSiUTmS0dHB/b29pgzZw7i4uJk2r979w6enp6ws7ODtrY2atasiaFDh8rMN5Lb7du38fHHH8PU1BTa2tqwt7fH8uXLkZaWVhanVyTJycmYP38+rK2toa2tDWtra8yfPx/JyclK93H48GGMHz8eLVu2hJaWFiQSCYKCghS2ffjwIby9veHi4oI6depAX18fjRs3xpdffomoqCi59klJSVi2bBkGDRoEKysrSCQSWFtbF/FsqTSdOXNG/PkPDAzMc34dOzs7JCUlITo6Wm6bovl7FM0LJBUdHY2kpCSl20vXa2lpwdKSQ6IREREREZUHfAOIqBiSQkKQ+SYGAKBR0xQGHGuTiIiquE6dOmHSpEkAgNjYWJw+fRrr1q2Dv78/rl27Bi0tLaSkpMDNzQ3Xr1/HoEGD8NVXX+HNmzfYtm0bnJ2d8fvvv8Pe/v38G5cvX0b37t2hqamJadOmwcbGBmFhYViyZAnCw8Nx6tQpSCQSVZ2yQllZWejTpw+Cg4MxatQouLq64vbt21i3bh3Cw8Nx8eJFpSbe3bp1K65cuQJHR0c4ODjgzp07ebb94YcfsGXLFvTv3x+ffvopdHV1ceXKFWzbtg379u3D77//DgcHB7F9TEwMlixZglq1aqFly5Z4+/ZtiZw7lawzZ85gyJAhqF69OgIDA9GgQYM823bu3BlhYWHw9/fHZ599JrPt/PnzYpvc7VetWgV/f38MGzaswPbOzs7Q0tLChQsXIAiCzO9dZGQk7t+/jy5dukBDg2lmecO8hYiIiKhq4p05UTG83bcPKTduAgB0W7diIkVERFWera0tRo4cKS7PmDED/fr1w5kzZ3DixAl88skn2LFjB65fv45JkybBx8dHbDtq1Cg0bdoU06dPh7+/v7h++vTpSE9PR0BAADp06AAAmDx5Muzt7eHp6YkDBw5g+PDhZXeSStizZw+Cg4Mxffp0bNq0SVxvbW2Nr7/+Gnv27MG4ceOU6sfc3Byamprw9vbOtwDk7u6O+fPno1q1auK6SZMmwdnZGZMnT8bixYvx888/i9vMzMzw7Nkz1KtXT4yNypdz585hyJAhMDExQWBgoMzbOIqMHTsW69atw4oVKzBw4EBxKLZbt27hwIEDaNSoETp27Ci279atG2xtbfHTTz/hyy+/RIsWLQDkDPG2cuVKaGlpyRSSjIyMMGzYMOzduxc+Pj74/PPPAeQMkbRgwQIAwMSJE0vyElAJYd5CREREVDWxAERERERUAu4EvcCd4H8LvZ8gZAMAJBI11KxngB7jmuTZ9sKue3jzPKnIMQKAY+e6cHSzKFYfhdW7d2+cOXMGjx49AgAEBAQAyPljdW62trbo1KkTLly4gOfPn6NevXqIi4vDrVu3YG9vLxZ/pMaMGQNPT0/s2rWr3BWA9u7dCwCYPXu2zPqpU6di0aJF2Lt3r1IFICsrK6WP6eTkpHD9sGHDMHnyZPz5558y67W1tcXiD5UdX19fXL58GQDEgp6vr684tF/Hjh0xYcIEREREYPDgwUhLS4ObmxsOHDgg15e1tTXGjBkjLjds2BDe3t7w8vJC8+bNMWTIECQmJuLgwYMAgJ07d0JN7f0o4BoaGvD19UWvXr3g6uqKYcOGwdDQEEeOHEFkZCTWrVsnVxhcvXo1AgMDMXXqVFy8eBENGjRAcHAwrly5gv79+8u9SURERERERKrDAhARERFRCUhJTEdc1Lti9aGjl/+tWWJsarGPkZKYXqz9i+LBgwcAAFNTUwAQ5+3R09OTa6unpwdBEBAeHo569eoV2BYAwsPD5YajKoy4uDhkZWUp1VZTU7PACe4FQcC1a9dgbm4uV8DR1dVFixYtcP369WLFXBj//ptTmKxdu3apH4sKdvnyZezZs0dmXWhoKEJDQ8XlCRMmIDo6Wvz5lxZwPtS5c2eZAhAALFy4ENbW1ti4cSO2b98OLS0tdOrUCcuXL0erVq3k+ujSpQsuX76MJUuW4NChQ8jIyICjoyPWrFmDoUOHyrU3MzNDeHg4vLy8cObMGZw6dQpWVlZYvnw55s6dW+6GYyQiIiIiqspYACIqBvM1ayBkZAAAJJqaKo6GiIhI9dLS0hATkzPPxNu3b3Hy5Els374dxsbGGDhwIACgSZMmOH/+PAICAtCsWTNx3+TkZISHhwMAnj17BiCnaGFqaoq///4b0dHRqFOnjtg+MDAQAJCUlIS4uDhUr169SDG3bNkSkZGRSrXt3Lmz+KZGXt6+fYvk5GQ0bdpU4XYLCwuEhYUVK+bCWLRoEQD5N65INfz8/ODn51dgOzc3NwiCUKRjjBgxAiNGjFC6fdu2bXHu3Dml25uZmeGHH34oSmikIsxbiIiIiKomFoCIikHDxETVIRAREZUrBw8elHtboUWLFvDx8UGtWrUA5AyD5uPjg8WLF0NfXx/du3dHTEwMlixZgtjYWAA5xSAAkEgkmD17NhYsWICBAwdi7dq1sLa2Rnh4OGbMmAEtLS2kp6cjOTm5yMWU/fv3IyUlRam2Jkr82y+NXVtbW+F2HR0dsV1pF4BWrlyJI0eOYNCgQRg9enSpHouoqvop/Fmh9xnezrIUIskb8xYiIiKiqokFICIiIqISoGuoBRMz/ULvl3sOIMMaOvm2Nayhg9TkzCLFJ6VrqFWs/QvSs2dPzJkzBxKJBNra2rCyspKbZ6Z+/fo4d+4cJkyYgEmTJonru3btivnz52PZsmUwMjIS18+bNw9paWn49ttv4ebmBiCnuOLl5YWTJ0/i2rVrMu0Ly8XFpcj7KiIdmk46fNeHUlNTZdqVlu+++w4LFy6Em5sb9u/fz6G5iIiIiIiIqhgWgIiIiIhKgKObBRzdLAq9n7RIkNfbIrn1GNek0P2XNTMzM3Tv3r3Adp06dUJERATu37+P169fw8LCAra2tpg7dy4AoFGjRmJbiUSCJUuWYO7cubhz5w4yMzPRpEkTGBsbY9OmTTA3Ny9WAejNmzdKzwGkpaVV4Fs71atXh56eHl68eKFw+4sXL6Cvr6/U20RF9b///Q+zZ89Gt27dcPLkyVIvNhEREREREVH5wwIQVT0SdcDaRXaZSAlqEjU41XaSWaayIVGToK5dNZllIqr4JBIJHBwc4ODgIK47d+4cjI2NFb6Vo6uri7Zt24rL169fx5s3bzBhwoRixdGmTZsSnQNIIpHAyckJISEhiIyMhJWVlbgtJSUFt27dQtu2bUvtjZw1a9Zg/vz56N27N44dOyYOOUdERBUPc5CyxbyDiIgqGxaAqOrR0gPcd5VIV5kxMRDS0wEAEi0taJialki/VD7pauhibee1qg6jStLUUkfPCYonUyeiymPTpk24e/culi5dWuAbKykpKZg5cyZ0dHQwZ86cYh23pOcAAoBRo0YhJCQE69evx6ZNm8T127dvR0pKCkaNGiXTPioqCvHx8bC0tCzW2zorV67EwoUL0a9fP/zyyy9KvVlGRJUf85aKizlI2WLeQURElQ0LQETF8NLTEyk3bgIAdFu3guWOHSqOiIiIqGJwdXVFy5Yt4eDgAEEQcP78eZw8eRIDBw6Ep6enTNvQ0FDMnTsXvXv3Rt26dREVFQU/Pz88ffoUe/fuRcOGDYsVS0nPAQQAY8eOxd69e7F582bEx8fD1dUVt2/fxrZt29CpUyeMGTNGpv2CBQuwZ88eBAYGivMcAUBISAhCQkLE7wHgxx9/xOXLlwHkFJqkbxht3boVCxcuRO3atfHxxx/j8OHDcnGNHDlSZnnLli3477//AADx8fEAgG+++QYAUK1aNXzxxRfFuxBEVC4wbyEiIiKqmlgAIiIiIqIy1759e5w8eRK+vr6QSCRo0qQJfHx8MGHCBKipyQ5vU7duXVSvXh3bt29HTEwMTExM4OrqikOHDqFVq1YqOoP8qaur4+zZs1i2bBkOHTqEAwcOwMzMDLNmzcLixYuhrq7cELQBAQFYunSpzLpdu96/ydyxY0exAHTt2jUAwKtXrzBu3DiF/X1YAFq3bp3c8HeLFi0CAFhZWbEAREREREREVIFVqMFj9+3bh8mTJ8PJyQna2tqQSCTw8/PLs31CQgJmzZoFKysraGtrw9raGnPmzEFSUpLC9tnZ2di8eTMcHR2hq6uLmjVrwsPDA//880+exzh//jw6d+4MQ0NDGBkZoUuXLvjtt9/ybP/gwQN8+umnMDU1ha6uLpo3b47t27dDEASlrwMRERFReWNtbQ1BEPK9N8ttzZo1+Pvvv/Hu3TskJSUhPDwckyZNkiv+SPs+deoUXr58ifT0dLx69QqHDx8ut8UfKQMDA6xduxaRkZFIT09HZGQk1q5dCwMDA7m2fn5+EARB5u0fAPD29oYgCHl+5W4v7SO/rw89ffo0z7ZPnz4t4StCREREREREZalCvQHk5eWFyMhImJqawszMLN/Jet+9e4fOnTvj1q1b6NmzJzw8PPDHH39g3bp1CA4ORkhIiNyEuJMnT4avry+aNGmCL7/8Ei9fvsTPP/8Mf39/XLlyBXZ2djLt9+3bh1GjRqFmzZriMB6HDh1Cjx498PPPP8Pd3V2m/V9//YUOHTogJSUFn376KczNzXHmzBlMnToVf/31FzZv3lwyF4ryl5UBPL30ftm6E6CuWaSuaowZg8z+/QEAGjVqlER0VI5lZGfgWvQ1cblNnTbQVCvazw4VTlZWNl7e/09cNrevBnX1CvUMAxEREZHKMG+puJiDlC3mHUREVNlUqAKQr68v7OzsYGVlhdWrV2PBggV5tl27di1u3bqFefPmYfXq1eL6+fPnY82aNdiwYYPM/oGBgfD19YWrqysuXLgALS0tAMDw4cPRp08ffPHFFzh//rzYPi4uDtOnT4epqSlu3rwJCwsLAMC8efPQsmVLTJkyBb169YKhoaG4z5QpUxAfH4+zZ8/io48+AgAsX74c3bt3x5YtWzB8+HC0b9++ZC4W5S0zFTg25f3y9OtFLgDpd+hQQkFRRZCelQ6vy17i8qnBp5h8lZGsjGxc3POXuDxiqTMTMSIiIiIlMW+puJiDlC3mHUREVNlUqH/FunfvLo5xnh9BEODr6wsDAwNxDHOpRYsWwcDAAL6+vjLrd+7cCSCnICMt/gDARx99BDc3N/j7++PZs2fi+sOHD+O///7D9OnTxeIPAFhYWOCLL75ATEwMjh07Jq5/8OABQkJC0KVLF7H4AwBaWlpYvny5TAxERERERERERERERETFUaEKQMp6+PAhXr58CRcXF+jr68ts09fXh4uLC/755x88f/5cXB8UFCRu+1CvXr0AAMHBwTLtAaBnz57Fbt+xY0fo6+vLtKdSJFEDatq//5JUyl8DIiIiIiIiIiIiIqrCKtQQcMp6+PAhAMjN2SNlZ2eH8+fP4+HDh6hXrx7evXuHqKgoNG3aFOrq6grb5+63oGMUtr26ujpsbGzw119/ITMzExoa+X8seQ0Td/fuXVhaWiIkJCTf/UtLQkIC1LIF6MTeL9XjhIQ8LX4nNl+///7KjeL3VwklJCQAgMp+nsqj1OxUpKeni8uhoaHQUdPJZ4/yo6J/nlkZAtLTs8Tl0NBQqGtKVBiRalX0z7Oi0tXVhba2NtLS0kq0X0EQAKDE+yXV4OeZP0EQkJaWVuj/fyUkJMDIyKiUoiIiIiIiIqqcKuWrD/Hx8QAAY2NjhdulyaO0XWHbF7RPYdtL98nOzkZiYqLC7URERKR6giAgOztb1WEQVUiCIIgFMiIiIiIiIip9lfINoMouLCxM4Xrpm0Gurq5lGY4oJCQEMUlpSK1hX6rHcW1nWar9F8ZLLy+k3suZIFKnSWOYf/ONiiMqOdInc1X181Qevct4B61j7+cIc3Fxgb6mfj57lB8V/fNMT83EU/8r4rKLizO0dKruP2EV/fOsqB48eIDU1FQIggBtbe0S61f6pkhJ9kmqw88zb4mJiZBIJDAxMUGbNm0KtS/f/iEqnsqctxARERFR3irlG0DSt2xyv4GTm3ToHGm7wrYvaJ/CtpfuI5FIYGhoqHA7lU+Zr18j49kzZDx7hszXr1UdDhERlSLpH6BfvnyJzMxMFUdDVHEIgoDExES8ePECQN5vxBNR6WHeQkRERFQ1VcrHpxXNwZPbh/Px6Ovrw8zMDE+ePEFWVpbcPECK5u+xs7PD9evX8fDhQ9SoUUOp9nnFlJWVhSdPnsDGxqbA+X+oBGRnAa/uvl+u3RRQk5/7iYiIKLdatWohLi4OycnJ+OuvvyCRlMw8VNIhsUqqP1Itfp7ycg/7ZmBgIHfvTERERERERKWjUr4BZGdnB3Nzc4SGhuLdu3cy2969e4fQ0FDY2NigXr164vrOnTuL2z50/vx5ALJD7XTu3BkA4O/vn2d7aZuC2l++fBnv3r2TaU+lKCMZ2P/p+6+M5CJ3pdemDQx79YJhr17QK+RQJkREVLGoqanBxsYG1apVg5payd1CpaWlicOGUcXHz1Oempoa9PT0YGZmBmtr6xL9/SEi5TBvISIiIqqaKuXrJhKJBBMmTMCyZcuwfPlyrF69Wty2fPlyJCUlwdPTU2afSZMm4eDBg1i0aBEuXLgALa2ceT7OnTuHoKAg9OzZE1ZWVmL7Tz/9FPPmzcPmzZsxbtw4WFhYAABevHiBLVu2wNTUFIMHDxbb29vbw9XVFYGBgTh37hw++ugjAEB6ejoWLVoEAJgwYULpXBAqNaYTJ6o6BCIiKkM6OjqwtCzZueikczoVdk4UKp/4eRJRecS8hYiIiKhqqlAFIF9fX1y+fBkAcOfOHXFdUFAQAKBjx45iEWXu3Lk4ceIE1qxZgz/++AOtWrXCzZs34e/vjzZt2mDmzJkyfXfp0gUTJkyAr68vWrVqhb59+yIqKgqHDh1C9erVsXnzZpn2JiYm2LJlC0aNGoVWrVph6NChAIBDhw4hNjYWhw4dkpvPZ9u2bXBxccGgQYMwdOhQmJmZ4cyZM7h37x6++OILdOjQoaQvGRERERERERERERERVUEVqgB0+fJl7NmzR2ZdaGiozLBt0gKQvr4+goOD4e3tjSNHjiAwMBBmZmaYPXs2lixZAl1dXbn+fXx84OjoiB07duC7776DgYEBBg8ejBUrVqB+/fpy7UeOHAlTU1OsXLkSu3fvhkQiQevWreHl5YXu3bvLtW/SpAnCw8Ph5eWFM2fO4N27d2jYsCG2bt2KKVOmFPfyEFEp01HXwdZuW2WWqWxoaKmj37TmMstERERERJUdc5CyxbyDiIgqmwpVAPLz84Ofn5/S7Y2NjbFhwwZs2LBBqfZqamr48ssv8eWXXyp9jN69e6N3795Kt7e3t8fhw4eVbk9E5Ye6mjoa1Wik6jCqJDU1CWpaGhbckIiIiIioEmEOUraYdxARUWXDGViJiIiIiIiIiIiIiIgqmQr1BhBReRN34ADSnz0HAGhZ1oOJh4eKIyIiIiIiIpLFvIWIiIioamIBiKgYEgMDkXLjJgBAt3UrJlJERERERFTuMG8hIiIiqppYACIiUlJyRjK+DHw/R9imLpugp6mnwoiqjoy0LJzd/qe43GdKM2hqc0JWIiIiIqrcmIOULeYdRERU2bAARFQMavr6UDM2Er+nyk2AgH/++0dmmcqGIAh4G/VOZpmIiIiIlMO8peJiDlK2mHcQEVFlwwIQUTFYbNig6hCIiIiIiIjyxbyFiIiIqGpSU3UAREREREREREREREREVLJYACIiIiIiIiIiIiIiIqpkWAAiIiIiIiIiIiIiIiKqZFgAIiIiIiIiIiIiIiIiqmQ0VB0AUUWWcvs2suLjAQDqxsbQbd5cxRERERERERHJYt5CREREVDWxAERUDG+2bkXKjZsAAN3WrWC5Y4eKIyIiIiIiIpLFvIWIiIioauIQcERERERERERERERERJUMC0BERERERERERERERESVDIeAo6pHTQOo30V2uYjqeHoiOyUlpxtd3eJGRuWcukQd7c3byyxT2VBTk6Beo+oyy0RERESkHOYtFRdzkLLFvIOIiCobFoCo6tHUBQZ/XyJdaVlbl0g/VDHoaOhgRccVqg6jStLQUkf3MY1VHQYRERFRhcS8peJiDlK2mHcQEVFlwyHgiIiIiIiIiIiIiIiIKhkWgIiIiIiIiIiIiIiIiCoZFoCIiIiIiIiIiIiIiIgqGc4BRFVPVgbwOPD9cv0ugLpmkboSMjIAQchZkEgg0SxaP1QxZGRnIOxlmLjc3rw9NNX4mZeFrKxsPP/rrbhcr3F1qKvzGQYiIiIiZTBvqbiYg5Qt5h1ERFTZ8F8xqnoyU4GT099/ZaYWuavn06bhQfsOeNC+A55Pm1aCQVJ5lJ6VDu/fvcWv9Kx0VYdUZWRlZCPw/9i7+7io6rz/4+8Z7h1uvMESE/FmUSstoyyNAqlEsq10K01X01q17FLWm01sf5EW6aVdJrnYVsamtV5uaKbuVi64JbCRWYm2a3diamrqlqYSeAMy5/dHF6MjIHfDHJh5PR8PHnLO+cw5n/M9Z5APnznnrPjK8VVRbjc7JQAAGmTFihV6+OGHdd111ykgIEAWi0XLly+vMb64uFjTp09XVFSUAgIC1KVLFz322GMqKSmpNt5utysjI0N9+vRRUFCQ2rdvr5EjR2r37t01biM7O1vx8fEKCQlRaGioEhIS9N5779UYv3PnTg0fPlzh4eEKCgrS1VdfrRdffFFGZYMBzQ51S8tFDeJe1B0AAE9DAwgAAAAA3OSJJ57Q0qVL9e233yoiIuKisaWlpYqPj1d6erp69eqladOmqWfPnlq4cKFuueUWnT5d9YNMDz/8sJKTk2UYhpKTk5WUlKS33npL/fr1U1FRUZX4FStWKCkpSV9++aXGjRunsWPH6vPPP9egQYP05ptvVon/4osvdP3112v9+vW6/fbblZycrIqKCj366KNKTk5u+MAAAAAAcDkaQPA+FqvUoc+5LwtvAwAAALhHZmam9u7dqx9++EGPPPLIRWOfffZZbd++XSkpKcrOztb8+fOVnZ2tlJQUffLJJ0pPT3eK37RpkzIzMxUXF6fCwkItWLBAf/7zn7Vu3Tr9+OOPmjx5slP8sWPHNGXKFIWHh6uwsFAZGRnKyMhQYWGh2rVrp0mTJumnn35yes2kSZN04sQJrVu3Tn/+85+1YMECFRYW6uabb9aSJUu0efNmAQAAAGge+Ms3vI+/TRr95rkvf1uDV9V66FCFP/qowh99VK2HDnVdjgAAAPBIt912m6KiomqNMwxDmZmZCg4OVmpqqtOy1NRUBQcHKzMz02n+K6+8IklKS0uTv7+/Y/7tt9+ugQMHKicnR/v27XPMX716tY4fP64pU6aoU6dOjvmdOnXS5MmTdeTIEa1du9Yxf+fOncrPz1dCQoJuv/12x3x/f3+lpaU55YDmhboFAADAO/manQDQkoUOGWJ2CgAAAPBARUVFOnjwoAYPHiybzfkDSzabTbGxscrOztb+/fsVGRkpScrNzXUsu9DgwYOVm5urvLw8jRkzxhEvSYmJidXGz5kzR3l5eXrggQdqjb/ppptks9mUl5dXp/0bMGBAtfN37Nihzp07Kz8/v07rcbXi4mJZ7YYCj37dpNvJz9/bpOuvIjhYiv7F+Qm4d/sXUVxcLEmmHfPm7rT9tMrKzj33p6CgQIHWwEatkzGvWUW5obKyCsd0QUGBfPwsLlk34+5+jLn7MebmYNzdryFjXlxcrNDQ0KZKqUY0gNDirNyyr/agC4y6oXMTZAIAAAA0jcrn9URHR1e7PDo6WtnZ2SoqKlJkZKRKS0t16NAh9e7dWz4+PtXGn7/e2rZR33gfHx917dpVX3zxhc6ePStfX0pNAAAAwGz8Vg4AAAAAzcyJEyckSWFhYdUur/z0YGVcfeNre0194ytfY7fb9dNPP6lNmzbVxlSq6VlBlVcGxcXFXfT1TSU/P19HSs7odLueTbqdOD6g5lD5yVmzjnlzV1peKv+1527pGBsbK5tfw29jLjHmF1N2+qz25nzkmI6N7S//QNf86Yxxdz/G3P0Yc3Mw7u7XkDE34+ofiQYQvFHFWenQZ+emI66WfHgrAAAAAAAAAAA8B3/1hvc5e0p6Y9S56SmfSj4h5uUDAAAAXKDyKpvzr8A5X+V9xyvj6ht/4WvatWtXr/iatmGxWBQSwu/WAAAAQHNAAwhohO8XLtTpnTslSYE9euiS3/3O5IwAAADgCap7Bs/5Lnwej81mU0REhPbs2aOKiooqzwGq7vk90dHR+vTTT1VUVFSlAVRTfE05VVRUaM+ePeratSvP/2mGqFsAAAC8k9XsBICW7PTOnTq1tVCnthY6CioAAACgsaKjo9WxY0cVFBSotLTUaVlpaakKCgrUtWtXRUZGOubHx8c7ll0oOztbkvN9yuPj4yVJOTk5NcZXxtQW/8EHH6i0tNQpHs0HdQsAAIB3ogEEAHUU6BOopYOWOr4CfQLNTslr+Pr76K7f9nV8+fr71P4iAABaMIvFovHjx6ukpERpaWlOy9LS0lRSUqIJEyY4zZ84caIkKTU1VWVlZY75GzZsUG5urhITExUVFeWYP3z4cIWFhSkjI0MHDhxwzD9w4ICWLFmi8PBwDRs2zDG/Z8+eiouL06ZNm7RhwwbH/LKyMqWmpkqSxo8f74K9B1CJGsS9qDsAAJ6Ga/OBRgjs0aPa7+GZfKw++kWbX5idhleyWi1q1zHY7DQAAGi0zMxMffDBB5Kkf//73455ubm5kqSbbrrJ0USZOXOm1q9frwULFmjbtm2KiYlRYWGhcnJy1K9fP02dOtVp3QkJCRo/frwyMzMVExOjO+64Q4cOHVJWVpbatm2rjIwMp/g2bdpoyZIlGjNmjGJiYjRixAhJUlZWlo4ePaqsrKwqz/P54x//qNjYWA0dOlQjRoxQRESE3nnnHX3++eeaPHmybrzxRlcPGVyAuqXlogZxL+oOAICnoQEENAL3zgYAAEB9fPDBB3rttdec5hUUFDjdtq2yAWSz2ZSXl6c5c+ZozZo12rRpkyIiIjRjxgzNnj1bQUFBVdb/8ssvq0+fPlq6dKkWL16s4OBgDRs2THPnzlX37t2rxI8ePVrh4eGaN2+eli1bJovFomuvvVZPPPGEbrvttirxV155pbZs2aInnnhC77zzjkpLS9WjRw+98MILmjRpUmOHB02EugUAAMA70QACAAAAADdZvny5li9fXuf4sLAwpaenKz09vU7xVqtVycnJSk5OrvM2kpKSlJSUVOf4nj17avXq1XWOBwAAAGAOngEEAAAAAAAAAADgYbgCCADq6GT5Sf3Xe//lmH7h1hfUyq+ViRl5j/IzFXp7yWeO6V9Ovlp+ATyQFQAAAJ6NGsS9qDsAAJ6GBhAA1JEhQ98Wf+s0DfcwDEPHvz/pNA0AAAB4OmoQ96LuAAB4GhpAQCMUv/uuyg8dliT5RXRQ6JAhJmcEAAAAAM6oWwAAALwTDSCgEY6vW6dTWwslSUHXxlBIAQAAAGh2qFsAAAC8k9XsBAAAAAAAAAAAAOBaNIAAAAAAAAAAAAA8DLeAAxoh8oUXpMqHQlos5iYDAAAAANWgbgEAAPBONICARrD4+ZmdAgAAAIAWZuWWffV+zagbOjd4e9QtAAAA3olbwAEAAAAAAAAAAHgYGkAAAAAAAAAAAAAehgYQAAAAAAAAAACAh+EZQPA+Vl8p+jbn6QYq27tX9lOnfl5NUJD8u3RpZHJoznwsPrrpspucpuEeVqtFUVe2c5oGAABA3VC3tFzUIO5F3QEA8DQ0gOB9/IKku19wyaoOz5unU1sLJUlB18ao89KlLlkvmqdA30A9Hfu02Wl4JV9/H93ywOVmpwEAANAiUbe0XNQg7kXdAQDwNB5/CzjDMPTWW28pISFBERERatWqlXr27KmHH35Yu3fvrhJfXFys6dOnKyoqSgEBAerSpYsee+wxlZSUVLt+u92ujIwM9enTR0FBQWrfvr1GjhxZ7borZWdnKz4+XiEhIQoNDVVCQoLee+89l+0zAAAAAAAAAADwbh7fAPrd736ne+65R19//bWGDh2qKVOmqGvXrnrllVfUt29f7dixwxFbWlqq+Ph4paenq1evXpo2bZp69uyphQsX6pZbbtHp06errP/hhx9WcnKyDMNQcnKykpKS9NZbb6lfv34qKiqqEr9ixQolJSXpyy+/1Lhx4zR27Fh9/vnnGjRokN58880mHQsAAAAAAAAAAOAdPPoWcIcPH9bzzz+vqKgoffbZZwoLC3MsS09P1/Tp07Vo0SK9+uqrkqRnn31W27dvV0pKiubPn++InTVrlhYsWKD09HQ9/vjjjvmbNm1SZmam4uLitHHjRvn7+0uSRo0apSFDhmjy5MnKzs52xB87dkxTpkxReHi4CgsL1alTJ0lSSkqKrrnmGk2aNEmDBw9WSEhIk44LXKf9f/2XKk6ckCT5nHd+AQAAAEBzQd0CAADgnTz6CqC9e/fKbrcrNjbWqfkjSb/85S8lST/88IOkn28Vl5mZqeDgYKWmpjrFpqamKjg4WJmZmU7zX3nlFUlSWlqao/kjSbfffrsGDhyonJwc7du3zzF/9erVOn78uKZMmeJo/khSp06dNHnyZB05ckRr1651wZ7joirKpa/eOfdVUd7gVQVdfbWC4+IUHBenoKuvdmGSaI7K7eV6f9/7jq9ye8PPHdRPRYVdu7f/4PiqqLCbnRIAAECLQd3SclGDuBd1BwDA03h0Ayg6Olr+/v4qKChQcXGx07K3335bknTrrbdKkoqKinTw4EHFxsbKZrM5xdpsNsXGxmr37t3av3+/Y35ubq5j2YUGDx4sScrLy3OKl6TExMQ6xaOJnD0tvT393NfZqrf2A6pTVlGmZz56xvFVVlFmdkpeo6Lcrry/fO34qiinEAMAAIDnowZxL+oOAICn8ehbwLVr107z58/XjBkz1KtXL919990KDQ3VZ599pvfff1+PPvqoJk+eLEmO5/VER0dXu67o6GhlZ2erqKhIkZGRKi0t1aFDh9S7d2/5+PhUG3/+emvbRnXxNRkwYEC183fs2KHOnTsrPz+/1nU0heLiYlnthgKPfm3K9i8mP3+v43ufsyd1Xdm5X5o/LShQhW8rE7Jq3iqbpmadT83RaftplZ137hQUFCjQGmhiRnXX0o9nRbmhsrIKx3RBQYF8/CwmZmSuln484Yzj6Vk4nk2juLhYoaGhZqcBAAAAAC2KRzeAJGnatGm67LLLNH78eL300kuO+TfddJNGjRolX9+fh+DE/90P+cJbxVWqLDgr4+obX9trqotH0zAsVv0UGu00DQAAAAAAAACAJ/H4BtDTTz+tZ555Rk8//bRGjx6t1q1ba/v27Zo2bZoGDhyoNWvW6K677jI7zXrZvHlztfMrrwyKi4tzZzoO+fn5OlJyRqfb9TRl+xcTd0Nn5xkJ527Dd5Obc2kpKj+5bNb51ByVlpfKf+25533FxsbK5me7yCuaj5Z+PMtOn9XenI8c07Gx/eUf6PH/hdWopR9POON4ehaOZ9Pg6h8AAAAAqD+PvvThH//4h2bPnq3Jkydr1qxZ6tSpk4KDg3XTTTfpb3/7m/z8/DRjxgxJ567KqekKnMrbeVTG1Te+ttdUF4/m78C0aSq65RYV3XKLDkybZnY6AAAAAFAFdQsAAIB38ugG0IYNGyRJCQkJVZZ16NBBvXr10q5du1RSUlLrM3gufH6PzWZTRESE9uzZo4qKilrjz/++um3U9gwiNE/20lLZTxT//FVaanY6AAAAAFAFdQsAAIB38ugGUOXD2n/44Ydql//www+yWq3y8/NTdHS0OnbsqIKCApVe8AtxaWmpCgoK1LVrV0VGRjrmx8fHO5ZdKDs7W5Lz7T/i4+MlSTk5OTXGV8YAAAAAAAAAAAA0lEc3gGJjYyVJixYtqnLbtZdeekkHDhzQgAEDFBAQIIvFovHjx6ukpERpaWlOsWlpaSopKdGECROc5k+cOFGSlJqa6mg2ST9feZSbm6vExERFRUU55g8fPlxhYWHKyMjQgQMHHPMPHDigJUuWKDw8XMOGDXPNzqNmFWelfR+d+6o42+BVhSQkqPXw4Wo9fLhCqrnSDAAAAADMRt0CAADgnTz6Cdr33XefXnzxReXn56tHjx6666671Lp1axUWFur9999XUFCQFi1a5IifOXOm1q9frwULFmjbtm2KiYlRYWGhcnJy1K9fP02dOtVp/QkJCRo/frwyMzMVExOjO+64Q4cOHVJWVpbatm2rjIwMp/g2bdpoyZIlGjNmjGJiYjRixAhJUlZWlo4ePaqsrCyFhIQ0+bh4vbOnpFVjz01P+VTyadi4txk50kVJAQAAAEDToG4BAADwTh59BZCPj49ycnL03//937rsssu0cuVKPf/88/r66681evRobd26Vddff70j3mazKS8vT1OnTtWXX36p5557Tl999ZVmzJih9957T0FBQVW28fLLL2vx4sWSpMWLF+vdd9/VsGHD9PHHH6tHjx5V4kePHq0NGzaoV69eWrZsmZYvX64rrrhCOTk5uu+++5puMAAAAAAAAAAAgNfw6CuAJCkgIECzZs3SrFmz6hQfFham9PR0paen1ynearUqOTlZycnJdc4pKSlJSUlJdY4HAAAAAAAAAACoD49vAAGAqwT6BOpPg//kNA338PX30dBp1zhNAwAAAJ6OGsS9qDsAAJ6GBhAA1JGP1Uddw7qanYZXslotatPBZnYaAAAAgFtRg7gXdQcAwNPQAAIa4cgrr6hsz15Jkn/XLgqfMMHchAAAAADgAtQtAAAA3okGENAIJz/5RKe2FkqSgq6NkSikAAAAADQz1C0AAADeyeqqFb3++uv617/+ddGYHTt26PXXX3fVJgEAAADAZahpAAAAAHgSlzWAxo0bp3Xr1l00Zv369XrwwQddtUnAdL6XXCK/zp3l17mzfC+5xOx00MROlp/U6HdHO75Olp80OyWvUX6mQmue/dTxVX6mwuyUAAAeiJoGnoq6peWiBnEv6g4AgKdx6y3gKioqZLW6rOcEmK7jM8+YnQLcyJChgyUHnabhHoZhqPjoaadpAADMQE2Dloi6peWiBnEv6g4AgKdxa+Wybds2tW3b1p2bBAAAAACXoaYBAAAA0FI06gqgW265xWl6+fLlys3NrRJXUVGhAwcOaO/evRo+fHhjNgkAAAAALkNNAwAAAMBTNaoBdH5hZLFYtHfvXu3du7dKnNVqVdu2bXXffffp+eefb8wmAQAAAMBlqGkAAAAAeKpGNYDsdrvje6vVqjlz5ujJJ59sdFIAAAAA4A7UNAAAAAA8VaMaQOfbtGmTunTp4qrVAS1C6Ycf6uzRo5Ik33btZLvxRpMzAgAAQENR08BTUbcAAAB4J5c1gOLj4121KqDFOLp8uU5tLZQkBV0bQyEFAADQglHTwFNRtwAAAHgnlzWAJKmsrEzr1q3TJ598ouPHj6uioqJKjMVi0Z/+9CdXbhYAAAAAXKI51jSGYWjt2rXKyMjQV199pRMnTigyMlIDBw5USkqKunXr5hRfXFysOXPmaM2aNTp8+LAiIiJ03333afbs2QoODq6yfrvdrhdeeEFLly7Vrl27FBwcrNtuu01z586tsu5K2dnZmjdvngoLC2WxWHTttdfqiSee0K233tokYwAAAACg/lzWAPr22281aNAgffPNNzIMo8Y4GkAAAAAAmqPmWtP87ne/06JFixQREaGhQ4cqNDRUn332mV555RX95S9/0YcffqjevXtLkkpLSxUfH6/t27crMTFRI0eO1LZt27Rw4ULl5eUpPz9fgYGBTut/+OGHlZmZqSuvvFLJyck6ePCgVq1apZycHH300UeKjo52il+xYoXGjBmj9u3ba9y4cZKkrKwsDRo0SKtWrdK9997rlnEBAAAAcHEuawBNmzZNu3bt0pgxY/TQQw+pU6dO8vV16QVGQLPTcd48GWVlkiSLv7/J2QAAAKAxmmNNc/jwYT3//POKiorSZ599prCwMMey9PR0TZ8+XYsWLdKrr74qSXr22We1fft2paSkaP78+Y7YWbNmacGCBUpPT9fjjz/umL9p0yZlZmYqLi5OGzdulP///U47atQoDRkyRJMnT1Z2drYj/tixY5oyZYrCw8NVWFioTp06SZJSUlJ0zTXXaNKkSRo8eLBCQkKadFxQP9QtAAAA3sll1cz777+vW2+9Va+99pqrVgm4zMot+xzf+1ScVkybmx3ThVsPqcLnmFP8qBs612m9vuHhrkkQLYKPxUcDIwc6TcM9rFaLul4V7jQNAICrNceaZu/evbLb7YqNjXVq/kjSL3/5S02fPl0//PCDpJ9vFZeZmang4GClpqY6xaampuqFF15QZmamUwPolVdekSSlpaU5mj+SdPvtt2vgwIHKycnRvn371Lnzz78fr169WsePH9dTTz3laP5IUqdOnTR58mTNmTNHa9eu1QMPPODagUCjULe0XNQg7kXdAQDwNC5rANntdl1zzTWuWh3QZCp8AvVJ7yfNTgMtUKBvoJ4cwLljBl9/Hw38dS+z0wAAeLjmWNNER0fL399fBQUFKi4uVmhoqGPZ22+/LUmO5+4UFRXp4MGDGjx4sGw2m9N6bDabYmNjlZ2drf379ysyMlKSlJub61h2ocGDBys3N1d5eXkaM2aMI16SEhMTq42fM2eO8vLyaAABLkIN4l7UHQAAT+OyBtANN9ygL7/80lWrAwAAAAC3ao41Tbt27TR//nzNmDFDvXr10t133+14BtD777+vRx99VJMnT5b0cwNIUpVn9lSKjo5Wdna2ioqKFBkZqdLSUh06dEi9e/eWj0/Vqwoq11O53tq2UV18TQYMGFDt/B07dqhz587Kz8+vdR1Nobi4WFa7ocCjX5uy/YvJz99rdgpNori4WJJMO+beiDE3B+Pufoy5+zHm5mDc3a8hY37hh7ncxeqqFc2fP1/vv/++3nzzTVetEgAAAADcprnWNNOmTdMbb7yhkpISvfTSS3r22WeVnZ2tG264QaNGjXI8p+jEiROSVOVWcZUqC87KuPrG1/aa6uIBAAAAmMdlVwC98847SkhI0IgRIxQfH6+YmJhqO1oWi6XK/aiBlurssWMyysslSRY/P/m2aWNyRgAAAGio5lrTPP3003rmmWf09NNPa/To0WrdurW2b9+uadOmaeDAgVqzZo3uuusut+XjCps3b652fuWVQXFxce5MxyE/P19HSs7odLuepmz/YuLq+JzS6jTnuqXyk7NmHXNvxJibg3F3P8bc/RhzczDu7teQMTfj6h/JhQ2gOXPmOL7Pzc113Bv6QjSAYDaLvVyd/vO+Y/rApbfIsPo1aF0HU1J0amuhJCno2hh1XrrUJTmieSq3l+v9fefOnVs63yK/Bp47qJ+KCrv2bD/imO7aN1w+Pi67iBUAAEnNs6b5xz/+odmzZ2vatGmaNWuWY/5NN92kv/3tb+rWrZtmzJihu+66y3FVTk1X4FTeqqIyrr7xF76mXbt2tcajeaBuabmoQdyLugMA4Glc1gDatGmTq1YFNCkfe5mu/XKBY/pQ+5t0ll+gUQdlFWVa8PG5c+emy26i+HKTinK7/rlqp2O685VtKcQAAC7XHGuaDRs2SJISEhKqLOvQoYN69eqlbdu2qaSkpNZn8Fz4/B6bzaaIiAjt2bNHFRUVVZ4DVN3zfqKjo/Xpp5+qqKioSgOotmcQAag/ahD3ou4AAHgalzWA4uPjXbUqAAAAAHC75ljTlJWVSZJ++OGHapf/8MMPslqt8vPzU3R0tDp27KiCggKVlpbKZrM54kpLS1VQUKCuXbsqMjLSMT8+Pl5vvPGGCgoKqtzCIjs7W5LzrS3i4+P1l7/8RTk5Oerfv3+18c1xHAEAAABvxMcY4HUMi1VHWvd1fBmWhr8N2o4erUt//3td+vvfq+3o0S7MEgAAAJBiY2MlSYsWLapyq7aXXnpJBw4c0IABAxQQECCLxaLx48erpKREaWlpTrFpaWkqKSnRhAkTnOZPnDhRkpSamupoNkk/X3mUm5urxMRERUVFOeYPHz5cYWFhysjI0IEDBxzzDxw4oCVLlig8PFzDhg1zzc7DZahbAAAAvJPLrgCqfPBRXfBAKpipwidIH8Qscsm6gjmXAQAAPEZzrGnuu+8+vfjii8rPz1ePHj101113qXXr1iosLNT777+voKAgLVp07nfbmTNnav369VqwYIG2bdummJgYFRYWKicnR/369dPUqVOd1p+QkKDx48crMzNTMTExuuOOO3To0CFlZWWpbdu2ysjIcIpv06aNlixZojFjxigmJkYjRoyQJGVlZeno0aPKyspSSEhIk48L6oe6BQAAwDu5rAE0cOBAWSyWOsVWVFS4arMAAAAA4BLNsabx8fFRTk6O0tPTtWrVKq1cuVJlZWW69NJLNXr0aP3+97/X5Zdf7oi32WzKy8vTnDlztGbNGm3atEkRERGaMWOGZs+eraCgoCrbePnll9WnTx8tXbpUixcvVnBwsIYNG6a5c+eqe/fuVeJHjx6t8PBwzZs3T8uWLZPFYtG1116rJ554QrfddluTjgcAAACAunNZA+jJJ5+stlg6ceKECgsLlZ+frzvuuEPXXXedqzYJAAAAAC7TXGuagIAAzZo1S7NmzapTfFhYmNLT05Wenl6neKvVquTkZCUnJ9c5p6SkJCUlJdU5HgAAAID7uawBNGfOnIsuf/PNNzVu3Dg99dRTrtokAAAAALgMNQ0AAAAAT2J114buvfdeJSQk6PHHH3fXJoFqWexndcnRTxxfFvtZs1MCAABAC0BNAwAAAKAlcdkVQHVx+eWX66WXXnLnJoEqfOxndONnKY7pt+P+prPWhr0VDs2Zo9NffilJCrz8ckXU8qlRAAAAtGzUNGiJqFsAAAC8k1sbQNu2bZPV6raLjoAmV37woMp2fSNJ8gkLMzkbAAAANDVqGrRE1C0AAADeyWUNoH379lU7/+zZs/ruu++0fPlyvf/++xo6dKirNgkAAAAALkNNAwAAAMCTuKwB1KVLF1kslhqXG4ah7t27Kz093VWbBEzXKiZGPmGtJUkB3buZmwyaXKBPoF6//XWnabiHr7+P7nnsWqdpAABcjZoGnoq6peWiBnEv6g4AgKdxWQPogQceqLZYslqtatOmjfr166e7775bgYH8sgLPEf7II2anADfysfqoU0gns9PwSlarRaHhQWanAQDwcNQ08FTULS0XNYh7UXcAADyNyxpAy5cvd9WqAAAAAMDtqGnQnK3cUv0tCmsy6obOTZQJAAAAWgqeXgoAAAAAAAAAAOBhXHYFUKXS0lKtW7dO27dvV3FxsUJDQ9W3b18NHTpUNpvN1ZsDAAAAAJeipgEAAADgCVzaAFqzZo0mTpyo48ePyzAMx3yLxaLWrVvrlVde0a9+9StXbhIA3OZk+Uk9lP2QY/rVwa+qlV8rEzPyHmWnz2p9+jbH9N3TrpF/oMs/wwAAADUNgGaFGsS9qDsAAJ7GZf+Lffjhh7r//vvl4+Oj8ePHKyEhQRERETp8+LA2bdqk1157Tffff7/y8vI0YMAAV20WMNWxVatUfuA7SZJfp8vUZvhwkzNCUzJk6PuT3ztNw31Kjp8xOwUAgIejpoGnom5puahB3I+6AwDgSVzWAJo3b54CAgJUUFCgq6++2mnZiBEj9Oijj+rGG2/UvHnz9Le//c1VmwVM9dM//qFTWwslSUHXxlBIAQAAtGDUNPBU1C0AAADeyeqqFW3evFkjRoyoUihVuuqqqzR8+HB9+OGHrtokAAAAALgMNQ0AAAAAT+KyK4BOnjypSy+99KIxl156qU6ePOmqTQKmswYEyNIqyPE9AAAAWi5qGngq6hYAAADv5LIGUJcuXbRx40bNmzevxpj33ntPXbp0cdUmAdN1ysgwOwUAAAC4CDUNPBV1CwAAgHdy2S3ghg8frq1bt2rs2LE6ePCg07JDhw5p3Lhx2rp1q0aMGOGqTQIAAACAy1DTAAAAAPAkLrsCKCUlRX//+9/15z//WVlZWfrFL36hSy+9VP/5z3+0a9culZWV6frrr1dKSoqrNgkAAAAALkNNAwAAAMCTuOwKoFatWik/P19z5sxRp06d9MUXX2jTpk364osv1KlTJz311FPKy8tTUFCQqzYJAAAAAC5DTQMAAADAk7jsCiBJCggI0JNPPqknn3xSP/30k4qLixUaGqqQkBBXbgYAAAAAmgQ1DQAAAABP4bIrgAoKCjR9+nQdPnxYkhQSEqLLLrvMUSgdOnRI06dP10cffeSqTQKmO/X55yr96COVfvSRTn3+udnpAAAAoBGoaeCpqFsAAAC8k8uuAFq0aJH+9a9/adGiRdUuj4iI0Ntvv63vvvtOWVlZrtosUG92i6/2dxjkNN1QPyxerFNbCyVJQdfGqPPSpY3OD82Xr9VXg6IGOU3DPaw+FnWPucRpGgAAV6Omgaeibmm5qEHci7oDAOBpXPabwyeffKJbb731ojFxcXHauHGjqzZZL2vXrtUf//hHFRYWqrS0VBEREerfv7+effZZRUZGOuKKi4s1Z84crVmzRocPH1ZERITuu+8+zZ49W8HBwVXWa7fb9cILL2jp0qXatWuXgoODddttt2nu3Lnq1q1btblkZ2dr3rx5KiwslMVi0bXXXqsnnnii1vGDa9h9ArT1isfNTgMtUIBPgB6/gXPHDL5+Poob0cPsNAAAHq651zQAvA81iHtRdwAAPI3LbgH3/fff67LLLrtoTIcOHfT999+7apN1YhiGHn74Yf3qV7/Snj17dP/992vq1Km6+eab9eGHH+rbb791xJaWlio+Pl7p6enq1auXpk2bpp49e2rhwoW65ZZbdPr06Srrf/jhh5WcnCzDMJScnKykpCS99dZb6tevn4qKiqrEr1ixQklJSfryyy81btw4jR07Vp9//rkGDRqkN998s0nHAgAAAEDNmmtNAwAAAAAN4bIrgFq3bq19+/ZdNObbb7+t9iqapvSHP/xBS5cu1aOPPqo//OEP8vHxcVp+9uxZx/fPPvustm/frpSUFM2fP98xf9asWVqwYIHS09P1+OPnPnmzadMmZWZmOj4F6O/vL0kaNWqUhgwZosmTJys7O9sRf+zYMU2ZMkXh4eEqLCxUp06dJEkpKSm65pprNGnSJA0ePJgHzLYgl86cKXtpqSTJarOZnA0AAAAao7nWNEBjUbcAAAB4J5ddAdS/f3+tXbtW+/fvr3b5vn37tG7dOt14442u2mStTp06paeeekrdunXT4sWLqzR/JMnX9+cemGEYyszMVHBwsFJTU51iUlNTFRwcrMzMTKf5r7zyiiQpLS3N0fyRpNtvv10DBw5UTk6OUwG5evVqHT9+XFOmTHE0fySpU6dOmjx5so4cOaK1a9c2fsfhNgG/+IWCrr5aQVdfrYBf/MLsdAAAANAIzbGmAVyBugUAAMA7uewKoOnTp+tvf/ubYmNj9cwzz2jQoEGKiIjQoUOHlJOToyeeeEKnTp3SjBkzXLXJWuXk5OjYsWN68MEHVVFRob/+9a/auXOnWrdurdtuu02/OO8X36KiIh08eFCDBw+W7YJPRNlsNsXGxio7O1v79+93PDMoNzfXsexCgwcPVm5urvLy8jRmzBhHvCQlJiZWGz9nzhzl5eXpgQceuOh+DRgwoNr5O3bsUOfOnZWfn3/R1zeV4uJiWe2GAo9+bcr268piP6vLftzsmP6u7QAZFzxIMz9/r5uzan6Ki4slybTzqTmqMCpUWFromI6xxcjHUrWx3By19ONp2A2d2Gc4psM6W2Sxeu8DWVv68YQzjqdn4Xg2jeLiYoWGhjb5dppjTQPAu5Xby5WzN8cxndglUX5WPxMz8mwVFXZ9s/XcbT67X3uJfHxc9tlpAADczmUNoLi4OC1atEgzZszQgw8+KEmyWCwyjJ//YGe1WrV48WLFxcW5apO12rp1qyTJx8dHV111lXbu3OlYZrVaNW3aNC1cuFCSHM/riY6OrnZd0dHRys7OVlFRkSIjI1VaWqpDhw6pd+/e1V5ZVLme858DdLFtVBePpuFjlKvP/tcd04fbXKezrnsrwIOVG+Va++O5q/T6tOrTYhpALZ29Qjq0ze6YDrnMR9RhAABXa441DQDvVlZRpuc+fc4xPTByIA2gJlRRblfBml2O6S5XhdMAAgC0aC79q/dvf/tbJSQk6KWXXtInn3yiEydOqHXr1rr++uv1yCOPqHfv3q7cXK0qH866aNEixcTE6OOPP9bll1+ubdu2aeLEiXruuefUvXt3TZo0SSdOnJAkhYWFVbuuyk8cVsbVN76211QXX5PNmzdXO7/yyiCzCtL8/HwdKTmj0+16mrL9uvI9W+p0xc/pttE66+t81VfcDZ3dnVazU/nJZf7AcU5pean815673WNsbKxsfi3jHuot/XiWnT6rvTkfOaZjY/vLP9B7G7ct/XjCGcfTs3A8m4Y7rv6p1NxqGgAAAABoKJf/9eyqq67SH//4R1evtkHs9p8/Le7v769169apY8eOkqSbb75Zq1ev1tVXX63nnntOkyZNMjNNuJlhser7ttc5TQMAAACVmlNNAwAAAAAN5dEfn6680ua6665zNH8q9e7dW926ddOuXbt0/PhxR2xNV+BU3s+9Mq6+8Re+pl27drXGo2lU+ATpw77PumRd+yZO1KmtPz8TJujaGHVeutQl6wUAAAAAV6FuAQAA8E4efelDz54/34qsdevW1S6vnH/q1Klan8Fz4fN7bDabIiIitGfPHlVUVNQaf/731W2jtmcQAQAAAAAAAAAA1JVHN4ASEhIkSV9++WWVZeXl5dq1a5dsNpvat2+v6OhodezYUQUFBSotLXWKLS0tVUFBgbp27arIyEjH/Pj4eMeyC2VnZ0tyvv97fHy8JCknJ6fG+MoYAAAAAAAAAACAhvLoW8B1795diYmJysnJUWZmpsaPH+9YNn/+fB0/flyjR4+Wr+/PwzB+/Hg9/fTTSktL0/z58x2xaWlpKikp0e9//3un9U+cOFFvvPGGUlNTtXHjRvn7//xw+A0bNig3N1eJiYmKiopyxA8fPlwpKSnKyMjQQw89pE6dOkmSDhw4oCVLlig8PFzDhg1rsvFA3a3csq9OcW0uv1H+l/xCknTdDZc3ZUoAAAAA0CBhd96pVtf+/BxUv44RJmcDAAAAd/HoBpAk/fGPf9SNN96oCRMmaN26derVq5e2bdum999/X1FRUfqf//kfR+zMmTO1fv16LViwQNu2bVNMTIwKCwuVk5Ojfv36aerUqU7rTkhI0Pjx45WZmamYmBjdcccdOnTokLKystS2bVtlZGQ4xbdp00ZLlizRmDFjFBMToxEjRkiSsrKydPToUWVlZSkkJKTJx8TbWezluvTHTxzT/2nbT4bVr0HrOnbjLY7vw27o3OjcAAAAAMDVwu680+wUAAAAYAKPvgWc9PNVQJ9++qnGjRunrVu36g9/+IOKior0X//1X/r444/VoUMHR6zNZlNeXp6mTp2qL7/8Us8995y++uorzZgxQ++9956CgoKqrP/ll1/W4sWLJUmLFy/Wu+++q2HDhunjjz9Wjx49qsSPHj1aGzZsUK9evbRs2TItX75cV1xxhXJycnTfffc13UDAwcdepv7/esLx5WMvMzslAAAAAAAAAABcyuOvAJKkyMhILVu2rE6xYWFhSk9PV3p6ep3irVarkpOTlZycXOd8kpKSlJSUVOd4AAAAAAAAAACA+vD4K4AAAAAAAAAAAAC8jVdcAQQArhDkG6SVd6x0moZ7+Pn76L5Z1zlNAwAAAJ6OGsS9qDsAAJ6GBhDQCBFvLlPggb2SpO+vv1qXTJtqaj5oWlaLVR1sHWoPhMtZrBYFtwk0Ow0AAIAW6fv053WmqEiSFBAdTd3SglCDuBd1BwDA09AAAhoh6NtvFLzzc0nS6RA/k7MBAAAAgKpOf/mFTm0tlCQZZ8tNzgYAAADuwjOAAAAAAAAAAAAAPAwNIKARznSM1MluPXSyWw8FdOtudjoAAADwYGvXrtWgQYPUrl07BQYGqmvXrho5cqT279/vFFdcXKzp06crKipKAQEB6tKlix577DGVlJRUu1673a6MjAz16dNHQUFBat++vUaOHKndu3fXmEt2drbi4+MVEhKi0NBQJSQk6L333nPp/sJ1Arp1V+BVfRR4VR/qFgAAAC/CLeCARvhu5MOO76+/obOJmcAdTpaf1Ni/j3VMv5b0mlr5tTIxI+9Rdvqs1j5X6JgeNiNG/oH8FwYA8A6GYeiRRx7R0qVL1b17d91///0KCQnRwYMHlZeXp2+//VaRkZGSpNLSUsXHx2v79u1KTEzUyJEjtW3bNi1cuFB5eXnKz89XYKDz8y0efvhhZWZm6sorr1RycrIOHjyoVatWKScnRx999JGio6Od4lesWKExY8aoffv2GjdunCQpKytLgwYN0qpVq3Tvvfe6ZVxQd5fOSjE7BTQQNYh7UXcAADwN/4sBQB0ZMnT01FGnabjPyeIys1MAAMAUf/jDH7R06VI9+uij+sMf/iAfHx+n5WfPnnV8/+yzz2r79u1KSUnR/PnzHfNnzZqlBQsWKD09XY8//rhj/qZNm5SZmam4uDht3LhR/v7+kqRRo0ZpyJAhmjx5srKzsx3xx44d05QpUxQeHq7CwkJ16tRJkpSSkqJrrrlGkyZN0uDBgxUSEtIkYwF4G2oQ96PuAAB4Em4BBwAAAADN1KlTp/TUU0+pW7duWrx4cZXmjyT5+v78uT7DMJSZmang4GClpqY6xaSmpio4OFiZmZlO81955RVJUlpamqP5I0m33367Bg4cqJycHO3bt88xf/Xq1Tp+/LimTJniaP5IUqdOnTR58mQdOXJEa9eubfyOAwAAAGg0GkAAAAAA0Ezl5OTo2LFjGjp0qCoqKvTWW29p/vz5eumll7Rr1y6n2KKiIh08eFCxsbGy2WxOy2w2m2JjY7V7926nZwbl5uY6ll1o8ODBkqS8vDyneElKTEysUzwAAAAA83ALOAAAAABoprZu3SpJ8vHx0VVXXaWdO3c6llmtVk2bNk0LFy6U9HMDSFKVZ/ZUio6OVnZ2toqKihQZGanS0lIdOnRIvXv3rvbKosr1VK63tm1UF1+TAQMGVDt/x44d6ty5s/Lz82tdR1MoLi6W1W4o8OjXpmzflfLz95qdQp0UFxdLkmnHvLk7bT+tsrJztyQrKChQoDXwIq+oHWNes4pyQ2VlFY7pgoIC+fhZXLJuxt39GHP3Y8zNwbi7X0PGvLi4WKGhoU2VUo24AghohLBP/qnwjesVvnG9irNzzE4HAAAAHub777+XJC1atEhhYWH6+OOP9dNPPyk/P189evTQc889pxdffFGSdOLECUlSWFhYteuqLDgr4+obX9trqotH8+C/tVCB77+vwPffl//WwtpfAAAAAI/AFUBAI7TLz1bwzs8lScf3XavQwVVvhQEAAAA0lN1ulyT5+/tr3bp16tixoyTp5ptv1urVq3X11Vfrueee06RJk8xMs942b95c7fzKK4Pi4uLcmY5Dfn6+jpSc0el2PU3ZvivF3dDZ8f2+FSt06v8aP0HXxqjztKkmZVVV5SdnzTrmzV1pean81557PldsbKxsfraLvKJ2jHnNyk6f1d6cjxzTsbH95R/omj+dMe7ux5i7H2NuDsbd/Roy5mZc/SPRAAIAAACAZqvySpvrrrvO0fyp1Lt3b3Xr1k27du3S8ePHHbE1XYFTeauKyrj6xl/4mnbt2tUaD/Os3LLP8X2346cVXGFIko4dP60Pzlt2vlHnNY0AAADQ8nELOAAAAABopnr2/PlKlNatW1e7vHL+qVOnan0Gz4XP77HZbIqIiNCePXtUUVFRa/z531e3jdqeQQQAAADAvbgCCGiEPVNSZfm/23IMvyHK5GwAAADgaRISEiRJX375ZZVl5eXl2rVrl2w2m9q3b68OHTqoY8eOKigoUGlpqWy2c7eJKi0tVUFBgbp27arIyEjH/Pj4eL3xxhsqKCiocguL7OxsSc63toiPj9df/vIX5eTkqH///tXGx8fHN3Kv4Wrn1y2Glc+BAgAAeAt+8wMawfAPkD0wSPbAIFkDA81OBwAAAB6me/fuSkxM1K5du5SZmem0bP78+Tp+/LiGDRsmX19fWSwWjR8/XiUlJUpLS3OKTUtLU0lJiSZMmOA0f+LEiZKk1NRUlZWVOeZv2LBBubm5SkxMVFTUuQ86DR8+XGFhYcrIyNCBAwcc8w8cOKAlS5YoPDxcw4YNc9n+wzXOr1sM/wCz0wEAAICbcAUQvI7d4qtvI253mgbqwtfqq9u73u40Dfew+lgU3e9Sp2kAALzFH//4R914442aMGGC1q1bp169emnbtm16//33FRUVpf/5n/9xxM6cOVPr16/XggULtG3bNsXExKiwsFA5OTnq16+fpk6d6rTuhIQEjR8/XpmZmYqJidEdd9yhQ4cOKSsrS23btlVGRoZTfJs2bbRkyRKNGTNGMTExGjFihCQpKytLR48eVVZWlkJCQpp8TABvQQ3iXtQdAABPw28O8Dp2nwBtu/wxs9NACxTgE6DH+nHumMHXz0c33cvzBAAA3ql79+769NNP9eSTT+rvf/+7cnJy1KFDB/3Xf/2XnnzySV1yySWOWJvNpry8PM2ZM0dr1qzRpk2bFBERoRkzZmj27NkKCgqqsv6XX35Zffr00dKlS7V48WIFBwdr2LBhmjt3rrp3714lfvTo0QoPD9e8efO0bNkyWSwWXXvttXriiSd02223NelYAN6GGsS9qDsAAJ6GBhAAAAAANHORkZFatmxZnWLDwsKUnp6u9PT0OsVbrVYlJycrOTm5zvkkJSUpKSmpzvEAAAAA3I8GENAI/j8clvXMaUlS2WU+8u90mckZAQAAAICz8+sWe0Cgytp3MDkjAAAAuAMNIKAROr2+RME7P5ckHb7+WnVeutTkjAAAAADA2fl1S0mPK7V7xjMmZwQAAAB3oAEEr2Oxl6vLwXcd03s7DpFh9TMxI7QU5fZyvbv73LkzpNsQ+XHuuEVFhV1FH//HMR19/aXy8bGamBEAAADQ9KhB3Iu6AwDgaWgAwev42Mt09c7Fjun9HW7TWX6BRh2UVZRpceG5c+e2qNsovtykotyuzeu+cUx3u6Y9hRgAAAA8HjWIe1F3AAA8DQ0goBH+c+f9OlpSLElKuD7a5GwAAAAAoKrz65azwaEmZwMAAAB3oQEEr2NYfHQ4fIDTdEOV9ujt+L7VtZ0blRcAAAAANIXz6xYAAAB4DxpA8DoVPoH66Kq5ZqcBAAAAAAAAAECT4UamAAAAAAAAAAAAHoYGEAAAAAAAAAAAgIehAQQAAAAAAAAAAOBheAYQvI7FXq6II5sd04fCB8iw+jVoXVEvLVCr3V9Lkgq69dS3j6TU6/WjbujcoO0CAAAAQF2dX7ecbEDdAgAAgJaJBhC8jo+9TNfvmOOYfjvubzrbwAaQT+lP8jtxzPE9AAAAADQ31C0AAADeiVvAAQAAAAAAAAAAeBiuAAIa4ac+1+nMpR0lSWWXdDQ5GwAAAACoiroFAADAO9EAAhrhh8ShZqcANwryDdKqO1c5TcM9/Px9NOL/Xe80DQAAgLqhbmm5qEHci7oDAOBpaAABQB1ZLVaFB4WbnYZXslgtahXqb3YaAAAAgFtRg7gXdQcAwNPwDCAAAAAAAAAAAAAPQwMIAAAAAAAAAADAw9AAAgAAAAAAAAAA8DA8AwhohPZ/X6PAwwckSac7dNIPSfeYnBGa0snykxr1zijH9Mo7VqqVXysTM/IeZafP6s0FWx3T96ZcK/9A/gsDAACoC+qWlosaxL2oOwAAnob/xYBGCPl8m4J3fi5JKulxJYWUhzNkqLis2Gka7nPmZLnZKQAAALRI1C0tFzWI+1F3AAA8CbeAAwAAAAAAAAAA8DBcAQQ0wtnQ1iprG+74HgAAAACaG+oWAAAA70QDCGiEfRN+Z3YKAAAAAHBR1C0AAADeiVvAAQAAAAAAAAAAeBgaQAAAAAAAAAAAAB6GW8ABAAAAAACt3LKv3q8ZdUPnJsgEAAAArsAVQAAAAAAAAAAAAB6GK4CARgj+crt8fyqWJJ0NCVXJ5X3NTQgAAAAALkDdAgAA4J287gqgBQsWyGKxyGKx6KOPPqqyvLi4WNOnT1dUVJQCAgLUpUsXPfbYYyopKal2fXa7XRkZGerTp4+CgoLUvn17jRw5Urt3764xh+zsbMXHxyskJEShoaFKSEjQe++957J9hPtc8u6b6vyndHX+U7ouefdNs9MBAAAAgCqoWwAAALyTV10BtGPHDs2ePVs2m02lpaVVlpeWlio+Pl7bt29XYmKiRo4cqW3btmnhwoXKy8tTfn6+AgMDnV7z8MMPKzMzU1deeaWSk5N18OBBrVq1Sjk5Ofroo48UHR3tFL9ixQqNGTNG7du317hx4yRJWVlZGjRokFatWqV77723yfYfP7NbfLXnsjudpoG68LX66s7udzpNwz2sPhb16t/BaRoAAADwdNQg7kXdAQDwNF7zm0N5ebnGjh2rvn37Kjo6WitWrKgS8+yzz2r79u1KSUnR/PnzHfNnzZqlBQsWKD09XY8//rhj/qZNm5SZmam4uDht3LhR/v7+kqRRo0ZpyJAhmjx5srKzsx3xx44d05QpUxQeHq7CwkJ16tRJkpSSkqJrrrlGkyZN0uDBgxUSEtJUwwBJdp8AfdZzmtlpoAUK8AnQtGs5d8zg6+ejAcN+YXYaAAAAgFtRg7gXdQcAwNN4zS3g5s6dq88//1yvvvqqfHx8qiw3DEOZmZkKDg5Wamqq07LU1FQFBwcrMzPTaf4rr7wiSUpLS3M0fyTp9ttv18CBA5WTk6N9+/Y55q9evVrHjx/XlClTHM0fSerUqZMmT56sI0eOaO3atS7ZX7jH/gd/q6+eXqKvnl6i/Q/+1ux0AAAAAKAK6hYAAADv5BVXABUWFmru3Ll6+umndcUVV1QbU1RUpIMHD2rw4MGy2WxOy2w2m2JjY5Wdna39+/crMjJSkpSbm+tYdqHBgwcrNzdXeXl5GjNmjCNekhITE6uNnzNnjvLy8vTAAw9cdH8GDBhQ7fwdO3aoc+fOys/Pv+jrm0pxcbGsdkOBR782ZfumqXwXGZLP0R/r9dL8/L0uT8dViot/fkisWecTXIvj6Vk4np6F4+lZOJ5No7i4WKGhoWanAbRY5W3bm50CAAAATODxVwCdOXNGDzzwgPr27auZM2fWGFdUVCRJVZ7ZU6lyfmVcaWmpDh06pK5du1Z7RdGF8bVto7p4AAAAAAAAAACAhvD4K4CefPJJFRUVaevWrdU2aiqdOHFCkhQWFlbt8spPHFbG1Te+ttdUF1+TzZs3Vzu/8sqguLi4WtfRFPLz83Wk5IxOt+tpyvbrymovV9fv/uqY3nPZXbJb/UzJ5UA940fd0LlJ8qhO5SeXzTqfmqPyinL99Ztz585d3e+Sn4855059tfTjWXHWrq8/OuyY7tm/g3x8Pf4zDDVq6ccTzjienoXj2TS4+geAt2rJNUhLRN0BAPA0Ht0A2rx5sxYuXKg5c+aod+/eZqeDZsJqL1Ofohcc099GJJnWAELLUmYv0wvbz507SV2TKL7cpOKsXVv+ttsx/YvrLqEQAwAAgMejBnEv6g4AgKfx2AbQ2bNnNXbsWF111VWaNWtWrfGVV+XUdAVO5f3cK+PqG3/ha9q1a1drPJo/66lSWSoqJEmGj4/sQbZaXgEAAAAA7kXdAgAA4J08tgFUUlLieJ6Ov79/tTGVt0xbu3atrrjiCkk1P4Pnwuf32Gw2RUREaM+ePaqoqKhye7nqnvcTHR2tTz/9VEVFRVUaQLU9gwiuY1h8dKj9TU7TDdXlj/+t4J2fS5JKelyp3TOeaXR+AAAAAOBK1C0AAADeyWMbQAEBAfrNb35T7bL8/HwVFRXprrvuUvv27dWlSxdFR0erY8eOKigoUGlpqWy2c5+IKi0tVUFBgbp27arIyEjH/Pj4eL3xxhsqKCiocp/37OxsSc73f4+Pj9df/vIX5eTkqH///tXGx8fHN27HUasKn0Bt6fO02WkAAAAAAAAAANBkPPZGpkFBQcrMzKz268Ybb5QkPf7448rMzFTfvn1lsVg0fvx4lZSUKC0tzWldaWlpKikp0YQJE5zmT5w4UZKUmpqqsrIyx/wNGzYoNzdXiYmJioqKcswfPny4wsLClJGRoQMHDjjmHzhwQEuWLFF4eLiGDRvm8rEAAAAAAAAAAADexWOvAGqImTNnav369VqwYIG2bdummJgYFRYWKicnR/369dPUqVOd4hMSEjR+/HhlZmYqJiZGd9xxhw4dOqSsrCy1bdtWGRkZTvFt2rTRkiVLNGbMGMXExGjEiBGSpKysLB09elRZWVkKCQlx1+7CBY4k3KETMT/fSrA8rK3J2QAAAABAVdQtAAAA3sljrwBqCJvNpry8PE2dOlVffvmlnnvuOX311VeaMWOG3nvvPQUFBVV5zcsvv6zFixdLkhYvXqx3331Xw4YN08cff6wePXpUiR89erQ2bNigXr16admyZVq+fLmuuOIK5eTk6L777mvyfYRrFccM0NGEO3Q04Q4V/19BBQAAADSlBQsWyGKxyGKx6KOPPqqyvLi4WNOnT1dUVJQCAgLUpUsXPfbYYyopKal2fXa7XRkZGerTp4+CgoLUvn17jRw5Urt3764xh+zsbMXHxyskJEShoaFKSEjQe++957J9hGtRtwAAAHgnr7wCaPny5Vq+fHm1y8LCwpSenq709PQ6rctqtSo5OVnJycl13n5SUpKSkpLqHA/XstjL1fGHfzqmD7a/WYbVz8SMAAAAgLrZsWOHZs+eLZvNptLS0irLS0tLFR8fr+3btysxMVEjR47Utm3btHDhQuXl5Sk/P1+BgYFOr3n44YeVmZmpK6+8UsnJyTp48KBWrVqlnJwcffTRR4qOjnaKX7FihcaMGaP27dtr3Lhxkn6+q8GgQYO0atUq3XvvvU22/wAAAADqzisbQPBuPvYy9fv8Gcf023F/01kaQAAAAGjmysvLNXbsWPXt21fR0dFasWJFlZhnn31W27dvV0pKiubPn++YP2vWLC1YsEDp6el6/PHHHfM3bdqkzMxMxcXFaePGjfL395ckjRo1SkOGDNHkyZOVnZ3tiD927JimTJmi8PBwFRYWqlOnTpKklJQUXXPNNZo0aZIGDx7Mra0BAACAZoBbwAEAAABACzB37lx9/vnnevXVV+Xj41NluWEYyszMVHBwsFJTU52WpaamKjg4WJmZmU7zX3nlFUlSWlqao/kjSbfffrsGDhyonJwc7du3zzF/9erVOn78uKZMmeJo/khSp06dNHnyZB05ckRr1651yf4CAAAAaBwaQAAAAADQzBUWFmru3LmaPXu2rrjiimpjioqKdPDgQcXGxspmszkts9lsio2N1e7du7V//37H/NzcXMeyCw0ePFiSlJeX5xQvSYmJiXWKBwAAAGAebgEHNMJlK/6oVt/ukiSdjPqFvhv9qMkZoSkF+QZp7d1rnabhHn7+Phr55A1O0wAAeIszZ87ogQceUN++fTVz5swa44qKiiSpyjN7KkVHRys7O1tFRUWKjIxUaWmpDh06pN69e1d7RVHleirXW9s2qouvyYABA6qdv2PHDnXu3Fn5+fm1rqMpFBcXy2o3FHj0a1O231QufetNBX53QJJ0+rJO+s+vXPecpvz8vY16fXFx8f+tx5xj3tzZDbsea/+YY/qTDz+R1dK4z/Iy5jUzDENRt52b3rylQBaLxSXrZtzdjzF3P8bcHIy7+zVkzIuLixUaGtpUKdWIBhDQCAH/OaigfXskSRWBrUzOBk3NarEqLCDM7DS8ksVqUaCNZ3UBALzTk08+qaKiIm3durXaRk2lEydOSJLCwqr/faWy4KyMq298ba+pLh7Ng/+RIwo4+J0kyR4QaHI2qA+rxSqbj632QLiExWKRb4DZWQAA4Do0gAAAAACgmdq8ebMWLlyoOXPmqHfv3man4zKbN2+udn7llUFxcXHuTMchPz9fR0rO6HS7nqZsv6lU+Nski4/je1fuX9wNnRv1+spPzpp1zL0RY24Oxt39GHP3Y8zNwbi7X0PG3IyrfyQaQECjnOzW0/EJutOXRZmcDQAAADzJ2bNnNXbsWF111VWaNWtWrfGVV+XUdAVO5a0qKuPqG3/ha9q1a1drPJoH6hYAAADvRAMIaITDw8aYnQIAAAA8VElJieN5Ov7+/tXGVF4xs3btWl1xxRWSan4Gz4XP77HZbIqIiNCePXtUUVFR5fZy1T3vJzo6Wp9++qmKioqqNIBqewYRzEPdAgAA4J1oAAFAHZWWl2rE2yMc01m/zJLNj/txu0PZ6bNaNe8Tx/Tw3/eTfyD/hQEAPFtAQIB+85vfVLssPz9fRUVFuuuuu9S+fXt16dJF0dHR6tixowoKClRaWiqb7dzvKaWlpSooKFDXrl0VGRnpmB8fH6833nhDBQUFVW5hkZ2dLcn51hbx8fH6y1/+opycHPXv37/a+Pj4+MbtOAAHahD3ou4AAHgaq9kJAEBLcrL8pOML7lV+psLxBQCANwgKClJmZma1XzfeeKMk6fHHH1dmZqb69u0ri8Wi8ePHq6SkRGlpaU7rSktLU0lJiSZMmOA0f+LEiZKk1NRUlZWVOeZv2LBBubm5SkxMVFTUuVuGDR8+XGFhYcrIyNCBAwcc8w8cOKAlS5YoPDxcw4YNc/lYAN6MGsS9qDsAAJ6EjzEAAAAAgIeYOXOm1q9frwULFmjbtm2KiYlRYWGhcnJy1K9fP02dOtUpPiEhQePHj1dmZqZiYmJ0xx136NChQ8rKylLbtm2VkZHhFN+mTRstWbJEY8aMUUxMjEaM+PnKhKysLB09elRZWVkKCQlx1+4CAAAAuAgaQAAAAADgIWw2m/Ly8jRnzhytWbNGmzZtUkREhGbMmKHZs2crKCioymtefvll9enTR0uXLtXixYsVHBysYcOGae7cuerevXuV+NGjRys8PFzz5s3TsmXLZLFYdO211+qJJ57Qbbfd5o7dRDOycsu+esWPuqFzE2UCAACAC9EAAhqh7T9z5H/ke0lSWfgl+vHmRJMzAgAAgDdYvny5li9fXu2ysLAwpaenKz09vU7rslqtSk5OVnJycp23n5SUpKSkpDrHw1zULQAAAN6JBhDQCK0/zlfwzs8lSSU9rqSQAgAAANDsULcAAAB4JxpAQAtS39srSNxiAQAAAAAAAAC8EQ0goDGsPjJ8fBzfAwAAAECzQ90CAADglWgAAY2we9pTZqcAAAAAABdF3QIAAOCdrGYnAAAAAAAAAAAAANeiAQQAAAAAAAAAAOBhuAUcvI7d4qfdnYY5TQN14Wf107DoYU7TcA8fH6uuiO3oNA0AAAB4OmoQ96LuAAB4GhpA8Dp2H3/9q8cUs9NAC+Tv468p13DumMHHz6ob7upmdhoAAACAW1GDuBd1BwDA09AAAhohcN9u+ZwqlSRVBNl0ujO/KAIAAABoXqhbAAAAvBMNIKAROq5+VcE7P5cklfS4UrtnPGNyRgAAAADgjLoFAADAO3EzUwAAAAAAAAAAAA/DFUDwOlZ7ubrvX+OY/ibyHtl5kCbqoLyiXGuKzp0790TfIz8fzh13qDhr1xcfHHRMX3FTR/n48hkGAAAAeDZqEPei7gAAeBoaQPA6VnuZrvxmqWN6z2V3NrgBdPC+h5zupQ3PVmYv09J/nTt37ux+J8WXm1SctevTDXsd0z37d6AQAwAAqCPqlpaLGsS9qDsAAJ6GBhDQCDw8FQAAAEBzR90CAADgnWgAwesYFh99d8lAp2kAAAAAAAAAADwJDSB4nQqfQH3S+0mz0wAAAAAAAAAAoMlwI1MAAAAAAAAAAAAPQwMIAAAAAAAAAADAw3ALOKARuqXPlq3oc0lSafSV2j3tKZMzAgAAAABn1C0AAADeiQYQvI7FXq5O/3nfMX3g0ltkWP0atjJ7hSwVFY7vAQAAAKDZoW4BAADwSjSA4HV87GW69ssFjulD7W/S2YY2gFqAlVv21fs1o27o3ASZAAAAAPB2F9YngSVnqp1/PuoTAACAhqEBBDTC8evjdLJbL0lSWfglJmcDAAAAAFVRtwAAAHgnGkBAI/x4c6LZKQAAAADARVG3AAAAeCcaQABQR618W+lvw/7mNA338Avw0a+f6u80DQAAAHg6ahD3ou4AAHgaGkAAUEcWi0U2P5vZaXgli8Ui/0D+ywIAAIB3oQZxL+oOAICnsZqdAAAAAAAAAAAAAFyLBhAAAAAAAAAAAICH4bpWoBE6rP2zAr/7VpJ0+rIoHR42xuSMAAAAAMAZdQsAAIB3ogEENEKr3V8reOfnkiTrmdMmZ4OmVlpeqnv+eo9jes1da7gft5uUnT6rN9I+dkzfn3o99+YGAACoI+qWlosaxL2oOwAAnob/xQCgHsoqysxOwWtVnLWbnQIAAADgdtQg7kXdAQDwJDSAgEY4c2lH+Zw+6fgeAAAAAJob6hYAAADvRAMIaITvRj9qdgoAAAAAcFHULQAAAN7JanYCAAAAAAAAAAAAcC0aQAAAAAAAAAAAAB6GBhAAAAAAAAAAAICHoQEEAAAAAAAAAADgYTy6AfTdd9/p+eefV2Jiojp37ix/f3916NBB99xzj7Zs2VLta4qLizV9+nRFRUUpICBAXbp00WOPPaaSkpJq4+12uzIyMtSnTx8FBQWpffv2GjlypHbv3l1jXtnZ2YqPj1dISIhCQ0OVkJCg9957zyX7DPcKLdysdpveUbtN7yi0cLPZ6QAAAABAFdQtAAAA3snX7ASaUkZGhhYsWKDu3bsrMTFR7du3V1FRkdatW6d169Zp5cqVGjFihCO+tLRU8fHx2r59uxITEzVy5Eht27ZNCxcuVF5envLz8xUYGOi0jYcffliZmZm68sorlZycrIMHD2rVqlXKycnRRx99pOjoaKf4FStWaMyYMWrfvr3GjRsnScrKytKgQYO0atUq3XvvvU0+LnCd8E3vKHjn55Kkkh5XqjhmgMkZucbKLfsUWHLG8X1djLqhc1OmBAAAAKCBPLVuAQAAwMV5dAPo+uuvV25uruLj453m//Of/9Stt96qSZMmaejQoQoICJAkPfvss9q+fbtSUlI0f/58R/ysWbO0YMECpaen6/HHH3fM37RpkzIzMxUXF6eNGzfK399fkjRq1CgNGTJEkydPVnZ2tiP+2LFjmjJlisLDw1VYWKhOnTpJklJSUnTNNddo0qRJGjx4sEJCQppsTAAAAAAAaEnq+qG08/EBNQAAAA9vAP3qV7+qdv7NN9+shIQE5eTk6N///reuu+46GYahzMxMBQcHKzU11Sk+NTVVL7zwgjIzM50aQK+88ookKS0tzdH8kaTbb79dAwcOVE5Ojvbt26fOnX/+xXP16tU6fvy4nnrqKUfzR5I6deqkyZMna86cOVq7dq0eeOABl40BqrJb/LSr83CnaaAu/Kx+Gt5zuNM03MPHx6recZc5TQMAAACejhrEvag7AACexqMbQBfj5/fzL02+vj8PQVFRkQ4ePKjBgwfLZrM5xdpsNsXGxio7O1v79+9XZGSkJCk3N9ex7EKDBw9Wbm6u8vLyNGbMGEe8JCUmJlYbP2fOHOXl5dXaABowoPrL9Xfs2KHOnTsrPz//oq9vKsXFxbLaDQUe/dqU7dfHrjYJju/9j+9p8HoO33+vVPF/jUYfa4vY97qynj0tSXXep/z8vU2YTfNxha5wfP9RwUcmZlI/xcXFkmTazweXOO/iyILN+83LoxnwiOMJB46nZ+F4No3i4mKFhoaanQbQYu199HFZKiokSYaPj8nZoD78ffz1yNWPmJ2G1/Dxs6rfHV3NTgMAAJfxyo8y7Nu3T//4xz8UERGhPn36SPq5ASSpyjN7KlXOr4wrLS3VoUOH1LVrV/lU8wv0hfG1baO6eDR/9sAg2W22n78Cg8xOBwAAAACqsAfZVBEcqorgUNmDbLW/AAAAAB7B664AKi8v15gxY3TmzBktWLDA0bw5ceKEJCksLKza11V+4rAyrr7xtb2muviabN68udr5lVcGxcXF1bqOppCfn68jJWd0ul1PU7YP16q88qeuxzOOe2w3a5WfRDfr5wNci+PpWTienoXj2TS8+eqf7777TqtXr9a7776rr776SocPH1bbtm0VGxurmTNn6oYbbqjymuLiYs2ZM0dr1qzR4cOHFRERofvuu0+zZ89WcHBwlXi73a4XXnhBS5cu1a5duxQcHKzbbrtNc+fOVbdu3arNKzs7W/PmzVNhYaEsFouuvfZaPfHEE7r11ltdPgYAAAAAGsarrgCy2+0aN26c8vPzNWHCBMet2QAAAACgOcrIyNC0adO0e/duJSYmasaMGbrpppu0fv163XjjjcrKynKKLy0tVXx8vNLT09WrVy9NmzZNPXv21MKFC3XLLbfo9OnTVbbx8MMPKzk5WYZhKDk5WUlJSXrrrbfUr1+/au9QsGLFCiUlJenLL7/UuHHjNHbsWH3++ecaNGiQ3nzzzSYbCwAAAAD14zVXANntdj300ENauXKlRo8erZdeeslpeeVVOTVdgVN5P/fKuPrGX/iadu3a1RqPpmG1l+sX+1Y5pnd1Hi47D9JEHZRXlGvVznPnzvAew+Xnw7njDhVn7dqR/51junfcZfLx9arPMAAAvNT111+v3NxcxcfHO83/5z//qVtvvVWTJk3S0KFDFRAQIEl69tlntX37dqWkpGj+/PmO+FmzZmnBggVKT0/X448/7pi/adMmZWZmKi4uThs3bpS/v78kadSoURoyZIgmT56s7OxsR/yxY8c0ZcoUhYeHq7CwUJ06dZIkpaSk6JprrtGkSZM0ePBghYSc9/A+AA1GDeJe1B0AAE/jFf+L2e12Pfjgg3rttdc0cuRILV++XFar867X9gyeC5/fY7PZFBERoT179qji/x6mebH42rZR2zOI4DpWe5mu2P0nx5fVXtbgdfn9+IP8//Od/P/znfx+/MGFWaI5KrOX6U///pPjq6wR5w7qp+KsXYXZ3zq+Ks7azU4JAAC3+NWvflWl+SNJN998sxISEnTs2DH9+9//liQZhqHMzEwFBwcrNTXVKT41NVXBwcHKzMx0mv/KK69IktLS0hzNH0m6/fbbNXDgQOXk5Gjfvn2O+atXr9bx48c1ZcoUR/NHkjp16qTJkyfryJEjWrt2beN3HC5F3dJyUYO4F3UHAMDTeHwDqLL58/rrr2vEiBH685//7Hjuz/mio6PVsWNHFRQUqLS01GlZaWmpCgoK1LVrV0VGRjrmx8fHO5ZdqPJTcuff/72ycMvJyakxvrriDs1X5LLF6vXkZPV6crIily02Ox0AAAB4ET+/n68C8PX9+cYORUVFOnjwoGJjY2Wz2ZxibTabYmNjtXv3bu3fv98xPzc317HsQoMHD5Yk5eXlOcVLUmJiYp3i0TxQtwAAAHgnj74FXOVt315//XXdd999WrFiRbXNH0myWCwaP368nn76aaWlpTndLiEtLU0lJSX6/e9/7/SaiRMn6o033lBqaqrT7RI2bNig3NxcJSYmKioqyhE/fPhwpaSkKCMjQw899JDjE3MHDhzQkiVLFB4ermHDhrl6GHABu8VX+zsMcpoGAAAAWpJ9+/bpH//4hyIiItSnTx9Jtd9VIDo6WtnZ2SoqKlJkZKRKS0t16NAh9e7du8YPyZ2/3tq2UdtdFc43YMCAaufv2LFDnTt3Vn5+fq3raArFxcWy2g0FHv3alO03FZ+yUsmocHzfnPbPevbn51K5Oqf8/L0uXZ9ZTttPq6zs3FU/BQUFCrQGNmqdlbegN+t91pxVlBsqKzt3l5eCggL5+Flcsm7G3f0Yc/djzM3BuLtfQ8a8uLhYoaGhTZVSjTz6L99PP/20XnvtNQUHB6tHjx565plnqsQMHTpUffv2lSTNnDlT69ev14IFC7Rt2zbFxMSosLBQOTk56tevn6ZOner02oSEBI0fP16ZmZmKiYnRHXfcoUOHDikrK0tt27ZVRkaGU3ybNm20ZMkSjRkzRjExMRoxYoQkKSsrS0ePHlVWVhb3ynYDu0+Atl7xeO2BqJeVW/bVHnSeUTd0bqJMAAAAPFt5ebnGjBmjM2fOaMGCBY7mTeXzSWt6rmhlwVkZV9/42l5TXTwAAAAA83h0A2jv3r2SpJKSEs2dO7famC5dujgaQDabTXl5eZozZ47WrFmjTZs2KSIiQjNmzNDs2bMVFBRU5fUvv/yy+vTpo6VLl2rx4sUKDg7WsGHDNHfuXHXv3r1K/OjRoxUeHq558+Zp2bJlslgsuvbaa/XEE0/otttuc9m+wz2+H3Kvfrz559tfnA1xfwcXAAAA3sVut2vcuHHKz8/XhAkTNGbMGLNTapDNmzdXO7/yyqDzb6XtTvn5+TpSckan2/U0ZftN5dDQsfL96edPqp4NCW1W+1d55Y+rc4rzkA+clZaXyn/tuedzxcbGyuZnu8gralf5aWWz3mfNWdnps9qb85FjOja2v/wDXfOnM8bd/Rhz92PMzcG4u19DxtyMq38kD28ALV++XMuXL6/Xa8LCwpSenq709PQ6xVutViUnJys5ObnO20hKSlJSUlK98kLzVHJ5X7NTAAAAgJeovMX1ypUrNXr0aL300ktOyyuvyqnpCpzKW1VUxtU3/sLXtGvXrtZ4NA/ULQAAAN7JoxtAAAAAAOAJ7Ha7HnzwQb3++usaOXKkli9fLqvV6hRT2zN4Lnx+j81mU0REhPbs2aOKiooqzwGq7nk/0dHR+vTTT1VUVFSlAVTbM4gAd6rvLaolblMNAAA8j7X2EMCzWOzlijr4juPLYi83OyUAAACgRuc3f0aMGKE///nPVZo10s+Nl44dO6qgoEClpaVOy0pLS1VQUKCuXbsqMjLSMT8+Pt6x7ELZ2dmSnG9tER8fL0nKycmpMb4yBgAAAIC5aADB6/jYy3TNV885vnzsZWanBAAAAFSr8rZvr7/+uu677z6tWLGi2uaPJFksFo0fP14lJSVKS0tzWpaWlqaSkhJNmDDBaf7EiRMlSampqSorO/d78YYNG5Sbm6vExERFRUU55g8fPlxhYWHKyMjQgQMHHPMPHDigJUuWKDw8XMOGDWv0fgMAAABoPG4BBwAAAADN1NNPP63XXntNwcHB6tGjh5555pkqMUOHDlXfvn0lSTNnztT69eu1YMECbdu2TTExMSosLFROTo769eunqVOnOr02ISFB48ePV2ZmpmJiYnTHHXfo0KFDysrKUtu2bZWRkeEU36ZNGy1ZskRjxoxRTEyMRowYIUnKysrS0aNHlZWVpZCQkCYZCwAAAAD1QwMIaITOryxUq91fS5JOduupfRN+Z3JGAAAA8CR79+6VJJWUlGju3LnVxnTp0sXRALLZbMrLy9OcOXO0Zs0abdq0SREREZoxY4Zmz56toKCgKq9/+eWX1adPHy1dulSLFy9WcHCwhg0bprlz56p79+5V4kePHq3w8HDNmzdPy5Ytk8Vi0bXXXqsnnnhCt912m8v2Ha5D3QIAAOCdaAABjeBbfFz+Px6RJJWFX2pyNmhqrXxbacM9GxzT/lZ/E7PxLn4BPhrzzADHtI8vdzAFAHiH5cuXa/ny5fV6TVhYmNLT05Wenl6neKvVquTkZCUnJ9d5G0lJSUpKSqpXXjAPdUvLRQ3iXtQdAABPQwMIAOrIYrEowCfA7DS8ksVika9f9c87AAAAADwVNYh7UXcAADwNDSCgEX668hqVt2svSTrdoZPJ2bQsK7fsq/drRt3QuQkyAQAAADwbdQsAAIB3ogEENMIPSfeYnQIAAAAAXBR1CwAAgHfiZqYAAAAAAAAAAAAehiuAAKCOSstLdde6uxzTfx36V9n8bCZm5D3KTp/VyjlbHNOj5twg/0D+CwMAAIBnowZxL+oOAICn4X8xAKgHwzDMTsFrMfYAAADwRvwe7F6MNwDAk9AAAgAAAAAAXm/lln31ih91Q+cmygQAAMA1aAABjdA+Z538vz8oSSq7pKN+SBxqbkIAAAAAcAHqFgAAAO9EAwhohJB/f6rgnZ9Lkkp6XEkhBQAAAKDZoW4BAADwTlazEwAAAAAAAAAAAIBrcQUQ0AgVthCVh7VxfA8AAAAAzQ11CwAAgHeiAQQ0wrePpJidglep70NZJR7MCgAAAFC3AAAAeCduAQcAAAAAAAAAAOBhuAIIAAAAAACgnrhDAQAAaO64AggAAAAAAAAAAMDDcAUQvI7d4qedUaOcpoG68LP6adTlo5ym4R4+PlZdldDJaRoAAADwdNQg7kXdAQDwNDSA4HXsPv76ovt4l6zLtnOHfEuKJUlng0NV2qO3S9aL5snfx1/j+7jm3EH9+PhZdW1SF7PTAAAAaJGoW1ouahD3ou4AAHgaGkBAI1z6tzcUvPNzSVJJjyu1e8YzJmeEC9X3vtzckxsAAACehroFAADAO3EtKwAAAAAAAAAAgIehAQQAAAAAAAAAAOBhuAUcvI7VXq4e3650TO+MGiV7Ax+keeCBybKeOS1JsgcEuiQ/NF/lFeVa+dW5c2dUr1Hy8+EhrO5Qcdauf2064Ji+KqGTfHz5DAMAAEBdULe0XNQg7kXdAQDwNDSA4HWs9jL12vOaY3pX5L0NbgCVte/gqrTQApTZy/Ta5+fOnXt73Evx5SYVZ+3a/o9zz3O68uaOFGIAAAB1RN3SclGDuBd1BwDA09AAAgAAAAAAcIOVW/bVHnSeMxUnmygTAADgDWgAwevYLb76NuJ2p2kAAAAAAAAAADwJf/mG17H7BGjb5Y+ZnQaaqYt9Iu9MxUmdKq9wTK/6ZL8CfFpp1A2d3ZEaAAAAAAAAANQZDSCgESxlZ2Sx2yVJhtUqwz/A5IwAAAAAwBl1S8tW3YfQLoYPqAEAgEo0gIBG6JqRpuCdn0uSSnpcqd0znjE5IwAAAABwRt0CAADgnaxmJwAAAAAAAAAAAADX4gogeB2LvVxdDr7rmN7bcYgMq5+JGaGlu9hzg2rCbRkAAAAAAAAANCUaQPA6PvYyXb1zsWN6f4fbdLaBDaCjcYNVfFU/SVJ567YuyQ8AAAAAXIm6BQAAwDvRAAIa4US/m81OAQAAAAAuiroFAADAO9EAAgAT1Pe2cdwyDgAAAEBd1FZrBJacqRJHvQEAgGeiAQQAdeRvDdJ/dV/umLbIal4yXsYvwEdj/zvWMW2xmJgMAAAA4CbUIO5F3QEA8DQ0gACgjiwWiyzyMTsNr2SxWCi+AAAA4HWoQdyLugMA4Gn46AgAAAAAAAAAAICH4QogoBEu+8vLCtq3W5J0qnM3fTfyYZMzgqeq7zODJO7jDQAAgJ9Rt6A21BsAAHgmGkBAIwQc3K9Wu3dKkuy+fiZng6ZmGIYM2R3TFlll4f4AbmEYhgzj3LTFIsYeAACgjqhbWi5qEPei7gAAeBoaQABQR2X2U1q659ynJSd2fVkBPq1MzOjizv8UX2DJmSrzqtNcP8VXfqZC/zv7I8f0r5/qL/9A/gsDAACAZ2vONUh9rxpqrrXG+ag7AACehv/FgEY4FdVdhs/PD+Q83amLuckALuCJRRwAAIC3o24BAADwTjSAgEY4dO+DZqcAAAAAABdF3QIAAOCdaAABABqMh8UCAAAAqAtqBwAA3I8GEAAAAAAAAJodmkYAADQODSAAgFs1pIgzyu06VVbhmF796QFZ/KwXfQ2FHwAAAAAAALwZDSATfPLJJ5o9e7Y+/PBDlZeXq0+fPpo+fbqGDx9udmoAAAAAUCtqGgDNFVcNAQBwDg0gN9u0aZMGDx6swMBA3X///QoJCdGaNWs0YsQI7d+/XzNmzDA7RdRDmw/fl//R7yVJZe0u0bEbbzE5IwCV6lv4UfQBAFA31DQtD3ULcHGVtUND7jxQV51cshYAAOqHBpAbnT17VhMmTJDValV+fr769u0rSXryySd1/fXX6/e//73uvfdeRUVFmZso6qzN5vcVvPNzSVJJjysppIAWjE8KAgBQO2qalom6BTDfkZIzkupXd1BvAAAaiwaQG73//vv65ptv9OCDDzoKJUkKCwvT73//e40bN06vvfaannzySfOSBADUWUOaRvVF0QcAaE6oaQDAfdxRbzQENQoAtBw0gNwoNzdXkpSYmFhl2eDBgyVJeXl5ta5nwIAB1c7/9NNP5efnpyuvvLLhSTZCRUWFDEmyuOby6KZi87Vr4JCjjun5jwxT6dmG5ZxqGLr8/77f9a9PlDYuyQUZNhOG/ed/m/nxdCt/yW/CufGY/+yvpDIT86mPFn48/XwCNKbfuT8k/fGRqSqvOGNiRu7zVHUzm8Hx9LVaTNu2p6mo+Pk2Iz4+PiZnAlfgeDaNPXv2KCQkxOw0IGqalqpZ1y3N4PeaZq0pahDGvEZNWnd40LhXW6O4mCvqDX4vcz/G3ByMu/s1ZMzNqmloALlRUVGRJCk6OrrKsg4dOig4ONgR0xC+vr4KCQlRaGhog9fRGDt27JAk9e7d25Tt18fd+W0c3wcESwENXM8LF0y3bXBGzU9LOp5u9b/nfd/q/75aAE84nuu+etbxfUhIoKRA85IxmSccT5zD8fQsHM+mERISojZt2tQeiCZHTdMyNee6xVPH3KVcXIMw5hfXVHUH4+5+jLn7MebmYNzdryFjblZNQwPIjU6cOCHp59sjVCc0NNQRczGbN292aV6uUvkpvuaaH+qH4+lZOJ6ehePpWTienoXjCU9HTQNXY8zdjzE3B+Pufoy5+zHm5mDc3a8ljXnLv+4UAAAAAAAAAAAATmgAuVHlp+Rq+kRccXFxjZ+kAwAAAACzUdMAAAAALQcNIDeqvE92dffEPnz4sEpKSqq9lzYAAAAANAfUNAAAAEDLQQPIjeLj4yVJOTk5VZZlZ2c7xQAAAABAc0NNAwAAALQcNIDc6NZbb1W3bt20cuVKbd++3TH/xIkTmjdvnvz9/fXAAw+YlyAAAAAAXAQ1DQAAANByWAzDMMxOwpts2rRJgwcPVmBgoO6//36FhIRozZo1+vbbb7Vw4ULNmDHD7BQBAAAAoEbUNAAAAEDLQAPIBB9//LFmz56tDz/8UOXl5erTp4+mT5+uESNGmJ0aAAAAANSKmgYAAABo/mgAAQAAAAAAAAAAeBieAQQAAAAAAAAAAOBhaAABAAAAAAAAAAB4GBpAAAAAAAAAAAAAHoYGEAAAAAAAAAAAgIehAQQAAAAAAAAAAOBhaAABAAAAAAAAAAB4GBpA0CeffKIhQ4aodevWstls6t+/v1atWlWvdZw5c0ZPP/20oqOjFRgYqI4dO2rixIn6/vvva3zN//7v/+r666+XzWZTmzZt9Mtf/lKFhYWN3R2v5+7juXfvXlkslhq/5syZ46I9806NPZ7ffPON5syZo7vuukuXXXaZLBaLunTpUuvrsrOzFR8fr5CQEIWGhiohIUHvvfdeI/YEkjnH82Lvz3HjxjVuh7xcY46nYRjasGGDJk2apKuuukphYWFq1aqVrr76as2bN0+nT5+u8bW8P5uGGceT9ydQfy2ldnFFns2Fu8d8+/btSk1NVf/+/XXJJZcoICBA3bp106OPPqrvvvuu2vUPHDiwxp+ndfndtzlqKXXdoUOH9Jvf/EYREREKDAxUz549NXfuXJWXlzdkt03l7jEfN27cRcfcYrEoLS3N6TWc61W5q+bduXOnhg8frvDwcAUFBenqq6/Wiy++KMMw6pxrc+HuMS8qKtK8efMUFxenjh07yt/fX5GRkXrggQf01VdfVfua2t4fLU1L+VtAcXGxpk+frqioKAUEBKhLly567LHHVFJSUo+9bT7cPe5z5syp9ef6b37zG6fXuONc93XJWtBibdq0SYMHD1ZgYKDuv/9+hYSEaM2aNRoxYoT279+vGTNm1LoOu92uu+++W9nZ2erfv7/uueceFRUVKTMzU++9954++ugjtW/f3uk1c+fO1RNPPKGoqCg98sgj+umnn/TGG2/oxhtv1HvvvafY2Nim2mWPZtbxlKSrr75aQ4cOrTJ/4MCBLtgz7+SK4/nPf/5TTz31lHx8fHT55Zfr8OHDtb5mxYoVGjNmjNq3b+/4pSArK0uDBg3SqlWrdO+99zZ217ySWcdTkqKioqr9Ba9v37713AtUauzxPHPmjIYMGaKAgAANHDhQgwcP1unTp5Wdna3/9//+n9atW6fc3Fy1atXK6XW8P5uGWcdT4v0J1EdLqV1ckWdzYcaYP/LII9qyZYuuv/563X///QoICNCWLVv04osvavXq1frnP/+pXr16Vbut2bNnV5nXunXrBu+/WVpKXXf48GHdcMMNOnDggIYNG6bo6Gjl5eXpiSee0Mcff6x169a1mD/UmjHmQ4cOrfEPiQsXLlRpaakGDx5c7XLO9XPcUfN+8cUXuvHGG3Xq1CkNHz5cHTt21DvvvKNHH31UX3zxhTIyMhq0/2YwY8xTU1OVlZWl3r176+6771ZoaKj+/e9/689//rPefPNN/f3vf1dcXFy1r/3tb3/bIs/t87WUvwWUlpYqPj5e27dvV2JiokaOHKlt27Zp4cKFysvLU35+vgIDA+u03ebAjHG/2N9AMzMz9d1339X4c71Jz3UDXqu8vNzo3r27ERAQYGzbts0x//jx40aPHj0Mf39/Y+/evbWu59VXXzUkGSNHjjTsdrtj/osvvmhIMiZOnOgUv3PnTsPX19fo0aOHcfz4ccf8bdu2GQEBAcbll19uVFRUNH4HvYxZx3PPnj2GJGPs2LGu2hUYrjue33zzjbF582bj5MmThmEYRkBAgBEVFVVj/I8//mi0bt3aCA8PN/bv3++Yv3//fiM8PNwIDw83iouLG7xf3sqs42kYhiHJiI+Pb0T2uJArjmdZWZnxzDPPGD/++GOV+XfeeachyXj22WedlvH+bBpmHU/D4P0J1EdLqV1clWdzYNaY/+EPfzCKioqqrGf+/PmGJGPIkCFVlsXHxxue8ueNllTXPfDAA4Yk48UXX3TMs9vtxv33329IMlauXFnndZnJrDGvyaeffmpIMvr06VNlGed6Ve6oeePi4gxJxrvvvuuYd+bMGePmm282JBkffvhhHffaXGaN+bJly4zCwsIq8//yl78YkowrrriiyrKxY8cakow9e/bUmk9z1pL+FvDkk08akoyUlBSn+SkpKYYkY968eXVel9nMHPfqHD582PD19TXatWtnnDlzxmmZO851z/hfAw2SnZ1tSDIefPDBKsuWL19uSDKeeuqpWtczYMAAQ1KVN47dbje6detm2Gw2xxvFMAzj8ccfNyQZr732WpV1jRs3zpBk5OXlNWCPvJtZx5MGUNNw1fG8UG3/Wb388ss1rnvOnDk1vndxcWYdT8PgD8xNoamOZ6UPP/zQkGTccccdTvN5fzYNs46nYfD+BOqjpdQuTf0zxZ3MGvOanD171ggKCjJsNluVZZ70R/GWUtcVFxcbAQEBRrdu3ZyaHYZhGHv37jUkGQkJCXVal9ma27k+adIkQ5Lx/PPPV1nGuV47V9e8X3/9dY3nc25ubo370ByZWZfWpEePHoYk44cffnCa7ykNoJbytwC73W507NjRCA4ONkpKSpyWlZSUGMHBwUa3bt3qnadZmtu5vmDBAkOSMXXq1CrL3HGu8wwgL5abmytJSkxMrLKs8nK0vLy8i67j9OnT2rJli3r27KmoqCinZRaLRYMGDVJpaak+/fRTl24XVZl1PCsdPHhQL7zwgubNm6c//elP+uabbxq4J5DMe5/w/mwaZo/r8ePHtXTpUs2bN08vvfSS/v3vfzfZtrxBUx9PPz8/SZKvr/Odes0+jzyVWcezEu9PoG5aSu3iST+rza4vLmSxWOTn51fjz1NJWrlypebNm6fnn39eubm5stvtta63uTF73Ota123evFlnzpzRoEGDqtzmLSoqSj179lRBQYEqKioummtzYPaYn+/UqVNauXKlAgICNGbMmBrjONfdt92Lxd90002y2Wxe9XPd1Wr7Xfntt9/Wf//3f2vRokXasGGDysrK3Jleo5k95nWtNYqKinTw4EHFxsbKZrM5LbPZbIqNjdXu3bu1f//+JsvVlcwe9wv96U9/kiSNHz++xpimPNd5BpAXKyoqkiRFR0dXWdahQwcFBwc7YmryzTffyG63V7uO89ddVFSkm2++2fF9cHCwOnTocNF41I9Zx7PSxo0btXHjRse0xWLRr3/9a7300ktV/vNA7VxxPF29Xd6fDWfW8az02Wef6eGHH3aal5SUpNdee02XXHJJk23XUzX18Xz11VclVf1llfdn0zDreFbi/QnUTUupXcz+P9+VzK4vLvTmm2+quLhY9913X40xv/71r52me/Toof/93//Vddddd9F1Nydmj3td67qL5Vk5/+uvv9a3336rbt26XTRfs5k95ud78803deLECd1///1q27ZtjXGc602z3fr+XPfx8VHXrl31xRdf6OzZsxdtUDcHze3/qI8//liff/65+vXrV+OzT6ZMmeI0HRERoWXLltX4HJXmxuwxr2utUZef6dnZ2SoqKlJkZGST5esqZo/7+f75z39q586d6t+/v6688soa45ryXOcKIC924sQJSVJYWFi1y0NDQx0xjVnH+XGV39cnHnVj1vFs1aqVUlNTtXXrVh0/flw//vij/vGPf+j666/XihUr9MADD9R7X+Ca4+nq7fL+bDizjqckzZgxQx9++KGOHDmi4uJiffjhh7r99tv197//Xb/85S9bxKcym5umPJ4bNmzQyy+/rMsvv1y/+c1v6rxd3p8NZ9bxlHh/AvXRUmoXM//PdzWzxrw6+/fvV3JysoKCgpSWllZl+d133623335b3333nU6ePKkvvvhCv/3tb/XNN99o0KBB2rdv30XX35y0lLrOVce2OWhO53ptnxLnXG/a7Tb057rdbtdPP/3k6lRdrjn9H3XixAmNHTtWVqtVzz77bJXlcXFxWrVqlfbt26dTp06pqKhITz/9tI4fP6677rqrTleONgct5W8BnvQzXWpe53ptP9fdca4379Y0gGbvkksu0dNPP+0079Zbb9WAAQMUExOjt956S4WFhYqJiTEpQ8C7LVy40Gl6wIABevvtt3XLLbcoLy9P69ev169+9SuTssP5PvnkE40YMUJhYWFavXq1AgICzE4JjVCX48n7EwBqd/ToUQ0ZMkTff/+9Xn/9dfXs2bNKzLRp05ymL7/8cj3//PMKDQ1VWlqaFi5cqD/84Q/uSrlFoq4z365du5Sfn6+uXbvqlltuqTaGcx2e4NSpUxo2bJi++uorzZ07VwMHDqwS89BDDzlN/+IXv1Bqaqouu+wy/eY3v9HTTz+tv/71r27KuGWi1jBfcXGxVq9ereDgYI0YMaLaGHec61wB5MUqu6A1dTyLi4tr7JTWZx3nx1V+X5941I1Zx7MmrVq1ctyzuKCgoNZ4OHPF8XT1dnl/NpxZx7MmVqtVEyZMkMT7syGa4nh++umnSkxMlNVqVXZ2drWXhvP+bBpmHc+a8P4EqtdSapfm9n9+YzSH+uLo0aO69dZb9fnnn+vFF1/U6NGj65R7pcrb3rSkn6fNYdzPV1Nd58ptmK25jPmrr74qwzD00EMPVXmuUm289Vx39XYb+nPdYrEoJCTE1am6XHP4P+r06dO6++67tWnTJj3++OP6/e9/X6/Xjx07VoGBgS3mXG8OY36+mmoNT/qZLjWfcX/jjTd08uRJjRgxQsHBwfV6rSvPdRpAXuxizws4fPiwSkpKarz3Y6Vu3brJarXWeN/E6u65GB0drZKSEh0+fLhO8agbs47nxYSHh0uSSktL6xSPc1xxPF29Xd6fDWfW8bwY3p8N5+rj+emnn2rQoEGy2+3Kzs5Wv3796r1d3p8NZ9bxvBjen0BVLaV2aY7/5zeU2fVFZfPns88+05IlS6o8w6Au2rVrJ4vF0qJ+npo97tWp7v+l2p4/WFRUJH9/f3Xu3LlO2zBTcxjziooKvfbaa/Lx8dGDDz5Yn/Qlee+57urt1vfnekVFhfbs2aOuXbs2++f/SOb/H3Xq1Cnddddd2rhxo2bOnKl58+bVex0+Pj5q3bp1iznXzR7z6jT0Z/r5cc1dcxn3zMxMSTXf/u1iXHmu0wDyYvHx8ZKknJycKsuys7OdYmoSFBSk66+/3vFwx/MZhqGNGzfKZrM5PYjQFdtFVWYdz4vZsmWLJKlLly51isc5Zr1PeH82jeY4rrw/G86Vx7OyWVBRUaG///3vuuGGG9yyXZxj1vG8GN6fQFUtpXbxpJ/VZtYX5zd/MjIy9OijjzZoHz7++GMZhtGifp62lLquf//+8vf318aNG2UYhlP8t99+q6+//lqxsbEt4o/izWHM3333XR08eFBJSUm67LLL6r0P3nquu2O7F4v/4IMPVFpa6lU/1xvq1KlTuvvuu7Vx40b97ne/04IFCxq0nn379unw4cMt5lxvjr8XVPczPTo6Wh07dlRBQUGVhkNpaakKCgrUtWtXRUZGujPVBmsO4/7vf/9bn3zyia688kr179+/3q936bluwGuVl5cb3bp1MwICAoxt27Y55h8/ftzo0aOH4e/vb+zZs8cx/+DBg8aXX35pHD9+3Gk9r776qiHJGDlypGG32x3zX3zxRUOSMXHiRKf4r7/+2vD19TV69OjhtK5t27YZAQEBxuWXX25UVFS4dme9gFnHs7Cw0Cmu0po1awyr1Wq0adOmyjZQO1cdzwsFBAQYUVFRNS7/8ccfjbCwMCM8PNzYv3+/Y/7+/fuN8PBwIzw83CguLm7obnkts47nv/71L6OsrKzK/IKCAqNVq1aGn5+fsWvXrvrujtdz1fH89NNPjdatWxvBwcHGBx98UOt2eX82DbOOJ+9PoH5aSu1S3zybM7PG/OjRo0bfvn0NScbixYtrzXP37t3G0aNHq8w/cOCAceWVVxqSjNdee62Oe22+llTXPfDAA4Yk48UXX3TMs9vtxsiRIw1JxsqVKxsyBG5n1pif7+677zYkGW+99VaNMZzr5tW8cXFxhiTj3Xffdcw7c+aMcfPNNxuSjIKCgrrttMnMGvNTp04ZgwYNMiQZ06dPrzXPQ4cOGQcOHKgy/9ixY0ZCQoIhyXjqqadqXU9z0JL+FvDkk08akoyUlBSn+SkpKYYkY968eRfNqTkxa9zP99vf/taQZCxatKjGGHed6zSAvNz7779v+Pn5GSEhIcaECROM6dOnG1FRUYYkY+HChU6xY8eONSQZy5Ytc5pfUVFhDB482JBk9O/f30hJSTHuuecew2KxGF27djW+//77Ktt95plnDElGVFSUMX36dGPChAlGSEiIERAQUKc/mqB6ZhzP+Ph4o1OnTsZ9991nTJs2zUhOTjZuuukmQ5IREBBgrF+/vql322O54nj+8MMPxtixYx1fVqvVsNlsTvN++OEHp9f8+c9/NiQZ7du3NyZPnmxMnjzZaN++vWGxWIxVq1Y19W57LDOO59ixY43w8HBj6NChxpQpU4zp06cbgwcPNiwWi2G1Wp2KddRPY4/n0aNHjTZt2hiSjKSkJGP27NlVvtLT06tsl/dn0zDjePL+BOqvpdQu9cmzuTOrvpBk9OrVq9qfp7NnzzaOHTvmiF+2bJkRGBhoDBo0yJg4caKRkpJiDB8+3LDZbIYk49e//nW1jUzVrlsAAPzzSURBVI3mrKXUdQcPHjQiIyMNi8Vi3HPPPUZKSorRv39/Q5Jx5513tqhxN+vni2EYxuHDhw1fX1/j0ksvNcrLy2vMkXPdvJp3x44dRlhYmOHv72+MGTPGmDlzpqPpNnnyZJePS1Myqy6VZHTo0KHGn+vn/zF+06ZNhq+vrxEXF2f85je/MWbNmmX8+te/Ntq1a2dIMm655Rbj1KlTTTlMLtVS/hZQUlJiXH311YYkIzEx0Zg1a5aRmJhoSDL69etnnDx5sknGp6mY9fPFMH5uELdr187w9/c3jhw5UmOO7jrXaQDB2LJli5GUlGSEhoYaQUFBxvXXX2+88cYbVeJqejMYhmGcPn3amDNnjtG9e3fD39/f6NChgzF+/Hjj8OHDNW53xYoVxnXXXWcEBQUZYWFhxpAhQ4ytW7e6cte8kruP5yuvvGIkJSUZkZGRRlBQkBEQEGB069bNGD9+vPHll182xS56lcYezz179hiSLvpV3adQN2zYYNx8882GzWYzgoODjfj4eGPjxo1NtJfew93H86233jLuvvtuo2vXrobNZjP8/PyMyMhIY+TIkcaWLVuaeG89X2OOZ12OZU2fLOL92TTcfTx5fwIN01Jql7rm2RK4e8wr/zhT1993PvvsM2PMmDHGFVdcYbRu3drw9fU1wsPDjcTExBY75obRcuq6gwcPGg899JBx6aWXGv7+/kZ0dLSRlpZmnDlzplH7bwazfr4sWLDAkGTMnDnzovlxrptb83711VfGvffea7Rt29YICAgw+vTpY7zwwgstrulmGO4f88rG/sW+Nm3a5Ijft2+fMX78eOPqq6822rVrZ/j6+hqtW7c24uLijJdeesk4e/ZsE41M02kpfws4fvy4MXXqVCMyMtLw8/MzOnfubMyYMaPF3mnCrJ8vWVlZhiRj+PDhF83PXee6xTAuuFkrAAAAAAAAAAAAWjSr2QkAAAAAAAAAAADAtWgAAQAAAAAAAAAAeBgaQAAAAAAAAAAAAB6GBhAAAAAAAAAAAICHoQEEAAAAAAAAAADgYWgAAQAAAAAAAAAAeBgaQAAAAAAAAAAAAB6GBhAAAAAAAAAAAICHoQEEAAAAAAAAAADgYWgAAQAAAAAAAAAAeBgaQAAANGMWi0UDBw40Ow0AAAAAaBBqGgAwDw0gAAAAAAAAAAAAD0MDCAAAAAAAAAAAwMPQAAIAAAAAAAAAAPAwNIAAAM3emjVrFB8fr0suuUSBgYHq2LGjbrvtNq1Zs8Yp7l//+pfuv/9+RUREyN/fX1FRUZoyZYqOHj1a7Xo/++wz/frXv1anTp0UEBCgiIgIJSUl6W9/+5tT3NmzZ7Vo0SJdffXVCgoKUlhYmBISEqrESdLy5ctlsVi0fPly5eTk6MYbb1SrVq3Url07jR07tsZcMjMz1bt3bwUGBioyMlIzZ87U6dOnq409dOiQfvvb3yo6OlpBQUFq3bq1Lr/8cj3yyCM6ceJEXYYUAAAAgBtR0zijpgEA97AYhmGYnQQAADV58cUX9eijjyoiIkJ33nmn2rVrp8OHD+vjjz9W3759tWLFCknSX//6Vw0fPlxWq1V33323IiMj9cUXX+idd95RdHS0tmzZojZt2jjWu2bNGo0aNUqGYejOO+9Uz5499f3332vLli3q3r271q1bJ0kyDEPDhg3T+vXr1aNHD915550qLS1VVlaWjh07pkWLFmnatGmO9S5fvlwPPvighg0bpnfeeUd33nmnunTpovz8fH3yySeKjY3VBx984LSPaWlpevLJJ3XppZfqvvvuk5+fn9asWaOrrrpKb7/9tuLj45WbmytJOnnypHr37q29e/cqMTFRV111lcrKyrRnzx794x//0GeffaZf/OIXTXtQAAAAANQZNQ01DQCYxgAAoBmLiYkx/P39jf/85z9Vlh05csTxb2hoqHHZZZcZe/fudYr5y1/+YkgyJk+e7Jh3+PBhw2azGTabzSgsLKyy3v379zu+f+211wxJRnx8vHHmzBnH/G+//dYIDw83fH19jW+++cYxf9myZYYkw9fX1/jggw8c88+ePWsMHDjQkGRs3rzZMb+oqMjw9fU1LrvsMqd9PHHihNGzZ0/Htiv99a9/NSQZU6dOrZL3Tz/9ZJw+fbrKfAAAAADmoaahpgEAs3ALOABAs+fn5yc/P78q89u1aydJev3111VcXKz//u//VlRUlFPM/fffr5iYGL3xxhuOea+99ppKS0s1Y8YMXXPNNVXW26lTJ6dYSXr22Wfl7+/vmN+5c2dNmzZNZ8+e1f/+7/9WWceoUaMUGxvrmPbx8dHY/8/efcfXeP5/HH+d7B0jRggJGqGk9gwJqmh1UFqjfEup1RqltWorpapas0ZbdKBaqqoqWpK0fmoUrT1qF1WjQiL7/v2R7zlfRxJJSJwk3s/HI49HznV/7vv+nEHuz7nu67pefBGAHTt2WNq/+OILkpKSGDx4MMWLF7e0e3l5MWrUqAxeEXB1dU3T5uHhgbOzc4b7iIiIiIiIbaimSUs1jYhI7nOwdQIiIiJ30rFjR4YOHUrVqlXp3LkzTZs2pVGjRnh5eVlifv31VwC2bdvGn3/+meYYcXFxXLp0iUuXLuHj48P27dsBaNGiRabn3717N25ubtStWzfNtqZNmwKwZ8+eNNtq1aqVps1chP3777+Wtt9//x2Axo0bp4lPry00NBRfX1+mTJnC77//zpNPPklYWBiVK1fGZDJl+nxEREREROT+Uk1jTTWNiMj9ow4gERHJ015//XWKFi3KvHnzmD59Ou+++y4ODg60bt2aGTNmUK5cOa5cuQLAnDlz7nismJgYfHx8LIuKli5dOtPzR0dHU6ZMmXS3+fr6WmJud2sxZ+bgkPpnNzk52dJmzuXWO+XMSpQokabN29ubX3/9lTFjxrB27Vq+//57AMqUKcPw4cPp169fZk9JRERERETuI9U01lTTiIjcP5oCTkRE8jSTycRLL73Ejh07+Oeff1i9ejXPPvssa9as4cknnyQ5OdlSmOzduxfDMDL8MU+lUKhQIQD++uuvTM/v5eXFxYsX09124cIFS8zd8vb2Bkj3HH///Xe6+5QtW5bFixfzzz//sHv3bqZOnUpKSgqvvPIKy5Ytu+tcREREREQk56mmSUs1jYjI/aEOIBERyTeKFi1KmzZtWLFiBc2aNePAgQMcO3aMevXqAbB169YsHcc89UF4eHimsTVq1CA2NtYyxcKtIiIiAKhevXrWnkA6qlWrBsDPP/+cZlt6bbeys7OjevXqDB061FIkffvtt3edi4iIiIiI5C7VNNZU04iI5C51AImISJ4WERGBYRhWbYmJiZYpElxcXOjevTuenp68+eab7N+/P80xYmNjLXNqA7z44ot4eHgwffr0dOe6vvUuOvMipyNGjCAxMdHSfubMGd577z0cHBx44YUX7vr5de7cGXt7e9577z2rO+aio6N566230sTv378/3bvozG0uLi53nYuIiIiIiOQ81TTWVNOIiNw/WgNIRETytDZt2uDl5UX9+vXx9/cnMTGRjRs3cuDAAdq3b2+ZAmHZsmU899xzVKtWjVatWlGpUiXi4+M5efIkkZGRNGzYkB9++AFInZt66dKldOzYkbp16/L0008TFBTEpUuX2LZtGwEBAXzzzTcAdO3alVWrVrFmzRoeeeQRnnzySWJiYlixYgVXrlxh+vTplC9f/q6f30MPPcSYMWMYO3YsjzzyCM8//zwODg58/fXXPPLIIxw+fNgqfuPGjbzxxhuEhIRQsWJFihYtyvHjx/n2229xcXHhlVdeuetcREREREQk56mmUU0jImIr6gASEZE87e233+aHH35g+/btrF27Fnd3dypUqMC8efPo0aOHJa5169bs3r2badOm8eOPP7Jx40bc3d3x8/Oje/fudOnSxeq4bdu2Zdu2bbz99ttERkby7bff4uPjQ/Xq1Xn55ZctcSaTia+++ooPPviAJUuWMGvWLJycnKhZsyaDBw/m6aefvufnOGbMGEqVKsWMGTOYP38+xYsXp2PHjkyYMAE3Nzer2JYtW3Ly5EmioqJYtWoVN27coHTp0nTo0IGhQ4fy8MMP33M+IiIiIiKSc1TTqKYREbEVk3H7GFQRERERERERERERERHJ17QGkIiIiIiIiIiIiIiISAGjDiAREREREREREREREZECRh1AIiIiIiIiIiIiIiIiBYw6gERERERERERERERERAoYdQCJiIiIiIiIiIiIiIgUMOoAEhERERERERERERERKWDUASQiIiIiIiIiIiIiIlLAqANIRERERERERERERESkgFEHkIiIiIiIiIiIiIiISAGjDiAREREREREREREREZECRh1AIiIiIiIiIiIiIiIiBYw6gERERERERERERERERAoYdQCJiIiIiIiIiIiIiIgUMOoAEhERERERERERERERKWDUASQiIiIiIiIiIiIiIlLAqANIRERERERERERERESkgFEHkIiIiIiIiIiIiIiISAGjDiAREREREREREREREZECRh1AIiIiIiIiIiIiIiIiBYw6gERERERERERERERERAoYdQCJiIiIiIiIiIiIiIgUMOoAEhERERERERERERERKWDUASQiIiIiIiIiIiIiIlLAqANIRERERERERERERESkgFEHkIiI2ExERAQmk4mAgABbpyIiIiIiIg+obt26YTKZGDdu3F3tHxAQgMlkIiIiIkfzspWTJ09iMpkwmUy2TkVERO6ROoBERPKpJk2aZKlImTJlCiaTiSlTpqTZlpSUxOLFi3n66afx8/PDxcWFwoUL88gjjzB48GAOHTp01/lFREQwbtw4vvnmm7s+hjy4Dhw4wLx58+jRowfVqlXD0dERk8lEt27dbJ2aiIiIiE39+eefjBgxgnr16lG8eHEcHR3x9vamWrVq9O3bl6ioqDT7jBs3zvKF/q0/np6eBAcHM3jwYE6dOpVmP3PNkZVrMPMxFy9enAPPMm/4999/GTdu3F13DOVFe/bsYdy4cQXqfZL75+TJk3z00Uf07duXOnXq4OzsjMlkokmTJrZOTUQy4GDrBEREJHeZO2DatGlj1b5//37atWvH4cOHAShWrBjBwcHExsZy8OBB9u7dy8yZMxk6dCiTJk3K9t1fERERjB8/nhdffDHNuc3c3NwICgqidOnS2X1aUsCNHDmSNWvW2DoNERERkTwjOTmZ4cOH8/7775OUlARAuXLlCAgI4Pr16xw5coQ//viDDz/8kNDQUCIjI9Mcw8vLi+DgYAAMw+DMmTPs37+fffv2sXDhQr799luaNm16X59XXuDr60tQUBA+Pj5W7f/++y/jx48HuGMnUIUKFXBxccHNzS0308wRe/bsYfz48YSFhWXYsefo6EhQUND9TUzyhffff58PPvjA1mmISDaoA0hEpAA7f/4827dvJygoiEqVKlnaDxw4QEhICNeuXeORRx7hgw8+ICwszNLJc/XqVT744AMmTZrE22+/zaVLl1iwYEGO51e3bt17GmUkBVepUqVo06YNtWvXpnbt2ixZsoRly5bZOi0RERERmzAMg+eee47Vq1fj5OTE6NGj6devHyVLlrTExMbGsn79et5+++10RwEB1KhRI800ZXv27KFTp04cOnSIzp078+eff+aLjoyc9Pbbb/P222/f9f4//fRTDmZje6VLl1adJuny8fHhiSeeoFatWtSuXZuoqCimT59u67RE5A7UASQiUoCtWbMGwzCsRuAkJSXx/PPPc+3aNWrXrs2mTZvw9PS02q9w4cKMGzeOSpUq0alTJxYuXMijjz5Khw4d7vMzkAfV3LlzrR6vXr3aRpmIiIiI2N706dNZvXo1jo6OrF+/nmbNmqWJcXNzo127djz77LNMmjQpy8euXr06ixcvpn79+ly4cIEff/yRp59+OifTF5ECYtSoUVaPDxw4YKNMRCSrtAaQiEgBlt70bytWrGD//v3Y2dnx6aefpun8uVXHjh3p2LEjAGPHjiUlJSVL5zWZTJapEpYsWZJmrnGziIgITCYTAQEBaY5hnm988eLFnD9/nl69euHn54erqyuVKlVi+vTpGIYBQEJCAlOnTqVKlSq4ublRokQJXn75ZS5fvpxhjsnJyXzyySc8+uij+Pj44OTkROnSpXnhhRf4/fffs/Q884obN27w2Wef0alTJypXroy3tzeurq4EBgbSr18/Tpw4ke5+t7/+ixcvpl69enh6euLl5UWzZs344Ycf0t138eLFlrmek5OTee+993jkkUdwd3enSJEiPPXUU2zfvj23nrKIiIjIAyMmJsYyOmXo0KHpdv7cymQypfmSNjN169bFw8MDwDJFdG77888/MZlMeHt7k5ycbLXt33//xcHBAZPJRLt27dLsu2zZMkwmE40bN7Zq3717N2PGjCEkJAQ/Pz+cnJwoWrQozZo1Y+nSpZb64XbdunVLs75qt27dKFeunOXx7TXNrWvoBAQEYDKZ0oyuuvWa2fy4Xr16eHh44OXlRdOmTdm4cWOGr1FKSgrz5s2jZs2auLm54ePjQ+vWrdmyZQsnT55MU19lJiAggO7duwMQGRmZ5jmdPHkS4I7HvvW1io6O5vXXX6d8+fK4urpSrlw5Ro0aRXx8PJA6cm3+/PnUqlULDw8PihQpQocOHdJdb+pWq1at4sknn6REiRI4OTlRokQJ2rRpk+HItrwqISGBVatW8dJLLxEcHEyRIkVwcXEhICCA//znP/zxxx/p7nf767927VqaNGlC4cKF8fDwoH79+nz++efp7nsvNZ6IFEzqABIRKaCio6PZvHkzvr6+1KtXz9L+xRdfANCyZUuraeEyMmjQICC1EPztt9+ydO6QkBDKlCkDQPHixQkJCbH6yY5Tp05Rs2ZNli5dSokSJfDx8eHw4cO8/vrrDBw4kPj4eB577DFGjBiBYRj4+/tz6dIlFi1aRPPmzUlISEhzzKtXr9K0aVNeeuklNm3ahLOzM1WrVuX69et88cUX1KlTh+XLl2crT1uKiIiga9eufPXVV1y/fp3AwEACAgL466+/mDdvHjVq1Mi0M2bIkCF0796dU6dOUalSJRwcHNi8eTOPP/4477333h337dChA0OGDOHatWs8/PDDJCYm8t1339GwYUNWrlyZk09VRERE5IHz/fffc+XKFezs7BgwYECunSejzpHcUqFCBcqWLUt0dDQ7d+602hYREWHpFIqIiEiT26ZNmwDSdIa9/PLLTJw4kf379+Pp6Um1atVwcXFh8+bNvPjii7zwwgtZzq9ixYrUrl3b8vj2mqZEiRLZer49evSge/funD9/nqCgIFJSUoiIiKBVq1bprn1pGAadO3emX79+7N69m6JFi1KuXDm2bNlCWFiY5Wa/7KhTpw6BgYFA6npQtz8nFxeXLB/r2rVr1K9fn/fffx8vLy9KlSrFqVOnmDRpEs8995wl/z59+hAdHU358uW5ceMGX375JY0aNeLKlStpjhkfH0/79u1p164d69atwzAMqlatSlJSEmvWrKFJkya8++672X7etnLkyBHatWvHkiVLuHTpEgEBATz00ENcvnyZTz/9lDp16rB27do7HmPWrFk8/fTT7N27l4ceeggPDw+2bdtGly5dMv3/4F5qPBEpQAwREcmXwsLCDMAYO3ZsutuXLVtmAEbv3r2t2r28vAzAePfdd7N0nuTkZMPT09MAjBkzZmQ5v7FjxxqA8eKLL2YYs3nzZgMw/P3902wzPz9HR0ejTZs2xuXLly3bPvroIwMw7OzsjLZt2xpBQUHGgQMHLNt37NhheHt7G4CxcOHCNMd+/PHHDcBo1KiRsXfvXqvnOmPGDMPOzs5wcXExDh8+nOXna0uHDh0yvvrqK+P69etW7dHR0cbo0aMNwKhcubKRkpJitd38+js4OBj29vbGhx9+aIlJTEy07GtnZ2ds3brVat9PPvnE8v64uroaq1evtmyLiYkxevToYQCGu7u7ceLEiXt+jr1798708yQiIiJSEA0YMMAAjODg4Ls+hvnaPCwsLN3tv/76qwEYgPHNN99Y2s3X5Fm5BjPv/8knn2Q5rxdffNEAjMmTJ1u19+/f3wAMPz8/AzB27dpltb18+fIGYERERFi1f/7551bX92bbt283AgMDDcBYtmxZhnncXludOHHC8rzuxN/f3wCMzZs3W7Xfes1ctGhRIzw83LLtxo0bRtu2bQ3ACAgISHOtPmfOHAMwnJycjOXLl1vab968abzyyiuGo6NjlnK7nTmnjD4LhnHn521+rRwdHY2GDRsaZ86csWz74YcfDAcHBwMw2rVrZ5QsWdLYsmWLZfuxY8eMsmXLGoDx5ptvpjl23759DcCoUqWK8csvv1ht++yzzww3NzfDZDKled/zqgsXLhiffvqpVS1rGIYRFxdnzJ4927C3tzeKFClixMTEWG2/9fV3dHQ0Ro8ebSQmJhqGYRgpKSnGvHnzDDs7OwMwvvzyS6t976XGuxtvv/12pp8nEbEtjQASESmg0pv+LTo6mujoaAAeeuihLB3Hzs6O8uXLA3D27NkczTErihQpwqeffkqRIkUsbS+99BJ16tQhJSWFb775hqVLl1K5cmXL9tq1a/Pyyy8DsG7dOqvj/fjjj6xfv56yZcuydu1aqlatatlmZ2fHoEGDeOWVV4iLi+P999/P3SeXQ4KCgmjXrp1l2g4zT09PJkyYQEhICAcPHsxwFFBSUhIvvfQSvXv3tkwz4ODgwIQJE3jsscdISUlh8uTJ6e6bmJjIqFGjrD5nbm5uLFiwgKCgIGJiYnR3mYiIiMg9MF+Dm6/Jc9qePXvo1q0bACVLluSxxx7LlfOkxzyCxzyix8w8Sn/o0KFptp86dYrjx4/j6upKgwYNrPbr3Lmz1fW9WZ06dSxrTC5ZsiRHn0NWJCYm8v7771u9tu7u7sydOxdHR0dOnjzJ3r17LdsMw2DatGkAjB492motVhcXF2bNmkWtWrXu3xNIh729PcuXL8fPz8/S1rJlS9q2bQvA119/zcyZM2nYsKFle4UKFSzv6e112uHDh5k/fz5eXl6sW7cuzcwRL7zwAhMnTsQwDKZOnZpbTytHlShRgi5duljVsgDOzs688sordOzYkStXrtxxFFCTJk2YMGECDg6py7ibTCb69OlDjx49AJg4cWK6+91LjSciBYs6gERECqCEhATWr19vmePX7Pr165bfb+8suBNz7LVr13IuySzq1KlTurmaC55q1apRt27dNNvN0zUcO3bMqn3FihWW4xYqVCjdc5rnGf/pp5/uOu/7LTk5mTVr1tC/f39at25NaGgojRo1olGjRhw9ehRInRM9I+ap/jJq37hxI4mJiWm2Ozg48Morr6Rpv3WKktuLOxERERHJOvMNXNm5fs/I7t27LdeIISEh+Pv7U7NmTQ4dOoSHhweff/45bm5u93yerDLXKlu2bLGsG/P333+zf/9+6tevT+vWrQHr63JzZ1BISAhOTk5pjnnq1CmmTp1Khw4dePTRRy3Pd8SIEcCdr4lzi7e3d7rTz5UsWdKyztCtdcuhQ4cs6/H07NkzzX4mk8lyw5uttGrVyjLt963MdVrhwoV57rnn0mzPqE776quvSElJ4fHHH8ff3z/dc5rrtFunCMwPfvrpJ4YMGcJTTz1FWFiY5TNpXtPoXuq0vXv3cubMmbvaN6MaT0QKFgdbJyAiIjlv06ZNREdH06FDB6uiyNPT0/L7jRs3snw8c6y3t3fOJZlFGY1UKl68eJa23/48f//9dyB1YdFffvkl3X3j4uIAMryQvt3u3bvp379/lmKzytfXN8vr55w/f57WrVtnWsxevnw53XYHBweCgoLS3ValShUg9TU5ceIEFStWtNpepkyZDD8X5n2PHz9OQkJCugW6iIiIiNyZl5cXkL3r94xER0ezZcsWy2N3d3eqVKlC8+bNGTRoUIZfvOcWPz8/AgMDOXr0KFu3bqVJkyZW6/uUL18ef39/fv75Z5KSknBwcMhw/R+AmTNn8sYbb6S7DqhZRtfEuSkwMNAyCuN2JUqU4MiRI1Y36x0+fNiyrWTJkunuV6NGjZxPNBsyq8MqVKhwx+0Z1Wlbt26lUaNG6e5r/HctqJs3b3L58mXLsTJy4cIF2rdvf8eYu5FRHXm7Gzdu8Oyzz7Jx48Y7xt3pM5neiDZInQXCwcGBpKQkDh48mKYz7l5qPBEpWNQBJCJSAKU3/RukFo9eXl5ER0enueMqIykpKRw/fhzAanj//eLu7p5uu7mAymy7cduCsVevXgXg6NGjlpExGbl582aWcrx27ZpVIZ0TslN8d+/end27d1O+fHkmTZpEw4YNKVGiBM7OzgD85z//4dNPP83w7i4fHx/s7e3T3Xbr4ra3FqXpbc9s36JFi/Lxxx/z8ccfp4l94oknGDlyZIbHEhEREXlQma/Bzdfk9yIsLIyIiIgsx5uvETMbbZGUlGT53TxVVVY1a9aMo0ePsmnTJqsOoEcffdSy/ZNPPmH79u00bNiQzZs3W9pvtXXrVgYOHAjAK6+8wosvvkhgYCCenp7Y29tz/PhxKlSoYJXr/ZJRzQKpI+fBum4xd47cegPf7e607X641zrtduY67fTp05w+fTrT88fGxmYaExcXl+N1Wna8/vrrbNy4ER8fH6ZMmUKTJk0oVaoUrq6uAIwZM4aJEyfecRRORvWWvb09RYsW5e+//063Tstujbd+/XomTZqUJrZGjRrMmjUr4ycpInmepoATESlgDMPg22+/xcnJiSeeeCLNdvNcylmd3mzHjh2Wi8Lb52HOj8xTZ3z88ccYhpHpT1Y0adIkS8fKzo95yofMXLhwgQ0bNgDw7bff0rFjR8qWLWvp/IHM73K8dOlShkX933//bfk9vSLz1u1Z2ff06dNs2bIlzc+RI0fumKOIiIjIg8o8GmL//v1cvHjxvp7bPGWy+cv5jNy6PaNpljPStGlT4H9Tu23atAkPDw/LNM+3rhN05MgR/vrrLzw9PdOsgWNe26d9+/bMnj2bOnXqUKhQIcuX4LYY+XO3zDVLel/sm91pW35kfs5jxozJUr0UEBCQ6TEDAgJyvE7Lao2YlJTE559/DsDixYvp0aMHFSpUsHT+QNY+kxnVW8nJyZb906vTslvj/f333+nWabeuTSUi+ZM6gERECpht27Zx/vx5mjZtapku4ladO3cGYMOGDRw6dCjT433wwQcAVKxYMVsLjWZ0Z5etBQcHA/DHH3/YOJOcceLECQCKFCliGcp/q6SkJHbu3HnHYyQlJWXYAbN//34gdbFZ8/zktzp79qxlXvqM9i1fvrxl+rdx48alW0QtXrz4jjmKiIiIPKgef/xxihQpQkpKCjNnzryv565UqRLwv+m5MrJnzx7L75UrV87WOZo2bYrJZGL79u3s27eP48eP07hxYxwdHYH/dQD99NNPlk6i0NDQNCONzNfFoaGh6Z7n119/zVZeYLuaxjx1199//51hB8Ctr3l2qE67P/755x/LSK57+Uyaa6rbHT582DKaLb1/c9mt8bp165ZunZadEYMikjepA0hEpIDJaPo3s44dO1K5cmVSUlLo2rXrHe8cW758OcuWLQNSv7g3T0+QFebFY7MyNP9+ev755wFYunTpHUev5Bfm1zk6Ojrd13rp0qVZulPU3NGXUftjjz1mKcJvlZiYyNy5c9O0G4ZhmSrAvHiviIiIiGSfh4cHw4YNA+Cdd96xdIJkxDCMdKdyuhvm67izZ8/ecR0T8xS/FStWzHDtl4wUL16cKlWqkJiYyPjx4wHr6d1KlSpFUFAQW7du5fvvv0+z3cx8XXz+/Pk02+Li4u5qGivzMeH+1jWVKlWyjHD56KOP0o1ZtGjRXR07r9Zpzz33HCaTiXXr1nHgwAFbp3PPbv3spPeZ3LRpE7t27cr0OJnVacHBwWnW/8nqvhnVeCJSsKgDSESkgPnmm28wmUw888wz6W53cHDgyy+/xMvLi507d9KoUSMiIyOthrJfvXqVcePG0bVrVyB1jZlOnTplKw/zoqDbtm3LkQVrc8qTTz5JixYtuHLlCk2bNk13Ac/jx4/zzjvv3HVRdT9VqVIFHx8fkpKSePXVV4mLi7Ns++qrr+jfvz8uLi53PIaDgwOLFi1i4cKFls9BUlIS48ePJzw8HDs7O0aMGJHuvo6OjkycOJFvv/3W0hYbG0vv3r05dOgQbm5uvPbaaznwTEVEREQeXG+88QZPP/00iYmJPP7444wdO5YLFy5YxcTFxbFmzRrq1avHqFGjcuS8DRs2pEWLFkDqupK3dwLFxsYyZswYli9fDmDpwMkuc4fO119/Dfxv/Z9bt8fHx/Pdd99Zxd8qLCwMgLlz57Jjxw5L+8WLF2nfvj1nzpzJdl4+Pj54e3sD8OOPP2Z7/7tlMpkYOnQoABMmTOCrr76ybIuPj2fgwIFWzzE7zHXa/v3703yGbCk4OJiePXuSmJhIixYt+O6779JMt3bu3Dnmzp3LlClTbJRl1nl7e1OtWjUABg0axL///mvZFhERQceOHTOt0yC1o2jChAmW0T6GYbBw4UJLx+Cbb76Z7n73UuOJSMGiDiARkQLk0KFDHD58mLp16+Lr65thXNWqVfnll18IDAzkjz/+oEmTJpQoUYI6depQpUoVihcvzvjx4zEMgzfeeOOuOkJatGhBiRIlOH36NGXKlKF+/fo0adKEJk2a3MMzzBkrVqygefPmHDx4kMaNG1OiRAnq1q1LrVq1KF68OBUqVGDYsGGcPXvW1qlmysHBgalTpwLwySefULJkSWrXro2fnx/PPfccjRs3pn379nc8RunSpRk4cCC9evWiVKlS1K1blxIlSjBu3DgA3n77bRo0aJDuvg0bNuTxxx/nmWeeISAggLp161KyZEkWLlyIvb09ixYtSnfquMwsX74cHx8fy495Tvfb2995551sH1tEREQkvzGZTHz99dcMGjSI5ORkJkyYQKlSpahQoQL16tXj4YcfpnDhwrRp04YdO3ak20Fytz777DPq1avHhQsXaNGiBSVLlqRevXpUr16dIkWKMHHiREwmE+PHj6djx453dQ5zvoZhUKRIEapXr57h9qJFi1q+WL/Vyy+/TOXKlbl27Rr16tUjKCiImjVr4ufnx48//sjs2bOznZfJZLLcFNe2bVseeeQRS03zww8/ZPt42dGnTx86dOhAfHw8zz33HGXLlrVcp8+ZM8dSA2RnlgaA6tWrExwcTGxsLBUqVKBOnTqW52TrDqHZs2fzwgsv8Ndff/HUU09RtGhR6tSpQ506dShdujSlS5fmlVdeydJU5nnBO++8g729PevXr8fPz4+aNWtSvnx5mjZtSunSpXn11VczPcb06dMZO3aspWYtVaoUvXr1Ijk5mX79+tGhQ4d097uXGu9OtmzZYlWPTZw4Md32/v37Z/vYIpI71AEkIlKAZDb9262Cg4PZv38/H330Ea1bt8bR0ZE//viDs2fPUqlSJQYOHMjevXt55513sl1UALi7u/PTTz/Rrl07XFxc+O2334iMjCQyMjLbx8pphQoVYsOGDaxcuZJnnnkGe3t79uzZw8GDB/Hy8qJTp04sW7aMwYMH2zrVLHnppZdYvXo1DRo0ICEhgUOHDuHj48O0adP47rvvLAvf3sn06dP5+OOPKVOmDAcPHiQhIYEmTZqwbt06y92HGVmxYgXTp0/Hy8uLffv2YW9vT+vWrfnll1+yPXLMLC4ujsuXL1t+zCOb4uPjrdrz2tQVIiIiIrnFwcGBGTNmcOjQIYYNG0bt2rWJjo5m165d/PXXXwQFBdG3b19++eUXfvrppxw7b7Fixfj555/55JNPaNWqFQC7d+/m2LFj+Pv706NHD3bs2MGYMWPu+hxhYWGWa9YmTZqkWafGvE5QRtshtf74+eef6du3L76+vpw4cYLz58/Ttm1btm/fnmZUUVZNmzaNN998k4oVK3L06FFLTZPbnSUmk4kvvviCuXPnUq1aNf755x+OHTtG/fr12bx5M4899hhAuuu+Znbc77//nhdffJGiRYvy+++/W57TrbMJ2IKTkxOfffYZGzdupEOHDnh6erJ371727t2Lo6Mjbdq04aOPPuLdd9+1aZ5Z1aJFCzZv3kzz5s0xmUwcOnQIZ2dnRo0axZYtW3B3d8/0GP3792fNmjUEBwdz5MgRoqOjqVu3LkuXLmXOnDl33PdearyMJCYmpluPJSUlWbXfaap5Ebm/TMbt4ylFRCTfql+/Ptu2bePgwYOWBVtFMhIREUHTpk3x9/fn5MmT2dp38eLFdO/enbCwMC0MKiIiIiJyn61cuZLnn3+eGjVqZGktGck/Tp48aZlFIbtf295LjSciBZNGAImIFBDnz59n+/btBAUFqfNHRERERESkADNP0x0aGmrjTEREJC9TB5CISAHh6+tLSkpKvpkPWURERERERDL2zjvvsHv3bqu2a9eu0b9/f8LDw3F0dKR37942yk5ERPIDB1snICIiIiIiIiIiIta+/PJLhg0bRvHixQkICCAuLo5Dhw6RkJCAnZ0dM2fOpHLlyrZOU0RE8jB1AImIiIiIiIiIiOQxQ4cOZfny5ezatYsDBw6QkJBA8eLFadSoEYMGDaJevXq2TlFERPI4k5Hd1cREREREREREREREREQkT9MaQCIiIiIiIiIiIiIiIgWMOoBEREREREREREREREQKGHUAiYiIiIiIiIiIiIiIFDDqABIRERERERERERERESlgHGydgOScSpUqcfXqVcqXL2/rVEREREREcszx48cpXLgwhw4dsnUqkstU04iIiIhIQWSrmkYdQAXI1atXiY2NtXUaD6To6GgAvLy8bJyJ3G967x9M1ZKTcQ6uB0CKnR2/HdyJkZxi46zkftG/+weX3nvb0TXug8PWNU1e+ndePSERbyP1+uKayY49To42zkjuxv34TBl2BolVEy2PHfc5Ykox5dr5xPZuXI8huFQYLi7OABy+9CspRrKNs5L8LC/9/ZOCQ58ra7a6xlUHUAFivktu69atNs7kwRMVFQVAaGiojTOR+03v/YNpX5/e/ODQLPWBCSaun0ghT13QPCj07/7Bpffedho0aGDrFOQ+sXVNk5f+nZ/u1Yubv+0CwLVWTcouWGDjjORu3I/PVExiDE+tfsryeO3stbg7uufa+cT2Nv8UyZHvknFycgLgw/FTcHLRV3xy9/LS3z8pOPS5smarmkZrAImIiIiIiIiIiIiIiBQw6gASEREREREREREREREpYDQ+VEREJJt8x43FmLQdAJNJ86uLiIhIziv93nuQlJT6wEGlu4iIiIhkn64iRUREssne3QPU7yMiIiK5yN7Dw9YpiIiIiEg+pyngREREREREREREREREChh1AImIiIiIiIiIiIiIiBQwmgJOREREJIvi4uJwcnLC3t6evXv32joduc9cXV0B9N5nk8lkwsXFBW9vb4oWLYqdne5BExEREbGVuLg4Ll68SHR0NIZhALrOldxRkD5X+bmmUQeQiIhINiVevAjGfx9oLaAHRkpKCidOnMDZ2TlfXexJznF2drZ1CvlSSkoKsbGxxMbGcv36dQICAvRvSCQLEi9cwIiPB8Dk7IxjyZI2zkhERPI7c02TmJgIpH6pDbrOldxRkD5X+bmmUQeQiIhINv09bRomh1b/fWTcMVYKjosXL5KYmIi7uzulS5fG3d3d1inJfRb/3y9iC1Ihcz8YhsGNGzc4e/YsN27c4PLlyxQrVszWaYnkeefHjOHmb7sAcK1Vk7ILFtg4IxERye/MNY2bmxsBAQE4OKR+NazrXMkNBelzlZ9rGnUAiYiIZJM9BnF2fwFg5+hguWtKCrbo6GgAihcvbimURCRzJpMJT09P/Pz8OHHiBNeuXcs3xZKISH5gwkRQkSCrx1KwmUzgUshEkSKe/32s91yyxlzTlCpVSjWNSDbk55pG/9JFRESyyT0F2kZ9BIBn3Tp4e/SxcUZyP5inSSgIdy+J2IKHhweQOu+8iIjkHDdHN+Y1n2frNOQ+snMwUa6pPaGh1WydiuQz5prGxcXFxpmI5E/5saZRB5CIiEg2FX2pB+cqVQYgoGFDG2cj90tKSgomkynfzPMrkteYTCZMJpNlsWERubOiL/Ug+dlnAbAvVNjG2YiISEGgmkbk3uTHmkYdQCIiItnkXr8eCQnxlt9FREREcpquMURERETkXqm7V0REREREREREREREpIDRCCAREZFsSkhM5M/zfwFgv3sXdaoG4+ToaOOsRERERORBlJSSxMHLBy2PKxetjIOdvu4pyIwUg5tX4O8T0QAUK+uBnb3u8RYRkbR0RSAiIpJNsXE3ubTFFYDLW85QZdJD6gASEREREZuIT45n4OaBlsdr265VB1ABl5IMp35O5vy2PwB4YXx9nNQBJCIi6dBfBxERERGRPGLhwoVUq1YNV1dXihUrRufOnTl16lS2jnH58mX69u1LqVKlcHZ2JigoiKlTp5KUlJRu/B9//MFTTz1F4cKFcXd3p379+qxatSrD469atYr69evj7u5O4cKFeeqpp/jjjz+ylaOIiIiIiBRM5pqmUKFC+Pn55XpNs3LlSnr06EGNGjVwcnLCZDIRERGR7nGPHj3KuHHjCAkJoWTJkri7u/Pwww8zYMAAzp8/fzdPN89TB5CIiEg2XXj7bUwpBqYUAwzD1umISAExevRoevXqhaenJ++//z4DBw4kPDycBg0acPbs2Swd4/r164SGhrJw4ULat2/PnDlzqFevHsOHD6d79+5p4n///XdCQkLYunUrQ4YMYfr06Tg4ONCuXTs++uijNPEfffQR7dq1IyYmhqlTp/Lmm2/yxx9/EBISwu+//37Pr4GI/M+5ESP588kn+fPJJzk3YqSt0xERERHJ1K01zbRp03jllVdyvaaZM2cOn3/+OQ4ODlSqVOmOx/7oo4949913KVu2LCNGjGDGjBnUr1+fuXPnUqVKFQ4dOnRXzzsv05hgERGRbEq6cuWWv6DqABKRe3fkyBHefvttatasSUREBA4Oqf/JtGrVirp16zJy5EiWLl2a6XGmTZvGgQMHmD59OoMHDwagZ8+eeHt7M3v2bLp3706zZs0s8f379ycmJobNmzdTu3ZtAHr06EG9evUYPHgw7dq1o1ChQgBcvXqVwYMH4+fnx5YtW/Dy8gLg+eef5+GHH6Z///5ERUXl5Msi8kBLunyJpPMXUn8vVcrG2YiIiIjc2e01TXJyMgBPPvlkrtY0S5YsoVSpUjg6OjJu3Dj27t2b4bHbt2/P8OHDLTUOQK9evahfvz69e/dmzJgxfPnll3f5CuRNGgEkIiJyDwwDVu06yxfbTmfpR6SgWrx4MSaTiU2bNvHOO+8QGBiIi4sLlStXZtmyZQCcO3eOLl26UKxYMVxdXWnRogXHjh1L93hLliyhQYMGeHh44ObmRq1atVi8eHGauPDwcDp16kSFChVwdXXFy8uL0NBQ1q5dmya2W7dumEwmrl+/zmuvvWaZTqBq1ao2v8j/4osvSE5OZsCAAZbOH4DatWsTGhrKV199xc2bNzM9ztKlS3Fzc6Nv375W7UOGDLFsNzt58iQ///wzYWFhls4fAEdHRwYMGEB0dDTffPONpX3NmjVER0fTs2dPS+cPQNmyZWnfvj0///wzJ0+ezO5TF8lzLt2Iz/Lfdf1tFxERKThU09wbW9Q0AP7+/jhmcV3m2rVrW3X+mHXs2BGgQE5trRFAIiIi2eReuzb8bh77Y7JxNpJXXPn8c67+tygwKzNnDk7+/unGJ54/z+mXX7ZqK9SuPUW7d8vwHH+9MZS4gwcsjx0KF8H/04zvoIr+4Qf+mT3bqs134kTcatTIcJ97NWLECG7cuEGPHj1wdXVlwYIFvPDCC9jb2zN06FAaNmzIhAkTOHXqFO+//z5t2rThjz/+wM7uf/cl9e7dmwULFtC6dWsmTpyIo6Mj69evp3v37hw9epRJkyZZYhcvXszff/9Nly5d8PPz459//mHJkiU8/fTTLF++nA4dOqTJsWXLlri5uTF06FCSk5OZO3cuHTp0oFy5ctSpUyfT53jjxg3i4uKy/Jr4+PhkGrNt2zYAGjZsmGZbw4YNiYyMZO/evdStWzfDY/z999+cOnWKhg0b4urqarUtICAAX19ftm/fnuVzAmzfvp1u3bplKX7JkiVs376dgICAOzxTEckq9wYNcfRNHfnjpH9XIiJyH6imSaWaJq28WtPklL/++guAEiVK5PixbU0dQCIiItlUuEMHjD82pfYAmdQBJKmSr1wl4difVm1GQkKG8UZSUpr45MuX7niOxL/+stonpVj0nXO6Fp02pyzccXUvYmNj+e2333BxcQFSpwcLCAigY8eOTJo0iREjRlhiixcvzpAhQ/jpp5947LHHAPjuu+9YsGABU6ZMYdiwYZbYV199lX79+jF16lR69uxJuXLlgNQFRt3d3a1yGDRoENWrV2fChAnpFkuVKlXi448/tjxu3749gYGBvP/++3z++eeZPsdXX32VJUuWZPk1MbKwVph5Pmw/P78028xtZ8+evWOxdKdjmNtvndM6q+e823gRuTd3+vJMREQkN6imSaWaJq28WtPklNGjRwOku8ZQfqcOIBERERHJMf3797cUSgC+vr4EBQWxf/9+XnvtNavYJk2aAHD48GFLsbRkyRKcnZ154YUXuHTJunhs27Yt8+bN48cff+Tl/95peGuhFBMTQ1xcHIZh0KxZM+bPn8/169fx9PS0Os6tRRikThlQsWJFjhw5kqXnOHToULp06ZKl2KyKjY0FwNnZOc028+tpjrmbY5iPc+sxsnvOnMhRRERERCSvU01zd2xR0+SEyZMn8/XXX9OmTRtefPHFHD12XqAOIBERERHJMRUqVEjTVqRIEUqVKmVVRJnbAS5fvmxpO3DgAPHx8ZQpUybDc1y4cMHy+8mTJxk9ejTff/89V65cSRN79erVNMVSejn6+Phw6tSpDM95q4cffpiHH344S7FZ5ebmBkB8fHyaqQ7MUzOYY7JyjPTExcVZHeNO8emdM7vxIiIiIiL5kWqau2OLmuZeffDBB7z55ps0adKEzz//HFMBnOVFHUAiIiIiOcC+SGGcHrK+CDc5OWUYb3JwSBNvX/TO8yo7li5NcvQ1y2OHwkXunJO3V9qcbrsQz2n29vbZagfr6QRSUlLw8PBg9erVGcaXL18eSJ23OjQ0lGvXrjFw4EAeeeQRvLy8sLOz4+OPP2bZsmWkpKSk2f/WBUkzyuNOrl27lqXFS81KliyZaYyfnx/79u3j7NmzBAYGWm3LbBqEW49xa/ztzp49a3WMO8Wnd85b4ytXrnxXOYqIiIhI3qWa5r/nVE2TRl6tae7Fe++9x5AhQ3j00Uf59ttvC+zNbOoAEhEREckBRV54gSIvvJDleEdfXyp89122zlF62jvZivdq1QqvVq2ytY+tVaxYkUOHDhEcHJzpApybNm3izJkzfPTRR7z00ktW2xYuXJhrOQ4cODDH58uuW7cuP/zwA1u3bk1TLG3duhVXV1eqVq16x2OUKFGCsmXLsmfPHm7evGl1192pU6c4f/48LVq0sDqn+fi3M7fdOj933bp1+fDDD9m6datleovb47Oy4KyIiIiI5E2qaXKGapr7V9PcralTpzJ8+HBatWrF6tWr04zsKkjsbJ1AdixevBiTyXTHn0cffdRqn+joaAYPHoy/vz/Ozs4EBATwxhtvcOPGjXTPkZKSwqxZswgODsbV1ZVixYrRqVMnjh8/nmFeGzZsICwsDE9PT7y8vGjatCk//fRThvFHjhzh+eefx8fHB1dXV6pVq8a8efOy3EMrIiK2Fff1aoo5/kwh+0jcix7C0bHgXiiI3G/dunUD4PXXX0/3Trdr165ZpgMw34F3+zXUH3/8wTfffJNrOQ4dOpSNGzdm+ScrOnfujL29PR988AFJSUmW9p07dxIZGUm7du2s7ki7du0ahw4dSjOneNeuXYmNjWXevHlW7dOnT7dsNytXrhwhISFERETw22+/WdqTkpKYOXMmnp6ePPPMM5b2Nm3a4OnpycKFC4mO/t9ivadPn2blypU0atTIspCtiNy7K0s/5cJbk7jw1iSuLP3U1ulIHuZs78zU0KmWH2f79NdNkILDzh7KNLSjxUtVaPFSFRwc89XXeyIFnmqa+1fT3I3JkyczfPhwnnzySb755psC3fkD+WwEUPXq1Rk7dmy627766iv2799Py5YtLW0xMTGEhYWxZ88eWrRoQadOndi9ezfvvvsukZGRREVFpXmDe/fuzaJFi6hSpQoDBgzg3LlzfPnll4SHh/Prr7+m6b387LPP6Nq1K8WKFbP8416xYgWPPfYYX375Je3bt7eKP3DgAA0bNuTmzZs8//zzlCpVinXr1tGvXz8OHDjArFmzcuCVEhGR3JTwf1uos30HhmFwI+gRjrfqZOuURAqMtm3b0qdPHz788EP27t3Ls88+S6lSpfj777/5448/+Pbbbzl48CABAQGEhITg6+vLkCFDOH78OAEBARw8eJCFCxcSHBxs1amRk3JjvuygoCCGDh3K22+/TZMmTejatSuXLl1ixowZFC9enMmTJ1vFr169mu7duzN27FjGjRtnaR86dChfffUVQ4cO5eTJk1SrVo3IyEg+/fRTOnXqlOZmqZkzZxIaGkrLli157bXX8PHx4dNPP2XXrl3Mnz+fwoULW2ILFy7MtGnT6NOnDyEhIfTu3Zv4+HjL9evMmTNz9DURedDd+OVnbv62CwDXWjUp8p97+7JDCi4HOwfqlNQIzAeJyc6ERwkTpYMKZx4sIvedaprUmqZjx45cvnyZWbNm5WpNExUVRVRUlOV3gE8//ZRffvkFSO0w8vf3B2DOnDm8+eablChRgmeffZaVK1emeR5dunTJsdckL8h3HUDVq1dP056QkMDs2bNxcHDgxRdftLS/88477Nmzh2HDhjFlyhRL+/Dhw5k6dSozZsxgxIgRlvbNmzezaNEiQkND2bhxI07/neOyc+fOPPHEE7z66qts2LDBEn/16lX69++Pj48Pu3btssw/OGzYMGrUqEHfvn1p2bKl1SJdffv25dq1a3z//fc8/vjjAEycOJHmzZsze/ZsOnfuTIMGDXLmBRMRERHJh+bNm0ezZs2YP38+M2bMICYmhuLFixMUFMTkyZMt808XKlSI8PBwhg0bxrx584iPj+eRRx7h888/Z9euXblWLOWWSZMm4e/vz5w5cxg4cCAeHh489thjTJ48+Y4LyN7Ky8uLn3/+mVGjRrFy5Urmz5+Pv78/kydP5vXXX08TX7NmTbZs2cKbb77JtGnTSEhIIDg4mJUrV6a5kQlSb5YqWrQo06ZNY+jQoTg5OdGoUSMmTZpEtWrV7vk1EBEREREpCFTTzOH111+/LzXNpk2bGD9+vFXbxx9/bPm9UaNGlg6gHTt2APD333+nmXLPrKB1AJmMAjDv2JdffkmHDh1o06aNZXEtwzDw8/MjOjqaCxcu4O7ubomPiYmhZMmSFC9enD///NPS3rlzZ5YtW0ZkZCShoaFW52jatCkRERGcOnWKsmXLArBgwQJ69+7N+PHjGTNmjFX8+PHjGTduHEuWLOE///kPkDr1W1BQEE2bNmXTpk1W8ZGRkTRp0oTu3btbfUCzw9xxlN487pK7zL3Lt39upODTe/9g+uuNoVzZto1kwyDmoWBO9RmW5X071yubi5lJbtq7dy+QOp8zgLOzpld50JinadB7f/fM/46Cg4OztZ+ucx8ctn6vo6KiuHQjnriiQVneJ7f+tv/1xlDi/vgDAJdHHsn2mgmSN6hekNygz5XcrYyuxXSdK7mhoH6u8ltNUyAmCV20aBEAPXv2tLQdPXqUc+fOERISYtX5A+Du7k5ISAjHjx/nzJkzlvaIiAjLttuZp5aLjIy0igfSXXgqu/GNGjXC3d3dKl5ERPKm0tPe4epbEzk+YnS2On9EREREsqr0tHeosOEHKmz4QZ0/IiIiInJX8tUUcOk5deoUP/30E35+frRq1crSfvToUYA0a/aYBQYGsmHDBo4ePUqZMmWIiYnh/PnzVK1a1bL41u3xtx43s3NkN97e3p5y5cpx4MABkpKScHDI+K3JaIq4ffv2UbZsWcudIHL/mBdC1mv/4NF7/2CKS0hga8RJUofQniaoTkmcHZ2ytG9U1MlczExyk6urK87OzpbFOc13M8mDQ+/9vTMMg/j4+Gz/3YyOjsbLyyuXshIRyd9uJt3kzV/etDye1GgSrg6uNsxIcltKksGZrSn8cDD1LvRHuz+Mo1Pa77JERETyfQfQJ598QkpKCt26dbPquLl27RoA3t7e6e5nLiDNcdmNz2yf7Mab90lJSeH69etWC+6KiEjekmKk4HbNx/LYMFJsmI2IiIiIPMhSjBT2XNxj9VgKNsOA2EsG56NTv2cyUvL96g4iIpJL8nUHUEpKCp988gkmkynDRZsKoozmCTSPDNIcsPef5t99cOm9fzD9ez2avWs3gQGYTMQVrgAuHlnaN1RrAOVb5nl+TSYTUPDmMZbMFdQ5rO8nk8mEi4sLderUydZ+Gv0jIiIiIiKSffl6DaAff/yR06dP06xZM8qVK2e1zTzK5tYROLcyT9tkjstufGb7ZDfevI/JZMLT0zPd7SIiIiIiIiIiIiIiIlmRr0cALVq0CICePXum2ZbeGjy3un09Hnd3d3x9fTlx4gTJyclp1gFKb/2ewMBAdu7cydGjRylatGiW4jPKKTk5mRMnTlCuXLk7rv8jIiK2F/vH72CeZcHQdAsiIiKS82J/+43kf/8FwL5QIdxq1bJtQiIiIiKS7+TbEUCXL19mzZo1FClShLZt26bZHhgYSKlSpdiyZQsxMTFW22JiYtiyZQvlypWjTJkylvawsDDLtttt2LABsJ7mKSwsDIDw8PAM480xmcX/8ssvxMTEWMWLiEjedOXTzzAZBibDUAeQiIiI5IpL8+dzbugwzg0dxqX5822djoiIiIjkQ/m2A+jTTz8lISGBLl26pDsPu8lkomfPnty4cYOJEydabZs4cSI3btzg5Zdftmrv1asXAKNHjyYhIcHSvn79eiIiImjRogX+/v6W9ueffx5vb29mzZrF2bNnLe1nz55l9uzZ+Pj4WHVOBQUFERoayubNm1m/fr2lPSEhgdGjRwPpj2YSERERERERERERERHJjnw719hHH30E3LnDZOjQoaxZs4apU6eye/duatasya5duwgPD6dOnToMGjTIKr5p06b07NmTRYsWUbNmTVq3bs358+dZsWIFRYoUYdasWVbxhQsXZvbs2XTt2pWaNWvSoUMHAFasWMHly5dZsWJFmvV85s6dS0hICG3atKFDhw74+vqybt069u/fz6uvvkrDhg1z4NUREREREREREREREZEHWb7sANq+fTv79u2jbt26BAcHZxjn7u5OZGQk48aN4+uvv2bz5s34+voyZMgQxo4di6ura5p95s+fT3BwMAsWLOCDDz7Aw8ODtm3bMmnSJCpUqJAmvkuXLvj4+DB58mQ++eQTTCYTtWrVYtSoUTRv3jxNfJUqVdi2bRujRo1i3bp1xMTEULFiRebMmUPfvn3v7YUREZH7ovhrgzFmH7R1GiIiIlKAlRwzFuNmLAAmVzcbZyMiIiIi+VG+7ACqW7cuRhbXXPD29mbGjBnMmDEjS/F2dnYMGDCAAQMGZDmfVq1a0apVqyzHBwUFsXLlyizHi4hI3uJUyhdMB8EATCZbpyMiIiIFkJNfaVunICIiIiL5XL5dA0hERERERERERERERETSly9HAImIiNiSvb0dN72ukmIYYOdAMTvdTyEiIiIitmFnsqOKTxWrx1KwmUzgWsRE0aJeqY/tNCuBiIikTx1AIiIi2eTp5kGTFhW4dCOeuKJBtk5HRERERB5grg6uzGo2y9ZpyH1k52AiIMye0NBHbJ2KiIjkcbotREREJJtS4uIgLg5TfDymhHhbpyOSJ5w8eRKTyWT14+LiQlBQEG+88QZXr161io+JiWHkyJEEBgbi7OxMsWLF6NChA0ePHk1z7IiIiDTHNv/4+Pjcr6eYbUlJSUydOpWgoCCcnZ0pVaoUffv25fLly9k6zqlTp+jcuTPFihXD1dWVatWqsXDhwgzjo6KiaNasGZ6ennh6etKsWTOioqIyjF+4cCHVqlXD1dWVYsWK0blzZ06dOpWtHEUk56XExZESE5P6Exdn63REREQKPNU0admipgkICMjwtfruu+/SxJ84cYIXX3wRX19fnJ2dCQgIYMiQIURHR9/Vcy5oNAJIREQkm84OGEDR7TsoYhjcCHqE40PesnVKInlG48aN6dWrFwCXL1/mu+++49133yU8PJwdO3bg5OTEzZs3adKkCTt37qRNmza89tpr/PPPP8ydO5f69evzf//3fwQFpR1d16tXLxo3bmzV5uLicl+e193o3r07n332GU8++SSvv/46J06c4P333ycqKopff/0VT0/PTI9x9uxZ6tevz7Vr1xg0aBDlypVjzZo19OrVi9OnTzNx4kSr+A0bNvDkk09SunRpxo4di7OzMwsWLODRRx/lu+++o2XLllbxo0eP5q233iIkJIT333+ff/75h/fff5+IiAi2b9+On59fjr4mIpJ1ZwcM4OZvuwBwrVWTsgsW2DgjERGRB4Nqmv+xRU0DUKlSJd5888007TVq1LB6fPjwYRo2bMj169fp3bs3VatWZd++fcyaNYvIyEh+/vlnXF1d7/4FKADUASQiIiIiOaZ8+fJ06dLF8njgwIE8+eSTrFu3jjVr1vDcc8+xYMECdu7cSa9evZg/f74ltmvXrlStWpX+/fsTHh6e5tgNGjSwOnZetmnTJj777DOefvpp1qxZY2mvVasW7du3Z9q0aUyYMCHT44wcOZILFy7w9ddf8+yzzwLw8ssv8/TTT/P222/zn//8h8DAQACSk5Pp06cPzs7OREVFUbZsWQD+85//UKVKFfr27cvRo0ext7cH4MiRI7z99tvUrFmTiIgIHBxSS4NWrVpRt25dRo4cydKlS3P0dRERERERyetU06SyRU1jVqJEiSy9TsOHD+fKlSt88cUXdOrUydLesGFDOnfuzIwZMxg5cmRWn3KBpA4gERGRbEoE9gb4YwDxhT2wT07C3l5/Uh90yw4tY8WhFfd0jEpFKzGl8ZQMtw//eTiHLh+6p3N0qNSBTpU6ZR6Yg1q1asW6des4duwYkFpIQOrdZLcqX748jRs3ZuPGjZw5c4YyZcqkOVZsbCwmkynP38Vl7jgZPHiwVXu7du0ICAhg6dKlmRZLsbGxfPXVV5QrV85SKJkNHjyYtWvX8vnnnzNu3DgAfv75Z06ePEm3bt0snT8A3t7e9OzZk/Hjx/Pzzz/TpEkTAL744guSk5MZMGCApfMHoHbt2oSGhvLVV18xf/78PP9ai4g86JJSkth7aa/lcbBPMA52ujYtyIwUg9jLcP7YvwCUKOeFnb1WeZB7p5omY6pp/ic3a5pbJSUlERsbi6enJyaTKd3jb9q0CVdXVzp27GjV3qFDB1566SU+/vhjdQDZOgEREZH8xvHJJzmzMcXyuGhiHPb2HjbMSPKCq3FX+fPan/d0DC9nrztuP3fj3D2f42rc1cyDctiRI0cALHNbx8enrp3l5uaWJtbNzQ3DMNi2bVuaYmngwIGWAsvPz48uXbowevTodI+THdeuXSMxMTHTuPj4eOzt7SlZsmSmsdu2bcPOzo769eun2dagQQOWLVvGxYsXKV68eIbH2Lt3Lzdv3qRBgwbpHsNkMrF9+3arc0Lq3W63M7dt377d0gGUWXxkZCR79+6lbt26d3imIpJbCrVrj0fjUAAc7vB/hUh8cjxDIoZYHq9tu1YdQAVcSjKc/iWZC9v3AfDC+Po4qQNIcoBqmowVlJoGwN7ensKFC2calxM1zb59+7JV09x6bjc3NxITE3Fzc6N58+ZMmDCBatWqWcXFx8fj5uaWpoPIzs4OV1dX/vzzTy5dupSn11nKbboiEBERySavpk3gx01gABnchSLyoIqPj+fSpUsAXLlyhW+//ZZ58+bh7e3NM888A0CVKlXYsGEDmzZt4pFHHrHsGxsba+mUOH36tKXd0dGR1q1b88QTT1CmTBkuXrzIqlWrmDJlCj/++CORkZH3VDA988wzREZGZim2bNmynDp1KtO4s2fP4uPjg7Ozc5pt5nV1zp49e8di6ezZs1bxt3J2dsbHx8cSk1n8refMbrw6gERsw6tlC1unICIi8kAq6DWNv78/J0+ezDQuJ2qav/76yyr+VunVNAAPP/ww3bt3p3LlytjZ2bFjxw5mz55NeHg44eHhVmsoValShV27drFnzx6qV69uad+zZw9Xr6Z2FJ4+fVodQCIiIiIiOWH58uUsX77cqq169erMnz/fUhj069eP+fPnM2bMGNzd3WnevDmXLl1i7NixXL58GUgtnMxCQkL47rvvrI7Zo0cPXn/9daZPn87MmTMZPnz4Xec8ffp0S3FwJwkJCVmepiE2NjbDu+rMi7ze+hwzOgaQbsFlPs6tx7hTfHrnzG68iIiIiMiDoCDXNECermkAvv/+e6vH7du3p0OHDtSvX59evXpx8OBBy7Y33niDTp068fzzz/P+++9TtWpV9u/fz6BBg3ByciIhIeGBr2nUASQiIiKSAwq7FKaCd4V7OkYpj1KZbo+Oj76ncxR2yXyo/71o0aIFb7zxBiaTCWdnZ/z9/dNMe1ChQgXWr19Pz5496dWrl6W9WbNmDB8+nAkTJuDldeepIwDGjh3Le++9x3fffXdPxVKtWrWyFGee5iEr3NzcMoyPi4uzxGR2jDudNy4ujkKFCmUpPr1z3hp/exGY1RxFREREpOBQTZOqINc02WGLmiYjNWvW5Omnn+brr7/m2LFjPPTQQwB07NiRf//9lzfffJPWrVsDqVPc9enTh3PnzrF69eosvQ8FmTqARERERHJAp0qdcn0h0jstpppX+Pr60rx580zjGjduzKFDhzh8+DAXL17Ez8+P8uXLM3ToUAAqV66c6TE8PT0pWrQoFy9evKecr1y5QkJCQqZx5jWA0pu+4HZ+fn4cOXKE+Pj4NHe73WnqtduPcWv87blcunSJ2rVrZyk+vXP6+fmxb98+zp49S2Bg4F3lKCIiIiIFh2qaVAW5poHUDpJixYplGpcTNU3p0qWt4m+VXk1zJ+XKlQPg4sWLlg4ggD59+tCjRw/27t1LTEwMlSpVolixYtStWxcHBwer2AeROoBERERExCZMJhOVKlWiUqVKlrb169fj7e1NSEhIpvtfuXKFS5cuZamwupNnn302x9cAqlu3LocOHWLbtm2EhoZabdu6dSv+/v53nCsbIDg4GBcXF7Zu3Zpm26+//ophGFbr85h/37p1Ky+//HKac94aY/79hx9+YOvWrWk6gLZu3YqrqytVq1bN9LmKiIiIiDyo8mNNk9U1gHKipqlatWq2apo7OXLkCAAlS5ZMs83R0ZGaNWtaHl+4cIHdu3fTpEmTB35WA3UAiYiIZNM/s2djSkm9ODNsnItIQTJz5kz27dvH+PHjrS7SL1++TNGiRa1iDcOw3FnXpk2bezpvbqwB1LVrV5YuXcr06dOtiqVVq1Zx8uRJRo0aZRV/6dIlLl26hK+vL97e3kDqdAnt2rXj888/Z9WqVTz77LNWOdvb29Op0//u0AwNDcXf358vv/yS8ePHW6apiI6OZtGiRfj7+1stmNq5c2cmTZrEBx98QOfOnXFwSC0Ndu7cSWRkJC+88MIDXyyJ2NLfU6YSd/gQAC5BlSgxfJiNMxIREZHM5PWaBrK+BpAtapr0XieAiIgIvvvuO4KDgylfvvwd805JSaF///4kJyenyfFBpA4gERGRbIo/dQoc/nt3jqEuIJG7ERoaSo0aNahUqRKGYbBhwwa+/fZbnnnmGUaOHGkV26pVK0qUKEHt2rXx8/Pjn3/+4ZtvvmH79u2Ehobyyiuv3FMuubEGUPPmzenUqRPLli3jqaee4plnnuHEiRPMmDGDSpUq8cYbb1jFz549m/Hjx/PJJ5/QrVs3S/vkyZP58ccf6dq1K7/99hvlypVjzZo1fPfdd4wYMYKgoCBLrL29PXPnzuXpp5+mcePGDBgwACcnJ+bPn8/58+dZu3Yt9vb2lvigoCCGDh3K22+/TZMmTejatSuXLl1ixowZFC9enMmTJ2f5+cq9mTp1qmXO961bt1K/fn2r7dHR0YwbN46vv/6aCxcu4Ovry3PPPcfYsWPx8PBIc7yUlBTmzJnDggULOHbsGB4eHjRv3pxJkyZlWDBv2LCByZMns2vXLkwmE7Vq1WLUqFE8+uij6cYfOXKEUaNGsWnTJmJiYqhYsSJ9+vShT58+mEyme3xFBCD++J/E/bEXAJOjo42zERERkdvlx5omO2xR03z66acsWLCAVq1aUa5cOezs7Ni5cyefffYZ7u7ufPTRR1bnPHv2LK1bt+bpp5/G39+fq1evsmzZMnbv3s3UqVMJCwvL8dclv1EHkIiIiIjcdw0aNODbb79l0aJFmEwmqlSpwvz58+nZsyd2dnZWse3bt2ft2rXMmzePq1ev4uzsTOXKlZkxYwavvPIKjnn0i9ElS5YQHBzMJ598wiuvvEKRIkXo2rUrb731VpYXIi1btixbt25l5MiRzJ8/nxs3blCxYkU+/PBDq8VmzZ544gk2btzIhAkTGDNmDAB16tRh48aNNG3aNE38pEmT8Pf3Z86cOQwcOBAPDw8ee+wxJk+enGahW8kd+/btY+zYsbi7uxMTE5Nme0xMDGFhYezZs4cWLVrQqVMndu/ezbvvvktkZCRRUVG4uLhY7dO7d28WLVpElSpVGDBgAOfOnePLL78kPDycX3/9Nc2Uf5999hldu3alWLFilmJ9xYoVPPbYY3z55Ze0b9/eKv7AgQM0bNiQmzdv8vzzz1OqVCnWrVtHv379OHDgALNmzcrZF0lEREQkD1JNk/M1TZ06dYiIiGDVqlX8888/JCUlUbp0aV566SWGDx9uWQfIzMvLi4oVK7J06VIuXLiAh4cH9erV48cff8zwRqYHjckwdOtyQdGgQQOAdOdUlNwVFRUFkGY+TCn49N4/mI5Nf5dvTlRInf7NZKJo+4q4uKS9Azs9neuVzdXcJPfs3Zt6F3bFihUB0iyCKQWfeQSQ3vu7Z/53FBwcnK39Cup1bmJiIvXr18fR0ZHAwEA+++yzNCOAxo4dy4QJExg2bBhTpvxv0eThw4czdepUJk+ezIgRIyztmzdvplmzZoSGhrJx40acnJyA1Lnon3jiCVq0aMGGDRss8VevXqV8+fI4ODiwe/duy0K+Z8+epUaNGgAcP34cT09Pyz5hYWFERUXx/fff8/jjjwOpUyQ2b96cn3/+mf/7v/+zvGfZZev3Oioqiks34okrGpR58H/l1t/2izPeJ/7oUQCcAwMp/tqgXDmP5K77US/EJMbw1OqnLI/Xtl2Lu6N7rp1PbG/zT5Ec+S7Z8n/8C+Pr4+Sie7wlcxldi+k6V3JDQf1c5beaxi7zEBEREbmVT69eGHYmMP33R0RE5C5MmjSJ/fv38/HHH1tNz2dmGAaLFi3Cw8OD0aNHW20bPXo0Hh4eLFq0yKp94cKFAEycONHyxSDA448/TpMmTQgPD+f06dOW9pUrV/Lvv//Sv39/S+cPgJ+fH6+++iqXLl1i9erVlvYjR44QFRVF06ZNLZ0/AE5OTkycONEqB7k3xV8bRJm5cygzd446f0RERETkrqgDSEREJJvcXFwp3CAWp1rRmBq54OjokvlOIiIit9i1axeTJk1i7NixPPzww+nGHD16lHPnzhESEoK7u/Xd/O7u7oSEhHD8+HHOnDljaY+IiLBsu13Lli0BiIyMtIoHaNGixT3HN2rUCHd3d6t4Ecl9zvbOTG8y3fLjbF+w7rSWtOzsoWwje1q9XJVWL1fFwVFf74mISPo0PlRERCSbnBwdqVjaL9tTxIiIiEDqdBj/+c9/qF69OkOHDs0w7uh/p/+6fc0es8DAQDZs2MDRo0cpU6YMMTExnD9/nqpVq6Y7osh8HPNxMztHduPt7e0pV64cBw4cICkpCQeHjMvNjKaI27dvH2XLlrVMm3W/RUdHY5di4HL5cJb3iYo6mXsJSb4XHR0NcF8/0//H/923c4ltXL9xHZzh6Lk/ADh6zsYJSb7h6uqKs7OzZWouM/MKIbe3i9yLgvq5MgyD+Pj4bP9tj46OzvK6STlJHUAiIiIiIiL30ZgxYzh69Ci//fZbuh01ZteuXQPA29s73e3mAtIcl934zPbJbrx5n5SUFK5fv07hwoXTjRERERERkftDHUAiIiIiIiL3ydatW3n33XcZN24cVatWtXU6NpPR4rfmkUGhoaH3Mx2LqKiobI/wDa1XNhczkvzOfHewrT7TUjDpcyV3y7x4vbOz9VSR5hEat7eL3IuC+rkymUy4uLhQp06dbO1ni9E/oA4gERGRbLu2di2u//d/FI1PIrbMX1xt2MzWKYmISD6QlJTEiy++yCOPPMLw4cMzjTePsrl1BM6tzFNLmeOyG3/7PkWLFs1WfEbnMJlMeHp6ZvS0JIuurV1L4rnzADiW8sX7qadsnJGIiIiI5DfqABIREcmmc+vWssGpCgDGmRjKJMTi5ORm46xERCSvu3HjhmUNHScnp3RjzCNgVq9ezcMPPwxYr8Fzq9vX43F3d8fX15cTJ06QnJycZnq59NbvCQwMZOfOnRw9ejRNB1BG8RnllJyczIkTJyhXrtwd1/+RrLm2di03f9sFgGutmuoAkgzdTLrJ0Kj/rSf2Tug7uDq42jAjyW0pSQant6RwfV/qGkAtelbB0SnjKUVFROTBpatyERGRbErGhEtK6nQvRgKkpKTYOCMREckPnJ2d6dGjR7rboqKiOHr0KE8//TTFihUjICCAwMBASpUqxZYtW4iJicHd3d0SHxMTw5YtWyhXrhxlypSxtIeFhbF8+XK2bNmSZmqgDRs2ANZTBoWFhbFs2TLCw8OpX79+uvFhYWFW8QDh4eFpRjH98ssvxMTEWMWLSO5LMVLYf2m/1WMp2AwDbl4xuHgjdaSmkWLYOCMREcmr7GydgIiIiIiIyIPA1dWVRYsWpfvTsGFDAEaMGMGiRYuoXr06JpOJnj17cuPGDSZOnGh1rIkTJ3Ljxg1efvllq/ZevXoBMHr0aBISEizt69evJyIighYtWuDv729pf/755/H29mbWrFmcPXvW0n727Flmz56Nj48Pbdu2tbQHBQURGhrK5s2bWb9+vaU9ISGB0aNHA9CzZ897falERERERCQHaASQiIhINvlNm4bx5iYwAJPJ1umIiEgBNnToUNasWcPUqVPZvXs3NWvWZNeuXYSHh1OnTh0GDRpkFd+0aVN69uzJokWLqFmzJq1bt+b8+fOsWLGCIkWKMGvWLKv4woULM3v2bLp27UrNmjXp0KEDACtWrODy5cusWLEizXo+c+fOJSQkhDZt2tChQwd8fX1Zt24d+/fv59VXX7V0Zsm9Kbtgga1TEBEREZF8TiOARERERERE8ih3d3ciIyMZNGgQBw8eZPr06Rw6dIghQ4bw008/4eqadp2P+fPn88EHHwDwwQcf8P3339O2bVu2b99OxYoV08R36dKF9evXU6lSJT755BMWL17Mww8/THh4OM8991ya+CpVqrBt2zaefvpp1q1bxwcffICdnR1z5sxh5syZOf8iiIiIiIjIXdEIIBERERERERtbvHgxixcvTnebt7c3M2bMYMaMGVk6lp2dHQMGDGDAgAFZPn+rVq1o1apVluODgoJYuXJlluNFREREROT+0wggERERERERERERERGRAkYdQCIiIiJyz06ePInJZLL6cXFxISgoiDfeeIOrV69axcfExDBy5EgCAwNxdnamWLFidOjQgaNHj6Z7/N9//51nn30WHx8fnJ2dCQoKYuLEicTHx9+Pp3dXYmNjGT58OAEBATg7OxMQEMDw4cOJjY3N1nH++OMPnnrqKQoXLoy7uzv169dn1apVGcavWrWK+vXr4+7uTuHChXnqqaf4448/0o1NSkpi6tSpBAUF4ezsTKlSpejbty+XL1/OVo4iIiIiIvmdapq0cqKmWblyJT169KBGjRo4OTlhMpmIiIi44z6qaXKOpoATERHJpvgTJ8D47wPDuGOsyIOmcePG9OrVC4DLly/z3Xff8e677xIeHs6OHTtwcnLi5s2bNGnShJ07d9KmTRtee+01/vnnH+bOnUv9+vX5v//7P4KCgizH/OWXX2jevDmOjo688sorlCtXjq1btzJ27Fi2bdvG2rVrMZlMtnrK6UpOTuaJJ54gMjKSrl27Ehoayu+//867777Ltm3b+PHHH7G3t8/0OL///juNGjXC2dmZIUOG4OPjw2effUa7du1YtGgRPXr0sIr/6KOP6NmzJ1WrVmXq1KnExcUxa9YsQkJC+OWXX6hWrZpVfPfu3fnss8948sknef311zlx4gTvv/8+UVFR/Prrr3h6eubo6yIiWRd/7BgpMTEA2Lm74/zQQzbOSERE5MGgmiZVTtU0c+bM4ddffyU4OJhKlSqxd+/eO8arpslZ6gASERHJpn/mzsXkkLpOgrp/RKyVL1+eLl26WB4PHDiQJ598knXr1rFmzRqee+45FixYwM6dO+nVqxfz58+3xHbt2pWqVavSv39/wsPDLe39+/cnISGBTZs20bBhQwB69+5NUFAQI0eOZNmyZXTu3Pn+PcksWLJkCZGRkfTv35+ZM2da2gMCAnj99ddZsmQJL730UqbH6d+/PzExMWzevJnatWsD0KNHD+rVq8fgwYNp164dhQoVAuDq1asMHjwYPz8/tmzZgpeXFwDPP/88Dz/8MP379ycqKspy7E2bNvHZZ5/x9NNPs2bNGkt7rVq1aN++PdOmTWPChAk58XKIyF34+513uPnbLgBca9Wk7IIFNs5IRETkwaCaJlVO1TRLliyhVKlSODo6Mm7cuDt2AKmmyXnqABIRERHJAXsjzrI38q97OkaxMh489lKVDLdv/Hg//5y5cU/nCA4rTXATv3s6Rna1atWKdevWcezYMSD1Ih1S79S6Vfny5WncuDEbN27kzJkzlClThqtXr7Jnzx6CgoIshZJZt27dGDlyJB9//HGeK5aWLl0KwJAhQ6za+/Xrx+jRo1m6dGmmxdLJkyf5+eefadKkiaXzB8DR0ZEBAwbQvXt3vvnmG7p16wbAmjVriI6OZvDgwZZCCaBs2bK0b9+eJUuWcPLkSQICAqxyHDx4sNV527VrR0BAAEuXLn3giyURERGRB4lqmoyppvmf7NQ0AP7+/lk+p2qanKcOIBERkWyyxyDO7gQAhoMjdnaVbZyR5AU3rydw9XzMPR3Dxe3Ol2bXL8fd8zluXk+4p/3vxpEjRwDw8fEBsMxx7ebmlibWzc0NwzDYtm0bZcqUyTQWYNu2bRiGcddTJly9epXk5ORM4+Lj43F0dKR48eJ3jDMMgx07dlCqVKk0xY6rqyvVq1dn586dmea8bds2gDRF4q1t27dvt3QAZRa/ZMkStm/fbimWtm3bhp2dHfXr108T36BBA5YtW8bFixczfb4iImJbdiY7qhevbvVYCjaTCdx8TBTz8U59bJe3po2S/Es1TcYKSk0DqTeUeXt73zEmp2qa7FJNk/PUASQiIpJNAf0H8uiWLVy7mcjNkpW46ZT2Ik7kQRUfH8+lS5cAuHLlCt9++y3z5s3D29ubZ555BoAqVaqwYcMGNm3axCOPPGLZNzY21nLBf/r0aQBKlCiBj48PBw8e5MKFC5QsWdISv3nzZgBu3LjB1atXKVKkyF3lXKNGDU6dOpWl2MaNG1tNOZCeK1euEBsbS9WqVdPd7ufnx9atWzPN+ezZs5b49I5xa8zdxpsXoL1T/INcLInYUrGBA0m5fh0Auwd87nq5M1cHV95r8p6t05D7yM7BhH9je0JDg22dikiBVNBrmrCwMCIiIu4Yk1M1TXappsl56gASERHJJtcqVUi8fJnYG/HEFQ20dToiecry5ctZvny5VVv16tWZP3++5aK7X79+zJ8/nzFjxuDu7k7z5s25dOkSY8eO5fLly0Bq4QRgMpkYMmQII0aM4JlnnuGdd94hICCAbdu2MXDgQJycnEhISCA2NvauC4/PP/+cmzdvZhqXkJBA4cKFM40z555eEQLg4uJiibtTznc6zq3HuJf4jJ5PevEicn+5Vsl4+hwRERHJPQW5pgHua02TXappcp46gERERERygKunE4V93e/pGJ5FXTLdHhebdE/ncPV0uqf9M9OiRQveeOMNTCYTzs7O+Pv7U6ZMGauYChUqsH79enr27EmvXr0s7c2aNWP48OFMmDDBar7nYcOGER8fz7Rp02jSpAmQWhCMGjWKb7/9lh07dljFZ1dISEiW4sxTN2TGPI1DRvFxcXFWcXdznPSOcTfx95qjiIiIiBQcqmlSFeSaJqtyqqbJyfOqprk76gASERERyQHBTfxyfSHSOy2mmlf4+vrSvHnzTOMaN27MoUOHOHz4MBcvXsTPz4/y5cszdOhQACpX/t/aWiaTibFjxzJ06FD27t1LUlISVapUwdvbm5kzZ1KqVKl7Kpb++eefLK8B5OTkhK+v7x3jihQpgpubm9XUBLc6e/Ys7u7umd55l94UB7ce49aY2+Nvff3uFH/kyBHi4+PT3GF3p6kXRERERKRgUk2TqiDXNABOTk6ZjtrJqZomu1TT5DytDCgiIpJNCYmJHDp9mlPn/+LsiX0kJ9/b3UsiDyqTyUSlSpUIDQ2lfPnyAKxfvx5vb+9072BzdXWlbt26NGzYEG9vb3bu3Mk///zDE088cU951KlTB19f30x/AgIC6NChQ5aeV+3atTl37lyaebhv3rzJnj17qF27dqaLpdatWxeArVu3ptlmbjPHZDW+Tp06VvEpKSmWOcpvj/f393+g58oWEckvklKS2HFhh+UnKUXXpgWdkWJw4+8U/jp8lb8OXyUlOcXWKYk8sPJbTePr68uzzz6bpeeVEzVNdqmmyXkaASQiIpJNsXE3ubbdAwwwmRJJ9I3D3t7D1mmJ5HszZ85k3759jB8/PtNh+jdv3mTQoEG4uLjwxhtv3NN5c3oNIICuXbsSFRXF9OnTmTlzpqV93rx53Lx5k65du1rFnz9/nmvXrlG2bFnLcy9XrhwhISFERETw22+/UatWLQCSkpKYOXMmnp6elkVoAdq0acPAgQNZuHAhgwYNstxBePr0aVauXEmjRo0oV66cVY5Lly5l+vTphIaGWtpXrVrFyZMnGTVqVJaeq4iI2FZ8cjzDooZZHq9tuxYHO33dU5ClJMOZ/0vh7537AXhhfH2c7HWPt0hekNdrGsjaGkCQMzVNdqmmyXm6IhAREcmmc2++iSmlGQCGYdg4G5H8KTQ0lBo1alCpUiUMw2DDhg18++23PPPMM4wcOdIqdsuWLQwdOpRWrVpRunRpzp8/z+LFizl58iRLly6lYsWK95RLTq8BBNC9e3eWLl3KrFmzuHbtGqGhofz+++/MnTuXxo0b061bN6v4ESNGsGTJEjZv3myZExxSC8jQ0FBatmzJa6+9ho+PD59++im7du1i/vz5VsVb4cKFmTZtGn369CEkJITevXsTHx/PrFmzLMe6VfPmzenUqRPLli3jqaee4plnnuHEiRPMmDGDSpUq3XMRKiL35mz//sTu2QOAW/Xq+P3337KIiIjkDfmxpsmOnKppoqKiiIqKsvwO8Omnn/LLL78AqZ04/v7+gGqa3KAOIBERkWxKSUjQX1CRe9SgQQO+/fZbFi1ahMlkokqVKsyfP5+ePXtiZ2d9B2vp0qUpUqQI8+bN49KlSxQuXJjQ0FBWrFhBzZo1bfQM7sze3p7vv/+eCRMmsGLFCpYtW4avry+DBw9mzJgx2NvbZ+k4NWvWZMuWLbz55ptMmzaNhIQEgoODWblyJe3bt08T37t3b4oWLcq0adMYOnQoTk5ONGrUiEmTJlGtWrU08UuWLCE4OJhPPvmEV155hSJFitC1a1feeuute5qDXETuXUp8PEbsTcvvIiIikreopslaTbNp0ybGjx9v1fbxxx9bfm/UqJGlAwhU0+Q0k5EPb11evXo1c+fOZdeuXcTExODr60v9+vV55513KFOmjCUuOjqacePG8fXXX3PhwgV8fX157rnnGDt2LB4eaafqSUlJYc6cOSxYsIBjx47h4eFB8+bNmTRpkmUOx9tt2LCByZMns2vXLkwmE7Vq1WLUqFE8+uij6cYfOXKEUaNGsWnTJmJiYqhYsSJ9+vShT58+9zxnYoMGDYD050iU3GXuvb51qKE8GPTeP5j29enNDw6tADCAos8F4eKStSngOtcrm4uZSW7au3cvgOXOrNsXmJSCzzwCSO/93TP/OwoODs7WfrrOfXDY+r2Oiori0o144ooGZXmf3PrbfrpXL27+tgsA11o1KbtgQa6cR3LX/agXYhJjeGr1U5bHa9uuxd3RPdfOJ7a3+adIjnyXjJOTE/DfKeBcdIeaZC6jazFd50puKKifq/xW0+Srvw6GYdCnTx8WLFhAhQoV6NixI56enpw7d47IyEhOnTpl6QCKiYkhLCyMPXv20KJFCzp16sTu3bt59913iYyMJCoqChcXF6vj9+7dm0WLFlGlShUGDBjAuXPn+PLLLwkPD+fXX38lMDDQKv6zzz6ja9euFCtWzDLkbcWKFTz22GN8+eWXae7KPHDgAA0bNuTmzZs8//zzlCpVinXr1tGvXz8OHDhgGcomIiJ5m0fjxvBraucP5OyChyIiIiIAns2b41KpMgCOfqVtnI2IiIiI5Ef5qgNo5syZLFiwgH79+jFz5sw0w8ySkpIsv7/zzjvs2bOHYcOGMWXKFEv78OHDmTp1KjNmzGDEiBGW9s2bN7No0SJCQ0PZuHGj5S6Kzp0788QTT/Dqq6+yYcMGS/zVq1fp378/Pj4+7Nq1Cz8/PwCGDRtGjRo16Nu3Ly1btsTT09OyT9++fbl27Rrff/89jz/+OAATJ06kefPmzJ49m86dO1t6AkVEJO8q9PTTGNs2pfYA3ePoTREREZH0FH7+eVunICIiIiL5nF3mIXnDzZs3GT9+POXLl+eDDz5Id45BB4fU/izDMFi0aBEeHh6MHj3aKmb06NF4eHiwaNEiq/aFCxcCqR0y5s4fgMcff5wmTZoQHh7O6dOnLe0rV67k33//pX///pbOHwA/Pz9effVVLl26xOrVqy3tR44cISoqiqZNm1o6fwCcnJyYOHGiVQ4iIiIiIiIiIiIiIiL3It90AIWHh3P16lXatGlDcnIyq1atYsqUKXz44YccO3bMKvbo0aOcO3eOkJAQ3N2t5711d3cnJCSE48ePc+bMGUt7RESEZdvtWrZsCUBkZKRVPECLFi3uOb5Ro0a4u7tbxYuIiIiIiIiIiIiIiNytfDMF3G+//QaAvb09jzzyCEeOHLFss7Oz47XXXuPdd98FUjuAgDRr9pgFBgayYcMGjh49SpkyZYiJieH8+fNUrVo13ZFF5uOYj5vZObIbb29vT7ly5Thw4ABJSUmWkUwZyWiauH379lG2bFnLIpNy/0RHRwPotX8A6b1/MMXGx5kXAALDwOXqn7g4udxxH7OoqJO5lpfkLldXV5ydnTGM1DffvKClPDj03t87wzCIj4/P9t/N6OhovLy8cikrERERERGRginfjAC6ePEiAO+99x7e3t5s376d69evExUVRcWKFZk+fTrz5s0D4Nq1awB4e3uneyxz8WiOy258ZvtkN968T0pKCtevX093u4iIiIiIiIiIiIiISFblmxFAKSkpQOqaOd988w2lSpUCoHHjxqxcuZJq1aoxffp0+vbta8s074utW7em224eGRQaGno/0xH+N/pDr/2DR+/9g+n4nNnsozSGAZhMxBWuAC4eWdo3tF7Z3E1Ocs3+/ftJTk4mJSUFe3t7nJ2dbZ2S3GfmkT967+9OUlISkDqark6dOtnaV6N/5EF06cMPif/zOADOFcrj06ePjTMSEZH8zs7OjuTkZJKTk9OdBUlE7iwpKQnDMLCzyzfjavJPB5B55Ezt2rUtnT9mVatWpXz58hw7dox///3XEnvrCJxbmadsMsdlN/72fYoWLZqt+IzOYTKZ8PT0THe7iIjkHcbvf+B/PhwDg/iSfuD4iK1TkvvAxcWFmJgYzp07l+ZaREQylpKSQlxcHOfOnQPUmSOSVbG7dnHzt10AJF/717bJSJ7mbO/MB00/sHosBZudPfg3tqdGjdQ6xMEx/3wRKbZlrmlOnTqFv7+/OoFEsig/1zT5pgMoKCgIgEKFCqW73dx+8+bNdNfgudXt6/G4u7vj6+vLiRMn0u0BT2/9nsDAQHbu3MnRo0fTdABlFJ9RTsnJyZw4cYJy5cpluv6PiIjYniPw8JkzGIbBDdfCHLfX/90PgjJlyvDnn39y/fp1jh49mq/u+JGcYV4DyGQy2TiT/MX8ugE4OjpSvHhxG2YjIlLwONg5EFws2NZpyH1ksjPh5gMlyuWfLyAlbzDXNDdu3GD//v2W61pd50puKEifq/xc0+Sbby6aNm0KwMGDB9NsS0xM5NixY7i7u1OsWDECAwMpVaoUW7ZsISYmxio2JiaGLVu2UK5cOcqUKWNpDwsLs2y73YYNGwDrKZ7CwsIACA8PzzDeHJNZ/C+//EJMTIxVvIiI5F2OpUqR7OtLQomSJBTNP3/05d44OTlRoUIFEhISSEhIsHU6YgPx8fGWaeAk6+zt7XFxcaFEiRIEBQXh4uJi65RE8gXHUqVweqgCTg9VwFEjT0VEJAeYaxp3d3erG+B1nSu5oSB9rvJzTZNvblmuUKECLVq0IDw8nEWLFtGzZ0/LtilTpvDvv//SpUsXywianj17MmHCBCZOnMiUKVMssRMnTuTGjRuMHDnS6vi9evVi+fLljB49mo0bN+Lk5ATA+vXriYiIoEWLFvj7+1vin3/+eYYNG8asWbN46aWX8PPzA+Ds2bPMnj0bHx8f2rZta4kPCgoiNDSUzZs3s379eh5//HEAEhISGD16tCVnERHJ+3zHjeNoVBSXbsQTVzTI1unIfeTk5GS5gM3uGiaS/5nXfdN7LyL3g++4cbZOQURECiBzJ9CtdJ0ruUGfq7wh33QAAcydO5eGDRvy8ssv880331CpUiV2797Npk2b8Pf3Z9q0aZbYoUOHsmbNGqZOncru3bupWbMmu3btIjw8nDp16jBo0CCrYzdt2pSePXuyaNEiatasSevWrTl//jwrVqygSJEizJo1yyq+cOHCzJ49m65du1KzZk06dOgAwIoVK7h8+TIrVqxIs57P3LlzCQkJoU2bNnTo0AFfX1/WrVvH/v37efXVV2nYsGHuvHAiIiIiIiIiIiIiIvJAyVcdQBUqVGDnzp2MGTOGH374gfDwcEqWLMkrr7zCmDFjrObec3d3JzIyknHjxvH111+zefNmfH19GTJkCGPHjsXV1TXN8efPn09wcDALFizggw8+wMPDg7Zt2zJp0qQ0PeMAXbp0wcfHh8mTJ/PJJ59gMpmoVasWo0aNonnz5mniq1SpwrZt2xg1ahTr1q0jJiaGihUrMmfOHPr27ZuzL5aIiOSaazeuE7nhOCmGgWG6gH/LOjg7u9k6LRERERF5AMUmxjIkcojl8fSw6bg56tq0IEtJMjj1cwrXfv8dgFa9quLobJ/JXiIi8iDKVx1AkLpY2SeffJKlWG9vb2bMmMGMGTOyFG9nZ8eAAQMYMGBAlvNp1aoVrVq1ynJ8UFAQK1euzHK8iIjkPYZh4HK9EBiAyYRhpNg6JRERERF5QBkYHL5y2OqxFGyGAXH/GlyKvf7fx3rPRUQkfXa2TkBERERERERERERERERyVr4bASQiImJrN379FcuNlbrbTkRERHLBjagokv65BIBDMR88QkNtnJGIiIiI5DfqABIREcmmf7/+GpND6vSf6v4RERGR3HDls8+4+dsuAFxr1VQHkIiIiIhkm6aAExERERERERERERERKWDUASQiIiIiIiIiIiIiIlLAaAo4ERGRbCo5ahTG1N9snYaIiIgUYKWmTsVITATA5Oho42xEREREJD9SB5CIiEg2OXh7g4nUBYBMJlunIyIiIgWQQ+HCtk5BRERERPI5TQEnIiIiIiIiIiIiIiJSwKgDSEREREREREREREREpIDRFHAiIiLZZG9vx83Cl0kxDAw7R4rZ6X4KEREREbENO5MdtUvUtnosBZvJBO7FTRQvVij1sZ2mpRYRkfSpA0hERCSbXGPjaFa9KFdi44krVokkJzdbpyQiIiIFTNKlSxgJCQCYnJxw8PGxcUaSV7k6uPJO2Du2TkPuIzsHE2VD7AkNrWrrVEREJI9TB5CIiEg2nRs5ksLbd1DIMLgR9AjHh7xl65RERESkgDk3ciQ3f9sFgGutmpRdsMDGGYmIiIhIfqNxwSIiIiIiIiIiIiIiIgWMOoBEREREREREREREREQKGE0BJyIikk2eXbuwwd+fhKRkErxKUDQ5EQd7R1unJSIiIgVI0W7dSHrqKQAciha1cTaSlyWmJLLjwg7L4zol6+Bop2vTgsxIMbjxt8GZA1cAKBVUCHt73eMtIiJpqQNIREQkm0zVq/PvyitgAJdNJNWMVweQiIiI5Cj3hg1tnYLkEwnJCYz6ZZTl8dq2a9UBVMClJMPZX1O4uOsAAC+Mr68OIBERSZf+OoiIiIiIiIiIiIiIiBQw6gASEREREREREREREREpYNQBJCIiIiIiIiIiIiIiUsCoA0hERERERERERERERKSAcbB1AiIiIvnNhSlTMKXUAcDAsHE2IiIiUhCdGzWKuP2pC7y7VHmYUm+9ZeOMRERERCS/UQeQiIhINiVdvvy/v6Dq/xEREZFckHTxIomnTwPgUMzHxtmIiIiISH6kKeBEREREREREREREREQKGI0AEhERySa36tVhv3nwj8m2yYiIiEiB5FanDg4+xQBwKhdg22REREREJF9SB5CIiEg2FXnhBYw3N6X2AJnUASQiIiI5z+fll22dgoiIiIjkc5oCTkREREREREREREREpIDRCCAREZFscnd1o3jjeG7cTCTBsxSOji62TklEREREHlAu9i7MeXSO1WMp2OzsISDMnpo1qwHg4GRv44xERCSvUgeQiIhINjk6OFCuhC+XbsQTV/QhW6cjIiIiIg8wezt7KhetbOs05D4y2ZlwLQLFynraOhUREcnjNAWciIiIiIiIiIiIiIhIAaMRQCIiItl0ddky3P9vK3aJycSWfZhLjz5l65RERESkgLm6bBkJp88A4FS2DIU7dbJxRiIiIiKS36gDSEREJJuub96My/YdOBsGDleuqwNIREREctz1zZu5+dsuAFxr1VQHkIiIiIhkmzqAREREsinGDr4J6wUGGPb2lI6PxdnZzdZpiYiIiMgDKDYxlgGbB1gez2w6EzdHXZsWZClJBicjU7i6azcAT/R9BEdnextnJSIieZE6gERERLLJcHPHOaFk6u8GGEaKjTMSERGRgsbO3R07by/L7yIZMTA4/u9xq8dSsBkGxEcbXImL+e9jveciIpI+dQCJiIhkU6nx4zHe3AQGYDLZOh0REREpgPxmzLB1CiIiIiKSz9nZOgERERERERERERERERHJWeoAEhERERERERERERERKWDUASQiIiIiIiIiIiIiIlLAqANIRERERERERERERESkgHGwdQIiIiL5zc39+8H47wPDuGOsiIiIyN24+fvvJF+7BoC9tzeu1arZOCMRERERyW/UASQiIpJNlxcvxuTQCvhfP5CIiIhITvpnzhxu/rYLANdaNSm7YIGNMxIRERGR/EZTwImIiIiIiIiIiIiIiBQw6gASEREREREREREREREpYDQFnIiISDaVGvQaNz+PICXFIMXeiWJ29rZOSURERAqYkiNHknLzJgB2rq42zkbyMnuTPQ1KNbB6LAWbyQQeJU2UKFEEADs7k40zEhGRvCpfjQAKCAjAZDKl+9OkSZM08fHx8UyYMIHAwEBcXFwoVaoUvXr14uLFixme4/PPP6du3bq4u7tTuHBhnnzySXbt2pVh/I4dO3jiiScoVKgQ7u7u1K9fny+//DLD+PPnz9OjRw98fX1xcXEhKCiISZMmkZiYmK3XQkREbKdIpUqEPfYwwSEPEdT6MZyc9KWMiIiI5CyngABcKlfGpXJlnAICbJ2O5GEuDi5MajTJ8uPi4GLrlCSX2TmYKNPAnubdHqZ5t4dxcFKnn4iIpC/fjQDy9vZm0KBBadoDbrsgTklJ4ZlnnmHDhg3Ur1+fdu3acfToURYtWsRPP/3Er7/+SrFixaz2mTRpEqNGjcLf358+ffpw/fp1li9fTsOGDfnpp58ICQmxit+8eTMtW7bExcWFjh074unpyddff02HDh04c+YMQ4YMsYq/cOEC9erV4+zZs7Rt25bAwEAiIyMZNWoU27dv55tvvsFk0l0bIiIiIiIiIiIiIiJyb/JdB1ChQoUYN25cpnFLlixhw4YNdOrUic8//9zSsfLhhx/St29fRo0axfz58y3xR48eZdy4cVSsWJHt27fj7e0NQL9+/ahfvz4vv/wy+/btw84uddBUUlISL7/8MnZ2dkRFRVG9enUAxowZQ926dRk5ciTt27fH39/fco5hw4Zx5swZ5s2bR58+fQAwDIPOnTuzfPlyli9fTqdOnXLiZRIRERERERERERERkQdYvpoCLjsWLlwIwNtvv201qqZ3796UL1+ezz//nJv/nU8Z4JNPPiEpKYk333zT0vkDUL16dTp16sTBgwf55ZdfLO2bNm3izz//pHPnzpbOH0gdoTRy5EgSEhJYsmSJpf369eusWLGC8uXL07t3b0u7yWRiypQpVjmLiIiIiIiIiIiIiIjci3zXARQfH8/ixYuZPHkys2fPZtu2bWli4uLi2LZtG0FBQVYjcCC1w+Wxxx4jJiaGnTt3WtojIiIAaNGiRZrjtWzZEoDIyMi7jt+6dSvx8fE89thjaaZ58/f3JygoiC1btpCcnHynpy8iInlAXOwN9h77kz9Pn+TU4d9IStY6biIiIpKzjMREjISE1B+tGSt3kJiSSNTZKMtPYoo+LwWdkWIQ/VcKJ/de4uTeSyQnp9g6JRERyaPy3RRwFy5coHv37lZtderUYdmyZVSoUAGAP//8k5SUFAIDA9M9hrn96NGjNG7c2PK7h4cHJUuWvGO8mfn39M5RsmRJPDw8shxvbj98+DCnTp2ifPny6caYNWjQIN32ffv2UbZsWaKiou64v+S86OhoAL32DyC99w8muzlzuFmsIyZS/5A6eB3AxSlri+1GRZ3MzdTkPtC/+weX3nvbiY6OxsvLy9ZpiNxXZ155hZu/7QLAtVZNyi5YYOOMJK9KSE5g3P+Nszxe23YtjnaOtktIcl1KMvy1PYV/9hwC4IXx9bG3z3f3eIuIyH2Qr/46dO/enZ9++om///6bmJgYdu/eTdeuXdmxYwePPvoo169fB+DatWsAVlO53cpcPJrjzL9nNz6zc2Q3/vZziIiIiIiIiIiIiIiI3I18NQJo7NixVo+rV6/O0qVLAfj0009ZuHAhgwcPtkVq99XWrVvTbTePDAoNDb2f6Qj/uxNYr/2DR+/9g2nfF59bPY4rXAFcPLK0b2i9srmRktxH+nf/4NJ7bzsFZfRPXFwcI0eOZOfOnRw7dowrV65QqFAhKlSoQM+ePenSpQuOjtZ37UdHRzNu3Di+/vprLly4gK+vL8899xxjx47FwyPt356UlBTmzJnDggULOHbsGB4eHjRv3pxJkyZlONPAhg0bmDx5Mrt27cJkMlGrVi1GjRrFo48+mm78kSNHGDVqFJs2bSImJoaKFSvSp08f+vTpk2a6axERERERsZ18NQIoI7179wZgy5YtwP9G2WQ0msY8fceto3G8vb2zHZ/ZObIbf/s5REQkb/Jq1QrDZMIwmUBfdImISBbduHGDefPmYTKZaN26NYMHD6Zt27b89ddfvPTSSzz55JOkpPxvHYeYmBjCwsKYMWMGlSpV4rXXXiMoKIh3332XZs2aERcXl+YcvXv3ZsCAARiGwYABA2jVqhWrVq2iTp06VlNUm3322We0atWKgwcP0q1bN1588UX279/PY489xldffZUm/sCBA9StW5c1a9bw+OOPM2DAAJKTk+nXrx8DBgzI2RfsAVeoTRt8+vXDp18/CrVpY+t0RERERCQfylcjgDLi4+MDpBZIAOXLl8fOzi7dAgfSX48nMDCQrVu3cuHChTTrAGUUb95Wq1Ytq/gLFy5w48YN6tatm258Rjk5OTlRtqzuDBcRyeu8Hn0UNm0CA3UAiYhIlhUpUoRr167h5ORk1Z6UlMRjjz1GeHg469evp3Xr1gC888477Nmzh2HDhjFlyhRL/PDhw5k6dSozZsxgxIgRlvbNmzezaNEiQkND2bhxo+U8nTt35oknnuDVV19lw4YNlvirV6/Sv39/fHx82LVrF35+fgAMGzaMGjVq0LdvX1q2bImnp6dln759+3Lt2jW+//57Hn/8cQAmTpxI8+bNmT17Np07d85wzVLJHq8nnrB1CiIiIiKSzxWIEUDbtm0DICAgAABXV1fq1q3L4cOHOXXqlFWsYRhs3LgRd3d3ateubWkPCwsDIDw8PM3xzUWSOeZu4uvXr4+TkxMbN27EMAyr+FOnTnH48GFCQkJwcCgQfXIiIiIiInIbOzu7NJ0/AA4ODrRt2xaAY8eOAal1y6JFi/Dw8GD06NFW8aNHj8bDw4NFixZZtS9cuBBI7ZC59TyPP/44TZo0ITw8nNOnT1vaV65cyb///kv//v0tnT8Afn5+vPrqq1y6dInVq1db2o8cOUJUVBRNmza1dP4AODk5MXHiRKscRERERETE9vJNB9ChQ4eIjY1Nt33YsGFA6p1tZr169QJgxIgRVh0u8+fP5/jx47zwwgu4urpa2rt3746DgwOTJk2ymqZtz549LFu2jMqVK9OoUSNL+6OPPkr58uX54osv2LNnj6X92rVrTJ48GScnJ/7zn/9Y2r28vOjYsSPHjx9n/vz5lnbDMCx37b388svZfl1ERERERCR/S0lJ4YcffgCgatWqQOoMAefOnSMkJAR3d3ereHd3d0JCQjh+/DhnzpyxtEdERFi23a5ly5YAREZGWsUDtGjR4p7jGzVqhLu7u1W8iIiIiIjYVr4ZbrJ8+XLee+89QkND8ff3x93dnSNHjvD999+TmJjIiBEjrBbkffHFF1mxYgXLli3jxIkThIWFcezYMVatWkW5cuV46623rI5fsWJFxo0bx6hRo6hWrRrt2rXj+vXrLF++HEi9k83O7n/9ZQ4ODixatIiWLVsSGhpKx44d8fT05Ouvv+bUqVO8++67lhFJZlOmTGHz5s3069ePH3/8kYceeojIyEh+/fVXnnrqKTp27Jh7L6CIiIiIiOQJCQkJTJ48GcMwuHz5Mj/99BOHDh2ie/fuPProo0D601DfKjAwkA0bNnD06FHKlClDTEwM58+fp2rVqtjb26cbf+txMztHduPt7e0pV64cBw4cICkpKdOZDTKaJm7fvn2ULVuWqKioO+6fW6Kjo7FLMXC5fDjL+0RFncy9hCTfM6/3m5uf6biUOBISEiyPt2zZgoudS66dT2zv+vXrGCkulvd9y5Yt2Dtqamq5e/fj/yp58OhzZS06OhovL6/7ft580wHUtGlTDh48yO7du/n555+JjY3Fx8eHJ554gn79+qW5C83Ozo41a9YwZcoUPv30U2bMmEGRIkXo0aMHb731FsWKFUtzjjfffJOAgADef/995s2bh5OTE40bN2bixInUrFkz3Zx++eUXxo4dy4oVK0hMTCQ4OJipU6fSoUOHNPG+vr5s27aNUaNGsW7dOtauXYu/vz8TJ05k6NChmLSOhIiIiIhIgZeQkMD48eMtj00mE6+//jpvv/22pc08K4G3t3e6xzAXj+a47MZntk924837pKSkcP36dQoXLpxujIiIiIiI3D/5pgMoLCzMak2drHB2dmbs2LGMHTs2y/u88MILvPDCC1mOr1u3LuvXr89yvK+vLx999FGW40VEJO+59OE8TCkVMTIPFRERScPDwwPDMEhJSeHcuXOsXbuWkSNHsnXrVr7//nub3Bl4v23dujXddvPIoFtnd7ifoqKiuHQjnriiQVneJ7Re2VzJ5eK77xJ35AgALhUrUvz113PlPJK7zHc95+ZnOiYxBqfV/1v3KyQkBHdH9zvsIfnd5p8iMdklW9Z7Cwmpj5NLvvmKT/Kg+/F/lTx49LmyZqtr/HyzBpCIiEheEffncQBMAIa6gURE5O7Y2dnh5+dH3759WbBgAVu2bGHSpEnA/0bZ3DoC51bmKTXMcdmNz2yf7Mab9zGZTHh6eqa7XbIn7sgRbv62i5u/7bJ0BImIiIiIZIduDxAREckmtxSDin9+iGHAzdL+JDpWs3VKIiKSz5mntI6IiADSX4PnVrevx+Pu7o6vry8nTpwgOTk5zTpA6a3fExgYyM6dOzl69ChFi/5/e/ceHkV5/n/8M7s5sjlwCEowIUQM1CKgQVAOJkQxgHgAawlQEbSgxQJVqKAtUWqEij8r9RuUimkFS62BUkGLmKDmIBERDVgFK1HOAioIhCyEHHZ+f9BsWRMgC5tMsrxf15UL5pl7Zu7d2ezuk3vmedrUK/50OVVXV2v79u2Kj48/6/w/AHwrxB6ihTcu9FiGf7PZpfgUu3pefaUkKSCo9txvAABI3AEEAIDXwjp3VgdHhNqHhKldZDvZ7fyhCwBwfvbu3StJCgwMlHSy2NK+fXsVFRXJ6XR6xDqdThUVFSk+Pl6xsbHu9uTkZPe6H8rJyZHkOQRHzRDbubm5p40/dRjuM8WvXbtWTqfT62G7cXohnTsrtGeiQnsmKqRzZ6vTQRNmt9l1WavL3D92G8UAf2fYDIW0NNSmfZjatA+Tzcac0gCAulEAAgDASxf9+tcqnTJZu+/9hfamjbc6HQBAM7FlyxYdO3asVvuxY8c0depUSdJNN90kSTIMQ+PHj1dZWZkyMjI84jMyMlRWVqYJEyZ4tN97772SpPT0dFVUVLjbV69erfz8fKWmpiouLs7dPmLECEVGRiozM1N79uxxt+/Zs0fz589XVFSUhg8f7m7v0qWLkpKSlJeX5zEPakVFhdLT0yVJ48fzuegrF/361+qwcKE6LFzI/D8AAAA4J1yyDAAAAACNYOnSpXrmmWfUv39/dezYUREREfr666+1evVqHTx4UNddd50efPBBd/z06dO1cuVKzZ07Vxs3blRiYqKKi4uVm5urXr166YEHHvDYf0pKisaPH6+srCwlJiZq6NCh2rdvn7Kzs9W6dWtlZmZ6xLdq1Urz58/XmDFjlJiYqLS0NElSdna2Dh48qOzs7Frz+Tz//PPq16+fhg0bprS0NEVHR2vVqlXavHmzJk2apL59+zbMkwcAAADAaxSAAAAAAKAR3Hzzzdq7d6/ef/99rVu3TmVlZYqMjFT37t01cuRI3XPPPR7z5zgcDhUUFGjWrFlavny58vLyFB0drWnTpumxxx5TaGhorWO88MIL6tatmxYuXKhnn31WYWFhGj58uGbPnq1OnTrVir/zzjsVFRWlOXPm6KWXXpJhGOrZs6dmzpypgQMH1orv2rWr1q9fr5kzZ2rVqlVyOp3q3LmznnvuOU2cONG3TxgAAACA80IBCAAALx0pO6rCN3fKNE2ZxreKvamngoNbWJ0WAKCJu/rqq3X11Vd7tU1kZKTmzZunefPm1SveZrNpypQpmjJlSr2PMXjwYA0ePLje8V26dNGyZcvqHQ+gYR2rPKZfvvNL9/JzNzynFoF8N/VnripTO/KrdXBDsSTp5kk9FBjM3E8AgNooAAEA4CXTNBV8LFwyJRmGTNNldUoAAAC4QJkytbN0p8cy/JtpSieOSodPHPvvMuccAFA3CkAAAHip9J13JNM4uUBnCwAANIDSN99U5b79kqTA6HaKuOkmizMCAABAc0MBCAAAL5W+9ZaMgJND5VD+AQAADeHwihU6/vHJ4Z1CeyZSAAIAAIDXbFYnAAAAAAAAAAAAAN+iAAQAAAAAAAAAAOBnGAIOAAAvXTJnjszH3ju5YBjWJgMAAPxS7HPP/W+uQb5vAAAA4BxQAAIAwEtGYKBkiAmAAABAgzECA61OAQAAAM0cQ8ABAAAAAAAAAAD4GQpAAAAAAAAAAAAAfoYCEAAAAAAAAAAAgJ9hDiAAALzk+nqvylvuU7XLlBkQpLa2H1mdEgAA8DMVO3bIdfy4JMkWGqqgjh2tTQhNlt2wq/8l/T2W4d8MQwqPNtSuXRtJks1mWJwRAKCpogAEAICXyp55Rrd/uEGmaaqsS3dtG5JqdUoAAMDP7J8zR8c/LpYkhfZMVIeFCy3OCE1VSECIHu/3uNVpoBHZAgzFXGtXUtLlVqcCAGjiGAIOAAAAAAAAAADAz1AAAgAAAAAAAAAA8DMMAQcAgJfa/vKX2tujSEfKK3U8mmEXAACA77X95S9VfeSIJMkeGWlxNgAAAGiOKAABAOAl249/pA0fb9TxgGpVVTkVU12pAHug1WkBAAA/Etqjh9UpoJmodFXqvT3vuZevi7lOgTa+m/oz02Xq6F5T2zZ9J0mK69ZGdjuD/AAAaqMABACAl46Xn1D5ppYyTCnQMFQVd4ICEAAAACxRUV2hJz54wr38xvA3KAD5OVe19PUGl7775AtJ0s9+dC0FIABAnfh0AAAAAAAAAAAA8DMUgAAAAAAAAAAAAPwMBSAAAAAAAAAAAAA/wxxAAAB4ae9jj8lwJUmSTJkWZwMAAPzRngcf1PFPPpEkhfbooZh58yzOCAAAAM0NBSAAALzkOnbsf5+g1H8AAEADcDmdch0pdf8fAAAA8BZDwAEAAAAAAAAAAPgZ7gACAMBLYX37Shtqbv4xLM4GAAD4o/CUFAV3ukySFNQh1uJsAAAA0BxRAAIAwEsthw+X+dG7JytABgUgAADge61GjbI6BQAAADRzDAEHAAAAAAAAAADgZygAAQAAAAAAAAAA+BmGgAMAwEuO0BaKSalW6fFKVUTEKDAwxOqUAAAAcIEKsYfoz4P+7LEM/2azS5feYNfVV18lSQoIslucEQCgqaIABACAlwIDAnRJm7YKLjuh8jYdrE4HAAAAFzC7za74yHir00AjMmyGgiOkVu0cVqcCAGjiKAABAOClAy++qLB1HyiwqlrOjl317dA0q1MCAAB+5sCLL6pi+w5JUlB8R0VNmGBtQgAAAGh2fDYH0Msvv6x///vfZ4z57LPP9PLLL/vqkAAAWOLYhg0KLi5W+CebFPafT61OBwDgI/Rp0JQc27BBR3NydDQnR8c2bLA6HQAAADRDPisAjRs3TitWrDhjzMqVK3X33Xf76pAAAAAA4DP0aQAAAAD4k0YdAq66ulo2m89qTgAAWKL8orZaMWCyZEqmzaZLThxTcHALq9MCADQC+jRoLAEXXaTADh3c/wdO51jlMd275l738sIbF6pFIN9N/ZmrytT2d6v13QcfSZJu/dVVCgy2W5wVAKApatQC0MaNG9W6devGPCQAAD530YwZCvrtu5IpyTRkmi6rUwIANBL6NGgs7Z94wuoU0EyYMrW3bK/HMvybaUoVTqm0svy/y5xzAEDdzqsAdP3113ssL1q0SPn5+bXiqqurtWfPHu3YsUMjRow4n0MCAAAAgM/QpwEAAADgr86rAHRqx8gwDO3YsUM7duyoFWez2dS6dWv99Kc/1R//+MfzOSQAAAAA+Ax9GgAAAAD+6rwGr3a5XO4f0zQ1a9Ysj7aan6qqKn377bd69dVXdfHFF/sqd0nS3LlzZRiGDMPQBx98UGt9aWmppk6dqri4OAUHB6tjx4566KGHVFZWdtrHlJmZqW7duik0NFRt27bVqFGjtG3bttPmkJOTo+TkZIWHhysiIkIpKSl65513Thu/detWjRgxQlFRUQoNDVWPHj20YMECbtkFAAAAGllT6NMAAAAAQEPw2RxAeXl56tixo692Vy+fffaZHnvsMTkcDjmdzlrrnU6nkpOTtWnTJqWmpmrUqFHauHGjnn76aRUUFKiwsFAhISEe29x3333KyspS165dNWXKFO3du1dLly5Vbm6uPvjgAyUkJHjEL1myRGPGjFHbtm01btw4SVJ2drZuvPFGLV26VHfccYdH/JYtW9S3b18dP35cI0aMUPv27bVq1Srdf//92rJlizIzM337JAEAAACoFyv6NAAAAADQUHxWAEpOTvbVruqlsrJSY8eO1ZVXXqmEhAQtWbKkVsxTTz2lTZs2acaMGXryySfd7Q8//LDmzp2refPm6ZFHHnG35+XlKSsrS0lJSVqzZo2CgoIkSaNHj9ZNN92kSZMmKScnxx1/6NAhTZ48WVFRUSouLlZMTIwkacaMGbrqqqs0ceJEDRo0SOHh4e5tJk6cqCNHjujNN9/UkCFDJEkZGRkaOHCg5s+fr9GjR6tPnz6+fbIAAD7l/OgjuefW5e5NAPAbjd2nAc7E+f77qjp4UJIU0KaNHH37WpwRAAAAmhufFYAkqaKiQitWrNCGDRt0+PBhVVdX14oxDEN//vOfz/tYs2fP1ubNm1VcXKynnnqq1nrTNJWVlaWwsDClp6d7rEtPT9dzzz2nrKwsjwLQiy++KOlkQaam+CNJQ4YM0YABA5Sbm6tdu3apQ4cOkqRly5bp8OHD+t3vfucu/khSTEyMJk2apFmzZum1117TXXfdJenk0G+FhYVKSUlxF38kKSgoSBkZGRowYIBefPFFCkAA0MQdys6WETBY0v/qQAAA/9CYfRrgTA4uWqTjHxdLkkJ7JlIAAgAAgNd8VgDauXOnbrzxRn311VdnnMvGF52l4uJizZ49W48//rh+/OMf1xlTUlKivXv3atCgQXI4HB7rHA6H+vXrp5ycHO3evVuxsbGSTk4AW7PuhwYNGqT8/HwVFBRozJgx7nhJSk1NrTN+1qxZKigocBeAzhTfv39/ORwOFRQU1O9JAAAAAOBTjdmnAQAAAICG5rMC0IMPPqgvv/xSY8aM0T333KOYmBgFBPj0BiNJ0okTJ3TXXXfpyiuv1PTp008bV1JSIkm15uypkZCQoJycHJWUlCg2NlZOp1P79u3TFVdcIbvdXmf8qfs92zG8jbfb7YqPj9eWLVtUVVV1xufudHcIffbZZ+rQoYMKCwtPuy0aRmlpqSTx3F+AOPcXJtuhw1Lb/y2HHPpKIUEhp40/VWHhjgbJCY2H3/sLF+feOqWlpYqIiGjw4zRWnwYAAAAAGoPPejPvvvuubrjhBi1evNhXu6zTo48+qpKSEn388cd1FmpqHDlyRJIUGRlZ5/qaDmRNnLfxZ9vG2/iabVwul44ePapWrVrVGQMAsJ5z5AiZ7xpWpwEA8LHG6tMA9dF+zhyZFRWSJOOUIcoBAACA+vJZAcjlcumqq67y1e7qtG7dOj399NOaNWuWrrjiigY9VlO2bt26Ottr7gxKSkpqzHSg/10JzHN/4eHcX5jKjjn14eZXVOUyZdqDVNGmjxQUWq9tk67p0MDZoaHxe3/h4txbpzHu/pEap08D1FdAVJTVKaCZsBt2DYgd4LEM/2YYUsQlhqKjT75P2GxcnAYAqJvPCkDXXHONPv/8c1/trpaqqiqNHTtW3bt318MPP3zW+Jq7bE69A+dUNUN41MR5G//Dbdq0aeNV/OmOYRiGwsPDT/ewAABNQFgLh5KTuuhA2QmVt+lidToAAB9p6D4NADSEkIAQPdrnUavTQCOyBRi6pLddSUk/sjoVAEATZ/PVjp588km9++67+sc//uGrXXooKytTSUmJNm3apKCgIBmG4f6pGaKhT58+MgxDK1asqHMOnlP9cD4eh8Oh6Ohobd++XdXV1WeNP/X/dR3D2/jq6mpt375d8fHxjDMOAAAAWKCh+zQAAAAA0Jh8VmlYtWqVUlJSlJaWpuTkZCUmJtY5VINhGEpPT/d6/8HBwfr5z39e57rCwkKVlJTo1ltvVdu2bdWxY0clJCSoffv2KioqktPplMPhcMc7nU4VFRUpPj5esbGx7vbk5GS9+uqrKioqqjW0R05OjiTPIT+Sk5P197//Xbm5ubr22mvrjE9OTvaIl6Tc3NxadzGtXbtWTqfTIx4AAABA42noPg0AAAAANCafFYBmzZrl/n9+fr7y8/PrjDvXzlJoaKiysrLqXDdu3DiVlJTokUce8SjEjB8/Xo8//rgyMjL05JNPutszMjJUVlam3/zmNx77uffee/Xqq68qPT1da9asUdB/J9pcvXq18vPzlZqaqri4OHf8iBEjNGPGDGVmZuqee+5RTEyMJGnPnj2aP3++oqKiNHz4cHd8ly5dlJSUpLy8PK1evVpDhgyRJFVUVLifk/Hjx3v93AAAGlfVoUOyHT6igGMnZA8uVXVY48xNAQBoWA3dpwG8UXXokMzKSkmSERiogFatLM4IAAAAzY3PCkB5eXm+2pXPTJ8+XStXrtTcuXO1ceNGJSYmqri4WLm5uerVq5ceeOABj/iUlBSNHz9eWVlZSkxM1NChQ7Vv3z5lZ2erdevWyszM9Ihv1aqV5s+frzFjxigxMVFpaWmSpOzsbB08eFDZ2dm15vN5/vnn1a9fPw0bNkxpaWmKjo7WqlWrtHnzZk2aNEl9+/Zt0OcEAHD+djw8XVvKTsg0pcrW7yti9C8VYA+0Oi0AwHlqin0aXLj2zpih4x8XS5JCeyaqw8KFFmeEpqrSVal3d73rXr6+w/UKtPHd1J+ZLlOle0x9+fG3kqT4K6Nkt/tslgcAgB/xWQGoKQ5d5nA4VFBQoFmzZmn58uXKy8tTdHS0pk2bpscee0yhoaG1tnnhhRfUrVs3LVy4UM8++6zCwsI0fPhwzZ49W506daoVf+eddyoqKkpz5szRSy+9JMMw1LNnT82cOVMDBw6sFd+1a1etX79eM2fO1KpVq+R0OtW5c2c999xzmjhxYoM8DwAA3yo3bCptdfIOT1NSi8oTFIAAwA80xT4NAJxNRXWF5n44173c/5L+FID8nKta2vuxSwc+3SpJ6tC1NQUgAECdfFYAstKiRYu0aNGiOtdFRkZq3rx5mjdvXr32ZbPZNGXKFE2ZMqXexx88eLAGDx5c7/guXbpo2bJl9Y4HAAAAAAAAAADwhs8KQIWFhfWOTUpK8tVhAQBodC1/8hOZrx+zOg0AgI/Rp0FT0vrOO1U16OSFhgFtoyzOBgAAAM2RzwpAAwYMkGEY9Yqtrq721WEBAGh0YddeK73x7snx3+r52QcAaPro06ApCaPICAAAgPPkswLQo48+Wmdn6ciRIyouLlZhYaGGDh2qq6++2leHBAAAAACfoU8DAAAAwJ/4rAA0a9asM67/xz/+oXHjxul3v/udrw4JAAAAAD5DnwYAAACAP7E11oHuuOMOpaSk6JFHHmmsQwIAAACAz9CnAQAAANCcNFoBSJIuv/xyrVu3rjEPCQAAAAA+Q58GAAAAQHPhsyHg6mPjxo2y2Rq15gQAgM998/TTMlxXSZJMi3MBADQu+jRoLPtmzVL5559LkkIuv1zRZxmiEAAAAPghnxWAdu3aVWd7VVWVvv76ay1atEjvvvuuhg0b5qtDAgBgicpvvvnfJ6hJCQgA/AV9GjQllXv3quLLryRJ9shIi7MBAABAc+SzAlDHjh1lGMZp15umqU6dOmnevHm+OiQAAAAA+Ax9GgAAAAD+xGcFoLvuuqvOzpLNZlOrVq3Uq1cv3XbbbQoJCfHVIQEAsERUjx66fNObqqhyqTw6XlWBPaxOCQDgA/Rp0JS0SEyUPbKlJCm406XWJoMmLcQeopeHvOyxDP9ms0udbrSrd++ekqSAILvFGQEAmiqfFYAWLVrkq10BANCktZt4v8ILC3Wg7ITMNl1EdwsA/AN9GjQlUb/4hdUpoJmw2+yKCY+xOg00IsNmKChMiogKtToVAEATx+ylAAAAAAAAAAAAfsZndwDVcDqdWrFihTZt2qTS0lJFREToyiuv1LBhw+RwOHx9OAAAAADwKfo0AAAAAPyBTwtAy5cv17333qvDhw/LNE13u2EYatmypV588UXdfvvtvjwkAAAAAPgMfRoAAAAA/sJnBaD3339fI0eOlN1u1/jx45WSkqLo6Gjt379feXl5Wrx4sUaOHKmCggL16dPHV4cFAKDRHSk7qvfe2CPTlGQc0CW3XKngYK4IB4Dmjj4NgOboWOUx3ZNzj3v5L4P+ohaBLSzMCA2tutLU9neq9U3RBknSbQ9epaAQnw/yAwDwAz77dJgzZ46Cg4NVVFSkHj16eKxLS0vT/fffr759+2rOnDl64403fHVYAAAa3aGVKxVc7tDJ68INjyvEAQDNF30aNCWHli5V5Z6vJUmBMZeo1YgRFmeEpsqUqW+PfeuxDP9XeVwqqz5hdRoAgCbO5qsdrVu3TmlpabU6SjW6d++uESNG6P333/fVIQEAsETZe+9JpmSYkij+AIDfoE+DpuTo22/r0N/+pkN/+5uOvv221ekAAACgGfJZAejYsWO6+OKLzxhz8cUX69ixY746JAAAAAD4DH0aAAAAAP7EZwWgjh07as2aNWeMeeedd9SxY0dfHRIAAEvYgoKsTgEA0ADo06ApsQUHy2gRKqNFqGzBwVanAwAAgGbIZwWgESNG6OOPP9bYsWO1d+9ej3X79u3TuHHj9PHHHystLc1XhwQAwBLtZ8+WaTNkGoZk89lHKQDAYvRp0JTEZGaq83vvqfN77ykmM9PqdAAAANAMBfhqRzNmzNBbb72lv/71r8rOztZll12miy++WN98842+/PJLVVRUqHfv3poxY4avDgkAAAAAPkOfBgAAAIA/8dllyy1atFBhYaFmzZqlmJgYbdmyRXl5edqyZYtiYmL0u9/9TgUFBQoNDfXVIQEAAADAZ+jTAAAAAPAnPrsDSJKCg4P16KOP6tFHH9XRo0dVWlqqiIgIhYeH+/IwAAAAANAg6NMAAAAA8Bc+uwOoqKhIU6dO1f79+yVJ4eHhuuSSS9wdpX379mnq1Kn64IMPfHVIAAAAAPAZ+jQAAAAA/InPCkDPPPOM3njjDbVr167O9dHR0frXv/6lefPm+eqQAABY4vgXX0jmfxdM84yxAIDmgz4NmpLjmzfL+cEHcn7wgY5v3mx1OgAAAGiGfDYE3IYNG3TDDTecMSYpKUlr1qzx1SEBALBE6YsvqiqgvUxJruAQ2e1drU4JAOAD9GnQlHz37LM6/nGxJCm0Z6I6LFxocUZoqgJsAbox7kaPZfg3wyZFxhpqf8lFkiSb3bA4IwBAU+WzbwXffvutLrnkkjPGtGvXTt9++62vDgkAgCVCTenWopUyTVNlXbprW+Boq1MCAPgAfRoAzVGwPViPXPOI1WmgEdnshtpfbVdSUmerUwEANHE+GwKuZcuW2rVr1xljdu7cqbCwMF8dEgAAAAB8hj4NAAAAAH/iszuArr32Wr322mvavXu3YmNja63ftWuXVqxYoeuvv95XhwQAwBIXT5+uPWuLdPh4hcov/pHV6QAAfIQ+DZqSi6dPl8vplCTZHA6LswEAAEBz5LM7gKZOnapjx46pX79+evnll7Vv3z5J0r59+7R48WL169dPx48f17Rp03x1SAAALBF82WWqujRe5XEdVX5JnNXpAAB8pKH7NF9//bX++Mc/KjU1VR06dFBQUJDatWunn/zkJ1q/fn2d25SWlmrq1KmKi4tTcHCwOnbsqIceekhlZWV1xrtcLmVmZqpbt24KDQ1V27ZtNWrUKG3btu20eeXk5Cg5OVnh4eGKiIhQSkqK3nnnndPGb926VSNGjFBUVJRCQ0PVo0cPLViwQKZpeveE4IyCL7tMoT16KLRHDwVfdpnV6QAAAKAZ8tkdQElJSXrmmWc0bdo03X333ZIkwzDcnQCbzaZnn31WSUlJvjokAACWOFF5Qh//50uVV1aret9hdbg8UQH2QKvTAgCcp4bu02RmZmru3Lnq1KmTUlNT1bZtW5WUlGjFihVasWKFXnnlFaWlpbnjnU6nkpOTtWnTJqWmpmrUqFHauHGjnn76aRUUFKiwsFAhISEex7jvvvuUlZWlrl27asqUKdq7d6+WLl2q3NxcffDBB0pISPCIX7JkicaMGaO2bdtq3LhxkqTs7GzdeOONWrp0qe644w6P+C1btqhv3746fvy4RowYofbt22vVqlW6//77tWXLFmVmZp7TcwPg3FW6KpW7I9e9nNoxVYE2vpv6M9Nl6sguU1tD9kuSOvW8SHa7z67xBgD4EZ8VgCTpV7/6lVJSUvSnP/1JGzZs0JEjR9SyZUv17t1bv/jFL3TFFVf48nAAAFjiePkJVX3WWgGmFGAYqrrsBAUgAPATDdmn6d27t/Lz85WcnOzR/t577+mGG27QxIkTNWzYMAUHB0uSnnrqKW3atEkzZszQk08+6Y5/+OGHNXfuXM2bN0+PPPK/id/z8vKUlZWlpKQkrVmzRkFBQZKk0aNH66abbtKkSZOUk5Pjjj906JAmT56sqKgoFRcXKyYmRpI0Y8YMXXXVVZo4caIGDRqk8PBw9zYTJ07UkSNH9Oabb2rIkCGSpIyMDA0cOFDz58/X6NGj1adPn3N+jgB4r6K6Qn/46A/u5QGxAygA+TlXtbRvo0sHN38pSerYPYoCEACgTj7/dOjevbuef/55bdiwQVu3btWHH36o+fPnU/wBAAAA0Cw0VJ/m9ttvr1X8kaTrrrtOKSkpOnTokD799FNJkmmaysrKUlhYmNLT0z3i09PTFRYWpqysLI/2F198UdLJgkxN8UeShgwZogEDBig3N1e7du1yty9btkyHDx/W5MmT3cUfSYqJidGkSZN04MABvfbaa+72rVu3qrCwUCkpKe7ijyQFBQUpIyPDIwcAAAAA1vPpHUAAAAAAAO8FBp68Wj8g4GQXraSkRHv37tWgQYPkcDg8Yh0Oh/r166ecnBzt3r1bsbGxkqT8/Hz3uh8aNGiQ8vPzVVBQoDFjxrjjJSk1NbXO+FmzZqmgoEB33XXXWeP79+8vh8OhgoKCej3e090l9Nlnn6lDhw4qLCys1358rbS0VDaXqZCDX9R7m8LCHQ2XEJq90tJSSWrQ13S5q1wVFRXu5aKiIoXYQs6wBZq7o0ePynSFuM97UVGR7IGGxVmhOWuM9ypceHhdeSotLVVERESjH5f7QwEA8NKehx6S4TJlmKbkclmdDgCgmdu1a5fefvttRUdHq1u3bpJOFoAk1Zqzp0ZNe02c0+nUvn37FB8fL7vdftb4sx3D23i73a74+Hjt2LFDVVVVZ3q4qKeI/8tUmym/Upspv1LE/zG3EgAAALzHHUAAAAAAYJHKykqNGTNGJ06c0Ny5c93FmyNHjkiSIiMj69yu5urBmjhv48+2jbfxNdu4XC4dPXpUrVq1qjOmxrp16+psr7kzKCkp6YzbN5TCwkIdKDuh8jZd6r1N0jUdGiSXXUuW6Ph/Xw/hrVvpSoueE5yfmqueG/I17ax0Kui1/w372K9fPzkCHWfYAs1d3jsFMmzV7uE++/W7VkEh/IkP564x3qtw4eF15cmKu38k7gACAAAAAEu4XC6NGzdOhYWFmjBhgntoNgAAAADwBS4PAADASxGpN8rMY4xtAMC5c7lcuueee/TKK6/ozjvv1J/+9CeP9TV32Zx6B86pasZUr4nzNv6H27Rp08ar+NMdwzAMhYeH17ke3om85Ra16Hm1JCmwfbTF2QAAAKA5ogAEAICXIm5MlfLflUxJBoUgAIB3XC6X7r77br388ssaNWqUFi1aJJvNc3CGuubgOdUP5+NxOByKjo7W9u3bVV1dXWseoLrm70lISNBHH32kkpKSWgWg08WfLqfq6mpt375d8fHxCgigm+kLkbfcYnUKAAAAaOYYAg4AAAAAGsmpxZ+0tDT99a9/rVWskU4WW9q3b6+ioiI5nU6PdU6nU0VFRYqPj1dsbKy7PTk52b3uh3JyciR5jsGenJwsScrNzT1tfE3M2eLXrl0rp9PpEQ8AAADAWhSAAAAAAKAR1Az79vLLL+unP/2plixZUmfxR5IMw9D48eNVVlamjIwMj3UZGRkqKyvThAkTPNrvvfdeSVJ6eroqKirc7atXr1Z+fr5SU1MVFxfnbh8xYoQiIyOVmZmpPXv2uNv37Nmj+fPnKyoqSsOHD3e3d+nSRUlJScrLy9Pq1avd7RUVFUpPT5ckjR8/3tunBQAAAEAD4d58AAAAAGgEjz/+uBYvXqywsDB17txZTzzxRK2YYcOG6corr5QkTZ8+XStXrtTcuXO1ceNGJSYmqri4WLm5uerVq5ceeOABj21TUlI0fvx4ZWVlKTExUUOHDtW+ffuUnZ2t1q1bKzMz0yO+VatWmj9/vsaMGaPExESlpaVJkrKzs3Xw4EFlZ2fXms/n+eefV79+/TRs2DClpaUpOjpaq1at0ubNmzVp0iT17dvXd08YAAAAgPNCAQgAAC+Ft3Do0lSbDh+rVEVknIKCQq1OCQDQDOzYsUOSVFZWptmzZ9cZ07FjR3cByOFwqKCgQLNmzdLy5cuVl5en6OhoTZs2TY899phCQ2t//rzwwgvq1q2bFi5cqGeffVZhYWEaPny4Zs+erU6dOtWKv/POOxUVFaU5c+bopZdekmEY6tmzp2bOnKmBAwfWiu/atavWr1+vmTNnatWqVXI6nercubOee+45TZw48dyfHADnLDQgVK8MfcVjGf7NFiBdNsiua665WpIUGFT33aQAADSbIeDKy8s1depUJSUlqX379goJCVG7du3Ur18/vfTSS6qsrKy1TWlpqaZOnaq4uDgFBwerY8eOeuihh1RWVlbnMVwulzIzM9WtWzeFhoaqbdu2GjVqlLZt23bavHJycpScnKzw8HBFREQoJSVF77zzzmnjt27dqhEjRigqKkqhoaHq0aOHFixYINM0vX9SAACWOPh/mer011fULftV/ejtVbLZ6HABAM5u0aJFMk3zjD/jxo3z2CYyMlLz5s3Trl27VFFRoZ07d+rpp5+udWdODZvNpilTpuizzz5TeXm5Dhw4oFdffbXO4k+NwYMHq7CwUGVlZTp69Kjy8/PrLP7U6NKli5YtW6aDBw+qvLxc//73v3X//ffLMIxzel5Qt2/n/VG77/+ldt//S307749Wp4MmzGbY1M7Rzv1jM5rNn3pwjgzDUGALQ2GtQhTWKkSGjfdfAEDdms0dQGVlZVqwYIF69+6toUOHqm3btjp06JBWr16te+65R6+++qpWr14tm+3kF52aCUg3bdqk1NRUjRo1Shs3btTTTz+tgoICFRYWKiQkxOMY9913n7KystS1a1dNmTJFe/fu1dKlS5Wbm6sPPvhACQkJHvFLlizRmDFj1LZtW3dHLTs7WzfeeKOWLl2qO+64wyN+y5Yt6tu3r44fP64RI0aoffv2WrVqle6//35t2bKl1pAMAICmqfzzLQr84gsFmKZcdq6wBAAAvlf++RYd/7hYkmRW1b7gEQAAADibZlMAat26tY4cOaKgoCCP9qqqKt14443Kzc3V6tWrNXToUEnSU089pU2bNmnGjBl68skn3fEPP/yw5s6dq3nz5umRRx5xt+fl5SkrK0tJSUlas2aN+zijR4/WTTfdpEmTJiknJ8cdf+jQIU2ePFlRUVEqLi5WTEyMJGnGjBm66qqrNHHiRA0aNMjjyryJEyfqyJEjevPNNzVkyBBJJydwHThwoObPn6/Ro0erT58+Pn7mAAAAAAAAAADAhabZ3Bdss9lqFX8kKSAgQMOHD5ckffnll5Ik0zSVlZWlsLAwpaene8Snp6crLCxMWVlZHu0vvviipJMFmVOPM2TIEA0YMEC5ubnatWuXu33ZsmU6fPiwJk+e7C7+SFJMTIwmTZqkAwcO6LXXXnO3b926VYWFhUpJSXEXfyQpKChIGRkZHjkAAJq24Es7qapjR5V3iNOJ9rFWpwMAAPxQ8KWdFNK9m0K6d1Pwpacfwg8AAAA4nWZzB9DpuFwuvfXWW5KkK664QpJUUlKivXv3atCgQXI4HB7xDodD/fr1U05Ojnbv3q3Y2JN/uMvPz3ev+6FBgwYpPz9fBQUFGjNmjDteklJTU+uMnzVrlgoKCnTXXXedNb5///7uCV4BAE1fyKT7tepAB5mmJMNQ+xNOBQc7zrodAABAfV388AyrU0AzcazymMa+Nda9vHjwYrUIbGFhRmho1ZWmtr1drX3vfShJGj4tUUEhzf5PfACABtDsPh0qKio0Z84cmaapgwcP6p133tF//vMf3X333brhhhsknSwASao1Z0+NhIQE5eTkqKSkRLGxsXI6ndq3b5+uuOIK2e21J/Ku2U/Nfs92DG/j7Xa74uPjtWXLFlVVVSkg4Myn5XTDxH322Wfq0KGDCgsLz7g9fK+0tFSSeO4vQJz7C9OxE+UKPPG/uX+Cv/9SIUEhZ9jifwoLdzRQVmgs/N5fuDj31iktLVVERITVaQBAk2TK1MHjBz2W4f+qyqVjrgqr0wAANHHNsgD0u9/9zr1sGIZ+/etf6/e//7277ciRI5KkyMjIOvdR03msifM2/mzbeBtfs43L5dLRo0fVqlWrOmMAAAAAAAAAAADqo9kVgMLCwmSaplwul/bu3as33nhDv/nNb7Ru3Tq9+eabF8SVgevWrauzvebOoKSkpMZMB/rflcA89xcezv2F6fDRUn36xrvSf4eAK2/VSQoJq9e2Sdd0aNjk0OD4vb9wce6tcyF8xwcAAAAAX7NZncC5stlsiomJ0cSJE7Vw4UIVFRVp9uzZkv53l82pd+Ccqmb4jpo4b+PPto238TXbGIah8PDwOtcDAAAAAAAAAADUV7O7A6guqampkqT8/HxJdc/Bc6ofzsfjcDgUHR2t7du3q7q6utY8QHXN35OQkKCPPvpIJSUlatOmTb3iT5dTdXW1tm/frvj4+LPO/wMAsF5pXr7cQ6ubjLEOAAB8rzQnV1XffitJCrjoIkUMSrU4IwAAADQ3zfYOoFPt3btXkhQYGCjpZLGlffv2KioqktPp9Ih1Op0qKipSfHy8YmNj3e3JycnudT+Uk5MjyXO4j+TkZElSbm7uaeNrYs4Wv3btWjmdTo94AEDTVfrmKhmmKcM0KQABAIAGcXj5P/TdH/+o7/74Rx1e/g+r0wEAAEAz1GwKQFu2bNGxY8dqtR87dkxTp06VJN10002SJMMwNH78eJWVlSkjI8MjPiMjQ2VlZZowYYJH+7333itJSk9PV0VFhbt99erVys/PV2pqquLi4tztI0aMUGRkpDIzM7Vnzx53+549ezR//nxFRUVp+PDh7vYuXbooKSlJeXl5Wr16tbu9oqJC6enpkqTx48d796QAAAAAAAAAAADUodmMN7Z06VI988wz6t+/vzp27KiIiAh9/fXXWr16tQ4ePKjrrrtODz74oDt++vTpWrlypebOnauNGzcqMTFRxcXFys3NVa9evfTAAw947D8lJUXjx49XVlaWEhMTNXToUO3bt0/Z2dlq3bq1MjMzPeJbtWql+fPna8yYMUpMTFRaWpokKTs7WwcPHlR2dnat+Xyef/559evXT8OGDVNaWpqio6O1atUqbd68WZMmTVLfvn0b5skDAAAAAAAAAAAXlGZTALr55pu1d+9evf/++1q3bp3KysoUGRmp7t27a+TIkbrnnns85s9xOBwqKCjQrFmztHz5cuXl5Sk6OlrTpk3TY489ptDQ0FrHeOGFF9StWzctXLhQzz77rMLCwjR8+HDNnj1bnTp1qhV/5513KioqSnPmzNFLL70kwzDUs2dPzZw5UwMHDqwV37VrV61fv14zZ87UqlWr5HQ61blzZz333HOaOHGib58wAECDaZ+RIfPx908uGIa1yQAAAL8U83//J1VXn1z4wTy1AAAAQH00mwLQ1VdfrauvvtqrbSIjIzVv3jzNmzevXvE2m01TpkzRlClT6n2MwYMHa/DgwfWO79Kli5YtW1bveABA02MLCZEMSUz/AwAAGogtJMTqFAAAANDMNZsCEAAATUVgYKDKo79VlcuUGRCii+yBVqcEAACAC1SALUBD4od4LMO/GTapZZyhS2IuliTZ7IxKAACoG98KAADwkiMkVMn9fqQDZSdU3qaL1ekAAADgAhZsD9ZDvR6yOg00IpvdUHSiXf2TEqxOBQDQxNmsTgAAAAAAAAAAAAC+xR1AAAB4qWLP17Lv3augYxVyuSJV0bad1SkBAAA/U7Hna5nHj0mSjNAWCoq5xOKMAAAA0NxQAAIAwEv7H/+dWn64QZGmqbIu3bVt2hNWpwQAAPzM/sd/p+MfF0uSQnsmqsPChRZnBAAAgOaGAhAAAF6qMEzl9+gpmaYqI1urdXWlAuyBVqcFAACAC1Clq1JvbnvTvXzTpTcp0MZ3U39mukwd3mHqP4H7JEkJvS+W3c4sDwCA2igAAQDgpXLDpuPhgyVJpilVVZ6gAAQAAABLVFRX6NniZ93LA+MGUgDyc65qaf8nLn3/+VeSpEuvaksBCABQJwpAAAB4qfWYO2W+etDqNAAAgB+Luu8+VR8+LEmyt2xpaS4AAABonigAAQDgpRbde0jZ70qmJMOwOh0AAOCHWvTsaXUKAAAAaOa4PxQAAAAAAAAAAMDPUAACAAAAAAAAAADwMxSAAAAAAAAAAAAA/AwFIAAAAAAAAAAAAD8TYHUCAAA0N/syMmS4+kqSTJkWZwMAAPzR1w9NV/m//y1JCuneXZf8v6cszggAAADNDQUgAAC8VF1a+r9PUOo/AACgAVQfOayqAwfc/wcAAAC8xRBwAAAAAAAAAAAAfoY7gAAA8JKjd29pY83NP4bF2QAAAH8U1v86BXWIkyQFdehgcTYAAABojigAAQDgpQ5jxykherUOHatURWScgoJCrU4JAAD4mdZ3jbE6BTQToQGhWnrLUo9l+DdbgHTZYLv69OktSQoMslucEQCgqaIABACAl+x2u1o5IlRtnlB5eBur0wEAAMAFzGbYFBUaZXUaaESGYSgwVGoREWR1KgCAJo45gAAAAAAAAAAAAPwMBSAAAAAAAAAAAAA/QwEIAAAAAAAAAADAzzAHEAAAXtqe9aKKPg07uWAcVLvbeyg42GFtUgAAwK8cfGmRKnbskCQFdeyoNnePszQfNF3HKo9p9KrR7uVXhr6iFoEtLMwIDa260tRXudXak7deknTHjJ4KCuFPfACA2vh0AADAS86PPlJgwGBJkinJNE1rEwIAAH7Hue59Hf+4WJIU2jORAhBOy5Sp0opSj2X4v+oK6YQqrU4DANDEMQQcAAAAAAAAAACAn+EOIAAAvBTQurVUc5GlYWkqAADATwW0iVJAdDv3/wEAAABvUQACAMBL7R55ROZv3z05/ptBBQgAAPhe+9/PsToFAAAANHMMAQcAAAAAAAAAAOBnKAABAAAAAAAAAAD4GQpAAAAAAAAAAAAAfoYCEAAAAAAAAAAAgJ8JsDoBAACaG2dxsWT+d8E0zxgLAABwLpwfrFf14UOSJHvLVnJce43FGQEAAKC5oQAEAICXDv397zICBkv6Xx0IAADAlw7+5c86/nGxJCm0ZyIFIAAAAHiNAhAAAF4KNE1VVW+QJLlCWshuv8LijAAAAHChCrAF6JZOt3gsw78ZNqlVvKHY2HaSJJvdsDgjAEBTxbcCAAC8FGpKt6xbLdM0Vdalu7YFBludEgAAAC5QwfZgPdjzQavTQCOy2Q21u9KuPkmXWZ0KAKCJowAEAICXoh9/XLvWrtUhZ4XKL+pidToAAMAPRT/+uMwTJyRJRjAXmwAAAMB7FIAAAPBSYLt2cl10kSrLTqiydVur0wEAAH4osF07q1MAAABAM2ezOgEAAAAAAAAAAAD4FncAAQDgpfITJ/ThZ1t1otKl6t0H1fGKqxUQEGR1WgAAALgAVVZX6vWvXncv39rpVgXaAy3MCA3NVW3q8HZTW2x7JUldrm0newDXeAMAaqMABACAl8orTsj8T5SCTEmGoaofVVAAAgAAgCUqXBV6btNz7uXB8YMpAPk50yV986lLh77YJkm67OqLKAABAOpEAQgAAC9VO8sk0+osAACAP6suK5Oqqk4uBATIHhZmbUIAAABodigAAQDgpX2zficjYLAkyTSpBAEAAN/7eupUHf+4WJIU2jNRHRYutDgjAAAANDfcHwoAAAAAAAAAAOBnmk0B6Ouvv9Yf//hHpaamqkOHDgoKClK7du30k5/8ROvXr69zm9LSUk2dOlVxcXEKDg5Wx44d9dBDD6msrKzOeJfLpczMTHXr1k2hoaFq27atRo0apW3btp02r5ycHCUnJys8PFwRERFKSUnRO++8c9r4rVu3asSIEYqKilJoaKh69OihBQsWcAU5AAAAAAAAAADwmWYzBFxmZqbmzp2rTp06KTU1VW3btlVJSYlWrFihFStW6JVXXlFaWpo73ul0Kjk5WZs2bVJqaqpGjRqljRs36umnn1ZBQYEKCwsVEhLicYz77rtPWVlZ6tq1q6ZMmaK9e/dq6dKlys3N1QcffKCEhASP+CVLlmjMmDFq27atxo0bJ0nKzs7WjTfeqKVLl+qOO+7wiN+yZYv69u2r48ePa8SIEWrfvr1WrVql+++/X1u2bFFmZmbDPHkAAJ+KvO02mW9WWJ0GAADwY61GjlT49TdIkgIuamtxNgAAAGiOmk0BqHfv3srPz1dycrJH+3vvvacbbrhBEydO1LBhwxQcHCxJeuqpp7Rp0ybNmDFDTz75pDv+4Ycf1ty5czVv3jw98sgj7va8vDxlZWUpKSlJa9asUVBQkCRp9OjRuummmzRp0iTl5OS44w8dOqTJkycrKipKxcXFiomJkSTNmDFDV111lSZOnKhBgwYpPDzcvc3EiRN15MgRvfnmmxoyZIgkKSMjQwMHDtT8+fM1evRo9enTx8fPHADA18L795dWvyuZkgzD6nQAAIAfCr/+eqtTAAAAQDPXbIaAu/3222sVfyTpuuuuU0pKig4dOqRPP/1U0skJubOyshQWFqb09HSP+PT0dIWFhSkrK8uj/cUXX5R0siBTU/yRpCFDhmjAgAHKzc3Vrl273O3Lli3T4cOHNXnyZHfxR5JiYmI0adIkHThwQK+99pq7fevWrSosLFRKSoq7+CNJQUFBysjI8MgBAAAAAAAAAADgfDSbAtCZBAYGSpICAk7e0FRSUqK9e/eqX79+cjgcHrEOh0P9+vXTtm3btHv3bnd7fn6+e90PDRo0SJJUUFDgES9Jqamp5x3fv39/ORwOj3gAAAAAAAAAAIBz1WyGgDudXbt26e2331Z0dLS6desm6WQBSFKtOXtqJCQkKCcnRyUlJYqNjZXT6dS+fft0xRVXyG631xl/6n7Pdgxv4+12u+Lj47VlyxZVVVW5C1mnc7ph4j777DN16NBBhYWFZ9wevldaWipJPPcXIM79henYifKTw79Jkmkq5NBXCgkKOeM2NQoLdzRYXmgc/N5fuDj31iktLVVERITVaQAAAABAs9Ks7wCqrKzUmDFjdOLECc2dO9ddvDly5IgkKTIyss7tajqPNXHexp9tG2/ja7ZxuVw6evRonesBAAAAAAAAAADqq9neAeRyuTRu3DgVFhZqwoQJGjNmjNUpNZp169bV2V5zZ1BSUlJjpgP970pgnvsLD+f+wvR1xhNq8XWxKl0uHYvroiMX/0Llttp3kNYl6ZoODZwdGhq/9xcuzr11uPsHF6L9T8xW+eefS5JCLr9c7Wb+1uKM0FSFBoTqtdte81iGf7MFSAk32dW37zWSpMCg+vVFAAAXnmZZAHK5XLrnnnv0yiuv6M4779Sf/vQnj/U1d9mcegfOqWqG76iJ8zb+h9u0adPGq/jTHcMwDIWHh9e5HgDQdFTv3qU227bLNE2VBUXoaD2LPwAAAPVVsWunTvznP5Ikm6OFxdmgKbMZNkUG1z3aCPyTYRgKCJZCHIFWpwIAaOKa3RBwLpdLd999txYvXqxRo0Zp0aJFstk8H0Zdc/Cc6ofz8TgcDkVHR2v79u2qrq4+a/zZjuFtfHV1tbZv3674+Pizzv8DAAAAAAAAAABwNs2qAFRT/Hn55ZeVlpamv/71r+55f06VkJCg9u3bq6ioSE6n02Od0+lUUVGR4uPjFRsb625PTk52r/uhnJwcSZ7DfSQnJ0uScnNzTxtfE3O2+LVr18rpdHrEAwCartBu3VXRtaucP7pcxy7tYnU6AADAD4V26y7HddfJcd11Cu3W3ep0AAAA0Aw1mwJQzbBvL7/8sn76059qyZIldRZ/pJO3wo4fP15lZWXKyMjwWJeRkaGysjJNmDDBo/3ee++VJKWnp6uiosLdvnr1auXn5ys1NVVxcXHu9hEjRigyMlKZmZnas2ePu33Pnj2aP3++oqKiNHz4cHd7ly5dlJSUpLy8PK1evdrdXlFRofT0dEnS+PHjvX1aAAAWaDt5ko7ed6++HnuP9g+/cOagAwAAjaft5EmK+eM8xfxxntpOnmR1OgAAAGiGms14Y48//rgWL16ssLAwde7cWU888UStmGHDhunKK6+UJE2fPl0rV67U3LlztXHjRiUmJqq4uFi5ubnq1auXHnjgAY9tU1JSNH78eGVlZSkxMVFDhw7Vvn37lJ2drdatWyszM9MjvlWrVpo/f77GjBmjxMREpaWlSZKys7N18OBBZWdn15rP5/nnn1e/fv00bNgwpaWlKTo6WqtWrdLmzZs1adIk9e3b13dPGACgwRw+Wqr3X/tGMiUZH+qiYT9WSEiY1WkBAADgAuSsdCrtX2nu5eybs+UIdFiYERpadaWpL9+q1q6310mSRvyml4JCms2f+AAAjajZfDrs2LFDklRWVqbZs2fXGdOxY0d3AcjhcKigoECzZs3S8uXLlZeXp+joaE2bNk2PPfaYQkNDa23/wgsvqFu3blq4cKGeffZZhYWFafjw4Zo9e7Y6depUK/7OO+9UVFSU5syZo5deekmGYahnz56aOXOmBg4cWCu+a9euWr9+vWbOnKlVq1bJ6XSqc+fOeu655zRx4sRzf3IAAI3OXh343wKQYXUqAAAAuMAdqzxmdQpoZK4qqfJE7XmsAQA4VbMpAC1atEiLFi3yapvIyEjNmzdP8+bNq1e8zWbTlClTNGXKlHofY/DgwRo8eHC947t06aJly5bVOx4AAAAAAAAAAMBbzWYOIAAAAAAAAAAAANRPs7kDCACApuLIm6tlmMEyZZ4cBg4AAMDHDv/zNVXu3StJCmzfXi1vH25xRgAAAGhuKAABAOClo3nvSgGDZUgni0AAAAA+VvrWah3/uFiSFNozkQIQAAAAvMYQcAAAAAAAAAAAAH6GO4AAAPCSYbNbnQIAAPBzhj1ARkCA+/8AAACAt/gWCQCAly6Z+6TM3757cv4fw7A6HQAA4IdiFzxvdQoAAABo5hgCDgAAAAAAAAAAwM9QAAIAAACARrJkyRLdd999uvrqqxUcHCzDMLRo0aLTxpeWlmrq1KmKi4tTcHCwOnbsqIceekhlZWV1xrtcLmVmZqpbt24KDQ1V27ZtNWrUKG3btu20x8jJyVFycrLCw8MVERGhlJQUvfPOO6eN37p1q0aMGKGoqCiFhoaqR48eWrBggUzTrPfzAAAAAKDhMQQcAABeCg4MUkXst6qsdskV2EIX2YOsTgkA0EzMnDlTO3fuVFRUlKKjo7Vz587TxjqdTiUnJ2vTpk1KTU3VqFGjtHHjRj399NMqKChQYWGhQkJCPLa57777lJWVpa5du2rKlCnau3evli5dqtzcXH3wwQdKSEjwiF+yZInGjBmjtm3baty4cZKk7Oxs3XjjjVq6dKnuuOMOj/gtW7aob9++On78uEaMGKH27dtr1apVuv/++7VlyxZlZmb65okCUG+BtkANTxjusQz/ZtikVpcaiotrL0my27m+GwBQNwpAAAB4KTQkRNdd8yMdKDuh8jZdrE4HANCMZGVlKSEhQXFxcXryySf1yCOPnDb2qaee0qZNmzRjxgw9+eST7vaHH35Yc+fO1bx58zy2z8vLU1ZWlpKSkrRmzRoFBZ28QGH06NG66aabNGnSJOXk5LjjDx06pMmTJysqKkrFxcWKiYmRJM2YMUNXXXWVJk6cqEGDBik8PNy9zcSJE3XkyBG9+eabGjJkiCQpIyNDAwcO1Pz58zV69Gj16dPHN08WgHoJsgdp8lWTrU4DjchmN9Suh13XJF1qdSoAgCaOSwQAAPBS+RdfKLCkRKHbvlLIrtMPqQMAwA8NHDhQcXFxZ40zTVNZWVkKCwtTenq6x7r09HSFhYUpKyvLo/3FF1+UdLIgU1P8kaQhQ4ZowIABys3N1a5du9zty5Yt0+HDhzV58mR38UeSYmJiNGnSJB04cECvvfaau33r1q0qLCxUSkqKu/gjSUFBQcrIyPDIAeev/IsvdOyjj3Tso49U/sUXVqcDAACAZog7gAAA8NK3f/iDIj7coHDTVFmX7to27QmrUwIA+JmSkhLt3btXgwYNksPh8FjncDjUr18/5eTkaPfu3YqNjZUk5efnu9f90KBBg5Sfn6+CggKNGTPGHS9JqampdcbPmjVLBQUFuuuuu84a379/fzkcDhUUFNTr8Z3uLqHPPvtMHTp0UGFhYb3242ulpaWyuUyFHKx/waWwcEeD5BLxf5kK/PJLSVLlZZepdAp3eDRHpaWlkmTZaxr+idcVfI3XFBoCrytPpaWlioiIaPTjcgcQAAAAADQxJSUlklRrzp4aNe01cU6nU/v27VN8fLzsdvtZ4892DG/j7Xa74uPjtWPHDlVVVZ3l0QEAAABoDNwBBACAl04Y0tuJfWTKVFV4S11UVaGAgKCzbwgAQD0dOXJEkhQZGVnn+pqrB2vivI0/2zbextds43K5dPToUbVq1arOmBrr1q2rs73mzqCkpKQzbt9QCgsLvZ7jL+maDg2Sy64lS3T8v8W88NatdKVFzwnOT81Vzw35mq6srtTykuXu5Z8k/ESB9sAGOx6sl59XoENfmWoVdnIOoB/3by97ANd449w1xnsVLjy8rjxZcfePRAEIAACvhU+cqIo/7zy54JKqKAABAAAfu2jaNLmOHpUk2cLDLc4GTVmFq0IL/73QvXxLp1soAPk50yV9u9mlwyU7JEldrm1HAQgAUCcKQAAAeCmkUyfJ2CmZkgzD6nQAAH6o5i6bU+/AOVXNmOo1cd7G/3CbNm3aeBV/umMYhqFwihU+EdKl/nchAQAAAHXh8gAAAAAAaGLqmoPnVD+cj8fhcCg6Olrbt29XdXX1WePPdgxv46urq7V9+3bFx8crIIDrDAEAAICmgAIQAAAAADQxCQkJat++vYqKiuR0Oj3WOZ1OFRUVKT4+XrGxse725ORk97ofysnJkeQ5BntycrIkKTc397TxNTFni1+7dq2cTqdHPAAAAABrUQACAAAAgCbGMAyNHz9eZWVlysjI8FiXkZGhsrIyTZgwwaP93nvvlSSlp6eroqLC3b569Wrl5+crNTVVcXFx7vYRI0YoMjJSmZmZ2rNnj7t9z549mj9/vqKiojR8+HB3e5cuXZSUlKS8vDytXr3a3V5RUaH09HRJ0vjx433w6AEAAAD4AvfmAwAAAEAjycrK0tq1ayVJn376qbstPz9fktS/f393EWX69OlauXKl5s6dq40bNyoxMVHFxcXKzc1Vr1699MADD3jsOyUlRePHj1dWVpYSExM1dOhQ7du3T9nZ2WrdurUyMzM94lu1aqX58+drzJgxSkxMVFpamiQpOztbBw8eVHZ2dq35fJ5//nn169dPw4YNU1pamqKjo7Vq1Spt3rxZkyZNUt++fX39lAEAAAA4RxSAAADw0tczHpZhu1GSZJqmxdkAAJqTtWvXavHixR5tRUVFHsO21RSAHA6HCgoKNGvWLC1fvlx5eXmKjo7WtGnT9Nhjjyk0NLTW/l944QV169ZNCxcu1LPPPquwsDANHz5cs2fPVqdOnWrF33nnnYqKitKcOXP00ksvyTAM9ezZUzNnztTAgQNrxXft2lXr16/XzJkztWrVKjmdTnXu3FnPPfecJk6ceL5PD06xe+L9Ol5cLEkKTUxU7ILnLc4IAAAAzQ0FIAAAvGS6qhlEFQBwThYtWqRFixbVOz4yMlLz5s3TvHnz6hVvs9k0ZcoUTZkypd7HGDx4sAYPHlzv+C5dumjZsmX1jse5MaurZFZVuf8PAAAAeIs/XwEAAAAAAAAAAPgZ7gACAMBL4SnXS2sNmTIlGVanAwAA/FDE4CEK7d5DkhTYvr3F2QAAAKA5ogAEAICXIm8aIrPoXck0JIMCEAAA8L2Wtw+3OgUAAAA0cxSAAADwUoQjTN1uaaHvnSdU3qqTgoJaWJ0SAAAALlAtAlrojeFveCzDv9kCpM4329Wv37WSpMBgu8UZAQCaKgpAAAB4yWazqUVwiI5VGlJImNXpAAAA4AJmGIYcgQ6r00AjMgxD9kApKIQ/6wEAzsxmdQIAAAAAAAAAAADwLQpAAAAAAAAAAAAAfoZ7RQEA8NJ3mfMV/sEHCq6qljP+Cu0fPsbqlAAAgJ/5LnO+Tnz1lSQpuFMntZ08yeKMAAAA0NxQAAIAwEvfbP5Ua1rfdnLhmKGo8jKFMBcQAADwoeOf/lvHPy6WJLmOOS3OBk2Zs9Kpn7z+E/fy8luXMyeQn6uuNFXyZrV25LwvSRqZ3pv5gAAAdeLTAQCAc2AzT36EmqbFiQAAAOCCV1FdYXUKaGSmS6quclmdBgCgiaMABACAl4IuiZG++e+CYViaCwAA8E9BHeLkch5z/x8AAADwFgUgAAC8dNEDv5L523clUxSAAABAg2g387dWpwAAAIBmzmZ1AgAAAAAAAAAAAPAtCkAAAAAAAAAAAAB+hgIQAAAAAAAAAACAn6EABAAAAAAAAAAA4GcCrE4AAIDm5ujatZL53wXTPGMsAADAuTj67ruq+vY7SVLARW0Vfv31FmcEAACA5oYCEAAAXjqycqWMgMGS/lcHAgAA8KVDr76q4x8XS5JCeyZSAAIAAIDXGAIOAAAAAAAAAADAz3AHEAAAXgo2TZmVRZIpVTvCZLd3szolAAAAXKACbYEa0WWExzL8m2GTWl9mU8eOl0iS7Hau7wYA1I0CEAAAXrr0D8/o2vfe08GyEypv20WuwCCrUwIAAH7mkmeekaqqTi4E0HXH6QXZg/SLHr+wOg00Ipvd0MXdDPVKirc6FQBAE9esLhFYsmSJ7rvvPl199dUKDg6WYRhatGjRaeNLS0s1depUxcXFKTg4WB07dtRDDz2ksrKyOuNdLpcyMzPVrVs3hYaGqm3btho1apS2bdt22mPk5OQoOTlZ4eHhioiIUEpKit55553Txm/dulUjRoxQVFSUQkND1aNHDy1YsEAmk4gDQLNhDwuT6XDI5XDIFeqwOh0AAOCH7GFhsrdsefInLMzqdAAAANAMNasC0MyZM7Vw4ULt3LlT0dHRZ4x1Op1KTk7WvHnz9KMf/UgPPvigunTpoqefflrXX3+9ysvLa21z3333acqUKTJNU1OmTNHgwYP1z3/+U7169VJJSUmt+CVLlmjw4MH6/PPPNW7cOI0dO1abN2/WjTfeqH/84x+14rds2aLevXtr5cqVGjJkiKZMmaLq6mrdf//9mjJlyrk/MQAAAAAAAAAAAKdoVgWgrKws7dixQ999951+8Ysz39781FNPadOmTZoxY4ZycnL05JNPKicnRzNmzNCGDRs0b948j/i8vDxlZWUpKSlJxcXFmjt3rv76179qxYoV+v777zVp0iSP+EOHDmny5MmKiopScXGxMjMzlZmZqeLiYrVp00YTJ07U0aNHPbaZOHGijhw5ohUrVuivf/2r5s6dq+LiYl133XWaP3++1q1b55snCgAAAAAAAAAAXNCaVQFo4MCBiouLO2ucaZrKyspSWFiY0tPTPdalp6crLCxMWVlZHu0vvviiJCkjI0NBQf+by2HIkCEaMGCAcnNztWvXLnf7smXLdPjwYU2ePFkxMTHu9piYGE2aNEkHDhzQa6+95m7funWrCgsLlZKSoiFDhrjbg4KClJGR4ZEDAKBpKz9xQus2faHN//lKWzesVVVVhdUpAQAA4AJVWV2pv33+N/dPZXWl1SmhgbmqTR34wqVP3t2tT97dreoql9UpAQCaqGZVAKqvkpIS7d27V/369ZPD4Tk3g8PhUL9+/bRt2zbt3r3b3Z6fn+9e90ODBg2SJBUUFHjES1Jqaup5x/fv318Oh8MjHgDQdB3ds1u2krYK2d5Oji9aUAACAAA+V7l/vyp27lTFzp2q3L/f6nTQhFW4KvTnT//s/qlw8d3U35ku6bstLhXn7FRxzk4KQACA0wqwOoGGUDNfT0JCQp3rExISlJOTo5KSEsXGxsrpdGrfvn264oorZLfb64w/db9nO4a38Xa7XfHx8dqyZYuqqqoUEHDm09KnT5862z/77DN16NBBhYWFZ9wevldaWipJPPcXIM79hcn23HMy2o6UJJmSQg59pZCgkHptW1i4o+ESQ6Pg9/7Cxbm3TmlpqSIiIqxOA2hU+x59VMc/LpYkhfZMVIeFCy3OCAAAAM2NX94BdOTIEUlSZGRknetrOo81cd7Gn20bb+NrtnG5XLXmDQIAAAAAAAAAAPCWX94B5O/WrVtXZ3vNnUFJSUmNmQ70vyuBee4vPJz7C9Nnr/zNY7m8VScpJKxe2yZd06EhUkIj4vf+wsW5tw53/wAAAACA9/yyAFRzl82pd+Ccqmb4jpo4b+N/uE2bNm28ij/dMQzDUHh4+OkeFgCgiWg1apTMfxy2Og0AAODH2tzzc1Xffrskyd6ylcXZAAAAoDnyywJQXXPwnOqH8/E4HA5FR0dr+/btqq6urjUPUF3z9yQkJOijjz5SSUlJrQLQ6eJPl1N1dbW2b9+u+Pj4s87/AwCwniMxUVr+7skJgAzD6nQAAIAfclx7jdUpAAAAoJnzyzmAEhIS1L59exUVFcnpdHqsczqdKioqUnx8vGJjY93tycnJ7nU/lJOTI8lzuI/k5GRJUm5u7mnja2LOFr927Vo5nU6PeAAAAAAAAAAAgHPllwUgwzA0fvx4lZWVKSMjw2NdRkaGysrKNGHCBI/2e++9V5KUnp6uiooKd/vq1auVn5+v1NRUxcXFudtHjBihyMhIZWZmas+ePe72PXv2aP78+YqKitLw4cPd7V26dFFSUpLy8vK0evVqd3tFRYXS09MlSePHj/fBowcAAAAAAAAAABe6ZjXeWFZWltauXStJ+vTTT91t+fn5kqT+/fu7iyjTp0/XypUrNXfuXG3cuFGJiYkqLi5Wbm6uevXqpQceeMBj3ykpKRo/fryysrKUmJiooUOHat++fcrOzlbr1q2VmZnpEd+qVSvNnz9fY8aMUWJiotLS0iRJ2dnZOnjwoLKzs2vN5/P888+rX79+GjZsmNLS0hQdHa1Vq1Zp8+bNmjRpkvr27evrpwwAAAAAAAAAAFyAmlUBaO3atVq8eLFHW1FRkcewbTUFIIfDoYKCAs2aNUvLly9XXl6eoqOjNW3aND322GMKDQ2ttf8XXnhB3bp108KFC/Xss88qLCxMw4cP1+zZs9WpU6da8XfeeaeioqI0Z84cvfTSSzIMQz179tTMmTM1cODAWvFdu3bV+vXrNXPmTK1atUpOp1OdO3fWc889p4kTJ57v0wMAAAAAAAAAACCpmRWAFi1apEWLFtU7PjIyUvPmzdO8efPqFW+z2TRlyhRNmTKl3scYPHiwBg8eXO/4Ll26aNmyZfWOBwA0Pft//3sZrt6SJFOmxdkAAAB/tPeR3+j4p/+WJIV26672v59jcUYAAABobppVAQgAgKYg5MABpRTPlmmaciZcod1Bv7M6JQAA4GeqDh5Q1b79J//fvr3F2aApaxHQQqt/8r+5hoNsQRZmg8ZgC5C63GpX//59JEn2AL+c4hsA4AMUgAAA8JJNhkKqqmWapqpcpmw2OlwAAACwhmEYCrYHW50GGpFhGDLsUkCg3epUAABNHAUgAAC85OjTVwdkqLyyWs6OXa1OBwAA+CFHn74KjD55509Qx47WJgMAAIBmiQIQAABeanP3OG3udKkOlJ1QeZsuVqcDAAD8UJu7x1mdAgAAAJo5xqwBAAAAAAAAAADwM9wBBACAlw4fLdX6fxz871Kx2vyks0JCwizNCQAAABcmZ6VTt6641b38+rDX5Qh0WJgRGlp1pamt/6rWtjeLJEmjZ12joBD+xAcAqI1PBwAAzokhmZIMw+pEAAAAcIEzTdPqFGABzjsA4GwYAg4AAAAAAAAAAMDPcAcQAABeOrRsmQyztUzp5F1AAAAAPvb9y39Vxa5dkqSgDh3U+q4xFmcEAACA5oY7gAAA8JLzww8lUzJMSQy7AAAAGkDZ2vd05LXXdOS111S29j2r0wEAAEAzxB1AAAAAAACco1fW7/J6m9HXdGiATAAAAABPFIAAAPCSPSJCOvbfBcPSVAAAgJ+yR7ZUQFSU+/8AAACAtygAAQDgpej0dJm/fffk/D8GFSAAAOB7l/y/p6xOAQAAAM0ccwABAAAAAAAAAAD4GQpAAAAAAAAAAAAAfoYCEAAAAAAAAAAAgJ9hDiAAALwUHBikqo7fqqLaJVeQQxfZg6xOCQAANCOvrN/l9Tajr+nQAJnAHwTaAjX68tEey/Bvhk1q09mm+PgYSZLdzvXdAIC6UQACAMBL5ubNSgkoV2lVpY637iBnIAUgAADgW46tnymgrFSSVBUWIVEAwmkE2YM0vtt4q9NAI7LZDV3U1VDPpI5WpwIAaOIoAAEA4KUDL7yg8A83KMw0Vdalu7ZNe8LqlAAAgJ+5+I1XFbZ1sySprHNXacxNFmcEAACA5oZ7RAEAAAAAAAAAAPwMBSAAAAAAAAAAAAA/wxBwAAB4qeUjj+jv2f9Spcul6qAwxVdVKCCAeYAAAIDv7LlrkmwnyiVJruAQi7NBU1ZZXalX/vOKe3n0j0Yr0B5oYUZoaK5qUwe3mtp4YpckqXtKjOwBXOMNAKiNAhAAAF5yRbWRbW+sgk1JhqGqXhSAAACAb1W0beex/Mr6XV5tP/qaDr5MB01YhatCizcvdi/f0fkOCkB+znRJB/7jUum2k+8LXa9rTwEIAFAnPh0AAAAAAAAAAAD8DAUgAAAAAAAAAAAAP8MQcAAAAAAA+Blvh4yTGDYOAADA31AAAgDAS67ycsm0OgsAAODPjIoTMlwuSZJps8kMCrY4IwAAADQ3FIAAAPDS3vR0GQGDJUmmSSUIAAD4XnxmhsK2bpYklXXuqm3TnrA4IwAAADQ3FIAAAAAAAADDxgEAAPgZm9UJAAAAAAAAAAAAwLe4AwgAAC9F3DRU5hqX1WkAAAA/djBpkEq795IkVbZsbXE2AAAAaI4oAAEA4KWIlAHS2+9KpiTDsDgbAADgj470us7qFOrF22HjGDIOAACg8TAEHAAAAAAAAAAAgJ/hDiAAALwU4QjT1cMjdcBZofLWCTIMrqcAAACANVoEtNCaO9a4l218N/V7tgDpR7fZdV1SP0kMSgAAOD0KQAAAeMlms8lut8tus8lu56MUAACgvrwdMk5i2LizMQxDdsNudRpoRIZhSIZks1H5AQCcGZeFAAAAAAAAAAAA+BkuWwYAwEvfPDlXkR98oBbVLjk7XaGvR91ndUoAAMDPXPL3FxS6a5sk6XiHSy/o7xvcNQQAAHBuKAABAOCl49u+lLFzhwJNUwGhkXK5XLLZuKkWAAD4TvDe3WqxbaskyRUQaHE2aMpM05TLdLmXbYbt5BBh8FumaUqm5HKZkk7OAcQ5BwDUhQIQAABeKrPZlNvvUUmSKalNxTGFhIRZmxQAAADcLqS7ho5VHdMtr93iXn5j+BtyBDoszAgNzVUlbf1XtbatLpIk/ex31yoohD/xAQBq49MBAAAvhSQkSNtPFn/ElXYAAKABHI/rJNNulySVx3S0NpkLhLdFo+ZaMAIAABcOCkAAAHgp6t57Zf723ZMVIApAAACgAey7426rUwAAAEAzRwEIAAAAAADAS/W5Yyik7IRHLHcNAQCAxkQBCAAAAAAAoBFcSHMTAQAA61EAssCGDRv02GOP6f3331dlZaW6deumqVOnasSIEVanBgAAAABnRZ8GaDxnKxqdqD6m45XVjZQNAABoTigANbK8vDwNGjRIISEhGjlypMLDw7V8+XKlpaVp9+7dmjZtmtUpAgAAAMBp0acBmralG3Yr2N6iwY/DnUkAADR9FIAaUVVVlSZMmCCbzabCwkJdeeWVkqRHH31UvXv31m9+8xvdcccdiouLszZRAMAZla7Jlcz/foSaprXJAADQiOjTNJ5W77+roIPfSpIq2lykQ32vtzgjwJO3w9lRMAIAoPFRAGpE7777rr766ivdfffd7o6SJEVGRuo3v/mNxo0bp8WLF+vRRx+1LkkAwFmV5q6RETBYkkT5BwBwIaFP03harXtXYVs3S5LKOnelAIRm71zmP2osFKcAAP6KAlAjys/PlySlpqbWWjdo0CBJUkFBQWOmBAAAAAD1Rp8GgD9qysWpugQ5K+Ry2XS84uTcT8s+2iMj0EYhCwBQCwWgRlRSUiJJSkhIqLWuXbt2CgsLc8ecSZ8+feps/+ijjxQYGKiuXbueX6LwWnX1yS9ddrvd4kzQ2Dj3F6apgYFS/8Hu5Wce+Jkqy0/Ua9vZNqOh0kIj4ff+wsW5t8727dsVHh5udRqQ//dpqqurT97da9gsOf6p0k1Tl//3/1/+e4Myxg0+YzyaKNN18t+GfE0FSYET/rf/J5+6XapouMPBeoG2QI3p/Zikk32L53/xgCqrT+h31qaF5qyB3qsC6P9e0Og/ebKqT0MBqBEdOXJE0snhEeoSERHhjjkXAQEBCg8PV0RExDnvA+fms88+kyRdccUVFmeCxsa5vzBlSfps8V2STp778JAQKSTE2qTQaPi9v3Bx7q0THh6uVq1aWZ0G5P99mqb0e/7cD5ZbW5IFzlejvab+dsr/W/z3B37rs88+0xO7xrpfV+HhIZLoj+DcNaXPP/gPXleerOrTUABqhtatW2d1CviBmisYOTcXHs79hYtzf+Hi3F+4OPeA7zTV3yN+z+FrvKbQEHhdwdd4TaEh8LpqGqy/r/0CUnOV3OmuiCstLT3tlXQAAAAAYDX6NAAAAEDzQQGoEdWMk13XmNj79+9XWVlZnWNpAwAAAEBTQJ8GAAAAaD4oADWi5ORkSVJubm6tdTk5OR4xAAAAANDU0KcBAAAAmg8KQI3ohhtu0KWXXqpXXnlFmzZtcrcfOXJEc+bMUVBQkO666y7rEgQAAACAM6BPAwAAADQfAVYncCEJCAhQVlaWBg0apKSkJI0cOVLh4eFavny5du7cqaefflodO3a0Ok0AAAAAqBN9GgAAAKD5MEzTNK1O4kLz4Ycf6rHHHtP777+vyspKdevWTVOnTlVaWprVqQEAAADAWdGnAQAAAJo+CkAAAAAAAAAAAAB+hjmAAAAAAAAAAAAA/AwFIAAAAAAAAAAAAD9DAQgAAAAAAAAAAMDPUAACAAAAAAAAAADwMxSAAAAAAAAAAAAA/AwFIAAAAAAAAAAAAD9DAQg4B6WlpZo6dari4uIUHBysjh076qGHHlJZWdl57XfixIkyDEOGYWj//v0+yha+4ovzXlJSojlz5igpKUnt27dXUFCQYmNjddddd+k///lPA2aP+tiwYYNuuukmtWzZUg6HQ9dee62WLl3q1T5OnDihxx9/XAkJCQoJCVH79u1177336ttvv22grOEL53PuTdPU6tWrNXHiRHXv3l2RkZFq0aKFevTooTlz5qi8vLyBs8f58MXv/akOHTqkSy65RIZhaPDgwT7MFMCZWPUZ/re//U29e/eWw+FQq1atdPPNN6u4uPh8Hw6aiMZ+Xe3YscPdH6zrZ9asWT56ZLDS+b6uvvrqK82aNUu33nqr+ztHx44dz7pdTk6OkpOTFR4eroiICKWkpOidd945j0eCpsKK19SZ3qvGjRt3fg8ITYJVfWTeq3zPME3TtDoJoDlxOp3q37+/Nm3apNTUVF111VXauHGjcnNz1atXLxUWFiokJMTr/a5Zs0apqalyOBxyOp3at2+f2rVr1wCPAOfCV+d95MiRys7O1hVXXKH+/fsrIiJCn376qVavXq3Q0FC99dZbSkpKaoRHhB/Ky8vToEGDFBISopEjRyo8PFzLly/Xzp079fTTT2vatGln3YfL5dJNN92knJwcXXvttUpOTlZJSYlee+01xcfH64MPPlDbtm0b4dHAG+d77svLyxUaGqrg4GANGDBA3bp1U3l5uXJyclRSUqJevXopPz9fLVq0aKRHhPryxe/9D/3sZz/TypUr5XQ6NWjQIL311lsNkDmAU1n1GT579mzNnDlTcXFx+slPfqKjR4/q1VdfVUVFhd555x3169evoR4yGoEVr6sdO3YoPj5ePXr00LBhw2rtb8CAARowYIAPHyUamy9eV4sWLdLdd98tu92uyy+/XFu2bFFsbKx27Nhx2m2WLFmiMWPGqG3btkpLS5MkZWdn68CBA1q6dKnuuOMOXz1ENDKrXlOGYSguLq7OYs+VV15Z53sYmg+r+si8VzUQE4BXHn30UVOSOWPGDI/2GTNmmJLMOXPmeL3Pw4cPmzExMeYdd9xhJicnm5LMffv2+Spl+ICvzvtLL71kFhcX12r/+9//bkoyf/zjH/skX3insrLS7NSpkxkcHGxu3LjR3X748GGzc+fOZlBQkLljx46z7ucvf/mLKckcNWqU6XK53O0LFiwwJZn33ntvQ6SP8+CLc19RUWE+8cQT5vfff1+r/ZZbbjElmU899VRDpI/z4Kvf+1P94x//MCWZ8+fPNyWZgwYN8nHWAH7Iqs/wrVu3mgEBAWbnzp3Nw4cPu9s3btxoBgcHm5dffrlZXV19/g8QlrDqdbV9+3ZTkjl27FhfPRQ0Ib56XX311VfmunXrzGPHjpmmaZrBwcFmXFzcaeO///57s2XLlmZUVJS5e/dud/vu3bvNqKgoMyoqyiwtLT3nxwXrWPWaMk3TlGQmJyefR/ZoqqzqI/Ne1XAoAAFecLlcZvv27c2wsDCzrKzMY11ZWZkZFhZmXnrppV7vd+zYsWabNm3Mb775hgJQE9RQ5/2HOnfubEoyv/vuu/PeF7yTk5NjSjLvvvvuWusWLVpkSjJ/97vfnXU/ffr0MSXV+jLkcrnMSy+91HQ4HO4v1WgafHXuT+f99983JZlDhw49nzTRAHx97r/99luzbdu25pgxY9x/wKMABDQ8qz7DH3nkEVOSuXjx4lr7GjdunCnJLCgoOIdHhKbAqtcVBSD/1lDfO8/2x/oXXnjhtPueNWvWad/L0PRZ9ZoyTQpA/syqPjLvVQ2HOYAAL5SUlGjv3r3q16+fHA6HxzqHw6F+/fpp27Zt2r17d733+cYbb2jx4sXKzMzURRdd5OuU4QMNcd7rEhgYKEkKCAg4r/3Ae/n5+ZKk1NTUWusGDRokSSooKDjjPsrLy7V+/Xp16dJFcXFxHusMw9CNN94op9Opjz76yDdJwyd8ce7PhN/rpsvX5/4Xv/iF7Ha7nn32WZ/kB6B+rPoMb+jPD1jL6u+Ge/fu1XPPPac5c+boz3/+s7766qtzfCRoSqx63+D9yn9ZfW4PHz6shQsXas6cOfrTn/6kTz/9tMGOhcZjVR/Z6tezP+OvEYAXSkpKJEkJCQl1rk9ISHCPZxkbG3vW/R08eFATJkzQsGHDNGrUKJ/mCt/x9Xmvy4cffqjNmzerV69eatmy5bmminN0pnPcrl07hYWFuWNO56uvvpLL5Trj66TmWNddd915Zgxf8cW5P5O//OUvkur+Egtr+fLcL1myRP/85z+1YsUKtWrVSkeOHPFprgBOz6rP8JKSEoWFhdU5Z+ep8WierP5uuGbNGq1Zs8a9bBiGfvazn+lPf/pTrQvS0Hw09PfOczku71fNm1WvqRqffPKJ7rvvPo+2wYMHa/HixVzg3IxZ1UfmvarhcAcQ4IWaP+hERkbWuT4iIsIj7mzuv/9+VVRUaMGCBb5JEA3C1+e9rv2PHTtWNptNTz311LklifNSn3N8tvPb0K8TNAxfnPvTWb16tV544QVdfvnl+vnPf37OOaJh+Orc7927V1OmTNGoUaN02223+TRHAGdn1Wf4kSNH+Mz3Y1a9rlq0aKH09HR9/PHHOnz4sL7//nu9/fbb6t27t5YsWaK77rrL68eCpqMhv3ee63F5v2rerHpNSdK0adP0/vvv68CBAyotLdX777+vIUOG6K233tLNN9+s6urqBjkuGp5VfWTeqxoOdwDhgjRt2jSdOHGi3vG/+tWvTnvl1rnKzs7W0qVL9fLLL9d55SB8rymc9x86fvy4hg8frv/85z+aPXu2BgwY0KDHA9A4NmzYoLS0NEVGRmrZsmUKDg62OiU0kPHjxyswMFD/93//Z3UqAIBm7qKLLtLjjz/u0XbDDTeoT58+SkxM1D//+U8VFxcrMTHRogwB4KSnn37aY7lPnz7617/+peuvv14FBQVauXKlbr/9douyQ1NEH9k6FIBwQXrhhRfkdDrrHX/HHXcoISHBXYU+XcW5tLRU0umr5DW+//57/fKXv9TQoUM1ZsyYeueB82P1ef+h8vJy3XbbbcrLy9Mjjzyi3/zmN15tD9+pzzlu1arVee/j1Dg0Db449z/00UcfKTU1VTabTTk5Oeratet55wnf88W5X7x4sVavXq1ly5YpKirK5zkCODurPsMjIyP5zPdjTe27YYsWLTRmzBjNnDlTRUVFFICaqYb43untcdu0aVPrmKfGoHmx6jV1OjabTRMmTFBBQYGKioooADVTVvWRea9qOAwBhwtSWVmZTNOs90/NXRlnG3PybHPF1Ni1a5cOHjyoVatWyTAMj5+aCc2io6NlGIY2bdrkmwcNy8/7qY4fP65bb71Va9as0fTp0zVnzpzze3A4L2c6x/v371dZWdlZz++ll14qm83m09cJGp4vzv2pPvroI914441yuVzKyclRr169fJYrfMsX537jxo2SpJ/+9Kcen+Xx8fGSpJycHBmGoSuvvNK3yQNws+ozPCEhQWVlZdq/f3+94tG8NMXvhjUXGnhzQRuaFl9/7/TFcXm/at6sek2dCe9VzZ9VfWTeqxoOBSDACwkJCWrfvr2KiopqfZg5nU4VFRUpPj5esbGxZ9xPmzZt9POf/7zOn5rh4EaPHq2f//zntareaHy+Ou81jh8/rttuu01r1qzRr3/9a82dO7ch0oYXkpOTJUm5ubm11uXk5HjEnE5oaKh69+6tL774Qjt37vRYZ5qm1qxZI4fDoauvvtpHWcMXfHHua9R8sa2urtZbb72la665xneJwud8ce779OlT52d5WlqaJCkmJkY///nPufoRaEBWfYb78vMDTU9T/G64fv16SVLHjh3rFY+mx6r3Dd6v/FdTPLe8VzV/VvWRm+Lr2W+YALzy6KOPmpLMGTNmeLTPmDHDlGTOmTPHo93pdJqff/65uXPnznrtPzk52ZRk7tu3z2c54/z56rwfP37cvPHGG01J5tSpUxs8b9RPZWWleemll5rBwcHmxo0b3e2HDx82O3fubAYFBZnbt293t+/du9f8/PPPzcOHD3vs5y9/+YspyRw1apTpcrnc7QsWLDAlmffee29DPxR4yVfn/qOPPjJbtmxphoWFmWvXrm2k7HE+fHXu67J9+3ZTkjlo0KAGyBzAqaz6DP/iiy/MgIAAs3Pnzh772rhxoxkcHGxefvnlZnV1tW8fLBqNVa+r4uJij7gay5cvN202m9mqVat6fQ6haWqo7x7BwcFmXFzcadd///33ZmRkpBkVFWXu3r3b3b57924zKirKjIqKMktLS8/1YcFCVr2m/v3vf5sVFRW12ouKiswWLVqYgYGB5pdffuntw0ETYVUfmfeqhkMBCPBSWVmZ2aNHD1OSmZqaaj788MNmamqqKcns1auXeezYMY/4vLw8U5KZnJxcr/1TAGqafHXex44da0oy27VrZz722GN1/pz6QYrG8+6775qBgYFmeHi4OWHCBHPq1KlmXFycKcl8+umnPWJrzuNLL73k0V5dXW0OGjTIlGRee+215owZM8yf/OQnpmEYZnx8vPntt9824iNCfZ3vuT948KDZqlUrU5I5ePDgOn+v582b17gPCvXii9/7ulAAAhqXVZ/hTzzxhCnJjIuLM6dOnWpOmDDBDA8PN4ODg7kYwA9Y8bpKTk42Y2JizJ/+9Kfmgw8+aE6ZMsXs37+/KckMDg42V65c2dAPGw3MF6+r7777zhw7dqz7x2azmQ6Hw6Ptu+++89jmr3/9qynJbNu2rTlp0iRz0qRJZtu2bU3DMMylS5c29MNGA7LiNTV27FgzKirKHDZsmDl58mRz6tSp5qBBg0zDMEybzWYuWLCgMR46GpBVfWTeqxoGBSDgHBw+fNh84IEHzNjYWDMwMNDs0KGDOW3atDor0RSA/IcvznvN+T3TT15eXuM8INSyfv16c/DgwWZERIQZGhpq9u7d23z11VdrxZ3pD8Hl5eXmrFmzzE6dOplBQUFmu3btzPHjx5v79+9vhEeAc3U+577mj/1n+jnTFXSwli9+73+IAhDQ+Kz6DF+yZIl59dVXm6GhoWZkZKR50003mR9//LEvHxos1NivqxdffNEcPHiwGRsba4aGhprBwcHmpZdeao4fP978/PPPG+IhwgLn+7qqz3fPui4qXL16tXndddeZDofDDAsLM5OTk801a9Y00KNEY2rs19Q///lP87bbbjPj4+NNh8NhBgYGmrGxseaoUaPM9evXN/CjRWOxqo/Me5XvGaZpmmcZJQ4AAAAAAAAAAADNiM3qBAAAAAAAAAAAAOBbFIAAAAAAAAAAAAD8DAUgAAAAAAAAAAAAP0MBCAAAAAAAAAAAwM9QAAIAAAAAAAAAAPAzFIAAAAAAAAAAAAD8DAUgAAAAAAAAAAAAP0MBCAAAAAAAAAAAwM9QAAIAAAAAAAAAAPAzFIAAAAAAAAAAAAD8DAUgAAAAAAAAAAAAP0MBCACAJswwDA0YMMDqNAAAAADgnNCnAQDrUAACAAAAAAAAAADwMxSAAAAAAAAAAAAA/AwFIAAAAAAAAAAAAD9DAQgA0OQtX75cycnJuuiiixQSEqL27dtr4MCBWr58uUfcv//9b40cOVLR0dEKCgpSXFycJk+erIMHD9a5308++UQ/+9nPFBMTo+DgYEVHR2vw4MF64403POKqqqr0zDPPqEePHgoNDVVkZKRSUlJqxUnSokWLZBiGFi1apNzcXPXt21ctWrRQmzZtNHbs2NPmkpWVpSuuuEIhISGKjY3V9OnTVV5eXmfsvn379Ktf/UoJCQkKDQ1Vy5Ytdfnll+sXv/iFjhw5Up+nFAAAAEAjok/jiT4NADQOwzRN0+okAAA4nQULFuj+++9XdHS0brnlFrVp00b79+/Xhx9+qCuvvFJLliyRJL3++usaMWKEbDabbrvtNsXGxmrLli1atWqVEhIStH79erVq1cq93+XLl2v06NEyTVO33HKLunTpom+//Vbr169Xp06dtGLFCkmSaZoaPny4Vq5cqc6dO+uWW26R0+lUdna2Dh06pGeeeUYPPvige7+LFi3S3XffreHDh2vVqlW65ZZb1LFjRxUWFmrDhg3q16+f1q5d6/EYMzIy9Oijj+riiy/WT3/6UwUGBmr58uXq3r27/vWvfyk5OVn5+fmSpGPHjumKK67Qjh07lJqaqu7du6uiokLbt2/X22+/rU8++USXXXZZw54UAAAAAPVGn4Y+DQBYxgQAoAlLTEw0g4KCzG+++abWugMHDrj/jYiIMC+55BJzx44dHjF///vfTUnmpEmT3G379+83HQ6H6XA4zOLi4lr73b17t/v/ixcvNiWZycnJ5okTJ9ztO3fuNKOiosyAgADzq6++cre/9NJLpiQzICDAXLt2rbu9qqrKHDBggCnJXLdunbu9pKTEDAgIMC+55BKPx3jkyBGzS5cu7mPXeP31101J5gMPPFAr76NHj5rl5eW12gEAAABYhz4NfRoAsApDwAEAmrzAwEAFBgbWam/Tpo0k6eWXX1Zpaal+//vfKy4uziNm5MiRSkxM1KuvvupuW7x4sZxOp6ZNm6arrrqq1n5jYmI8YiXpqaeeUlBQkLu9Q4cOevDBB1VVVaW//e1vtfYxevRo9evXz71st9s1duxYSdKGDRvc7a+88oqqqqo0depUXXTRRe72iIgIzZw58zTPiBQaGlqrLSwsTMHBwafdBgAAAIA16NPURp8GABpegNUJAABwJiNHjtT06dN1xRVXaPTo0UpJSVH//v0VERHhjvnggw8kSevXr9dXX31Vax/l5eU6cOCADhw4oKioKH344YeSpNTU1LMef+PGjWrRooV69+5da11KSookadOmTbXW9ezZs1ZbTSfs8OHD7rZPPvlEknTdddfViq+rLSkpSdHR0XryySf1ySef6Oabb1ZycrIuv/xyGYZx1scDAAAAoHHRp/FEnwYAGg8FIABAk/brX/9abdq00YIFC/SHP/xBTz/9tAICAjR06FDNmzdP8fHx+v777yVJzz333Bn35XQ6FRUV5Z5U9JJLLjnr8UtLSxUbG1vnuujoaHfMD53amasREHDyY7e6utrdVpPLqVfK1bj44otrtUVGRuqDDz7Qo48+qjfeeENvvvmmJCk2NlYPP/yw7r///rM9JAAAAACNiD6NJ/o0ANB4GAIOANCkGYahe+65Rxs2bNB3332n1157TbfffrtWrlypm2++WdXV1e6OyaeffirTNE/7UzOUQsuWLSVJX3/99VmPHxERoW+//bbOdfv373fHnKvIyEhJqvMY33zzTZ3bdOjQQYsWLdJ3332njRs3au7cuXK5XPrlL3+pv//97+ecCwAAAADfo09TG30aAGgcFIAAAM1GmzZtNGzYMGVnZ+v666/Xli1b9OWXX+qaa66RJK1bt65e+6kZ+iA3N/essVdddZWOHTvmHmLhVPn5+ZKkK6+8sn4PoA49evSQJL333nu11tXVdiqbzaYrr7xS06dPd3eSXn/99XPOBQAAAEDDok/jiT4NADQsCkAAgCYtPz9fpml6tFVWVrqHSAgJCdHdd9+t8PBw/fa3v9XmzZtr7ePYsWPuMbUlaezYsQoLC9Mf/vCHOse6PvUquppJTh955BFVVla623fv3q1nnnlGAQEB+tnPfnbOj2/06NGy2+165plnPK6YKy0t1RNPPFErfvPmzXVeRVfTFhIScs65AAAAAPA9+jSe6NMAQONhDiAAQJM2bNgwRURE6Nprr1VcXJwqKyu1Zs0abdmyRXfccYd7CIS///3v+ulPf6oePXpo8ODB+tGPfqQTJ05ox44dKigoUN++ffXWW29JOjk29csvv6yRI0eqd+/euvXWW9WlSxcdOHBA69evV8eOHbVixQpJ0pgxY/TPf/5TK1euVPfu3XXzzTfL6XQqOztb33//vf7whz/o0ksvPefHd9lll+nRRx/VY489pu7du2vEiBEKCAjQ8uXL1b17d33xxRce8WvWrNFDDz2kfv36qXPnzmrTpo22bdum119/XSEhIfrlL395zrkAAAAA8D36NPRpAMAqFIAAAE3a73//e7311lv68MMP9cYbb8jhcKhTp05asGCBfv7zn7vjhg4dqo0bN+r//b//p7fffltr1qyRw+FQTEyM7r77bt15550e+x0+fLjWr1+v3//+9yooKNDrr7+uqKgoXXnllZowYYI7zjAM/eMf/9Czzz6rxYsXKzMzU0FBQUpMTNTUqVN16623nvdjfPTRR9W+fXvNmzdPL7zwgi666CKNHDlSjz/+uFq0aOERO2jQIO3YsUOFhYX65z//qbKyMl1yySVKS0vT9OnT9eMf//i88wEAAADgO/Rp6NMAgFUM84f3oAIAAAAAAAAAAKBZYw4gAAAAAAAAAAAAP0MBCAAAAAAAAAAAwM9QAAIAAAAAAAAAAPAzFIAAAAAAAAAAAAD8DAUgAAAAAAAAAAAAP0MBCAAAAAAAAAAAwM9QAAIAAAAAAAAAAPAzFIAAAAAAAAAAAAD8DAUgAAAAAAAAAAAAP0MBCAAAAAAAAAAAwM9QAAIAAAAAAAAAAPAzFIAAAAAAAAAAAAD8DAUgAAAAAAAAAAAAP0MBCAAAAAAAAAAAwM9QAAIAAAAAAAAAAPAzFIAAAAAAAAAAAAD8zP8Hgh/MI+FkNbMAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -468,7 +478,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 31, "id": "c9063bbe", "metadata": {}, "outputs": [ @@ -476,7 +486,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Sweep points: 41\n", + "Sweep points: 19\n", "Server IDs detected: ['app-1']\n" ] } @@ -485,10 +495,10 @@ "payload_base = build_payload()\n", "\n", "sweeper = Sweep()\n", - "pairs = sweeper.sweep_on_user(\n", + "pairs = sweeper.sweep_on_lambda(\n", " payload=payload_base,\n", - " user_lower_bound=50,\n", - " user_upper_bound=250,\n", + " lambda_lower_bound=10,\n", + " lambda_upper_bound=100,\n", " step=5,\n", ")\n", "\n", @@ -508,20 +518,20 @@ "source": [ "## 6) Global plots (system-level)\n", "We plot: \n", - " - Throughput (mean RPS) vs users\n", - " - Mean latency (W) vs users\n", - " - latency percentiles vs users.\n" + " - Throughput (mean RPS) vs lambda\n", + " - Mean latency (W) vs lambda\n", + " - latency percentiles vs lambda.\n" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 32, "id": "48716bc8", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABgsAAAI8CAYAAADP+ZtZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAT/gAAE/4BB5Q5hAAA8zlJREFUeJzs3Xd4FNX+x/HPJtlkk5BKCZCEXgMRpAlIvxQbRZqCBREUGza8XK8CKhe51qsotqtYEa8UFRtK+YFYCEZQASlKTyihJCSEkGSTzO+PsEtCNmF3Uzbl/XoeH8nMmZnvnGx2zsx3zjkmwzAMAQAAAAAAAACAGsvL0wEAAAAAAAAAAADPIlkAAAAAAAAAAEANR7IAAAAAAAAAAIAajmQBAAAAAAAAAAA1HMkCAAAAAAAAAABqOJIFAAAAAAAAAADUcCQLAAAAAAAAAACo4UgWAAAAAAAAAABQw5EsAAAAAAAAAACghiNZAAAAAAAAAABADUeyAAAAAAAAAACAGo5kAQAAAAAAAAAANRzJAlQpJpPJ5f/effddSdItt9xS6Oea5PHHH5fJZNLjjz/u6VDK3Y4dO2Q2m3X33Xd7OpRKr0mTJkX+XgICAtSyZUtNnjxZO3fudHnbNm3a6L777lNiYqLD7TZs2KAbbrhBTZo0kZ+fn4KCgtSsWTMNGjRITzzxhLZt21ao/MqVK2UymfTiiy+W5akDAIAapGC75cknnyyxbJcuXexlH3rooQqKENVVdbkPe/PNN2UymbRkyRL7su7du8tkMum9995zuM13331n/1tasGCBwzI//vijTCaT6tWrJ8MwJNH+BwBPI1mAKmXChAlF/rv88sslSREREQ7Xt2jRwsNRwxnr1q2TyWRSv379SrWfadOmyWw2a8aMGWUTWA0wZMgQ+99L3759lZycrAULFujSSy/Vd9995/S2ffr00dGjR/XSSy+pQ4cO2rp1a6Gyzz77rC6//HItWrRIZrNZQ4YM0dChQxUZGamffvpJjz/+eJFk3uDBg9W7d2/Nnj1bycnJZX3qgFPK6vsJAOB577//frHr/vjjD23atKkCo6m5bAmc/fv3ezqUUrE9DK/OTp8+rZkzZ+rSSy/V6NGj7cv79u0rSVq/fr3D7QreR1ysTJ8+fez1SPsflQHtf9RkPp4OAHCFo14B7777rn788Ue1adOmRvYawHlr167VihUrNHXqVDVo0MDT4VQZDz/8cKFGUEpKioYPH67vv/9eU6ZMKbGHwYXbJiUl6aqrrtLmzZt1++23a8OGDZKk3377Tf/4xz/k4+OjDz/8UGPGjCm0n7Nnz+qrr75SVlZWkWPMnDlTgwcP1ty5c/Xcc8+V7mQBAECN1blzZ23atElxcXHq3r17kfW2e4kuXbrol19+qeDoUB3dc889uv7661WnTh1Ph+K25557TklJSXr11VcLJUb69u2rZ555ptiXi7777jsFBAQoKiqqxDK2fRVE+x8APIeeBQCqjZdfflmSdOutt3o4kqotLCxMzzzzjCRp165d2rt3r9PbRkRE6D//+Y8kKS4uTocPH5YkLV26VIZhaMyYMUUSBZLk7++v0aNH64Ybbiiy7m9/+5uio6O1YMECZWRkuHNKAAAAuuWWWyTJ4bApubm5+vDDDxUREaEhQ4ZUcGSorurUqaM2bdpU2WSB1WrVG2+8oTp16mjo0KGF1vXq1Uve3t7as2ePDh06VGS7DRs2qHv37howYIAOHDigAwcOFCqTk5Ojn376SVLRZAHtfwDwHJIFqJF27typUaNGqU6dOrJYLOrUqZM+/vhjh2ULdpFdvHixevXqpZCQEJlMJp06dcpebvny5Ro8eLDCw8Pl5+enpk2b6o477ijSKJIu3qXt3Xfflclkst/QFJSXl6f58+crNjZW/v7+ioiI0I033qj9+/c7NSbm4cOHNXHiRNWvX18Wi0UxMTGaP3++w7L9+vWTyWTSunXrtGbNGg0YMEAhISEKCgpS//799X//939Fttm/f79MJpOaNGnicJ+Ozv2WW25R//79JRUe29KVbn+HDx/WF198ofbt26tjx45F1hes05MnT+quu+5SVFSU/P39dckll+ijjz6yl/3hhx80ZMgQhYWFqVatWrrqqqtKfLv+wIEDuvvuu9WiRQtZLBaFhoaqf//++uSTTxyW37hxo6ZNm6bOnTurXr168vPzU3R0tG688cYiY/YXrCPbnBuufH7d1b59e/u/k5KSXNq2U6dO9n/bPv/Hjh2TJNWrV8/lWLy8vHTDDTfo1KlT+t///ufUNlu3bpXJZFLjxo3t459e6MiRI/Lx8VFoaKgyMzPty7/77jsNHz7cPq9C7dq11a5dO915553as2ePy/EXZ//+/Zo6dapat26tgIAAhYaGKjY2VtOmTXP4vfH9999rxIgRqlevnnx9fRUZGVniZ6Zgt/gPPvhAXbp0UUBAgMLDwzV69OgSz8XZ2Er6rpKKH6e34PI9e/boxhtvVIMGDeTt7W0fn9bZ795t27bplltuUaNGjey/r6uvvlrr1q0rk3opi++nkoYoKOk787ffftP48ePVokUL+fv7KywsTK1atdItt9yizZs3FymfnZ2t+fPnq2fPngoNDZXFYlHbtm01c+ZMnT59ukh5Z34Pubm5ev/999WrVy81aNBAfn5+ql+/vi677DI9+uijhf52AKCy69u3r5o0aaKPP/64SG/Gb7/9VkeOHNENN9wgH5+SO+C7eu1ZtWqV7rrrLl1yySUKDw+XxWJRs2bNir1XkAq3wzds2KArrrhCoaGhCggIUK9evbRmzRqXz9+Z60pGRobCwsJkNpt19OhRh/vJzs5WRESEvL29dfDgQZf2b7sXsJ1306ZNC11bLxyWqDTX+bfeekuXXnqpAgIC1LBhQ02dOlXp6emSpOTkZN17771q1KiR/Z7IlV7qtjbQhce98JrvTFvowIEDuvHGGxUREaHAwEB1795dK1eutJf9/PPP1atXLwUHByssLEzXX3+9/YUcR1yts5J8+umnSkpK0vXXXy+z2VxoXXBwsC699FJJRYcZio+P19mzZ9WnTx/17t3bYZnNmzcrPT1d4eHhio2NLbSO9n8+2v+0/2n/wxNIFqDG2bx5s7p06aIdO3Zo4MCB6tChg3799Vddf/31WrRoUbHbPfPMM7ruuuuUl5enq6++Wp07d7Z/+f/973/XiBEj9H//93/q2LGjRo4cKbPZrDfeeEMdO3bUxo0byyz+SZMmaerUqfrzzz/Vt29f9e/fX9999526dOly0TE/Dx48qM6dO2vdunXq16+funfvrl27dmnq1KmaO3dusdt98sknGjx4sJKTk3X11VcrJiZG69at08CBA7Vw4cJSn1OvXr3sb3BdOPfEFVdc4dQ+vvrqK+Xk5GjAgAEllktJSVH37t31+eef6/LLL1e3bt20bds2jR8/Xh9++KE++eQTDRgwQGlpaRo8eLAiIiK0YsUK9e3bVydOnCiyv9WrVys2NlavvvqqfHx8dPXVV6tjx46Ki4vTqFGj9MgjjxTZ5tFHH9VLL72k3Nxc9ejRQ1dffbUCAgL04Ycfqlu3bsWO6Sm5//l1VVpamv3frj7gL7itn5+fJKlRo0aS8nsYHDlyxOV4bI21zz//3KnysbGxuvTSS3Xw4MFiG40LFy5Ubm6urrvuOlksFknS22+/rX79+unLL79UZGSkRo4caR+m4PXXX1d8fLzLsTuyYsUKxcbGav78+crMzNRVV11lP8f//Oc/Wrt2baHyL7/8svr27avly5erRYsWGj16tOrWrasPP/xQXbp0KbFeHnnkEU2aNEmhoaG66qqrFBAQoGXLlql37946efJkqWMrjT///FNdunTR+vXr1adPH1155ZUKCAgoVKak796FCxeqU6dOeu+99xQeHq5hw4apTZs2+vbbbzVgwAC9/vrrpa6Xsvh+csfKlSvVtWtXffTRRwoNDdWwYcPUp08fBQYG6oMPPij0EEGSTp06pX79+mnq1KnatWuXunXrpiuuuEJpaWmaM2eOevToUey4vyX9HiZOnKgJEybo119/1SWXXKJRo0apffv2OnLkiObOnVvoxg0AKjuTyaSbb75ZKSkp+uKLLwqts/U2mDBhQon7cOfac+edd+qdd96Rr6+v+vfvr8GDBys3N1dvvPGGOnXqpF27dhV7vK+++kp9+vTRiRMndMUVV6h58+b68ccfdcUVV5TYZryQs9eVgIAA3XLLLcrJydFbb73lcF/Lli3TsWPHdPXVV9vbeM7uv379+powYYICAwMlSaNGjSp0ba1Vq1ap6trmoYce0j333KP69etr8ODBysrK0vz583Xttdfq5MmT6t69uz755BP16NFDl112mXbu3KmJEyeWOKdFQS1atCj0Wblw3jxn7d+/X126dNHGjRvVv39/tWvXThs3btTVV1+t7777Ti+99JL93nLw4MHy9/fXxx9/rIEDBzocvrM0debI8uXLJanYeyxbj4ALhxmy/dy7d2/16dOnxDIF5ysoiPY/7X/a/7T/4SEGUMW98847hiSjb9++JZabMGGCIcmQZDz99NOF1j377LOGJKNp06ZFtmvcuLEhyTCbzca3335bZP0XX3xhSDJCQkKMjRs32pfn5uYaf//73w1JRqNGjYzMzEz7urVr15YYs+2cJkyYUGj5smXLDElG3bp1jT/++MO+PCsryxg3bpz9/B577LFC2z322GP2dffcc4+Rk5NjX7dkyRJDklGrVi0jPT290HZ9+/a1b/fiiy8WWvfBBx8YkozAwEDj0KFD9uX79u0zJBmNGzd2eG7FnfvF6uRixo8fb0gyFi1a5HC9rU4lGddff72RlZVlX/ff//7XkGRERkYaYWFhxqeffmpfl5mZafTr18+QZDz++OOF9nno0CEjNDTUMJvNxkcffVRo3Y4dO+yfnTVr1hRat2LFCiMpKalIjG+++aYhyWjTpo2Rl5dXaJ27n9+S2OJbu3atS7FcbNtXX33VkGT4+fkZGRkZhmEYxv79+43AwEBDkhEQEGCMGTPGmDdvnvHDDz8YZ8+evWisp06dMkwmkxEWFmbk5uY6dX4vvviiIcm45ZZbHK6PjY01JBk//PCDfVmTJk0MScaGDRuKlP/rr7+MvXv3OnXskuzfv9+oVauWIcl4/vnni5zPjh07jO3bt9t//vXXXw1vb2/DbDYbX3zxRaGyL7/8siHJCA4ONo4ePVpone3zUrduXWPr1q325adPnzYuu+wyQ5LxxBNPlCq24r6rbGzfPSV9J02ePNnIzs4usu3Fvnt//fVXw2w2GyEhIcbq1asLrduwYYP9b3Pnzp2lrpfSfj/ZjulIcd+Ztu+d//3vf0W2OXToUKFrgGEYxpgxYwxJxvjx443U1FT78rNnz9q/P2666aZC21zs97B//377NezYsWNF4vjxxx+NM2fOlHjuAFAZ2K4pW7duNXbv3m2YTCbjmmuusa9PSUkx/Pz8jEsvvdQwjPPfj9OmTSu0H3evPZ999plx6tSpQstycnKMWbNmGZKMIUOGFInZ1g43mUyF2pl5eXnGPffcY0gy+vfv73QduHJd+fPPPw2TyWQ0atTIYburd+/ehiTj66+/dmv/hnH+d7Jv3z6H8Zb2Ol+/fn1j165d9uWJiYlG3bp1DUlGu3btitwPvP766261p0u6xhuGc22hadOmFarnRx55xJBktGrVyggNDTV++ukn+7qUlBSjTZs2hiTj3XffLbRPd+usJJGRkYYk4/Dhww7Xf/755/Z7hoKGDBlimM1m+71AkyZNjBYtWhQqc/XVVxuSjBdeeMHhvmn/0/6/EO1/2v+oGCQLUOW5mizo3r17kXXZ2dlGWFiYIcnYv39/oXW2C9aUKVMc7rd///6GJGPOnDlF1lmtVqN58+aGJOODDz6wL3c3WWC7ePznP/8pss3x48ftD2OLuzA3bty4UNLCpl27doYkY926dYWW225SunXr5jDOK664wpBkzJ49277MU8mCmJgYQ5Lx66+/Olxvq9Pg4GDjxIkThdbl5OQYderUMSQZN9xwQ5FtP/vsM0OS0a9fv0LLbcmgWbNmOTymLblz7bXXOn0ePXv2NCQZ27ZtK7Tc3c9vSRw98E9KSjLeffddIzQ01AgKCirUkL7YtkePHjXeeOMNIygoyJBk3HnnnYW2Wb9+vf3voeB/vr6+xtChQwvdCDnSsGHDEm8qL3Ts2DHDx8fHCAoKKtKg+fXXXw1JRW5aAgICjNDQUKf27657773XkGRMnDjRqfITJ060N+Ycsf2d/utf/yq03Fa/r732WpFtbEnCCz/TrsZW2puF2rVrG6dPn3a47cW+e22N47ffftvh+ueff96QZDzwwAOFlrtTL564WbB9p6WkpFx0/9u2bTMkGS1btnT4HX/mzBkjIiLC8PHxMU6ePGlffrHfw88//2xIMoYPH37RGACgMiuYLDCM/IfdPj4+9pc3XnvtNUM6/3JMcckCd689JYmMjDS8vLyMtLS0Qstt1/frrruuyDbHjx+3t6EcPXBzxJXrimHkP+yVVORB5R9//GF/qF7woaKr+79YsqC01/k333yzyDb3339/ifcDtWvXdrk9XdpkQdOmTQslLQwjPyFg2++jjz5aZJ/FPRAv68/nsWPHDCn/pbjipKSkGF5eXoYk+99TTk6OERQUZPTo0cNe7qabbiqUdMjNzTVCQ0MNScbmzZuL3T/tf9r/BdH+P4/2P8oTwxChxnHUbcxsNqtp06aSVOz4jyNGjCiyrOCkTI66m/r4+Ojmm2+WVLTbpatycnK0YcMGSdJ1111XZH2dOnU0aNCgEvfRv39/+7AwBbVu3VpS8ec+fvx4h8tvvPFGSUXHn/QE25j4tWvXLrFc586di5Tx9vZW48aNJUmDBw8usk3z5s0lFa2fFStWSJLDCXsl2bvcxsXFOYx3wYIFmjZtmiZPnqxbbrlFt9xyi31s2D///NPhPt39/Jakf//+9jEVIyIidMsttyggIECbN2/W5Zdf7vS29evX15QpU3T69GmNHDnSPtGxTe/evbVz5059/fXXuv/++9WzZ0/5+/srOztbX3zxhXr16qU33nij2GPZfm+23/XF1K1bV1deeaVOnz6tTz/9tNA6Wxdz29+nTZcuXXTq1Cndcsst+v3334sd77Q0vvnmG0n5Q4o5w/b3VVyXdtuE3sV9x1x55ZVFlhX3N+9qbKU1cODAQsMNOOLouzcvL0/ffvutvL29NXLkSIfblfT3J7lWL57QpUsXSfnfsxs2bFBubm6xZW2/t2HDhjn8jg8ICFCXLl2Uk5OjX375pcj64n4Pbdq0Ua1atfTVV1/p6aefVkJCgrunAwCVyoQJE5STk6MPP/xQUv4Y3Gazudg2r1T6a8+BAwf06quv6v7779ekSZPsbT+r1aq8vDzt3r3b4T4dXa/q1Kmj8PBwZWdnOxwm0xFXriuSdPfdd0tSkSE9XnvtNUnS7bffLi+v848TXN1/ScriOl9Sm764+wHb+OEV2Q7o16+ffH19Cy0LDQ21x+fsvUlZ1NmFnLm/Cg0NVYcOHSSdb7Nu3rxZp0+fth+v4LFt7dXff/9dp06dKrS9I7T/af/b0P4vjPY/yhPJAtQ40dHRDpcHBQVJksOxHyXZHyYXdPLkSWVlZdknG3KkWbNmkqRDhw65E67diRMn7Mdq0KCB0zEW5O65FzdZsW15YmJiicetCLZx82znUpyoqCiHy20XSkfrbesurJ+9e/dKyh8f88JJzUwmk+rWrStJOn78eKHtXn31VTVu3FiTJ0/Wf/7zHy1YsEDvvfee3nvvPfs+C477X5C7v8OSDBkyRBMmTNBNN92kfv36ydvbW4cPH9b48eMvOnmRbdtbbrlFd9xxh+bOnatffvlFy5Yts48DWpCPj4+uvPJKvfDCC/rxxx+VnJyszz77TK1bt1ZeXp7uvffeYhskwcHBkuTSGIm2BnbB8Wdzc3O1aNEimUwm3XTTTYXKv/baa2rdurXee+89dezYUbVr19ZVV12lefPmKSUlxenjlsQ2EaCtYXoxtu8OW0LoQhf7jnH0mSnu8+JqbKV1se+s4sqcPHlSaWlpys3NVWhoqMO/v65du0oq+vdn40q9eMJTTz2lbt266auvvrJPWPa3v/1N//73v4vczNi+N55//nmHdWEymfTVV19Jclwfxf0egoKC9O6776pWrVp6+OGH1ahRIzVq1Ejjx4/Xxx9/rJycnDI+awCoGGPHjlVAQIDef/997dq1Sxs3btSVV15pb7s5Upprz4wZM9S8eXPdfffdmjdvnt5++21728/2ELS8236uXFck6eqrr1aTJk20YsUKe/vgzJkz+uCDD+Tr62t/WOnu/ktSFtf5ktr0F7sfqMh2QFndm5RFnV3I2furC+ctKDgXgY1tkuMLy/Tu3btQ0ulCtP9p/9vQ/qf9j4rj4+kAgIpWUmOkJP7+/mUcSfHy8vKKXedo8iebi52bu+delko6t9IIDQ3ViRMnlJaWptDQ0GLLlWUd2TL948ePl9lsdmqb+Ph43XPPPfLx8dF//vMfXXPNNYqKirJ/vsaPH6+PPvqo2DdayuN3+PDDD6tfv372n3fs2KH+/fsrPj5ejzzySJEeAiVt6yqLxaLhw4era9euatmypTIyMvTNN9/otttuK1I2NTVVkkr8/V5o6NChCgsL05o1a3TkyBE1aNBAK1euVFJSkvr27VskERYTE6OtW7dqzZo1+uabb/T999/r22+/1YoVKzR79mytXLlSnTt3dvt8pZL/hsuDK5+Zso7tYn/vznyvOipj+9vz9fXVuHHjSty+Tp06DpdXhu9Dqfg6atCggTZs2KAffvhBK1as0Pr16/X999/r//7v//Svf/1LS5Ys0dVXXy3pfH1069ZNbdu2LfF4jm4MSvo9jBo1Sn/729/01VdfadWqVfr+++/10Ucf6aOPPlJsbKy+//57hYSEOHu6AFApBAUF6dprr9WHH36oadOmSbr4xMbuXnuWLl2qJ598UsHBwXrxxRfVv39/NWjQwP4maM+ePbVhw4Zyb/u5cl2xHffOO+/UP/7xD/33v//VnDlz9NFHHyk1NVXjxo1TvXr1SrX/kpT3db6ytAGksrs3KYs6u5CtzV1cIsumb9++evHFF+1vw69fv15eXl7q1auXvUzr1q1Vr169QmVs25aE9r97aP/T/i+I9j9cRbIAKIXatWvLz89PWVlZSkxMdJiptmV8C/Y8sHU1TU9Pd7hfR29W165dW76+vsrKylJSUpLq169fpMz+/fvdOY2LOnDggMPltuOV9tzKQkREhE6cOKHk5GQ1atSoXI5xoejoaO3evVuzZ8+2dwe+mGXLlskwDN1777164IEHiqwvrgt6RWrbtq3efPNNDRs2TPPnz9c999xjf3ulvDRs2FBt2rTR5s2bi30TJDk5WZKK3JyWxNfXV9dff71ee+01LVy4UH//+9/tbxkV91DAbDbriiuusA/5dOzYMU2fPl3vvfee7rnnHvtwYO5q1KiRdu3apT///NOpm7XIyEjt2bNHe/fuddiDydF3TEXF5qm/9zp16shischqteqNN95w2PW2MjGbzbJarUpPTy/S3bekOvLy8lKfPn3sb+alpaXp3//+t5566inddttt9jeMbNeewYMH61//+leZxx8aGqobbrhBN9xwgyRp+/btmjBhgn755Rc99dRT+ve//13mxwSA8nbLLbfoww8/1FdffaXatWvrmmuuKbG8u9eepUuXSpKefPJJTZw4scj6imz7OXtdsZk0aZIee+wxLViwQI899ph9SKI777yzTPZfnKp2na8MyqPOIiIiJJ1vgxenT58+MplM2rp1q06cOKHvv/9eHTp0sPcKsOndu7eWLVumY8eOOZ0soP1P+9+mqn0v0P5HVVY50mpAFeXj46OePXtKKtzN0SY3N1cffPCBpMINoYYNG0rKv8hbrdYi261cubLIMrPZrO7du0uSPv744yLrk5OTtWrVKjfO4uI++ugjh8sXLVokqXAX0zp16shsNuvkyZMOx1B1dG7S+UaHu93aOnbsKCn/IlZRbI1J202gM2wNXkeJpZ07d+rXX38tm+BKaejQoerfv7+sVqvmzJlT6v1dbOzP3Nxc7du3T5Lj7tanTp3SkSNHFB4e7lTX1YJsNwUffPCB0tLStHz5cgUEBGj06NFObV+vXj3NnTtXkrRlyxaXju2IbezZt99+26nytr8vR98xkvTOO+9IuvjNVnnEZvsu27VrV5F12dnZWrduXaljcsTHx0cDBw5Ubm6uPvvss3I5RkGl/X4qqZ6K+050JDg4WHPnzpWvr6+OHDliT6zZvos+/fTTcuu9VVBMTIw92VkWfxMA4AkDBgxQu3btVLt2bU2cOLHIuPEXcvfaU1Lbb82aNU4PCVMeiruu2NSuXVvXX3+9jh49qkcffVSbNm1Su3bt7EPKlGb/JV1bK/o6Xxq23sWeHpqjPOqsTp06ioqKUmpqqo4cOVJsufDwcMXGxsowDL3yyis6depUoftDG9vn5rXXXtPJkycVHBysSy+9tNj90v6n/V8Q7X/a/6g4JAuAUrJ9YT777LOFJo7Jy8vTjBkztHv3bjVq1KjQJLhNmjRRkyZNlJKSopdeesm+3DAMPfnkk/ZJky90zz33SJLmzp2rnTt32pdbrVbdd999xWb3SysuLk7z588vtOyjjz7S119/rYCAgEJjlvr6+tonxZ09e3ahbd5///1iEw+2tyJ2797t1gXZNhSOsxN2lYWHHnpIQUFBevzxx7VgwYIiExAZhqH4+PhCSZw2bdpIyq+Lgr+vEydOaOLEiR6/0SjI9obCBx98YH+Q764ZM2bowQcf1I4dO4qsO336tG677TalpKSoVq1aDiee2rhxowzDsL+55IrLLrtMrVu31tatW/Xoo4/q7Nmzuvbaa4uMv5qRkaEXXnjBYZLryy+/lKQivVZuvvlmtWnTpsjfR0kefPBBBQYG6u2339ZLL71UpHG3c+fOQn/f9957r7y9vfXee+/p66+/LlT2tdde07p16xQcHKzJkyc7HUNZxda1a1cFBgZq27ZtWrZsmX15dna27r///nLr7SRJs2bNko+Pj+666y6HNwy5ublau3ZtmXwnlPb7qX///pLy3yotuP3KlSv1wgsvONzm+eefdzgfzKpVq5Sdna3g4GB7l/zOnTtr2LBh+uOPP3TDDTcoKSmpyHZJSUl68803XYr7119/1eLFi4vMXWIYhv2zWFE9uQCgrHl5eWnbtm06ceKEnn32Wae2cefaY2v7vfnmm4VeEtq/f3+xb+iXB1euKwXZ7j9sdXTHHXeUyf5t11ZHbUOpYq/zpXGx86hI5VFntofRF3uz3lZu3rx5klRissBWplevXvL29i52n7T/af9fiPY/7X9UEAOo4t555x1DktG3b98Sy02YMMGQZLzzzjsO1/ft29eQZKxdu7bQ8saNGxuSjH379hW772nTphmSDG9vb2PAgAHGuHHjjFatWhmSjNDQUGPDhg1Ftlm4cKEhyZBkXHbZZcaoUaOMFi1aGIGBgcbUqVMNScaECROKbHfTTTcZkgw/Pz/jiiuuMK677jojOjraCAsLs6978sknC23z2GOPGZKMxx57zKW6sdXJPffcY5hMJqNjx47GuHHjjMsuu8yQZJhMJuPdd98tsr9169YZPj4+hiQjNjbWGD16tBEbG2v4+PgYDz30ULG/r0svvdSQZLRt29a48cYbjUmTJhnPPPNMsfVe0KFDhwxvb2+jXbt2DtfbPieO6rTguV74+zcMw9i3b58hyWjcuHGRdatWrTJCQ0MNSUZUVJQxZMgQY/z48caQIUOMiIgIQ5Lxj3/8w14+OTnZiIqKMiQZ9erVM0aOHGkMHTrUCAoKMlq3bm2MGDHC4e/C3c9vSWyf7ZK2ueKKKwxJxqRJk1zetqD77rvP/nlv0qSJMXToUGP8+PHGgAEDjODgYPtneunSpQ63nz59uiHJWLBggbOnV8iTTz5pP74kY+XKlUXKpKSk2P+OO3XqZIwdO9a47rrrjI4dOxqSDB8fH2P58uWFtrHVe3F/W8X54osvjICAAPvnavTo0ca1115rxMbGOvw9v/TSS4bJZDIkGT179jTGjx9vj8vPz8/47LPPihzDdq6OlPSZdjW2OXPmGJIMLy8vo2/fvsaIESOMqKgoIyIiwpg4caLD+rnYd5JhOPfdu3DhQsPPz8+QZDRv3ty4+uqrjXHjxhkDBgwwwsLCDEnGa6+9Vib1Uprvp507dxqBgYGGJKNFixbG6NGjjS5duhgmk8l4+OGHHR4zJCTEMJlMRrt27YxRo0YZ48aNM7p3727/HLzyyiuFyqekpBi9evUyJBkBAQFGz549jXHjxhnXXnut0a5dO8NkMhkRERGFtrnY7+HTTz81JBmBgYFGnz597PuLjo42JBkRERHG3r17naoDAPAk2zVl69atTpW3fT9OmzatyDpXrz1//fWXva3TuHFjY8yYMcaQIUMMi8Vi9OnTx+jZs6fDNtXF2nbOXCcLcvW6UpCt7R8YGGikpqaWyf7nzZtnSDKCgoKMUaNGGZMmTTImTZpknDhxwl6mrK/zpbkfKM4DDzxgSDLq1q1rXHfddfbzsCnuWnuxa3BJv9+1a9cWez/lTp2V5OOPPzYkGXfffXeJ5ZYuXVqorX3s2LEiZXJzc+1/C5KMp59+usR90v6n/e8I7f/zaP+jvJAsQJVXGZIFhpH/pTpw4EAjNDTUMJvNRqNGjYzbb7+9xO0+/vhjo1OnToafn58RGhpqDB8+3Pjjjz9KbMjm5uYa8+bNM9q1a2f4+fkZdevWNa6//npjz549xqRJkwxJxhtvvFFom9ImC9auXWt8++23Rt++fY2goCAjMDDQ6Nu3r8MGl83q1auNXr16GQEBAUZQUJDxt7/9zfjhhx9KbNzu27fPGDt2rBEREWF4e3s79Xst6NprrzUkGZs2bSqyrrySBYaRn6iYPn26ERsbawQGBhr+/v5G06ZNjUGDBhkvvviicejQoULljxw5Ytx6661G48aNDT8/P6NJkybG/fffb6SkpBT7u/BUsuCXX34xJBlms7lQo8DVZMGJEyeMRYsWGRMnTjQ6duxoREREGD4+PkZQUJDRoUMH4/777zd2797tcNvc3FwjKirKCA0NNc6cOeP0+RV08OBBw8vLy5BkREZGGrm5uUXKWK1W49VXXzXGjh1rtGrVyv5Zb926tXHrrbc6fMDg7s2CYeQ/PJgyZYrRtGlTw9fX1wgNDTViY2ONhx56yDhw4ECR8t99950xbNgwo06dOobZbDYaNGhgjB8/3tiyZYvD/bvbKHYntvnz5xtt27Y1fH19jbp16xo33nijkZCQ4PYNsmE4/937559/GnfddZfRqlUrw9/f3wgMDDRatGhhDB061Pjvf/9rnDx5slB5d+ultN9PmzZtMoYMGWIEBQUZAQEBRo8ePYzPP/+82GN+8MEHxs0332zExMQYoaGhhr+/v9G8eXPjuuuuM3788UeHx7BarcY777xj/O1vfzNq165t+Pj4GBEREUbnzp2NBx98sMh2F/s9HDlyxJg7d64xZMgQo3HjxobFYjHCwsKMDh06GDNnzjSSkpKcPn8A8KSyTBYYhuvXnr/++ssYPXq00bBhQ8NisRitW7c2HnvsMSMzM7PYNlxZJwvcua7YzJgxw5Bk3HbbbWW2/9zcXONf//qX0aZNG/uDP0fnU5bX+fJIFmRkZBgPPvig0bRpU8NsNhc5fkUnCwzD9TorSXZ2thEREWHUrl3byMrKKrbcsWPH7A8027ZtW2w524tIkoy4uLhiy9H+z0f73zHa/+fR/kd5MBnGRQaSBlAl5OTkKDY2Vjt37lR8fLy6dOlS6n3269dP3333ndauXWsf5qcyW7t2rQYMGKC7777bpW6hqNxWrlypIUOGaNq0aXruuec8HQ4AAECNYRiGWrdurb/++kubN28ucYx5VE+PPfaYZs+erSVLljg95n9p0f4HAM9hzgKgitm6dWuR8ePOnj2rBx54QDt37lS7du3KJFFQFfXv319XXnml3n777RIn4ULVMmfOHIWFhemRRx7xdCgAAAA1ysKFC/XXX3+pT58+JApqqIceekgRERF68sknVVHvmtL+BwDPIVkAVDFPPPGE6tatqz59+uj666/XoEGD1LhxY82fP1/BwcF65513PB2iRz3//POyWq2aM2eOp0NBGVi5cqW+//57zZo1S+Hh4Z4OBwAAoNo7efKkJk+erBEjRmjSpEny8vLSU0895emw4CFBQUH617/+pd9++01Lly4t9+PR/gcAz2IYIqCK+eyzz7RgwQL99ttvOnnypAzDUGRkpAYOHKjp06erWbNmZXasqjYMEQAAAIDS2b9/v5o2bSqz2azWrVvrscceq7DhZwAAgGeRLAAAAAAAAAAAoIZjGCIAAAAAAAAAAGo4kgUAAAAAAAAAANRwJAsAAAAAAAAAAKjhSBYAAAAAAAAAAFDDkSwAAAAAAAAAAKCG8/F0AFXB4cOH9eWXX6pZs2YKDAz0dDgAAABAIWfOnNHevXt1zTXXqGHDhp4Op1rj3gAAAACVnbv3ByQLnPDll19qypQpng4DAAAAKNEbb7yh22+/3dNhVGvcGwAAAKCqcPX+gGSBE5o1ayYpv3JjY2Mr9NhWq1VpaWkKDg6W2Wyu0GNXZdSb66gz91Bv7qHe3EO9uY46cw/15h5P1tvWrVs1ZcoUe7sV5ceT9wYSf5/uoM7cQ725h3pzD/XmHurNddSZe6g391TF+wOSBU6wdS+OjY1Vjx49KvTY2dnZSk5OVnh4uHx9fSv02FUZ9eY66sw91Jt7qDf3UG+uo87cQ725pzLUG8PilD9P3htIleNzVtVQZ+6h3txDvbmHenMP9eY66sw91Jt7KkO9uXp/wATHAAAAAAAAAADUcCQLAAAAAAAAAACo4UgWAAAAAAAAAABQw5EsAAAAAAAAAACghiNZAAAAAAAAAABADUeyAAAAAAAAAACAGo5kAQAAAAAAAAAANRzJAgAAAAAAAAAAajiSBQAAAAAAAAAA1HAkCwAAAAAAAAAAqOFIFgAAAAAAAAAAUMORLAAAAAAAAAAAoIbz8XQAAAAAqBxSM6xasilBq/44qpQzmQoLtGhw+wYa3SlKIQFmT4cHAAAAAOXOdl+0ekeSTmfmKMjio0Ex9WvEfRHJAgAAAGhxfIJmLd+mzJy88wuPn9XG/Sl69pudmj28vcZ2jfZcgAAAAABQzhzeF0mK25tcI+6LSBYAAADUcIvjEzR92ZZi12fm5NnXV9eGcU1+ewgAAAAA90USyQIAAIAaLTXDqlnLtzlVdtbn2zSkXf1iH55X1QfuNf3tIQAAAKCmK8v7oqqMZAEAAEAZ8+RDc1ePvXRzYpGH5MXJtOZp2eZE3dqraZF1VfWBO28PAQAAACir+6KqjmQBAACodjw5Ua8nH5q7c+wVW4+4dIwvfj+siZc3kclkKnRcTz9wdydBw9tDAAAAACRp1fajLpZPIlkAAABQ2ZXFRL3u9gwoi4fm5X3sM9k5ahDir7i9JxW396R2Hj1d7DaO/JpwSpf+a5U6Rofq0ugwtYyopZkefuDuboKmrN4e8mRyCgAAAEDpnc7Mcal8Wqa1nCLxLJIFAACg2iiLh/XuPngui7fUK+LYT3yx3alyJTmVYdW6Xce1btdxl7Zz5oF7RSRo8vIMHUnL1JJfElyK39HbQ2WRnAIAAADgWUEW1x6TB1uq50tBJAsAAEC1UFYP691NNpT2LfWKOnZB/mZvNQixaO+JM05vc0lUiNKzcrT3uPPbFOT0A3eVbZLkkU+3au2uY0pIydCeY2d01prrcuyHTp3V6Uyrgs7dGFSG4ZcAAAAAlN6gmPqK25vsQvmIcozGc0gWAACAaqG0D+tdTTYMbhehTGue9hxP157j6Xpz/R6X4n1j/R6dteaqQYhFQRazZjh57BmfbVPymWydPJOlhOSzSjyVoR1HXBtKqFF4gF64roNiI0N1NjtXl81d7VTdWcxe+mDSZQrxNys1w6rfEk/poSW/6/jpLKePvSvptL74/bC6NglX/RBLhSVJcvIMrdjm2jikFzqYnKGOs1fpkqgQdWoUqvc3HHBqO+Y7AAAAACq30Z2i9Ow3O52+LxrVOaoCoqp4JAsAAEC14OqEVM98u1Mrtx9VvSCL6gb5af+JMy4lG7o9uVrZuYY7oUqSktKy9Oy3u1zeLjs3T099s9Pt40r5XWw7Nw6XJPn6eGn28PYlPrC3mT2svUL88x94hwSY1bdVXTWvG+hSsiD5TLamfvSrJKlhiEVH0zKd2m7m8m3y8TbpZHq2DiSf0YGTGfp5n/Nv/tjU8vNR83q11KJuLaVkZOn/dro2lFJunqFfD57SrwdPOb1NScMvAQAAAPC8kACzW/dF1Q3JAgAAUC24OiFVpjXPpW6mFypNoqAshfibZc3NU0a288PqXDi+pu2NfUdDAUn5b87MHuZ4KCBXu+sWdDjVuUSBJGXl5OnBxb+7dRyb1hFB+ub+3jKZTJLye5M426vC18dLE3s20eaDKfr14Cnl5Ln2+3c0/BIAAACAyqM090XVBckCAABQLbg6IZWvj5dk5L+p7w6L2UtXtm+g5nUD1bxuLf2eeEqvf7fX6e3v6d9CPVvU1pFTmXr6m5065sLb+dHh/nr9xs6KCgtQiL9ZC37Yp3996fzExY7G1xzbNVpD2tXX0s2JWvXHESWnZyq8lkWD2zXQqBImGXa1u+5bE7pq55E0/bI/RWt2JsnqZtLFZJLM3l7KdmGuhvBAX3uiQHLt7aE5BeZNOJOVo6te+l4HTmY4fey0TKvTZQEAAAB4hu2+qM8za5VaoA3frUm43ry5S7UfWpRkAQAAqBZcfcP94SvaaOLlTZR61qrjp7N07/9+dWns/0ujw/TCdR3tP/dsXkfv/rjf6Yfmt/VpZu+6umRTgkvJgqjQALVrGGL/uazG1wwJMGtSr6a6qVukkpOTFR4eLl9f3xL352p33V4t6qhXizqa3Fu6+qXv9cfhtItuZ9MgxKK518aqUe0ARYX5a2HcwTJJkkiuvT0U6OejBiEWl5IFF/bmAAAAAFA5Bfh563RW4Zd9giw+1T5RIEleng4AAACgLIzuFCU/H+eaNrYH5iaTSaEBvmoZEaTRnV3rSnrhg2fbQ3NnXDjG5aCY+h47dlkY2zVaz4y6RJZi6t9i9tIzoy4p0l3X1d4gTWoHqn+bempet5b8fLw1ulNUscd0FENxSZKxXaO18ZGBmnlNjHo0q612DYPVo1ltzbomRhv/ObDY4Zdc4ShRAQAAAKDyOZqaqQtHHT2Y7PyLQlUZPQsAAEC14O/rrYhgPx1MPnvRso4emJfF2/nujnHpyWOXlYLDGK3enqS0TKuCLWYNiokodhgjV3uDFJckKYtJyGy9KiY5Oa9AWfXmAAAAAFC5JDhIDCSkZMgwjELDmlZH9CwAAADVwr++3G5PFBTXfCvuDXep7N7Od+ctdU8euyzZHrh/dHt3fXVvb310e3fd2qtpifMdlLZngLu9GkrL0705qpt///vfGjNmjJo1ayaTyaQmTZqUWH7jxo0aOHCggoKCFBwcrCuuuEK//fabw7KHDx/WzTffrLp168rf319dunTRkiVLyv4kAAAAUC0kppx/Ac3Wez3Tmqfj6c4PHVtV0bMAAABUecs2JeqDuAOS8oe2WTT5Mv28P8WliXqlsns739W31D19bE8pq54B7vRqKAue7s1RnTzyyCMKDw9Xp06ddOrUqRLLxsXFqV+/foqMjNTs2bMlSfPnz1fv3r31008/KTY21l42OTlZvXr10rFjx/Tggw8qKipKixYt0tixY/X2229r4sSJ5XlaAAAAqIISU873LOjaJFw/7D4hKb/HQb0gi6fCqhAkCwAAQJX2x+FUPfLpVvvPL4ztqNioUMVGhbo0Ua+Npx48e/rYnlLVkyQFf2euJqdw3p49e9SsWTNJUvv27ZWenl5s2XvvvVe+vr5av369IiMjJUljx45V27ZtNW3aNK1cudJe9qmnntK+ffv0+eefa+jQoZKkSZMmqUePHnrooYc0ZswY1apVqxzPDAAAAFVNQoGeBT1b1LYnCw4mZ6hz43BPhVUhSBYAAIAqKzXDqjsXblbWuYfMUwe00MAymEjWk2/nV6WeAWWlqidJbL8zd5JTyGdLFFzM7t27FR8fr1tvvdWeKJCkyMhIjRkzRu+8846OHj2q+vXzJ6BetGiRmjdvbk8USJK3t7emTp2qm2++WV9//bXGjh1bticDAACAKs3Ws8DPx0udGoXZlx88efH58ao65iwAAABVUl6eofs//lUHz00+1adVXd0/sJWHo4K7XJ3vADVTfHy8JKlHjx5F1nXv3l2GYWjTpk2SpCNHjujQoUPq3r27w7IF9wcAAADY2OYsiAzzV+PaAfblBx1MfFzd0LMAAABUSS//326t3XVckhQZ6q9513WUt1dxUxsDqA4OHz4sSYV6FdjYlh06dMjlssVJSEhQYmJioWVbt+YPe2a1WpWdne1K+GXCarUqJydHVqu1wo9dVVFn7qHe3EO9uYd6cw/15jrqzD01qd6yc/J0NC1TkhQZYlGYn5fM3iZZcw0dOJnuUvvPk/Xm7jFJFgAAgCpn7a5jenHNn5IkXx8vvX5jZ4UFMuwLUN1lZJzrEu7nV2SdxWIpVMaVssVZsGCBnnjiCYfr0tLSlJyc7GTkZcdqtSo9PV2GYchspueNM6gz91Bv7qHe3EO9uYd6cx115p6aVG8JpzJlGPn/ruNv0qlTKWoY7KsDKVk6cPKMS+0/T9ZbWlqaW9uRLAAAAFVKQnKG7v/fb/YG3Jzh7RUbFeLZoABUiICA/G7gWVlZRdZlZmYWKuNK2eJMmjRJQ4YMKbRs69atmjJlioKDgxUeXvET3FmtVplMJoWFhVX7m/WyQp25h3pzD/XmHurNPdSb66gz99SketuRctL+7+b1QxUeHq7GdWrpQEqWjqdbFRgUIj+zt1P78mS9BQcHu7UdyQIAAFBlZFpzNeWDTUo9m9+lcly3RhrbNdrDUQGoKA0bNpTkePgg2zLbEEOulC1OdHS0oqMdf8eYzWaPTWTt4+Pj0eNXRdSZe6g391Bv7qHe3EO9uY46c09Nqbejp88P39OkbpB8fX3VpE4trf8rP4mQdCZXLer5O70/T9Wbu8kJkgUAAKBSSs2wasmmBK3ekaTTmTkKsvgoIztX24/kd6fsEBWix4fFeDhKABWpa9eukqQNGzZo8uTJhdbFxcXJZDKpc+fOkqQGDRooMjJScXFxRfZjW9alS5dyjhgAAABVSWLK+WEqo8Lye6E2Cj/fGzUhOUMt6tWq8LgqipenAwAAALjQ4vgEXTZ3teZ8tUNxe5P1x+E0xe1N1pbEVElSgK+3Xr2xs/x8nOv+CaB6aNGihbp06aIlS5bYJzCW8iczXrJkiQYMGKD69evbl48bN0579uzRF198YV+Wm5url19+WaGhobrqqqsqNH4AAABUbokpZ+3/jgrL70EQXSBZcDC55Dmvqjp6FgAAgEplcXyCpi/bUmKZjOxc/fjXCYYgAqqJDz74QAcOHJAkHT9+XNnZ2ZozZ44kqXHjxrrpppvsZefNm6f+/furd+/emjp1qiTp5ZdfVl5enp5//vlC+3344Ye1ZMkSjR8/Xg8++KAiIyP10UcfKT4+Xm+99ZaCgoIq6AwBAABQFSScSwb4m71VOzB/6KALexZUZyQLAABApZGaYdWs5ducKjvr820a0q6+QgKq9wRbQE2wYMECfffdd4WWzZw5U5LUt2/fQsmCnj17at26dZoxY4ZmzJghk8mknj17asmSJerQoUOhfdSuXVs//vijHn74Yb3yyitKT09XTEyM/ve//+m6664r/xMDAABAlWLrWRAV5i+TySSJngUAAAAesXRzojJz8pwqm2nN07LNibq1V9NyjgpAeVu3bp1L5Xv06KE1a9Y4VTYyMlIffPCBG1EBAACgJsm05urY6SxJ54cgkqRafj4KD/RV8pnsap8sYM4CAABQaazaftTF8knlFAkAAAAAoCY5dOr8fAUFexMU/DkhOUOGYVRoXBWJZAEAAKg0TmfmuFQ+LdNaTpEAAAAAAGoSR5Mb29jmLTiTnavkM9kVGldFIlkAAAAqhRPpWTp+rsuns4ItzFcAAAAAACi9xJTzQwxFhRXuWdAo/HzyoDoPRUSyAAAAeFR2Tp7eXL9X/Z9dZx8f0lmDYiLKKSoAAAAAQE2SkFxgGKIiyYKaMckxExwDAIBykZph1ZJNCVq9I0mnM3MUZPHRoJj6Gt0pSiEBZhmGoTU7junJr3do34kzLu/fYvbSqM5R5RA5AAAAAKCmKdyzoPAwRAXnMEggWQAAAOC8xfEJmrV8mzJz8gotj9ubrGe/2am7+7fQz/uT9f1fJ+zrfH28dFvvpqofbNHM5X9c9Bizh7VXiD/DEAEAAAAASs82Z0Ggr7dCAwrfa9KzAAAAwA2L4xM0fdmWYtdn5uTp+VV/Flp2Rbv6euSqtmpUO78B5ufj7TDZIOX3KJg9rL3Gdo0u28ABAAAAADWWrWdBdHiATCZToXUNQvzl42VSTp5BsgAAAMAZqRlWzVq+zenyLevV0hPD26ln8zqFlo/tGq0h7epr6eZErd6epLRMq4ItZg2KidCoc8MYAQAAAABQFs5m5+pEerakokMQSZK3l0lRYf7afzKj0NwG1Q3JAgAAUGaWbk502BugONd1jS6SKLAJCTBrUq+mmtSraVmFBwAAAABAEYdOFZyvIMBhmejwAO0/maHDqWeVnZMnXx+vigqvwlS/MwIAAB6zavtRl8qv2XGsnCIBAAAAAMA5BXsLOOpZIJ2ft8AwpMOnqmfvApIFAACgzJzOzHGpfFqmtZwiAQAAAADAObb5CqTiexbUhEmOSRYAAIAyE2RxbYTDYAtzDwAAAAAAPCsx5eI9C6JJFgAAADjnRHqWTp6bEMpZg2IiyikaAAAAAACck1CgZ0HBpEBBBXsWJFTTZAETHAMAgFJbu+uY/r5ki06kZzm9jcXspVGdo8oxKgAAAAAALs7WsyDI4qMQf8c94GtCzwKSBQAAwG2Z1lw9tWKn3v1pv31ZeKCvks9cvIfB7GHti22EAQAAAABQUWzJguLmK5CkEH+zQvzNSj1rJVkAAABqntQMq5ZsStDqHUk6nZmjIIuPBsXU1+hOUTp06qzu//hX/ZmUbi8/unOUHh/WTl9vOaJZy7cpMyevyD4tZi/NHtZeY7tGV+SpAAAAAABQxJmsHPsLb9HFzFdg0yg8QFsPpergyQwZhiGTyVQRIVYYkgUAAMChxfEJDh/4x+1N1r+/3iHDkHINQ5IUbPHR3JGxuuaShpKksV2jNaRdfS3dnKjV25OUlmlVsMWsQTERGtUpSiEB9CgAAAAAAHhe4cmNi+9ZIJ1PFpzOylHqWatCA3zLO7wKRbIAAAAUsTg+QdOXbSl2fU6eYf9392bh+s/YjmoYWvgNjJAAsyb1aqpJvZqWW5wAAAAAAJRGYoHJjaMu0rPgwnkLqluywMvTAQAAgMolNcOqWcu3OVXWx8ukV2/oXCRRAAAAAABAVZBQYP6BgskARxpV80mOSRYAAIBClm5OdDjXgCM5eYY++/VQOUcEAAAAAED5KDwM0cXnLLAhWQAAAKq9VduPulg+qZwiAQAAAACgfLmbLEggWQAAAKq705k5LpVPy7SWUyQAAAAAAJSvxFP5D/1DA8wKsphLLNsg1CJvL5MkKSH5bIllqyKSBQAAoJDcApMXOyP4Io0pAAAAAAAqK9tD/4v1KpAks7eXGoZaJDEMEQAAqMZSzmTrgY9/086jp13ablBMRDlFBAAAAABA+UnLtCr1bH5v+ajQkic3trENRXTo1Fnl5Do3319VQbIAAADom21HNOiF9frUxcmKLWYvjeocVU5RAQAAAABQfg4VmK8gOvziPQuk88mC3DxDR1IzyyUuT/HxdAAAAKD8pGZYtWRTglbvSNLpzBwFWXw0KKa+RneKUkiAWSfSs/TY8j/01dYj9m0igv10ZfsGeven/Rfd/+xh7RXizzBEAAAAAICqp+AkxVFhzvUsKFjuYHKGosOd264qIFkAAEA1tTg+QbOWb1NmTuFukXF7k/XsNzt1badIfbPtqFIyzk9QfH3XaP3zqrYK8TcrpkGww+2l/B4Fs4e119iu0eV+HgAAAAAAlIfEAj0LnJmzQDrfs0DKTxZcXuZReQ7JAgAAqqHF8QmavmxLseszc/L00c8J9p8jQ/311KhY9W5Z175sbNdoDWlXX0s3J2r19iSlZVoVbDFrUEyERp3rmQAAAAAAQFWVWGgYItfmLJCq3yTHJAsAAKhmUjOsmrV8m9Plr+sapVnXtFOgX9FmQUiAWZN6NdWkXk3LMkQAAAAAADwuIeX8w/7IUPd6FlQnTHAMAEA1s3RzosOhg4rTOiLYYaIAAAAAAIDqzNazIDzQ1+n74tAAs4LOlU0gWQAAACqzVduPulg+qZwiAQAAAACg8ko817PA2fkKJMlkMtmHLKJngYckJyfroYceUosWLWSxWFS3bl31799f33//faFyGzdu1MCBAxUUFKTg4GBdccUV+u233zwTNAAAHnA6M8el8mmZ1osXAgAAAACgGknNsNrvn6PDnJuvwMY2FNGpDKtSz1afe+oqMebAgQMH1K9fP6Wnp2vSpElq1aqVUlNTtWXLFh06dMheLi4uTv369VNkZKRmz54tSZo/f7569+6tn376SbGxsZ46BQAAKkyQxbXLe7CFiYoBAAAAADVLwfkKXOlZIEmNap9PLiQkZygkMqTM4vKkKpEsuPHGG5WTk6MtW7aoQYMGxZa799575evrq/Xr1ysyMlKSNHbsWLVt21bTpk3TypUrKypkAAA8ZlBMfcXtTXahfEQ5RgMAAAAAQOVjm69Acj1ZEF1gkuPElAy1rybJgko/DNH69ev1ww8/aPr06WrQoIGsVqsyMoqOBbV7927Fx8drzJgx9kSBJEVGRmrMmDFavXq1jh51bQxnAACqotGdomTxce4SbzF7aVTnqHKOCAAAAACAyiWxYM+CcPeGIZKq17wFlT5Z8PXXX0uSGjVqpKFDh8rf31+BgYFq1aqVFi5caC8XHx8vSerRo0eRfXTv3l2GYWjTpk0VEzQAAB4UEmDW7OHtnSo7e1h7hfgzDBEAAAAAoGYp2LMg2tVhiKppsqDSD0O0a9cuSdJtt92mli1b6r333lN2draef/553XTTTbJarZo4caIOHz4sSYV6FdjYlhWc36A4CQkJSkxMLLRs69atkiSr1ars7OxSnY+rrFarcnJyZLVWn4kyKgL15jrqzD3Um3uoN/e4Um+D2tRWgK+3MrJzHa63mL006+o2GtEhosKvbRWJz5p7qDf3eLLe+F0BAAAArinYsyAy1LWeBZGh/jKZJMOQDiafvfgGVUSlTxacPn1akhQUFKS1a9fK19dXkjRixAg1a9ZMjzzyiCZMmGAfmsjPz6/IPiwWiyQ5HL7oQgsWLNATTzzhcF1aWpqSk50fA7osWK1WpaenyzAMmc28+eks6s111Jl7qDf3UG/ucaXeFv5y1J4o6NAwUD5eXjqdlaMgPx/1aR6iK9vWVrDFp8KvaxWNz5p7qDf3eLLe0tLSKvR4AAAAQFWXcO4hf51afvL39XZpW18fLzUM8dehU2eVQM+CiuPvn98FZNy4cfZEgSSFhYVp2LBhev/997Vr1y4FBORnf7KysorsIzMzU5LsZUoyadIkDRkypNCyrVu3asqUKQoODlZ4eLjb5+IOq9Uqk8mksLAwbtZdQL25jjpzD/XmHurNPc7WW0Z2rhb9ukVSfgPm5fGdVD/YUlFhVip81txDvbnHk/UWHBxcoccDAAAAqjLDMOw9C1yd3NgmKiw/WZCYkqHcPEPeXqayDNEjKn2yICoqf9LF+vXrF1nXoEEDSVJKSooaNmwoyfFQQ7ZljoYoulB0dLSio6MdrjObzYUSFhXFx8fHY8euyqg311Fn7qHe3EO9uceZensvbq+Sz+QPSTKua7Qa1anZDxH5rLmHenOPp+qNpA4AAADgvFMZVp051xvf3WRBo/AAbdyXLGuuoaNpmYoMdW8/lUmln+C4W7duklRkHoGCy+rVq6euXbtKkjZs2FCkXFxcnEwmkzp37lyOkQIA4Hlns3P1xvo9kiRfby/d0a+5hyMCAAAAAKBySSgwX0F0uGvzFdgUmuT4ZPUYiqjSJwtGjBihoKAgLVy4UOnp6fblR44c0WeffaZWrVqpRYsWatGihbp06aIlS5bYJzuWpMOHD2vJkiUaMGCAw94JAABUJx9uPKAT6fkTFl/XNVoNQqr+mw0AAAAAAJSlxJTzkxK73bOg9vlkQXWZt6DSD0MUFham5557TlOmTFH37t116623Kjs7W6+99pqys7P18ssv28vOmzdP/fv3V+/evTV16lRJ0ssvv6y8vDw9//zznjoFAAAqxNnsXL3+3V5JktnbpDvpVQAAAAAAQBGJBXoWRIW517OgYI+EgyQLKs7tt9+uOnXq6JlnntHMmTPl5eWlHj16aNGiRbr88svt5Xr27Kl169ZpxowZmjFjhkwmk3r27KklS5aoQ4cOHjwDAADK36KfD+pEepYkaWyXaDWsBuMlAgAAAABQ1hKSz/csiC7FnAU2JAsq2MiRIzVy5MiLluvRo4fWrFlTAREBAFB5ZFpz9fp3+XMVmL1Nuqt/Cw9HBAAAAABA5VSwZ4G7L9rVDvRVgK+3MrJzq02yoNLPWQAAAC7uo58P6vjp/F4FoztHK5JeBQAAAAAAOGSbs6BekJ8sZm+39mEymey9CwomH6oykgUAAFRxBXsV+HiZdBdzFQAAAAAA4JBhGPZkQcF5B9xh2/5EerbOZOWUOjZPI1kAAEAV93F8gpLSbL0Kokrd2AEAAAAAoLo6eSZbZ625kqQoN+crsCk4b0FCNehdQLIAAIAqLCsnV6+tO9+r4G7mKgAAAAAAoFi2XgVS2SYLDp4kWQAAADxocXyCjqZlSpJGdoqkVwEAAAAAACVIKDAZcXRY6e6hCyULqsEkxyQLAACoorJycvXquV4F3l4m3dO/pYcjAgAAAACgcivcs6Bs5iyQCichqiqSBQAAVFFLfknUkdRzvQoujVSj2vQqAAAAAACgJIkF5hYo7TBEBbenZwEAAPCI7Jw8vbp2t6RzvQoGMFcBAAAAAAAXk3CuZ4HJJDUMLV2ywGL2VkSwnySSBQAAwEOWbErQ4XO9CkZ0jFTj2oEejggAAAAAgMrP1rOgfrBFvj6lfzxum7cgIeWs8vKMUu/Pk0gWAABQxeT3Ksifq8DLJHoVAAAAAADgBMMwdOhcz4LSDkFkY5u3IDsnT8dOZ5XJPj2FZAEAAFXMp78d1qFT+Y2bER0j1bQOvQoAAAAAALiY46ezlJWTJ0mKLuXkxjaNCkxyXNWHIvLxdAAAAKBkqRlWLdmUoFV/HFXKmUwdSMl/U8EkehUAAAAAAOAs23wFUtn1LLgwWdCtaXiZ7NcTSBYAAFCJLY5P0Kzl25R57s2Hgkwm6Zf9KWpWt5YHIgMAAAAAoGqxzVcgSVH0LCiCZAEAAJXU4vgETV+2pdj1eYbs68d2ja6osAAAAAAAqJISC/YsCC/7ngWJVTxZwJwFAABUQqkZVs1avs2psrM+36bUDGs5RwQAAAAAQNVWsGdBWc1ZUDfIT34++Y/Zq3rPApIFAABUQks3JzocesiRTGuelm1OLOeIAAAAAACo2mw9C7xMUv0QS5ns02Qy2XsXkCwAAABlbtX2oy6WTyqnSAAAAAAAqB4Szj3MbxDiL7N32T0atyULjp3O0tns3DLbb0UjWQAAQCWUeta1YYXSMhmGCAAAAACA4uTlGTp0Kr9nQVRY2cxXYBNdcN6ClKrbu4AJjgEAKGepGVYt2ZSg1TuSdDozR0EWHw2Kqa/RnaIUEmAuVHb74TQt+vmA/jya7tIxgi3mixcCAAAAAKCGOnY6S9ZcQ5IUVUbzFdgUnOT4YHKGWkYElen+KwrJAgAAytHi+ATNWr6tyPwDcXuT9ew3OzV7eHtdfUkDfbnlsBb9nKDfE065dZxBMRFlEC0AAAAAANVTQsHJjcPLtmfBhcmCqopkAQAA5WRxfIKmL9tS7PrMnDxNX7ZFM5dvU9YFyYTwQLNSz+YoN8+46HEsZi+N6hxV6ngBAAAAAKiuCg4PVNY9C6JJFgAAgOKkZlg1a/k2p8oWTBT0alFH47o10qCYCH3266ESkw02s4e1V4g/wxABAAAAAFCcxOSz9n+X/ZwF5/eXUIWTBUxwDABAOVi6ObHI0EMlubxFbX33935aOPkyXX1JA/n6eGls12g9M+oSWXwcX64tZi89M+oSje0aXVZhA0Cll56errlz5yo2NlZBQUGqU6eOevbsqXfffVeGUbg31saNGzVw4EAFBQUpODhYV1xxhX777TfPBA4AAACPKjwMUdn2LAjw9VGdWn6S6FkAAAAusGr7UZfK5+VJjWsHFlk+tmu0hrSrr6WbE7XqjyNKTs9UeC2LBrdroFEOJkgGgOosLy9PV155pX766SdNmDBBU6dOVUZGhj766CNNnDhRO3bs0NNPPy1JiouLU79+/RQZGanZs2dLkubPn6/evXvrp59+UmxsrCdPBQAAABUsMSW/Z4GPl0kRQX5lvv9G4f46kZ6lg8kZRV5iqSpIFgAAUA5OZ+a4VD4t01rsupAAsyb1aqqbukUqOTlZ4eHh8vX1LW2IAFDlbNy4UT/88IPuv/9+vfDCC/bld911l9q0aaM33njDniy499575evrq/Xr1ysyMlKSNHbsWLVt21bTpk3TypUrPXIOAAAA8AxbsqBBqEU+3mU/4E6j8ABtPnhKmdY8HU/PUqhf1RvUp+pFDABAFRBkcS0fH2yhhwAAXExaWpokqWHDhoWW+/r6qk6dOgoMzO+htXv3bsXHx2vMmDH2RIEkRUZGasyYMVq9erWOHnWtBxgAAACqrtw8Q4dP5ScLost4cmObRgWGNkooMD9CVUKyAACAcjAopr6L5SPKKRIAqD66deum0NBQPfPMM1qyZIkOHjyonTt36p///Kc2bdqkxx9/XJIUHx8vSerRo0eRfXTv3l2GYWjTpk0VGToAAAA86GhapnLy8ocGKuvJjW2iCyULqua8BQxDBABAORjdKUr//nqHvTFSEovZS6M6R1VAVABQtYWFhenzzz/X5MmTNXbsWPvyoKAgLVu2TCNGjJAkHT58WJIK9SqwsS07dOjQRY+XkJCgxMTEQsu2bt0qSbJarcrOznbrPErDarUqJydHVmvxw9ehMOrMPdSbe6g391Bv7qHeXEeduac61Nv+Y2n2fzcI9iuXdlzD4PPDBe87flpWa6jH6s3dY5IsAACgHOw5ka48Jyc0mj2svUL8GYYIAJxRq1YttW/fXsOGDVPPnj2VnJysV155RePHj9fy5cs1aNAgZWTkv8nl51d04jqLxSJJ9jIlWbBggZ544gmH69LS0pScnFyKM3GP1WpVenq6DMOQ2cy1wxnUmXuoN/dQb+6h3txDvbmOOnNPdai3XYkn7f8ONeeWSzsuyHQ+AbH76CklJwd6rN5sw3e6imQBAABlLDXDqqmLfpWtU4GPl8lhDwOL2Uuzh7XX2K7RFRwhAFRNW7duVc+ePfXCCy/ojjvusC8fN26c2rdvr9tuu0179uxRQEB+F/CsrKwi+8jMzJQke5mSTJo0SUOGDCkSw5QpUxQcHKzw8PDSnI5brFarTCaTwsLCquzNekWjztxDvbmHenMP9eYe6s111Jl7qkO9pVhT7P9uHVVH4eFhZX6M0FBDZu9tsuYaOnYmV+Hh4R6rt+DgYLe2I1kAAEAZMgxDf1/6uw6dmzhpYNsIPTfmEi3bfEirtycpLdOqYItZg2IiNKpTlEICqmZDCwA84YUXXlBmZqbGjBlTaHlAQICuvvpqzZ8/X/v377dPgOxoqCHbMkdDFF0oOjpa0dGOE7pms1m+vr4O15U3Hx8fjx6/KqLO3EO9uYd6cw/15h7qzXXUmXuqer0dSTv/1n/TesHldh7R4QHae/yMEk9lymw2e6ze3E1OkCwAAKAMvffTfq3cniRJahhi0XNjLlFogK8m9WqqSb2aejg6AKjabA/6c3Nzi6zLycmx/79r166SpA0bNmjy5MmFysXFxclkMqlz587lHC0AAAAqi8SU/CEozd4mRQRZyu04jc4lC46mZSrLWrTNWtl5eToAAACqi62JqZr79U5JkreXSS+Pv1ShAVXzrQsAqIxiYmIkSe+++26h5adOndLy5csVFhamFi1aqEWLFurSpYuWLFlin+xYyp/4eMmSJRowYIDq169fkaEDAADAgxKS83v/R4b6y8vLVG7HaRSeP9SlYUiHUjPL7TjlhZ4FAACUgbRMq+5etFnZuXmSpIcGt1bnxhU/ljUAVGf333+/3n//fT388MPaunWrLr/8ciUnJ+vNN9/UkSNH9Morr8jb21uSNG/ePPXv31+9e/fW1KlTJUkvv/yy8vLy9Pzzz3vyNAAAAFCBcnLzdDQt/8F9VNjF560qDVuyQMpPUITWqVrv6pMsAACglAzD0D8/2aqDyfndGvu2qqspfZp5OCoAqH4aN26sn3/+WbNnz9aaNWv0v//9T/7+/urYsaOef/55jRw50l62Z8+eWrdunWbMmKEZM2bIZDKpZ8+eWrJkiTp06ODBswAAAEBFOpKaqdw8Q5IUHe5frscqmIxISDmr2DqB5Xq8skayAACAUlr080F9teWIJCki2E//GduhXLs1AkBN1rx5c7333ntOle3Ro4fWrFlTzhEBAACgMks4N1+BVME9C1IyJFWtZEHV6gcBAEAls+NImp74YrskycskvXT9papdy8/DUQEAAAAAAElKTDlr/3dUWPn2LCjYcyGhwHGrCpIFAAC46UxWTv48BTn58xQ8MLCVLmtW28NRAQAAAAAAm4pMFgRZzAoP9C1y3KqCZAEAAG4wDEMzPtumvcfPSJIub1Fbd/Vv4eGoAAAAAABAQYnJ54chii7nYYgkKfrcUEQJKWdlGEa5H68sMWcBAABOSM2wasmmBK3ekaTTmTk6a821Jwrq1PLTC9d1lDfzFAAAAAAAUKnY3vD39fFSnQoYNrhReIB+TzilM1m5Ss3MVVUaf4BkAQAAF7E4PkGzlm9T5rnhhi507aUNVS/IUsFRAQAAAACAi0k8N8FxVKi/vCrgJb9GBeYtOJSapWaR5X7IMsMwRAAAlGBxfIKmL9tSbKJAkt78fp8WxydUYFQAAAAAAOBisnPydCQtU5IUFV7+QxBJ+T0LbA6nZlXIMcsKyQIAAIqRmmHVrOXbnCo76/NtSs2wlnNEAAAAAADAWUdSz8o2bUB5T25sE3ZugmNJmrc+UTe9/YsW/LCvSjwzIFkAAEAxlm5OLLFHQUGZ1jwt25xYzhEBAAAAAABn2eYrkComWbA4PkFTF/1q//nEGas27k/Rv77crsvmrq70oxIwZwEAAMVYtf2oi+WTdGuvpuUUDQAAAAAANUNqhlVLNiVo9Y4knc7MUZDFR4Ni6mt0pyiFBJid3k9Ccob939Fh5TsMkW0Y4+Jk5uTZ14/tGl2usbiLZAEAAMU4nZnjUvm0zMrfpRAAAAAAgMpscXyCZi3fVqSnf9zeZD37zU7NHt7e6YftFdWzwNVhjIe0q+9S0qOiMAwRAADFCPD1dql8sKXyXegBAAAAAKgqbG/nFzcksO3tfGeH80lMOd+zIKocexZUl2GMSRYAAODA4VNndeBkxsULFjAoJqKcogEAAAAAoHpz9e18ZyYMTjjXs8Bi9lKdWr4XKe0+d4YxroxIFgAAcIE/Dqfq2ld/1LHTWU5vYzF7aVTnqHKMCgAAAACA6qss385PzbDqre/3akviKUmSSSa9/eN+pxIM7qguwxiTLAAAoIC1u45p7OsblJSWnyiIDLU4td3sYe0V4s8wRAAAAAAAuKOs3s5fHJ+gy+au1pyvdsiaa0iSzlpz9a8vt+uyuaudHsLIFUEW16YGrqzDGJMsAADgnA83HtDk937RmexcSdKANvW08oG+embUJbL4OL5kWsxeembUJU5PrgQAAAAAAIpy9e383xNP6cXVfyp+f7Ksufk9Esp6zgNnDYqp72L5yjmMsWspDwAAqqG8PENPf7tTb3y3177spu6N9djQGPl4e2ls12gNaVdfSzcnavX2JKVlWhVsMWtQTIRGdYpSSEDlfCMAAAAAAICqwtW38zOyc/Xi6r/04uq/FOjrrU6Nw7Rhz0mntp31+TYNaVe/zO7nR3eK0rPf7HRqGKXKPIwxyQIAQI2QmmHVkk0JWr0jSaczcxRk8dGgmPq65pIGmv3Fdn219YgkyWSSHr2qrSb1aiqTyWTfPiTArEm9mmpSr6aeOgUAAAAAAKqtQTH1Fbc32enyJknGuX+fyc7V93+dcHpb25wHt5bRPX5IgFmzh7fX9GVbLlq2Mg9jTLIAAFDtLY5P0Kzl24pk+OP2JmvOV9tlnGtd+Pl46cXrOurK2AYeiBIAAAAAgJrL1bfzVz3YVzsOp+mnPSf1w+4T2n0s3aXjrdqeVGbJAkn24YkdPX+Q8mOePax9pR7GmGQBAKBas41XWBxboiDQ11sfTL5MnRqFVVBkAAAAAADAxtW386PDAhQdFqDB7fLnCxj8wnr9mXTa6eOlZVrdjrU4BYcxXvXHESWnZyq8lkWD2zWoEsMYkywAAFRbqRlWzVq+zamyOXmGmtepVc4RAQAAAACA4tjeuv/nJ1uVa3u7r4CS3s4PD3TtQXywpXwe3NuGMb6pW6SSk5MVHh4uX1/fcjlWWfPydAAAAJSXpZsTneq+KElZOfnjFQIAAAAAAM8Z2zVa9UP8JEk+Xia1axisHs1qa9Y1Mdr4z4HFDuMzKKa+S8cZFBNR6lirG3oWAACqrVXbj7pYvmzHKwQAAAAAAK5JSM7QoVOZkqSBbSP0+k2dndrO1TkPRnWOKlWc1RE9CwAA1dbpzByXypfHeIUAAAAAAMB5G/aetP+7Z4vaTm9nm/PAGbOHtVeIf+WeP8ATSBYAAKqlDXtO6mByhkvblNd4hQAAAAAAwDkb9hRIFjR3Plkg5Q9h9MyoS2TxcfzY22L20jOjLil2KKOajmGIAABVQmqGVUs2JWj1jiSdzsxRkMVHg2Lqa3SnKIUEnH/Iv2HPSb24+k9t3Jfs8jEYrxAAAAAAAM8xDEM/7TkhSaob5KfmdWu5vI+xXaM1pF19Ld2cqNXbk5SWaVWwxaxBMREadcEzBBRGsgAAUOktjk/QrOXbiow7GLc3Wc9+s1NPDG+n6PAAvbj6L/18QZLAZJIM4+LHYLxCAAAAAAA8a9+JM0pKy5Ik9WhWWyaTya39hASYNalXU01iXkKXkCwAAFRqi+MTNH3ZlmLXZ+bk6R/LthZZ3jE6VPcPbKmktEyH6y/EeIUAAAAAAHjWTwWGIOrh4hBEKD2SBQCASis1w6pZy7e5tM2ljUJ1/8BW6tOyjv0NBJNMDnsmSPk9CmYPa894hQAAAAAAeFihyY1JFlQ4kgUAgEpr6eZEhw/4i3PDZY00Z0T7It0UGa8QAAAAAIDKLS/PUNy5ngWRof5qFB7g4YhqHpIFAIBKa9X2oy6V33v8TLHjGTJeIQAAAAAAldefx07r5JlsSVL3UsxXAPeRLAAAVJjUDKuWbErQqj+OKuVMpsICLRrcvoFGO3i7PzsnT4dSzrq0/7RMa1mGCwAAAAAAKsiGPQxB5GkkCwAAFWJxfELReQOOn9XG/Sl69pudmj08f96APcfT9XF8gpZtSrS/UeCsYAvDCQEAAAAAUBUxubHnkSwAAJS7xfEJmr5sS7HrM3PyNH3ZFr22bo/2nTzj9nEGxUS4vS0AAAAAAPCM3DxDcecmN25SO0ANQ/09HFHN5OXpAAAA1VtqhlWzlm9zqmzBREGQxUfXdY2Sr7dzlyqL2UujOke5FSMAAAAAAPCc7YfTdDozR5LUo3kdD0dTc1WJZIHJZHL4X61atYqU3bVrl0aMGKGwsDAFBgaqd+/e+r//+z8PRA0AkKSlmxMLDz10EdHh/np+TAf9/MhAPT2qg+aMaO/UdrOHtVeIP8MQAQAAAABQ1fy054T938xX4DlVZhii3r176/bbby+0zGwu/FBoz5496tmzp3x8fDR9+nSFhITozTff1JAhQ7RixQoNHDiwIkMGAEhatf2oS+WjQgMK9RAY2zVakorOd3COxeyl2cPa28sBAAAAAICqpeB8Bd2bkSzwlCqTLGjWrJluvPHGEsv885//1KlTp7Rp0yZ17NhRknTzzTerXbt2uvvuu7Vz506ZTKYKiBYAYGPrRuistExrkWVju0ZrSLv6Wro5Uau3Jykt06pgi1mDYiI0qlOUQgLoUQAAAAAAQFVkzc1T/P5kSVKriFqqG+Tn4YhqriqTLJCk7OxsZWdnOxx+6MyZM/r888/Vr18/e6JAkmrVqqXJkydr1qxZio+PV7du3SowYgBAkMW1S02wxfGD/5AAsyb1aqpJvZqWRVgAAAAAAKAS2JJ4ShnZuZKknsxX4FFVYs4CSVq6dKkCAgIUFBSkevXqaerUqUpNTbWv37Jli7KystSjR48i23bv3l2SFB8fX2HxAgDyNakd6FL5QTER5RQJAAAAAACobH7azRBElUWV6FnQrVs3jRkzRi1atFBaWpq+/vprzZ8/X999951++ukn1apVS4cPH5YkRUZGFtnetuzQoUMXPVZCQoISExMLLdu6daskyWq1Kjs7u7Sn4xKr1aqcnBxZrUWH5UDxqDfXUWfuod6KZxiGPtiYoI/jE5zexmL20rDYehX+XVtV8HlzHXXmHurNPZ6sN35XAAAAqKo27M1PFphMUvdm4R6OpmarEsmCjRs3Fvr55ptv1iWXXKJHH31U8+bN06OPPqqMjAxJkp9f0TGtLBaLJNnLlGTBggV64oknHK5LS0tTcnKyq+GXitVqVXp6ugzDKDKhM4pHvbmOOnMP9eZYTp6hF9YlaNmW4y5tN61ftHLOnlby2XIKrIrj8+Y66sw91Jt7PFlvaWlpFXo8AAAAoCxkWnP1y4EUSVK7hsEKDfD1cEQ1W5VIFjjy97//XU888YS++uorPfroowoICJAkZWVlFSmbmZkpSfYyJZk0aZKGDBlSaNnWrVs1ZcoUBQcHKzy8YrNbVqtVJpNJYWFh3Ky7gHpzHXXmHuqtqPTMHP198RZ9f64boZdJeuTK1grw9dYTX+5UVk5ekW0sZi/NurqNRncq2jsM5/F5cx115h7qzT2erLfg4OAKPR4AAABQFjYfTFH2uecEPRiCyOOqbLLAbDarYcOGOnHihCSpYcOGkhwPNWRb5miIogtFR0crOjq62GP6+lZ8dsvHx8djx67KqDfXUWfuod7OS0zJ0KR3f9GupNOSpEBfb80f30n929STJF19SZSWbk7Uqj+OKDk9U+G1LBrcroFGdYpSSAAPJJ3B58111Jl7qDf3eKreSOoAAACgKorbc36+AiY39rwqmyzIzMxUYmKiffLi2NhY+fn5acOGDUXKxsXFSZK6dOlSoTECQHWTmmHVkk0JWr0jSaczcxRk8dGgmPoa3SlKe0+k67b3f9GJ9Pz5BhqGWLTglq5q2+D8264hAWZN6tVUN3WLVHJyssLDw3kQCQAAAABADfXTuWSBt5dJXZsyX4GnVfpkwcmTJ1W7dtEuKDNnzlROTo6GDh0qSapVq5aGDh2qTz75RL///rs6dOggSUpPT9dbb72lli1bqlu3bhUaOwBUJ4vjEzRr+TZlXjCMUNzeZD21YocMI3+uAknqEBWiN2/uonrBFk+ECgAAAAAAKrmM7Bz9lnBKknRJVIhq+VX6R9XVXqX/DcyZM0dxcXHq37+/GjVqpPT0dH399ddau3atLrvsMk2dOtVe9t///rfWrFmjwYMH64EHHlBwcLDefPNNHTp0SF999ZVMJpMHzwQAqq7F8QmavmxLseutuYb931e2r6//jO0of1/viggNAAAAAABUQfH7U+wvHfZsznwFlUGlTxb069dP27dv13vvvaeTJ0/K29tbLVu21JNPPqkHH3xQFsv5t1ZbtGihH3/8UQ8//LCeeuopZWdnq1OnTvrmm280cOBAD54FAFRdqRlWzVq+zamyPl4mzb02lkQBAAAAAAAo0U97Ttj/3aMZ8xVUBpU+WTB8+HANHz7c6fJt27bV8uXLyzEiAKhZlm5OLDL0UHFy8gx9+ush3dqraTlHBQAAAAAAqjLb5Ma+3l7q3DjMw9FAkrw8HQAAoHJbtf2oi+WTyikSAAAAAABQHaSetWrroVRJ0qWNQhmhoJIgWQAAKNHpzByXyqdlWsspEgAAAAAAUB38vC9Z56YrUA/mK6g0SBYAAEoUZHFtxLpgi7mcIgEAAAAAANXBhnNDEElSz+bMV1BZkCwAAJSof+t6LpUfFBNRTpEAAAAAAIDqwDa5scXspY7RoZ4NBnaVfoJjAIDnHDudqS+3Hna6vMXspVGdo8oxIgCAp/z555/6448/dOzYMZlMJtWtW1ft27dXy5YtPR0aAAAAqpCT6VnaefS0JKlrk3D5+vA+e2VBsgAA4NC2Q6m67f1fdCQ10+ltZg9rrxB/hiECgOpix44dev3117V06VIdPZo/4b1h5A8uazKZJEkREREaO3aspkyZorZt23osVgAAAFQNG/cl2//NfAWVC8kCAEARX205omlLflOmNU+S1KJeLY3sFKmXVv+lzJy8IuUtZi/NHtZeY7tGV3SoAIBysGfPHv3jH//Qp59+Kn9/f/Xu3VtTpkxR8+bNVbt2bRmGoeTkZO3evVtxcXF666239PLLL2vkyJF6+umn1axZM0+fAgAAACop2xBEEvMVVDYkCwAAdnl5huat+Uvz1vxlXzagTT3Nu76jgixm3dCtsZZuTtTq7UlKy7Qq2GLWoJgIjeoUpZAAehQAQHURExOj2NhYvfvuuxo5cqQCAwNLLH/mzBktXbpU8+bNU0xMjDIzne+VBgAAgJrlp3OTG9fy81H7hsEejgYFkSwAgBomNcOqJZsStHpHkk5n5ijI4qNBMfV1VWx9zf5iu1ZsO2ovO6VPM02/oo28vfKHmggJMGtSr6aa1Kupp8IHAFSAJUuWaNiwYU6XDwwM1IQJEzRhwgQtX768HCMDAABAVZaUlqm9x89Iki5rGi4fb+YrqExIFgBADbI4PkGzlm8rMpRQ3N5kzflyu4xzP/t6e+nfI2OZrBgAaihXEgUXGj58eBlGAgAAgOpkw7leBRLzFVRGJAsAoIZYHJ+g6cu2FLveliio5eej9yd1U6dGYRUTGACgSsvKypKfn5+nwwAAAEAVUHC+ApIFlQ/9PACgBkjNsGrW8m1OlbXm5ql5nVrlHBEAoCpZsWKFHn/88ULLXn31VQUHByswMFDjx4+X1Wr1THAAAACoMjbsze9ZEBpgVtv6zFdQ2ZAsAIAaYOnmxCJDDxUnKydPyzYnlnNEAICq5Nlnn9XOnTvtP+/YsUP33XefGjZsqEGDBunjjz/WK6+84sEIAQAAUNklJGcoIfmsJKl709ryOjc/IioPkgUAUAOs2n704oUKlU8qp0gAAFXRjh071KVLF/vPH3/8sfz9/fXzzz9rxYoVuu666/Tee+95MEIAAABUdrZeBZLUswVDEFVGJAsAoAY4nZnjUvm0TIaSAACcl5KSojp16th/Xr16tQYMGKDg4Pyu4/369dO+ffs8FR4AAACqgIKTG/dkvoJKiWQBANQAQRbX5rMPtpjLKRIAQFVUp04dHThwQJJ0+vRpxcfHq3fv3vb1VqtVubm5ngoPAAAAlZxhGPbJjesG+al5XeZKrIxce3oEAKiSBsXUV9zeZBfKR5RjNACAqqZHjx56/fXX1a5dO61YsUI5OTm68sor7et3796tBg0aeDBCAAAAVGb7TpxRUlqWJKlHs9oymZivoDKiZwEA1ACjO0XJ4uPcV77F7KVRnaPKOSIAQFXyxBNPKC8vT2PHjtU777yjm2++WTExMZLy3xL79NNPdfnll3s4SgAAAFRWPzEEUZVAzwIAqAFCAsya+reWevbbXRctO3tYe4X4MwwRAOC8mJgY7dixQz/++KNCQkLUp08f+7pTp07pgQceUL9+/TwXIAAAACq1gvMV9CBZUGnRswAAaohdR0+XuN5i9tIzoy7R2K7RFRQRAKAqCQ8P19ChQwslCiQpLCxM9913nzp06FBhsSQnJ+uhhx5SixYtZLFYVLduXfXv31/ff/99oXIbN27UwIEDFRQUpODgYF1xxRX67bffKixOAAAASHl5huL25icLIkP91Sg8wMMRoTj0LACAGmD74TR9/vthSVJkqEUTejbR2p3HlZZpVbDFrEExERrVKUohAfQoAABUbgcOHFC/fv2Unp6uSZMmqVWrVkpNTdWWLVt06NAhe7m4uDj169dPkZGRmj17tiRp/vz56t27t3766SfFxsZ66hQAAABqlD+PndbJM9mS8nsVMF9B5UWyAABqgP+sOj/80LTBrTWyU5Ru79PcgxEBACozLy8vl2/iTCaTcnJyyimi82688Ubl5ORoy5YtJU6qfO+998rX11fr169XZGSkJGns2LFq27atpk2bppUrV5Z7rAAAADVZaoZVSzYl6IO4A/Zl1pw8pWZYeVmxkiJZAADV3KYDyVq945gkqWW9WhreMdLDEQEAKrubb765SLJg06ZN2rZtm1q3bq22bdtKkrZv364///xT7du3V+fOncs9rvXr1+uHH37QSy+9pAYNGshqtcpqtSogoHBX9t27dys+Pl633nqrPVEgSZGRkRozZozeeecdHT16VPXr1y/3mAEAAGqixfEJmrV8mzJz8gotX/77YX37x1HNHt6eYZArIeYsAIBqzDAMPfNN4V4F3l509wMAlOzdd9/VO++8Y/9v/Pjx2rdvnz777DPt2LFDn3zyiT755BPt3LlTn3zyifbt26cbbrih3OP6+uuvJUmNGjXS0KFD5e/vr8DAQLVq1UoLFy60l4uPj5ck9ejRo8g+unfvLsMwtGnTpnKPFwAAoCZaHJ+g6cu2FEkU2GTm5Gn6si1aHJ9QwZHhYuhZAADV2A+7T2jjvmRJUoeoEA1pF+HhiAAAVdHMmTM1ZcoUDRs2rMi6ESNG6Pbbb9eMGTM0cODAco1j1678BPhtt92mli1b6r333lN2draef/553XTTTbJarZo4caIOHz43T09k0d50tmUF5zcoTkJCghITEwst27p1qyTJarUqOzu7VOfjDqvVqpycHFmt1go/dlVFnbmHenMP9eYe6s091JvrqDP3uFJvqWetmrl8m1P7nfX5NvVvFa4Q/+o5JJEnP2/uHpNkAQBUU4Zh6Nlvz/cq+PuQNkwiBABwy5YtWzRhwoRi17do0UKvv/56ucdx+vRpSVJQUJDWrl0rX19fSfkJi2bNmumRRx7RhAkTlJGRIUny8/Mrsg+LxSJJ9jIlWbBggZ544gmH69LS0pScnOzWeZSG1WpVenq6DMOQ2Vw9b6zLGnXmHurNPdSbe6g391BvrqPO3ONKvf1vc5KyiulRcKFMa54W/bRb111aPV9s9OTnLS0tza3tSBYAQDX17R9HtSUxVZLUo1ltXd6itocjAgBUVWFhYVq5cqXuvPNOh+u/+eYbhYSElHsc/v7+kqRx48bZEwW2+IYNG6b3339fu3btss9hkJWVVWQfmZmZklRkngNHJk2apCFDhhRatnXrVk2ZMkXBwcEKDw93+1zcZbVaZTKZFBYWxkMOJ1Fn7qHe3EO9uYd6cw/15jrqzD2u1NuGg3td2veGg2d0598qvk1VETz5eQsODnZrO5IFAFAN5eYZem7ln/af/35Fa3oVAADcNn78eD3//POaNGmSHnroIbVq1UqS9Oeff+rZZ5/Vl19+qQcffLDc44iKipIkhxMTN2jQQJKUkpKihg0bSnI81JBtmaMhii4UHR2t6GjHE++ZzeZCCYuK5OPj49HjV0XUmXuoN/dQb+6h3txDvbmOOnOPs/WWnp3r0n5PZ+VW69+Fpz5v7iYnmOAYAKqhz349pN3H0iVJA9tGqFOjMA9HBACoyubMmaPhw4frnXfeUfv27WWxWGSxWNS+fXu9++67uuaaazRnzpxyj6Nbt26SVGQegYLL6tWrp65du0qSNmzYUKRcXFycTCaTOnfuXI6RAgAA1ExBFtfeTQ+20MOjMiFZAADVTHZOnl5Ynd+rwGSSHhrSysMRAQCqOj8/P3366af65ptvdMcdd2jgwIEaOHCg7rjjDn3zzTdavny5w/kBytqIESMUFBSkhQsXKj093b78yJEj+uyzz9SqVSu1aNFCLVq0UJcuXbRkyRL7ZMeSdPjwYS1ZskQDBgxw2DsBAAAApTMoxrU21qCY6jlfQVXFMEQAUM38L/6gElPOSpKGd2ioNvXdG6cOAIALDR48WIMHD/bY8cPCwvTcc89pypQp6t69u2699VZlZ2frtddeU3Z2tl5++WV72Xnz5ql///7q3bu3pk6dKkl6+eWXlZeXp+eff95TpwAAAFCtje4UpX9/vUM5ecZFy1rMXhrVOaoCooKzSBYAQDWSkZ2jl9bsliT5eJl0/0B6FQAAqpfbb79dderU0TPPPKOZM2fKy8tLPXr00KJFi3T55Zfby/Xs2VPr1q3TjBkzNGPGDJlMJvXs2VNLlixRhw4dPHgGAAAA1VdaplVeTk6ZOHtYe4X4MwxRZUKyAACqkXd/2q8T6VmSpLFdo9WkTqCHIwIAVBcHDx7UG2+8ob/++ksnT56UYRR+W8xkMmnNmjUVEsvIkSM1cuTIi5br0aNHhcUEAABQ0xmGoUc/26bs3Px2oreXSbkOehhYzF6aPay9xnaNrugQcREkCwCgmkg9a9Xr6/ZIkvx8vHTvgJYejggAUF2sWLFC1157rbKzs1WrVi3Vrl3b0yEBAACgkvnst0Na/+dxSVKLerW06LbL9MXvR7R6e5LSMq0Ktpg1KCZCozpFKSSAHgWVEckCAKgm3ly/V2mZOZKkCT2bqH6IxcMRAQCqi3/+85+qU6eOPvvsM3Xp0sXT4QAAAKCSOZmepdlfbJckmUzS06NiVS/Iokm9mmpSr6Yejg7O8vJ0AACA0jt+Oktv/7hPklTLz0d39G3u4YgAANXJzp07df/995MoAAAAgEOzv9yulAyrJOmm7o3VuXG4hyOCO0gWAEA18Mra3crIzpUkTe7dVOGBvh6OCABQndStW1e+vlxbAAAAUNTance0/LfDkqQGIRb9fUhrD0cEd5EsAIAqLjElQ4s2HpQkhQf6anLvZh6OCABQ3dx0001atmyZp8MAAABAJZOelaNHP91q/3nOiPYKsjAfQVXFnAUA4AGpGVYt2ZSg1TuSdDozR0EWHw2Kqa/RTkzyc+G2x05nKTs3T5J0V7/mquXHVzsAoGzdcsstWrt2rYYPH6777rtPTZs2lbe3d5FyjRo18kB0AAAA8JTnvt2lw6mZkqShHRrqb20jPBwRSoMnSgBQwRbHJ2jW8m3KzMkrtDxub7Ke/WanZg9vr7Fdo13a1sbfXPTBDQAApdWmTRuZTCYZhqEvv/yy2HK5ubkVGBUAAAA8adOBFL23Yb8kKTTArMeGxng2IJQayQIAqECL4xM0fdmWYtdn5uTZ11+YMLjYtpL06GfbZPb2KjbZAACAO2bNmiWTyeTpMAAAAFBJZOfk6eFlW2QY+T/PvDpGdWr5eTYolBrJAgCoIKkZVs1avs2psrM+36Yh7erbhyQqzbYAAJTW448/7ukQAAAAUIm8tm6P/jqWLknq3bKORnaK9HBEKAskCwCggizdnFjs8EEXyrTmadqS39QxOlRZOXn6ZX+KS9su25yoW3s1LU24AAAAAAAARfyVdFrz1/4lKX845LnXxtILtZogWQAAFWTV9qMulV+945hW7zjm5rGSSBYAAMpUXl6e3nvvPX366afau3evJKlZs2YaOXKkbr75Znl5eXk4QgAAAJS3vDxD/1i2Rdbc/PGHpg1upejwAA9HhbJSbsmCDRs26J133tGhQ4fUrl07PfDAA2rQoEF5HQ4AKr3TmTkVdqy0TGuFHQsAUP2dPXtWV111ldavXy+TyWRv13/99df66quv9P777+vrr7+WxWLxcKQAAAAoTws3HtDmg6ckSR2iQjTxcl5UrE5K9frPM888o/DwcB07VvjN10WLFqlPnz566623tGLFCj333HPq1q1bkXIAUJPk5BkulY9pEKxld/bQl1N7qUNUiEvbBluYrwAAUHbmzJmj7777TtOmTdPx48eVkJCghIQEnThxQg899JDWrVunJ5980tNhAgAAoAylZlj11vd7ddPbv+jmD7dr7Js/a86X2yVJPl4m/XvkJfL2Yvih6qRUyYK1a9eqS5cuqlevnn1ZTk6OHnzwQXl7e+u///2vtmzZoieeeEKHDx/Wc889V+qAAaCqOXTqrG5//xftOnrape1Gd45S58bhah8ZomEdXZsoaFBMhEvlAQAoyccff6yxY8fqmWeeUVhYmH15aGionn76aY0dO1YfffSRByMEAABAWVocn6DL5q7WnK92aOP+FP15/Kx+S0hV9rnhh3q3qqOYhsEejhJlrVTJgu3bt6tbt26Fln333Xc6duyYbr/9dk2ePFnt27fXzJkzNWzYMK1YsaJUwQJAVWLNzdN/1+/RoP98p5Xbk1za1mL20qjOUfafR3eKksXHua/sC7cFAKC0EhMT1a9fv2LX9+3bV4mJiRUXEAAAAMrN4vgETV+2RZk5ecWWWbvzuBbHJ1RgVKgIpUoWHD9+XE2bFh6X6qeffpLJZNKIESMKLe/Xr5/2799fmsMBQKVxYVe8m97+RQt+2KfUjPy5AjYdSNbQl3/Q3K93KiM7V5LUpHaAJvd2biy/2cPaK8T//FBCIQFmzR7e3q1tAQAordDQUO3evbvY9bt371ZoaGjFBQQAAIBykZph1azl25wqO+vzbfbnIKgeSjXBcWBgoNLT0wst+/nnn2UymYr0OAgJCVFOTsVN7gkA5WVxfIJmLd9WOMN+/Kw27k/RM9/sVIeoEP28P8W+ytfbS3f1b647+jaXxeytVvWCim5/jsXspdnD2mts1+gi62zL3NkWAIDSGDRokF555RUNGjRIQ4YMKbRu5cqVeu211zRmzBgPRQcAAICysnRzYok9CgrKtOZp2eZE3dqLSY6ri1IlC5o2barVq1frvvvukyRlZmbqhx9+UGxsrGrVqlWo7NGjRwvNbQAAVZGtK15xsnLyCiUKereso9nD26tpnUD7srFdozWkXX0t3Zyo1duTlJZpVbDFrEExERrVKUohAcX3CijNtgAAuGvOnDn69ttvddVVV+nSSy9Vu3btJEl//PGHfv31V9WpU0ezZ8/2cJQAAAAorVXbj7pYPolkQTVSqmTBTTfdpPvvv18PPfSQBgwYoIULFyotLU1jx44tUvbHH39UixYtSnM4APAoV7riSdJTo2J1XZdomUymIutCAsya1KupJrlxQS3NtgAAuKNx48b65Zdf9M9//lNffPGFNm/eLEkKCgrSuHHjNHfuXDVq1MjDUQIAAKC0Tme6NjJMWibDEFUnpUoW3H777frf//6n//znP3rhhRdkGIY6depk72lgc/ToUa1cuVKPP/54aQ4HAB7lSlc8ScrIynWYKAAAoCpq1KiRPvzwQxmGoePHj0uS6taty7UOAACgGgmyuPa4ONjCCAfVSamSBX5+flq/fr0+++wz7d69W82bN9fw4cNlNhf+kCQlJWnu3LmMYwqgSqMrHgAAkslkYnhRAACAampQTH3F7U12oXxEOUaDilaqZIEkeXt7a9SoUSWW6dChgzp06FDaQwGAR9EVDwBQU73yyiv69NNPtXr1aofrBw8erFGjRmnKlCkVHBkAAADK0uhOUXr2m51OjaxgMXtpVOeoCogKFcWrtDv466+/NHXqVF155ZW6+eabi72BAICqjq54AICa6t1331XLli2LXd+qVSu9/fbbFRgRAAAAykNIgFmzh7d3quzsYe0V4s+zj+qkVMmC7du3q2vXrnrllVf07bffauHChRoyZIgWLlxYVvEBQKUxKKa+i+XpigcAqB7++usvxcbGFru+Xbt2+uuvvyowIgAAAJSXsV2jNfPqtsWut5i99MyoSzS2a3QFRoWKUKpkwZw5c5SRkaHnnntOW7du1bJlyxQZGal//OMfZRUfAFQaoztFyeLj3NcmXfEAANWJ1WpVZmZmseszMzNLXA8AAICqJdDv/OgKjcL91aquv7o3DdOsa2K08Z8DSRRUU6Was2D9+vW65ZZb9OCDD0rKf6MoNzdX1113nXbt2qXWrVuXSZAAUBnYuuJNX7blomXpigcAqE5atWqlVatW2dv9F1q5cqWaN29ewVEBAACgvKzanmT/94KbOinIlKnw8HD5+vp6MCqUt1L1LDh27Jguu+yyQsu6d+8uwzCUlJRUzFYAUHV1ahxW4nq64gEAqqNx48Zp5cqVmjlzprKzs+3LrVarHnvsMa1cuVLjx4/3YIQAAAAoK2eycvT97hOSpNYRQWpcO8DDEaGilKpnQU5Ojvz9/Qsts/2ck5NTml0DQKX0+nd77P8e2qGBjqdlKjk9U+G1LBrcroFGdYpSSAA9CgAA1csDDzygFStW6Mknn9Rrr72mNm3aSJJ27typ5ORk9e7dW9OmTfNwlAAAACgL6/88ruycPEnMx1jTlCpZIEkmk8ml5QBQVR06dVaf/XpIktQgxKLnx3SU8nKUnJxMVzwAQLVmNpu1cuVKvfDCC1q0aJF+/fVXSfnDEz388MO67777ZDaTLAcAAKgOVhYYgmhwO5IFNUmpkwWTJk3SlClTiiy/5ppr5O3tXWiZyWRSampqaQ8JAB7x5vq9yskzJEm39W4mXx8vFRiJAQCAas1sNmv69OmaPn26p0MBAABAObHm5un/dh6TJNUPtig2MkRWq9XDUaGilCpZ0KdPH3oQAKgRTqZn6X/xByVJ4YG+ur4bcxIAAAAAAIDqJX5fslLP5icHBreL4NlvDVOqZMG6devKKAwAqNze+XG/Mq354/VN7NlEAb6l7pgFAECVkpCQYJ/M+NixY/rmm280YMAAHT9+XP/4xz905513qmvXrp4OEwAAAKVQaAiimPoejASe4FVRB/rxxx81cODAijocAJSZ05lWvbdhvyQp0NdbN/do4tF4AACoaPv27VOXLl20bNkytWvXTrm5ufZ1devW1S+//KK33nrLgxECAACgtAzD0Mo/jkqSgiw+uqxZuIcjQkUrk1djT548qT179ig8PFwtWrQotC4uLk6zZs3SmjVr5OVVYbkJACgzC+MO6nRmjiTpxu6NFRLABI4AgJrl0UcflZeXl7Zt2yZ/f3/Vq1ev0PqrrrpKX3zxhYeiAwAAQFn443CaDqdmSpIGtKknszfPcmuaUv3Gc3NzdccddygiIkI9evRQ69at1bNnTx07dkxpaWkaP368Lr/8cq1du1bjx4/X1q1byypuAKgQmdZcLfhhnyTJ18dLk3o19XBEAABUvNWrV+uuu+5SdHS0w3FrGzdurMTERA9EBgAAgLLCEEQoVc+Cl19+Wf/9738VFRWl7t27a/fu3YqLi9Pdd9+txMRE/fzzz7rppps0c+ZMNW/evKxiBoAKs2RTok6kZ0mSxnSOUr1gi4cjAgCg4qWlpalBgwbFrs/OzlZOTk4FRgQAAICyZhuCyNfbS31b1/VwNPCEUiULPvjgA8XGxmrDhg0KCAiQJN1999167bXXVLt2bf3www/q0aNHmQQKABUtJzdPb3y3R5LkZZKm9CHpCQComaKjo/XHH38Uuz4uLq7IcKQAAACoOhKSM7Tz6GlJUs8WtVXLr0xGr0cVU6phiP7880/dfPPN9kSBJN15552SpH/84x8kCgBUaV9sOazElLOSpGEdGqpR7YCLbAEAQPU0cuRIvf3229q2bZt9mW04omXLlmnJkiUaO3asp8IDAABAKTEEEaRSJgvOnDmj+vULf3hsP8fGxpZm18XKyMhQs2bNZDKZdM899xRZv2vXLo0YMUJhYWEKDAxU79699X//93/lEguA6isvz9Br6/bYf76zH29LAgBqrkcffVRRUVG67LLLdOONN8pkMumpp55Sjx49NHbsWHXo0EHTpk3zdJgAAABwk20IIpNJGhhTz8PRwFNKPaX1hROc2X42m82l3bVDs2bN0vHjxx2u27Nnj3r27KkNGzZo+vTpevbZZ5Wenq4hQ4Zo9erV5RIPgOppzc5j+jMpXZI0sG09ta4f5OGIAADwnODgYG3YsEGTJ0/WL7/8IsMwtGrVKu3atUt33XWX1q5dK4uFeX0AAACqouQz2YrfnyxJujQ6VPWCaNfVVKUefOrrr7/W0aNH7T9nZGTIZDJpyZIl+u233wqVNZlMeuCBB9w+1ubNm/Xiiy/qmWeecfjm0j//+U+dOnVKmzZtUseOHSVJN998s9q1a6e7775bO3fuLJLcAIALGYahV9butv9MrwIAAPITBvPmzdO8efN0/PhxGYahunXr0r4GAACo4tbsSFKekf/vQQxBVKOVOlmwaNEiLVq0qMjyN954o8iy0iQLcnNzddttt+mKK67QyJEjiyQLzpw5o88//1z9+vWzJwokqVatWpo8ebJmzZql+Ph4devWza3jA6g5Nuw9qd8STkmSujcLV+fGYZ4NCACASqZu3bqeDgEAAABlZFXB+QraRXgwEnhaqZIFa9euLas4LuqFF17Qzp07tWzZMofrt2zZoqysLIeTKnfv3l2SSBYAcErBuQruolcBAAD6+eef9fvvv+u2226zL1u+fLlmzJih5ORkTZgwQXPnzvVghAAAAHDH2excrf8rf8j35nUD1bxuLQ9HBE8qVbKgb9++ZRVHifbt26fHHntMs2bNUpMmTbR///4iZQ4fPixJioyMLLLOtuzQoUMXPVZCQoISExMLLdu6daskyWq1Kjs729XwS8VqtSonJ0dWq7VCj1vVUW+uo87ybT2Uqu//OiFJatcgSJc1Di7x7556cw/15h7qzXXUmXuoN/d4st7K+5hPPPGEvLy87MmCgwcPaty4cQoMDFTdunX19NNPq2XLlpo4cWK5xgEAAICy9f1fx5VpzZMkDW7HEEQ1XamHIaoId9xxh5o1a6YHH3yw2DIZGRmSJD8/vyLrbJOt2cqUZMGCBXriiSccrktLS1NycrIzIZcZq9Wq9PR0GYZRbpNGV0fUm+uos3wvrznfq+CGTnWVkpJSYnnqzT3Um3uoN9dRZ+6h3tzjyXpLS0sr1/3//vvvmjp1qv3n//3vfzIMQ7/99psiIyN15ZVX6r///S/JAgAAgCpmZYEhiAbFMARRTVfpkwULFy7UqlWrtH79+hJvugICAiRJWVlZRdZlZmYWKlOSSZMmaciQIYWWbd26VVOmTFFwcLDCw8NdCb/UrFarTCaTwsLCuFl3AfXmOupM2nP8jL7bc0qS1LROgEZ2bSYvr5InbaTe3EO9uYd6cx115h7qzT2erLfg4OBy3f/JkycVEXH+5vHbb79Vnz597D14hw0bppkzZ5ZrDAAAAChbObl5WrMjP1lQN8hPHaNCPRsQPK5SJwuysrL04IMP6qqrrlL9+vW1e/duSeeHE0pNTdXu3btVp04dNWzYsNC6gmzLHA1RdKHo6GhFR0c7XGc2m+Xr6+vWuZSGj4+Px45dlVFvrqvpdbbgpx0yjPx/39mvhSyWoj2VHKnp9eYu6s091JvrqDP3UG/u8VS9lXdyIjQ0VElJ+TeSWVlZiouL0yOPPGJfbzKZdPbs2XKNAQAAAGVr04EUpWTkD2c5KCbioi9Movrz8nQAJTl79qyOHz+ur776Si1btrT/169fP0n5vQ5atmypt956S7GxsfLz89OGDRuK7CcuLk6S1KVLl4oMH0AVcujU2f9v787Do6ruP45/Jskkkx3CFiBhB2XHsEgiKagErFZ2cUVUFLVqK9pS0RoW10pbLdXWFrD+3EXRQkWpgKCWRSL7KrJJAsgWSAhhkklyf3/EDIQkZO7NMpnM+/U8PE9y7zn3fufLzcyc+c49R//eUFxYbBHt0IhelRcXAQDwF7169dKcOXO0bt06PfXUU3I6naXuxt23b1+pOw8AAABQ950/BdEQpiCC6vidBeHh4frggw/KbD927Jh++ctf6pprrtGECRPUo0cPRURE6Prrr9dHH32kTZs2qWfPnpKknJwczZkzRx07dlS/fv1q+yEAqMOycl36YF26lu44ol1HclRQVHxbwW39Wys4qE7XUgEAqFVPPvmkhgwZon79+skwDKWkpJT6Is4nn3yiyy+/3IsRAgAAwAzDMPT59h8lSREhQUps38jLEaEuqNPFArvdrjFjxpTZvn//fklS+/btS+1/7rnntGzZMg0ZMkSTJk1SVFSUZs+erYMHD2rRokWy2biVBkCxeWnpSl2wVc6CojL7/rLsezWOCNHYvuVPSQYAgL9JSkrS+vXr9d///lfR0dG66aab3PtOnDihIUOGaOTIkV6MEAAAAGZ8d+S00jOLp5EceEkThQQFejki1AV1ulhgVocOHbRy5Uo99thjev7555Wfn6+EhAQtXrxYgwcP9nZ4AOqIeWnpmjx/c4X78wqK3PspGAAAUKxTp07q1KlTme2NGjXSiy++6IWIAAAAYNXn25iCCGX5ZLGgTZs2MkpWIb1A586dtWDBglqOCICvyMp1KXXBVo/api7cqqFdYxUdVrOLRgIAAAAAANSmkimI7IE2XXlpUy9Hg7qCSbkB+JUP12eUO/VQeZyuIs1fn1HDEQEAUPckJyfrq6++Mt3viy++0IABA2ogIgAAAFSXg6fOauvBbElS/3aNFOXgS5IoRrEAgF/577YfTbVfsv1I5Y0AAKhnWrRooUGDBql3796aNWuWvv/++wrbbt++XX/84x/Vs2dPpaSkqFWrVrUYKQAAAMxaup0piFA+n5yGCACk4imFPliXrqU7jui0s0CRjiCldInVmIS4MlMH7TpyWu+tTde6/ZmmzpHtdFVnyAAA+IT3339fv/rVrzRjxgxNmjRJkyZNUoMGDdS2bVvFxMTIMAxlZmZqz549On36tGw2m4YOHap//OMf6t+/v7fDBwAAwEWUTEEkSYMpFuA8FAsA+KR5aelKXbC1zJRCa/ZmaubinZoxvJuu69FcizYf1rtpB7ThwClL5+FWPACAv7riiiv03//+V3v27NEHH3ygr776Stu3b9eOHTtks9nUpEkTJScna9CgQRo9erTatGnj7ZABAABQiaxcl9bsLf4iZc+4aDWPDvVyRKhLKBYA8Dnz0tI1ef7mCvc7C4o0ef5m/f7fW5RfWHoxdIc9QE6XZ2sWSFIKFXYAgJ9r3769HnvsMT322GPeDgUAAABV9MV3R1RYVPxZyZCusV6OBnUNaxYA8ClZuS6lLtjqUdvzCwWJ7RrpLzf10pe/vVKOIM+e+hz2AI3uHWcpTgAAAAAAgLrm/LUZ+YIkLsSdBQB8yofrM8pMPXQxV3RopGdGdFebxuHubTOGd7vonQnudsO6KTqUaYgAAAAAAIDvc7oKteK7Y5KkNo3C1LFphJcjQl3DnQUAfMqS8xbh8URRkUoVCiRpbN94vTC6R4V3GDjsAXphdA+N7RtvOU4AAAAAAIC6ZNWe48rNL5RUPAWRzWbzckSoa7izAIBPOe0sMNU+2+kqd/vYvvEa2jVWH67P0NLtR5TtdCnKYVdKl2YanRCn6DDuKAAAAAAAAPXH59vOTUE0hCmIUA6KBQB8SqTD3NNWlKPiD/2jw+yaMKCtJgxoW9WwAAAAAAAA6qzCIkNLdxQXCxpHBOuyVg29HBHqIqYhAuBTUrrEmmxPpRwAAAAAAPinrFyX5ny9V8Ne/p+O5+RLkuIahinH5MwN8A8UCwD4lDEJcRWuNXAhhz1Ao3vH1XBEAADUT5mZmd4OAQAAAFUwLy1dlz+7VE8v2qFth7Ld2zemn9Llzy7VvLR0L0aHuohiAQCfEh1m14zh3TxqO2NYN0WHsvYAAABWNGnSRJdddpkefvhhLViwQKdOnfJ2SAAAAPDQvLR0TZ6/Wc6ConL3OwuKNHn+ZgoGKIViAQCfk9C6wUX3O+wBemF0D43tG187AQEAUA+lpKRo9+7dmjVrlkaNGqXGjRsrISFBjz76qP7zn/8oKyvL2yECAACgHFm5LqUu2OpR29SFW5WV66rhiOArWOAYgM+Z8/U+98/De7bQ0dN5yna6FOWwK6VLM41OiFN0GHcUAABQFYsXL1ZhYaHS0tK0YsUKLV++XKtWrdLGjRv10ksvKSAgQL169dKgQYN05ZVXKjk5WZGRkd4OGwAAwO99uD6jwjsKLuR0FWn++gzdNaBtDUcFX0CxAIBPOXY6Tx9tOChJahYVopk39FSwh2sYAAAAcwIDA9W/f3/1799fjz32mAoLC7V27VqtWLFCK1as0KpVq7R+/Xr9+c9/VlBQkPLy8mo9xtzcXHXr1k379u3TAw88oJdffrnU/u+++06/+93v9OWXXyo/P18JCQmaPn26rrrqqlqPFQAAoDYs2f6jyfZHKBZAEtMQAfAxb67er/yfquN3JLWlUAAAQC0KDAxUYmKipkyZoo8//ljvvfeekpOTZRiGCgoKvBJTamqqjh07Vu6+PXv2KCkpSatXr9bkyZM1c+ZM5eTkaOjQoVq6dGktRwoAAFA7TjvNvS/LdjINEYpxZwEAn3E2v1BvrvlBkhQWHKhb+rXyckQAAPiPs2fPauXKle4pib799lsVFBQoJiZGI0aM0MCBA2s9pvXr1+ull17SCy+8oEcffbTM/ilTpujUqVNat26devXqJUm6/fbb1bVrVz3wwAPauXOnbDZbLUcNAABQsyId5j7yjXIwlTOKUSwA4DM+XJ+hkz8tunNj33jWJQAAoAY5nU6tWrXKXRxIS0tTfn6+mjZtqp/97Ge65ZZbNHDgQHXr1s0r8RUWFuqee+7RNddco1GjRpUpFpw5c0YLFy7UoEGD3IUCSYqIiNDdd9+t1NRUpaWlqV+/frUcOQAAQM1K6RKrNXszTbRvVoPRwJdQLADgEwqLDL32v+KFjQNs0l1XMJceAAA1qWHDhsrPz1dsbKx+9rOf6dZbb9WgQYN06aWXejs0SdKLL76onTt3av78+eXu37x5s/Ly8pSYmFhmX//+/SWJYgEAAKiXxiTE6blPd6igyKi0rcMeoNG942ohKvgCigUAfMLSHUe07/gZSdLPuzdXfEyYlyMCAKB+y8vLU1BQkC677DIlJCQoISFBnTp18nZYkqR9+/Zp6tSpSk1NVZs2bbR///4ybQ4dOiRJatmyZZl9JdsOHjx40fOkp6crIyOj1LYtW7ZIklwul/Lz862EXyUul0sFBQVyuZhb2FPkzBryZg15s4a8WUPezPOXnJ3Ny5c9MEAFRYWVtk297lKFBhoXfV/jL3mrbt7Mm9VzUiwA4BPmfL3X/fM9ye28GAkAAP5h9erVWr58uVasWKEZM2YoNzdXERERSkpK0sCBAzVw4ED17dtXQUG1P6S477771K5dOz3yyCMVtsnNzZUkhYSElNnncDhKtanI3LlzNX369HL3ZWdnKzPT89v7q4vL5VJOTo4Mw5DdzpSMniBn1pA3a8ibNeTNGvJmnr/kbNrifTrrKi4UBNqkwnJuMAgJCtBvrozXVW1CK31P4y95q27ezFt2dralfhQLANR5Gw6cVNr+k5Kkfm1i1Cu+gXcDAgDAD1x++eW6/PLL9dhjj6mwsFBr167VihUr9OWXX+qZZ57R448/rrCwMCUmJrqLB8nJyTUe11tvvaUlS5boq6++uuigKyys+C7EvLy8MvucTmepNhWZMGGChg4dWmrbli1bdO+99yoqKkoxMTFmw68yl8slm82mhg0bMlj3EDmzhrxZQ96sIW/WkDfz/CFnK3ef0OKdxR/+x0aF6L27++rz7Uf1xXfHlO0sUJQjSFdf2lQjejVXdKhnOfCHvNUEb+YtKirKUj+KBQDqvDlf73P/fHcyaxUAAFDbAgMDlZiYqMTERE2ZMkWFhYVKS0vTihUr9Mknn2jq1Kmy2WwqKCio0Tjy8vL0yCOP6Nprr1VsbKx2794t6dx0QllZWdq9e7caN26sFi1alNp3vpJt5U1RdL74+HjFx8eXu89utys4ONjyY6mKoKAgr57fF5Eza8ibNeTNGvJmDXkzrz7nzOkq1LRFO92/zxjeTW2aRmti02hNHNSxSseuz3mrSd7Km9XiBMUCAHVaemauPtt6WJLUtnG4Bndu5uWIAADwb2fPntX//vc/rVixQsuXL9e6detkGJUvnldd5z527JgWLVqkRYsWldn/1ltv6a233tLMmTN13333KSQkRKtXry7Tbs2aNZKkPn361HjMAAAAtWXWsu/1w4niaRaHdm2mIV1jvRwRfA3FAgB12tz/7VPRT58/TBjQVgEBNu8GBACAn3E6nVq5cqW7OPDtt9/K5XLJMAw5HA4NGDBAV155pa688soajyU8PFwffPBBme3Hjh3TL3/5S11zzTWaMGGCevTooYiICF1//fX66KOPtGnTJvXs2VOSlJOTozlz5qhjx47q169fjccMAABQG3b+mK1/flW83mNESJCmD+vm5YjgiygWAKizsnJdmvdtuiQpJjxYoxPivBwRAAD+IzU1VStWrFBaWpry8/NlGIaCg4N1+eWXu4sDiYmJtXpLtd1u15gxY8ps379/vySpffv2pfY/99xzWrZsmYYMGaJJkyYpKipKs2fP1sGDB7Vo0SLZbHwJAQAA+L6iIkOPf7RFBT992/K3Qy9RbLTDy1HBF1EsAFBnvb32B+XmF0qSbuvfWqHBgV6OCAAA//H0008rKChIffv2dRcHrrjiCjkcvjPw7NChg1auXKnHHntMzz//vPLz85WQkKDFixdr8ODB3g4PAACgWry99oDWHzglSeoV30C39W/t3YDgsygWAKiT8goK9frK/ZKk4KAA3Z7ICx0AALXps88+04ABAxQeHu7tUCrVpk2bCtdN6Ny5sxYsWFDLEQEAANSOI9lOvfBZ8aLGgQE2PTequwKZwhkWUSwAUCct3HhIR0/nSZJGJ7RU44gQL0cEAIB/GTp0qLdDAAAAQCWm/2ebTucVSJLuTm6rzs2jvBwRfFmAtwMAgAsZhqE5X+9z/z5hQDsvRgMAAAAAAFD3LNtxRJ9u+VGSFB8Tqoev7uTliODruLMAQJVk5br0wbp0Ld1xRKedBYp0BCmlS6zGJMQpOsxu6ZhffX9c3x05LUm6+tKm6tA0ojpDBgAAAAAA8Gln8gqUumCb+/enR3RnrUdUGcUCAJbNS0tX6oKtchYUldq+Zm+mZi7eqRnDu2ls33jTx53z9V73z/f8jLsKAAAAAAAAzvfnJbt08NRZSdKwni00sFMTL0eE+oBiAQBL5qWla/L8zRXudxYUufebKRhsP5Str78/LknqERety9vGVC1QAAAAAACAemRLRpb+tbJ4+uYoR5Ce/EUXL0eE+oI1CwCYlpXrUuqCrR61TV24VVm5Lo+PPed/5+4quDu5nWw2m+n4AAAAAAAA6qOCwiJN+Xiziozi3x+/trOaRIZ4NyjUG9xZAMC0D9dnlJl6qCJOV5Hmr8/QXQPaVtr2xyynFm48JElq2SBU13aLrVKcAAAAAAAAvuzCtSJz8gr0w4lcSVK/NjEa28f89M9ARSgWADBtyfYfTbY/Um6x4MIXvJNn8lXwU2n8zivaKCiQm58AAAAAAIB/qmityBLJnRorIIAZGVB9KBYAMO20s8BU+73Hc5RxMldxDcPc2yp7wQsOolAAAAAAAAD8U2VrRUrSnz7fpWaRDlNrRQIXQ7EAgGmRDnNPHUey8zTgD8vVp3VDDe/VQq7CIs34ZMdF+6Qu2CZHUCAveAAAAAAAwK+YXStyaNdYRYfZazgq+AOKBQBMKSoyFGhx0eFvfzipb3846XF7XvAAAAAAAIC/qam1IoHKMM8HAI85XYX61XsbtHLPCY/7OIIC9MS1ndWvTYyF8xW/4AEAAAAAAPgLK2tFAtWBYgEAj5zIydOtc77RJ5sPS5ICPVxAZ8bwbrrnZ+00775ErXzsKrWKCau803l4wQMAAAAAAP7E7FqR2U5XDUUCf0OxAECl9hzL0ai/r9K6n6YQahhm1/sT++uF0T3kqGAhYoc9QC+M7lFqzYGWDUJNr3fACx4AAAAAAPAnZj87iXIwfTOqB2sWALioNXtP6N431ynrbPGH9u0ah+u1O/qqTeNw9WkTo6FdY/Xh+gwt3X5E2U6Xohx2pXRpptEJceWuNcALHgAAAAAAQMVSusRqzd5ME+2b1WA08CcUCwA/l5Xr0gfr0rVk2486ecaphuEODenWXGMS4rRs5xH9bv5muQoNSVK/tjH657jeahAW7O4fHWbXhAFtNcHDhXR4wQMAAAAAAKjYmIQ4zVy806NFjh32AI3uHVcLUcEfUCwA/Ni8tHSlLtha+sXn2Fl9s/+knv10hwqLDPfmkZe11POjuyskKLBK5+QFDwAAAAAAoGLRYXbNGN5Nk+dvrrTtjGHdFB3KrAyoHqxZAPipeWnpmjx/c4Uf2p9fKHh4cEf9eWzPKhcKpHMveJ7gBQ8AAAAAAPijsX3j9ezIij8/KW+tSKCquLMA8ENZuS6lLtjqUVt7oE13JrWVzWartvOXvJCVuavhJw57gGYM68YLHgAAAAAA8Fvtm0S4f24e7VBMeHCla0UCVUGxAPBDH67P8GgaIElyFRqavz5Dd3m4JoGnxvaNN704MgAAAAAAgL9YueeE++enR3TT1Z1Z1xE1i2IB4IeWbP/RZPsj1V4skMwvjgwAAAAAAOAvVu0+LkkKDLCpX9sYL0cDf8CaBYAfOu0sMNU+2+mqoUgAAAAAAABwoTN5BdqYfkqS1DMuWpEOZmBAzaNYAPihSIe5m4qieEECAAAAAACoNWv3ZaqgyJAkXdGhsZejgb+gWAD4oRSTc9yldGFOPAAAAAAAgNqy8qcpiCQpqT3FAtQOigWAn3EVFmljepbH7R32AI3uHVeDEQEAAAAAAOB8JYsbO+wBSmjdwLvBwG+wwDHgR3LyCnT/W+v09ffHK2/8kxnDuik6lGmIAAAAAAAAasOJnDztOJwtSerbJkYhQYFejgj+gjsLAD9xNNupsa+udhcKIh1BmvizdnIElf804LAH6IXRPTS2b3xthgkAAAAAAODXVu894f6ZKYhQm7izAPADu4+e1vjX0nTw1FlJUvNoh/7vrn7q1CxSDwzqoA/XZ2jJtsPKzHEqJsKhIV2ba3RCnKLDuKMAAAAAAACgNq3cfa5YcEWHRl6MBP6GYgFQz6Xtz9Td//etss66JEmXxkbq9Tv7KTbaIUmKDrNrwoC2GtevpTIzMxUTE6Pg4GBvhgwAAAAAAOC3Vu0pnhUiyhGkri2ivRwN/AnFAqAeyMp16YN16Vq644hOOwsU6QhSSpdYRTuC9Pi/tyq/oEiSlNS+kV4d11tRDu4YAAAAAAAAqGsyTubqhxO5kqTE9o0UGGDzckTwJxQLAB83Ly1dqQu2yvlTQaDEmr2ZpX4f3quFZo7pqeAK1igAAAAAAACAd60qNQUR6xWgdlEsAHzYvLR0TZ6/udJ2gzo10YtjeymAajQAAAAAAECdtfKnKYgkFjdG7eMrxoCPysp1KXXBVo/artl3QqedBTUcEQAAAAAAAKwyDEOr9hTfWdAsKkTtm4R7OSL4G4oFgI/6cH1GmamHKuJ0FWn++owajggAAAAAAABWfX80R8dO50mSrmjfWDYbM0SgdlEsAHzUku0/mmx/pIYiAQAAAAAAQFWt3H3eFESsVwAvoFgA+Ciz0wplO101FAkAAAAAAACqamWpxY0beTES+CuKBYCPinSYW588ymGvoUgAAAAAAABQFQWFRfpmb3GxoF3jcDWPDvVyRPBHFAsAHzW4czNT7VO6mGsPAAAAAACA2rHlYJZO5xXPIpHEXQXwEooFgA8qKjK07WC2x+0d9gCN7h1XgxEBAAAAAADAqlV7zpuCqD3rFcA7KBYAPsYwDD21aLs+3njQ4z4zhnVTdCjTEAEAAAAAANRFJYsb22xSYnvuLIB3UCwAfMyfl+zSv1bulyQFBwVoYnJbOYLK/1N22AP0wugeGts3vhYjBAAAAAAAgKecrkJ9+8NJSVLXFlFqEBbs5Yjgr+p8seC7777Trbfeqs6dOys6OlphYWG69NJL9cgjj+jw4cPlth8xYoQaNmyo8PBwJScn64svvvBC5ED1e/XLPfrrF7slSUEBNv391gQ9fl0XffP4YD35iy5KbNdIXVtEKbFdI6X+oou+mTKYQgEAAAAAAEAdtu6Hk8ovKJLEFETwriBvB1CZjIwMHT58WCNHjlRcXJyCgoK0ZcsW/fOf/9R7772njRs3qmnTppKkPXv2KCkpSUFBQZo8ebKio6M1e/ZsDR06VJ999pkGDx7s5UcDWPfm6v16/rOdkqQAm/Tijb109U+LHEeH2TVhQFtNGNDWmyECAAAAAADApJIpiCQpqQPFAnhPnS8WXH311br66qvLbP/Zz36msWPH6vXXX9fkyZMlSVOmTNGpU6e0bt069erVS5J0++23q2vXrnrggQe0c+dO2Wy22gwfqBbz12XoyQXb3L8/P6qHru/ZwosRAQAAAAAAoDqs/GlxY3ugTX3bNPRyNPBndX4aooq0bt1aknTyZPF8XmfOnNHChQs1aNAgd6FAkiIiInT33Xdr165dSktL80aoQJV8tuWwfvvhJvfvU6/vwtRCAAAAAAAA9UDWWZe2ZJySJF3WqqHCguv8d7tRj/nM1ed0OpWTkyOn06nt27frd7/7nSTp2muvlSRt3rxZeXl5SkxMLNO3f//+kqS0tDT169ev9oIGPJSV69IH69K1dMcRnXYWKNIRpJQusWoWFaJJ729UkVHc7jdDOunOK5hqCAAAAAAAoD74Zu8J9+c+rFcAb/OZYsGcOXP00EMPuX9v06aN3nrrLSUnJ0uSDh06JElq2bJlmb4l2w4ePFjpedLT05WRkVFq25YtWyRJLpdL+fn51h6ARS6XSwUFBXK5XLV6Xl/nS3n7cP1BTf9kp/J+WsimxJq9maV+v2dAG91zRasauwZ9KWd1CXmzhrxZQ97MI2fWkDdrvJk3/q8AAAB806qfpiCSpCs6NPJiJIAPFQtGjBihSy+9VDk5OdqwYYMWLlyo48fPLf6Rm5srSQoJCSnT1+FwlGpzMXPnztX06dPL3Zedna3MzMxy99UUl8ulnJwcGYYhu91eq+f2Zb6St/9sO65nlvxQabvecRG6q3eMe9qtmuArOatryJs15M0a8mYeObOGvFnjzbxlZ2fX6vkAAABQPUoWNw4PDlTP+AbeDQZ+z2eKBXFxcYqLi5NUXDgYPXq0+vbtq9zcXE2ZMkVhYWGSpLy8vDJ9nU6nJLnbXMyECRM0dOjQUtu2bNmie++9V1FRUYqJianqQzHF5XLJZrOpYcOGDNZN8IW8ZZ116Y/LN3jUdtuRXAWFRSk6tOYeiy/krC4ib9aQN2vIm3nkzBryZo038xYVFVWr5wMAAEDVHc126vujOZKkfm1jZA/02eVlUU/4TLHgQj169NBll12mv/3tb5oyZYpatGghqfyphkq2lTdF0YXi4+MVH1/+4rF2u13BwcFViNqaoKAgr53bl9V23ipad2BMQpyiw8p+YLBw7cEyUw9VxOkq0n+2HNVdA2p2vQKuNWvImzXkzRryZh45s4a8WeOtvFHUAQAA8D2lpyBivQJ4n88WCyTp7Nmz7mmBunfvrpCQEK1evbpMuzVr1kiS+vTpU6vxwX/MS0tX6oKtcpaz7sDMxTs1Y3g3je1bugi1ZPuPps6xZPuRGi8WAAAAAAAAoHaUTEEkSUksbow6oM4XC3788UfFxsaW2b58+XJt3bpVgwYNkiRFRETo+uuv10cffaRNmzapZ8+ekqScnBzNmTNHHTt2VL9+/WozdPiJeWnpmjx/c4X7nQVFmjx/swqLitQ9roHW/XDS/c+MbCcLFwIAAAAAANQHhmG47yyICQ/WpbGRXo4I8IFiwf3336/Dhw/rqquuUuvWreV0OrVu3Tq99957ioyM1J/+9Cd32+eee07Lli3TkCFDNGnSJEVFRWn27Nk6ePCgFi1aJJvN5sVHgvooK9el1AVbPWo75WPP2lUkysH0AgAAAAAAAPXBDydydfDUWUlSYvtGCgjgc0t4X50vFtx8881644039Oabb+rYsWOy2Wxq3bq17r33Xv32t79Vq1at3G07dOiglStX6rHHHtPzzz+v/Px8JSQkaPHixRo8eLAXHwXqqw/XZ5SZeshT4cGBOpNf6HH7lC7NLJ0HAAAAAAAAdcvKPeemILqCKYhQR9T5YsHYsWM1duxYj9t37txZCxYsqMGIgHPMrjvQLCpEv7vmUvVpHaOo0CD1f3aZR8UGhz1Ao3vHWQ0TAAAAAAAAdciq3ecvbtzIi5EA5wR4OwDAl512Fphq3zgiRKMS4tSqUZgahAVrxvBuHvWbMaybokOZhggAAAAAAMDXFRUZWvXTnQUtG4SqVUyYlyMCilEsAKogwOQ6GBeuOzC2b7xeGN1DjqDy/xQd9gC9MLqHxvaNtxwjAAAAAAAA6o4dP2brZK5LUvFdBayzirqizk9DBNRFRUWG5v5vn7YdyjLVr7x1B8b2jdfQrrH6cH2Glm4/omynS1EOu1K6NNPohDhFh3FHAQAAAAAAQH1Regoi1itA3UGxADDp6GmnHp23SV9/f7zyxue52LoD0WF2TRjQVhMGtK2OEAEAAAAAAFBHnb+4cWJ71itA3cE0RIAJK747qmv/8rW7UGAPtOkXPZp71Jd1BwAAAAAAAPxbfkGR1u7LlCR1ahahppEOL0cEnMOdBcBPsnJd+mBdupbuOKLTzgJFOoKU0iVWYxLi5AgO0MzF32nO//a527dtHK5ZN12m7nHR+lnHdKUu2CpnQVGZ4zrsAZoxrBvrDgAAAAAAAPi5TRmnlJtfKElKas8URKhbKBYAkuallf9h/5q9mfrD4p1qEhGsg6ec7u1jesdp+rCuCg8p/hNi3QEAAAAAAABUZuXuc1MQsV4B6hqKBfB789LSNXn+5gr35xcUuQsFESFBemZkNw3v1bJMO9YdAAAAAAAAwMWULG4cYJMubxfj5WiA0igWwK9l5bqUumCrR21tNun9if3VtWV0DUcFAAAAAACA+iY3v0Ab0k9KknrENVCUg5koULewwDH82ofrM8pdZ6A8hiF989MCNAAAAAAAAIAZa/dlylVoSJKu6NDIy9EAZXFnAfzaku0/mmx/RHcxzRAAAAAAAAA8kJXr0gfr0rV0xxF9fzTHvb1nXAPvBQVUgGIB/NppZ4Gp9tlOVw1FAgAAAAAAgPpkXlq6UhdsLXdWi4fe3aCnhnfT2L7xXogMKB/TEMGvRTrM1cuYSw4AAMB7du3apdTUVPXv319NmjRRZGSkevXqpWeeeUZnzpwp0/67777TiBEj1LBhQ4WHhys5OVlffPGFFyIHAAD+Zl5auibP31zh9Nd5BUWaPH+z5qWl13JkQMUoFsCvpXSJNdm+WQ1FAgAAgMq89tprevHFF9W+fXulpqZq5syZuuSSS/T73/9eSUlJOnv2rLvtnj17lJSUpNWrV2vy5MmaOXOmcnJyNHToUC1dutSLjwIAANR3WbkupS7Y6lHb1IVblZXLTBaoG5iGCH5tTEKcZi7e6dEixw57gEb3jquFqAAAAFCeMWPGaMqUKYqOjnZvu++++9SxY0c988wzmjt3rh588EFJ0pQpU3Tq1CmtW7dOvXr1kiTdfvvt6tq1qx544AHt3LlTNpvNGw8DAADUcx+uz/DosyZJcrqKNH99Bmtkok7gzgL4tegwu2YM7+ZR2xnDuik6lGmIAAAAvKVPnz6lCgUlbrzxRknS1q3F3+A7c+aMFi5cqEGDBrkLBZIUERGhu+++W7t27VJaWlqtxAwAAPzPku0/mmx/pIYiAcyhWAC/N7ZvvC6Njahwv8MeoBdG92DBGQAAgDoqIyNDktSsWfGUkZs3b1ZeXp4SExPLtO3fv78kUSwAAAA15rSzwFT7bCfTEKFuYBoi+L39x8/ouyM5kqRmUSFq1zhC2U6Xohx2pXRpptEJcYoO444CAACAuqiwsFBPPfWUgoKCdMstt0iSDh06JElq2bJlmfYl2w4ePFjpsdPT092FiBJbtmyRJLlcLuXn51cpditcLpcKCgrkcvGhgqfImTXkzRryZg15s4a8mVdbOYsIDjTVPjIk0CvvKzzFtWaNN/Nm9ZwUC+D33lj9gwyj+OdJgzvppn6tvBsQAAAAPPbwww9r9erVevbZZ3XJJZdIknJzcyVJISEhZdo7HI5SbS5m7ty5mj59ern7srOzlZmZaTVsy1wul3JycmQYhux2vtDiCXJmDXmzhrxZQ96sIW/m1VbOEluF65v9J02198b7Ck9xrVnjzbxlZ2db6kexAH7tTF6BPvg2XZIUHWrX8F5lv30GAACAuunJJ5/Uyy+/rIkTJ2rKlCnu7WFhYZKkvLy8Mn2cTmepNhczYcIEDR06tNS2LVu26N5771VUVJRiYmKqEr4lLpdLNptNDRs2ZLDuIXJmDXmzhrxZQ96sIW/m1VbObr0iUn9fdUh5Hixy7LAH6NakDoqqw+tkcq1Z4828RUVFWepHsQB+7aMNB3U6r3geuZv6xivU5G1iAAAA8I5p06bp6aef1p133qlXX3211L4WLVpIKn+qoZJt5U1RdKH4+HjFx5e/bpXdbldwcLDZsKtFUFCQV8/vi8iZNeTNGvJmDXmzhryZVxs5axIcrKeGd9Pk+ZsrbTtjWDc1jg6vsViqC9eaNd7Km9XiBAscw28ZhqE3Vu2XJAXYpNv6t/ZuQAAAAPDItGnTNH36dI0fP15z5syRzWYrtb979+4KCQnR6tWry/Rds2aNJKlPnz61EisAAPBPY/vG64XRPRQUYCt3v8MeoBdG99DYvuV/MQHwBu4sgN9aveeEvj9avLDx1Z2bKT6m8lvRAQAA4F0zZszQ9OnTNW7cOL322msKCCj7/aeIiAhdf/31+uijj7Rp0yb17NlTkpSTk6M5c+aoY8eO6tevX22HDgAA/MzYvvFauuOIPt9+RJLUsWmEGkeEKKVLM41OiFN0GFP6oG6hWAC/9fpPdxVI0vjENl6LAwAAAJ555ZVXNHXqVLVq1UqDBw/WO++8U2p/s2bNlJKSIkl67rnntGzZMg0ZMkSTJk1SVFSUZs+erYMHD2rRokVl7kYAAACobkVFhtb9ULzQccsGofp80s94D4I6jWIB/FLGyVwt3VFc1e3QNEJXdGjk5YgAAABQmbS0NEnSgQMHNH78+DL7Bw4c6C4WdOjQQStXrtRjjz2m559/Xvn5+UpISNDixYs1ePDgWo0bAAD4p11HT+vEmXxJUmL7RhQKUOdRLIBfemvNARUZxT+PT2zNkzUAAIAPeP311/X666973L5z585asGBBzQUEAABwESt3n3D/nNSeL6qi7mOBY/gdp6tQ76UdkCRFhgRpVEKclyMCAAAAAABAfbN6z3H3z0ntG3sxEsAzFAvgdxZuPKRTuS5J0ujecQoP4QYbAAAAAAAAVJ+CwiJ9szdTktSuSbhiox1ejgioHMUC+BXDMEotbHx7YmvvBQMAAAAAAIB6aeuhbJ3OK5DEFETwHRQL4FfW/XBS2w9nS5IGdmqidk0ivBwRAAAAAAAA6ptVTEEEH0SxAH7l/LsK7khq47U4AAAAAAAAUH+t3nNuceP+7bizAL6BYgH8xpFspxZv/VGS1LpRmAZ2auLliAAAAAAAAFDf5BUUKm1/8XoFnZtHKSY82MsRAZ6hWAC/8faaH1RQZEiSxvVvrYAAm5cjAgAAAAAAQH2z4cApOV1FklivAL4lyNsBAOfLynXpg3XpWrrjiE47CxTpCFJKl1iNSYhTdJjd8nHzCgr1ztoDkqRQe6Bu6BNfXSEDAAAAAAAAbqvOm4KIYgF8CcUC1Bnz0tKVumCrnAVFpbav2ZupmYt3asbwbhrb19qH/J9t+VHHc/IlSaMSWio61HrhAQAAAAAAAKjI6p8WNw4MsKlf2xgvRwN4jmIB6oR5aemaPH9zhfudBUXu/VYKBucvbDyehY0BAAAAAABQA3LzC7ThwClJUo+4aEU6+MIqfAdrFsDrsnJdSl2w1aO2qQu3KivXZer4m9JPaWP6KUnFt351ahZpNkQAAAAAAACgUmn7T7rXzGQKIvgaigXwug/XZ5SZeqgiTleR5q/PMHX8/1u93/3z7YltTPUFAAAAAAAAPLXqpymIJCmpfWMvRgKYR7EAXrdk+48m2x/xuO2JnHx9sumwJKllg1AN7tzU1LkAAAAAAAAAT63aXby4cXBggHq3bujlaABzKBbA6047C0y1z3Z6Pg3RvHUZyi8svmvhtv6tFRTIJQ8AAAAAAIDql5Xr0tZDWZKkhNYN5LAHejkiwBw+OYXXRTrMrbMdEuTZZVtQaOidtAx3n5ssLIwMAAAAAAAAeGLNvhMyipcr0BVMQQQfRLEAXpfSJdZU+00ZWfrzkl3Kzb/4HQlf7T2lI9l5kqRhPVuoYXiw5RgBAAAAAACAi1m954T756QOLG4M30OxAF43JiFODg/vFpCkwiJDs5Z9r6v++KUWbDwoo6Rkq+LbveZ8vVfjXvtWT32+3719dEJcdYYMAAAAAAAAlFKyuHFYcKB6xDXwbjCABRQL4HXRYXZNH97Vo7bXdI1VWHDxfG8/Zjv16/c2avTfV2lT+inNS0vX5c8u1dOLduib/Sd11lXk7nfHv9ZqXlp6jcQPAAAAAAAA/3bsdJ52HcmRJPVrGyM762bCB5mbLB6oIfENwy6632EP0Ixh3TS2b7yOZDv1wuLvNH998XoE6w+c0vBXVl60v7OgSJPnb5YkjWXtAgAAAAAAAFSjkrsKJCmpPVMQwTdRLECd8LcVe9w/33p5K+09dkbZTpeiHHaldGmm0Qlxig6zS5KaRTn0p7E9dXtia03/zzatP3DK4/OkLtyqoV1j3ccCAAAAAAAAqqrUegUsbgwfRbEAXrc545T+t7u4+tq9ZbSeHtFNNput0n494xto/v1JemTeRn284ZBH53K6ijR/fYbuGtC2SjEDAAAAAAAAJVb9VCyIDrWrc/MoL0cDWMPkWfC6v593V8H9g9p7VCgoYbPZdDjLaep8S7YfMdUeAAAAAAAAqEh6Zq4OZOZKkhLbNVJggOefbQF1CcUCeNWeYzlavO1HSVK7xuEa2jXW9DFOOwtMtc92ukyfAwAAAAAAACjP6r3nTUHUgfUK4LsoFsCr/vHlHhlG8c/3DWxvqfIa6TA3m1aUg/UKAAAAAAAAUD1Kr1dAsQC+i2IBvOZw1ll9vOGgJCk2yqERl7W0dJyULubuRkjp0szSeQAAAAAAAIDzGYahlT+txdkkMkTtm0R4OSLAOooF8Jo5X++Tq7D4toK7k9sqOMja5TgmIU4OD/s67AEa3TvO0nkAAAAAAACA8+05dkZHT+dJKr6rwMxanEBdQ7EAXnHyTL7eXXtAktQgzK6b+7WyfKzoMLtmDO/mUdsZw7opOpRpiAAAAAAAAFB1q/ccd//MFETwdRQL4BX/t3q/cvMLJUnjE9soPMTcugMXGts3Xi+M7lHhHQYOe4BeGN1DY/vGV+k8AAAAAAAAQIlVpdYraOzFSICqq9ontIAFufkFen3VfklSqD1QdyS1qZbjju0br6FdY/Xh+gwt2XZYmTlOxUQ4NKRrc41OiFN0GHcUAAAAAAAAoHoUFRlavbe4WBAfE6r4mDAvRwRUDcUC1Lp316brVK5LknRzv1ZqGB5cbceODrNrwoC2GtevpTIzMxUTE6Pg4Oo7PgAAAAAAACBJO37Mdn/GldSOuwrg+5iGCLUqv6BIc77eK0myB9p0d3JbL0cEAAAAAAAAmLf6/CmIOrBeAXwfxQLUqn9vPKjDWU5J0oheLdWiQaiXIwIAAAAAAADMW7n73OLGie0oFsD3USxArSksMvTql3skSTabdO/A9l6OCAAAAAAAADDPVViktfsyJUkdmkaoaZTDyxEBVUexALVmyfYftffYGUnS0C6x6tA0wssRAQAAAAAAAOZtzsjSmfxCSVJSe+4qQP1AsQC1wjAM/W3FHvfv9w/irgIAAAAAAAD4ptV7zk1BRLEA9QXFAtSKVXtOaHNGliTpig6N1DO+gXcDAgAAAAAAACxa9dPixjab1J/1ClBPBHk7APiHv63Y7f75l4M6eDESAAAAAAAA+JOsXJc+WJeuJdt+1MkzTjUMd2hIt+YakxCn6DC76eM5XYX69oeTkqSuLaLUICy4ukMGvIJiAWrcpvRTWrm7uNraIy6aW7MAAAAAAABQK+alpSt1wVY5C4rObTx2Vt/sP6mZi3dqxvBuGts33tQx1/9wUvk/HS+pfePqDBfwKooFqHF/P2+tgl8Oai+bzebFaAAAAAAAAOAP5qWla/L8zRXudxYUufebKRiUTEEkSYl8KRb1CGsWoEbtPpqj/27/UZLUrkm4hnSJ9XJEAAAAAAAAqO+ycl1KXbDVo7apC7cqK9fl8bFX/bS4cVCATX3bxFiKD6iLuLMA1apkDrilO47otLNAR7PzZBjF++4b2F4BAdxVAAAAAAAAgJr14fqM0lMPXYTTVaT56zN014C2lbbNySvQpowsSVLP+AaKCOHjVdQfXM2oNuXOAXeegkLPnqABAAAAAACAqljy00wXnrc/4lGxIG1fpgqLir8Zy7qcqG8oFqBaVDYHnCQ9/vFWBQUEmF40BgAAAAAAADDjtLPAVPtsp2fTEJVMQSSxuDHqH9YsQJXV5BxwAAAAAAAAgFmRDnPfkQ4NDvSo3crdxYsbhwQF6LJWDcyGBdRpFAtQZVbmgAMAAAAAAABqSkqXWFPtN6ef0sz/7tSp3Pwy+7JyXZrz9V6N+fsqbT+cLUlq0cChPBdTbqN+qfPFgl27dik1NVX9+/dXkyZNFBkZqV69eumZZ57RmTNnyrT/7rvvNGLECDVs2FDh4eFKTk7WF1984YXI/YeVOeAAAAAAAACAmjImIU6OIM8/+swvNPTK8j0a8Ifl+vOSXco6Wzwzxry0dF3+7FI9vWiHvv3hpLv9vuO5uvzZpZqXll7tsQPeUufXLHjttdf0yiuvaNiwYbr11ltlt9u1fPly/f73v9e8efO0Zs0ahYaGSpL27NmjpKQkBQUFafLkyYqOjtbs2bM1dOhQffbZZxo8eLCXH41vyMp16YN16Vq644hOOwsU6QhSSpdYjUmIU3SYvVTboiJDh045TR3f0zngAAAAAAAAACuiw+xKvb6LHv+48qmzr+7cVN/szVROXoFy8go0a9n3+tfKferftpGW7Kj4S6/OgiL3Gp6s0Yn6oM4XC8aMGaMpU6YoOjrave2+++5Tx44d9cwzz2ju3Ll68MEHJUlTpkzRqVOntG7dOvXq1UuSdPvtt6tr16564IEHtHPnTtlsNm88DJ8xLy1dqQu2lplWaM3eTM1cvFMzhnfT2L7xOpGTp3nfZuidtT8oPfOsqXNEOeyVNwIAAAAAAACq4GQl62Y67AGaMaz4s65Tufma8/U+/WvlPp3JL9RpZ8FFCwXnS124VUO7xpb5ki3ga+r8NER9+vQpVSgoceONN0qStm4trg6eOXNGCxcu1KBBg9yFAkmKiIjQ3XffrV27diktLa1WYvZV89LSNXn+5grXHyiplo54ZaUSn/tCf1i803ShQJJSujSraqgAAAAAAABAhQ6cyNWsZd9LkoIDbXrwyg7q37ahOjUJVf+2DZX6iy76Zspg9x0BDcKC9Zuhl+jr312l+we1lz3Q8y8cs0Yn6os6f2dBRTIyiv8AmzUr/uB58+bNysvLU2JiYpm2/fv3lySlpaWpX79+tRekD8nKdSl1QeW3ZUnSxvRT7p/tgTZdfWkzfbHzqPILK1/UxWEP0OjecVbDBAAAAAAAAC7KMAw9uWCr8n76QuyvB3fSA1d2UH5+vjIzMxUTE6Pg4OBy+8aEB+t311yqtfsyte68NQoqs2T7Ed01oG21xA94i08WCwoLC/XUU08pKChIt9xyiyTp0KFDkqSWLVuWaV+y7eDBg5UeOz093V2IKLFlyxZJksvlUn5+2RXRa5LL5VJBQYFcrpqd5//9tT9UeEdBeaJDg3T3FW00JqGlGkUE68P1B/X4v7dX2i/1uksVGmjUeB5rK2/1CTmzhrxZQ96sIW/mkTNryJs13swb/1cAAADnfLb1R32565gkqUPTCN2T3M70MZyuQlPtWaMT9YFPFgsefvhhrV69Ws8++6wuueQSSVJubq4kKSQkpEx7h8NRqs3FzJ07V9OnTy93X3Z2tjIzM62GbYnL5VJOTo4Mw5DdXnPzni3eeshU+/aNHLqhW7SUn6PMTOmqNqF6IqW1/rj8gPIKjDLtQ4IC9Jsr43VVm9BayWFt5a0+IWfWkDdryJs15M08cmYNebPGm3nLzs6u1fMBAADUVaedLk3/zzb378+M6KbgIPMzsUc6zH1syhqdqA98rljw5JNP6uWXX9bEiRM1ZcoU9/awsDBJUl5eXpk+TqezVJuLmTBhgoYOHVpq25YtW3TvvfcqKipKMTExVQnfNJfLJZvNpoYNG9booNNZaG7hZ2ehrUwuxifHaESftvp4wyF98d0xZTsLFOUI0tWXNtWIXs0VHVp7T5q1lbf6hJxZQ96sIW/WkDfzyJk15M0ab+YtKiqqVs8HAABQV/15yS4dyS7+fHBM7zhd3q6RpeOkdInVmr2ef+GVNTpRH/hUsWDatGl6+umndeedd+rVV18tta9FixaSyp9qqGRbeVMUXSg+Pl7x8fHl7rPb7RXOZ1aTgoKCavzcUSY/yI8ODS43nibBwZo4qKMmDupYXaFZVht5q2/ImTXkzRryZg15M4+cWUPerPFW3ijqAAAASFsPZun/Vu2XJDUIs2vKzy+1fKwxCXGauXinR9N2s0Yn6gvz9+B4ybRp0zR9+nSNHz9ec+bMkc1W+pvw3bt3V0hIiFavXl2m75o1ayRJffr0qZVYfVFKl1iT7amWAgAAAAAAoG4oLDL0+MdbVPTT7NhTfn6pGkWUna7cU9Fhds0Y3s2jtjOGdavVGTWAmuITxYIZM2Zo+vTpGjdunF577TUFBJQNOyIiQtdff71WrFihTZs2ubfn5ORozpw56tixo/r161ebYfuUMQlxsgd6NhUR1VIAAAAAAADUJW9/84M2Z2RJkvq2aagbepc/c4gZY/vG64XRPeSoYM0Dhz1AL4zuobF9q34uoC6o89MQvfLKK5o6dapatWqlwYMH65133im1v1mzZkpJSZEkPffcc1q2bJmGDBmiSZMmKSoqSrNnz9bBgwe1aNGiMncj4JyTufkKsNkklV2c+EJUSwEAAAAAAFBXHM12aubi7yRJQQE2PT2iuwICqudzwLF94zW0a6w+XJ+hpduPKNvpUpTDrpQuzTQ6IU7RYXxGhvqjzhcL0tLSJEkHDhzQ+PHjy+wfOHCgu1jQoUMHrVy5Uo899pief/555efnKyEhQYsXL9bgwYNrNW5fkldQqAffXa+8n+ZgCwywqbCobNHAYQ/QjGHdqJYCAAAAAACgznhq0Q6dziuQJN2d3E6XxEZW6/Gjw+yaMKCtJgxoW63HBeqaOl8seP311/X666973L5z585asGBBzQVUDz336U5tPZgtSeoZ30Bzbu+jhZsOUS0FAAAAAABAnfbVrmP6z6ZDkqSWDUL1q6s7eDkiwHfV+WIBatbirT/q9Z9WiY90BOnlmy9Tk8gQqqUAAAAAAACo05yuQj25YKv79xnDuyosmI87Aat8YoFj1Iz0zFxN/vDcYtAvjO6h+JgwL0YEAAAAAAAAeOZvy3frhxO5kqRrusbq6s7NvBwR4NsoFvgpV2GRHnp3g7KdxfO53Z7YWj/v3tzLUQEAAAAAAACV2300R3//co8kKTw4UFOHdfFyRIDv474cPzXzv99pY/opSVKX5lF6/NrO3g0IAAAAAAAAqEBWrksfrEvX0h1HdNpZoPTMXLkKDUnSpJROah4d6uUIAd9HsaCOKnkCXLLtR50841TDcIeGdGuuMdWwyPAXO4/on1/tlVRceX3l1gQ57IHVETYAAAAAAABQrealpSt1wVY5C4rK7LOp+PMtAFVHsaAOKvcJ8NhZfbP/pGYu3qkZw7tpbN94S8c+nHVWj847t07Bs6O6q23j8KqGDAAAAAAAAFTowjsDIh1BSukSW+kXY+elpWvy/M0V7jckTfl4qwIDAix/XgagGMWCOqayJ0BnQZF7v9knwILCIv363Y06meuSJN3UN17De7W0HiwAAAAAAAD8RlU+8C/vzoA1ezMv+sXYrFyXUhds9Si21IVbNbRrbJVn5AD8GcWCOqSmnwBfWvq91u7PlCR1ahahqdd3tRQnAAAAAAAAfI/VD/sl6x/4W/1irGEYen31vnKnHir3OK4izV+fobsGtPWoPYCyKBbUIR+uz6iWJ8DynvjbN4nQ298ckCSF2gP1yi0JCmU+NwAAANRzRUVF+stf/qJ//OMf2r9/v5o0aaKxY8dqxowZCg/3nek4q7KmWVU+GKpq/7pwbqvrwPnq466u2P0tb9V1bl/7G61qf3/NW135PzObN6sf9pf0tfKBv5kvxj7x7y3acThbP2Y7tf9Ern44cUa5+YUe9S2xZPsRigVAFdgMwzC8HURdt3r1aiUlJWnVqlVKTEyssfPc9M/VWrM30+P2ie0a6d2J/Uttu9iCLyVmjumhG/rU7znc8vPzlZmZqZiYGAUHB3s7HJ9Azqwhb9aQN2vIm3nkzBryZo0381Zb71d90a9//WvNmjVLI0eO1M9//nPt2LFDf/3rX5WcnKylS5cqICDA1PG8keuLvcd3BAVU+uGO1b6c2/fO7cuxc26uF85ds/0r+7C/xAuje5Tpn5Xr0uXPLvXoC64Oe4C+mTJY0WF2GYahV5bv1h8/31Vpv+rStUWUFv0qucL9vM+1hrxZ44vjA+4sqENOOwtMtd92KEvvfHNAAzo0VqtGYR4/8RdRHwIAAIAf2LZtm/76179q1KhRmj9/vnt727Zt9atf/UrvvfeebrnlFi9GWLmqrGlW1fXQOLdvnduXY+fctX9uX47dX89dlf5Vnfba7EwY1876WpJ0LCdP+R72u1DDMLtaNwpXxslcHc/J97hflIP1CoCqMPc1GtSoSIe52k22s0CPf7xFP5u5XAOe/0JTPtriUb+pC7cp66dFjgEAAID66t1335VhGHr44YdLbb/nnnsUFhamt956yzuBecjshzvnv8evSl/O7Xvnrmp/zu1f565qf85d++c22//JBVu1dt8Jrd2XqWU7jmjqwovPQHE+p6tIV/1pha54/gv1fWapek7/XM8s2u5R3xIHT53VwVNnLRUK2jUJ16bUIdqQOkT/fuAK3T+og6n+KV2amT4ngHO4s6AOSekSa2oaovNlnDrrcVsWfAEAAIA/SEtLU0BAgPr161dqu8PhUK9evZSWlualyDxj9pucL/x3p4Z2jZUkLd72o+m+Q37qK0n/Ndn/D4t3uPub7fv84h0a0uXcuT+vQn8rfc//YOnzbUdM9X/usx0a3Lm4/5Lt1vta6f/sZzt09aVN3duW7jDX/5lPt+vqn85vtu/Tn24vde5lO45a7m+271OLtuuqn/oahvTFTnP9Z3yyTQMvKe6/3GTfaf/ZpoGdmhSfW4a+/O6Yqf6pC7cquWNx/692mev75IKtSu7Y2L3t6+/N9X/i31uU1L6xO/aV3x831f93H21WYrtGkqTVe06Y6vvbDzepX9sY97Zv9mWa6v/IBxvVp3Vx/7T95vo+/P4GJbRqKEPF18v6AydN9b/jX2vVvmmECosM7Tpy2lTfkX9bqbiYMEmSTVLGyVzT/Vs0CJUhQ0VF0qGssx73zyso0th/rPGobXlOnPH8m/zlCbBJbRqFq0lkiHYfzTF1vGaRjlJ3NYxJiNPMxTs9ngJpdO84SzEDKMaaBR6orXlJzc4B9+F9idqYnqWVu4/r8+1HVFjk+X9leesd1CfMpWYeObOGvFlD3qwhb+aRM2vImzW+OCdpfde9e3cdPXpUR44cKbNv7Nix+uCDD5SXl1fh/1d6eroyMjJKbduyZYvuvfdeffnll+rfv2bfT4977Vt9s/9kjZ4DAIAL2QNtim8YpuAgm4IDA7TveK5O53k+dXb/tg31xp19JEmvr/pBzy72fM2CJ35+icYntiq17cP1B/X4vyu/u+HZEV00JqHlRdu4XC6dPHlSDRs2lN3OlEWeIm/WeDNva9as0cCBA1mzwJdFh9k1Y3g3j9YdmDGsm7q1bKBuLRvotv6tdd2sr7XtULbH58p2Mg0RAAAA6rfc3FyFhISUu8/hcLjbVFQsmDt3rqZPn17uvuzsbGVmWrsr2FMnzzhr9PgAgJplk1SVb+gGBkgBNptsklyFhqljNQwN0o2XNVV4cKDmbzqm/Sc9f03p0TxCr4zp5P79vfVH9NJXGRfpUVpiq3D3a+SgNqH6U5BNeQWVRx8SFKBBrR1lXl+vahOqJ1Ja64/LD5R7nJCgAP3mynhd1Sa00tdml8ulnJwcGYbBh94mkDdrvJm37GzPPyc+H8WCOqZkAZoKV7a3B2jGsLIr25td74AFXwAAAFDfhYWF6ejRo+Xuczqd7jYVmTBhgoYOHVpqW8mdBVFRUYqJiamgZ/VoGO6Qjnk+3WjrmDDddnnxOOGtbw7oh0wTfRuFadzl58YYb66x3t9s3zaNwjSu/7lzv7HafP/b+xd/C/X/Vh/QD5m5lvrabMX9958w1/+On74B+7rJvm0bhemOpHPfnv3XKvP970xqXfxppKTXVv5grn/jMN2V1Nrdd5/JvhOuaO3+fe7KH7TvuLX+Zvu2axymewa0cf8++3/7tddE//ZNwjUxuY1skl79ap/pvr8ceG463799uU97jp3xuH/HpuF6YFA7SdLLy/dqt8m+Dw5q7/79r8v3mOrfqWmEfn11+5LLRS8t261dRz3vf0mzCP0mpaMk6Y9Lvtd3R3I87ntpbIR+N6ST+1r9w393aeePnvfvEhupx3/eSTabTU9/+p12/Hja475dm0cq9bpL3b/PWLRT2w573v+y+Gi9cnNPBdhseuDdTVp34JTHfc//dr1k/m6xqva/JDZSj1zTVZIU4gg19e3+a7q3KPUad+sVkfr7qkPK83AmjFuTOigqtPhzpxhJU3/R2aM7A6b+4lK1btG03H3jk2M0ok9bfbzhkL747piynQWKcgTp6kubakSv5ooO9exzLpfLJZvNxjfkTSJv1ngzb1FRUZb6USyog8b2jdfQrrH6cH2Glmw7rMwcp2IiHBrStblGJ8SVmruthNn1DljwBQAAAPVdixYttH37duXl5ZW5w+DgwYNq3LjxRaeMio+PV3x8fLn77HZ7jU83NaRbc1MfDI1PauNelywgMFBPfeL5gpTjE9uUWtPMFmC9v9m+t19wbtms9zdsAVU6d5HM97/jp/6FJvuOS2yj8VecO3eBYb7/7ef1dxXZzPXv30bjkor751voe1viuXPnFVrvb7bvbf3b6Ob+586dWyBT/W+9vLVu7NdGknQ63zDdd3Sfc0WSU84iU/1v7tdaIxKKC0QncgtN9x2ecO756Hhugan+N/Vrpet6npvL/fBpl6n+N/ZtpZRuLSRJB07lmeo7tk8rXdmlufv3vSecpvqP6ROvAZcUr0sy5miuqb6je8fr8g7nPnwe1fuMtpnof33PlmoREylJurZHC1PFgiFdm5d6nTD7nF6d/W/s10Z/Xrrb42mvx/ZrreDgc589NQkO1lMmZsJoHB1eatst/dsqKDDI9BdjL9QkOFgTB3XUxEEdK43jYoKCgmrldby+IW/WeCtvVosTAdUcB6pJdJhdEwa01Rt39tEbt3bRG3f20V0D2pZbKJCKF3xxBHn238mCLwAAAPAHffv2VVFRkdauXVtqu9Pp1MaNG9WnT58KetYNVXmPX9XxAef2rXNXtT/n9q9zV7U/5679c1e1f8m0156YMaxbud/SH9s3Xi+M7lFhDA57gF4Y3aPCD/zH9o3XN48P1pO/6KLEdo3UtUWUEts1UuovuuibKYMrLRQAqB0UC+qJ6njiBwAAAOqTG2+8UTabTS+99FKp7bNnz1Zubq5uvfVW7wTmoaq8x6/q+IBz+9a5q9qfc/vXuavan3PX/rmro39VP+wvOUZVPvAv+WLsuxP7a9GvkvXuxP4X/WIsgNrHNET1iNX1DgAAAID6qHv37nrggQf08ssva9SoUbr22mu1Y8cOzZo1SwMHDtQtt9zi7RArVZX3+FUdH3Bu3zq3L8fOubleOHft9S+Z9nrp9iPKdroU5bArpUuzCqe9vlDJB/4Tzp8+DkC9YTMMoyoLs/uF1atXKykpSatWrVJiYmKtnjs/P1+ZmZmKiYnxeG6rrFxXlZ746wMrefN35Mwa8mYNebOGvJlHzqwhb9Z4M2/efL9a1xUWFuqll17SP//5T+3fv1+NGzfWjTfeqBkzZigiIsL08byV65L3+J6uaVZeX6vjg6r0rwvntpIzX37c1RW7v+Wtus7ta3+jVe3vr3mrK/9nVv9O/Rnvc60hb9b44viAYoEHfK1YAPJmBTmzhrxZQ96sIW/mkTNryJs1vjgYgHnezjV/n+aRM2vImzXkzRryZg15M4+cWUPerPHF8QFrFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OeCvB2ALzhz5owkacuWLbV+bpfLpezsbEVFRclut9f6+X0VeTOPnFlD3qwhb9aQN/PImTXkzRpv5q3kfWrJ+1bUHG+ODST+Pq0gZ9aQN2vImzXkzRryZh45s4a8WeOL4wOKBR7Yu3evJOnee+/1ciQAAABAxUret6LmMDYAAACArzA7PrAZhmHUUCz1xqFDh/TJJ5+oXbt2Cg8Pr9Vzb9myRffee6/+8Y9/qHv37rV6bl9G3swjZ9aQN2vImzXkzTxyZg15s8abeTtz5oz27t2rX/ziF2rRokWtntvfeHNsIPH3aQU5s4a8WUPerCFv1pA388iZNeTNGl8cH3BngQdatGihiRMnejWG7t27KzEx0asx+CLyZh45s4a8WUPerCFv5pEza8ibNeStfqsLYwOJ68wKcmYNebOGvFlD3qwhb+aRM2vImzW+lDcWOAYAAAAAAAAAwM9RLAAAAAAAAAAAwM9RLAAAAAAAAAAAwM9RLKjj4uLiNHXqVMXFxXk7FJ9C3swjZ9aQN2vImzXkzTxyZg15s4a8oTZwnZlHzqwhb9aQN2vImzXkzTxyZg15s8YX82YzDMPwdhAAAAAAAAAAAMB7uLMAAAAAAAAAAAA/R7EAAAAAAAAAAAA/R7EAAAAAAAAAAAA/R7EAAAAAAAAAAAA/R7EAAAAAAAAAAAA/R7EAAAAAAAAAAAA/R7HAy2w2W7n/IiIiyrT97rvvNGLECDVs2FDh4eFKTk7WF1984YWovWvatGkV5s1ms8lut3vU9o9//KMXH0XNee6553TDDTeoXbt2stlsatOmzUXbf/PNNxo8eLAiIyMVFRWla665Rhs3biy37aFDh3T77berSZMmCg0NVZ8+ffTBBx9U/4PwAk/z5nQ6NXv2bA0fPlxt2rRRaGio2rVrp5tvvlk7duwo037//v0VXoPdunWr4UdV88xcb3fccUeFufjwww/LtM/Ly1Nqaqratm2rkJAQtW/fXk8//bRcLlcNPqLa4WneLnb9lPx7++23PWrv69fbrl27lJqaqv79+6tJkyaKjIxUr1699Mwzz+jMmTNl2pt5zczKytJDDz2kli1byuFwqGvXrvr73/8uwzBq+mHVKE9zZhiG3nrrLd10003q0KGDwsLC1KpVKw0bNkzffPNNucc28/7F15i51sy+zygqKtKLL76oSy+9VA6HQ/Hx8Xr00UfLvYbhvxgfmMPYoHKMD6xhfGAN4wPzGBtYw/jAPMYH1vjb+CDIa2eGW3JysiZOnFhq2/lvaiVpz549SkpKUlBQkCZPnqzo6GjNnj1bQ4cO1WeffabBgwfXZsheNWrUKHXo0KHM9s2bN2vmzJm6/vrry+x78cUX1bhx41LbevfuXWMxetPjjz+umJgYJSQk6NSpUxdtu2bNGg0aNEgtW7bUjBkzJEkvv/yykpOTtWrVKnXv3t3dNjMzUwMGDNDRo0f1yCOPKC4uTu+8847Gjh2r1157TXfeeWdNPqwa52ne9u/fr4kTJ2rAgAGaMGGCWrRoob179+rvf/+7PvroIy1evFhXXnllmX4jR47UqFGjSm1r0KBBNT+K2mfmeivx5ptvltnWr1+/MttuvPFGLViwQHfddZcSExO1evVqPfnkk9q9e7def/31KkbuXZ7mrUmTJuXmS5IefPBBnT17VkOHDi2zrz5eb6+99ppeeeUVDRs2TLfeeqvsdruWL1+u3//+95o3b57WrFmj0NBQSeZeM/Pz85WSkqINGzbooYceUufOnfXZZ5/pl7/8pY4cOaJp06Z56RFXnac5y8vL07hx49SrVy/ddNNNatu2rQ4fPqxXX31ViYmJeuONN3TbbbeVOb4n7198kZlrrYSn7zMmTZqkWbNmaeTIkXr00Ue1Y8cOzZo1Sxs2bNDSpUsVEMD3eFCM8YHnGBtUjvGBNYwPrGF8YB5jA2sYH5jH+MAavxsfGPAqScb48eMrbXfDDTcYAQEBxoYNG9zbTp8+bbRq1cro1KmTUVRUVHNB+oiJEycakoxPPvnEvW3q1KmGJGPfvn3eC6yW7dmzx/1z165djdatW1fYtm/fvkZkZKSRkZHh3paRkWFERkYaKSkppdr+9re/NSQZCxcudG8rKCgw+vbta8TExBinT5+uvgfhBZ7m7fjx46X+Dkts27bNCA4ONnr37l1q+759+wxJxtSpU6sx2rrDzPU2fvx4w9OXnUWLFhmSjEceeaTU9kceecSQZKxcudJSvHWFmbyVZ9WqVYYkY8yYMaW21+frLS0tzTh16lSZ7U888YQhyfjrX//q3mbmNfOVV14xJBmzZs0qddxRo0YZdrvd2L9/f/U/mFriac5cLpexYsWKMu1+/PFHo1GjRkbTpk2NwsLCUvs8ff/ii8xca2beZ2zdutWw2WzGqFGjSm2fNWuWIcl4++23qxw76gfGB9WDscE5jA+sYXxgDeMD8xgbWMP4wDzGB9b42/iAry/VEfn5+crJySl335kzZ7Rw4UINGjRIvXr1cm+PiIjQ3XffrV27diktLa2WIq2bzpw5o/fee09xcXG65pprym2TnZ2tgoKCWo6s9rVr186jdrt371ZaWppuuOEGtWzZ0r29ZcuWuuGGG7R06VL9+OOP7u3vvPOO2rdvX+rbWYGBgXrooYeUmZmpTz/9tPoehBd4mrdGjRqV+jss0aVLF3Xr1k1bt26tsK/T6VRubq7VEOskT/N2PsMwlJ2draKiogrbvPPOO5Kkhx9+uNT2kt/feust0+etS6zk7Xxz5syRJN19990Vtqlv11ufPn0UHR1dZvuNN94oSe6/PbOvme+8847CwsJ0zz33lDruww8/LJfLpffff78GHk3t8DRnQUFBGjhwYJl2zZo108CBA3X06FEdPXq03HNc7P2Lr/I0bxeq7H3Gu+++K8Mwyjyv3XPPPQoLC/P55zVUP8YH1jE2KI3xgTWMD6xhfGAeYwNrGB+Yx/jAGn8bH1AsqAM+/PBDhYWFKTIyUk2bNtVDDz2krKws9/7NmzcrLy9PiYmJZfr2799fkvx6MCBJH3zwgbKzs3XHHXcoMDCwzP4ePXooOjpaDodDSUlJ+uyzz7wQZd1Scs1UdF0ZhqF169ZJkg4fPqyDBw+6r7cL255/PH9VVFSkw4cPq1mzZuXu/9Of/qSwsDCFh4crPj5eqampysvLq+Uo64bo6GhFR0crNDRUKSkp5c55mJaWppYtWyo+Pr7U9vj4eLVo0cKvr7ecnBzNmzdPrVu3VkpKSrlt/Ol6y8jIkCT3356Z18yioiKtX79el112mRwOR6m2/fr1k81mq5fX2oU5q6xtcHBwubeqV/b+pb65WN48eZ+RlpamgICAMtMqOBwO9erVq15ea7CO8UHVMDawhvFB9WJ84DnGB9YxNiiL8YF5jA+sqa/jA9Ys8LJ+/frphhtuUIcOHZSdna1PP/1UL7/8sr788kutWrVKEREROnTokCSV+nZHiZJtBw8erNW465q5c+fKZrPprrvuKrW9QYMGmjhxopKSktSwYUN99913eumll3Tdddfptdde0x133OGdgOsAM9cV12DlXn31VR0+fFhPPvlkqe0BAQG66qqrNGLECLVu3VrHjh3TvHnz9NRTT2n16tVavHhxuYPY+ig2NlaTJk1S7969FR4erk2bNumll15ScnKyPv3001LzRB46dEhdunQp9zgtW7Z0vyj7o/fff185OTn6zW9+U2b+Qn+73goLC/XUU08pKChIt9xyiyRzz1cnT57U2bNny20bEhKixo0b17vntvJyVpFPP/1Ua9eu1bhx48odLFX2/qU+qShvZt5nHDp0SI0bN1ZISEiZ47ds2VKrVq1Sfn6+goODa+MhoQ5jfFB1jA2sYXxQvRgfVI7xQdUxNiiN8YF5jA+sqdfjA69MfoSLeuaZZwxJxtNPP20YhmG88cYbhiRj7ty5Zdru2bPHkGT8+te/ruUo646dO3cakoyrr77ao/bHjx83YmNjjQYNGvj8PJqVudh8hzNmzDAkGcuWLSuzb9myZYYk48UXXzQMwzC++uorQ5Lx5JNPlmlbWFhoSDKGDx9ejZF7l9l5IleuXGmEhIQYPXv2NM6ePetRn3vuuceQZLz11lsWo6x7rMyvuWvXLiMsLMzo0KFDqe0BAQFGcnJyuX2Sk5ON6Ohoi1HWPWbz1r9/fyMgIMD44YcfPO5TH683wzCMBx980JBkPPvss+5tZl4zDxw4YEgyxo0bV+7x4+PjjZ49e9ZE6F5TXs7Ks2vXLiMmJsZo2bKlcfToUY+OfeH7l/rE07wZRsXvM9q1a2fEx8eX22fcuHGGJOPkyZPVFTLqGcYHnmNscHGMD6xhfGAN4wPzGBtUDeMD8xgfWFOfxwdMQ1QH/fa3v1VwcLAWLVokSQoLC5Okcm8Tczqdpdr4o7lz50q6+Px852vUqJHuu+8+nTp1SqtWrarJ0Oo0M9cV12DF1q1bp+uuu04tWrTQokWLylTXK/LEE09Ikvvv3F917NhRY8eO1e7du7Vr1y739rCwsApvjXU6nX57vW3fvl1r1qxRSkqKWrVq5XG/+ni9Pfnkk3r55Zc1ceJETZkyxb29up7bStrXp2utopxdaN++fbr66qtls9n02WefqUmTJh4d/8L3L/WFp3krUdH7jMqe10raAOVhfOA5xgbWMT6oHowPqobxgecYG5TG+MA8xgfW1PfxAcWCOshut6tFixY6fvy4JKlFixaSyr+Ns2RbebdI+YOCggK98cYbatSokUaOHOlxvzZt2kiSO8f+yMx1xTVYvvXr1yslJUXR0dFavny5qRzEx8crMDDQr6/BEuX9PbZo0aLC2zsPHjzol9ebZP4DkBL17XqbNm2ann76ad1555169dVXS+0z83zVsGFDhYaGlts2Ly9Px48frzfX2sVydr79+/fryiuvVE5OjpYsWaLu3bt7fI4L37/UB57m7UIVPa8dP3683AHBwYMH1bhxY6YgQoUYH3iGsUHVMD6oOsYH1YPxgWcYG5zD+MA8xgfW+MP4gGJBHeR0OpWRkeFeIKN79+4KCQnR6tWry7Rds2aNpOKVuf3Rf/7zHx05ckS33XZbuXN8VeT777+X5NniLfVV3759JanC68pms6l3796SpObNm6tly5bu6+3CtpL/XYPr16/X4MGDFRkZqeXLl6t169am+u/du1eFhYV+fQ2WKO/vsW/fvjp48KDS09NLtU1PT9ehQ4f87nqTpPz8fL355ptq0qSJhg8fbqpvfbrepk2bpunTp2v8+PGaM2eObDZbqf1mXjMDAgKUkJCgDRs2lHmDtnbtWhmGUS+utcpyVmL//v0aNGiQsrKytGTJEl122WWmznPh+xdf52neylPR81pRUZHWrl1bqq3T6dTGjRvrxbWGmsP4wDOMDaqG8UHVMD6oPowPKsfY4BzGB+YxPrDGb8YHtT7xEdyOHz9e7vbf/OY3hiTjD3/4g3vbmDFjjICAAGPjxo3ubadPnzZatWpldOzY0SgqKqrxeOui6667zpBkbN68ucw+l8tlnDp1qsz2AwcOGDExMUajRo2M3Nzc2gjTayqb77BPnz5GZGSkcfDgQfe2gwcPGpGRkWXmeS25LhcuXOjeVlBQYPTt29do0KCBkZ2dXe3xe0tleVu/fr0RExNjxMfHG3v27Lnoscr7Oy8sLDRuvPFGQ5Lx/vvvVzXcOuNiecvJySl3vtb169cbwcHBRufOnUtt/+STTwxJxiOPPFJq+yOPPGJIMr7++utqi9vbPJ2X9IMPPig3J+er79fb9OnT3XOIFhYWVtjOzGvmyy+/bEgyZs2aVeoYo0aNMoKCgox9+/ZV++OoTZ7mbP/+/UabNm2M6OhoY+3atRc9ppn3L77Kk7yZfZ+xefNmw2azGaNGjSrVftasWYYk480336zeBwGfxPigahgbVI7xgTWMD6xhfGAeYwNzGB+Yx/jAGn8aH9gMwzBqpyyBC02aNElr1qzRlVdeqVatWiknJ0effvqpli9frssvv1zLly9XaGioJGn37t3q16+f7Ha7Jk2apKioKM2ePVtbtmzRokWLNHToUC8/mtp36NAhtWrVSr1799Y333xTZv+pU6fUtm1bjRgxQp07d3avQj5nzhzl5OTo3Xff1Q033OCFyGvWm2++qR9++EGS9Ne//lX5+fl69NFHJUmtW7fWuHHj3G1XrVqlK6+8UnFxcXrooYfcfY4cOaKVK1eqZ8+e7rYnTpxQ7969deLECT3yyCNq2bKl3n33Xa1YsUJz5szRhAkTavFRVj9P8/bDDz+od+/eyszM1NSpU9W+ffsyxxo5cqTCw8MlSaNGjVJ2draSkpIUHx+v48ePa/78+Vq3bp2GDx+ujz76SAEBvnuTl6d527hxo37+859rxIgR6tixo8LDw7Vp0ya99tprCggI0Oeff64BAwaUOvb111+vTz75RBMmTFBiYqJWr16tuXPn6rbbbtObb75Zuw+0mpn5Oy3x85//XIsXL9b27dvVuXPnco9bn6+3V155RQ8++KBatWqlp556qszjaNasmVJSUiSZe83Mz89XUlKSNm3apF/96lfq3LmzPv30U3388cf6/e9/r6eeeqpWH2d18jRnp0+fVs+ePbVv3z499NBD6tevX5ljpaSkuL8FY+b9iy/yNG9W3mc89NBDevnllzVy5Ehde+212rFjh2bNmqUrrrhCX3zxhc/+faL6MD6wjrFBxRgfWMP4wBrGB+YxNrCG8YF5jA+s8bvxgVdKFDAMwzD+/e9/G0OGDDFatGhhhISEGGFhYUbPnj2NZ555ptwK+/bt241hw4YZ0dHRRmhoqHHFFVcYS5Ys8ULkdUPJqur//Oc/y93vdDqNCRMmGN26dTMaNGhgBAUFGbGxscbo0aONb775ppajrT0DBw40JJX7b+DAgWXar1q1yrjqqquM8PBwIyIiwhgyZIixbt26co+dkZFh3HbbbUajRo2MkJAQ47LLLjPee++9Gn5EtcPTvC1fvrzCdiX/zv+mwZw5c4yBAwcazZo1M+x2uxEREWFcfvnlxiuvvHLRKr6v8DRvhw8fNm677TbjkksuMSIjI42goCAjPj7euP32240dO3aUe+yzZ88aTzzxhNG6dWsjODjYaNu2rTFjxgwjPz+/lh5dzTH7d3rgwAEjICDASEpKuuhx6/P1Nn78+Iv+3V2YNzOvmSdPnjQeeOABo3nz5u5vsv31r3/1+W/lepqzffv2Vfq8tnz5cvdxzb5/8TWe5s3K+4yCggLjj3/8o9GpUycjODjYaNGihTFp0iTj9OnTtfgIUZcxPrCOsUHFGB9Yw/jAGsYH5jE2sIbxgXmMD6zxt/EBdxYAAAAAAAAAAODnfPd+IwAAAAAAAAAAUC0oFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgAAAAAAAAAA4OcoFgCo91asWCGbzSabzaYHH3yw3DZHjx5VcHCwbDabBg0aVLsBos7bv3+/pk2bpo0bN3o7FAAAAFQBYwNUFWMDAPUZxQIAfsPhcOidd95RXl5emX1vvvmmDMNQUFCQFyJDXbd//35Nnz6dAQEAAEA9wdgAVjE2AFCfUSwA4DdGjhypkydPasGCBWX2/etf/9K1116rkJAQL0QGT5w+fdrSPpxz9uxZFRQUeDsMAAAAr2Ns4NsYG1QdYwMA5aFYAMBvJCQkqEePHvrXv/5VavvatWu1bds23XnnnRX2/fbbbzVy5Eg1btxYISEhuuSSS/TMM8+UeXO1du1a3XHHHerUqZPCwsIUGRmpK664Qh9//HGZY95xxx2y2WzKysrS/fffr6ZNm8rhcOiKK67QN9984/Hjys7O1hNPPKHOnTvL4XCoUaNGGjBggN57771S7TZv3qyRI0eqUaNGcjgc6tKli1544QUVFhZWKS7DMDR79mxdfvnlioiIUEREhLp3767U1FR3m2nTpslms2n//v1l+rdp06bM7d02m0133HGHli1bpgEDBigiIkLXX399qfYbNmzQ0KFDFR0drR49erj7fv/99xo3bpyaN2+u4OBgtWnTRr/97W915swZS4/z9ddf15VXXilJuvPOO923rVd2S3rJ8ctT8vjO98Ybb6hfv35q0KCBwsPD1a5dO9166606duxYqXZmH9+xY8d01113qVmzZgoPD1dGRoap8wEAANRHjA0YG1h5nIwNANR33FMHwK/cddddeuSRR3Tw4EG1bNlSkvTaa6+padOm+sUvflFun0WLFmnUqFHq0KGDHn30UcXExGj16tVKTU3Vxo0b9cEHH7jbfvzxx9q5c6fGjh2r1q1b68SJE/q///s/jRo1Sm+//bZuueWWMscfOnSomjRpotTUVJ04cUJ//vOfdd1112nfvn2KjIy86OM5deqUBgwYoG3btmnMmDG6//77VVhYqA0bNuiTTz7RTTfdJKl4QDNw4EDZ7XY98MADio2N1X/+8x/97ne/06ZNm/T2229bjmvcuHF6++23dfnll+uJJ55QgwYNtHPnTn344YeaMWNG5f8pFfj22281f/583XPPPRo/fnypfQcOHNBVV12lG264QaNHj1ZOTo4kad26dbrqqqvUoEED3XvvvWrZsqU2bdqkWbNmaeXKlfryyy9lt9tNPc6f/exnevzxx/Xss89q4sSJSk5OliQ1a9bM8mO70Jtvvqnx48crOTlZM2bMUGhoqNLT0/Xpp5/q6NGjatKkieXHl5KSotjYWD355JM6c+aMIiIiPD4fAABAfcbYgLEBYwPGBgAuYABAPbd8+XJDkjFz5kzj+PHjRnBwsPHMM88YhmEYubm5RnR0tPHoo48ahmEY4eHhxsCBA919z549azRr1sxITk42XC5XqeP++c9/NiQZy5cvd2/Lyckpc/4zZ84YnTp1Mjp37lxq+/jx4w1Jxv33319q+7x58wxJxquvvlrpY7v//vsNScY//vGPMvsKCwvdPyclJRmBgYHGpk2b3NuKioqMG264wZBkLF261FJc77//viHJuO2220qd78LzT5061ZBk7Nu3r0ycrVu3LpVzwzAMSYYkY8mSJeW2l2TMnj27zL4ePXoYl1xyiZGdnV1q+0cffWRIMv71r39Zepwl19D5/StTcvzySDLGjx/v/n3kyJFGZGRkmWvsQlYe36233lrmOJ6eDwAAoL5hbMDYgLFBaYwNAJyPaYgA+JVGjRpp2LBhev311yVJH330kbKysnTXXXeV237JkiU6cuSI7rzzTp06dUrHjx93/7v22mslSZ9//rm7fXh4uPvn3NxcnThxQrm5ubrqqqu0Y8cOZWdnlznHpEmTSv1+1VVXSSq+pfRiioqK9N5776lz586aOHFimf0BAcVP8UePHtWqVas0bNiwUrfk2mw2PfHEE5JU7q3QnsRV8q2jP/7xj+7zXXh+q3r27KnBgweXuy8mJqbMreFbtmzR5s2bdcsttygvL6/U/9WAAQMUHh5e6v+qhNX8V6fo6Gjl5uZq0aJFMgyj3DZWH99vfvMbS+cDAACo7xgbMDa4EGMDxgaAv6NYAMDv3Hnnnfr+++/1v//9T6+99pr69eunLl26lNt2x44dkopvUW7SpEmpf5deeqkk6ciRI+72R48e1cSJE91zQDZu3FhNmjTRq6++Kqn41uALtWvXrtTvjRo1kiSdOHHioo/j+PHjOnnypHr16nXRdvv27ZMkde3atcy+zp07KyAgQHv37rUU1/fff6/mzZtX6223JTp16lThvvbt2yswMLDUtpL/q6lTp5b5v2ratKnOnDlT6v+qhNX8V6fHH39crVu31ogRI9SkSRONHj1ac+bMKbU4m9XHV14ePTkfAACAP2BscA5jA8YGjA0AsGYBAL8zdOhQtWzZUtOnT9fy5cv197//vcK2Jd+smDlzZoVvvFu0aOFuO2TIEO3YsUO//vWv1adPH0VHRyswMFD/+te/9M4776ioqKhM/wvf2F54bm+pzrgqWsxLUpmF4EqEhYVV2Ke8fSVxPfroo7rmmmvK7dewYcMy22oq/xU95vIeb8eOHbV9+3YtW7ZMy5Yt05dffql77rlHU6dO1VdffaX27dtbfnzl5cqT8wEAAPgDxgaeYWzA2ACAf6BYAMDvBAYG6vbbb9dzzz2n0NBQ3XzzzRW27dixo6TiW4gruu21xObNm7Vp0yalpqZq+vTppfbNmTOn6oFfoHHjxmrYsKE2bdp00XZt27aVJG3btq3Mvp07d6qoqKjMN2g81alTJy1YsEBHjhy56DeIYmJiJEmZmZlq06aNe7vT6dThw4fVoUMHS+c/X8n/VWBgYKX/V2ZdbEBTkfMfc8nPksr9ppYkhYSE6Nprr3Xfwv7pp5/quuuu05///Ge98sor1f74KjsfAACAP2BscA5jA88wNgBQnzENEQC/dN9992nq1Kl69dVXFRUVVWG7oUOHqmnTpnr++eeVmZlZZv/Zs2fdt2eWfAvlwm+dbN26tdx5P6sqICBAN998s7Zv3665c+eW2V8SR9OmTZWUlKT//Oc/2rp1a6n9zz33nCRp5MiRlmK49dZbJUmTJ08u882o8/NQcrvr0qVLS7V58cUXy/1GlRWXXXaZunXrpldffbXcN90FBQXl/h96IiIiQpJM9a/oMf/pT38q0/b48eNltiUkJJQ6Z3U+Pk/OBwAA4C8YGzA2MIOxAYD6jDsLAPilVq1aadq0aZW2Cw8P1xtvvKERI0bokksu0V133aUOHTro1KlT2rlzpz766CN9/PHHGjRokDp37qyuXbvqhRdeUG5uri655BLt2rVL//jHP9S9e3etW7eu2h/H008/rS+++EJ33323Pv/8cw0YMECGYWjDhg0qKCjQm2++KUn6y1/+ooEDByo5OVkPPPCAYmNj9cknn+i///2vbrnlFl199dWWzn/DDTfoxhtv1BtvvKHvv/9ew4YNU8OGDbVr1y7997//dQ9ABg8erEsuuUSpqak6ceKE2rZtq//9739as2aNGjduXC25sNlsevPNN3XVVVepR48euuuuu9S1a1fl5uZq9+7d+uijj/Tcc8/pjjvuMH3sLl26KDIyUn/7298UFhamBg0aqGnTpu4Fz8pz88036/HHH9fEiRO1c+dOxcTEaPHixeW+GR8yZIgaNGig5ORkxcfH69SpU3r99ddls9k0bty4an98npwPAADAXzA2YGxgBmMDAPWaAQD13PLlyw1JxsyZMyttGx4ebgwcOLDM9i1bthi33nqr0aJFC8NutxtNmzY1EhMTjRkzZhgnTpxwt9u/f78xZswYo3HjxkZoaKjRt29f46OPPjKmTp1qSDL27dvnbjt+/HijoqdhScb48eM9enwnT540fvvb3xrt27c37Ha7ERMTYwwYMMB4//33S7XbuHGjMXz4cKNhw4ZGcHCwcemllxp/+MMfjIKCglLtzMZVWFhovPzyy8Zll11mhIaGGhEREUb37t2NadOmlWr33XffGUOHDjVCQ0ON6Oho44YbbjAyMjKM1q1bl8n5xR5/ee3Pt3//fuPee+81Wrdu7c5HQkKC8dhjjxkHDhyw/DgXLVpkXHbZZUZISIgh6aIxlFizZo2RlJRkhISEGI0aNTLuuece4+TJk2WO/89//tMYPHiw0axZM8NutxuxsbHGz3/+c+OLL76okcdn5nwAAAD1CWODYowNGBtYOR+A+s9mGF5eJQcAAAAAAAAAAHgVaxYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODnKBYAAAAAAAAAAODn/h/ooy1AbVWu0gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABgsAAAI8CAYAAADP+ZtZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAT/gAAE/4BB5Q5hAAA8iRJREFUeJzs3XdYU9cbB/BvIIGwhygq21FBxYmI1l0VR93WvdHaVm1dtcu6tf3ZZa2tbd11rzpatXVUbetEceDAPcCBAwQRAgmc3x+Y1JgAYd4A38/z9Km599yb9yaHe8/Ne885MiGEABERERERERERERERlVoWUgdARERERERERERERETSYrKAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAihWZTJbr/5YvXw4AGDJkiN7r0mTatGmQyWSYNm2a1KEUuosXL0KhUGDUqFFSh2L2fH19Df5ebG1tUbVqVQwfPhxRUVG53tbf3x/vvfceYmJijG535MgR9O/fH76+vrC2toaDgwMqVaqENm3aYPr06Th37pxe+d27d0Mmk2HevHkFeehERERUirzYbpk9e3a2ZYOCgnRlJ06cWEQRUklVUu7DFi1aBJlMho0bN+qWhYSEQCaTYcWKFUa3OXjwoO5vacmSJUbLHDp0CDKZDOXKlYMQAgDb/0REUmOygIqVwYMHG/z36quvAgDc3d2Nrq9SpYrEUZMpDhw4AJlMhhYtWuRrPxMmTIBCocDkyZMLJrBSIDQ0VPf30rx5c8TFxWHJkiWoW7cuDh48aPK2zZo1w/379zF//nzUrl0bkZGRemW/+OILvPrqq1izZg0UCgVCQ0PRqVMneHh44PDhw5g2bZpBMq9t27Zo2rQpZsyYgbi4uII+dCKTFNT5iYiIpPfLL79kue78+fM4efJkEUZTemkTODdv3pQ6lHzR/hhekj19+hSffvop6tati549e+qWN2/eHADw999/G93uxfuInMo0a9ZM9zmy/U/mgO1/Ks3kUgdAlBvGegUsX74chw4dgr+/f6nsNUD/2b9/P3bt2oUxY8agQoUKUodTbHz44Yd6jaD4+Hh06dIF//zzD0aOHJltD4OXt42NjUWHDh0QERGBN998E0eOHAEAnD59Gh988AHkcjlWr16NN954Q28/KSkp2LFjB1JTUw3e49NPP0Xbtm0xZ84cfPnll/k7WCIiIiq16tevj5MnT+Lo0aMICQkxWK+9lwgKCsKJEyeKODoqiUaPHo0+ffrAzc1N6lDy7Msvv0RsbCx++OEHvcRI8+bNMXfu3CwfLjp48CBsbW3h6emZbRntvl7E9j8RkXTYs4CISozvvvsOADBs2DCJIyneXFxcMHfuXADApUuXcP36dZO3dXd3x9dffw0AOHr0KO7evQsA2LRpE4QQeOONNwwSBQBgY2ODnj17on///gbrXnvtNXh5eWHJkiVITk7OyyERERERYciQIQBgdNiU9PR0rF69Gu7u7ggNDS3iyKikcnNzg7+/f7FNFqjVavz0009wc3NDp06d9NY1adIElpaWuHbtGu7cuWOw3ZEjRxASEoJWrVrh1q1buHXrll4ZjUaDw4cPAzBMFrD9T0QkHSYLqFSKiopCjx494ObmBqVSiXr16mH9+vVGy77YRXbDhg1o0qQJnJycIJPJ8OTJE125bdu2oW3btnB1dYW1tTX8/Pzw1ltvGTSKgJy7tC1fvhwymUx3Q/OijIwMLFiwAIGBgbCxsYG7uzsGDBiAmzdvmjQm5t27dzF06FCUL18eSqUS1atXx4IFC4yWbdGiBWQyGQ4cOIB9+/ahVatWcHJygoODA1q2bIm//vrLYJubN29CJpPB19fX6D6NHfuQIUPQsmVLAPpjW+am29/du3fx22+/oWbNmqhTp47B+hc/08ePH+Odd96Bp6cnbGxsUKtWLaxdu1ZX9t9//0VoaChcXFxgb2+PDh06ZPt0/a1btzBq1ChUqVIFSqUSzs7OaNmyJX799Vej5Y8dO4YJEyagfv36KFeuHKytreHl5YUBAwYYjNn/4meknXMjN/U3r2rWrKn7d2xsbK62rVevnu7f2vr/4MEDAEC5cuVyHYuFhQX69++PJ0+eYN26dSZtExkZCZlMBh8fH934py+7d+8e5HI5nJ2doVKpdMsPHjyILl266OZVKFOmDGrUqIG3334b165dy3X8Wbl58ybGjBmDatWqwdbWFs7OzggMDMSECROMnjf++ecfdO3aFeXKlYOVlRU8PDyyrTMvdotfuXIlgoKCYGtrC1dXV/Ts2TPbYzE1tuzOVUDW4/S+uPzatWsYMGAAKlSoAEtLS934tKaee8+dO4chQ4bA29tb93117NgRBw4cKJDPpSDOT9kNUZDdOfP06dPo168fqlSpAhsbG7i4uOCVV17BkCFDEBERYVA+LS0NCxYsQOPGjeHs7AylUomAgAB8+umnePr0qUF5U76H9PR0/PLLL2jSpAkqVKgAa2trlC9fHg0bNsQnn3yi97dDRGTumjdvDl9fX6xfv96gN+Off/6Je/fuoX///pDLs++An9trz549e/DOO++gVq1acHV1hVKpRKVKlbK8VwD02+FHjhxBu3bt4OzsDFtbWzRp0gT79u3L9fGbcl1JTk6Gi4sLFAoF7t+/b3Q/aWlpcHd3h6WlJW7fvp2r/WvvBbTH7efnp3dtfXlYovxc5xcvXoy6devC1tYWFStWxJgxY5CUlAQAiIuLw7vvvgtvb2/dPVFueqlr20Avv+/L13xT2kK3bt3CgAED4O7uDjs7O4SEhGD37t26stu3b0eTJk3g6OgIFxcX9OnTR/dAjjG5/cyys2XLFsTGxqJPnz5QKBR66xwdHVG3bl0AhsMMhYeHIyUlBc2aNUPTpk2NlomIiEBSUhJcXV0RGBiot47t/0xs/7P9z/Y/SYHJAip1IiIiEBQUhIsXL6J169aoXbs2Tp06hT59+mDNmjVZbjd37lz07t0bGRkZ6NixI+rXr687+b///vvo2rUr/vrrL9SpUwfdu3eHQqHATz/9hDp16uDYsWMFFn9YWBjGjBmDy5cvo3nz5mjZsiUOHjyIoKCgHMf8vH37NurXr48DBw6gRYsWCAkJwaVLlzBmzBjMmTMny+1+/fVXtG3bFnFxcejYsSOqV6+OAwcOoHXr1li1alW+j6lJkya6J7hennuiXbt2Ju1jx44d0Gg0aNWqVbbl4uPjERISgu3bt+PVV19FcHAwzp07h379+mH16tX49ddf0apVKyQmJqJt27Zwd3fHrl270Lx5czx69Mhgf3v37kVgYCB++OEHyOVydOzYEXXq1MHRo0fRo0cPfPzxxwbbfPLJJ5g/fz7S09PRqFEjdOzYEba2tli9ejWCg4OzHNMTyHv9za3ExETdv3P7A/+L21pbWwMAvL29AWT2MLh3716u49E21rZv325S+cDAQNStWxe3b9/OstG4atUqpKeno3fv3lAqlQCApUuXokWLFvj999/h4eGB7t2764Yp+PHHHxEeHp7r2I3ZtWsXAgMDsWDBAqhUKnTo0EF3jF9//TX279+vV/67775D8+bNsW3bNlSpUgU9e/ZE2bJlsXr1agQFBWX7uXz88ccICwuDs7MzOnToAFtbW2zevBlNmzbF48eP8x1bfly+fBlBQUH4+++/0axZM7Rv3x62trZ6ZbI7965atQr16tXDihUr4Orqis6dO8Pf3x9//vknWrVqhR9//DHfn0tBnJ/yYvfu3WjQoAHWrl0LZ2dndO7cGc2aNYOdnR1Wrlyp9yMCADx58gQtWrTAmDFjcOnSJQQHB6Ndu3ZITEzErFmz0KhRoyzH/c3uexg6dCgGDx6MU6dOoVatWujRowdq1qyJe/fuYc6cOXo3bkRE5k4mk2HQoEGIj4/Hb7/9prdO29tg8ODB2e4jL9eet99+G8uWLYOVlRVatmyJtm3bIj09HT/99BPq1auHS5cuZfl+O3bsQLNmzfDo0SO0a9cOlStXxqFDh9CuXbts24wvM/W6YmtriyFDhkCj0WDx4sVG97V582Y8ePAAHTt21LXxTN1/+fLlMXjwYNjZ2QEAevTooXdttbe3z9dnrTVx4kSMHj0a5cuXR9u2bZGamooFCxagW7duePz4MUJCQvDrr7+iUaNGaNiwIaKiojB06NBs57R4UZUqVfTqysvz5pnq5s2bCAoKwrFjx9CyZUvUqFEDx44dQ8eOHXHw4EHMnz9fd2/Ztm1b2NjYYP369WjdurXR4Tvz85kZs23bNgDI8h5L2yPg5WGGtK+bNm2KZs2aZVvmxfkKXsT2P9v/bP+z/U8SEUTF3LJlywQA0bx582zLDR48WAAQAMT//vc/vXVffPGFACD8/PwMtvPx8REAhEKhEH/++afB+t9++00AEE5OTuLYsWO65enp6eL9998XAIS3t7dQqVS6dfv37882Zu0xDR48WG/55s2bBQBRtmxZcf78ed3y1NRU0bdvX93xTZ06VW+7qVOn6taNHj1aaDQa3bqNGzcKAMLe3l4kJSXpbde8eXPddvPmzdNbt3LlSgFA2NnZiTt37uiW37hxQwAQPj4+Ro8tq2PP6TPJSb9+/QQAsWbNGqPrtZ8pANGnTx+RmpqqW/fzzz8LAMLDw0O4uLiILVu26NapVCrRokULAUBMmzZNb5937twRzs7OQqFQiLVr1+qtu3jxoq7u7Nu3T2/drl27RGxsrEGMixYtEgCEv7+/yMjI0FuX1/qbHW18+/fvz1UsOW37ww8/CADC2tpaJCcnCyGEuHnzprCzsxMAhK2trXjjjTfEt99+K/7991+RkpKSY6xPnjwRMplMuLi4iPT0dJOOb968eQKAGDJkiNH1gYGBAoD4999/dct8fX0FAHHkyBGD8leuXBHXr1836b2zc/PmTWFvby8AiK+++srgeC5evCguXLige33q1ClhaWkpFAqF+O233/TKfvfddwKAcHR0FPfv39dbp60vZcuWFZGRkbrlT58+FQ0bNhQAxPTp0/MVW1bnKi3tuSe7c9Lw4cNFWlqawbY5nXtPnTolFAqFcHJyEnv37tVbd+TIEd3fZlRUVL4/l/yen7TvaUxW50zteWfdunUG29y5c0fvGiCEEG+88YYAIPr16ycSEhJ0y1NSUnTnj4EDB+ptk9P3cPPmTd017MGDBwZxHDp0SDx79izbYyciMgfaa0pkZKS4evWqkMlk4vXXX9etj4+PF9bW1qJu3bpCiP/OjxMmTNDbT16vPVu3bhVPnjzRW6bRaMSUKVMEABEaGmoQs7YdLpPJ9NqZGRkZYvTo0QKAaNmypcmfQW6uK5cvXxYymUx4e3sbbXc1bdpUABA7d+7M0/6F+O87uXHjhtF483udL1++vLh06ZJueUxMjChbtqwAIGrUqGFwP/Djjz/mqT2d3TVeCNPaQhMmTND7nD/++GMBQLzyyivC2dlZHD58WLcuPj5e+Pv7CwBi+fLlevvM62eWHQ8PDwFA3L171+j67du36+4ZXhQaGioUCoXuXsDX11dUqVJFr0zHjh0FAPHNN98Y3Tfb/2z/v4ztf7b/qWgwWUDFXm6TBSEhIQbr0tLShIuLiwAgbt68qbdOe8EaOXKk0f22bNlSABCzZs0yWKdWq0XlypUFALFy5Urd8rwmC7QXj6+//tpgm4cPH+p+jM3qwuzj46OXtNCqUaOGACAOHDigt1x7kxIcHGw0znbt2gkAYsaMGbplUiULqlevLgCIU6dOGV2v/UwdHR3Fo0eP9NZpNBrh5uYmAIj+/fsbbLt161YBQLRo0UJvuTYZNGXKFKPvqU3udOvWzeTjaNy4sQAgzp07p7c8r/U3O8Z+8I+NjRXLly8Xzs7OwsHBQa8hndO29+/fFz/99JNwcHAQAMTbb7+tt83ff/+t+3t48T8rKyvRqVMnvRshYypWrJjtTeXLHjx4IORyuXBwcDBo0Jw6dUoAMLhpsbW1Fc7OzibtP6/effddAUAMHTrUpPJDhw7VNeaM0f6dzpw5U2+59vNduHChwTbaJOHLdTq3seX3ZqFMmTLi6dOnRrfN6dyrbRwvXbrU6PqvvvpKABDjxo3TW56Xz0WKmwXtOS0+Pj7H/Z87d04AEFWrVjV6jn/27Jlwd3cXcrlcPH78WLc8p+/h+PHjAoDo0qVLjjEQEZmzF5MFQmT+2C2Xy3UPbyxcuFAA/z0ck1WyIK/Xnux4eHgICwsLkZiYqLdce33v3bu3wTYPHz7UtaGM/eBmTG6uK0Jk/tgLwOCHyvPnz+t+VH/xR8Xc7j+nZEF+r/OLFi0y2Gbs2LHZ3g+UKVMm1+3p/CYL/Pz89JIWQmQmBLT7/eSTTwz2mdUP4gVdPx88eCCAzIfishIfHy8sLCwEAN3fk0ajEQ4ODqJRo0a6cgMHDtRLOqSnpwtnZ2cBQERERGS5f7b/2f5/Edv//2H7nwoThyGiUsdYtzGFQgE/Pz8AyHL8x65duxose3FSJmPdTeVyOQYNGgTAsNtlbmk0Ghw5cgQA0Lt3b4P1bm5uaNOmTbb7aNmypW5YmBdVq1YNQNbH3q9fP6PLBwwYAMBw/EkpaMfEL1OmTLbl6tevb1DG0tISPj4+AIC2bdsabFO5cmUAhp/Prl27AMDohL0AdF1ujx49ajTeJUuWYMKECRg+fDiGDBmCIUOG6MaGvXz5stF95rX+Zqdly5a6MRXd3d0xZMgQ2NraIiIiAq+++qrJ25YvXx4jR47E06dP0b17d91Ex1pNmzZFVFQUdu7cibFjx6Jx48awsbFBWloafvvtNzRp0gQ//fRTlu+l/d6033VOypYti/bt2+Pp06fYsmWL3jptF3Pt36dWUFAQnjx5giFDhuDMmTNZjneaH3/88QeAzCHFTKH9+8qqS7t2Qu+szjHt27c3WJbV33xuY8uv1q1b6w03YIyxc29GRgb+/PNPWFpaonv37ka3y+7vD8jd5yKFoKAgAJnn2SNHjiA9PT3LstrvrXPnzkbP8ba2tggKCoJGo8GJEycM1mf1Pfj7+8Pe3h47duzA//73P0RHR+f1cIiIzMrgwYOh0WiwevVqAJljcCsUiizbvED+rz23bt3CDz/8gLFjxyIsLEzX9lOr1cjIyMDVq1eN7tPY9crNzQ2urq5IS0szOkymMbm5rgDAqFGjAMBgSI+FCxcCAN58801YWPz3c0Ju95+dgrjOZ9emz+p+QDt+eFG2A1q0aAErKyu9Zc7Ozrr4TL03KYjP7GWm3F85Ozujdu3aAP5rs0ZERODp06e693vxvbXt1TNnzuDJkyd62xvD9j/b/1ps/+tj+58KE5MFVOp4eXkZXe7g4AAARsd+BKD7MflFjx8/Rmpqqm6yIWMqVaoEALhz505ewtV59OiR7r0qVKhgcowvyuuxZzVZsXZ5TExMtu9bFLTj5mmPJSuenp5Gl2svlMbWa9e9/Plcv34dQOb4mC9PaiaTyVC2bFkAwMOHD/W2++GHH+Dj44Phw4fj66+/xpIlS7BixQqsWLFCt88Xx/1/UV6/w+yEhoZi8ODBGDhwIFq0aAFLS0vcvXsX/fr1y3HyIu22Q4YMwVtvvYU5c+bgxIkT2Lx5s24c0BfJ5XK0b98e33zzDQ4dOoS4uDhs3boV1apVQ0ZGBt59990sGySOjo4AkKsxErUN7BfHn01PT8eaNWsgk8kwcOBAvfILFy5EtWrVsGLFCtSpUwdlypRBhw4d8O233yI+Pt7k982OdiJAbcM0J9pzhzYh9LKczjHG6kxW9SW3seVXTuesrMo8fvwYiYmJSE9Ph7Ozs9G/vwYNGgAw/PvTys3nIoXPP/8cwcHB2LFjh27Cstdeew2fffaZwc2M9rzx1VdfGf0sZDIZduzYAcD455HV9+Dg4IDly5fD3t4eH374Iby9veHt7Y1+/fph/fr10Gg0BXzURERFo1evXrC1tcUvv/yCS5cu4dixY2jfvr2u7WZMfq49kydPRuXKlTFq1Ch8++23WLp0qa7tp/0RtLDbfrm5rgBAx44d4evri127dunaB8+ePcPKlSthZWWl+7Eyr/vPTkFc57Nr0+d0P1CU7YCCujcpiM/sZabeX708b8GLcxFoaSc5frlM06ZN9ZJOL2P7n+1/Lbb/2f6noiOXOgCiopZdYyQ7NjY2BRxJ1jIyMrJcZ2zyJ62cji2vx16Qsju2/HB2dsajR4+QmJgIZ2fnLMsV5GekzfT369cPCoXCpG3Cw8MxevRoyOVyfP3113j99dfh6empq1/9+vXD2rVrs3yipTC+ww8//BAtWrTQvb548SJatmyJ8PBwfPzxxwY9BLLbNreUSiW6dOmCBg0aoGrVqkhOTsYff/yBESNGGJRNSEgAgGy/35d16tQJLi4u2LdvH+7du4cKFSpg9+7diI2NRfPmzQ0SYdWrV0dkZCT27duHP/74A//88w/+/PNP7Nq1CzNmzMDu3btRv379PB8vkP3fcGHITZ0p6Nhy+ns35bxqrIz2b8/Kygp9+/bNdns3Nzejy83hfAhk/RlVqFABR44cwb///otdu3bh77//xj///IO//voLM2fOxMaNG9GxY0cA/30ewcHBCAgIyPb9jN0YZPc99OjRA6+99hp27NiBPXv24J9//sHatWuxdu1aBAYG4p9//oGTk5Oph0tEZBYcHBzQrVs3rF69GhMmTACQ88TGeb32bNq0CbNnz4ajoyPmzZuHli1bokKFCronQRs3bowjR44UetsvN9cV7fu+/fbb+OCDD/Dzzz9j1qxZWLt2LRISEtC3b1+UK1cuX/vPTmFf582lDQAU3L1JQXxmL9O2ubNKZGk1b94c8+bN0z0N//fff8PCwgJNmjTRlalWrRrKlSunV0a7bXbY/s8btv/Z/n8R2/+UW0wWEOVDmTJlYG1tjdTUVMTExBjNVGszvi/2PNB2NU1KSjK6X2NPVpcpUwZWVlZITU1FbGwsypcvb1Dm5s2beTmMHN26dcvocu375ffYCoK7uzsePXqEuLg4eHt7F8p7vMzLywtXr17FjBkzdN2Bc7J582YIIfDuu+9i3LhxBuuz6oJelAICArBo0SJ07twZCxYswOjRo3VPrxSWihUrwt/fHxEREVk+CRIXFwcABjen2bGyskKfPn2wcOFCrFq1Cu+//77uKaOsfhRQKBRo166dbsinBw8eYNKkSVixYgVGjx6tGw4sr7y9vXHp0iVcvnzZpJs1Dw8PXLt2DdevXzfag8nYOaaoYpPq793NzQ1KpRJqtRo//fST0a635kShUECtViMpKcmgu292n5GFhQWaNWumezIvMTERn332GT7//HOMGDFC94SR9trTtm1bzJw5s8Djd3Z2Rv/+/dG/f38AwIULFzB48GCcOHECn3/+OT777LMCf08iosI2ZMgQrF69Gjt27ECZMmXw+uuvZ1s+r9eeTZs2AQBmz56NoUOHGqwvyrafqdcVrbCwMEydOhVLlizB1KlTdUMSvf322wWy/6wUt+u8OSiMz8zd3R3Af23wrDRr1gwymQyRkZF49OgR/vnnH9SuXVvXK0CradOm2Lx5Mx48eGBysoDtf7b/tYrbeYHtfyrOzCOtRlRMyeVyNG7cGIB+N0et9PR0rFy5EoB+Q6hixYoAMi/yarXaYLvdu3cbLFMoFAgJCQEArF+/3mB9XFwc9uzZk4ejyNnatWuNLl+zZg0A/S6mbm5uUCgUePz4sdExVI0dG/BfoyOv3drq1KkDIPMiVlS0jUntTaAptA1eY4mlqKgonDp1qmCCy6dOnTqhZcuWUKvVmDVrVr73l9PYn+np6bhx4wYA492tnzx5gnv37sHV1dWkrqsv0t4UrFy5EomJidi2bRtsbW3Rs2dPk7YvV64c5syZAwA4e/Zsrt7bGO3Ys0uXLjWpvPbvy9g5BgCWLVsGIOebrcKITXsuu3TpksG6tLQ0HDhwIN8xGSOXy9G6dWukp6dj69athfIeL8rv+Sm7zymrc6Ixjo6OmDNnDqysrHDv3j1dYk17LtqyZUuh9d56UfXq1XXJzoL4myAikkKrVq1Qo0YNlClTBkOHDjUYN/5leb32ZNf227dvn8lDwhSGrK4rWmXKlEGfPn1w//59fPLJJzh58iRq1KihG1ImP/vP7tpa1Nf5/ND2LpZ6aI7C+Mzc3Nzg6emJhIQE3Lt3L8tyrq6uCAwMhBAC33//PZ48eaJ3f6ilrTcLFy7E48eP4ejoiLp162a5X7b/2f5/Edv/bP9T0WGygCiftCfML774Qm/imIyMDEyePBlXr16Ft7e33iS4vr6+8PX1RXx8PObPn69bLoTA7NmzdZMmv2z06NEAgDlz5iAqKkq3XK1W47333ssyu59fR48exYIFC/SWrV27Fjt37oStra3emKVWVla6SXFnzJiht80vv/ySZeJB+1TE1atX83RB1g6FY+qEXQVh4sSJcHBwwLRp07BkyRKDCYiEEAgPD9dL4vj7+wPI/Cxe/L4ePXqEoUOHSn6j8SLtEworV67U/ZCfV5MnT8b48eNx8eJFg3VPnz7FiBEjEB8fD3t7e6MTTx07dgxCCN2TS7nRsGFDVKtWDZGRkfjkk0+QkpKCbt26GYy/mpycjG+++cZokuv3338HAINeK4MGDYK/v7/B30d2xo8fDzs7OyxduhTz5883aNxFRUXp/X2/++67sLS0xIoVK7Bz5069sgsXLsSBAwfg6OiI4cOHmxxDQcXWoEED2NnZ4dy5c9i8ebNueVpaGsaOHVtovZ0AYMqUKZDL5XjnnXeM3jCkp6dj//79BXJOyO/5qWXLlgAynyp9cfvdu3fjm2++MbrNV199ZXQ+mD179iAtLQ2Ojo66Lvn169dH586dcf78efTv3x+xsbEG28XGxmLRokW5ivvUqVPYsGGDwdwlQghdXSyqnlxERAXNwsIC586dw6NHj/DFF1+YtE1erj3att+iRYv0HhK6efNmlk/oF4bcXFdepL3/0H5Gb731VoHsX3ttNdY2BIr2Op8fOR1HUSqMz0z7Y3ROT9Zry3377bcAkG2yQFumSZMmsLS0zHKfbP+z/f8ytv/Z/qciIoiKuWXLlgkAonnz5tmWGzx4sAAgli1bZnR98+bNBQCxf/9+veU+Pj4CgLhx40aW+54wYYIAICwtLUWrVq1E3759xSuvvCIACGdnZ3HkyBGDbVatWiUACACiYcOGokePHqJKlSrCzs5OjBkzRgAQgwcPNthu4MCBAoCwtrYW7dq1E7179xZeXl7CxcVFt2727Nl620ydOlUAEFOnTs3VZ6P9TEaPHi1kMpmoU6eO6Nu3r2jYsKEAIGQymVi+fLnB/g4cOCDkcrkAIAIDA0XPnj1FYGCgkMvlYuLEiVl+X3Xr1hUAREBAgBgwYIAICwsTc+fOzfJzf9GdO3eEpaWlqFGjhtH12npi7DN98Vhf/v6FEOLGjRsCgPDx8TFYt2fPHuHs7CwACE9PTxEaGir69esnQkNDhbu7uwAgPvjgA135uLg44enpKQCIcuXKie7du4tOnToJBwcHUa1aNdG1a1ej30Ve6292tHU7u23atWsnAIiwsLBcb/ui9957T1fffX19RadOnUS/fv1Eq1athKOjo65Ob9q0yej2kyZNEgDEkiVLTD08PbNnz9a9PwCxe/dugzLx8fG6v+N69eqJXr16id69e4s6deoIAEIul4tt27bpbaP93LP628rKb7/9JmxtbXX1qmfPnqJbt24iMDDQ6Pc8f/58IZPJBADRuHFj0a9fP11c1tbWYuvWrQbvoT1WY7Kr07mNbdasWQKAsLCwEM2bNxddu3YVnp6ewt3dXQwdOtTo55PTOUkI0869q1atEtbW1gKAqFy5sujYsaPo27evaNWqlXBxcREAxMKFCwvkc8nP+SkqKkrY2dkJAKJKlSqiZ8+eIigoSMhkMvHhhx8afU8nJychk8lEjRo1RI8ePUTfvn1FSEiIrh58//33euXj4+NFkyZNBABha2srGjduLPr27Su6desmatSoIWQymXB3d9fbJqfvYcuWLQKAsLOzE82aNdPtz8vLSwAQ7u7u4vr16yZ9BkREUtJeUyIjI00qrz0/TpgwwWBdbq89V65c0bV1fHx8xBtvvCFCQ0OFUqkUzZo1E40bNzbapsqpbWfKdfJFub2uvEjb9rezsxMJCQkFsv9vv/1WABAODg6iR48eIiwsTISFhYlHjx7pyhT0dT4/9wNZGTdunAAgypYtK3r37q07Dq2srrU5XYOz+37379+f5f1UXj6z7Kxfv14AEKNGjcq23KZNm/Ta2g8ePDAok56ervtbACD+97//ZbtPtv/Z/jeG7f//sP1PhYXJAir2zCFZIETmSbV169bC2dlZKBQK4e3tLd58881st1u/fr2oV6+esLa2Fs7OzqJLly7i/Pnz2TZk09PTxbfffitq1KghrK2tRdmyZUWfPn3EtWvXRFhYmAAgfvrpJ71t8pss2L9/v/jzzz9F8+bNhYODg7CzsxPNmzc32uDS2rt3r2jSpImwtbUVDg4O4rXXXhP//vtvto3bGzduiF69egl3d3dhaWlp0vf6om7dugkA4uTJkwbrCitZIERmomLSpEkiMDBQ2NnZCRsbG+Hn5yfatGkj5s2bJ+7cuaNX/t69e2LYsGHCx8dHWFtbC19fXzF27FgRHx+f5XchVbLgxIkTAoBQKBR6jYLcJgsePXok1qxZI4YOHSrq1Kkj3N3dhVwuFw4ODqJ27dpi7Nix4urVq0a3TU9PF56ensLZ2Vk8e/bM5ON70e3bt4WFhYUAIDw8PER6erpBGbVaLX744QfRq1cv8corr+jqerVq1cSwYcOM/sCQ15sFITJ/PBg5cqTw8/MTVlZWwtnZWQQGBoqJEyeKW7duGZQ/ePCg6Ny5s3BzcxMKhUJUqFBB9OvXT5w9e9bo/vPaKM5LbAsWLBABAQHCyspKlC1bVgwYMEBER0fn+QZZCNPPvZcvXxbvvPOOeOWVV4SNjY2ws7MTVapUEZ06dRI///yzePz4sV75vH4u+T0/nTx5UoSGhgoHBwdha2srGjVqJLZv357le65cuVIMGjRIVK9eXTg7OwsbGxtRuXJl0bt3b3Ho0CGj76FWq8WyZcvEa6+9JsqUKSPkcrlwd3cX9evXF+PHjzfYLqfv4d69e2LOnDkiNDRU+Pj4CKVSKVxcXETt2rXFp59+KmJjY00+fiIiKRVkskCI3F97rly5Inr27CkqVqwolEqlqFatmpg6dapQqVRZtuEKOlmQl+uK1uTJkwUAMWLEiALbf3p6upg5c6bw9/fX/fBn7HgK8jpfGMmC5ORkMX78eOHn5ycUCoXB+xd1skCI3H9m2UlLSxPu7u6iTJkyIjU1NctyDx480P2gGRAQkGU57YNIAMTRo0ezLMf2fya2/41j+/8/bP9TYZAJkcNA0kRULGg0GgQGBiIqKgrh4eEICgrK9z5btGiBgwcPYv/+/bphfszZ/v370apVK4waNSpX3ULJvO3evRuhoaGYMGECvvzyS6nDISIiIio1hBCoVq0arly5goiIiGzHmKeSaerUqZgxYwY2btxo8pj/+cX2PxGRdDhnAVExExkZaTB+XEpKCsaNG4eoqCjUqFGjQBIFxVHLli3Rvn17LF26NNtJuKh4mTVrFlxcXPDxxx9LHQoRERFRqbJq1SpcuXIFzZo1Y6KglJo4cSLc3d0xe/ZsFNWzpmz/ExFJh8kComJm+vTpKFu2LJo1a4Y+ffqgTZs28PHxwYIFC+Do6Ihly5ZJHaKkvvrqK6jVasyaNUvqUKgA7N69G//88w+mTJkCV1dXqcMhIiIiKvEeP36M4cOHo2vXrggLC4OFhQU+//xzqcMiiTg4OGDmzJk4ffo0Nm3aVOjvx/Y/EZG0OAwRUTGzdetWLFmyBKdPn8bjx48hhICHhwdat26NSZMmoVKlSgX2XsVtGCIiIiIiIsqfmzdvws/PDwqFAtWqVcPUqVOLbPgZIiIikhaTBUREREREREREREREpRyHISIiIiIiIiIiIiIiKuWYLCAiIiIiIiIiIiIiKuWYLCAiIiIiIiIiIiIiKuWYLCAiIiIiIiIiIiIiKuWYLCAiIiIiIiIiIiIiKuXkUgdQHNy9exe///47KlWqBDs7O6nDISIiIiLS8+zZM1y/fh2vv/46KlasKHU4JR7vD4iIiIjInOX1/oDJAhP8/vvvGDlypNRhEBERERFl66effsKbb74pdRglHu8PiIiIiKg4yO39AZMFJqhUqRKAzA83MDBQ4mhIrVYjMTERjo6OUCgUUodDZor1hEzBekKmYl0hU0hZTyIjIzFy5Ehdu5UKF+8PzAvP0WQK1hMyBesJmYp1hUxRHO8PmCwwgbZrcWBgIBo1aiRxNJSWloa4uDi4urrCyspK6nDITLGekClYT8hUrCtkCnOoJxwSp2jw/sC8mMPfHpk/1hMyBesJmYp1hUxhDvUkt/cHnOCYiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUY7KAiIiIiIiIiIiIiKiUk0sdABEREZmHhGQ1Np6Mxt6LsXiq0sBBKUeb6uXRs54nnGwVUodHREREREREZPa099Z7zt9H/DMVXOyUaFuzQrG4t2aygIiIiLAhPBpTtp2DSpOht/zo9Th88UcUZnSpiV4NvCSKjoiIiIiIiMj8Gb23fpiCYzfji8W9NZMFREREpdyG8GhM2nw2y/UqTYZufVE0asyph4O5PBFiTp8JERERERERGTK3e+u8YLKAiIioFEtIVmPKtnMmlZ2y/RxCa5Qv1B+nzamHg7k8EWJOnwlgPokLc4njxVikTiqVJMnJyahZsyZu3LiBUaNGYcGCBXrrL126hA8++AAHDx5EWloa6tWrh+nTp6NVq1YG+0pISMDkyZPx66+/4vHjx6hcuTJGjx6Nt956CzKZrKgOiYiIiIhKMHO7t84rJguIiIhKsU0RMQY/QmdFpc7AuvDbeLNZpUL5gc2cnsIwl1jMJY4X4zGHxIW5xJFlLMWom7G5mjJlCh4+fGh03bVr19C4cWPI5XJMmjQJTk5OWLRoEUJDQ7Fr1y60bt1aVzYtLQ1t2rTBqVOnMGbMGAQEBGDXrl145513EBsbi2nTphXRERERERFRSZbbe+vNETEY1sSvkKPKPSYLiIiISrE9F+7nqvxnu6LwxZ+X4GijgINSDkflf/93tJHDQan4b5mNAo7K58tsnpdRKmCvlMPSQj/ZYE5PYZhLLOYSh5a5JC7MJQ5zi6UkiYiIwLx58zB37lxMmDDBYP1HH32EJ0+e4OTJk6hTpw4AYNCgQahRowZGjRqFqKgoXUJz8eLFCA8Px/z58zFmzBgAwIgRI9CjRw/MmTMHQ4cOhY+PT5EdGxERERGVTLm9t95zIZbJAiIiIjIfKWnpuP04OdfbaTIE4p6lIe5ZWp7f295aDsfnCQUHpRxPktW5egpj5o4LeM2/HGQyGWQyQAZAJpPBQobnrzMXWshkz9dlLrOQAXj+b5l2vW57AJBhx9m7uYpl7p9RaB3gjvQMgXQhkJEhoMkQyBAic9nzf2syMtdllkPmv18ok/7SNmein+Qqjk+2RqJ1gDuUCgtYKyxho7CEUmEJpcLiv3/LLWGtsIC13CJXvUPMJXFhLnGYWywlSXp6OkaMGIF27dqhe/fuBsmCZ8+eYfv27WjRooUuUQAA9vb2GD58OKZMmYLw8HAEBwcDANasWQNbW1uMGDFCbz9jx47Fr7/+ivXr12PSpEmFflxEREREVLI9VWlyVT5RpS6kSPKHyQIiIqJS5n6CCr8cuYk1x2/jSXLuGiiudlbwL++ApyoNElXqzP+nqKHJELnaT1KqBkmpGtxNUOVqO61NJ2Ow6WRMnrYtaKuP3cbqY7elDgO/n72H38/eM6msTAYo5ZmJBOXzxIL1y4kFhUVmGStLXHuQlKvExZydF9CmenlYWvyXlLF4nsyxsPjv39oEj+XzZS+WtbTQrn++nUyGjSdz17X3u7+uoH1geaRpBNTpGc//++/fmnSBtCz+rU7PQFoW/1anZ+D6o2clopuxufnmm28QFRWFzZs3G11/9uxZpKamolGjRgbrQkJCAECXLMjIyEBERATq1asHpVKpVzY4OBgymQzh4eEFfxBEREREVOo4KHP3M7uj0jwfJGKygIiIqJQ4Hf0Eyw7dwI6z93L9477W6JZVDH7wFEJApc5AokqNxBQ1El9KJLz475eTDNp/J6elF8QhkomEAFLU6UhRpwMo+Cda1p+IwfoT0idzFv97A4v/vSF1GADMt5uxOblx4wamTp2KKVOmwNfXFzdv3jQoc/fuXQCAh4eHwTrtsjt37gAA4uPjkZKSYrSstbU13NzcdGWzEx0djZgY/focGRkJAFCr1UhLy3svKyoYarUaGo0GarV5PqFH5oH1hEzBekKmYl2hl7V6xQ1Hr8eZXr6aW6G2I/NaN5ksICIiKsE06Rn483wslh66gZO34vXW2VvL0aVORWw8GYM0E56QVios0KO+p8FymUwGGytL2FhZwt1RaWTLnPX+6QiO3TC9YVW5rB3ebFYJQgAZAhAQEAIQyExeCPH8/3i+XmQmRzLLi+flXthO/Lf9hhPRiIlPMTkW3zK2GPqqHywsZLB8/kS8pYUFLC3w/An5zOW69ZbacrL/1mu3kclgYZH5pP0Hm87iTEyCyXFUc7fHWy0qQ6XOgEqdDpU6AynqdKSq06F6nhjQrdNkQJWWDpUmXa+sSp2OVHXmU/RUsMy1m7E5eeutt1CpUiWMHz8+yzLJyZlDp1lbWxus0/Ye0JbJrqy2vLZMdpYsWYLp06cbXZeYmIi4ONPPXVQ41Go1kpKSIISAQmGeT+mR9FhPyBSsJ2Qq1hV6WQtfG8y1kJn0YJ613AItfJSF2o5MTEzM03ZMFhAREZVACclqrAu/jRWHbxoM9ePlaoOhjf3wRpAnHJQK1PZ0znaSVq0ZnWvCyaZwGsJta5TPVbKgf0Mf9G7gXSix2FnLMfP3CyaXH9TIF4Mb+xZ4HJ3reOQqWdC7gTe61TVM5uRFeoZ4nkTITCy8s/okzkSbHkslNzsMbeIH8XwOh4znSZrM/54nbF6Yt0Gb0NGtzzAsm54hsPv8fcQ+TTU5Dk8XG/Rp4AWFpQXklhawspTp/q2wlMEqi38rLC2e/5f5byu5BeQWMijkFpnlLGQYsORYrp4cMtduxuZi1apV2LNnD/7+++9sb7htbW0BAKmphvVApVLplcmurLa8tkx2wsLCEBoaqrcsMjISI0eOhKOjI1xdXXPcBxUutVoNmUwGFxcX/mBDWWI9IVOwnpCpWFfoZY8fJJlcdurr/vCpWK4QowEcHR3ztB2TBURERCXItYdJWH7oJjadjHk+xMx/Gvq5YlgTP7QOcIelxX+T2/Zq4AUAmLLtnNEx2JUKC8zoXFNXrjD0rOeJL/6IMmkM+Kx6OJS0WKSMw9JCBjtrOeysM5uKnWt75CpZMCDEBwNDfAosHi1fN7tcJXKGvepXaEP/tKlePlfJgjbV3QsljpIgNTUV48ePR4cOHVC+fHlcvXoVwH/DCSUkJODq1atwc3NDxYoV9da9SLtMO+yQi4sLbGxsjJZNTU3Fo0eP0Lx58xzj8/LygpeX8fOfQqGAlZWVCUdJhU0ul/P7oByxnpApWE/IVKwrpKVSp2PCpnO6XgXyLHoYFMW9tVZek1hMFhARERVzQggcuvoYSw/dwF9RD/TWWVlaoFPtihj6qi9qejhluY9eDbwQWqM8NkXEYO+FWCSq1HBUKtCmujt61POEk23hPi3jZKvAjC41Je/hYE6xmEscABMo5h5LcZeSkoKHDx9ix44d2LFjh8H6VatWYdWqVfjiiy/w1ltvwdraGkeOHDEod/ToUQBAUFAQAMDCwgL16tXDqVOnkJqaqjcc0fHjxyGE0JUlIiIiIsqrOTsvIur+UwBAsK8rfhxYH1tO3cGe8/cQl6SCq70SbWtUKJJ76/xisoCIiKiYUqnTsfXUHSw9dAOXY/W7PLrZW6F/Qx/0D/FGOQfT5hFwslUgrIkfwiSahNUcejiYWyzmEoe5JC7MJQ5zi6W4s7Ozw8aNGw2WP3z4EO+88w7atWuHsLAw1KpVC/b29ujUqRN+/fVXnDlzBrVr1wYAJCUlYfHixahatSqCg4N1++jbty8OHTqEn3/+GWPGjNEtnzdvHuRyOXr37l34B0hEREREJdbu8/fxy5FbAAAnGwW+6VMHrnZWCGvih4HBHoiLi4Orq2ux6YHCZAEREVExE5uowsojt7D62C3EJ+tPmhpQwRHDXvVFp9oVoVRYShRh3kndwyGrWKR8IsRcPhNzSVyYSxzmFktxplAo0LNnT4PlN2/eBABUrlxZb/1nn32Gffv2oW3bthg3bhwcHR2xaNEi3LlzBzt27IBM9t8wayNGjMCyZcswfvx43Lx5EwEBAdi5cye2bNmCyZMnw9fXt7APj4iIiIhKqPsJKr2Hh/7XIxAezjYSRpR/TBYQERFJKCFZjY0no7H3YiyeqjRwUMrRpnp59DTyI/DZmCdY+u8N/H72nt74hzIZ0DrAHcNe9UNIJVe9H8qKI6l7OBiLReonQszlMzGnxIU5xPFyLMWxm3FxVKVKFRw6dAgffvghPv/8c6SlpaFevXr4448/0Lp1a72yVlZW2Lt3LyZPnoy1a9fi8ePHqFy5Mr777juMGjVKoiMgIiIiouIuPUNg7PpTePL8Ab5+Db3RrmYFiaPKPyYLiIiIJLIhPNroE8lHr8fhiz+iMKNLTXSv54E9F2Kx5N8bOHErXq+cnZUlejXwwpDGvvApY1eUoVMpZi6JC3OJ48VYpE4qlTS+vr4QwnBiOAAICAjAtm3bTNqPs7MzFixYgAULFhRkeERERERUii08cBVHr8cBAKqWs8enHatLHFHBYLKAiIhIAhvCo7Md61ylycCkzWcxZ+dFPEnRH2rIy9UGQxr74Y0gTzgq+dQyERERERERUVE5eSse3+y9AgCwklvgu351YWNV/IYBNobJAiIioiKWkKzGlG3nTCr7YqKgoZ8rhjXxQ+sAd1haFO+hhoiIiIiIiIiKm4QUNd5dewrpz4cGntwxAP7lHSWOquAwWUBERFTENkXEGJ0MNSu1PJ0wp1sgano4FWJURERERERERJQVIQQ+2RKJO09SAGTOHTgwxEfiqAqWhdQBEBERlTZ7LtzPVXk7KzkTBUREREREREQS2ngyBr+fvQcAKO+oxBc9a0EmK1m9/pksICIiKmJPVZpclU9UqXMuRERERERERESF4trDJEzddh4AIJMBX/euDRc7K4mjKnhMFhARERUxB2XuRgHkJMZERERERERE0kjVpGPMmlNIUacDAEa1qILGld0kjqpwMFlARERUxNpUL5/L8u6FFAkRERERERERZWfuH5dw4V4iAKCetzPea11V4ogKD5MFRERERay2p+nzDygVFuhR37MQoyEiIiIiIiIiY/ZHPcCSf28AABys5fi2T10oLEvuT+ol98iIiIjMUHRcMkatiTC5/IzONeFkw2GIiIiIiIiIiIrSg0QVJm48o3s9p3sgvFxtJYyo8DFZQEREVEQePk3FwCXHEJuYCgB4xd0e1nLjl2KlwgJze9RCrwZeRRkiERERERERUamXkSEwfsMZPH6WBgDoFeSJTrUrShxV4cvdDItERESUJ4kqNYYsO46bj5MBAHW9nbF6eEOoNQKbImKw90IsElVqOCoVaFPdHT3qecLJlj0KiIiIiIiIiIraon+u49+rjwAAldzsMK1zDYkjKhpMFhARERUylTodI1acwPm7mRMiVS1nj2VDGsDWSg5YAWFN/BDWxE/iKImIiIiIiIjoTPQTfPHnJQCAlaUF5vetm3n/XgpwGCIiIqJCpEnPwLtrT+HYjTgAgIezDVaGNYSzrZXEkRERERERERHRi5JSNXh33SloMgQA4IP2/qjp4SRxVEWHyQIiIqJCIoTAx1sisftCLACgjJ0VVoYFo7yTUuLIiIiIiIiIiOhlU7aew63nwwe3qFYWw171lTagIsZkARERUSH5/I8obDgRAwCwt5Zj+dBgVCprL3FURERERERERPSyXyNi8OupOwAAN3trfPlGbchkMomjKlpMFhARERWCnw5ew08HrwPIHOPw50H1EehZerouEhERERERERUXNx89w6dbz+lef9O7NtzsrSWMSBpMFhARERWwDSei8dmuKACAhQyY37cuGld2kzgqIiIiIiIiInpZmiYD7607hWdp6QCAkc0qoWnVshJHJQ0mC4iIiArQn+fv48PNZ3WvP+seiHY1y0sYERERERERERFl5as9l3AmJgEAUMvTCRPaVpM4IukwWUBERFRAjlx7jDFrTyFDZL7+oJ0/ejfwljYoIiIiIiIiIjLqnysPdUMI21lZYn6furCSl96fzEvvkRMRERWgc3cSMOKXE0jTZAAARjT1w1vNK0kcFREREREREREZ8ygpFeM3nNG9ntm1Jnzd7CSMSHpMFhAREeXTjUfPMHjpcSSlagAAPet74uMOAZDJZBJHRkREREREREQvy8gQmLjxDB4+TQUAdKvrge71PCWOSnpMFhAREeVDbKIKA5ccw+NnaQCA1gHu+Lx7IBMFRERERERERGZq2eGbOHDpIQDAp4wtZnSpIXFE5oHJAiIiojx6kpyGQUuOIyY+BQAQ7OeKBf3qQm7JyysRERERERGROTp3JwH/2xUFAJBbyDC/T104KBUSR2Ue+GsGERFRHiSnaTBseTguxT4FAFSv4IjFg4OgVFhKHBkRERERERERGfMsVYN3155CWnrmfIMTQ6uhtpeztEGZESYLiIiIcilNk4G3V0Ug4vYTAJldFlcMC4Yjn0QgIiIiIiIiMlvTfzuP64+eAQCaVHHDm00rSRyReWGygIiIKBe0kyAdvJw5tmE5B2usCmuIsg7WEkdGRERERERERFn57cxdbDgRAwBwtbPC171qw8KC8w2+iMkCIiIiEwkhMOP3C9h+5i4AwFEpxy9hwfBytZU4MiIiIiIiIiLKSnRcMj7+NVL3+qs3aqOco1LCiMwTkwVEREQm+u6vq1h++CYAQKmwwNIhDeBf3lHaoIiIiIiIiIgoS5r0DLy37hSepmoAAMNe9UNL/3ISR2WemCwgIiIywcqjt/D1nssAALmFDAv710eQr6vEURERERERERFRdr7dd0U352D1Co74oH01aQMyY0wWEBER5eC3M3cxZds53esv36jNpxCIiIiIiIiIzNyRa4+xYP9VAICNwhLz+9aFtdxS4qjMF5MFRERE2fj78kOM33AaQmS+ntqpOrrW9ZA2KCIiIiIiIiLKVtyzNIxdf0p3Pz+9cw1UKWcvbVBmTi51AERERObq1O14jFx5Eur0zJbFmFZVMPRVP4mjIiIiIiIiIqIXJSSrsfFkNPZejMVTlQYOSjninqUhNjEVANCxVgW8EeQpcZTmj8kCIiIiI67EPsXQ5eFIUacDAPo19Mb4Nq9IHBURERERERERvWhDeDSmbDsHlSbD6HpnGwXmdAuETCYr4siKHw5DRERE9JKY+GQMXHIcT5LVAICOgRUws0tNNiyIiIiIiIiIzMiG8GhM2nw2y0QBADxJUePPc/eLMKrii8kCIiKiFzxOSsWgJcdxP1EFAGhSxQ1f964NSwsmCoiIiIiIiIjMRUKyGlO2nTOp7JTt55Dw/IFAylqxSRbExcVh4sSJqFKlCpRKJcqWLYuWLVvin3/+0St37NgxtG7dGg4ODnB0dES7du1w+vRpaYImIqJiJSlVgyHLwnH90TMAQG1PJ/w0sD6s5ZYSR0ZEREREREREL9oUEZNtj4IXqdQZ2BwRU8gRFX/FYs6CW7duoUWLFkhKSkJYWBheeeUVJCQk4OzZs7hz546u3NGjR9GiRQt4eHhgxowZAIAFCxagadOmOHz4MAIDA6U6BCIiMiPaiY/2nL+P+GcquNgp0SrAHfsuxiLyTgIAoHJZOywbGgw762JxqSQiIiIiIiIqVfZcyN3QQnsuxGJYE79CiqZkKBa/gAwYMAAajQZnz55FhQoVsiz37rvvwsrKCn///Tc8PDwAAL169UJAQAAmTJiA3bt3F1XIRERkpoxOfPQwBcduxuteVnRSYmVYQ7jaWUkQIRERERERERHl5KlKk6vyiSoOQ5QTsx+G6O+//8a///6LSZMmoUKFClCr1UhOTjYod/XqVYSHh+ONN97QJQoAwMPDA2+88Qb27t2L+/c5kQURUWlmysRHANC3oTcqOtsUUVRERERERERElFsOytw9B++oVBRSJCWH2ScLdu7cCQDw9vZGp06dYGNjAzs7O7zyyitYtWqVrlx4eDgAoFGjRgb7CAkJgRACJ0+eLJqgiYjI7ORm4qPv91/lxEdEREXk0qVL6N+/PwICAuDk5ARbW1v4+/tj/PjxuHfvnl7ZadOmQSaTGf3vyy+/NNh3RkYGvvnmG/j7+0OpVMLLywsTJkzAs2fPiurwiIiIiKiQtKlePpfl3QspkpLD7IchunTpEgBgxIgRqFq1KlasWIG0tDR89dVXGDhwINRqNYYOHYq7d+8CgF6vAi3tshfnN8hKdHQ0YmL0J7uIjIwEAKjVaqSlpeXreCj/1Go1NBoN1Gr+kEdZYz2hl60/fitXEx9tCL+FwY28CzkqKi54TiFTSFlPinPdjImJwb1799CtWzd4enpCLpcjMjISP//8M9atW4fTp0+jXLlyett88803cHNz01tWv359g32PGzcO8+fPR7du3TBhwgRcvHgR8+fPx6lTp7B3715YWJj9s1NERERElIWe9Tzxv11RSEvP+V5fqbBAj/qeRRBV8Wb2yYKnT58CABwcHLB//35YWWWOH921a1dUqlQJH3/8MQYPHqwbmsja2tpgH0qlEgCMDl/0siVLlmD69OlG1yUmJiIuLi5Px0EFR61WIykpCUIIKBTsPkTGsZ7Qy/44dzd35SPvolM1+0KKhoobnlPIFFLWk8TExCJ9v4L02muv4bXXXjNY3qxZM/Tq1QvLly/HpEmT9NZ17doVvr6+2e73/Pnz+O6779C9e3ds3rxZt9zPzw/vvvsu1q1bh379+hXIMRARERGRNGytLJGWknOyYEbnmnCy4b1cTsw+WWBjkzlmdN++fXWJAgBwcXFB586d8csvv+DSpUuwtbUFAKSmphrsQ6VSAYCuTHbCwsIQGhqqtywyMhIjR46Eo6MjXF1d83wsVDDUajVkMhlcXFz4gw1lifWEXqZKl+WqfEo6eM4nHZ5TyBRS1hNHR8cifb+i4OPjAwCIj483uj4xMRG2traQy43f0qxduxZCCIwdO1Zv+YgRI/Dhhx9i1apVTBYQERERFVNCCHz461k8ScnsYWshAzKEYTmlwgIzOtdErwZeRRxh8WT2yQJPz8zuIeXLG45BVaFCBQCZNxAVK1YEYHyoIe0yY0MUvczLywteXsYrj0Kh0EtYkHTkcjm/D8oR6wm9yDGXTxA42Vix7pAenlPIFFLVk5KQxFKpVEhKSoJKpcKFCxfwwQcfAAA6dOhgULZWrVp4+vQpLC0tERwcjE8//RTt27fXKxMeHg4LCwsEBwfrLVcqlahTp45uzjMiIiIiKn7WhUdj17n7AIAKTkqsfzMEey4+wN4LsUhUqeGoVKBNdXf0qOcJJ9vi31YuKmafLAgODsaPP/5oMI8AAN2ycuXK6cYxPXLkCIYPH65X7ujRo5DJZEbHMSUiotKhTfXyOHrd9KHkOPEREVHRWrx4McaMGaN77evri1WrVqFp06a6Zc7OznjzzTfRuHFjuLi44NKlS5g3bx46duyIpUuXYsiQIbqyd+/ehZubm9FhSj08PHD48GGkpaXlmNjhnGbmj/PKkClYT8gUrCdkKtYVaV19mITpv50HkNmj4MseNVHeQYGBwR4YGPzyw+JCsvZacZzTzOyTBV27dsV7772HVatWYfLkybC3zxw/+t69e9i6dSteeeUVVKlSBQAQFBSEjRs3YubMmbqeBnfv3sXGjRvRqlUro70TiIiodHB3MPyxKCuc+IiIqOh17doV/v7+SEpKwqlTp7B9+3Y8evRIr8zLQwoBwLBhw1CzZk2MGzcOPXv21N0vJCcnG00UAPpzmuWULOCcZuaP88qQKVhPyBSsJ2Qq1hXppGoy8O66KKjUmfMUDA2ugMqOwizbZMVxTjOzTxa4uLjgyy+/xMiRIxESEoJhw4YhLS0NCxcuRFpaGr777jtd2W+//RYtW7ZE06ZNdU8lfffdd8jIyMBXX30l1SEQEZHEDl19hPEbz5hcnhMfEREVPU9PT90QpF27dkWPHj3QoEEDJCcn46OPPspyuzJlyuCtt97CtGnTcPjwYbRt2xZA5nxlDx48MLoN5zQrWTivDJmC9YRMwXpCpmJdkc7MHVG4+igFAFDP2xkT2lWH3NJC4qiMK45zmpl9sgAA3nzzTbi5uWHu3Ln49NNPYWFhgUaNGmHNmjV49dVXdeUaN26MAwcOYPLkyZg8eTJkMhkaN26MjRs3onbt2hIeARERSeX4jTgMX3ECaZrMpw5erVwGJ2/FQ/X89Ys48RERkfmoVasW6tatix9++CHbZAGQOWQRAL2eCBUrVsSFCxeQmppq0MPgzp07cHNzM2luCc5pVjxwXhkyBesJmYL1hEzFulL09l6Ixcpj0QAAB6Uc8/vWha2NUuKoslfc5jQrFskCAOjevTu6d++eY7lGjRph3759RRARERGZu1O34zF02XGkqNMBAH0aeGFOt0A8VWmwKSIGe87fQ1ySCq72SrStUYETHxERmZmUlBSTupRfuXIFAODu/t98Mw0aNMDu3btx/PhxvXkPVCoVTp8+jWbNmhV8wERERERUKGITVXh/038jBnzevRY8XXLuJUq5Y559NIiIiPLp3J0EDF56HM/SMhMF3ep6YHa3QFhYyOBkq0BYEz/8MjQIv/Svjl+GBmFYEz8mCoiIJHD//n2jy/fv349z584hJCQEAKDRaJCQkGBQLjo6GgsXLkSZMmXQuHFj3fLevXtDJpNh3rx5euUXLVqE5ORk9O/fv+AOgoiIiIgKTXqGwLj1pxGfnDlpb99gL3SsVUHiqEqmYtOzgIiIyFSX7j/FwCXHkKjSAAA6BlbAFz1rwdJCJnFkRET0srfffhv37t1Dq1at4OPjA5VKhZMnT2LdunVwcHDQzT2WlJQEPz8/dO3aFQEBAXBxccGlS5ewePFiJCUlYe3atbCxsdHtNzAwEKNGjcKCBQvQvXt3dOjQARcvXsT8+fPRvHlz9OvXT6pDJiIiIqJc+Onvazh87TEAoHJZO3z6enWJIyq5mCwgIqIS5frDJPRffEz3xEHrAHfM61PHbCc8IiIq7fr27YtffvkFK1euxMOHDyGTyeDj44ORI0fi/fffh7e3NwDAxsYGPXr0wLFjx7B161YkJSXBzc0NrVu3xqRJkxAcHGyw73nz5sHX1xc///wzduzYATc3N4wZMwYzZsyAhQWvC0RERETmLuJ2PL7afRkAYGVpge/61oOtFX/SLiz8ZImIqMS4/TgZ/RYdw6OkVABAs1fK4vv+daFgooCIyGz16tULvXr1yrGctbU1Fi9enKt9W1paYsKECZgwYUJewyMiIiIiiSSq1Hhv3SmkZwgAwMcd/FG9oqPEUZVs/PWEiIhKhLtPUtBv8VHcT1QBAEIqueKnAfVhLbeUODIiIiIiIiIiyg0hBCZvOYfouBQAwGv+5TC4sa+0QZUCTBYQEVGx9yBRhX6LjiImPrMRUd/HBUsGN4CNFRMFRERERERERMXN5og72H7mLgCgnIM15vasBZmM8xAWNiYLiIioWHuUlIp+i4/h5uNkAEAtTycsG9oAdtYcaY+IiIiIiIiouLn+MAlTtp0DAMhkwDe966CMvbXEUZUOTBYQEVGx9SQ5DQMWH8PVB0kAAP/yDvhlWDAclQqJIyMiIiIiIiKi3ErTZODddaeQnJYOAHi7eWW8WsVN4qhKDyYLiIioWEpUqTFo6XFE3X8KAKhSzh6rhjeEs62VxJERERERERERUV588WcUzt1JBADU8XLGuDavSBxR6cJkARERFTvPUjUYuiwcZ2MSAAA+ZWyxenhDuLFbIhEREREREVGxdODSAyz65wYAwN5ajvl96kJhyZ+vixI/bSIiKlZU6nQMX3ECJ2/FAwA8nG2wZkQI3B2VEkdGRERERERERHnx8GkqJm48o3s9u1tNeJexlTCi0onJAiIiKjZSNel4c+VJHLn+GABQ3lGJtSNC4OFsI3FkRERERERERJQXGRkCEzaewaOkNABAj3qe6FLHQ+KoSicmC4iIqFhQp2dg9JpT+PvyQwCAm701Vo9oyCcNiIiIiIiIiIqxJf/e0N3r+7nZYXqXGhJHVHoxWUBERGZPk56BsetPY8+FWACAi60Cq4c3ROWy9hJHRkRERERERER5FRmTgLl/RgEAFJYyzO9TF/bWcomjKr2YLCAiIrOWkSEwadNZ7Dh7DwDgoJRjZVhDVCvvIHFkRERERERERJRXSakajFkbAXW6AABMCvVHoKeTxFGVbkwWEBGR2RJC4JOtkfj11B0AgJ2VJVYMC0ZNDzYeiIiIiIiIiIqzqdvO4+bjZABAs1fKIqyJn8QREZMFRERkloQQmP7bBaw9Hg0AUCossHRIA9TzdpE4MiIiIiIiIiLKj22n72BzRAwAwM3eCl+9URsWFjKJoyImC4iIyOwIIfD5H1FYfvgmAMBKboHFgxqgYaUy0gZGRERERERERPly+3EyPtlyTvf6q151UNbBWsKISIvJAiIiMjvz9l7BTwevA8ic4OjHAfXQpKqbxFERERERERERUX6o0zMwZt0pJKVqAAAjmvqh+StlJY6KtJgsICIis7LwwDV8u+8KAMDSQobv+tZFK393iaMiIiIiIiIiovz6es9lnIl+AgAI9HDC+6H+0gZEepgsICIis7H03xv43x9RAACZDPi6V220q1lB4qiIiIiIiIiIKL8OXX2EHw9eAwDYWllift+6sJLz52lzwm+DiIjMwppjtzHj9wu613N71EKXOh4SRkREREREREREBeFxUirGrT8NITJfz+hSE35udtIGRQbkUgdARESlR0KyGhtPRmPvxVg8VWngoJSjTfXysLKUYcr287pyM7vWxBtBXhJGSkREREREREQFQQiB9zedxYOnqQCALnUqokc9PhxojpgsICKiIrEhPBpTtp2DSpOht/zo9Ti915M7BmBgiE9RhkZEREREREREhWTF4Zv4K+oBAMDL1QazutaETCaTOCoyhskCIiIqdBvCozFp89kcy7WrUR7Dm1YqgoiIiIiIiIiIqLBduJuIOTsz5yaUW8gwv09dOCgVEkdFWeGcBUREVKgSktWYsu2cSWUPXH6AhGR1IUdERERERERERIUtOU2DMWsjkJaeOcLA+LavoK63i8RRUXaYLCAiokK1KSLGYOihrKjUGdgcEVPIERERERERERFRYZv5+wVce/gMAPBqlTJ4q1lliSOinDBZQEREhWrPhfu5LB9bSJEQERERERERUVHYcfYe1h6PBgC42Crwda86sLDgPAXmjskCIiIqVE9VmlyVT1RxGCIiIiIiIiKi4iomPhkf/vrfvIVfvlEb7o5KCSMiU3GCYyIiKlQOytxdahw50RERERERERFRsZCQrMbGk9HYezEWT1Ua2FvLcfdJiu7BwSGNffFagLvEUZKpmCwgIqJC1aZ6eRy9HpeL8mxEEBEREREREZm7DeHRmLLtXJbzFFZwUuLD9v5FHBXlB4chIiKiQvWafzmYOiqhUmGBHvU9CzUeIiIiIiIiIsqfDeHRmLT5bJaJAgC4l6DC9tN3izAqyi8mC4iIqNA8Vanx7rpTECaWn9G5JpxsOAwRERERERERkblKSFZjyrZzJpWdsv0cEpI5N2FxwWQBEREVCpU6HSN+OYGzMQkAADd7K1jLjV92lAoLzO1RC70aeBVliERERERERESUS5siYrLtUfAilToDmyNiCjkiKiics4CIiAqcJj0Do9ec0s1VUNFJiY1vN4a9lRybImKw90IsElVqOCoVaFPdHT3qecLJlj0KiIiIiIiIiMzdngv3c1k+FsOa+BVSNFSQmCwgIqIClZEhMGnTWey9GAsAKGNnhZXDG8LD2QYAENbED2FsJBAREREREREVS09VmlyVT1RxGKLigsMQERFRgRFCYMbvF/DrqTsAAAdrOVYMC0blsvYSR0ZEREREREREBcFBmbvnzx2VHEmguGCygIiICsy8vVew/PBNAIC13AKLBwehpoeTtEERERERERERUYFpU718Lsu7F1IkVNCYLCAiogKx9N8b+HbfFQCA3EKGhQPqoWGlMhJHRUREREREREQFqWc9T1jLTftZWamwQI/6noUcERUUJguIiCjfNp+MwYzfLwAAZDLgq1610cqfTw4QERERERERlTROtgq8XquCSWVndK4JJxsOQ1RcMFlARET5svv8fUzafFb3ekaXmuhSx0PCiIiIiIiIiIiosDxJTsNfUQ+yLaNUWGBuj1ro1cCriKKigpC72SiIiIhecPjqI4xecwrpGQIA8H5oNQwM8ZE4KiIiIiIiIiIqLF/8eQnxyWoAQN9gL1Qp54C9F2KRqFLDUalAm+ru6FHPE0627FFQ3LBnARER5cnp6CcY8csJpKVnAABGNPXDOy0qSxwVEREVN5cuXUL//v0REBAAJycn2Nrawt/fH+PHj8e9e/eMlu/atStcXFxgZ2eHpk2b4q+//jK674SEBIwZMwYeHh5QKpWoUaMGFi5cCCFEYR8WERERUYl0NuYJ1hy/DQBws7fCh+0DENbED2vfDMGOd5ti7ZshGNbEj4mCYoo9C4iIKNeuxD7FkGXH8SwtHQDQK8gTH3cIgEwmkzgyIiIqbmJiYnDv3j1069YNnp6ekMvliIyMxM8//4x169bh9OnTKFeuHADg2rVraNy4MeRyOSZNmgQnJycsWrQIoaGh2LVrF1q3bq3bb1paGtq0aYNTp05hzJgxCAgIwK5du/DOO+8gNjYW06ZNk+iIiYiIiIqnjAyBKdvOQ/vcxUftAzgfQQnDZAEREeVKdFwyBiw5hifPuxy2r1ken3WvxUQBERHlyWuvvYbXXnvNYHmzZs3Qq1cvLF++HJMmTQIAfPTRR3jy5AlOnjyJOnXqAAAGDRqEGjVqYNSoUYiKitJdjxYvXozw8HDMnz8fY8aMAQCMGDECPXr0wJw5czB06FD4+HDoPCIiIiJTbTwZjdPRTwAAQT4u6F6P8xWWNByGiIiITPbgqQoDlhxDbGIqAKBpVTfM61MHlhZMFBARUcHS/pAfHx8PAHj27Bm2b9+OFi1a6BIFAGBvb4/hw4fj8uXLCA8P1y1fs2YNbG1tMWLECL39jh07Fmq1GuvXry/8gyAiIiIqIZ4kp+HzXVEAAAsZMKNLTT40WAIxWUBERCZJSFZj0JLjuPU4GQBQ19sZPw6oD2u5pcSRERFRSaBSqfDo0SPExMRg9+7dGDlyJACgQ4cOAICzZ88iNTUVjRo1Mtg2JCQEAHTJgoyMDERERKBu3bpQKpV6ZYODgyGTyfQSC0RERESUvS93/zep8cAQH1Sv6ChxRFQYOAwRERHlKDlNg6HLjyPq/lMAQDV3Bywb0gB21ryMEBFRwVi8eLFuuCAA8PX1xapVq9C0aVMAwN27dwEAHh6G3d21y+7cuQMgszdCSkqK0bLW1tZwc3PTlc1JdHQ0YmJi9JZFRkYCANRqNdLS0kzaDxUetVoNjUYDtVotdShkxlhPyBSsJ2Sq0lZXzt1NxOpjmZMau9opMKaFH9tAJpCynuT1PfkrDxERZStVk46RK08i4vYTAIC3qy1WhgXD2dZK2sCIiKhE6dq1K/z9/ZGUlIRTp05h+/btePTokW59cnJmzzZra2uDbbW9B7RlsiurLa8tk5MlS5Zg+vTpRtclJiYiLi7OpP1Q4VGr1UhKSoIQAgoFJ1kk41hPyBSsJ2Sq0lRXMoTAp1sv6SY1fqdxRWhSniIuRdq4igMp60liYmKetmOygIiIspSeITB+/Rn8cyXzx5pyDtZYFdYQ5RyVOWxJRESUO56envD09ASQmTjo0aMHGjRogOTkZHz00UewtbUFAKSmphpsq1KpAEBXJruy2vLaMjkJCwtDaGio3rLIyEiMHDkSjo6OcHV1NWk/VHjUajVkMhlcXFxK/A82lHesJ2QK1hMyVWmqK5si7uD8/WcAgLpeThjwalVYcN5Ck0hZTxwd8zZMFJMFRERklBACn2yJxI7IewAAJxsFVoY1hHcZ035cISIiyo9atWqhbt26+OGHH/DRRx+hYsWKAGB0+CDtMu2wQy4uLrCxsTFaNjU1FY8ePULz5s1NisPLywteXl5G1ykUClhZsaedOZDL5fw+KEesJ2QK1hMyVWmoKwnJany55yqAzEmNZ3YNhFJpvOcmGSdVPclrcoITHBMRkVGf/xGFdeHRAABbK0ssH9oA1co7SBwVERGVJikpKbphfgIDA2FtbY0jR44YlDt69CgAICgoCABgYWGBevXq4dSpUwa9C44fPw4hhK4sERERERn31Z5LiHuWOTfBgBAf1PRwkjgiKmxMFhARkYEfDlzFTwevAwCsLC3w88Ag1PV2kTgqIiIqie7fv290+f79+3Hu3DmEhIQAAOzt7dGpUyccOHAAZ86c0ZVLSkrC4sWLUbVqVQQHB+uW9+3bF8nJyfj555/19jtv3jzI5XL07t27EI6GiIiIqGQ4dycBq47eAgCUsbPChDbVJI6IigKHISIiIj2rj93C3D8uAcjsZji/bx00qeomcVRERFRSvf3227h37x5atWoFHx8fqFQqnDx5EuvWrYODgwO++uorXdnPPvsM+/btQ9u2bTFu3Dg4Ojpi0aJFuHPnDnbs2AGZ7L/xc0eMGIFly5Zh/PjxuHnzJgICArBz505s2bIFkydPhq+vrwRHS0RERGT+MjIEpmw7h4znkxp/0M4fTrYle24GysRkARER6Ww/cxeTt57Tvf68Ry20q1lBwoiIiKik69u3L3755ResXLkSDx8+hEwmg4+PD0aOHIn3338f3t7eurJVqlTBoUOH8OGHH+Lzzz9HWloa6tWrhz/++AOtW7fW26+VlRX27t2LyZMnY+3atXj8+DEqV66M7777DqNGjSrqwyQiIiIqNjZHxCDi9hMAQF1vZ/Ss7yltQFRkmCwgIiIAwP6oBxi//jTE8ycHJncMQK8g4xM6EhERFZRevXqhV69eJpcPCAjAtm3bTCrr7OyMBQsWYMGCBXkNj4iIiKhUSUhW4/NdUQAAmQyY2aUmLCxkOWxFJQXnLCAiIoTfjMPbq09C87yP4butqmB400oSR0VERERERERERenrPZfw+Pmkxv0benNS41KGyQIiolLu/N0EDFseDpU6AwAwqJEPxrV5ReKoiIiIiIiIiKgonb+bgJXPJzV2sVVgYltOalzaMFlARFSKXX+YhEFLjuOpSgMA6FqnIqZ1qqE3QSQRERERERERlWwZGQJTt53XTWr8YXt/ONtaSRsUFTkmC4iISqm7T1IwcMlxXffC1/zL4Ys3anMsQiIiIiIiIqJS5tdTd3DiVjwAoI6XM96ozzkMS6NiMcFxVk+42tnZISkpSW/ZpUuX8MEHH+DgwYNIS0tDvXr1MH36dLRq1aooQiUiMjsJyWpsPBmNvRdj8VSlgYNSjlcru2FzRAzuPEkBADT0c8X3/etBYckcMhEREREREVFpkpCixue7LgLInNR4RpcafJCwlCoWyQIAaNq0Kd588029ZQqFQu/1tWvX0LhxY8jlckyaNAlOTk5YtGgRQkNDsWvXLrRu3booQyYiktyG8GhM2XYOKk2G3vKj1+N0/67p4YjFg4OgVFgWdXhEREREREREJLFv9lzGo6TMUQf6BnujlqeztAGRZIpNsqBSpUoYMGBAtmU++ugjPHnyBCdPnkSdOnUAAIMGDUKNGjUwatQoREVFcRxuIio1NoRHY9LmszmW617XAw5KRY7liIiIiIiIiKhkuXA3Eb8cuQkgc1Lj9zmpcalWrMabSEtLMxh2SOvZs2fYvn07WrRooUsUAIC9vT2GDx+Oy5cvIzw8vIgiJSKSVkKyGlO2nTOp7Nw/LyEhWV3IERERERERERGRORFCYOr2c7pJjSe184eLHSc1Ls2KTbJg06ZNsLW1hYODA8qVK4cxY8YgISFBt/7s2bNITU1Fo0aNDLYNCQkBACYLiKjU2BQRYzD0UFZU6gxsjogp5IiIiIiIiIiIyJxsOXUH4TczJzWu7emE3kGc1Li0KxbDEAUHB+ONN95AlSpVkJiYiJ07d2LBggU4ePAgDh8+DHt7e9y9excA4OHhYbC9dtmdO3dyfK/o6GjExOj/aBYZGQkAUKvVSEtLy+/hUD6p1WpoNBqo1XwSmrJW2uvJ7nP3clf+/D0MCDY8f5Z0pb2ekOlYV8gUUtYT1k0iIiIiyo1ElRpzdkYB0E5qXJOTGlPxSBYcO3ZM7/WgQYNQq1YtfPLJJ/j222/xySefIDk5GQBgbW1tsL1SqQQAXZnsLFmyBNOnTze6LjExEXFxcUbXUdFRq9VISkqCEMJgkmsirdJeT+KfqXJVPi5JVSrPb6W9npDpWFfIFFLWk8TExCJ9PyIiIiIq3jInNU4FAPRp4I3aXs7SBkRmoVgkC4x5//33MX36dOzYsQOffPIJbG1tAQCpqakGZVWqzB/NtGWyExYWhtDQUL1lkZGRGDlyJBwdHeHq6loA0VN+qNVqyGQyuLi48AcbylJprycudkrgYYrJ5V3tlaXy/Fba6wmZjnWFTCFlPXF0dCzS9yMiIiKi4ivqfiJ+OXILAOBsq8CkUE5qTJmKbbJAoVCgYsWKePToEQCgYsWKAIwPNaRdZmyIopd5eXnBy8v4+FwKhQJWVpzkwxzI5XJ+H5Sj0lxP2tasgGPPxx00qXyNCqXycwJKdz2h3GFdIVNIVU+YxCIiIiIiUwghMGXreaQ/n9X4/dBqnNSYdIrNBMcvU6lUiImJgbu7OwAgMDAQ1tbWOHLkiEHZo0ePAgCCgoKKNEYiIqnYWpl+elcqLNCjvmchRkNERERERERE5mDr6Ts4fjNzGOJank7o08Bb4ojInJh9suDx48dGl3/66afQaDTo1KkTAMDe3h6dOnXCgQMHcObMGV25pKQkLF68GFWrVkVwcHCRxExEJKW9F2Ixeet5k8vP6FwTTjZ8IpWIiIiIiIioJHtqZFJjS05qTC8w+2GIZs2ahaNHj6Jly5bw9vZGUlISdu7cif3796Nhw4YYM2aMruxnn32Gffv2oW3bthg3bhwcHR2xaNEi3LlzBzt27IBMxspPRCXb4auP8M6aCF13wjYB5fDPlUdQaTIMyioVFpjRuSZ6NTA+9BoRERERERERlRzz9l7Bw6eZ8732DvJCHU5qTC8x+2RBixYtcOHCBaxYsQKPHz+GpaUlqlatitmzZ2P8+PFQKpW6slWqVMGhQ4fw4Ycf4vPPP0daWhrq1auHP/74A61bt5bwKIiICt+p2/EY/ssJpD1PDAx71Q+fvh6AxBQNNkXEYO+FWCSq1HBUKtCmujt61POEky17FBARERERERGVdFH3E7H88E0AgJONApPa+UsbEJkls08WdOnSBV26dDG5fEBAALZt21aIERERmZ+o+4kYsiwcyWnpAIBeQZ749PUAyGQyONkqENbED2FN/CSOkoiIiIiIiIiKmhACU7bpT2rsykmNyQizn7OAiIiyd/PRMwxYfBwJKWoAQMfACvisey0OvUZERERERERE2H7mLo7fyJzUuKaHI/oGc1JjMo7JAiKiYuxeQgr6Lz6GR0mZYw42f6UsvuldhxMUERERERERERGeqtSYveOi7jUnNabsMFlARFRMPU5KxYDFx3DnSQoAINjXFT8OqA8rOU/tRERERERERAR8u/cKHrwwqXE9bxeJIyJzxl+UiIiKoYQUNQYtPY5rD58ByOxGuHhIEGysLCWOjIiIiIiIiIjMweXYp1j2fFJjR6Uck9pVkzYgMntMFhARFTMpaekIWx6O83cTAQCVy9phxdBgOCoVEkdGREREREREROYgc1Ljc3qTGpext5Y4KjJ3TBYQERUjqZp0jFx1EiduxQMAPF1ssHp4CC/4RERERERERKSz/cxdHL2eOalxjYqO6NfQR+KIqDhgsoCIqJjQpGdg7LrT+PvyQwBAWQdrrApriPJOSokjIyIiIiIiIiJzkZSqwZydnNSYco/JAiKiYiAjQ+CjXyOx69x9AICzrQKrwhrC181O4siIiIiIiIiIyJzM33cFsYmZkxq/Ud8T9X04qTGZhskCIiIzJ4TAzB0XsPFkDADAzsoSy4cGo1p5B4kjIyIiIiIiIiJzciX2KZb+ewNA5qTGH7T3lzgiKk6YLCAiMnPz9l7BskM3AQBWcgssHtwAdbycJY2JiIiIiIiIiMxL5qTG56F5PqnxxNBqcOMch5QLTBYQEZmxxf9cx7f7rgAA5BYyLOxfD40ql5E4KiIiIiIiIiIyN7+fvYcj1x8DAKpXcER/TmpMucRkARGRmVoffhuzdmROSCSTAV/1qo3XAtwljoqIiIiIiIiIzE1SqgazdlzQvZ7ZtQYnNaZcY7KAiMgM/X72Lj78NVL3enbXQHSp4yFhRERERERERERkrr57YVLjHvU8Ud/HVeKIqDiSSx0AERHp23/pAcatPw2ROcQgPmrvj34NvaUNioiIiIiIiIjMQkKyGhtPRmPvxVg8VWkgt5Ah8k4CAMBBKceHnNSY8ojJAiIiM3Ls+mO8tfIk1OmZmYJRLStjZPPKEkdFREREREREROZgQ3g0pmw7B5Umw+j6ltXKoqwDJzWmvOEwREREZiIyJgFhK04g9fkFf3AjH0xsW03iqIiIiIiIiIjIHGwIj8akzWezTBQAwPYz97AhPLoIo6KShMkCIiIzcCX2KQYtPYakVA0AoHtdD0ztVAMyGScjIiIiIiIiIirtEpLVmLLtnEllp2w/h4RkdSFHRCURkwVERBKLjkvGgCXHEP/8Qt62ujvm9qwFCwsmCoiIiIiIiIgI2BQRk22Pghep1BnYHBFTyBFRScRkARGRhGITVei/+BhiE1MBAE2quOG7fnUht+TpmYiIiIiIiIgy7blwP5flYwspEirJ+GsUEZFE4p+lYeCSY7gdlwwAqOftjJ8H1Ye13FLiyIiIiIiIiIjInDxVaXJVPlHFYYgo95gsICKSQFKqBkOWHcfl2CQAQEAFRywbEgxbK7nEkRERERWty5cvY8qUKQgJCUHZsmXh4OCAOnXqYPbs2Xj27Jle2WnTpkEmkxn978svvzTYd0ZGBr755hv4+/tDqVTCy8sLEyZMMNgvERERkblzUObu9wJHpaKQIqGSjL9KEREVMZU6HWHLw3EmJgEAUMnNDr8MC4aTLS/kRERU+ixduhTff/89OnfujP79+0OhUGD//v2YPHkyNmzYgKNHj8LGxkZvm2+++QZubm56y+rXr2+w73HjxmH+/Pno1q0bJkyYgIsXL2L+/Pk4deoU9u7dCwsLPjtFRERExUOb6uVx9HpcLsq7F2I0VFIxWUBEVEgSktXYeDIaey/G4qlKAwelHK38y+GfK49w7EbmBb6ikxIrhzdEWQdriaMlIiKSRs+ePfHRRx/ByclJt+ytt95C1apVMXv2bCxZsgSjR4/W26Zr167w9fXNdr/nz5/Hd999h+7du2Pz5s265X5+fnj33Xexbt069OvXr0CPhYiIiKiw9KzniS/+iDJpkmOlwgI96nsWQVRU0jBZQERUCDaER2PKtnMGF/EXnwJws7fCquEN4eFs8/LmREREZufy5cs4f/48Hjx4AJlMhrJly6JmzZqoWrVqvvYbFBRkdHnv3r0xe/ZsnDt3zuj6xMRE2NraQi43fkuzdu1aCCEwduxYveUjRozAhx9+iFWrVjFZQERERMWGk60CH3cIwJTt53MsO6NzTTjZcPQCyj0mC4iICtiG8GhM2nw2x3IDGvqgUln7IoiIiIgoby5evIgff/wRmzZtwv379wEAQggAgEwmAwC4u7ujV69eGDlyJAICAgrsvWNiYnT7f1mtWrXw9OlTWFpaIjg4GJ9++inat2+vVyY8PBwWFhYIDg7WW65UKlGnTh2Eh4cXWKxEREREReFeoirb9UqFBWZ0roleDbyKKCIqaZgsICIqQAnJakzZZvwJyJf9+Pc1DH3Vj3MVEBGR2bl27Ro++OADbNmyBTY2NmjatClGjhyJypUro0yZMhBCIC4uDlevXsXRo0exePFi3ZA///vf/1CpUqV8vX96ejpmzpwJuVyu9/S/s7Mz3nzzTTRu3BguLi64dOkS5s2bh44dO2Lp0qUYMmSIruzdu3fh5uYGa2vDof48PDxw+PBhpKWlwcrKKttYoqOjdYkLrcjISACAWq1GWlpaPo6UCoJarYZGo4FarZY6FDJjrCdkCtYTMpUUdSUmPgVL/r0BALCzssTwJr44diMOiSoNHJVyvOZfDl3rVICTjYLtEzMh5Tklr+/JZAERUQHaFBFj0viBAKBSZ2BzRAyGNfEr5KiIiIhyp3r16ggMDMTy5cvRvXt32NnZZVv+2bNn2LRpE7799ltUr14dKlX2T73lZOzYsThy5AjmzJmDatWq6S1/2bBhw1CzZk2MGzcOPXv2hL19Zq+95ORko4kCILN3gbZMTsmCJUuWYPr06UbXJSYmIi7O9IkGqXCo1WokJSVBCAGFgg9hkHGsJ2QK1hMylRR1ZfaO60h7/nvD0ODy6FvLGX1rOeuVSU95iriUIgmHTCDlOSUxMTFP2zFZQERUgPZcuJ/L8rFMFhARkdnZuHEjOnfubHJ5Ozs7DB48GIMHD8a2bdvy9d6ffvopFixYgDfffBMfffRRjuXLlCmDt956C9OmTcPhw4fRtm1bAICtrS0ePHhgdBttMsPW1jbH/YeFhSE0NFRvWWRkJEaOHAlHR0e4urrmuA8qXGq1GjKZDC4uLvxxj7LEekKmYD0hUxV1XTlxKx77rsQDALxcbPBWK39YyS0K/X0pf6Q8pzg6OuZpOyYLiIgK0FOVJlflE1Xs3kpEROYnN4mCl3Xp0iXP206bNg2zZs3C0KFD8eOPP5q8na+vLwDg0aNHumUVK1bEhQsXkJqaatDD4M6dO3Bzc8uxVwEAeHl5wcvL+Li/CoXCpH1Q4ZPL5fw+KEesJ2QK1hMyVVHVlYwMgc//vKJ7/XGHANjbKgv1PangSHVOyWtygikoIqIC5KDMXQ7WUcmnVYiIqHhLTU0tkP1MmzYN06dPx+DBg7F48WLdBMqmuHIl8wb6xcmQGzRogIyMDBw/flyvrEqlwunTpxEUFFQgcRMREREVpq2n7+BsTAIAINjPFe1qlpc4IirJmCwgIipAbarn7qLdprp7zoWIiIgktmvXLkybNk1v2Q8//ABHR0fY2dmhX79++Zq4bcaMGZg+fToGDhyIpUuXwsLC8DZFo9EgISHBYHl0dDQWLlyIMmXKoHHjxrrlvXv3hkwmw7x58/TKL1q0CMnJyejfv3+e4yUiIiIqCslpGsz94xIAQCYDprxePVcPVBDlFochIiIqQG2ru2PW7xcgTCirVFigR33PQo+JiIgov7744guUK1dO9/rixYt47733ULlyZfj5+WH9+vUIDg42OgFxTr7//ntMnToV3t7eaN26NdasWaO33t3dHW3atEFSUhL8/PzQtWtXBAQEwMXFBZcuXcLixYuRlJSEtWvXwsbGRrddYGAgRo0ahQULFqB79+7o0KEDLl68iPnz56N58+bo169fnj8PIiIioqLw08HruJ+YOddSj3qeqOnhJHFEVNIxWUBEVEDSNBmYtOmsSYkCAJjRuSacbDgMERERmb+LFy+iQ4cOutfr16+HjY0Njh8/DkdHR/Tr1w8rVqzIU7IgPDwcAHD79m0MHjzYYH3z5s3Rpk0b2NjYoEePHjh27Bi2bt2KpKQkuLm5oXXr1pg0aRKCg4MNtp03bx58fX3x888/Y8eOHXBzc8OYMWMwY8YMo70XiIiIiMzFvYQU/PT3NQCArZUl3g+tJnFEVBowWUBEVACEEPhw81kcuf4YAOBiq0ByWjpSNRkGZZUKC8zoXBO9GhifLJGIiMjcxMfHw83NTfd67969aNWqFRwdHQEALVq0wM6dO/O07+XLl2P58uU5lrO2tsbixYtztW9LS0tMmDABEyZMyFNsRERERFL54o9LUKkzf1N4u3lluDtyUmMqfEwWEBEVgG/2XsGvp+4AAByVcmx8qxHK2iuxKSIGey/EIlGlhqNSgTbV3dGjniecbNmjgIiIig83NzfcunULAPD06VOEh4djzpw5uvVqtRrp6elShUdERERUopyJfqL7jaGikxIjmlWSOCIqLZgsICLKp40nojF/3xUAgJWlBX4eFIQq5RwAAGFN/BDWxE/K8IiIiPKtUaNG+PHHH1GjRg3s2rULGo0G7du3162/evUqKlSoIGGERERERCWDEAIzf7+ge/1Be38oFZYSRkSlCZMFRET58O+VR/jo10jd6y/eqIWQSmUkjIiIiKjgTZ8+HS1btkSvXr0AAIMHD0b16tUBZN7QbtmyBS1btpQyRCIiIqISYUfkPZy4FQ8AqOPljM61K0ocEZUmTBYQEeVR1P1EvL3qJDQZmVMaT2z7CrrU8ZA4KiIiooJXvXp1XLx4EYcOHYKTkxOaNWumW/fkyROMGzcOLVq0kC5AIiIiohJApU7H57uidK+ndKoOmUwmYURU2jBZQESUB7GJKgxbFo6nqRoAQJ8GXhjVsorEURERERUeV1dXdOrUyWC5i4sL3nvvPQkiIiIiIipZlh66gZj4FABA59oVUc/bReKIqLSxkDoAIqLi5lmqBsOWh+NuggoA0LSqG2Z2rclsPxERERERERHlyYOnKnz/11UAgLXcAh+095c4IiqN2LOAiCgXNOkZGL0mAufvJgIA/Ms74If+9aCwZO6ViIhKDgsLi1wnwWUyGTQaTSFFRERERFSyfb37Mp6lpQMARjStBA9nG4kjotKIyQIiIhMJITB1+3nsv/QQAFDeUYllQxvAQamQODIiIqKCNWjQIINkwcmTJ3Hu3DlUq1YNAQEBAIALFy7g8uXLqFmzJurXry9FqERERETF3oW7iVh/IhoAUNbBGm+3qCxxRFRaMVlARGSin/6+jtXHbgMA7K3lWDqkASo4MdNPREQlz/Lly/Ve79mzB5s2bcLWrVvRuXNnvXVbt27FwIED8fXXXxdhhEREREQlgxACM3+/ACEyX78fWg121vzJlqTBcTOIiEzw25m7+HxXFADA0kKG7/vXQ/WKjhJHRUREVDQ+/fRTjBw50iBRAABdu3bFm2++icmTJ0sQGREREVHxtudCLI5cfwwAqFHRET3reUocEZVmTBYQEeUg/GYcJmw4o3s9u2tNNH+lrIQRERERFa2zZ8+icuWsu8NXqVIFkZGRRRgRERERUfGXpsnAnJ0Xda8/fb06LCxyN28UUUFisoCIKBvXHyZhxC8nkJaeAQAY1bIy+gR7SxwVERFR0XJxccHu3buzXP/HH3/AycmpCCMiIiIiKv5+OXITNx8nAwDa1SiPkEplJI6ISjsmC4iIsvA4KRVDloXjSbIaANClTkVMbFtN4qiIiIiKXr9+/bBt2zaEhYXh4sWLSE9PR3p6Oi5evIhhw4bh999/R//+/aUOk4iIiKjYiHuWhm/3XQEAWFla4KMO/hJHRMQJjomIjFKp0zH8lxO4HZeZ4Q/2c8XcnrUgk7E7IBERlT6zZs3C1atXsWzZMixfvhwWFpnPHGVkZEAIgU6dOmHWrFkSR0lERERUfMzbexlPVRoAwJBXfeFTxk7iiIiYLCAiMpCRITB23Wmcuv0EAFCprB1+Hlgf1nJLaQMjIiKSiLW1NbZs2YLdu3dj27ZtuH79OgCgUqVK6NKlC9q2bStxhERERETFx5XYp1h97DYAwNXOCqNbVZE4IqJMTBYQEb1kzs6L+OP8fQCAm70VVgwNhrOtlcRRERERSa9t27ZMDBARERHl0+ydF5GeIQAA49u8AkelQuKIiDJxzgIiohesOHwTi/+9AQBQKiyweHADeLnaShwVEREREREREZUEBy49wIFLDwEAr7jbo08DL4kjIvoPexYQET2350Ispv92HgAgkwHz+9RFHS9naYMiIiIyE7dv38ZPP/2EK1eu4PHjxxBC6K2XyWTYt2+fRNERERERmT9NegZm77ioez25Y3XILfksN5kPJguIiACcjXmCd9eewvNegJjyenW0rVFe2qCIiIjMxK5du9CtWzekpaXB3t4eZcqUkTokIiIiomJn7fHbuPIgCQDQslpZNHulrMQREeljsoCISr3ouGQMW34CKep0AMDQV30x9FU/iaMiIiIyHx999BHc3NywdetWBAUFSR0OERERUbGTkKLG13suAwAsLWT4pGN1iSMiMsR+LkRUqiUkqzF0eTgeJaUCAEJruGMyL9hERER6oqKiMHbsWCYKiIiIiPLou31XEJ+sBgAMDPFBlXL2EkdEZIjJAiIqtVI16Ri56gSuPu8CWMfLGfN614WlhUziyIiIiMxL2bJlYWVlJXUYRERERMXSjUfPsOLITQCAk40C771WVdqAiLLAZAERlUpCCHy4ORJHr8cBALxcbbB4cBBsrCwljoyIiMj8DBw4EJs3b5Y6DCIiIqJi6bOdF6FOz5wk8d3XqsLFjg9hkHninAVEVCp9vecytpy6AyAzq798aDDc7K0ljoqIiMg8DRkyBPv370eXLl3w3nvvwc/PD5aWhgl2b29vCaIjIiIiMl+Hrz3C7guxAIBKbnYYGOIjcUREWWOygIhKnQ3h0fjur6sAACtLCywaFITKZTlWIBERUVb8/f0hk8kghMDvv/+eZbn09PQijIqIiIjIvKVnCMz8/aLu9ccdAmAl50AvZL6YLCCiUuWfKw/x8ZZI3esv3qiFYD9XCSMiIiIyf1OmTIFMxjl9iIiIiHJj08loXLyXCAB4tUoZvBZQTuKIiLJX7JIFycnJqFmzJm7cuIFRo0ZhwYIFeusvXbqEDz74AAcPHkRaWhrq1auH6dOno1WrVhJFTETm4uK9RLy9KgKajMxxAt8PrYYudTwkjoqIiMj8TZs2TeoQiIiIiIqVpFQNvvjzMgDAQgZM7lidD1+Q2St2/V6mTJmChw8fGl137do1NG7cGEeOHMGkSZPwxRdfICkpCaGhodi7d28RR0pE5uR+ggrDlocjKVUDAOgb7IV3WlSWOCoiIiIiIiIiKokWHriKR0mpAIDeDbwRUMFR4oiIclasehZERERg3rx5mDt3LiZMmGCw/qOPPsKTJ09w8uRJ1KlTBwAwaNAg1KhRA6NGjUJUVBQzeEQlXEKyGhtPRmPP+fuIf6aCi50SLfzLYcupu7iXoAIANH+lLGZ2qcnzARERUS5kZGRgxYoV2LJlC65fvw4AqFSpErp3745BgwbBwqLYPYdEREREVCii45Kx6J8bAAB7aznGt3lF4oiITFNoyYIjR45g2bJluHPnDmrUqIFx48ahQoUKed5feno6RowYgXbt2qF79+4GyYJnz55h+/btaNGihS5RAAD29vYYPnw4pkyZgvDwcAQHB+c5BiIybxvCozFl2zmoNBn/LXyYgmM343UvAyo44vv+9SC35A8aREREpkpJSUGHDh3w999/QyaT6dr1O3fuxI4dO/DLL79g586dUCqVEkdKREREJL3//RGFtOe/TYxqWQVlHawljojINPn6tWzu3LlwdXXFgwcP9JavWbMGzZo1w+LFi7Fr1y58+eWXCA4ONiiXG9988w2ioqIM5ijQOnv2LFJTU9GoUSODdSEhIQCA8PDwPL8/EZm3DeHRmLT5rH6iwIjudT1gb12sOlURERFJbtasWTh48CAmTJiAhw8fIjo6GtHR0Xj06BEmTpyIAwcOYPbs2VKHSURERCS5k7fi8PvZewAATxcbDH3VV9qAiHIhX7+Y7d+/H0FBQShX7r+ZvDUaDcaPHw9LS0ssXLgQISEh2LJlC6ZNm4Yvv/wSc+fOzfX73LhxA1OnTsWUKVPg6+uLmzdvGpS5e/cuAMDDw3CyUu2yO3fu5Phe0dHRiImJ0VsWGRkJAFCr1UhLS8tt+FTA1Go1NBoN1Gq11KGQmUhIUePTbedMKvvVnkvoWtsdTjaKQo6KigOeT8hUrCtkCinrSWG/5/r169GrVy+DtryzszP+97//4datW1i7di1mzpxZqHEQERERmbOMDIEZv1/Uvf64QwCUCksJIyLKnXwlCy5cuICBAwfqLTt48CAePHiA0aNHY/jw4QCAmjVrIiIiArt27cpTsuCtt95CpUqVMH78+CzLJCcnAwCsrQ279Wi7Q2vLZGfJkiWYPn260XWJiYmIi4szJWQqRGq1GklJSRBCQKHgD74ErIuIRWoOPQq0VOoMrDl8Fb3ruhdyVFQc8HxCpmJdIVNIWU8SExMLdf8xMTGYOHFiluubN2+OrVu3FmoMREREROZu25k7OBP9BAAQ7OuK9jXLSxsQUS7lK1nw8OFD+Pn56S07fPgwZDIZunbtqre8RYsW2Lt3b67fY9WqVdizZw/+/vvvbG+6bG1tAQCpqakG61QqlV6Z7ISFhSE0NFRvWWRkJEaOHAlHR0e4urrmJnwqBGq1GjKZDC4uLvzBhgAAR25fz2X5Z3j7Nf4tE88nZDrWFTKFlPXE0dGxUPfv7OyMq1evZrn+6tWrcHZ2LtQYiIiIiMxZSlo65v5xSfd68usBkMlkEkZElHv5ShbY2dkhKSlJb9nx48chk8kMJhJ2cnKCRqPJ1f5TU1Mxfvx4dOjQAeXLl9fdoGiHE0pISMDVq1fh5uaGihUr6q17kXaZsSGKXubl5QUvLy+j6xQKBaysrHJ1DFQ45HI5vw/SSUpLz1X5p6nprDukw/MJmYp1hUwhVT0p7OREmzZt8P3336NNmzYGD9bs3r0bCxcuxBtvvFGoMRARERGZs5//vo57CZkPLHev54Fans7SBkSUB/ma4NjPz0+vt4BKpcK///6LwMBA2Nvb65W9f/++3twGpkhJScHDhw+xY8cOVK1aVfdfixYtAGT2OqhatSoWL16MwMBAWFtb48iRIwb7OXr0KAAgKCgol0dIRMWBgzJ3eU9HJZ8KJiIiyo1Zs2bBwcEBHTp0QFBQEAYPHozBgwcjKCgI7du3h4ODA2bMmCF1mERERESSuJ+gwo8HrwEAbBSWmBTqL3FERHmTr54FAwcOxNixYzFx4kS0atUKq1atQmJiInr16mVQ9tChQ6hSpUqu9m9nZ4eNGzcaLH/48CHeeecdtGvXDmFhYahVqxbs7e3RqVMn/Prrrzhz5gxq164NAEhKSsLixYtRtWpVg94ORFQytKleHkevmz6fSJvqnK+AiIgoN3x8fHDixAl89NFH+O233xAREQEAcHBwQN++fTFnzhx4e3tLHCURERGRNOb+GYUUdeaoB281r4zyTkqJIyLKm3wlC958802sW7cOX3/9Nb755hsIIVCvXj289957euXu37+P3bt3Y9q0abnav0KhQM+ePQ2W37x5EwBQuXJlvfWfffYZ9u3bh7Zt22LcuHFwdHTEokWLcOfOHezYsYPjhBGVUP7uDiaXVSos0KO+ZyFGQ0REVDJ5e3tj9erVEELg4cOHAICyZcuyjU1ERESl2tmYJ/g1InMI9ApOSrzZrJLEERHlXb6GIbK2tsbff/+NjRs3Ys6cOdiwYQOOHDliMJFwbGws5syZg/79++cr2JxUqVIFhw4dQkhICD7//HNMnDgRdnZ2+OOPPwzGViWikuHcnQS8vfqkyeVndK4JJxsOQ0RERJRXMpkM5cqVQ7ly5QokUXD58mVMmTIFISEhKFu2LBwcHFCnTh3Mnj0bz549Myh/6dIldO3aFS4uLrCzs0PTpk3x119/Gd13QkICxowZAw8PDyiVStSoUQMLFy6EECLfcRMREREJITDz9wu615PaVYONlaWEERHlT756FgCApaUlevTokW2Z2rVr64YFKgi+vr5ZNvADAgKwbdu2AnsvIjJfUfcTMXDJMSSqMidPr+nhiCuxSUjVZBiUVSosMKNzTfRqYHwCcyIiIsra999/jy1btujNV/aitm3bokePHhg5cmSu97106VJ8//336Ny5M/r37w+FQoH9+/dj8uTJ2LBhA44ePQobGxsAwLVr19C4cWPI5XJM+n97dx5XdZX/cfx92XcExQ1w19xXBDVNM5emJrNMGzU1t6wxZ1omRys1HcummVZtpnItzRazRtssTa1fKoo75r4D7qIgIHCB7+8P8hYCelm/F+7r+Xj0iPv9nnvv+wtHLud+7jln4kQFBgZq7ty56tu3r7799lv16tXL9riZmZnq3bu3duzYoQkTJqhZs2b69ttv9ec//1lnz54t8qxnAACA632395xijl+SJLUJr6J724SanAgomRIXCw4dOqS33npLhw8fVkhIiIYPH57nj3QAKAuHz13R0LmbdSnNKknq1ay6/jO0g65mZuuz7fFa/ctpJaakK9jPS31a1NKA9mEK9GFGAQAAxbFo0SJFREQUer5JkyZasGBBsYoFDzzwgCZPnqzAwEDbsUcffVSNGzfWiy++qPnz5+vxxx+XJE2ePFmXL1/Wtm3b1LZtW0nS8OHD1aJFC40fP1779++3zXaYN2+eYmJi9NZbb2nChAmSpLFjx2rAgAF66aWXNHLkSNWtW7fIeQEAgPNKSrNq2bY4rf7ljBJT03XyUobt3NQ/NpOLC8szomIr0TJEe/fuVceOHfX222/ru+++05IlS9S3b18tWbKktPIBQD5Hz6do8NzNupiaKUnq3iREbw9tLw83FwX6uGt01/r6YGSEPhjaXB+MjNCorvUpFAAAUAKHDh1Sq1atCj3fokULHTp0qFiPHRERkadQcM2DDz4oSdqzZ48kKTU1VStXrlSPHj1shQJJ8vPz05gxY3Tw4EHFxMTYji9dulQ+Pj4aO3Zsnsd94oknZLVa9cknnxQrLwAAcE6fxsQp6qU1mvn1Pm0+fkmHzl+1rWzgYpGOnMu/fCJQ0ZSoWDBz5kylpaXp3//+t2JjY7V8+XKFhobq73//e2nlA4A8Tl5M05C5m3X+Sm71vmujanp3WAd5urEmIAAAZcVqtSo9Pb3Q8+np6Tc8Xxzx8fGSpBo1akiSdu/erYyMDHXu3Dlf206dOkmSrViQk5Oj7du3q127dvLy8srTNjIyUhaLJU9hAQAA4EY+jYnTxOW7lV7AsseSlGNIE5fv1qcxceWcDChdJVqG6KefftLDDz+sp556SlLuJ4qys7P14IMP6sCBA7rllltKJSQASFL8pTQNnhutM8m5b0ZE1g/W3OER8nKnUAAAQFlq0qSJVq9ebfu7/3rff/+9GjZsWGrPl52drX/84x9yc3PTkCFDJEmnTp2SJIWG5l8L+NqxhIQESdKlS5d09erVAtt6enqqWrVqtrY3ExcXZytcXBMbGyspt4iSmZlp51WhrFitVmVlZclqtZodBQ6MfgJ70E9QkKSrVk1ZsceutlNX7tHtTYIV6M3qBjD3d0pxn7NExYJz584pKioqz7FOnTrJMAydPXuWYgGAUnM66aqGzN2shMtXJUkd6gZpwcMd5e1BoQAAgLI2ePBgTZ48WVOmTNGUKVPk4eEhKXcQMnPmTH3//feaOXNmqT3fE088oU2bNumll16yjSnS0tIk5b7Zf71rsweutblR22vtr7W5mfnz52v69OkFnktOTlZiYqJdj4OyY7ValZKSIsMw5O7OmzMoGP0E9qCfoCAfbz9rW27oZtKtOVq68bAebFejjFOhIjDzd0pycnKx7leiYkFWVpa8vb3zHLt2OysrqyQPDQA255LTNXTuZp1MzB3UtwkL1MKRHeXnWeI92gEAgB2efPJJffvtt3rxxRf13//+V02bNpUk7d+/X4mJierWrZuefvrpUnmuKVOmaM6cOXrkkUc0efJk23EfHx9JUkZGRr77XFsC6VqbG7W91v5am5sZPXq0+vbtm+dYbGysxo0bp4CAAAUHB9v1OCg7VqtVFotFQUFBvLmHQtFPYA/6CQqy6eTRIrZP1WN38PcBzP2dEhAQUKz7lfidNoul4F2+CzsOAEVxISVDQ+Zt1tELuRsFtagdoA9GRSnAiz/cAAAoL+7u7vr+++/1+uuva+nSpdqxY4ek3OWJJk2apL/+9a+lMgB64YUXNHPmTI0cOVLvvPNOnnO1a9eWpAKXD7p27NqyQ0FBQfL29i6wbUZGhi5cuKDu3bvblSk8PFzh4eEFnnN3d7fNsoC53Nzc+HngpugnsAf9BNdLycwuUvsrGdn0H9iY9TuluH+bl7hYMHr0aI0bNy7f8T/+8Y9ydc27PIjFYlFSUlJJnxKAk7iUmqmH5m3W4XMpkqSmNf21ZHSUAn0oFAAAUN7c3d01ceJETZw4sUwe/4UXXtD06dM1YsQIzZs3L9+Hj1q1aiVPT09t2rQp332jo6MlSREREZIkFxcXtW/fXjt27FBGRkae5Yi2bNkiwzBsbQEAAG7E36tob5/y4UZUZCUqFtx2223MIABQJpLSrHpo/mbtP3NFktSoup+WjIlSkC/VeQAAKpsZM2Zo+vTpGjZsmBYsWCAXF5d8bfz8/HTPPffo888/165du9SmTRtJUkpKiubNm6fGjRsrMjLS1n7w4MHasGGD3nvvPU2YMMF2/I033pCbm5sefPDBsr8wAABQ4fVuXlPRR+3fo6h3c/YrQMVVomLB+vXrSykGAPwmOd2q4Qs265dTuZux1K/mq6VjolTNr+BNCgEAQNmLi4vTtGnT9P333+vcuXNatWqVevbsqfPnz+vvf/+7HnvsMXXs2LHIj/v2229r2rRpqlOnjnr16qWlS5fmOV+jRg317t1bkjRr1iz98MMP6tOnj5588kkFBARo7ty5SkhI0Ndff53ng0xjx47VwoUL9dRTT+n48eNq1qyZvvnmG33xxRd6/vnnVa9evRJ9PwAAgHN4oH2Y/rVqv9Lt2OTYy91FAzqElUMqoGyU2+6gGzZs0LRp07RmzZryekoAFVBKRpZGLozRrvjcJcvqBPto6dgoVQ/wMjkZAADO69ixY+rUqZPS09PVqVMnnT592nYuJCREW7du1bx584pVLIiJiZEknTx5UiNGjMh3vnv37rZiQaNGjbRhwwZNmjRJL7/8sjIzM9W+fXutWrVKvXr1ynM/Dw8PrVmzRs8//7w++ugjXbx4UQ0bNtTs2bM1fvz4IucEAADOKdDHXVPvaa5nv9hz07Yz+rVUoDfLEKHiKpViwcWLF3XkyBEFBwerUaNGec5FR0dr6tSp+uGHHwqcTgwA16RlZmnUohhtO3FJkhRaxVtLx0apVqC3yckAAHBuzz33nFxcXLRnzx55e3urevXqec7fdddd+vLLL4v12IsWLdKiRYvsbt+sWTOtWLHCrrZVqlTRnDlzNGfOnGJlAwAAkCQfjxu/herl7qIZ/VpqUMfwckoElI0SFQuys7M1fvx4zZs3T4ZhSJKioqL0v//9T15eXnr00Uf1ySefyMXFRUOGDNFzzz1XKqEBVD7p1myN/WCrthzLXQewZoCXPhrbSWFBPiYnAwAAa9as0YQJExQeHq6LFy/mO1+3bl3Fx8ebkAwAAKBsGYah+T8fs90ed1sD7Yq7pMSUdAX7ealPi1oa0D5MgT7MKEDFV6JiwezZs/Xee+8pLCxMnTp10uHDhxUdHa3x48crPj5eW7Zs0bBhwzRlyhQ1bNiwtDIDqGQysrI1bvE2bTic++ZDiL+nPnqkk+pUpVAAAIAjSE5OVq1atQo9n5mZqaysrHJMBAAAUD5ijl9SbELuUsldG1XT5LuaKTMzU4mJiQoODpaHh4fJCYHSU6JiweLFi9WqVStt2rRJPj65b+qNHz9e//3vf1W1alX9/PPP6ty5c6kEBVA5ZWblaPyH2/XjwfOSpKq+HvpobJTqV/M1ORkAALgmPDxcv/zyS6Hno6Oj8y1HCgAAUBnM//mo7evRXeubmAQoeyXaRODgwYMaPny4rVAgSY899pgk6e9//zuFAgA3ZM3O0V8+2qE1+85JkoJ83PXh2Cg1qu5vcjIAAPB7999/vxYsWKA9e37b2M9isUiSli9frmXLlmnQoEFmxQMAACgTJy6m6vu9ZyVJDUJ81b1JiMmJgLJVomJBamqqatasmefYtdutWrUqyUMDqOSycww99ekurfrljCQpwMtNi0dHqWnNAJOTAQCA6z333HMKCwtTVFSUHnroIVksFr388svq3LmzBg0apDZt2ujpp582OyYAAECpWrjhuH7dplWju9aXi4vF3EBAGStRsUD67RNF1992d2dTDwAFy8kx9Mxnu/TlrlOSJH/P3EJBy9BAk5MBAICCBAQEaNOmTRozZoy2bt0qwzC0evVqHThwQH/+85+1bt06eXl5mR0TAACg1CSnW7Vsa5wkqYqPu+5vF2ZyIqDslWjPAkn65ptvdObMGdvttLQ0WSwWLVu2TDt37szT1mKx6MknnyzpUwKowHJyDD37Raw+354gSfLxcNWiUR3VJryKucEAAMANBQQE6M0339Sbb76p8+fPyzAMhYSE5PvwEAAAQGXwyZY4pWZmS5KGRtWRt4eryYmAslfiYsHSpUu1dOnSfMfffffdfMcoFgDOzTAMTV25Rx/H5FbmvdxdtPDhjupQN9jkZAAAoChCQlivFwAAVF5Z2TlatPG4JMnd1aLhneuZmgcoLyUqFqxbt660cgCo5AzD0Iyv9mpJ9ElJkqebi+aP6KioBlVNTgYAAG5my5Yt2rVrl8aOHWs7tmLFCj3//PNKTEzUiBEj9NJLL5mYEAAAoPR898tZJVy+Kkn6Y+vaqhHAcotwDiUqFnTv3r20cgCoxAzD0Mur9mvhhuOSJA9XF707rINubVTN3GAAAMAu06dPl4uLi61YcPLkSQ0ePFi+vr4KCQnRP//5TzVu3FgjR440OSkAAEDJzf/5qO3r0V3rm5gEKF8l3uAYAG7m9dUH9e6PuS+0bi4W/Wdoe/W4pbrJqQAAgL127dqlrl272m5//PHHMgxDO3fu1N69e9WnTx+99957JiYEAAAoHdtPXtL2k5clSVH1g9UyNNDcQEA5olgAoEzN/uGQ3lp7WJLk6mLRnCHt1Kt5DZNTAQCAorh48aJq1Pjt9fu7777TbbfdptDQUElSv379dOjQIbPiAQAAlJr5Px+zfc2sAjibEm9wDACSlJRm1bJtcVqz76yupGfJ38tNvh5u+mH/OUmSi0V648G2urNlLZOTAgCAoqpSpYrOnj0rScrIyFB0dLSeffZZ23mLxaKrV6+aFQ8AAKBUJFy+qlV7zkiS6lb10R3N+LAjnAvFAgAl9mlMnKau2KP0rJxC2/x7YBvd06Z2OaYCAAClpW3btpo3b5569eqlL774Qunp6erbt6/t/LFjx/LMPAAAAKiI3t94XNk5hiRpZJd6cnWxmJwIKF8UCwCUyKcxcZq4fPdN22VlG+WQBgAAlIUpU6aoT58+ioyMlGEY6t27tyIiImznv/rqK0VFRZmYEAAAoGRSM7L00ZaTkiR/LzcNjAg3ORFQ/igWACi2pDSrpq7YY1fbqSv3qG+Lmgr0cS/jVAAAoLR16dJF27dv13fffafAwED96U9/sp27ePGi+vTpo/vuu8/EhAAAACWzbGucrqRnSZKGRNaRrydvm8L50OsBFNtn2+NvuPTQ76Vbc7R8e7xGsTkQAAAVUpMmTdSkSZN8x6tWrarXX3/dhEQAAAClIzvH0MKNxyVJri4WjehSz9Q8gFlczA4AoOJavfdMEdufLaMkAAAAAAAAxbNm31mduJgmSfpDy5qqXcXb5ESAOSgWACi2a9Pz7JWcbi2jJAAAoDR169ZNP/30U5Hvt3btWnXt2rUMEgEAAJSd+T8fs309mhUR4MQoFgAoNn+voq1kFuDFfgUAAFQEtWvXVo8ePdShQwe99dZbOnToUKFt9+7dq3//+99q06aNevfurTp16pRjUgAAgJLZk5CkLccSJUnt61RRuzpBJicCzEOxAECxRdQNLlL73s1rlFESAABQmj755BP93//9n6pVq6Ynn3xSTZs2VdWqVRUREaE+ffqod+/e6tChg6pUqaJWrVpp0qRJCgsL04YNG7R06VKz4wMAANgt76yCBiYmAczHBscAiuX8lQz9b2eC3e293F00oENYGSYCAACl6dZbb9V3332nI0eOaNmyZfrpp5+0d+9e7du3TxaLRSEhIerWrZt69OihAQMGqF69emZHBgAAKJKzyen6ctcpSVJoFW/1bcGHHOHcKBYAKLLkdKtGLNii+EtX7b7PjH4tFejNMkQAAFQ0DRs21KRJkzRp0iSzowAAAJSqDzYdV1aOIUkaeWs9ubmyCAucG/8CABRJujVbY9/fqr2nkyVJTWr46YV7msvLreBfJ17uLnplQGsN6hhenjEBAAAAAAAKdTUzWx9uPilJ8vVw5X0LQMwsAFAEWdk5mvDRDm3+deOf0Cre+mBUlGoGeum+dmH6bHu81uw9q+R0qwK83NW7eQ0NaB+mQB9mFAAAAAAAAMexfHu8LqdZJUmDOoYrwIv3LgCKBQDsYhiGnv0iVqv3npUkBft6aPHoSNUM9JIkBfq4a3TX+hrdtb6ZMQEAAAAAAG4oJ8fQgg25GxtbLNLILryXAUgsQwTATv9cdUCfbo2XlDs97/2RkWoQ4mdyKgAAAAAAgKL58eB5HT2fKknq07yG6lT1MTkR4BgoFgC4qbk/HdU7Px6RJHm4umju8Ai1Cgs0ORUAAAAAAEDRzf/5mO3rMd0amJgEcCwUCwDc0Gfb4vXiN/skSS4W6c0/tVWXRtVMTgUAAAAAAFB0+88k6+fDFyRJrcMCFVE3yOREgOOgWACgUGv2ntXfl++23Z7Zv5X+0KqWiYkAAEB5SUxMNDsCAABAqVvwu1kFo7vWl8ViMTEN4FjY4BhAgbYcS9T4pduVnWNIkv7Wp4mGRNUxORUAACgvISEhat26tbp3767bb79d3bt3V5UqVcyOBQAAUGznr2TofztOSZJqBnjpLj4QCeRBsQBAPntPJWv0+zHKyMqRJI28tZ7G397I5FQAAKA89e7dWxs2bNCuXbs0e/ZsWSwWtW7dWrfffrt69Oih2267TYGB7GEEAAAqjiXRJ5SZnftex/AudeXuyqIrwO9RLACQx8mLaRqxcIuupGdJku5rF6opdzdnWh4AAE5m1apVys7OVkxMjNavX69169Zp48aN2rlzp9544w25uLiobdu26tGjh26//XZ169ZN/v7+ZscGAAAoULo1W0uiT0iSvN1dNSSS1ROA61EsAGBz7kq6Hpq/WeevZEiSetwSolceaC0XFwoFAAA4I1dXV3Xq1EmdOnXSpEmTlJ2drS1btmj9+vVav369Nm7cqO3bt+u1116Tm5ubMjIyzI4MAABQoJU7T+liaqYk6YEOYari42FyIsDxMNcGgCQpOd2qEQtidDIxTZLUvk4V/Wdoe6bkAQAAG1dXV3Xu3FmTJ0/WF198oY8//ljdunWTYRjKysoyOx4AAECBDMPQgg2/bWw88tZ65oUBHBgzCwAo3ZqtMe9v1b7TyZKkJjX8tODhjvLx4FcEAADIdfXqVW3YsMG2JNHWrVuVlZWl4OBg9e/fX927dzc7IgAAQIE2HL6o/WeuSJLuaFpdDUL8TE4EOCbeCQScXFZ2jh5fukNbjiVKkkKreOuDUVFMxwMAwMmlp6dr48aNtuJATEyMMjMzVb16dd12220aMmSIunfvrpYtW5odFQAA4Ibm/XzU9vXorvVNTAI4NooFgBMzDEOTP4/Vmn1nJUlVfT20eHSkagZ6mZwMAACYLSgoSJmZmapZs6Zuu+02DR06VD169FDTpk3NjgYAAGC3w+euaP2B85KkpjX91blhVZMTAY6LxcgBJ/byqv1ati1ekuTn6aZFIyOZigcAACRJGRkZcnV1Vbt27dS+fXu1b99eTZo0KZPnmjVrlgYOHKgGDRrIYrGoXr16hbZ9+OGHZbFYCvzvs88+K/A6pk6dqvr168vT01MNGzbUzJkzZbVay+RaAACAY1mw4bjt69Fd68tisZgXBnBwzCwAnNR7Px3Ruz/mTsPzcHXRe8M7qFVYoMmpAACAo9i0aZPWrVun9evXa8aMGUpLS5Ofn5+6dOmi7t27q3v37urYsaPc3Eo+pHj22WcVHBys9u3b6/Lly3bdZ/HixfmORUZG5jv24IMPasWKFRo1apQ6d+6sTZs2acqUKTp8+LAWLVpUwuQAAMCRXUrN1Ofbcz8kWc3PU/3a1jY5EeDYKBYATmjZ1ji99M1+SZKLRXprcFt1aVjN5FQAAMCRREVFKSoqSpMmTVJ2dra2bNmi9evX68cff9SLL76oZ599Vj4+PurcubOteNCtW7diPdeRI0fUoEEDSVLLli2VkpJy0/s89NBDN23zzTffaMWKFXrqqaf06quvSpLGjBmjKlWq6LXXXtMjjzyiLl26FCszAABwfEu3nFS6NUeSNLxzXXm6uZqcCHBsLEMEOJnVe89q0uexttsv3tdKd7asZWIiAADg6FxdXdW5c2dNnjxZq1at0uXLl7Vx40Y9//zzunr1qqZNm6bbb7+92I9/rVBQFIZhKDk5WTk5OYW2Wbp0qSTpiSeeyHP82u0lS5YU+XkBAEDFkJmVo/c3Hpckebi5aGhUHXMDARUAxQLAiWw+elGPL92u7BxDkvRM31s0OJIXSwAAYL+rV69q7dq1+vLLL7Vy5UrFxMTIMAwZhlGuOQIDAxUYGChvb2/17t1bmzdvztcmJiZGoaGhCg8Pz3M8PDxctWvXVkxMTHnFBQAA5ezr2FM6dyVDknR/u1BV9fM0ORHg+FiGCHASe08la8z7W5WRlfvpu1G31tefezQ0ORUAAHB06enp2rBhg9avX69169Zp69atslqtMgxDXl5e6tq1q26//fYSzSwoipo1a+rJJ59Uhw4d5Ovrq127dumNN95Qt27d9M0336hXr162tqdOnVLz5s0LfJzQ0FDFx8ff9Pni4uLytYuNzZ2labValZmZWYKrQWmwWq3Kyspi02rcEP0E9qCfVB6GYWjuT0dtt4dFhZXqazZ9BfYws58U9zkpFgBO4MTFVA1fsEVXMrIkSfe1C9XzdzeTxWIxORkAAHBUU6dO1fr16xUTE6PMzEwZhiEPDw9FRUXZigOdO3eWh4dHueZ6+eWX89zu37+/hgwZorZt2+qxxx7ToUOHbOfS0tLk6Vnwpwi9vLyUlpZ20+ebP3++pk+fXuC55ORkJSYmFiE9yoLValVKSooMw5C7u7vZceCg6CewB/2k8tgef0V7T1+RJEXVCVBVt8xSfc2mr8AeZvaT5OTkYt2PYgFQyZ1LTtew+Vt0ISV36l3PptX1ygOt5eJCoQAAABRu5syZcnNzU8eOHW3FgVtvvVVeXl5mR8uncePGGjRokBYtWqSDBw+qSZMmkiQfHx9lZGQUeJ/09HT5+Pjc9LFHjx6tvn375jkWGxurcePGKSAgQMHBwSW/AJSI1WqVxWJRUFAQb9igUPQT2IN+UnksX3XS9vUj3RuW+us1fQX2MLOfBAQEFOt+FAuASizpqlUjFsboZGLup+Y61A3S20Pay92V7UoAAMCNffvtt+ratat8fX3NjmKXevXqSZIuXLhgKxbUrl1bCQkJBbZPSEhQaGjoTR83PDw8354H17i7u5f7zAoUzM3NjZ8Hbop+AnvQTyq+4xdStfbAeUlS4+p+6tm8VpmsrEBfgT3M6ifFLU7wjiFQSaVbszX2/a3adzp32tEtNfy1YERHeXu4mpwMAABUBH379q0whQJJtuWHatSoYTvWsWNHJSQkKC4uLk/buLg4nTp1ShEREeWaEQAAlL1FG4/LMHK/HtW1PkswA0Xg8MWCAwcOaOjQoWrWrJkCAwPl4+Ojpk2b6qmnntLp06cLbN+/f38FBQXJ19dX3bp109q1a01IDpgnKztHjy/doS3Hc9fjCwvy1gejIxXow9Q4AABQcaWmpio9PT3f8R07dmjZsmVq1qyZGjZsaDs+ePBgSdIbb7yRp/2120OHDi2zrAAAoPwlXbXq0625HxII9vXQfe1uPosQwG8cfhmi+Ph4nT59Wvfdd5/CwsLk5uam2NhYvffee/r444+1c+dOVa9eXZJ05MgRdenSRW5ubpo4caICAwM1d+5c9e3bV99++6169epl8tUApSspzapl2+K0Zt9ZXUnPkr+Xm3o3q6Fd8Ulas++sJKman4cWj45SjQDHW18YAABAkhYvXqwTJ05Iks6fP6/MzEzNnDlTklS3bl0NGzZMUu7sgT/84Q/q37+/GjduLF9fX+3atUsLFiyQq6ur3nvvvTyPe/fdd+uPf/yjXnvtNSUlJalz587atGmT5s+fr4ceekhdu3Yt3wsFAABl6uMtJ5WWmS1JGhpVR17urK4AFIXDFwvuuOMO3XHHHfmO33bbbbZNzCZOnChJmjx5si5fvqxt27apbdu2kqThw4erRYsWGj9+vPbv38/UI1Qan8bEaeqKPUrPyslzPPpoou1rP083LRoZqfrVKs4SAgAAwPnMnz9fP/74Y55jU6ZMkSR1797dViyoWbOmevXqpXXr1unDDz/U1atXVatWLT344IOaPHmymjZtmu+xly1bppkzZ2rJkiVavHixQkNDNWPGDE2aNKnsLwwAAJSbrOwcvb/xuCTJw9VFwzrXNTcQUAE5fLGgMHXr5v6Dv3TpkqTcKckrV65Ujx49bIUCSfLz89OYMWM0depUxcTEKDIy0oy4QKn6NCZOE5fvvmm7IVF11DI0sBwSAQAAFN/69evtalezZk0tXry4SI/t5eWlmTNn2mYqAACAyunbPWd0Kil3ucJ72tRWdX9WWACKyuH3LLgmPT1dFy5cUHx8vL7//nuNGzdOknTXXXdJknbv3q2MjAx17tw53307deokSYqJiSm/wEAZSUqzauqKPXa1/WDTcSWlWcs4EQAAAAAAgLnm/3zM9vXorvVNTAJUXBVmZsG8efM0YcIE2+169eppyZIl6tatmyTp1KlTkqTQ0Pwbl1w7lpCQcNPniYuLU3x8fJ5jsbGxkiSr1arMzMziXQBKjdVqVVZWlqxW53wT/JMtJ/ItPVSYdGuOPo05oRGd65RxKsfj7P0E9qGfwF70FdjDzH5C3wQAAM5s24lL2hl3WZLUuUFVNa8dYG4goIKqMMWC/v37q2nTpkpJSdGOHTu0cuVKXbhwwXY+LS1NkuTp6Znvvl5eXnna3Mj8+fM1ffr0As8lJycrMTGxwHMoP1arVSkpKTIMQ+7u7mbHKXer9pwqWvvYU7rnFr8ySuO4nL2fwD70E9iLvgJ7mNlPkpOTy/X5AAAAHMkCZhUApaLCFAvCwsIUFhYmKbdwMGDAAHXs2FFpaWmaPHmyfHx8JEkZGRn57puenrte2bU2NzJ69Gj17ds3z7HY2FiNGzdOAQEBCg4OLumloISsVqssFouCgoKc8g2b9OyibdJ9NVtO2W+dvZ/APvQT2Iu+AnuY2U8CAvj0HAAAcE5xiWn6ds9pSVL9ar7q2bS6yYmAiqvCFAuu17p1a7Vr107/+c9/NHnyZNWuXVtSwUsNXTtW0BJF1wsPD1d4eHiB59zd3eXh4VGC1Cgtbm5uTvvzCPAu2psPgd4eTvl9kpy7n8B+9BPYi74Ce5jVTyhiAQAAZ/X+xuPKMXK/HnVrPbm4FO1DlgB+U2E2OC7I1atXbcsCtWrVSp6entq0aVO+dtHR0ZKkiIiIcs0HlIXezWsWsX2NMkoCAAAAAABgnpSMLH0SEydJCvR214AOYSYnAio2hy8WnDlzpsDj69at0549e9SpUydJkp+fn+655x6tX79eu3btsrVLSUnRvHnz1LhxY0VGRpZLZqAsdW5g/5JCXu4uvFACAAAAAIBK6dOYOF3JyJIkDY6sIx+PCruICuAQHP5f0GOPPabTp0+rZ8+eqlu3rtLT07Vt2zZ9/PHH8vf316uvvmprO2vWLP3www/q06ePnnzySQUEBGju3LlKSEjQ119/LYuFaUio2M4lp+uxD7fb3X5Gv5YKLOKyRQAAAAAAAI4uO8fQwo25Gxu7uVg0oktdkxMBFZ/DFwsGDx6sDz74QIsXL9b58+dlsVhUt25djRs3Ts8884zq1Klja9uoUSNt2LBBkyZN0ssvv6zMzEy1b99eq1atUq9evUy8CqDkElMzNXTeZp24mCZJCg/y1rkrGcrIysnX1svdRTP6tdSgjgXvvwEAAAAAAFCRrd57VnGJVyVJd7WqpVqB3iYnAio+hy8WDBo0SIMGDbK7fbNmzbRixYoyTASUv+R0q0Ys2KJD51IkSU1r+uuTRzpLkj7bHq81e88qOd2qAC939W5eQwPahynQhxkFAAAAAACgclrw8zHb16O71jcxCVB5OHyxAHB2aZlZGr0oRrEJSZKkBtV8tXh0lK0YMLprfV4UAQAAAACA09gdf1lbjidKkjrWC1Kb8CrmBgIqCYff4BhwZhlZ2Rq3eJtijl+SJIVW8daSMVEK8fc0ORkAAAAAAIA55jOrACgTFAsAB2XNztGEpTv0f4cuSJKq+3tq6dgo1a7CGnwAAAAAAMA5nUlK19e7T0uSwoO91bt5TZMTAZUHxQLAAeXkGHpm2S59v/esJCnIx11LxkSpblVfk5MBAAAAAACY5/1Nx5WVY0iSHu5SX64uFpMTAZUHexYADsYwDD2/Yo/+t/OUJMnf000fjIpSkxr+JicDAAAAAAAoX0lpVi3bFqc1+84q6apVB8+mSJJ8PVw1KCLM5HRA5UKxAHAghmFo1rf7tXTzSUmSl7uLFozsqFZhgSYnAwAAAAAAKF+fxsRp6oo9Ss/KyXcuPStH38ae0aCO4SYkAyonigWAA3nrh8N676ejkiQPVxfNHR6hjvWCTU4FAAAAAABQvj6NidPE5bsLPZ+dY9jOUzAASgd7FgAOYt7/HdXraw5KklxdLJo9pJ26NQ4xORUAAAAAAED5SkqzauqKPXa1nbpyj5LSrGWcCHAOFAsAB/DRlpOa+fU+SZLFIr06sI36tqhpcioAAAAAAIDy99n2+AKXHipIujVHy7fHl3EiwDlQLABMtmJngp79ItZ2+8X+rdS/XaiJiQAAAAAAAMyzeu+ZIrY/W0ZJAOdCsQAw0eq9Z/XUp7tkGLm3n7urmYZE1TE3FAAAAAAAgImupGcVqX1yOssQAaWBYgFgkp8PXdD4D7crOye3UvDXOxpr7G0NTE4FAAAAAABgLn8vtyK1D/ByL6MkgHOhWACYYOvxRI39YKsys3PX3xvdtb6e6NXY5FQAAAAAAADm6928aPs49m5eo4ySAM6FYgFQzvYkJGnkwhhdtWZLkgZHhuv5u5vJYrGYnAwAAAAAAMB8D7QPk5ebfW9berm7aECHsDJOBDgHigVAOTp09oqGL9iiKxm5a+/d27a2ZvZvRaEAAAAAAADgV4E+7ppxb0u72s7o11KB3ixDBJQGigVAOTl5MU0Pzd+sxNRMSVKvZjX074Ft5OpCoQAAAAAAAOD3IuoF6UbvmHi5u+iVAa01qGN4uWUCKrui7RYCoFhOJ13VkHnROpucIUm6tVFVzRnSTu6u1OsAAAAAAACuN2fdYRm/fv3H1rV0MSVTyelWBXi5q3fzGhrQPkyBPswoAEoTxQKgjF1IydBD8zYr/tJVSVKHukGaOzxCXu6uJicDAAAAAABwPMcvpGrFzlOSpNAq3nptUFt52LmHAYDi418ZUIaSrlo1fP4WHTmfKklqUTtACx7uKB8P6nQAAAAAAAAF+c/6w8rOyZ1X8FiPhhQKgHLCvzSgjKRmZOnhhVu093SyJKlRdT99MCqSTXcAAAAAAAAKEZeYps+3J0iSagZ4aWBEmMmJAOdBsQAoA+nWbI39YKt2nLwsSaoT7KMPx0Spqp+nucEAAAAAAAAc2H/WH1HW72YVeLqxjDNQXigWAKXMmp2j8R9u18YjFyXlVsE/HBOlGgFeJicDAAAAAABwXAmXr+qzbXGSpOr+nnqwY7jJiQDnQrEAKEXZOYae/GSnfth/TpJU1ddDS8ZEKTzYx+RkAAAAAAAAju2d9Udkzc6dVTCue0N5uTOrAChPFAuAUpKTY+jZz2P11e7TkqQALzd9MDpSjar7mZwMAAAAAADAsZ1JStcnMbmzCqr5eWhIZB2TEwHOx83sAEBFk5Rm1bJtcVqz76yupGfJ38tNvZvV0JELKfpka+6Lmo+HqxaOjFSL2oEmpwUAAAAAAHB87/x4RJnZOZKkR25rIG8PZhUA5Y1iAVAEn8bEaeqKPUrPyslzPPpoou1rDzcXzRseoQ51g8o7HgAAAAAAQIVzLjldH205KUkK9vXQ0Ki6JicCnBPFAsBOn8bEaeLy3TdtNySyjro0qlYOiQAAAAAAACq+9346qoxfP5g5plt9+XryliVgBvYsAOyQlGbV1BV77Gr7ccxJJaVZyzgRAAAAAABAxXchJUNLNp+QJFXxcdfwzvXMDQQ4MYoFgB0+2x6fb+mhwqRbc7R8e3wZJwIAAAAAAKj45v50VOnWX2cVdK0vP2YVAKahWADYYfXeM0Vsf7aMkgAAAFQ+s2bN0sCBA9WgQQNZLBbVq1fvhu03b96sXr16yd/fXwEBAbrzzju1c+fOAtueOnVKw4cPV0hIiLy9vRUREaFly5aV/kUAAIAiu5iSoQ825c4qCPBy0/Au9cwNBDg5igWAHa6kZxWpfXI6yxABAADY69lnn9XatWvVsGFDBQUF3bBtdHS0unfvrmPHjmnGjBmaPn26Dh06pG7duik2NjZP28TERHXt2lWff/65HnvsMb355pvy8/PToEGDtHDhwrK8JAAAYIf5Px/TVWu2JGlU1/oK8HI3ORHg3JjXA9jB36to/1R4cQMAALDfkSNH1KBBA0lSy5YtlZKSUmjbv/zlL/Lw8NBPP/2k0NBQSdKgQYPUrFkzPf300/r+++9tbV9++WUdO3ZMK1eu1D333CNJGj16tDp37qy//e1vGjhwoPz8/MrwygAAQGEup2Xq/Y3HJUn+nm4a2aW+uYEAMLMAsEfv5jWL2L5GGSUBAACofK4VCm7m8OHDiomJ0cCBA22FAkkKDQ3VwIEDtWbNGp0589vykUuXLlXDhg1thQJJcnV11YQJE5SYmKhvvvmm9C4CAAAUyYKfjyk1M3dWwcO31lOgDx+8BMxGsQCwQ4taAXa39XJ30YAOYWWYBgAAwDnFxMRIkjp37pzvXKdOnWQYhrZt2yZJOn36tBISEtSpU6cC2/7+8QAAQPlKumrVwg3HJUm+Hq4adSuzCgBHwDJEwE0cPHtFj324ze72M/q1VKA31XAAAIDSdurUKUnKM6vgmmvHEhISitz2RuLi4hQfH5/n2LW9EaxWqzIzM+2NjzJitVqVlZUlq5V9w1A4+gnsQT8pP/N/OqIrGbn7Qw6NCpevuyrUayp9BfYws58U9zkpFgA3cOxCqobO26xLabn/wJrXCtCR8ynKyMrJ19bL3UUz+rXUoI7h5R0TAADAKaSlpUmSPD09853z8vLK06YobW9k/vz5mj59eoHnkpOTlZiYaEdylCWr1aqUlBQZhiF3dz60g4LRT2AP+kn5SM3I1sKNJyRJXm4uuq9ZQIV7PaWvwB5m9pPk5ORi3Y9iAVCI+EtpGjo3WuevZEiSujWupnkjIpSemaPPtsdrzd6zSk63KsDLXb2b19CA9mGsrwcAAFCGfHx8JEkZGRn5zqWnp+dpU5S2NzJ69Gj17ds3z7HY2FiNGzdOAQEBCg4OLsIVoCxYrVZZLBYFBQXxhg0KRT+BPegn5eOTH4/pSkbuXgVDo8LVMKzi7ftIX4E9zOwnAQH2L6n+exQLgAKcS07XQ/M261RS7kAysl6w3hsWIU83V3m6uWp01/oa3ZX19AAAAMpT7dq1JRW8fNC1Y9eWGCpK2xsJDw9XeHjBM0fd3d3l4eFhR3KUNTc3N34euCn6CexBPylbKRlZWrgpd1aBp5uLHu3RuMJ+r+krsIdZ/aS4xQk2OAauczElQ0Pnbdbxi7nT0tuEV9H8hyPk7eFqcjIAAADn1rFjR0nSpk2b8p2Ljo6WxWJRhw4dJEm1atVSaGiooqOjC2wrSREREWWYFgAAXG9J9Ald/nWp56FRdRXin3+5QADmoVgA/E7SVauGL9iiQ+dSJElNa/rr/ZEd5e/FlDIAAACzNWrUSBEREVq2bJltA2MpdzPjZcuWqWfPnqpZs6bt+ODBg3XkyBF9+eWXtmPZ2dmaPXu2qlSporvuuqtc8wMA4MzSMrM096ejkiQPNxeN697A5EQArscyRMCvUjOyNHLhFv1yKncDkAYhvloyJkpVfJhOBgAAUJYWL16sEydylyQ4f/68MjMzNXPmTElS3bp1NWzYMFvbN998U7fffru6deumCRMmSJJmz56tnJwcvfrqq3ked9KkSVq2bJmGDBmip556SqGhofroo48UExOjefPmyd/fv5yuEAAAfBh9UhdTMyVJQyLrqEaAl8mJAFyPYgEgKd2arTHvb9X2k5clSeHB3lo6ppOq+TEdDgAAoKzNnz9fP/74Y55jU6ZMkSR17949T7GgS5cuWr9+vZ5//nk9//zzslgs6tKli5YtW6Y2bdrkeYyqVatqw4YNmjRpkt5++22lpKSoefPm+vjjj/Xggw+W/YUBAABJ0tXMbL17bVaBK7MKAEdFsQBOLzMrR48t2aZNRy9KkmoGeGnpmE6qGUiFGwAAoDysX7++SO07d+6sH374wa62oaGhWrx4cTFSAQCA0vLRlpO6kJIhSRrUMUy1Ar1NTgSgIOxZAKeWlZ2jv368Q+sOnJckVfPz0IdjoxQe7GNyMgAAAAAAgIov3Zqtd348Iklyd7XosR6NTE4EoDAUC+C0cnIMPfPZbn2754wkKdDbXYtHR6lhiJ/JyQAAAAAAACqHT7fG6dyV3FkFD3QIU2gVZhUAjopiAZySYRh6fsUefbEjQZLk5+mmD0ZFqlmtAJOTAQAAAAAAVA4ZWdn67/rcWQWuLhb9mVkFgEOjWACnYxiGZn69T0s3n5Qkebm7aMHDHdUmvIq5wQAAAAAAACqRz7bF63RSuiTp/nahLPsMODiKBXA6r68+qPk/H5Mkebi6aO7wCEXWDzY5FQAAAAAAQOWRmZWj/6zLnVXgYpHG386sAsDRUSyAU/nv+iN6a+1hSZKbi0VvD22vbo1DTE4FAAAAAABQuXyxI14Jl69Kkvq3DVW9ar4mJwJwMxQL4DTe33hc/1y1X5JksUivP9hWvZvXMDkVAAAAAABA5WLNztGcdbkf1rRYpPE9mVUAVAQUC+AUPo2J07SVv9hu/3NAa93TpraJiQAAAAAAACqnFTtPKS4xd1bBPa1rq2GIn8mJANiDYgEqvZW7Tunvn++23Z5xbwsNigg3MREAAAAAAEDllJWdo7d/N6vgcWYVABUGxQJUaqv3ntVTn+yUYeTenvSHphreuZ6pmQAAAAAAACqrr3af1rELqZKku1rWUpMa/iYnAmAvigWotH46eF7jP9yurJzcSsFfejbSo90bmpwKAAAAAACgcsrOMfTW2kO22xPuYFYBUJFQLECltOVYoh5ZvFWZ2TmSpDFd6+vJ3k1MTgUAAAAAAFB5fR17WkfP584quLNFTTWtGWByIgBFQbEAlc7OuMsatShG6dbcQsGQqDp67u5mslgsJicDAAAAAAConHJyDM3+gVkFQEVGsQCVyr7TyRqxYItSMrIkSfe3C9XMe1tSKAAAAAAAAChDq345o0PnUiRJvZrVUIvagSYnAlBUFAtQaRw+l6KH5m1W0lWrJOkPLWvqlQday8WFQgEAAAAAAEBZyckx9NbvZhX8hVkFQIVEsQCVQlximh6at1kXUzMlSbffEqI3/9RObq50cQAAAAAAgLK0et9Z7T9zRVLuezKtw6qYGwhAsTj8O6kHDx7U1KlT1alTJ4WEhMjf319t27bViy++qNTU1HztDxw4oP79+ysoKEi+vr7q1q2b1q5da0JylJfTSVc1ZF60ziSnS5K6NKyq/z7UQR5uDt+9AQAAAAAAKjTDyDurYMIdjU1MA6Ak3MwOcDMLFizQ22+/rX79+mno0KFyd3fXunXr9Pzzz+vTTz9VdHS0vL29JUlHjhxRly5d5ObmpokTJyowMFBz585V37599e2336pXr14mXw1KIinNqmXb4rT6lzO6lJquIF8vdWkcos+3xysu8aokqX2dKpo7PEJe7q4mpwUAAAAAAKj81u4/p19OJUuSujWupvZ1gkxOBKC4HL5Y8MADD2jy5MkKDPxtU5RHH31UjRs31osvvqj58+fr8ccflyRNnjxZly9f1rZt29S2bVtJ0vDhw9WiRQuNHz9e+/fvZ6PbCurTmDhNXbFH6Vk5vx08f1Wbj1+y3WwZGqCFIyPl6+nw3RoAAAAAAKDCu35WwV+ZVQBUaA6/TktERESeQsE1Dz74oCRpz549kqTU1FStXLlSPXr0sBUKJMnPz09jxozRwYMHFRMTUy6ZUbo+jYnTxOW78xYKCnB/+zAFeruXUyoAAAAAAADn9uPB89oVnyQpd1noiHrBJicCUBIOXywoTHx8vCSpRo0akqTdu3crIyNDnTt3zte2U6dOkkSxoAJKSrNq6oo9drV9ZdV+JaVZyzgRAAAAAAAADMPQm7+bVfAXZhUAFV6FXK8lOztb//jHP+Tm5qYhQ4ZIkk6dOiVJCg0Nzdf+2rGEhISbPnZcXJytEHFNbGysJMlqtSozM7NE2VE0n2w5cdMZBdekW3P0acwJjehcp4xToSKwWq3KysqS1UoBCYWjn8Be9BXYw8x+Qt8EAADlbcPhi9px8rIkKbJ+sDo1qGpuIAAlViGLBU888YQ2bdqkl156SbfccoskKS0tTZLk6emZr72Xl1eeNjcyf/58TZ8+vcBzycnJSkxMLG5sFMOqPaeK1j72lO65xa+M0qAisVqtSklJkWEYcndneSoUjH4Ce9FXYA8z+0lycnK5Ph8AAHBuubMKDtpus1cBUDlUuGLBlClTNGfOHD3yyCOaPHmy7biPj48kKSMjI9990tPT87S5kdGjR6tv3755jsXGxmrcuHEKCAhQcDBrr5Wn9OyibUh9NVv8jCAp9w0bi8WioKAg3thDoegnsBd9BfYws58EBASU6/MBAADntunoRcUcvyRJiqgbpC4NmVUAVAYVqljwwgsvaObMmRo5cqTeeeedPOdq164tqeClhq4dK2iJouuFh4crPDy8wHPu7u7y8PAoamyUQEARNywO9PbgZwQbNzc3/t3ipugnsBd9BfYwq59QxAIAAOXprev2KrBYivZhTwCOqcJscPzCCy9o+vTpGjFihObNm5fvl1CrVq3k6empTZs25btvdHS0JCkiIqJcsqL09G5es4jta5RREgAAAAAAAGw+elHRR3OX6W4bXkXdGlczORGA0lIhigUzZszQ9OnTNWzYMC1YsEAuLvlj+/n56Z577tH69eu1a9cu2/GUlBTNmzdPjRs3VmRkZHnGRinIzrZvc2NJ8nJ30YAOYWWYBgAAAAAAwLnNXnvY9vVfmVUAVCoOvwzR22+/rWnTpqlOnTrq1auXli5dmud8jRo11Lt3b0nSrFmz9MMPP6hPnz568sknFRAQoLlz5yohIUFff/01v7wqmBU7EzRr1X6728/o11KBRVy2CAAAAAAAAPbZdiJRPx++IElqFRqoHreEmJwIQGly+GJBTEyMJOnkyZMaMWJEvvPdu3e3FQsaNWqkDRs2aNKkSXr55ZeVmZmp9u3ba9WqVerVq1e55kbJrN1/Vk9/ukuGkXv7nta1tHrvWaVn5Z9p4OXuohn9WmpQx4L3mgAAAAAAAEDJvfXDb7MK2KsAqHwcvliwaNEiLVq0yO72zZo104oVK8ouEMrclmOJemzJdmXl5FYK/npHYz3Zu4mS0qz6bHu8Vv9yWokp6Qr281KfFrU0oH2YAn2YUQAAAAAAAFBWdsZd1o8Hz0uSmtUKUK9m1U1OBKC0OXyxAM5lT0KSRi+KUcavMwge7lJPT/RqLEkK9HHX6K71NSwyVImJiQoODpaHh4eZcQEAAAAAAJzC7B8O2b7+6x2NmFUAVEIUC+Awjp5P0YgFW3QlI0uSdF+7UE39Y3NefAAAAAAAAMpZUppVy7bFac2+szp/JUNHzqdKkhqF+KlP85ompwNQFigWwCGcunxVw+Zv0cXUTElSr2bV9coDreXiQqEAAAAAAACgPH0aE6epK/YUuHfkicRUfbYtnr0jgUqIYgFMdzElQ8Pmb1bC5auSpKj6wZozpL3cXV1MTgYAAAAAAOBcPo2J08Tluws9b802bOcpGACVC+/GwlRX0q16eGGMbSpby9AAzRsRIS93V5OTAQAAAAAAOJekNKumrthjV9upK/coKc1axokAlCeKBTBNujVbY97fqtiEJElSgxBfvT8yUv5e7iYnAwAAAAAAcD6fbY8vcOmhgqRbc7R8e3wZJwJQnigWwBTW7Bw9vnS7Nh9LlCTVDvTSktFRqurnaXIyAAAAAAAA57R675kitj9bRkkAmIFiAcpdTo6hv3+2W2v2nZMkVfX10OIxUapdxdvkZAAAAAAAAM7rSnpWkdonp7MMEVCZUCxAuTIMQzO+2qvPdyRIkvw93fT+qEg1DPEzORkAAAAqCovFUuB/fn75/6Y8cOCA+vfvr6CgIPn6+qpbt25au3atCakBAHB8/l5uRWofwFLSQKVStN8AQAm9+cMhLdp4XJLk6eaieSMi1DI00NxQAAAAqHC6deumRx55JM8xd/e8b1gcOXJEXbp0kZubmyZOnKjAwEDNnTtXffv21bfffqtevXqVZ2QAABxe7+Y1FX00sQjta5RhGgDljWIBys3CDcf0xppDkiQ3F4v++1B7RTWoanIqAAAAVEQNGjTQQw89dMM2kydP1uXLl7Vt2za1bdtWkjR8+HC1aNFC48eP1/79+2WxWMohLQAAFcMD7cP0yqr9yrBjk2MvdxcN6BBWDqkAlBeWIUK5+Hx7vKZ/uVeSZLFIrw5qo55NqT4DAACg+DIzM5WSklLgudTUVK1cuVI9evSwFQokyc/PT2PGjNHBgwcVExNTTkkBAKgYAn3c1SrMvhUgZvRrqUBvliECKhOKBShzq/ee1TOf7bbdnt6vhe5tG2piIgAAAFR0n332mXx8fOTv76/q1atrwoQJSkpKsp3fvXu3MjIy1Llz53z37dSpkyRRLAAA4Do7Tl7S1uOXbtjGy91FrwxorUEdw8spFYDywjJEKFObjlzU+KXblZ1jSJKe7t1EwzvXMzcUAAAAKrTIyEgNHDhQjRo1UnJysr755hvNmTNHP/74ozZu3Cg/Pz+dOnVKkhQamv9DKteOJSQk3PS54uLiFB8fn+dYbGysJMlqtSozM7Okl4MSslqtysrKktVqNTsKHBj9BPZw9n6SnWNoyv9ibbdn9mumtMxsrT1wXsnpWQrwctMdTaurf9taCvR2d+rXQGfvK7CPmf2kuM9JsQBlZnf8ZY39YKsyf13nbnTX+nq8ZyOTUwEAAKCi27x5c57bw4cPV+vWrfXcc8/pzTff1HPPPae0tDRJkqenZ777e3l5SZKtzY3Mnz9f06dPL/BccnKyEhPt3wQSZcNqtSolJUWGYeTb5Bq4hn4Cezh7P/lf7HntOXVFktQu1E931PeWxWJRv6b+edplX72ixKtmJHQczt5XYB8z+0lycnKx7kexAGXi8LkrGrFgi1IysiRJD3QI03N3NWMDOQAAAJSJZ555RtOnT9fXX3+t5557Tj4+PpKkjIyMfG3T09MlydbmRkaPHq2+ffvmORYbG6tx48YpICBAwcHBpZAeJWG1WmWxWBQUFMQbNigU/QT2cOZ+cjnNqnc25S4h7epi0fR7W6pqVf+b3Mt5OXNfgf3M7CcBAQHFuh/FApS6+EtpGjZ/iy6l5U536dO8hl6+v5VcXCgUAAAAoGy4u7urdu3aunDhgiSpdu3akgpeaujasYKWKLpeeHi4wsMLXpPZ3d1dHh4exY2MUuTm5sbPAzdFP4E9nLWfzP7moC7/+j7OsE511bpOVZMTOT5n7SsoGrP6SXGLE2xwjFJ1ISVDw+Zv0emk3E9rdWlYVW8Nbic3V7oaAAAAyk56erri4+NVo0YNSVKrVq3k6empTZs25WsbHR0tSYqIiCjXjAAAOKI9CUn6cPMJSVJVXw892buJyYkAmIV3cFFqktOtGj5/i45dSJUktQkL1HvDI+Tl7mpyMgAAAFQWFy9eLPD4lClTlJWVpXvuuUeS5Ofnp3vuuUfr16/Xrl27bO1SUlI0b948NW7cWJGRkeWSGQAAR2UYhqat/EU5Ru7tv9/ZVIHeLKsDOCuWIUKpuJqZrTGLtmrv6dzNMxpX99OikZHy86SLAQAAoPTMnDlT0dHRuv3221WnTh2lpKTom2++0bp16xQVFaUJEybY2s6aNUs//PCD+vTpoyeffFIBAQGaO3euEhIS9PXXX7OfFgDA6X2xI0HbTlySJLUJr6IHOoSZnAiAmXgnFyVmzc7Rnz/cpi3HEyVJoVW8tXh0lIJ8WbMNAAAApatHjx7au3ev3n//fV28eFGurq5q3LixXnzxRT311FPy8vKytW3UqJE2bNigSZMm6eWXX1ZmZqbat2+vVatWqVevXiZeBQAA5ruSbtVL3+yXJFks0ox+LdhvEnByFAtQIjk5hp7+dJfWHTgvSarm56kPx0SpZqDXTe4JAAAAFN29996re++91+72zZo104oVK8owEQAAFdObaw7pQkqGJOlPHcPVJryKuYEAmI49C1Bs19a1W7nrlCTJ38tNH4yKVL1qviYnAwAAAAAAQGEOnr2ihRuPS5ICvd31TN+m5gYC4BAoFqDYXlt9UIujT0iSvNxdtPDhjmpeO8DkVAAAAAAAACiMYRh6YeUvyv51V+O/9WmiYJaSBiCWIcJNJKVZtWxbnNbsO6sr6Vny93JT7+Y1lZaZpdlrD0uS3F0teuehDoqoF2xyWgAAAAAAANzIN7FntPHIRUlS81oBGhJV1+REABwFxQIU6tOYOE1dsUfpWTl5jkcfTbR9bbFIrw1qqx63VC/veAAAAAAAACiCtMwszfx6r+32jHtbyJVNjQH8imIBCvRpTJwmLt9903b924bqnja1yyERAAAAAAAASuI/647odFK6JOn+dqGsEgEgD/YsQD5JaVZNXbHHrrbf7jmtpDRrGScCAAAAAABASRy/kKr3fjoqSfLzdNOkP7CpMYC8KBYgn8+2x+dbeqgw6dYcLd8eX8aJAAAAAAAAUBIzvtqrzOzc93ue6NVY1QO8TE4EwNFQLEA+q/eeKWL7s2WUBAAAAAAAACX1w76zWrv/nCSpUXU/jehSz9xAABwSxQLkcyU9q0jtk9NZhggAAAAAAMARpVuzNf3L3zY1nt6vhdxdeUsQQH78ZkA+/l5F2/c6wMu9jJIAAAAAAACgJOb+dFQnE9MkSXe3qqVbG1UzOREAR0WxAPn0bl6ziO1rlFESAAAAAAAAFFf8pTS9vf6wJMnb3VXP3t3M5EQAHBnFAuTTo0mILHa29XJ30YAOYWWaBwAAAAAAAEX34tf7lG7N3dT48Z6NFFrF2+REABwZxQLkcSk1U3/+cLsMO9vP6NdSgd4sQwQAAAAAAOBI/u/QeX2754wkqV5VH43pVt/kRAAcHcUC2CSnWzV8wRYdOHtFklQjwFOebgV3ES93F70yoLUGdQwvz4gAAAAAAAC4icysHL2w8hfb7Wn3tJCnm6uJiQBUBEXbyRaVVmpGlkYujFFsQpIkqX41X30yrpM8XV312fZ4rdl7VsnpVgV4uat38xoa0D5MgT7MKAAAAAAAAHA0izYe05HzqZKkXs2q6/am1U1OBKAioFgApVuzNfaDrdp24pIkKbSKtz4cE6Xq/l6SpNFd62t0V6aqAQAAAAAAOLqzyel6c80hSZKHm4um/LG5yYkAVBQsQ+TkMrNy9NiSbdp45KKk3KWHPhrbSbXZ8AYAAAAAAKDCmfXNPqVmZkuSxt3WQHWr+pqcCEBFQbHAiWVl5+ivH+/QugPnJUlVfT304ZhOqlPVx+RkAAAAAAAAKKrNRy/qfztPScpdOeLPPRqZnAhARUKxwEnl5Bh65rPd+nbPGUlSoLe7loyJUqPqfiYnAwAAAAAAQFFlZedo2u82NX7+7mby9mBTYwD2o1jghAzD0HP/i9UXOxIkSX6ebvpgVKSa1QowORkAAAAAAACK48PNJ7X/zBVJUtdG1XRny5omJwJQ0VAscDKGYWjGV3v10ZY4SZK3u6sWjuyoNuFVzA0GAAAAAACAYrmQkqFXvz8gSXJzseiFfs1lsVhMTgWgoqFY4GT+/f0BLdxwXJLk4eaiucMj1LFesLmhAAAAAAAAUGz/WnVAyelZkqRRXeurUXV/kxMBqIgoFjiROWsP6e11RyTlVpn/O7S9ujauZnIqAAAAAAAAFNfOuMv6dFvuChLV/T01oSebGgMoHooFTmL+z8f07+8PSpJcLNKbf2qnO5rVMDkVAAAAAAAAiisnx9C0FXtkGLm3n72rmfy93M0NBaDColjgBJZuPql/fLXXdvtfD7TR3a1rmZgIAAAAAAAAJbVsW5x2xSdJkjrWC9K9bWubnAhARUaxoJL7fHu8nvtfrO32zP4tNaBDmImJAAAAAAAAUFJJaVb9c1XupsYuFml6v5ZsagygRCgWVGLfxJ7W35btsk1Fe/7uZnqoU11zQwEAAAAAAKDEXlt9QImpmZKkYZ3qqnntAJMTAajoKBZUUmv3n9VfPtqhnF8LBU/3bqIx3RqYGwoAAAAAAAAltvdUshZHn5AkBft66Knet5icCEBlQLGgEtpw+IIeXbJdWb9WCh7r0VCP92xkcioAAAAAAACUlGEYmrZyj+0Don+/8xYF+rCpMYCSo1hQycQcT9SY97cqMytHkvRwl3qa2PcW1qwDAAAAAACoBFbsPKWY45ckSW3CAjWwQ7jJiQBUFhQLKpHd8Zc1cmGMrlqzJUl/6hiuqX9sTqEAAAAAAACgEriSbtWL3+yTJFks0ox7W8rFhfd9AJQOigWVxL7TyRo2f4tSMrIkSfe2ra0X72vFCwYAAAAAAEAlMXvtYZ2/kiFJejAiXG3Cq5gbCEClQrGgEjh8LkXD5m9W0lWrJKlvixp6dWAbuVIoAAAAAAAAqBQOn7uiBT8fkyQFeLnpmb5sagygdFEsqODiEtP00LzNupCSKUnqcUuI3hrcTm6u/GgBAAAAAAAqA8Mw9MLKvcr6dVfjp/vcoqp+nianAlDZ8I5yBXY66aoGz43WmeR0SVLnBlX1zkMd5OnmanIyAAAAAAAAlJZVe87o58MXJElNa/praFQdkxMBqIwoFlRQ569kaOjczYq/dFWS1L5OFc0bESEvdwoFAAAAAAAAlcXVzGz946u9ttsz7m3JihIAygS/WSqgS6mZemjeZh29kCpJahkaoIUjI+Xr6WZyMgAAAAAAAJSm/6w/rFNJuatK9G9bW5H1g01OBKCy4t3lCiY53arhC7bowNkrkqQmNfz0wagoBXq7m5wMAAAAAAAAJZGUZtWybXFas++srqRnyd3VRbHxSZIkXw9XTb6rmckJAVRmDl8smDVrlrZv365t27bp2LFjqlu3ro4fP15o+82bN+u5557T5s2bZbFY1KVLF7388stq27ZtuWUuDde/OPh7ual7kxCt2nNGsQm5LxL1q/lqyZgoBft6mJwWAAAAcEw5OTl688039e677+r48eMKCQnRoEGDNGPGDPn6+podz24FjQ96N6+pB9qHKdCn/D445Cg5fp9l9S9ndCk1XUG+XurTshbfE7IUmMPsfvL7LI7yPTE7hyNlcZR+8mlMnKau2KP0rJwCz/e4JUQ1ArzKLQ8A52MxDMMwO8SNWCwWBQcHq3379tq2bZsCAgIKLRZER0erR48eCg0N1eOPPy5JmjNnjs6dO6eNGzeqVatWxcqwadMmdenSRRs3blTnzp2Leyl2u9mLgySFVvHWskc7q3YV7zLP42gyMzOVmJio4OBgeXhQKEHB6CewB/0E9qKvwB5m9pPy/nu1IvnrX/+qt956S/fdd5/+8Ic/aN++fZo9e7a6deumNWvWyMWl6CuzOtL4wMvNRTPubalBHcOdJocjZXGUHGRx7ByOlMVRcjhSFkfKMXH57pu2e2VA63L7GaFwjA9gj4o4PnD4mQVHjhxRgwYNJEktW7ZUSkpKoW3/8pe/yMPDQz/99JNCQ0MlSYMGDVKzZs309NNP6/vvvy+XzCVh74vDQ53qOmWhAAAAALDXL7/8otmzZ+v+++/X8uXLbcfr16+vv/zlL/r44481ZMgQExPe3M3GB+lZObbzZfnmkaPkcKQsjpKDLI6dw5GyOEoOR8riKDmS0qyaumKPXW2nrtyjvi1qlvssEADOweE3OL5WKLiZw4cPKyYmRgMHDrQVCiQpNDRUAwcO1Jo1a3TmzJmyilkqivLi8OYPB5WUZi3jRAAAAEDF9dFHH8kwDD3xxBN5jo8dO1Y+Pj5asmSJOcHsVNQ3j8pqfOAoORwpi6PkIItj53CkLI6Sw5GyOEoOSfpse/wNV5f4vXRrjpZvjy+zLACcm8PPLLBXTEyMJBU4raJTp05asGCBtm3bprvvvru8o9mtOC8Oo7rWL+NUAAAAQMUUExMjFxcXRUZG5jnu5eWltm3b2sYQjqqo44NXvtuvPi1qlnqO73454xA5ipPln6v2OcT35OUyyiFJ3xcnS3PHydK7eY2bti3q4smr954tUo5Z3+5Tr2Y3z1EcRc3y0jd7dUchWW70bbjx98jQD/vOFSnHP77eq55Nq9v1HEYhyQprv3Z/0bJM+3KPujcJyfOYtv/bnuu3JzOu++L3+X5/v58PXyhSjr98vENtwgKVlWMo2zCUnW0oK8dQjpH7/+zsX4/n/Ho8x1BWTo6yc347lv27/2z3zTZ07EKqXTmuWb33LO8HASgTlaZYcOrUKUnKM6vgmmvHEhISbvo4cXFxio/PW6GNjY2VJFmtVmVmZpY0aqG+33O6aO1/Oa2HIvNfb2VntVqVlZUlq5WZFSgc/QT2oJ/AXvQV2MPMfkLfLNipU6dUrVo1eXp65jsXGhqqjRs3KjMz84ZryFak8cGHm0/qw80nyyhNxcshSUu3xGnpljizY+ijLXH6yAFySGQpyMcxcfo4xvwckvTJ1nh9stX8T41/ti1en20zP4ck/W/HKf1vxymzY+jHg+f148HzZseQJCVdzSzT1x/cHOMD2KMijg8qTbEgLS1NkgocCHh5eeVpcyPz58/X9OnTCzyXnJysxMTEEqS8sUup6UVqn5iSXqZ5HJXValVKSooMw5C7O2v0oWD0E9iDfgJ70VdgDzP7SXJycrk+X0WRlpZW4PhAyjtGuFGxoCKNDwAAjsvVIrm4WORqscjVRb/+P/e/pPQsWbPtn0Lj7SqnfD/IkTA+gD0q4vig0hQLfHx8JEkZGRn5zqWnp+dpcyOjR49W37598xyLjY3VuHHjFBAQoODg4FJIW7AgXy/p/FW72wf7eZVpHkdltVplsVgUFBTEL2QUin4Ce9BPYC/6CuxhZj8JCAgo1+erKHx8fHTu3LkCz9k7RqhI44O6wT56KKr0N+BcsvmkTiQWIUdVHw0rgxyStDjaMbI4So7iZKlX1UfDOtmfxSKL3W3f33RSJxJv/iG932cZ0bmO3e2LkuP4xaLleLgIOSz2f0u0cGPRstSv6qORt9Yt/LmLmWv+hhM6dsH+HA2q+Whs13oFPEcRLr6QTO/+dExHi5ClUYiv/tz9d0vu/Pqglrw38/TV347pui9+a/fm2sM6dM7+5X9a1PLXjH7N5OriIjcXi1xcJDcXy2+3LZKbi8uvBQDlOe7qYrnh927RxhN6adVBu7Pc2aq2U74f5EgYH8AeFXF8UGmKBbVr15ZU8FJD144VtETR9cLDwxUeXvAfTu7u7jf81FFJ9WlZS5uPX7K/fYtaZZrHkbm5uZX5zwMVH/0E9qCfwF70FdjDrH7CILVgtWvX1t69e5WRkZFvhkFCQoKqVat2059VRRofjOhSr0zWsHZxddU/vtprf47OZZNDkiwujpHFUXIUJ8vwMsxiWFyKnGVkGWTJUdFzPFxG35Mso2hZhnWup+FdSj9LRralSDke6lRPgzuVzfckJdMoUpYhUXV1f0ThBZTiOptiLVKOAR3C1aF+SKnnkKQHI+vptTWH7dpDwcvdRYMi68rDg9d+szE+gD0q2vjApZRzmKZjx46SpE2bNuU7Fx0dLYvFog4dOpR3rCJ5oH2YvNzs+5F4ubtoQIewMk4EAAAAVFwdO3ZUTk6OtmzZkud4enq6du7cqYiICJOS2cdRxgeOksORsjhKDrI4dg5HyuIoORwpi6PkkKRAH3fNuLelXW1n9GupQG8KBQDKRqUpFjRq1EgRERFatmyZbbNjKXdTs2XLlqlnz56qWbOmiQlvjhcHAAAAoPQ8+OCDslgseuONN/Icnzt3rtLS0jR06FBzgtnJUcYHjpLDkbI4Sg6yOHYOR8riKDkcKYuj5LhmUMdwvTKgdaEFDC93F70yoLUGdSybJc0AQKoAyxAtXrxYJ06ckCSdP39emZmZmjlzpiSpbt26GjZsmK3tm2++qdtvv13dunXThAkTJEmzZ89WTk6OXn311fIPXwzXfulPXbGnwOlnXu4umtGvJS8OAAAAwE20atVK48eP15w5c3T//ffrrrvu0r59+/TWW2+pe/fuGjJkiNkRb8pRxgeOksORsjhKDrI4dg5HyuIoORwpi6Pk+H2evi1q6rPt8Vqz96yS060K8HJX7+Y1NKB9mAJ9+NAogLJlMQzD/u3WTdCjRw/9+OOPBZ7r3r271q9fn+fYpk2b9Pzzz2vz5s2yWCzq0qWLZs2apfbt2xc7w6ZNm9SlSxdt3LhRnTt3LvbjFEVSmpUXh0JkZmYqMTFRwcHBrAuHQtFPYA/6CexFX4E9zOwnZvy9WlFkZ2frjTfe0Hvvvafjx4+rWrVqevDBBzVjxgz5+fkV6zGdeXzgKDl+n2X1L6eVmJKuYD8v9WlRi+8JWQrMYXY/+X0WR/memJ3DkbI4Uj9BxcD4APaoiOMDhy8WOAIGX46FX8iwB/0E9qCfwF70FdijIg4GUDx8vx0Lv6NhD/oJ7EE/gb3oK7BHRRwfVJo9CwAAAAAAAAAAQPFQLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMlRLAAAAAAAAAAAwMm5mR2gIkhNTZUkxcbGmpwEkmS1WpWcnKyAgAC5u7ubHQcOin4Ce9BPYC/6CuxhZj+59nfqtb9bUbYYHzgWfkfDHvQT2IN+AnvRV2CPijg+oFhgh6NHj0qSxo0bZ3ISAAAAoHDX/m5F2WJ8AAAAgIqgqOMDi2EYRhllqTROnTqlr776Sg0aNJCvr6/ZcZxebGysxo0bp3fffVetWrUyOw4cFP0E9qCfwF70FdjDzH6Smpqqo0eP6o9//KNq165drs/tjBgfOBZ+R8Me9BPYg34Ce9FXYI+KOD5gZoEdateurUceecTsGLhOq1at1LlzZ7NjwMHRT2AP+gnsRV+BPegnlR/jA8fEvz3Yg34Ce9BPYC/6CuxRkfoJGxwDAAAAAAAAAODkKBYAAAAAAAAAAODkKBYAAAAAAAAAAODkKBagwgkLC9O0adMUFhZmdhQ4MPoJ7EE/gb3oK7AH/QQwB//2YA/6CexBP4G96CuwR0XsJxbDMAyzQwAAAAAAAAAAAPMwswAAAAAAAAAAACdHsQAAAAAAAAAAACdHsQAAAAAAAAAAACdHsQAAAAAAAAAAACdHsQAAAAAAAAAAACdHsQAAAAAAAAAAACdHsQAO5eDBg5o6dao6deqkkJAQ+fv7q23btnrxxReVmpqar/2BAwfUv39/BQUFydfXV926ddPatWtNSA6zpaWlqUGDBrJYLHr88cfznaevOK/ExET97W9/U6NGjeTl5aWQkBDdfvvt+r//+7887TZv3qxevXrJ399fAQEBuvPOO7Vz505zQqPcpaSk6KWXXlKrVq3k7++vatWqqUuXLlq0aJEMw8jTlr5S+c2aNUsDBw60va7Uq1fvhu2L0idOnTql4cOHKyQkRN7e3oqIiNCyZctK/yKASoLxAYqL8QEKw/gA9mB8gN9zpvGBxbi+hwMmmjRpkt5++23169dPnTp1kru7u9atW6dPP/1UrVu3VnR0tLy9vSVJR44cUWRkpNzc3PTEE08oMDBQc+fO1Z49e/Ttt9+qV69eJl8NytPf/vY3vfvuu0pJSdH48eM1Z84c2zn6ivM6ceKEevTooZSUFI0ePVpNmjRRUlKSdu/erb59++pPf/qTJCk6Olo9evRQaGiobTA5Z84cnTt3Ths3blSrVq3MvAyUsZycHHXv3l0bN27UiBEj1KlTJ6Wlpemjjz7Sli1bNHHiRP3zn/+URF9xFhaLRcHBwWrfvr22bdumgIAAHT9+vMC2RekTiYmJioiI0Llz5/TUU08pLCxMS5cu1Y8//qgFCxZo5MiR5XF5QIXC+ADFxfgABWF8AHswPsD1nGp8YAAOJCYmxrh8+XK+488995whyZg9e7bt2MCBAw0XFxdjx44dtmNXrlwx6tSpYzRp0sTIyckpj8hwANu2bTNcXV2NV1991ZBkjB8/Ps95+orz6tq1qxEWFmacOnXqhu06duxo+Pv7G/Hx8bZj8fHxhr+/v9G7d++yjgmTbdy40ZBkPPHEE3mOZ2RkGPXr1zcCAwNtx+grzuHIkSO2r1u0aGHUrVu30LZF6RPPPPOMIclYuXKl7VhWVpbRsWNHIzg42Lhy5UrpXQRQSTA+QHEwPkBhGB/AHowPcD1nGh+wDBEcSkREhAIDA/Mdf/DBByVJe/bskSSlpqZq5cqV6tGjh9q2bWtr5+fnpzFjxujgwYOKiYkpl8wwV3Z2tsaOHas777xT999/f77z9BXn9dNPP+nnn3/WxIkTVatWLVmtVqWlpeVrd/jwYcXExGjgwIEKDQ21HQ8NDdXAgQO1Zs0anTlzpjyjo5wlJydLkmrXrp3nuIeHh6pVqyZfX19J9BVn0qBBA7vaFbVPLF26VA0bNtQ999xjO+bq6qoJEyYoMTFR33zzTeldBFBJMD5AUTE+QGEYH8BejA9wPWcaH1AsQIUQHx8vSapRo4Ykaffu3crIyFDnzp3zte3UqZMk8Qeek3j99de1f//+PNOKf4++4ryuvajWqVNH99xzj7y9veXr66smTZpoyZIltnbXfv6F9RHDMLRt27byCQ1TREZGqkqVKnrllVe0bNkynTx5Uvv379fkyZO1bds2vfDCC5LoK8ivKH3i9OnTSkhIsL32XN/2948H4OYYH6AwjA9QGMYHsBfjAxRXZRgfuJX7MwJFlJ2drX/84x9yc3PTkCFDJOVu/iEpT5XummvHEhISyi8kTHHs2DFNmzZNU6dOVb169QpcL46+4rwOHDggSRo7dqwaN26s999/X5mZmXr11Vc1bNgwWa1WjRw5kj4CBQUFaeXKlRozZowGDRpkO+7v76/ly5erf//+kvh9gvyK0ifoP0DpYXyAwjA+wI0wPoC9GB+guCrD+IBiARzeE088oU2bNumll17SLbfcIkm2qYKenp752nt5eeVpg8rr0UcfVYMGDfTUU08V2oa+4ryuXLkiKfcPunXr1snDw0OS1L9/fzVo0EDPPvusRowYQR+BpNylB1q2bKl+/fqpS5cuSkxM1Ntvv60hQ4ZoxYoV6t27N30F+RSlT9B/gNLD+ACFYXyAG2F8gKJgfIDiqAzjA4oFcGhTpkzRnDlz9Mgjj2jy5Mm24z4+PpKkjIyMfPdJT0/P0waV05IlS7R69Wr99NNPcnd3L7QdfcV5eXt7S5IGDx5sGwhIuZ8S6devnz744AMdOHCAPgLFxsaqS5cuev311/Xoo4/ajg8ePFgtW7bU2LFjdeTIEfoK8ilKn6D/AKWD8QEKw/gAN8P4APZifIDiqgzjA/YsgMN64YUXNHPmTI0cOVLvvPNOnnPXNpkpaDrOtWMFTeNB5ZCRkaGnnnpKd911l2rWrKnDhw/r8OHDOnHihCQpKSlJhw8f1uXLl+krTiwsLEySVLNmzXznatWqJUm6dOkSfQR6/fXXlZ6eroEDB+Y57uPjo7vvvlsnTpzQ8ePH6SvIpyh9gv4DlBzjAxSG8QHswfgA9mJ8gOKqDOMDigVwSC+88IKmT5+uESNGaN68ebJYLHnOt2rVSp6entq0aVO++0ZHR0uSIiIiyiUryt/Vq1d1/vx5ff3112rcuLHtvx49ekjK/VRR48aNNW/ePPqKE4uMjJT02waIv3ftWPXq1dWxY0dJKrSPWCwWdejQoQyTwmzX/hDLzs7Ody4rK8v2f/oKrleUPlGrVi2FhobaXnuubyvxegTcCOMD3AjjA9iD8QHsxfgAxVUpxgcG4GCmT59uSDKGDRtmZGdnF9rugQceMFxcXIydO3fajl25csWoU6eO0bhxYyMnJ6c84sIEmZmZxrJly/L995///MeQZNx5553GsmXLjAMHDhiGQV9xVomJiYa/v78RGhpqXLlyxXb81KlThq+vr9GkSRPbsYiICMPf399ISEiwHUtISDD8/f2NO+64o1xzo/w98cQThiTjn//8Z57jly5dMmrVqmUEBQUZWVlZhmHQV5xRixYtjLp16xZ6vih94m9/+5shyVi5cqXtWFZWltGxY0ejSpUqRnJycqnnByoDxge4GcYHsAfjA9iL8QFupLKPDyyGYRjlX6IACvb222/r8ccfV506dfSPf/xDLi55J7/UqFFDvXv3liQdPnxYkZGRcnd315NPPqmAgADNnTtXsbGx+vrrr9W3b18zLgEmOn78uOrXr6/x48drzpw5tuP0Fef13nvvady4cWrRooVGjRqlzMxM/fe//9Xp06f11VdfqU+fPpKkjRs36vbbb1dYWJgmTJggSZo9e7bOnj2rDRs2qE2bNmZeBsrYiRMn1L59e126dElDhw7VrbfeqsTERM2dO1fHjx/X22+/rT//+c+S6CvOYvHixbalK2bPnq3MzEw9/fTTkqS6detq2LBhtrZF6RMXL15Uhw4ddPHiRT311FMKDQ3VRx99pPXr12vevHkaPXp0OV4lUDEwPkBJMD7A9RgfwB6MD3A9pxoflHt5AriBESNGGJIK/a979+552u/du9fo16+fERgYaHh7exu33nqrsXr1anPCw3THjh0zJBnjx4/Pd46+4ryWL19uREVFGT4+Poafn5/Ru3dv4+eff87XbuPGjUbPnj0NX19fw8/Pz+jTp4+xbds2ExLDDIcPHzaGDx9uhIaGGm5uboa/v7/RrVs3Y/ny5fna0lcqv+7du9v9t4hhFK1PxMfHGw899JBRtWpVw9PT02jXrp3x8ccfl/EVARUX4wOUBOMDFITxAezB+AC/50zjA2YWAAAAAAAAAADg5NjgGAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAAAAAAAAAAAAJ0exAECltn79elksFlksFj3++OMFtjl37pw8PDxksVjUo0eP8g0Ih3f8+HG98MIL2rlzp9lRAAAAUEKMD1BSjA8AVGYUCwA4BS8vLy1dulQZGRn5zi1evFiGYcjNzc2EZHB0x48f1/Tp0xkMAAAAVCKMD1BcjA8AVGYUCwA4hfvuu0+XLl3SihUr8p1buHCh7rrrLnl6epqQDPa4cuVKsc7hN1evXlVWVpbZMQAAABwC44OKjfFByTE+AFAQigUAnEL79u3VunVrLVy4MM/xLVu26JdfftHIkSMLve/WrVt13333qVq1avL09NQtt9yiF198Md8fVlu2bNHDDz+sJk2ayMfHR/7+/rr11lv1xRdf5HvMhx9+WBaLRUlJSXrsscdUvXp1eXl56dZbb9XmzZvtvq7k5GQ999xzatasmby8vFS1alV17dpVH3/8cZ52u3fv1n333aeqVavKy8tLzZs31yuvvKLs7OwS5TIMQ3PnzlVUVJT8/Pzk5+enVq1aaerUqbY2L7zwgiwWi44fP57v/vXq1cs3tdtisejhhx/WDz/8oK5du8rPz0/33HNPnvY7duxQ3759FRgYqNatW9vue+jQIQ0bNky1atWSh4eH6tWrp2eeeUapqanFus5Fixbp9ttvlySNHDnSNmX9ZtPRrz1+Qa5d3+998MEHioyMVJUqVeTr66sGDRpo6NChOn/+fJ52Rb2+8+fPa9SoUapRo4Z8fX0VHx9fpOcDAACorBgfMD4oznUyPgBQ2TGnDoDTGDVqlJ566iklJCQoNDRUkrRgwQJVr15df/zjHwu8z9dff637779fjRo10tNPP63g4GBt2rRJU6dO1c6dO7Vs2TJb2y+++EL79+/XoEGDVLduXV28eFHvv/++7r//fn344YcaMmRIvsfv27evQkJCNHXqVF28eFGvvfaa7r77bh07dkz+/v43vJ7Lly+ra9eu+uWXX/TAAw/oscceU3Z2tnbs2KGvvvpKf/rTnyTlDma6d+8ud3d3jR8/XjVr1tSXX36pv//979q1a5c+/PDDYucaNmyYPvzwQ0VFRem5555TlSpVtH//fn322WeaMWPGzX8ohdi6dauWL1+usWPHasSIEXnOnTx5Uj179tTAgQM1YMAApaSkSJK2bdumnj17qkqVKho3bpxCQ0O1a9cuvfXWW9qwYYN+/PFHubu7F+k6b7vtNj377LN66aWX9Mgjj6hbt26SpBo1ahT72q63ePFijRgxQt26ddOMGTPk7e2tuLg4ffPNNzp37pxCQkKKfX29e/dWzZo1NWXKFKWmpsrPz8/u5wMAAKjsGB8wPmB8wPgAwHUMAKjE1q1bZ0gy/vWvfxkXLlwwPDw8jBdffNEwDMNIS0szAgMDjaefftowDMPw9fU1unfvbrvv1atXjRo1ahjdunUzrFZrnsd97bXXDEnGunXrbMdSUlLyPX9qaqrRpEkTo1mzZnmOjxgxwpBkPPbYY3mOf/rpp4Yk45133rnptT322GOGJOPdd9/Ndy47O9v2dZcuXQxXV1dj165dtmM5OTnGwIEDDUnGmjVripXrk08+MSQZDz30UJ7nu/75p02bZkgyjh07li9n3bp183zPDcMwJBmSjNWrVxfYXpIxd+7cfOdat25t3HLLLUZycnKe459//rkhyVi4cGGxrvNaH/r9/W/m2uMXRJIxYsQI2+377rvP8Pf3z9fHrlec6xs6dGi+x7H3+QAAACojxgeMDxgf5MX4AMDvsQwRAKdRtWpV9evXT4sWLZIkff7550pKStKoUaMKbL969WqdPXtWI0eO1OXLl3XhwgXbf3fddZck6fvvv7e19/X1tX2dlpamixcvKi0tTT179tS+ffuUnJyc7zmefPLJPLd79uwpKXc66Y3k5OTo448/VrNmzfTII4/kO+/ikvvr/dy5c9q4caP69euXZzquxWLRc889J0kFToO2J9e1Txz9+9//tj3f9c9fXG3atFGvXr0KPBccHJxvWnhsbKx2796tIUOGKCMjI8/PqmvXrvL19c3zs7qmuN//0hQYGKi0tDR9/fXXMgyjwDbFvb6//e1vxXo+AAAAZ8D4gPHB9RgfMD4AnB3FAgBOZeTIkTp06JB+/vlnLViwQJGRkWrevHmBbfft2ycpd3pySEhInv+aNm0qSTp79qyt/blz5/TII4/Y1n+sVq2aQkJC9M4770jKnRZ8vQYNGuS5XbVqVUnSxYsXb3gdFy5c0KVLl9S2bdsbtjt27JgkqUWLFvnONWvWTC4uLjp69Gixch06dEi1atUq1Sm31zRp0qTQcw0bNpSrq2ueY9d+VtOmTcv3s6pevbpSU1Pz/KyuKe73vzQ9++yzqlu3rvr376+QkBANGDBA8+bNy7MxW3Gvr6Dvoz3PBwAA4CwYH/yG8QHjA8YHANizAIBT6du3r0JDQzV9+nStW7dO//3vfwtte+1TFf/6178K/aO7du3atrZ9+vTRvn379Ne//lUREREKDAyUq6urFi5cqKVLlyonJyff/a//o/b65zZLaeYqbCMvSfk2gbvGx8en0PsUdO5arqefflp33nlngfcLCgrKd6ysvv+FXXNB19u4cWPt3btXP/zwg3744Qf9+OOPGjt2rKZNm6affvpJDRs2LPb1FfS9suf5AAAAnAXjA/swPmB8AMA5UCwA4FRcXV01fPhwzZo1S97e3ho8eHChbRs3biwpd/pwYVNer9m9e7d27dqlqVOnavr06XnOzZs3r+TBr1OtWjUFBQVp165dN2xXv359SdIvv/yS79z+/fuVk5OT79Mz9mrSpIlWrFihs2fP3vDTQ8HBwZKkxMRE1atXz3Y8PT1dp0+fVqNGjYr1/L937Wfl6up6059VUd1oMFOY31/zta8lFfgpLUny9PTUXXfdZZu+/s033+juu+/Wa6+9prfffrvUr+9mzwcAAOAsGB/8hvGBfRgfAKjMWIYIgNN59NFHNW3aNL3zzjsKCAgotF3fvn1VvXp1vfzyy0pMTMx3/urVq7apmdc+gXL9J0727NlT4JqfJeXi4qLBgwdr7969mj9/fr7z13JUr15dXbp00Zdffqk9e/bkOT9r1ixJ0n333VesDEOHDpUkTZw4Md+non7/fbg21XXNmjV52rz++usFfpqqONq1a6eWLVvqnXfeKfAP7qysrAJ/hvbw8/OTpCLdv7BrfvXVV/O1vXDhQr5j7du3z/OcpXl99jwfAACAM2F8wPigKBgfAKjMmFkAwOnUqVNHL7zwwk3b+fr66oMPPlD//v11yy23aNSoUWrUqJEuX76s/fv36/PPP9cXX3yhHj16qFmzZmrRooVeeeUVpaWl6ZZbbtHBgwf17rvvqlWrVtq2bVupX8fMmTO1du1ajRkzRt9//726du0qwzC0Y8cOZWVlafHixZKkN998U927d1e3bt00fvx41axZU1999ZW+++47DRkyRHfccUexnn/gwIF68MEH9cEHH+jQoUPq16+fgoKCdPDgQX333Xe2wUevXr10yy23aOrUqbp48aLq16+vn3/+WdHR0apWrVqpfC8sFosWL16snj17qnXr1ho1apRatGihtLQ0HT58WJ9//rlmzZqlhx9+uMiP3bx5c/n7++s///mPfHx8VKVKFVWvXt222VlBBg8erGeffVaPPPKI9u/fr+DgYK1atarAP8T79OmjKlWqqFu3bgoPD9fly5e1aNEiWSwWDRs2rNSvz57nAwAAcCaMDxgfFAXjAwCVmgEAldi6desMSca//vWvm7b19fU1unfvnu94bGysMXToUKN27dqGu7u7Ub16daNz587GjBkzjIsXL9raHT9+3HjggQeMatWqGd7e3kbHjh2Nzz//3Jg2bZohyTh27Jit7YgRI4zCfgVLMkaMGGHX9V26dMl45plnjIYNGxru7u5GcHCw0bVrV+OTTz7J027nzp3GvffeawQFBRkeHh5G06ZNjX/+859GVlZWnnZFzZWdnW3MmTPHaNeuneHt7W34+fkZrVq1Ml544YU87Q4cOGD07dvX8Pb2NgIDA42BAwca8fHxRt26dfN9z290/QW1/73jx48b48aNM+rWrWv7frRv396YNGmScfLkyWJf59dff220a9fO8PT0NCTdMMM10dHRRpcuXQxPT0+jatWqxtixY41Lly7le/z33nvP6NWrl1GjRg3D3d3dqFmzpvGHP/zBWLt2bZlcX1GeDwAAoLJhfJCL8QHjg+I8H4DKz2IYJu+SAwAAAAAAAAAATMWeBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAODmKBQAAAAAAAAAAOLn/By5ucwuZn5gjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -531,7 +541,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAH6CAYAAAAurSx4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAT/gAAE/4BB5Q5hAAA0RFJREFUeJzs3Xd4FOXax/HvJtn0TgkthN5CkyagSBEERJoKHAQERUFsx15QuqivHj167BRRsaMiKEUUwUYRQbogndBJIYW0TXbeP8IuidmEJLvJJuH3uS4uNzPPzNzz7G6cO/PM/ZgMwzAQERERERG5DHi4OwAREREREZGyogRIREREREQuG0qARERERETksqEESERERERELhtKgERERERE5LKhBEhERERERC4bSoBEREREROSyoQRIREREREQuG0qARERERETksqEESERERERELhtKgERERERE5LKhBEhERERERC4bSoBEKoB69ephMplYu3atu0MRKZa1a9diMpno0aNHkZaLiIiUNiVAIgJAjx49lGRJselzI+KYyWTCZDK5OwwRccDL3QGIiEjl1alTJ/766y/8/f3dHYqIiAigBEhEREqRv78/zZo1c3cYIiIidhoCJ1IJff/999x99920bt2a8PBwfH19adCgAXfddRdHjhzJ0/bw4cOYTCZ++uknAHr27GkfuuFoaNORI0e45557aNSoEb6+voSGhtKzZ0+++uorh7HYnl86fPgwy5cvp1u3bgQFBREcHEy/fv3YsmVLgedx5swZJk+eTOvWrQkMDCQoKIhmzZpx1113sXPnTgDWrVuHyWSiVatWBe5n69atmEwmmjRpgmEYl+y/6dOnYzKZmD59OgcPHmTkyJFUr14dX19f2rRpw9tvv13gfqxWKx9++CG9evUiPDwcHx8fGjRowL///W9Onz6dr/17772HyWRi3LhxnDlzhrvuuou6detiNpt54IEH7O0yMzN544036NatG2FhYfj6+lK/fn1uuukmli9fnm+/mZmZvP7663Tt2pXQ0FB8fX1p3rw5U6ZMITk5udBzPnHiBLfddhs1atTA19eXFi1a8Prrr+dpX9TPTUmf9Snu5+zkyZM8+uijREdHExwcTGBgIFFRUQwePJgvvvjiksfLysqiRo0amEwmDhw4UGC7Fi1aYDKZ2LBhg33Z/v37mThxIk2bNiUgIIDg4GAaNmzIiBEjWL16dbHOuzDJyck899xzdOzYkZCQEPz9/WnUqBG33nor69aty9f+0KFDTJgwgXr16uHj40OVKlXo27cv3377rcP95x7OuH79evr160doaCj+/v5cffXVhZ5LUWOzfW7q1avncD9FeWYsJSWFxx9/nEaNGuHj48OQIUMAGDduHCaTiffee48tW7YwZMgQqlevjoeHB19//bV9X2fPnuWJJ54gOjoaf39/goKC6Ny5M/PmzXP4vS5uv9i+0za5vxdFHRJ3qaGluX+v5laS78GyZcsYMGAA1atXx9vbm8jISG6//XYOHjyYr21R3geAn376icGDB+f57EVHRzNp0qRCv18iZUV3gEQqoUmTJnH8+HGio6Pp2bMnFouFbdu28c4777Bo0SLWrVtH06ZNAQgMDGTs2LGsXLmS06dP07dvX2rUqGHfV+7XP/zwAzfeeCPJyck0bdqUAQMGEBcXx4YNG1i7di1PPvkkzz77rMOY3nnnHV544QW6du1K//792bJlC9999x2//vorW7ZsoUmTJnnab968meuvv54zZ85QvXp1evfujdls5uDBg8ydO5caNWrQsmVLunbtStu2bdm6dSu//vorV199db5jv/XWWwDcddddxRqTf/DgQTp06EBAQAC9evUiISGBNWvWMGnSJLZs2cKcOXPytLdYLAwbNowlS5YQGBhIhw4dCA8PZ+vWrfzvf//jyy+/5Oeff6ZBgwb5jnX27Fk6duxIWloa3bp1wzAMQkNDAYiPj6dfv35s2rQJf39/rrrqKqpUqUJMTAzfffcdcXFxXH/99fZ9nTt3juuvv57169cTHh5Op06d8Pf3Z9OmTTzzzDMsXryYn3/+mfDw8HxxHD16lPbt2+Pr60uPHj04deoUv/zyC/fddx9JSUlMnjwZKN7npriK+zk7efIkV1xxBadPn6Z+/fpce+21mM1mjh07xg8//EBGRgY333xzocf08vLilltu4b///S8ffPABM2bMyNdm06ZN/PXXXzRp0oTOnTsDsH37dq666ipSUlJo0aIF/fv3xzAMYmJiWLx4MWFhYVx77bUl7gubQ4cOcd1117F//35CQkLo1q0bAQEBHDlyhM8++wwPDw+6du1qb79u3Tr69+9PUlISjRs35sYbb+TUqVOsXr2aVatW8cQTT/Dcc885PNayZct45ZVXaNOmDf369WPXrl389ttv9OvXj9WrV3PNNdc4FZsz0tLS6N69O/v376d79+5cccUVVKlSJU+bX3/9lYkTJ1KvXj2uvfZaYmNjMZvNAGzbto1+/fpx6tQpoqKiuO6660hNTWXDhg3ceeedrFmzho8++sipfmnUqBFjx47l/fffB2Ds2LEuOfdLKcn34O677+att97C29ubjh07UrNmTXbv3s2CBQv46quvWLVqFZ06dcp3rMLeh3fffZfx48fj4eFB586d6dKlC0lJSRw+fJi3336b7t2707BhwzLpE5ECGSJS7kVFRRmAsWbNmiK1//rrr41z587lWZaVlWVMnTrVAIy+ffvm26Z79+6FHuP48eNGaGioYTabjU8++STPur/++sse4+rVqx3G7uvra6xdu9a+PDMz0xgyZIgBGLfddluebZKSkoxatWoZgPHQQw8ZGRkZedYfPXrU+OOPP+w/z5071wCMUaNG5Ys7KSnJCAwMNHx9fY24uDiH5/ZP06ZNMwADMEaMGGGkp6fb123bts0IDw83AGPJkiV5tnv00UcNwOjdu7dx8uRJ+/Ls7Gxj8uTJBmB069YtzzYLFiywH+v66683UlJS8sVzww03GIDRs2dP48yZM/nO74cffsizbNiwYQZg3HLLLUZiYqJ9eVpamjF27FgDMMaMGVPgOd97771GVlaWfd2iRYsMwAgMDMwX36U+N2vWrDEAo3v37kVaXpLP2fTp0w3AmDRpUr7jJycnG+vWrXMY2z9t3brVAIwGDRoYVqs13/p7773XAIxnnnnGvmzcuHEGYDz//PP52sfFxRmbN28u0rELk52dbbRp08YAjJEjRxpJSUl51p89e9b45Zdf7D+npaUZderUMQBj8uTJec7lt99+MwIDAw3AWL58eZ792N5Lk8mUp++tVqv93Hv27OlUbIcOHTIAIyoqyuG5XurzAhjt27c3zp49m29b22cbMGbMmJHvPTx//rxRr149AzBefvllIzs7277u2LFjRrt27QzAmD9/vtP9YhiGPZaSuNT3yvY9OHTokH1Zcb8Hb7zxhgEYbdu2Nfbt25dn3VtvvWX/LlgsFvvyorwPtj5ev359vnX79u0zDh48WNipi5QJJUAiFUBxE6DC1K5d2/Dw8Mh3oXKp/+HaLu6nTp3qcP2XX35pAMbQoUMdxv7444/n22bTpk0GYNSrVy/P8pdfftkAjF69ehXpnFJTU42wsDDDx8fHiI2NzbPO9j/5sWPHFmlfhnExGfD393f4P/jnn38+X3yxsbGGr6+vERYWli8Gw8h7obht2zb7clsC5O3tbRw5ciTfdlu2bDEAIzw83EhISLhk7Dt37jQAo3HjxnkSN5vz588bERERhpeXV56E0HbOUVFRDreLjo42gDxJrGG4PgEqyefs7rvvNgBj8eLFDrcpjtatWxuA8fPPP+dZnpmZaVStWtUwmUx53qfrr7/eAIw///zT6WMX5KuvvjIAo2nTpkZmZuYl27///vv29rkv8m1s7/W1116bZ7ntvRwxYkS+bc6ePWv/nOaOobixuSIBcnRhbRgXE6DmzZs7PG/b74Jbb73V4fabN282AOOKK67Is7wk/WIYZZ8AFed7kJWVZdSoUcPw8PDIl/zYDBw4MN8feoryPvj7+xuhoaGXjEHEnfQMkEgldeTIEd58800eeOABxo8fz7hx4xg3bhwWiwWr1cr+/fuLtb8VK1YAMGzYMIfrbcM/cj8bkVv//v3zLbMNwztx4kSe5StXrgTg9ttvL1Jsfn5+3HbbbWRkZLBgwYI863IPfyuu6667jqpVq+ZbPnr0aCBnmFFWVhaQMzY+PT2dXr165RuSA+Dh4WEfnueoj6644grq1q2bb7mtL2688Ub7kLjC2NoPGjQIHx+ffOv9/f3p0KEDWVlZ/PHHH/nW9+zZ0+F2Bb1XrlaSz1mHDh0AePLJJ1m6dCmpqaklPr5tuNIHH3yQL67Y2Fh69uyZ532yHfvuu+9m9erVZGZmlvjYBbG9p2PGjLEP5SrMzz//DOR8Tj088v9v3va9+u2338jOzs633tF3tWrVqoSHh5OZmUlsbGyJY3NWRESEffhhQQYNGuTwvC/12briiisIDAxk27ZtpKen51tfnH5xh+J8D7Zu3cqpU6e44ooraNSokcM2hf1OL+x96NChA+fOnWPcuHFs27atSM9dipQ1JUAildDTTz9Nw4YNueeee3j11Vd59913ef/993n//fc5c+YMAElJScXap+2B2FatWuV7qNdkMlGtWjUg51kWRyIjI/MtCwoKAsh30Xj06FHg4kV3Udx9992YTCbmzJlj/x/ur7/+ys6dO2nbtu0lL5ocKehB7Vq1auHt7U16ejpxcXHAxf758ssvHfaPyWTijTfeABz3UVRUlMNjFbcvbHG89NJLBcaxbNmyAuNw9D7BxfcqIyOjSHGUVEk+Z2PHjuXWW29lz549DB48mJCQEDp06MAjjzzC1q1bi3X8UaNG4eXlxaJFi/JcBNsSoltvvTVP+8cee4x+/fqxfv16evfuTXBwMFdddRVTpkxh3759JemCfIr7GTh+/DgA9evXd7i+Tp06+T6/uRXnM1CS76ozCvqeFKWN7bM1cOBAh58tDw8PUlJSsFqtTveLOxTne2Dri82bNxf4e+LRRx8Fivf7CnL+6NS0aVPef/992rZtS5UqVbj++ut59dVXSUhIcN0JizhBRRBEKpkvvviC2bNnExwczCuvvELPnj2pWbOm/a/6Xbt2Zf369cX+q5ztL8W33HJLif7S6+gvsgUpyeSBDRs2pF+/fqxYsYLVq1fTu3dv3n77bSCnKERps/VPixYt6NixY6Fto6Oj8y3z8/Nz2La4fWGLo1OnTjRv3rzQto4uYorzPpWGknzOPDw8eP/993n88cf59ttvWbNmDevWrWPz5s289NJLTJkyhZkzZxZpXxEREVx33XUsX76cJUuWMGLECM6dO8e3335LQEAAN910U572AQEBrFixgj/++INly5bx008/sWHDBtatW8dzzz3HW2+9xZ133lm8TviHsp5Ms7S/q4WxWq2Fri/oe1KUNrbP1qBBgwgLCyt0H47ugrr7u5Gbo34qzvfA1hd169alZ8+ehR7ryiuvzLessPehRYsW7Nixg9WrV7Ny5Up++eUXvvvuO1asWMHMmTNZtWoV7du3L87piricEiCRSsZW6nT27Nncdttt+dYXd+ibTWRkJPv372fmzJmlXsGnbt26/PXXX/z999/2YR1Fce+997JixQreeust2rZtyxdffEFwcDCjRo0qURz/LBluc+LECTIzM+3lXeHiX4fbtWvHe++9V6LjOWIbbvX3338Xqb0tjuuuu45Zs2a5LI6y4sznrEWLFrRo0YLHHnuMrKwsvvjiC8aNG8czzzzDLbfcUuT5iMaOHcvy5cv54IMPGDFiBJ999hkZGRmMGDGCwMBAh9t06NDB/llNT09nzpw5PPDAA9x///0MHz6ckJCQYp1LbsX9DNSuXRvAYRljgGPHjpGZmYmvr6/DSoClGZu3tzcAKSkpDtfHxMQ4FU9hIiMj2bt3L/fff79LKvOVpsL6KSsri5MnTxa4bVG+B7bfE3Xr1nXp7ysbs9lMv3796NevH5AzpcFjjz3G+++/z7333sv69etdfkyR4ig/f84QEZeIj48HHA/XWL16dYFD1Gz/w7U90/JPtv+RFWVOFWddd911QE451eLo168fDRs2ZOnSpcyePZuMjAzGjBlDQEBAieJYtWqVw6EwH3/8MZBzN83LK+fvSLaSsytXrizw4q4kbH3x1VdfkZiYeMn2tvdp8eLFl/xruitc6nNTXK76nHl5efGvf/2La665BsMw2LFjR5G3HTRoEKGhoaxatYrTp08XOPytIL6+vtx///00atSI9PT0IicHBbF9BhYuXIjFYrlke9uzGx999JHDz4DtObmrrrrK/vktq9iqVq2K2WwmLi7O4TMzq1atciqewpTl7zDAfgezJN+NWrVqAbB3795869asWVPkfRb0PejUqRPh4eH8/vvvpZp02lSvXt1eun779u2lfjyRS1ECJFLJ2P7KPXfu3DwXJIcPHy50KJjtr8Z//fWXw/WPPPIIQUFBTJ8+nfnz5+d7eNowDDZt2sT333/v7Clwxx13ULNmTVavXs3jjz+e7xmhmJgYNm/enG87Dw8PJk2aRFZWFq+88gpQsuIHNufPn+f+++/Pc/ydO3fyf//3fwDcd9999uU1atRg0qRJxMbGMnToUId/fT937hzvvPNOsS6I2rVrZ58H5+abb8530ZicnJxnIsb27dszaNAgdu3axahRoxxOvnr69Gnmzp1b5BgKc6nPTXGV5HP2wQcf8Oeff+bb17Fjx9i2bRuAwwITBfH19WX48OFkZWUxa9Ys1q1bR2RkpMOhQm+++abDZ3127NjBkSNH8PDwoE6dOvblr7/+Os2aNStyMgUwePBgWrduzZ49e7j99tvzJdixsbH8+uuv9p+HDRtG7dq12bt3L9OmTcsz3HXjxo289NJLADz00ENFjsFVsXl7e3PVVVcB5BuW+MEHH/DJJ584HVNBJkyYQJ06dXjnnXd4/vnnHT6zs3v37gIn2y0uZ74bts/am2++aX9uE3Lu4Of+vZNbcb4HZrOZp59+mszMTAYPHuzwWbnU1FQ+/vhjh79DCpKamsp///tfh8mtbQLe4nwXRUqN+wrQiUhR2UqeNm/e3Ljyyisd/uvdu7dhGDnzLAQHB9tLzQ4bNszo27ev4evra1xzzTVG165dHZZXXbJkiQEYPj4+xsCBA43x48cb48ePN/bs2WNv8/333xuhoaEGYNSpU8fo27evccsttxh9+/Y1IiIiHJa7dlSuNTcKKBW7ceNGo2rVqgZgREREGEOHDjVuvvlmo127doaHh4cxbdo0h/uLj483/Pz8DMC4+uqri97JudjKBI8ZM8YICwszIiMjjREjRhh9+/Y1vL29DcC4/fbb822XkZFh3HjjjQZgmM1mo1OnTsbw4cPtcXt5eRmAkZaWZt/GVga7sDLdZ8+etc9R4u/vb/Tt29f417/+ZVx99dVGQEBAvpLBCQkJxtVXX21v37VrV2PkyJHG0KFDjejoaMNkMhkREREOz7mgfrWVGF6wYEGe5Zf63BS3DLZhFP9zNnjwYAMwIiMjjRtuuMEYNWqU0adPH8PX19cAjOHDhxfYtwX57bff7J9NLsyn44ittHmjRo2MIUOGGLfccovRvXt3+3v96KOP5mlv62dH512Y/fv3G/Xr1zcAIzQ01LjhhhuMESNGGFdeeaXh7e2d7/Pz66+/2n8PNG3a1Bg5cqTRq1cvw9PT0wCMJ554It8xSlJ6uSSxrV271t4/rVq1Mm6++WajVatWhpeXl/HII48U+/NiU9BnNLetW7fa50iqVq2ace211xqjRo0yBgwYYNStW9dhueuS9suDDz5oP86IESPs342iSE9PN1q2bGkARtWqVY3BgwcbPXr0MPz8/IyRI0c6PGZJvge2eYxMJpNxxRVXGDfddJMxfPhw48orrzR8fHwMwPjrr7/s7S/1PiQkJBiA4enpabRr184YPny4MWLECKNt27YGYHh5eeWbP03EHZQAiVQAtv/ZFfYvJCTE3n7fvn3GzTffbNSqVcvw9fU1mjZtakybNs1IT08v9H/mb775ptGmTRt7AuGo3fHjx43HHnvMaNWqlREQEGD4+fkZ9evXN/r06WO88sorxvHjxx3GXtwEyDAM48SJE8bDDz9sNG3a1PD19TWCgoKMZs2aGXfffbexa9euAvvLdvH/0UcfFdimMLmTgX379hnDhg0zqlatavj4+BitWrUyXn/9dYfzjNh89dVXxg033GBEREQYZrPZqFq1qtG6dWvjrrvuMlauXJmnbVESIMPImdzyv//9r9GpUycjKCjI8PX1NerVq2cMGzbMWLFiRb72FovFWLBggXHttdcaVapUMby8vIyIiAijffv2xkMPPWT89ttvBZ6zI4VdXBb2uSlJAmQYxfuc/fTTT8b9999vdOjQwahevbrh7e1t1KlTx7j22muNTz75JM+krsXRuHFj+/nk/kNAbt98840xYcIEo02bNkaVKlUMHx8fIyoqyrjhhhvyTTRqGCVPgAzDMM6dO2dMnz7daN26teHv72/4+/sbjRo1MsaOHetwTpYDBw4Yd9xxh1G3bl3DbDYbYWFhRp8+fQq8AC3phX5JYvvhhx+Mq6++2vD39zeCgoKMa6+91vj1119L/HkxjKIlQIaR80eSWbNmGR06dDCCgoIMHx8fo27dusY111xjPPvss8b+/ftd0i+pqanGQw89ZNSvX98wm83Fnhfo9OnTxm233Wb/TDdt2tR48cUXjezsbIfHLOn34McffzSGDRtm1K5d2/D29jbCwsKMFi1aGGPHjjW++uqrPPMbXep9sFgsxptvvmkMHz7caNKkiREUFGQEBAQYTZs2NW6//XZjx44dRT5/kdJkMgwVaBeRyuPo0aM0aNCA8PBwjh07Zn9GpTimT5/OjBkzmDZtGtOnT3d9kCIiIuI2egZIRCqVGTNmkJ2dzaRJk0qU/IiIiEjlpjLYIlLhrVu3jnfffZe///6bX375hZo1a7rkAW8RERGpfHQHSEQqvL///pv58+ezZcsWevbsyYoVK5yad0VEREQqLz0DJCIiIiIilw3dARIRERERkcuGEiAREREREblsKAESEREREZHLhhIgERERERG5bKgMtoudOHGCb7/9lgYNGhAQEODucEREREREKqXz589z8OBBbrjhBmrVqlXk7ZQAudi3337LxIkT3R2GiIiIiMhl4Z133mHChAlFbq8EyMUaNGgA5LwRrVq1clscFouFpKQkgoODMZvNboujMlBfuo760rXUn66jvnQt9afrqC9dR33pWuWhP3fs2MHEiRPt199FpQTIxWzD3lq1akWXLl3cFkdmZibx8fGEh4fj7e3ttjgqA/Wl66gvXUv96TrqS9dSf7qO+tJ11JeuVZ76s7iPnagIgoiIiIiIXDaUAImIiIiIyGVDCZCIiIiIiFw2lACJiIiIiMhlo9wnQH///TdTp06lc+fOVKtWjaCgINq2bcvs2bM5f/58vvZ79+5lyJAhhIWFERAQQLdu3fjxxx8d7jsxMZH77ruP2rVr4+vrS3R0NG+99RaGYZT2aYmIiIiIiBuU+ypw7777Lm+88QaDBg1i1KhRmM1m1qxZw9NPP83nn3/Ohg0b8PPzA+DAgQN07doVLy8vHnvsMUJCQpg7dy59+/ZlxYoV9O7d277fzMxM+vTpw59//sl9991H8+bNWbFiBXfffTenT59m+vTppXpehmGQkJBAcnIyFovF5UmX1WrFYrGQmJiIh0e5z3PLnIeHBz4+PtSoUQMvr3L/NRARERERFyn3V34333wzTz75JCEhIfZld911F40bN2b27NnMnz+fe++9F4Ann3ySc+fOsXnzZtq2bQvArbfeSnR0NPfccw979uzBZDIBMG/ePDZt2sT//vc/7rvvPgDuvPNObrrpJp599lluu+02oqKiSuWcLBYLMTExZGRkAGAymfDw8LDH5gomkwmz2ezSfVYWhmFgsVjIzMwkMzOTunXrKgkSERERuUyU+6u+Dh06OFw+YsQIZs+ezc6dOwE4f/48S5cupUePHvbkByAwMJA77riDqVOnsmnTJjp16gTAxx9/jL+/P3feeWee/T7wwAN89dVXfPbZZzz22GOlck5xcXFkZGQQGBhIREREqSQqVquV7OxsPD09dQfIAcMwOHHiBElJSZw6dYo6deq4OyQRERERKQPlPgEqyLFjxwCIiIgAYPv27WRkZDicfLRz584A9gTIarWyZcsW2rVrh6+vb562nTp1wmQysWnTpkvGEBMTY4/DZseOHQD2OwyOJCUlYTKZqFmzJh4eHhiG4fIhcLZ9GoaB1Wp16b4rixo1apCUlERaWlqB7xXkvJdZWVlYLJYyjK5yUl+6lvrTddSXrqX+dB31peuoL12rPPRnSY9dIROg7OxsZs2ahZeXF7fccgsAJ06cAKB27dr52tuWHT9+HICEhATS0tIctvXx8aFq1ar2toWZP38+M2bMcLguKSmJ+Ph4h+syMzMxm80YhkF2dvYlj1MSufetYXAF8/DwICMjo8D3CnK+XCkpKRiGgdlsLsPoKh/1pWupP11Hfela6k/XUV+6jvoSki3JrDq+ivVn1nM+6zwBXgF0rd6VPrX7EGQOKta+ykN/JiUllWi7CpkAPfDAA6xfv55nn32Wpk2bApCamgrkJDD/ZLvLY2tTWFtbe1ubwowfP56+ffvmWbZjxw4mTpxIcHAw4eHhDrdLTEzEZDLh6el5yWOUlO2OkqenpxKgQtielSrovYKcL7jJZCIsLOyy/YXpKupL11J/uo760rXUn66jvnSdy70vlxxYwv9t/j8ysjPyLN+WsI1397/L4+0fZ3DDwUXeX3noz+Dg4BJtV+ESoClTpvD6668zYcIEnnzySftyf39/AHthgdzS09PztCmsra29rU1hIiMjiYyMdLjObDbj7e3tcJ3tmZzSfDbHarViMpnsBRbEMVsfFfRe2Xh5eRX6nkrRqS9dS/3pOupL11J/uo760nUu175cvG8xM3+fWeD6jOwMZv4+Ey8vL4Y2Hlrk/bq7P0uaeFWoK+Pp06fzzDPPcNttt/H222/nWVerVi0Ah0PXbMtsQ97CwsLw8/Nz2DYjI4PY2FiHw+NERERERCqSxIxEZm+cXaS2z258lsSMxFKOyP0qTAI0ffp0ZsyYwdixY5k3b16+YV2tWrXCx8eH9evX59t2w4YNwMWKch4eHrRr144///wz312g33//HcMwCqw+JyIiIiJSUSw9sDTfsLeCpGen882Bb0o5IverEAnQzJkzmTFjBmPGjOHdd991OKQrMDCQgQMHsnbtWrZt22ZfnpKSwrx582jcuLG9BDbAyJEjSU1NZc6cOXn288orr+Dl5cWIESNK74RERERERMrAmpg1pdq+Iir3zwC98cYbTJs2jbp169K7d28+/vjjPOsjIiLo06cPAM899xyrV6/muuuu48EHHyQ4OJi5c+dy/Phxli1blueu0Z133smCBQt46KGHOHz4MM2bN2f58uUsXryYp59+mnr16pXlabpUYqqFz/84yg9/nSYlI5sgXy/6tKjBze3qEOLvnofU1q5dS8+ePfMsCwgIoGnTptx6663ce++9eHp6cvjwYerXr+9wH9HR0fZ5n3LbuHEjTz31FBs3bsRkMtG1a1eef/75PPNBiYiIiFyOUjJTitU+OTO5lCIpP8p9AmSbj+fo0aOMHTs23/ru3bvbE6BGjRrx22+/8cQTT/D888+TmZlJu3btWLlyJb17986znbe3Nz/88ANPP/00n3zyCXFxcTRs2JDXXnuNe+65p/RPrJR8vimGqUt2kp6Vd+6fDQfjeXHlHmYObsnwjo4LN5SFkSNHcv3119snIn3vvfd44IEH2LVrV567cUOHDuXGG2/Ms21oaGi+/W3YsIEePXpQu3ZtZs7Mebjv9ddfp1u3bqxbt45WrVqV6vmIiIiIlGeB3oHFah/kXbxy2BVRuU+A3nvvPd57770it2/evDlLliwpUtvQ0FBef/11Xn/99RJGV758vimGx77cXuD69Cyrfb27kqB27doxevRo+8+TJk2iefPmzJs3j1mzZtmXt27dOk+7gtx///14e3vz888/2wtXDB8+nObNm/Pwww+zatUq15+EiIiISAXRM7Inm05tKlb7yq5CPAMkl5aYamHqkvzDwxyZunQnianlYxbk4OBgunTpgmEYHDx4MM+69PT0Qudj2r9/P5s2bWLYsGF5qvbVrl2bYcOG8cMPP3Dq1KlSi11ERESkvBvUcBA+no7nvvwnX09fBjUaVMoRuZ8SoEriiy3H8g17K0i6xcqXW46VckRFYxgG+/fvB6Bq1ar25S+99BL+/v4EBAQQGRnJ1KlT81Xssw2P7NKlS779du7cGcMw2Lx5cylGLyIiIlK+hfiE8NSVTxWp7eQrJxPsXbLJRSuScj8E7nIzat4GjiekFXu7U4npxWr/wso9fLD+cLG2qR3mx0d3dC7WNv+UmppKbGwshmFw8uRJXnvtNbZt20bnzp1p3LgxR48epVevXgwZMoSoqCjOnj3L559/zqxZs1i/fj0rV67E09MTgBMnTuTE5WDOJtsyR3M9iYiIiFxObJObztowC4s1/yggX09fJl85uViToFZkSoDKmeMJaRyOK3jYl6ukZ1nL5Dj/NG3aNKZNm2b/2cPDg0GDBtkLINStW5fVq1fn2Wb8+PFMmDCBuXPn8umnnzJq1CgA+/A4H5/8t3V9fX3ztBERERG5nA1tPJT49Hhe2fJKnuVNQpvwbr93CfEJcU9gbqAEqJypHeZXou1OJaYXeQgcgK+XBzVCfIt1jJLGltuECRMYNmwYJpOJgIAAmjRpQnh4+CW3e+qpp5g7dy7Lli2zJ0D+/v4A+YbGQc7zQ7nbiIiIiFzuTiUdsb/2MiDLBMkpJwixFv0asjJQAlTOlHSI2fxfDzHr291Fbv9Yv2bcfrXj+XZKU+PGjfOVJC+KyMhIPD09iY2NtS+rVasW4HiYm22Zo+FxIiIiIpedLQs5tPMz8PXG0zDokpbOL/5+nMxKIe6/zanS70VoN8bdUZYJFUGoJG5uVwdfr6K9nb5mD25qX6eUI3KtgwcPkp2dTUREhH1Zx44dAVi/fn2+9hs2bMBkMtG+ffsyi1FERESkXNqyEJbey6EL14p1srK4Iv3iCJrdngYsvTen3WVACVAlEeJvZubglkVqO3NQS0L8zKUcUcnExcXlW2a1Wnn66acBGDhwoH15o0aN6NChA4sWLbIXRICc4giLFi2iV69e1KhRo/SDFhERESmv0hJg+SOcN5k445Uz+Kt+poUWmZn2Jrt8vHNerHg0p30lpyFwlYhtctOpS3Y6fB7I1+zBzEEt3TYJalHceeedJCUl0bVrVyIjI4mNjeXLL79k8+bNDB48mJtvvjlP+1dffZWePXvSrVs37rvvPgBee+01rFYrL730kjtOQURERKT82PoJZKVz2Nvbvqi+JYsWGRcToN22dZY02PYpdJ5U1lGWKSVAlczwjpH0ja7Bos1H+WH3aZIzsgn2NdOnRQQ3tatDiH/5vPNjM2DAABYuXMicOXOIj4/Hx8eH6Oho3njjDe666y48PPLetOzatStr167l6aef5umnn8ZkMtG1a1cWLVpEmzZt3HQWIiIiIuXE3uUAHDRfvOyvb7EQZrVS25LFcbPXxTtAAHuWKQGSiifE38ztV9VnbOe6eHp65ksa3KFHjx4YhnHJduPHj2f8+PHF2neXLl3ylc4WERERESA9EYBD3hf/CF7fkjMXUIvMTI6bvTjj5cVZTw+qZVvt7Ssz918Zi4iIiIhI6fDNmd/nsPliAlTPkgXgeBicb+WfD0gJkIiIiIhIZdX0egAOXRgCF5adTeiFeX+ic82luMs2sXyzAWUbnxsoARIRERERqazajiTby5cjF+4A2Ya/AXkqwe328QazH7QZWeYhljUlQCIiIiIilZVfGCeufQqLyQTkVICzCbEaRF5IiHZ5e2P0ewH8Qt0RZZlSAiQiIiIiUokdimxrf10/05JnXfSF54BivTw506xvWYblNkqAREREREQqsUOJh+yvcw+BA2jhU8X+elfcrjKLyZ2UAImIiIiIVGJ5E6ALQ+C8A4GLd4AAdsftLtO43EUJkIiIiIhIJWZLgMwG1MrKAv+qEHUVAM1jj9jb6Q6QiIiIiIhUeIeTDgMQZbHgCVC9OdRqC0CQYVDPrzqQcweoKBPXV3RKgEREREREKqlz6eeIT48Hcj3/U60Z1LrC3qaFZxAA8enxnDp/qsxjLGtKgEREREREKinb3R+AerYEqHozqNnWvrxFerr99eUwDE4JkIiIiIhIJZWnAIKtBHb1FhBcEwJrABCdcNze5nIohKAESERERESkksqdADWwVYCr1iznvxeGwTWPi8FEzkSpugMkFVNaAmx4E88PB2Oa0x3euwHWv5mz3E3Wrl2LyWTK8y8wMJD27dvz6quvkp2dbW974MABRo0aRUREBD4+PjRq1Ihp06aRnuv2rM24cePy7df274svvijLUxQREREpd3InQPUsFgiMAP/wnAUXCiEEGAb1LxRC2BW3q9IXQvBydwDiYlsWwvJH8Mj6R7Jw+BdYPQOu/w+0G+Oe2ICRI0dy/fXXYxgGJ06c4L333uOBBx5g165dzJkzhz179tClSxeysrK45557qF+/PuvXr2fWrFls3LiRFStWYDKZ8u134cKF+ZZ16tSpLE5JREREpNw6lJSTAFXPyiLAMC7e/YE8hRCiPQM5yGkSMxI5nnKcOkF1yjrUMqMEqDLZshCW3lvw+qz0i+vdlAS1a9eO0aNH23+eNGkSzZs3Z968ecyaNYsnnniCxMREfv31V7p27QrAxIkTadq0KZMnT+ajjz7Ks72No2UiIiIilzNLtoVjyceAXBOgVm9+scE/CiF8c+H1rrhdlToB0hC4yiItAZY/UrS2Kx5163C43IKDg+nSpQuGYXDw4EHWrFlDkyZN7MmPzbhx4wBYsGCBw/0YhkFSUhJWq7W0QxYRERGpEGKSY8g2ch4zqJe7BLZNUAQE1QIgOv7yKYSgBKiy2PpJzh2eorCkwbZPSzeeIjIMg/379wNQtWpVMjIy8Pf3z9fOtuz33393OC41JCSEkJAQ/Pz86NOnDxs3bizdwEVERETKuTwV4OwlsJvnbXRhGFzT+Bg8LqQGlb0QgobAlTfvD4LEmOJvl3SieO1/mA6/zyneNiGRMHZp8bb5h9TUVGJjYzEMg5MnT/Laa6+xbds2OnfuTOPGjYmOjmb37t2cOnWKGjVq2Ldbs2YNACkpKSQkJBAenvPwXo0aNXjwwQdp3749AQEBbNu2jVdeeYVu3bqxfPlyevfu7VS8IiIiIhWV7fkfgPqZ/6gAZ1OrLexdhr9h0MA/gv2pJ9kduxvDMBw+d10ZKAEqbxJjIP5g6R8nK71sjvMP06ZNY9q0afafPTw8GDRoEHPm5CRjDz/8MKNGjWLw4MG88MIL1KtXj40bN/Lvf/8bs9mMxWIhNTXVngA9//zzefY/ZMgQbrnlFtq2bcukSZPYt29f2Z2ciIiISDmStwS2JWe4m19o3ka5CyF4+LMfSLYkE5McQ93gumUTaBlTAlTehESWbLukE0UfAgfg5QvBtYp3jJLGlsuECRMYNmwYJpOJgIAAmjRpYk9mAG655Rbi4uKYMmUKPXr0AMDb25vJkyezbNkyNm3aRHBwcKHHaNy4McOHD+e9997j77//pkmTJk7HLSIiIlLR2BIgP6uV6tnZUL1Z/kZ5CiGkseTC691xu5UAuctzzz3Hli1b2Lx5M4cOHSIqKorDhw/na3f48GHq169f6L4+/PBDRo0adcn20dHR7Ny50+nYS6SkQ8zWvwnfPVn09r2nQ+dJJTuWExo3bnzJYWn33XcfEyZMYMeOHWRkZBAdHU1oaChvvPEGNWvWvGQCBFCvXj0AYmNjlQCJiIjIZccwDHsCVM+SlfN0T7Xm+RsGVoPgOpB0jOi44xBycULUfvX7lV3AZajcJ0CTJ08mPDycdu3ace7cuQLbVatWzeFcMAD33nsvaWlp9O3bN9+6oUOHcuONN+ZZFhoa6kzI7tF2ZM48P0W5C2T2gzYjSz8mJ/j4+NChQwf7z3/88Qdnz55l/PjxRdreNvQtIiKiVOITERERKc9i02JJsaQAuQsgOLgDBDnPASUdo2nCMTxDo8g2rJW6EEK5T4AOHDhAgwYNAGjZsiUpKSkO2wUEBDicC2b9+vUkJiZy8803U7Vq1XzrW7duXTnmkPELy5nktLB5gGz6v5h//Gc5lp6ezgMPPICPjw+PPHKx1Pf58+fx9PTE19c3T/s///yTRYsW0bx5cxo2bFjW4YqIiIi4ncMKcI7uAEFOArTnW3wNg0Z+NdibeoLdcbuxGlY8TJWvaHS5T4BsyU9JzZs3D4A77rijwDbp6elYrVaH5ZcrFNvkpssfcXwnyOyXk/y4aRLUoti1axfjxo3jhhtuoE6dOpw+fZr333+fAwcOsGDBApo1u/iXi3379tG/f3+GDBlC48aN7VXg3n33XTw9Pe2FFUREREQuN4eTDttf17NNglqtqePGuQohtPDwZy9w3nKeI0lHqB9S+CMmFVG5T4CckZKSwueff05UVBR9+vRx2Oall15i5syZGIZBnTp1uO2223jqqafw8fG55P5jYmI4duxYnmU7duwAwGKxkJmZ6XA7q9WKyWQqnUk7246CpgNg28ewdwWmjCTwDcFoej20/lfOnR83TBZqO1fDMAo97/DwcGrXrs3cuXM5c+YMISEhXH311bz//vt06tQpz7bVq1fn2muvZc2aNXz00UekpaVRs2ZNhg8fzhNPPEGzZs0u2ceGYWAYRoHvFeS8l1lZWVhsfz2RElNfupb603XUl66l/nQd9aXrXG59uT9+v/11/UwLRnAdLB6+4Oiap2o03hdetkg9z+ILr7ef3k5tv9oO918e+rOkx67UCdBnn31GSkoKjzzyCB4eeW/feXh40KtXL4YMGUJUVBRnz57l888/Z9asWaxfv56VK1fi6elZ6P7nz5/PjBkzHK5LSkoiPj7e4TqLxYLZbCY7O7tkJ3Yp3kEYHSaQfcV4PD0989ZwL61jXkK3bt3sSUZh5121alUWLVrkcN0/t6tWrRoLFiwocF9F6V/DMLBYLAW+V5DzfqWkpGAYBmaz+ZL7lIKpL11L/ek66kvXUn+6jvrSdS63vtwXl/M8tMkwiMrKIjOkAQkFXu+YqBZYG8+U4zSPPQrhOf3z54k/uTL4SodblIf+TEpKKtF2lToBmjdvHh4eHtx222351tWtW5fVq1fnWTZ+/HgmTJjA3Llz+fTTT+0V4woyfvz4fIUVduzYwcSJEwkODs5T3jm3xMRETCbTJRMsZxiGAZA/AZI8TCYTZrO5wPcKcr7gJpOJsLCwy+IXZmlSX7qW+tN11Jeupf50HfWl61xufXk8/TgAtbKy8TUMsmu1KvR6x1T7Cth7nOaJJ/Gq0oAsI4uDqQcL3KY89GdRKgM7UmkToN27d7Nhwwb69u1L3bpFr2H+1FNPMXfuXJYtW3bJBCgyMpLISMdz45jNZry9vR2us92N+uddKVeyDbMzmUylepyKztZHBb1XNl5eXoW+p1J06kvXUn+6jvrStdSfrqO+dJ3LpS/TstI4ef4kcLEAgmeNaDwLO+867WDvt3gDjf0j+Ov8cfYk7MHTyxNPD8d/tHd3f5Y08aq0V8bz588HCi9+4EhkZCSenp7ExsaWRlgiIiIiIqXqSNIR++tLlsC2yV0IweQH5CRSuYspVBaVMgHKzMxk4cKFVKtWjcGDBxdr24MHD5Kdna35Y0RERESkQnJYArtqARXgbGq2tb+MTjtvf707brcrQysXKmUCtHTpUs6ePcuYMWMKvDUWFxeXb5nVauXpp58GYODAgaUao4iIiIhIacibAGVBaBT4BBa+kX94TjsgOvaofXFlnBC13D8DtHDhQo4cybmNd/bsWTIzM3nmmWcAiIqKYsyY/HPaFGX425133klSUhJdu3YlMjKS2NhYvvzySzZv3szgwYO5+eabS+FsRERERERK1+HEw/bX9TItULeACVD/qVZbOHeExudOYq7SEIvVwq5YJUBlbv78+fz00095lk2ZMgWA7t2750uAYmJiWLVqFV27dqV584Lf7AEDBrBw4ULmzJlDfHw8Pj4+REdH88Ybb3DXXXepcICIiIiIVEiHknLuAAVlW6litUK1Szz/Y1PrCti9BDPQ1K8GO8/HsCd+D1nWLLw8yn3aUGTl/kzWrl1brPaRkZFFmv9l/PjxjB8/voRRiYiIiIiUP1bDar8DVN9iwQRQvah3gHIXQvBhJ5Cenc6hxEM0Dmvs6lDdRrc5REREREQqiVPnT5GenQ7kKoBQ1DtANdvYX0anXiyEUNmeA1ICJCIiIiJSSeSvAGeCqk2KtrFfGITVByA69mIp7cr2HJASIBERERGRSiJfBbjw+uDtX/Qd1GoLQIPEU/h45ExwWtlKYSsBEhERERGpJPLdAapWxOd/bC48B2QGmvrXAGBP/B4sVourQnQ7JUAiIiIiIpWErQKcl2FQx5IF1Yv4/I9N7kII+ACQac3k4LmDLovR3ZQAVUKJGYks3L2QCT9MYMSyEdz+3e0s3L2QxIxEt8W0du1aTCZTnn+BgYG0b9+eV199NU/lvgMHDjBq1CgiIiLw8fGhUaNGTJs2jfT09Hz7NQyDt99+myuuuAI/Pz9CQ0Pp168fGzZsKMvTExERESkXbBXg6liyMEPx7wDlLoRwPtn+ujIVQij3ZbCleBbvW8zsjbPJyM7Is3zTqU28uuVVnrryKYY2Huqm6GDkyJFcf/31GIbBiRMneO+993jggQfYtWsXc+bMYc+ePXTp0oWsrCzuuece6tevz/r165k1axYbN25kxYoVmEwm+/7uvvtu3n77bXr06MELL7xAamoqc+bMoXv37nz33Xf06NHDbecqIiIiUpaSM5M5m3YWyFUBrrh3gHxDILwhxB8gOvYwVPEFcgoh3Nj4RhdG6z5KgCqRxfsWM3Xd1ALXZ2Rn2Ne7Kwlq164do0ePtv88adIkmjdvzrx585g1axZPPPEEiYmJ/Prrr3Tt2hWAiRMn0rRpUyZPnsxHH31k337r1q28/fbb9OvXj+XLl9sTo4kTJ9KsWTMmTJjAnj17NKmtiIiIXBZsd3/gQgJk8oAqJZi/p1ZbiD9A/aQz+FVvTFp2RqW6A6Qrw0oiMSOR2RtnF6ntsxufdetwuNyCg4Pp0qULhmFw8OBB1qxZQ5MmTezJj824ceMAWLBggX3ZmjVrABg7dmyeu0KhoaEMHjyYffv28dtvv5X+SYiIiIiUA7bnf8BWAa4hmH2Lv6MLzwF5Ac38cgoh/J3wN5bsylEIQQlQJbH0wNJ8w94Kkp6dzjcHvinliIrGMAz2798PQNWqVcnIyMDfP3+pRtuy33//HcMwAMjIyMizzlF7PQskIiIil4t8FeCKO/zNpmZb+8sW5JTCtlgt7Du3z5nwyg0NgStn7lh1BydTThZ7u9Opp4vV/pUtr/DJnk+KtU3NwJrMu25esbb5p9TUVGJjYzEMg5MnT/Laa6+xbds2OnfuTOPGjYmOjmb37t2cOnWKGjVq2Lez3e1JSUkhISGB8PBwoqOjAfjxxx8ZNGiQva1hGPz0008AxMTEOBWviIiISEWROwGqV5IS2DZ5CiEk2V/vittFiyotShxfeaEEqJw5mXKSo8lHS/04GdkZZXKcf5o2bRrTpk2z/+zh4cGgQYOYM2cOAA8//DCjRo1i8ODBvPDCC9SrV4+NGzfy73//G7PZjMViITU1lfDwcPr370+LFi148803qVWrFjfeeCOpqam8/PLL7Ny5E8hJuEREREQuB7YEqEpWNiFWo+R3gHyDc54dittH9NlDUDVnZM2u2F0MazLMVeG6jRKgcqZmYM0SbXc69XSRh8AB+Hj6EOEfUaxjlDS23CZMmMCwYcMwmUwEBATQpEkTwsPD7etvueUW4uLimDJlir2Cm7e3N5MnT2bZsmVs2rSJ4OBgALy8vFixYgVjx47l8ccf5/HHHwegdevWPP/88zz88MP2tiIiIiKVWZY1y/7H7Xq2CnAlvQMEOYUQ4vYRlRyLf0RTUrPT2B232/lAywElQOVMSYeYLdy9kBc2vVDk9g+0e4DRLUZfuqGLNW7cmN69exfa5r777mPChAns2LGDjIwMoqOjCQ0N5Y033qBmzZp5kpq6deuyZs0ajh49yuHDh6lSpQrR0dG8+eabADRrVsK/fIiIiIhUIMdTjpNlzQIuPP/j4QVVGpV8h7WugB2L8ASa+UWwJeUw+xL2kZGdgY+nj2uCdhMVQagkBjUcVOQPo6+nL4MaDbp0Qzfy8fGhQ4cOXHXVVYSGhvLHH39w9uxZrr/+eoft69atyzXXXGN/Lmj58uV4eHjQt2/fsgxbRERExC3yFkC4UAHOy7vkO8xVCCHaMAOQZWSxL6HiF0JQAlRJhPiE8NSVTxWp7eQrJxPsXXGGhqWnp/PAAw/g4+PDI488csn2S5cuZdmyZYwZM4aoqKgyiFBERETEvfJXgHNi+BtAzdZAzjQj0ecvTp+yK7bizwekIXCViG1y09kbZzt8HsjX05fJV0522ySoRbFr1y7GjRvHDTfcQJ06dTh9+jTvv/8+Bw4cYMGCBfmGtI0fPx7DMGjbti1+fn78+uuvfPTRR3Ts2JFXX33VTWchIiIiUrZcngD5BEHVJhC7l+izB6FaIEClmBBVCVAlM7TxUHrV7cWS/UtYE7OGFEsKwd7B9IzsycCGAwnxCXF3iIWqWrUqderUYe7cuZw5c4aQkBC6devGwoUL6dSpU772nTp1Ys6cOXz55ZdkZmbSqFEjZs6cyYMPPoifn58bzkBERESk7NkSIB+rlZpZ2VDNBc9B12oLsXupmxJPYM3qpGSlKgGS8inEJ4TRzUczsslIPD098fBw/0jHHj162CcwLUxERASLFy8u8n4nTpzIxIkTnQlNREREpEIzDIODiQcBiLJk4QnO3wGCnEII2z/DA2juF8Gm5EMcOHeA9Kx0PCrwkzQVN3IRERERESEhI4GkzJwJS3MqwJkhvIHzO85dCMGac98k28hmb8Je5/ftRkqAREREREQqsMOJh+2v61myoGpj8DQ7v+MarcCUky5Enz9nX1zRCyEoARIRERERqcBcXgDBxicwpxACEH3moH1xRX8OSAmQiIiIiEgFli8BquaiBAhyngMC6pxPIMgcAMDuuN2u278bKAESEREREanADiVdTIDqWbKgugsqwNlcSIBMQAvfCAAOJh4kLSvNdccoY0qA5LJWlMp0IiIiIuWZ7Q5Qjaws/A3DtXeA8hRC8ATAalgrdCEEJUBuYDKZyM7Oxmq1ujuUy5phGFit1nJRJlxERESkJDKyMziechy4MPzN0wfC67vuALkLIaQk2Bfvjq+4w+B05ecGgYGBGIbB8ePHyczM1F0INzAMgxMnTmAYBj4+Pu4OR0RERKREjiYdxWrk/FG9fmZWTtECD0/XHcDb3z6pau5CCH/F/+W6Y5QxTYTqBlWqVCE1NZWUlBRSUlIwmUx4eHhgMplcdgzDMDAMA5PJ5NL9Vga2Oz+25KdGjRruDklERESkRPIVQKjtwud/bGpdAWd2Uyv1HMFetUjKSuHHmB/5O+5vQvxCuDbqWgY1HESIT4jrj10KdAfIDcxmM/Xr1yciIgJ/f3/MZrPLkxTDMLBYLLq75IDJZMJsNhMUFETdunXx8tLfAURERKRiOpx02P66nitLYOd24TmgrwMDSMk6D0B6djr7k/ez+cxmXtj0AtcuupbF+xa7/tilQFd+bmIymQgPDyc8PLxU9p+ZmUl8fDzh4eF4e3uXyjFERERExL3y3gHKcm0BBJtaV7A4MICp1aoAjv+4npGdwdR1UwEY2nio62NwId0BEhERERGpoGwJkL/VSvXsbNeWwL4gMbwus6uEQxFGFj278VkSMxJdHoMrKQESEREREamADMOwJ0D1LRZMXn4QWs/lx1l6ZBUZHiYowiMb6dnpfHPgG5fH4ErlPgF67rnnGDZsGA0aNMBkMlGvXr0C244bN87+0P8//33xxRf52mdkZDB16lTq16+Pj48PDRs25JlnnsFisZTiGYmIiIiIOO9M6hlSs1IB2/C3JlAK03usiVlTqu3LWrl/Bmjy5MmEh4fTrl07zp07V6RtFi5cmG9Zp06d8i0bMWIES5Ys4fbbb6dLly6sX7+eKVOmsH//ft577z0nIxcRERERKT2HknI9/5NpgZql8PwPkJKZUqz2yZnJpRKHq5T7BOjAgQM0aNAAgJYtW5KScuk3YPTo0Zdss3z5cpYsWcJDDz3ESy+9BMAdd9xBaGgoL7/8MhMmTKBr167OBS8iIiIiUkrylcAujQpwQKB3YLHaB3kHlUocrlLuh8DZkp/iMAyDpKQkrFZrgW0+/vhjAB544IE8y20/f/jhh8U+roiIiIhIWcmdANWzZJVaAtQzsmepti9r5f4OUEmEhISQnJyMt7c311xzDc888wxXXnllnjabNm2idu3aREZG5lkeGRlJrVq12LRp0yWPExMTw7Fjx/Is27FjBwAWi4XMzEwnz6TkLBYLWVlZep7JBdSXrqO+dC31p+uoL11L/ek66kvXqYx9efDcQQA8DIO6WRYyQxtCKVx/9q/bn1e3vEpGVgZcog6Cr6cv/ev2L5Pr4JK+l5UqAapRowYPPvgg7du3JyAggG3btvHKK6/QrVs3li9fTu/eve1tT5w4QYsWLRzup3bt2vkSG0fmz5/PjBkzHK5LSkoiPj6+ZCfiAhaLhZSUFAzDwGw2uy2OykB96TrqS9dSf7qO+tK11J+uo750ncrYl7YEqHZWFmZPf85k+0MpXX/e2+xeXtr1Uk4p7EKqwd3T7B4sKRbiKf3r4KSkpBJtV6kSoOeffz7Pz0OGDOGWW26hbdu2TJo0iX379tnXpaam4uPj43A/vr6+pKamXvJ448ePp2/fvnmW7dixg4kTJxIcHFxqk5wWhcViwWQyERYWVmm+5O6ivnQd9aVrqT9dR33pWupP11Ffuk5l68tUSypn088CtgpwTQmvUrXUjndL+C0Exm3l+RPfk+EgAfL19OWx9o8xuOHgUovhn4KDg0u0XaVKgBxp3Lgxw4cP57333uPvv/+mSZMmAPj7+5ORkeFwm/T0dPz9/S+578jIyHxD6GzMZjPe3t4lD9wFvLy8ykUclYH60nXUl66l/nQd9aVrqT9dR33pOpWpL/cn77e/rm+x4FG3Ramf180tb6XPxvdYGhjImhoNSfANJ9QvlGujrmVgw4GE+ISU6vH/qaSJbKVPgAD73EGxsbH2BKhWrVocP37cYfvjx49Tu3btsgpPRERERKRY8lSAy7RAtWalf9CIaELwYkxSMqOCfTjT6y3Cw8MrXEJZ7qvAuYJt6FtERIR9WceOHTl+/DgxMTF52sbExHDixAk6dOhQpjGKiIiIiBRV3hLYWVDd8bPtLuXlkzPZKmA6vokqi4bg9eEQWP8mpCWU/vFdpNIkQOfPnyc9PT3f8j///JNFixbRvHlzGjZsaF8+cuRIAF555ZU87W0/jxo1qtRiFRERERFxRv45gMrgDtCWhXBmDwAmw4o57i88jv4G3z0JLzXLWV8BlPshcAsXLuTIkSMAnD17lszMTJ555hkAoqKiGDNmDJBzl6d///4MGTKExo0b26vAvfvuu3h6ejJnzpw8+x0wYAA33HADL7/8MomJiXTp0oX169czf/58Ro8ezdVXX122JyoiIiIiUkSHknISoJDsbMLMgRBcyo9vbFkIS+8teH1W+sX17caUbixOKvcJ0Pz58/npp5/yLJsyZQoA3bt3tydANWrUoHfv3qxZs4aPPvqItLQ0atasyYgRI3jyySdp1ix/Vrxo0SKeeeYZPvzwQxYuXEjt2rWZOXMmTzzxROmfmIiIiIhICWRbszmadBS4WAGusNLUTktLgOWPFK3tikeh+Q3gF1Z68Tip3CdAa9euLVK7GjVqsHBh8W67+fr68swzz9jvKImIiIiIlHcnz58kIzunmnF9iwVqlPLwt62f5NzhKQpLGmz7FDpPKt2YnFBpngESEREREbkc5H/+p3npHnDv8uK137OsdOJwESVAIiIiIiIVSN4S2FmlnwClJ5Zu+zKmBEhEREREpAKxFUCAC3eAqpVyAuRbzAlOi9u+jCkBEhERERGpQGx3gLwMg9peARBUo3QP2PT64rVvNqB04nARJUAiIiIiIhWILQGKsljwqta8dCvAAbQdCV6+RWtr9oM2I0s3HieV+ypwIiIiIiIVXWJGIkv2L2HtsbWkZKYQ6B1Iz8ieDGo4iBCfog8ZS8xIJD49HoB6liyILIMJUP3C4Pr/FD4PkE3/F8EvtNRDcoYSIBERERGRUrR432Jmb5xtL11ts+nUJl7d8ipPXfkUQxsPLXQftgTq24Pf2ped9zCRGF6fMnnixja56fJHHJfENvvlJD/lfBJUcDIBslgsrFmzhrVr17Jr1y7OnDmDyWSiWrVqtGzZku7du9OzZ0/MZrOr4hURERERqTAW71vM1HVTC1yfkZ1hX19QElRQArXBz49rD37AU9WjLplAuUS7MTmTnG79BOueZWSfj8czIByP5jdAm3+V68lPcytRAnT69Glefvll3nvvPWJjYzEMAy8vL8LDwzEMgz/++INvvvmG559/nqpVq3Lbbbfx4IMPEhER4er4RURERETKpcSMRGZvnF2kts9ufJZedXvlGw53yQTKarlkAuVSfmHQ5W6y2t9BfHw84eHheHt7l/5xXajYRRBmzZpF48aNeeutt+jfvz8ff/wxhw8fJjMzk1OnTnH69GkyMzM5dOgQH3/8MX379uWNN96gcePGPPPMM6VxDiIiIiIi5c7SA0vz3bUpSHp2Oh/99VGe9sVNoBIzyvf8O+VFse8Avf3228yePZvx48fj7+9fYLuoqCiioqIYMWIEqampzJ07l//7v//j6aefdipgEREREZGKYM3h74vV/q1tb/HWtrfw8/IjzCeMbCO7WAnUNwe+YXSL0SUJ9bJS7DtABw4c4L777is0+fknf39//v3vf3Pw4MHiHk5EREREpEJKSYop0XZpWWmcOH+C06mni7Xdmpg1JTre5abYd4B8fYtYA9zF24qIiIiIVCSB6clQjCl6qhmetKx7DecyzpGQnkBMcgzZRnaRt0/OTC5BlJefUimDnZWVxZIlS4iPj2fgwIHUqFHKs9OKiIiIiJQzPS0mNhWjPsDtSSmM9msGTa6EGq24ffVdbDq1qcjbB3kHlSDKy0+xh8D902OPPUbHjh3tPxuGQe/evRk+fDgTJ06kVatWHDhwwNnDiIiIiIhUKH3MVTAZxqUbGga+ViuDzsXCd0/CvF7wfCQ9j+8t1vF61riyhJFeXpxOgFauXEm3bt3sP3/zzTf8/PPPPProo3z88ccAPP/8884eRkRERESkQnktJADDdGEMXEGJkGGAycTkuASCrbnaZKUz6NgufKzWgrfNtQ9fq5VBKamuCbySc3oIXExMDI0bN7b//M0331C/fn170rNr1y4++ugjZw8jIiIiIlJhfL3/a5Ym/Q1AgNWKBcg05X8gyNcwmBwbz9AMK0xaD2f/gpjf4egGQk5u5am4BKZWq2JPlPKxJVCx8QTv+wGueqB0T6wScDoByszMxMvr4m7WrFlD79697T83aNCAkydPOnsYEREREZEK4cC5Azy78VkgpwbCf0+fpUVmJksDA1nr70eyhwdBVis9U9MYmJJCiNWAQa9DRIucfy1vytnRW1cx9PROAGZXCSOjsAQq5TwEah6gonA6AYqMjGT9+vXceeed7Nq1i4MHDzJz5kz7+jNnzhAYGOjsYUREREREyr20rDQe+ekR0rLSALjDqyZd0o8CMCYpmTFJ/6jUZvaDG16EdmPy78wvDIChKefplZpaeAIF4BtSaudVmTidAP3rX/9i1qxZnDlzhl27dhEcHMz1119vX//nn3/SsGFDZw8jIiIiIlLu/d/v/8f+c/sBaBfWjLu3rMpZEVIXrpwAf38H6Yk5yUqzAdDmX/ZEJ5+m18PhX3I2txqOE6jcmg1w5alUWk4nQE8++SQxMTF8/fXXhISE8MEHHxAaGgpAYmIiS5cu5cEHH3T2MCIiIiIi5dqyg8v4ct+XAIT6hPJ/Kbkutns9DW1GQNf7ir7DtiNh9QzISr90W7MftBlZ7JgvR04nQD4+PsyfP5/58+fnWxcUFMTJkyfx9/d39jAiIiIiIuXW4cTDzFx/8TGQ2c1vo8biCzcBqjaFVjcXf6d+YXD9f2DpvZdu2/9F8Ast/jEuQ6UyEaqNh4cHISEaiygiIiIilVdGdgaP/PQIqVk5Zahvi76Na7Z/e7FBz8ng4VmyndueDVr+iOM7QWa/nOTH0TNE4lCxE6APPvigRAe69dZbS7SdiIiIiEh59uKmF9mbkDNpaetqrbmvSkc4MCNnZY1W0HyQcwdoNwaa3wBbP4G9y4v+DJE4VOwEaNy4cZhMJoxcEzKZcpXksy03/aNMnxIgEREREalsVh1exWd7PwMg2DuYF7u9gPmLCRcb9HwaPDycP5BfGHS5O+efOKXYCdCaNWvy/GyxWHj88ceJi4vjrrvuokWLFkDOBKjvvPMOVatW5f/+7/9cE62IiIiISDkRkxzDtHXT7D/PumoWtc7ugyO/5iyo3QGa9HVTdFKQYidA3bt3z/Pz1KlTSU9PZ8eOHQQFBdmXDxo0iHvuuYfOnTvzyy+/cO211zofrYiIiIhIOWDJtvDoT4+SYkkBYHTz0fSK7Anz+1xs1OspcDB5qbiX00UQ3nvvPe6///48yY9NcHAwt912G6+//jrTp0939lAiIiIiImUuMSORJfuXsPbYWlIyUwj0DsRqWNkVtwuA6CrRPNT+Idi3Co5tytko6ipo0NONUUtBnE6Azp49S3Z2doHrs7OzOXPmjLOHEREREREpc4v3LWb2xtlkZGc4XO/j6cOL17yI2eQJPz5zcUVP3f0pr5x+IqtZs2bMnTuXhISEfOvi4+OZO3cuzZs3d/YwIiIiIiJlavG+xUxdN7XA5AdySmD/cfoP2PMNnNqes7BhL6h3VRlFKcXl9B2g6dOnc+ONN9K0aVNuv/12mjZtCsCePXtYsGAB8fHxfPHFF04HKiIiIiJSVhIzEpm9cXaR2j678Vl6JZqwz37Z8+lSi0uc53QCNHjwYL744gv+/e9/88ILL+RZV6dOHT777DOGDBni7GFERERERMrM0gNLC73zk1t6djrfZCQwGqDp9VCnfanGJs5xQVFyGDp0KIcPH2bjxo188sknfPLJJ2zcuJHDhw9z0003ObXv5557jmHDhtGgQQNMJhP16tVz2C49PZ25c+cyePBg6tWrh5+fHw0aNGDkyJH89ddf+dofPnwYk8nk8F/Lli2dillEREREKrY1MWsu3Sh3e3+/nBc9J5dCNOJKTt8BsvHw8KBjx4507NjRVbsEYPLkyYSHh9OuXTvOnTtXYLvDhw8zYcIErr76asaPH0+tWrU4ePAgb731Fl999RUrV66kZ8/8lTiGDh3KjTfemGdZaGioS89BRERERCqWlMyUYrVP9vCA6KFQo1UpRSSu4rIECCA1NZW4uDgMw8i3rm7duiXa54EDB2jQoAEALVu2JCXF8YexWrVq/Pnnn7Rt2zbP8lGjRnHFFVfw6KOP8scff+TbrnXr1owePbpEsYmIiIhI5RToHVis9kFWK/R4spSiEVdyOgGyWq288MILvPbaa5w6darAdoWVyi6MLfm5lCpVqlClSpV8y1u0aEHLli3ZuXNngdump6djtVrx9/cvUYwiIiIiUrn0jOzJplObit4+tBlUa1qKEYmrOJ0APfHEE/znP/8hOjqam266yWES4k5Wq5WTJ08SERHhcP1LL73EzJkzMQyDOnXqcNttt/HUU0/h4+NzyX3HxMRw7NixPMt27NgBgMViITMz0/kTKCGLxUJWVhYWi8VtMVQW6kvXUV+6lvrTddSXrqX+dB31pesUty/71+3Pq1tevXQhBMPA1zDof/UMt177lbXy8Nks6bGdToA+/PBD+vXrx/Lly53dVal4++23OXnyJFOmTMmz3MPDg169ejFkyBCioqI4e/Ysn3/+ObNmzWL9+vWsXLkST0/PQvc9f/58ZsyY4XBdUlIS8fHxLjuP4rJYLKSkpGAYBmaz2W1xVAbqS9dRX7qW+tN11Jeupf50HfWl65SkL+9tdi8v7Xqp4AaGASYTD5sbYvGq5dZrv7JWHj6bSUlJJdrO6QQoISGBwYMHO7ubUrFu3Toeeugh2rRpw+TJeSty1K1bl9WrV+dZNn78eCZMmMDcuXP59NNPGTVqVKH7Hz9+PH379s2zbMeOHUycOJHg4GDCw8NdcyIlYLFYMJlMhIWF6Remk9SXrqO+dC31p+uoL11L/ek66kvXKUlfdvXqWmgC5GsYPBmfxA1j/gsh7rvuc4fy8NkMDg4u0XZOJ0CtWrXi5MmTzu7G5TZv3syAAQOoVasWy5Ytw9fXt0jbPfXUU8ydO5dly5ZdMgGKjIwkMjLS4Tqz2Yy3t3ex43YlLy+vchFHZaC+dB31pWupP11Hfela6k/XUV+6TnH7cuHehfbXfev1JSE9geTMZIJSE+h5/C8GpqQQ0mECVCvaM+uVjbs/myVNvJxOgKZNm8b48eMZP358gclAWduyZQt9+vQhJCSENWvWULt27SJvGxkZiaenJ7GxsaUYoYiIiIiUZydSTvDtgW8BiPCrxnPmupgP7YG0eDi7B6zZ4OkL3R5yc6RSXE4nQJs3byYqKooWLVowdOhQ6tevn+/ZGZPJlO8ZnNKyZcsWevfuTVBQEGvWrCEqKqpY2x88eJDs7OwCiyaIiIiISOW3YOcCsowsAG47cRDzbgfXsoYF9n0P7caUcXTiDKcToOnTp9tff/jhhw7blFUC9Oeff9KnTx8CAwNZs2YN9evXL7BtXFxcvop1VquVp59+GoCBAweWaqwiIiIiUj7FpsXy1b6vAAjPzubGxHOOG1qzYem9Oa+VBFUYTidAhw4dckUcBVq4cCFHjhwB4OzZs2RmZvLMM88AEBUVxZgxOR+2I0eO0KdPHxISErj//vtZt24d69aty7OvoUOHEhAQAMCdd95JUlISXbt2JTIyktjYWL788ks2b97M4MGDufnmm0v1vERERESkfPpg9wdkWnNKWo9JTMbPMArfYMWj0PwG8Asrg+jEWU4nQMUdYlZc8+fP56effsqzzHY3qXv37vYE6NChQ8TFxQF570rldujQIXsCNGDAABYuXMicOXOIj4/Hx8eH6Oho3njjDe666y48PDxK6YxEREREpLxKzEjksz2fARCUbWVEUvKlN7KkwbZPofOkUo5OXMHpBCi3uLg4+x2h+vXru2RS1LVr1xapXY8ePTAulZ3nYivcICIiIiJi8/FfH5OalQrAyKRkgop6fblnmRKgCsIltzm2bdtG9+7dqV69OldeeSVXXnkl1atXp0ePHmzfvt0VhxARERERKVXnLef58K+cZ9r9DBhdlLs/NumJpRSVuJrTd4B27tzJ1VdfTXp6OoMHDyY6OhqAXbt28c0339CtWzfWrVtnXy4iIiIiUh4t2ruIpMwkAG4miDCrtegb+4aUUlTiak4nQFOnTsVsNvPbb7/RunXrPOt27tzJNddcw9SpU/nyyy+dPZSIiIiISKnIyM7g/d3vA2D2MDOu3lA4vKvoO2g2oJQiE1dzegjczz//zD333JMv+QFo2bIld999d74iBiIiIiIi5cnifYuJTYsFYEijIVTvcAd4+RZtY7MftBlZitGJKzmdAJ0/f54aNWoUuL5mzZqcP3/e2cOIiIiIiJQKi9XCgp0LAPA0eXJby9tySlpfUcS5ffq/CH6hpReguJTTCVCDBg349ttvC1z/7bff0qBBA2cPIyIiIiJSKpYfXM6J8ycA6F+/P5FBkZCdBQfXFr6h2Q8Gva5JUCsYpxOgW2+9le+++45bbrmFXbt2kZ2dTXZ2Njt37mTUqFGsWrWKcePGuSBUERERERHXyrZmM2/HPPvPd7S6I+fFnx9A3L6c142vg77PQb1uUKN1zn/7PQ8P/aXkpwJyugjCI488wpYtW/j000/57LPP7BOIWq1WDMNg+PDhPPzww04HKiIiIiLiaj8c/YHDSYcB6F23Nw1DG0JGCqx5LqeByRP6PgtVG0OXu90XqLiM0wmQp6cnn332GXfccQdff/21fSLUBg0aMGTIEHr37u10kCIiIiIirmYYBnO3z7X/fEfrC3d/1r8O58/kvG4/Nif5kUrD6QTIpk+fPvTp08dVuxMRERERKVW/HP+FvQl7Abiq1lVEV4mG5NPw2/9yGpgDoPsTboxQSoPTzwDFx8ezffv2Atdv376dhIQEZw8jIiIiIuIy/7z7c2frO3Ne/PR/YLlQwbjrfRAU4YbopDQ5nQA99thjhRY5uO2223jyySedPYyIiIiIiMv8cfoPtp7dCkC76u1oH9EeYvfB5vdyGgRUh673ui0+KT1OJ0Br1qxh4MCBBa4fNGgQP/zwg7OHERERERFxmTnb59hfT2g9IefFD9PByM553eMJ8Akq+8Ck1DmdAJ04cYK6desWuL5OnTqcOHHC2cOIiIiIiLjEjrM72HByAwAtqrSga62ucHQj7Lkwt2WVRtDuVjdGKKXJ6QQoICCAI0eOFLj+yJEj+Pj4OHsYERERERGXmLsj17M/re7EBPD9lIsNek8HT3NZhyVlxOkE6Morr+T9998nOTk537rk5GQ++OADOnXq5OxhRERERESctu/cPtbErAGgYUhDetXtlXPnJ2ZjToPIK6HZDW6MUEqbSyZC7d27N127dmXatGm0bdsWgK1btzJjxgyOHTvGvHnzCt+JiIiIiEgpSMxIZMn+Jfx49EcS0xKJy4yzrxvfajwe1uycZ39s+swEk6nsA5Uy43QC1LNnT958803+/e9/M2LEiDzrzGYzr7/+uiZDFREREZEyt3jfYmZvnE1GdobD9RnZGbDlA4jbn7Og2Q1Qt3MZRiju4JKJUCdOnMgNN9zA559/zv79OR+gJk2acPPNN1O7dm1XHEJEREREpMgW71vM1HVTC20zY/0MPJMsDAUweeY8+yOVnksSIIDatWvz4IMPump3IiIiIiIlkpiRyOyNs4vU9tlAT3olmAhpNxaqNi7lyKQ8cLoIgs358+f54Ycf+Oijjzh9+rSrdisiIiIiUixLDywtcNjbP6V7ePBNSDh0f6KUo5LywiUJ0FtvvUXt2rW57rrruPXWW9m1axcAZ86cwdfXl7lz515iDyIiIiIirmGr8lbk9hENICiilKKR8sbpBOjLL7/knnvuoWfPnsybNw/DMOzrqlevTr9+/fj666+dPYyIiIiISJGkZKYUq32yf0gpRSLlkdMJ0IsvvkjPnj1ZvHgxgwcPzre+Q4cO7Ny509nDiIiIiIgUSaB3YLHaB/mElk4gUi45nQDt2LGDoUOHFri+Zs2anDlzxtnDiIiIiIgUSc/InqXaXio2pxMgT09PrFZrgetPnDhBQECAs4cRERERESmSQQ0H4ePpU6S2vp6+DGo0qJQjkvLE6QSoTZs2fPfddw7XWa1WFi1aRMeOHZ09jIiIiIhIkYT4hPBUjQt3dXI9n57HheWTa/Qg2Du4jCKT8sDpBOjee+9lxYoVTJkyhfj4eCAn8dm7dy/Dhg1j165d3H///U4HKiIiIiJSJGkJDN3wATPPxmEqoImvYTDzbBxDNy6EtIQyDc9dElMtzPvlIP+as54B//uFf81Zz/xfD5GYanF3aGXK6YlQR4wYwY4dO5g9ezbPPfccAP369cMwDAzDYPr06fTv39/pQEVEREREimTrJ5CVTs9UD6ZdWBSYnU1kVjZBVis9U9MYmJJCiPXC3aFtn0LnSW4Ltyx8vimGqUt2kp6V99GVDQfjeXHlHmYObsnwjpFuiq5sOZ0AATzzzDPceOONfPTRR+zZswfDMGjcuDFjxoyhQ4cOrjiEiIiIiEjR7F0OwG9+vhimnHtA4xOTuSMxyXH7PcsqdQL0+aYYHvtye4Hr07Os9vWXQxLkkgQIoF27drRr185VuxMRERERKZn0RAB+8fezL+qWlnbJ9pVRYqqFqUuKNiXN1KU76RtdgxB/cylH5V5OPwNUkM2bN/P999+Tnp5eWocQEREREcnPN4Rscu4AAVTPyqJJZiHPufhW3olQv9hyLN+wt4KkW6x8ueVYKUfkfk4nQP/5z38YOHBgnmW33HILnTp1ol+/frRq1YrTp087dYznnnuOYcOG0aBBA0wmE/Xq1Su0/caNG+nduzdBQUEEBwfTr18/tm7d6rDtiRMnuPXWW6lWrRp+fn506NCBRYsWORWviIiIiLhR0+vZ6ePNOU9PALqlphdYDAGAZgPKJCx3+H73qWK2d+66vSJwOgH69NNPqVu3rv3nH3/8kU8//ZR//etfzJ49m5MnT/LCCy84dYzJkyfz448/0rBhQ8LCwgptu2HDBrp3786hQ4eYOXMmM2bMYN++fXTr1o0dO3bkaRsfH8/VV1/NV199xaRJk3j11VcJDAxk+PDhLFiwwKmYRURERMRN2o7k54Ag+4+FDn8z+0GbkWUQlHskp2cVq31SeuWvCOf0M0CHDx9m3Lhx9p+//vpratasyYcffojJZCI2NpalS5fy0ksvlfgYBw4coEGDBgC0bNmSlJSUAtvef//9eHt78/PPP1O7dm0Ahg8fTvPmzXn44YdZtWqVve3zzz/PoUOHWLp0qf0u1vjx4+nSpQuPPPIIw4YNIzAwsMRxi4iIiIgb+IXxS0QDSD+Nl2HQOa2QRzL6vwh+oWUWWlkL8i3e5X6wb+V+/gdccAfo/Pnz+PldfMDsxx9/pHfv3pguVNxo0aIFx48fd+oYtuTnUvbv38+mTZsYNmyYPfkBqF27NsOGDeOHH37g1KmLtwE//vhjGjZsmGcIn6enJ/fddx/x8fEsX77cqbhFREREpOydTT3LX+k5Q7k6pKcT4GgyVLMfDHod2o0p4+jKVp8WNYrZPqKUIik/nL4DVLt2bfvQsiNHjrB7924eeugh+/qEhAR8fHycPUyRbNq0CYAuXbrkW9e5c2feffddNm/ezIABAzh58iTHjx9n1KhRDtva9jd8+PACjxcTE8OxY3kfFLP1hcViITMzs8Tn4iyLxUJWVhYWS+W/jVna1Jeuo750LfWn66gvXUv96Trqy5JZe2St/XW31Jy7P9aAamT5VsUzIByjSX+srUbk3Plx4/VaWRjUqjovrNxDRhEKIfiaPRjUqnqRrmHLw2ezpMd2OgEaOHAgb775JllZWWzcuBEfHx8GDLj4INnOnTsvWbTAVU6cOAGQ5+6PjW2Z7W5UcdoWZP78+cyYMcPhuqSkJOLj44sYuetZLBZSUlIwDAOzufLfyixN6kvXUV+6lvrTddSXrqX+dB31ZcmsObLG/tr2/E9cl6nEVulIYGBgTl+mWSHNfddqZemRnpHM/v7IJds93COSrLRk4gt5ZMqmPHw2k5IKmNfpEpxOgKZOncr27dt588038fHx4ZVXXiEiIufWWVpaGosXL2b8+PHOHqZIUlNTARzecfL19c3TpjhtCzJ+/Hj69u2bZ9mOHTuYOHEiwcHBhIeHF/MMXMdisWAymQgLC9MvTCepL11Hfela6k/XUV+6lvrTddSXxWexWtgStwWAyGyoZ8nCMPvj3/J6glLSL8u+HNstnLPpJub8ctjhem9PE9MHNufmdvlvDBSkPHw2g4ODS7Sd0wlQWFgYq1evJikpCT8/v3wd8NNPPxEZWTYzyvr7+wOQkZGRb51tPiJbm+K0LUhkZGSB52Y2m/H29i5i5KXDy8urXMRRGagvXUd96VrqT9dRX7qW+tN11JfFs+3UNs5nnQegW0pyTvnrJn0x+wfjlZ512falJdcIuGY1gsjIsnIoNqefejeP4JbO9Yu9T3d/NkuaeDmdANk4ysD8/Pxo06aNqw5xSbVq1QIcD12zLbMNbytOWxERERGpGH4+9rP9tb38dfOBBbS+PFitBit25BQCC/LxYsm9V+Ht6UG3F9ZwLCGNtX+fJTUzC39vl6UG5Vqxq8D9/fffJT7Y3r17S7xtUXTs2BGA9evX51u3YcMGTCYT7du3B6BmzZrUrl2bDRs2OGwL0KFDh1KMVkRERERc7ZdjvwDga0CH9Azw9IHG17k5Kvf6MyaBU0k5I5z6tIjAx8sTk8nEoDY5NwRSM7MviwlQbYqdAEVHR3P77bezc+fOIm/z559/MmbMGFq2bFncwxVLo0aN6NChA4sWLbIXOYCcggeLFi2iV69e1KhxsRTgyJEjOXDgAN988419WXZ2Nq+99hqhoaFcf/31pRqviIiIiLjO8ZTjHEg8AMCVaWn4GgY07AU+QZfYsnJbtv3iNDDXt6ppfz247cXRTku3nuByUez7XEuXLuWRRx6hTZs2tG7dmgEDBtCxY0caNmxIeHg4hmEQHx/Pvn372LBhA8uXL+evv/6iRYsWfPvttyUKcuHChRw5klO54uzZs2RmZvLMM88AEBUVxZgxF+u3v/rqq/Ts2ZNu3bpx3333AfDaa69htVrzTcb6xBNPsGjRIm655RYeeughateuzSeffMKmTZuYN28eQUGX95dFREREpCL59div9tfdUjX8DS4Mf9t5EsgZ/tatSVX7uqY1gmhWI4g9p5L56e+zxJ/PJDyg8j8fVewEqH///lx33XV8/vnnvPnmmzz77LP2SU9zMy5MONWjRw+mTZvGTTfdhIdHyeZdnT9/Pj/99FOeZVOmTAGge/fueRKgrl27snbtWp5++mmefvppTCYTXbt2ZdGiRfmeR6pSpQq//fYbTzzxBG+88QYpKSm0aNGCTz/9lBEjRpQoVhERERFxj5+PX3z+5+q0NDB5QtP+bozI/f6MOcfJxJzhb70vDH/LbXDb2uxZuYcsq8HyHScZ3TnKHWGWqRI96eTp6cnIkSMZOXIkp0+f5qeffmL37t2cPXsWk8lEtWrVaNmyJd27d6dq1aqX3uElrF27tljtu3TpwurVq4vUtnbt2ixcuLAEUYmIiIhIeZGelc7vJ38HoGFmJrWzsqFBD/B337Qk5cGKHSftr3MPf7MZ2KYm/7dyDwBLth5XAlQUERERDB8+3BWxiIiIiIiUyB+n/yA9O+dOxzWpOf+l+SA3RuR+hmGwYmfO8z+BPl50a5z/xkSdMH861Qvn98PxbDqcwLGEVOqEFT4VTEVXsjFpIiIiIiLlSP7y1yZoNsB9AZUDW2POcfxczrNQ1zavjq/Z02G7QW1r2V9/s+2kwzaViRIgEREREanQDMOwl78OtFppm54BkVdCUI1LbFm5Lb/E8Lfc67w8cp7pX7I1/xyZlY0SIBERERGp0A4nHeZYyjEAuqSlYwZooeFvyy9Mfhrg7Un3JtUKbBse4G1fv+dUMntOJZVJjO6iBEhEREREKjTb3R/IVf662Q1uiqZ82HYsMdfwt4gCh7/Z5B4GV9nnBFICJCIiIiIVWr7y1zXbQljlr2ZWmKIOf7Pp0yICf++cJGnJ1hNYrUapxeZuSoBEREREpMI6bznP5tObAWiekUm1bOtlP/mpYRgs256TAAV4e9KjacHD32z8vb24rkUEAMfPpbHlaEKpxuhOTidAH374IRkZGa6IRURERESkWDac3ECWNQuAa2zD3y7z8tc7jl8c/tarCMPfbAa3rW1//XUlLobgdAJ06623UrNmTe677z7+/PNPV8QkIiIiIlIkeZ7/SUuDas2gWhM3RuR+y3INfxvQquiV8K5uXJXwAO+cfWw/iSXb6vLYygOnE6DPPvuMTp068dZbb9GhQwfat2/P22+/TVJS5a4eISIiIiLulbv8dWh2Ni0zMjX8zTDsz//4e3vSo2n1Im9r9vRgwIXnhRJSLfy6L7ZUYnQ3pxOgYcOGsXLlSg4fPsy0adNISEjg7rvvpmbNmowdO5aff/750jsRERERESmmvxP+5kzaGQCuSkvHEy774W87jycRE58z/K1ns4InPy3I4FzV4CrrMDiXFUGoU6cOU6dO5eDBg6xatYpBgwbx+eef07NnT5o2bcoLL7zAmTNnXHU4EREREbnM/XL84vC3a1LTIDQKarRyY0Tul3f426Wrv/1T+6gw6oT5AbBq12lSM7NcFlt5USpV4Hr37s1DDz3EwIEDMQyDffv28cQTT1C3bl3uueceUlJSSuOwIiIiInIZ+flYzkgjD8Oga1p6zvA3k8nNUblP7uFvfmZPehZj+JuNyWRiUJucu0Bplmy+333apTGWBy5NgBISEvjf//5HmzZt6Ny5M99++y2jR4/m559/ZuPGjQwfPpy3336bO++805WHFREREZHLTGJGItvObgOgdUYmoVYrtBjs5qjca9eJJI7GpwLQq1l1/LyLN/zNJnc1uCWVcFJUL1fs5Pvvv2f+/PksWbKEjIwMWrZsySuvvMKYMWMIDQ21t/vggw+Iiorif//7nysOKyIiIiKXqXUn1mE1cqqUdUtNg6CaULuDm6Nyr2XFnPy0IE1rBNGsRhB7TiXz899niT+faa8OVxk4nQDVq1ePmJgYfH19+de//sWECRPo0qVLge1btmxJcnKys4cVERERkcuYbfgbwDVpadBmBHiUytMdFYJhGKy4kAD5mj3o2ezSk58WZnDb2uxZuYcsq8GyHScZ0znKFWGWC05/SkJCQvjf//7HiRMnWLBgQaHJD8DAgQM5dOiQs4cVERERkctUtjWb347/BkC1rCyaZlou+/LXu08mcTju4vA3f2/n7nMMbHPxDtLSSlYNzuk7QNu2bStWe39/f6KiKk8GKSIiIiJla1fcLhIyEgDolpaOyS8coq5yc1TutdxFw99s6oT506leOL8fjmfT4QSOJaRSJ8zf6f2WB07fAfrzzz954403Clz/xhtvsHXrVmcPIyIiIiICOCh/3ex68HTJo+0VUk71t1NAzvC3Xs2KX/3NkUG55gRauq3yFENwOgGaMWMGy5YtK3D9ihUrmDlzprOHEREREREBLj7/42UYXJmWftlPfvrXyWQOxZ4HoGdT54e/2VzfqiZeHjllxZdWompwTidAmzZtonv37gWu7969O7///ruzhxERERERITYtlt1xuwFon55BoDkQGvRwb1Bu5urhbzbhAd50b5JTTGHPqWT2nEpy2b7dyekEKDY2lvDw8ALXh4aGEhsb6+xhRERERET49fiv9tfdUtOgSV/w8nFjRO6Ve/JTHy/XDX+zyT0MrrLMCeR0AlS9enV27dpV4PqdO3cWmiCJiIiIiBTVL8cuPv/TLS3tsq/+tudUMgcvDH/r0bQaAT6ufRaqT4sI/C9MqLp06wmsVsOl+3cHpxOg3r17M2/ePIdJ0O7du5k/fz69e/d29jAiIiIicpmzWC2sO7EOgNqWLOobXtC4j5ujKprEVAvzfjnIv+asZ8D/fuFfc9Yz/9dDJKZanNrvilIa/mbj7+3FdS0iADh+Lo3NRxNcfoyy5nSK+PTTT/PVV1/RsWNHbr/9dtq2bQvA1q1beffdd/H29mbKlCnOHkZERERELnNbz2wlxZIC5Nz9MTXqDd4Bbo7q0j7fFMPUJTtJz7LmWb7hYDwvrtzDzMEtGd4xstj7NYycSUoBvL08uLZ5hEvi/afBbWvz9YXhb0u2HqdjvYo9usvpBKhhw4asXr2acePG8eabb+ZZFx0dzYIFC2jcuLGzhxERERGRy1zu8tfdUtMqRPW3zzfF8NiX2wtcn55lta8vbhL09+kUDpy9MPytSTUCXTz8zebqxlUJD/Am/nwmy7afZNrA6FI5TllxSS916NCBnTt3snXrVvbt2wdAkyZNaNOmjSt2LyIiIiJif/7Hx2qlU2ZWTgGEciwx1cLUJTuL1Hbq0p30ja5BiL+5yPtflmv424DWrh/+ZmP29GBAq5os3HCEhFQLv+w7y9UNwkrteKXNpWli27Zt7UPgRERERESclZiRyJL9S/juyHfsP7cfgNpZWWREXY2vX6h7g7uEL7YcyzfsrSDpFitfbjnG7VfXL/L+l5fB8DebwW1rsXDDESCnGpwSoAtSU1OJi4vDMPJXh6hbt64rDyUiIiIildzifYuZvXE2GdkZeZYf9PbmWo7y1L7FDG081E3RXdr3u08Vs/3pIidAf59OZv+ZnOehupfi8Deb9lFh1Anz41hCGsu3n+R4QipJqRmEBfhyXcua3NyuTrHuXrmT0z1ltVp54YUXeO211zh1quA3OTs729lDiYiIiMhlYvG+xUxdN7XA9RlGln19eU2CktOzitU+Kb3oFeGWbc81/K0Uqr/9k8lkonH1QI4lpGGxGvxx5FzOirNpbDyc4FQxh7LmdAL0xBNP8J///Ifo6GhuuukmqlSp4oq4REREROQylZiRyOyNs4vU9tmNz9Krbi9CfEJKOariC/It3qV2sG/R76DYh795enBtc9dOfurI55tiWLP3bIHrnSnmUNacToA+/PBD+vXrx/Lly10Rj4iIiIhc5pYeWJpv2FtB0rPT+ebAN4xuMbqUoyq+Pi1qsOFgfJHbHzibwtJtJxjQqiaeHqY86xJTLSzaHMMPf50mNiXTPvytS8NwgoqROJVEaRdzKGtOT4SakJDA4MGDXRGL06ZPn47JZCrwn9lsLlLb//znP248CxEREZHL25qYNaXavqzc3K4Ovl5Fv9w+k5zB/Z/8SZ+Xf+KLzcfIys4poPD5phiufPYHnln2FxsOxtuTH4B1B+L4fFOMy2PPrSTFHMozp+8AtWrVipMnT166YRm48cYbadSoUb7l27dv58UXX2TgwIH51v33v/+latWqeZa1b9++1GIUERERkcKlpJ8rVvvk9ITSCcRJIf5mZg5uWeg8QDbNawbx18lkAA7GnueRRdt4dfXfdKoXzpdbjhe4nSXbKPWhZ6VZzMEdnE6Apk2bxvjx4xk/fjyRke4d79e6dWtat26db/nEiRMBGD9+fL51Q4YMoV69eqUdmoiIiIgUUWDG+WK1D8pMLaVInDe8YyTf7z7F93+dcbje1+zBzEE5xQN2nUjk9R/3s2JnTsIRE59GTHzByU9upTn0rDSLObiD0wnQ5s2biYqKokWLFgwdOpT69evj6emZp43JZGLKlCnOHqpEzp8/z6effkqdOnXo16+fwzZJSUn4+/vj5VW65QNFRERE5NJ6pqaxyXTpdvb258tvAgRwND4NAE+TiXZRoaRmZhPsa6ZPiwhuylU+OrpWCG+Nbs/fp5N5/cf9fLPtBPknl3GsJPMIFVVpFnNwB6ev+KdPn25//eGHHzps484EaNGiRSQlJXH//ffnS8wg565RcnIynp6edOrUiSlTptC/f/8i7TsmJoZjx/KOcdyxYwcAFouFzMxM50+ghCwWC1lZWVgs5TsDrwjUl66jvnQt9afrqC9dS/3pOpdrXw5My+ZVXysZJhOYCsmEDANfw+CG9OxLXne5qy8PxZ5n7+mcoW3dGldhzugr/tHCyBd7vTAf/nNTNIdjU9h+PKnIx1q16ySjO9V2NuR8ejWpWqxiDr2aVi2T6+CSvpdOJ0CHDh1ydhelav78+ZhMJm6//fY8y0NDQ5kwYQJdu3YlLCyMvXv38sorrzBgwADeffddxo0bV6R9z5gxw+G6pKQk4uOL/kFxNYvFQkpKCoZh5Cn+IMWnvnQd9aVrqT9dR33pWupP17lc+zLM05+WGafZ7OdXcCPDAJOJybHx+AXXvuR1l7v68us/Lj4rf3VUQLGuD9Mzi3eBH5+SXirXnz3q+fGSl4mMrEvfj/Lx8qBHlG+ZXAcnJRU9OczN6QQoKirK2V2Umr179/Lrr79y7bXXUr9+3tuBDzzwQL72t99+Oy1btuTBBx/k5ptvJjAwsND9jx8/nr59++ZZtmPHDiZOnEhwcDDh4eFOn0NJWSwWTCYTYWFhl9UvzNKgvnQd9aVrqT9dR33pWupP17lc+3Jb/Y5sPnHhwfsLic4/+RoGk2PjGZpynqzOAy953eWuvvz50N8AeHmYGNS+PqHFeEYnLMAXzqYVuX14oG+pXH+GA9NuaM7kr3dfsu20G5oRVav05yUCCA4OLtF2Ln3oZf/+/Zw+fZqWLVsSEuL+yajmz58PwB133FGk9lWqVOGuu+5i+vTprFu3juuuu67Q9pGRkQUWfjCbzXh7excvYBfz8vIqF3FUBupL11Ffupb603XUl66l/nSdy60vLdkWZqfssP88LTaeNA8P1vr7kezhQZDVSs/UNAampBBiNcDsh1f7MVCE/inrvoyJT2XXhcpuXRpWoXpoQLG2v65lTTYeLnqFu+uia5baud3SuT5enl5MXbLTYUns3MUcykpJE1mXJEDffvst//73vzl8+DAA33//Pb169eLMmTN07dqV559/nptvvtkVhyqyrKwsPvjgA6pUqcLQoUOLvJ2tIlxsbGwpRSYiIiIiBXl357scSDoMwFWpadyUch4TMCYp2fEG/V8Ev9CyCq9YVu68WD66X8saxd7+5nZ1eHHlniLNweNr9uCm9nWKfYziGN4xkr7RNfhiyzG+33WS+JR0wgN9uS66Zp5iDuWd0xOhrl27lqFDhxIeHs60adMwjItjA6tXr07Dhg359NNPnT1MsX3zzTecPn2a0aNH4+PjU+Tt9u3bB0BERERphSYiIiIiDhxOPMyc7XMA8LVaeTouHpMpfxErAMx+MOh1aDemDCMsnhU7c57/MZnguhbFT4Bs8wgVxcxBLQnxK/0EJMTfzPir6/PBbR34YFQLPritA7dfXb/CJD/ggjtAM2fOpE2bNmzcuJGEhIQ8VeEAunTpwgcffODsYYrNNvzN0dw/WVlZnD9/Pt8wvZiYGN566y2qVKlC165dyyROEREREQHDMHhmwzNkWnOqh006l0gd32owfhXsWQZ7l0N6IviGQLMB0OZf4Bfm5qgLdjIxjS1HzwHQqV441YKK/gf53GxDysrT0LOKzukEaNOmTcycORMPD8c3k+rUqcOpU8WbPdZZJ06cYOXKlXTq1IlWrVrlW5+SkkL9+vUZMmQIzZs3t1eBmzdvHikpKXzyySf4FVZ1RERERERc6puD37Dx1EYAmmRkMiYxGUa8DWFR0OXunH8VyHe5hr/1L8Hwt9xyDz37YfdpktItDucRkqJxOgGyWq2FDjGLjY0t84f23nvvPbKzswssfuDn58dNN93Exo0b+frrr0lJSaFq1ar07t2bxx57jE6dOpVpvCIiIiKXs4T0BF7c9CIAJsNgWlw85haDofkNbo6s5Fbkef6nptP7sw09G18KE51ebpxOgJo3b84vv/zC3Xc7zsq//fZb2rRp4+xhimXy5MlMnjy5wPU+Pj7MmzevDCMSERERkYL854//cC7jHAAjklNobfLLKW5QQZ1NzuD3wznz4FxRN5QaIb5ujkhyc7oIwvjx4/niiy+YP38+VmvOuESTyURqair3338/69evZ8KECU4HKiIiIiKVz8aTG1l6YCkA1bOy+Hf8ObhuNgRV3IJUq3afwlYX7HoX3P0R13L6DtCkSZP47bffuPPOO3n44YcxmUyMHDmSuLg4srOzue222xg1apQrYhURERGRSiQjO4NZG2bZf34yLoHAet3gitFujMp5zpa/ltLlknmAPvzwQ2666SY+/PBD9uzZg2EYXHnlldx6663cdNNNrjiEiIiIiFQyc7fP5UjSEQB6nE/l2kxg4Ks5daMrqITzmaw7EAdAy9rBRIb7uzki+SeXJEAAQ4cOLdaEoyIiIiJy+Tpw7gDzd+ZMW+JntTI5LgFTr+kQ3sCdYTnt+79Ok23NGf/WX8PfyiWnnwHq1asXq1evLnD9mjVr6NWrl7OHEREREZFKwmpYmbl+JlnWLADuS0ikZvVW0Llilbp2ZKULy19L6XA6AVq7di2nT58ucP2ZM2f46aefnD2MiIiIiFQSX+37ii1ntgDQIiODW5JTYdBr4OmywUlukZRu4dd9sQA0jQiiQbVAN0ckjjidAF3KuXPnCp0nSEREREQuH7Fpsby8+WUAPAyDabHxeF51P9Rs7ebInPfjX2fIzM6piqziB+VXidLs7du3s3XrVvvPv/zyC1lZWfnaxcfH8+abb9KiRYsSBygiIiIilccLm14gOTMZgNFJybQIrAvdH3dzVK6xYudJ++vrW+n5n/KqRAnQ4sWLmTFjBpAz588777zDO++847BtUFAQ//vf/0oeoYiIiIhUSIkZiSzZv4S1x9aSkplCtpHN3wl/A1AzK4t7EhJh7Edg9nNzpM47n5HF2r1nAWhQNYAmERr+Vl6VKAEaN24cPXr0wDAMevXqxeTJk+nTp0+eNiaTicDAQFq0aIGvr2a/FREREbmcLN63mNkbZ5ORneFwfa/zqfi3Gwv1ri7jyErH2r1nyci6OPzNVIFLeVd2JUqAoqKiiIqKAmDBggV0796devXquTIuEREREamgFu9bzNR1UwtuYBh8FBJM04adqCyTqOQe/qby1+Wb00UQxo4dq+RHRERERICcYW+zN84uvNGFuyPPbnmFxIzEMoiqdKVbslmz5wwAdcL8aFk72M0RSWFcVmvwjz/+YOPGjSQkJGC1WvOsM5lMTJkyxVWHEhEREZFyaumBpQUOe/un9Ox0vjnwDaNbjC7lqErXL/tiOZ+ZDeTM/aPhb+Wb0wlQWloaN954I6tWrcIwDEwmE4aRM/ut7bUSIBEREZHLw5rD3xev/ZFVFT4BWrHj4vC3fhr+Vu45PQRu5syZrFq1iqeeeoo1a9ZgGAbvv/8+K1asoFu3bnTs2JHdu3e7IlYRERERKedSkmKK1T45sXjty5vMLCvf/3UagBrBvlwRGeregOSSnE6AvvjiC4YNG8bMmTNp2bIlALVr16Zv37788MMPZGZm8t577zl7GBERERGpAALTk4vVPqiY7cubdQdiSU7PmQ+zX8saeHho+Ft553QCFBMTQ/fu3QHw9PQEIDMzEwAvLy9GjhzJp59+6uxhRERERKQC6GkpXgLQ0+L05ahbrdhxyv66X8saboxEisrpT1xQUBBZWVn21x4eHpw4ccK+PiQkhFOnThW0uYiIiIhUIoPMVfGxWuHCM+EFMgx8rVYGmauWTWClICvbyqrdOde5VQO96Vgv3M0RSVE4nQA1bNiQv//OmdHX09OT6OhovvjiCwAMw+Crr74iMjLS2cOIiIiISAUQ0nQgYxOT7aWuHTIMMJmYHJdAcLOBZReci/1+KJ6EVAsA10XXwFPD3yoEpxOg3r178+WXX5KdnVP6b+LEiaxcuZKGDRvSuHFjfvjhB8aPH+90oCIiIiJS/hlt/sUffn6FtvE1DGaejWNohhXajCyjyFxveZ7JTzX8raJwugz2E088wZgxY+ylr++++27S09P58MMP8fT05M477+TRRx91OlARERERKf9+PPsnW3y9AWiRnsGA86n85O9HsocHQVYrPVPTGJiSQojVgEGvg1+oewMuIavV4LtdOdXfQvzMdG5Qxc0RSVE5nQAFBgbStGnTPMseeughHnroIWd3LSIiIiIViCXbwsubX7b//ER8AldkZHJr0j8qvZn94IYXod2YMo7QdTYfTeBscs6Er9e1iMDsWbGLOVxOnE6ALuWdd97h1Vdf1VxAIiIiIpXcp3s/5WjyUQD6nE/lCnMYXHMP7Pse0hPBNwSaDYA2/wK/MDdH65zc1d/6t9Lwt4qk1BOg2NhY9u7dW9qHERERERE3SsxI5O1tbwPgZRg8GH8O+r0IHW6Hq/7t3uBczDAMVl54/ifIx4urGlXcSnaXo1JPgERERESk8ntn+zskZSYBcEtSMpHBdeEK9w9xS0y1sGhzDN/vOkXC+XTCAny5rmVNbm5XhxB/c4n2ue1YIicS0wHo1bw6Pl6ergxZSpkSIBERERFxytGko3yy5xMAQrKzmXAuEYa+BJ4lSzBc5fNNMUxdspP0LOvFhWfT2Hg4gRdX7mHm4JYM71j86VpW5Kn+VtMVoUoZUgIkIiIiIk757+b/kmXNAmDSuURCqkVD9I1ujenzTTE89uX2AtenZ1nt64uTBBmGYX/+x8/sSfcm1ZwLVMqcylWIiIiISIltPr2ZH47+AECUxcLwpBToNQU83HeZmZhqYeqSnUVqO3XpThIvTGZaFLtPJnE0PhWAns2q4eet4W8VTYnuAL388suXbnTBb7/9VpJDiIiIiEg5ZzWs/GfTf+w/PxR/DnPkldCkrxujgi+2HMs77K0Q6RYrX245xu1X1y9S+5U7L1Z/66fhbxVSiRKgRx55pFjtTSZTSQ4jIiIiIuXY8kPL2RmXc6elQ1o6PVPTYPg0cPO13/e7T126UZ72pwtNgGyFFH746zR/Hj0HgKeHifZRFbuU9+WqRAnQmjVrXB2HiIiIiFQg6VnpvLrlVfvPj8QnYGrUG+pd5caociSnZxWr/abD8Tz+xXZ6NqvO1Y2rEuhz8RLZYSEFINtqcO1/1pa4kIK4T4kSoO7du7s6DhERERGpQD7860NOnc+50zIw+TzRmRa4dqqbo8oR5Fu8S9wsq8Fnf8Tw2R8xmD1NXFm/Cj2bVSfdks2L3xU8n2VJCymIe1W6Iggmk8nhv8DAwHxt9+7dy5AhQwgLCyMgIIBu3brx448/uiFqERERkYojNi2WeTvmAeBrtXJ/wjmIHgo127g3sAv6tKhRrPb+uQoZWLINft0fy6xvdxea/ORW3EIK4l6Vsgx2t27dmDBhQp5lZnPeOvQHDhyga9eueHl58dhjjxESEsLcuXPp27cvK1asoHfv3mUZsoiIiEiF8ebWNzlvOQ/ArYnJ1LACPZ92b1C53NyuDi+u3FOkQgi+Zg/WPd6LQ3HnWbPnDD/uPcPO40nFOl5xCymIe1XKBKhBgwaMHj260DZPPvkk586dY/PmzbRt2xaAW2+9lejoaO655x727Nmj4g0iIiIi/7A/YT9f7vsSgCpZ2dyemARXjIGqjdwc2UUh/mYmD2jO1CW7Ltl25qCWhAZ4c0WAN1fUDeOh65pyOimdkXM3cPDs+SIf81KFFKT8qHRD4GwyMzNJSUlxuO78+fMsXbqUHj162JMfgMDAQO644w7+/vtvNm3aVEaRioiIiFQcL21+CauRc2fl3nPnCPDwhu5PuDmq/GKTMwpd72v24IWbWjt8dici2Bc/c/Hm90lK1xC4iqJS3gH64osv+PDDD8nOzqZatWqMGDGCZ555hpCQEAC2b99ORkYGXbp0ybdt586dAdi0aROdOnUq9DgxMTEcO3Ysz7IdO3YAYLFYyMzMdMXplIjFYiErKwuLRV9GZ6kvXUd96VrqT9dRX7qW+tN1yltfbji5gV+P/wpA48xMhiafJ7vTJLL9qoEbr3v+6VRSOnN+OQiAv9mDO7vVY/3BeM6dzyA0wIc+zSMY0rYmIX7mAq/XAos5wWmQj6dbr/3KWnn4bJb02JUuAerUqRPDhg2jUaNGJCUlsXz5cl5//XV++ukn1q1bR2BgICdOnACgdu3a+ba3LTt+/PgljzV//nxmzJjhcF1SUhLx8fFOnIlzLBYLKSkpGIaR7/knKR71peuoL11L/ek66kvXUn+6Tnnqy2wjm//8cXHS00fiz2EyB3C2+a0YbrzmceSFVYdJt+TcpRrTsQYjW4dxc/NAUlJSCAwMxGw2k52WTHxawfvoUjeAjYcTinzMLnUD3HrtV9bKw2czKal4z2rZVLoEaOPGjXl+vvXWW2ndujVPPfUUr776Kk899RSpqakA+Pj45Nve19cXwN6mMOPHj6dv37wzHe/YsYOJEycSHBxMeHh4SU/DaRaLBZPJRFhYmNt/YVZ06kvXUV+6lvrTddSXrqX+dB139mVSZhLfHPyGn47/RIolhfSsdI6kHAHgqtQ0uqalk9XtMcJql59nfwD+OpXMsr/iAIgI9uHuXs3w8/Ysdl+OuiqIt9adIKOIhRRGdW1EsN/l83kvD9/z4ODgEm1X6RIgRx599FFmzJjBsmXLeOqpp/D39wcgIyP/2ND09HQAe5vCREZGEhnpuOa72WzG29vbiaid5+XlVS7iqAzUl66jvnQt9afrqC9dS/3pOu7oy8X7FjN742wysh08R2MYtE3PAP8qeF19P5Sj99gwDF5ctR/DyPn50b7NCAn0s68vTl9W8/Zm1uCW9nl+CjNzUEuqhgSUOO6Kyt3f85ImXpdFAmQ2m6lVqxaxsbEA1KpVC3A8zM22zNHwOBEREZHKbvG+xUxdV/iEpm+EhxIR0YOhPkFlFFXR/PT3WX7dn3O916JmMEOvcO56zlYgYeqSnQ5LavuaPZg5qKUmQa1gLosEKD09nWPHjtkLHLRq1QofHx/Wr1+fr+2GDRsA6NChQ5nGKCIiIuJuiRmJzN44u/BGJhMYBs/GbqBXRiIhPiFlE9wlZGVbeXb5X/afnxrQHE8P56c0Gd4xkr7RNfhiyzF+2H2apHQLwb5m+rSI4KZ2dQjxv3yGvVUWlSoBiouLo0qVKvmWT5kyhaysLAYOHAjklLseOHAgX331Fdu2baNNm5xZi1NSUpg3bx6NGze+ZAU4ERERkcpm6YGljoe9/ZPJRHp2Ot8c+IbRLQqfe7GsfLH5GH+fzpkCpWfT/2/vzuOirPY/gH9mYGBYRzYXEBVcwX1fyRVNLRTXcknTtLo3u6nV75aFSlr3VrfF9GalZlKamnq1NMuFylKU3PcdZVFZZZ9hlvP7A5kYZ4B5cJSR+bxfL14v5jznnPk+hwfm+fKc5zwB6N3M32Z9q9wVmN4nBNP5nJ9aoVYlQIsWLUJCQgL69++PRo0aoaCgADt27EB8fDy6d++OWbNmGeu+88472LNnDwYPHozZs2fD29sbX3zxBVJTU7F9+3Y+BJWIiIgcTnxyvOT69pAAFWp0+M+uCwAAuQx4bVhYDUdE9qxWJUD9+vXDmTNn8NVXXyErKwtOTk5o3rw5Fi9ejDlz5hhXeAOAZs2a4Y8//sA///lP/Otf/0JJSQk6deqEnTt3YtCgQTW4F0REREQ1o0B9W1L9fLX1y0TfT1/su4KMOw8+Hd+1EVrUs697k8i+1KoEaMSIERgxYoTV9cPCwrB169b7GBERERHRw8NTUyipvldJ1Y8Nud/S89T47Nc7Dz11ccLsyOY1HBHZO3lNB0BERERE9qF/USVPBrVUv7DmE6APdl1AsVYPAHj2kaao66WsogU5OiZARERERAQAiFLr4WowwPggnYoIAaXBgCi1/sEEVoFzN/Ow4c9kAEBdL1fMeISLFFDVmAAREREREQBApfTBvKwc41LXFgkByGR4PSsH3kqfBxvgXd7ZcQ6GO2G+PLgl3F1q1d0ddJ8wASIiIiKiUi2HIbqgELEZWahoPVylEIjNyEJ0QSHQavgDDa+83y5k4NcLGQCAVvW9MLpzwxqLhR4uTJOJiIiIqFSHJ4E9C9FVrYa480iQOno9Guj08DIY0L+oGI8XFEBlEIDCDWj/ZKXd5RZpsfFwMnafvYV8tQ5eSmdEhtfHmHt8gKjeIEweevr6MNs89JQcAxMgIiIiIirl5gMMex+/x//TWDQrJxfj8gvM6w59D3CrU2FXGxKTEbP1FNQ6g0l5wpVsvLfzHGJHtMG4rsHVCnPTkRScu5kPAHikRQAeaRFQrX7IMXEKHBERERH9pdNk/B7S1fiyT/FdK8Mp3ICopUCnyRV2sSExGa9uOmGW/JRR6wx4ddMJbEhMlhxeUYkO//n5PIDSh56+PqyV5D7IsfEKEBEREREZafQaHCxKAQA0KylBIBRA/daAUlV6z0/7J0qvFFUgt0iLmK2nrHqvmG2nMKR1fUnT4Vbuu4pbeaUPPR3bORit6ntb3ZYIYAJEREREROX8efNPqPWlCUafIjXQZTrw6NtWt//uSEqFV37uptYasOlICqb1qXj56vL3EeUUanExvXTqm9JZjjmDW1gdF1EZJkBEREREZLQvdZ/x+4jiYqDFEEntd525Kan+z2duVZgAVXQfEQBoDQK/ns+o9n1E5LiYABERERGR0e8pvwMAPAwGdBSuQONektrnq3WS6h+6moWnVh1Cl8Y+6NLYBx0a1YG7i7PxPqKK6A3CuJ1JEEnBBIiIiIiIAADX8q7hWv41AEDPYjUUzQYCTtKWq/ZSSju9NIjSZ/r8dueZPk5yGVrW98L5O6u8VaU69xGRY+MqcEREREQEAPg99Xfj932KioEWj0ruIzK8vqT6/p4uJq/1BoEzaXnQG4RV7cvuIyKyFhMgIiIiIgIA7Ev56/6fPmoN0CxSch9jOjWE0tm6U0ylQo49c/vhWEwkVk3tgr/1a4puIb6QSXym6a4ztyTHSY6LCRARERERoVhXjMSbiQCAlpoS1GvQBfDwk9yPyl2B2BFtrKobG9UGKjcF6ri7YECrenj10VbY8GxPhElc2jpPrZUcJzkuJkBEREREhMSbiSgxlAC48/BTiau/lTeuazBC/T0q3K5UyPHu6HYVLl7g7SbtPiJvJe//IetxEQQiIiIiwm8pvxm/jyhSV+v+nzJXMwtxJbMQANCwjhLBvh7IU2vhrVQgMrweRndqWOmiBZHh9ZFwJdvq94sMr1ftWMnxMAEiIiIicnBCCPx+5/4fL70B7ZX1gLph1e7v28Trxu9fHNQC47pIW6Z6TKeGeG/nOaseqKpUyDG6c0PJMZLj4hQ4IiIiIgd3Ne8qUgvTAAC9iovh3PJRSF6J4I4SnQGbDpeuyubl6ozH2jWQ3Ed17iMishYTICIiIiIHZ7L6W7H6nu7/2XP2FjILSu8liuoQCHeX6k04Gtc1GO+OblfhinJV3UdEVBFOgSMiIiJycPtSyyVAWhnQuE+1+1qXmGz8/sluje4prnFdgzGkdX18dyQFu8/cknQfEVFFmAARERERObAibREO3zwMAAjXaOAf0g9QKKvVV0pOEfZdzAAAtAnyRpsg1T3Hp3JXYHqfEEzvE3LPfREBnAJHRERE5NASbiRAJ3QA7n31tw1/pkCI0u/Hd723qz9E9wsTICIiIiIHZjL9rbgYaD64Wv3oDQIb/yyd/uamcMKIDoE2iY/I1pgAERERETmo0uWvS5//o9Lr0davNeBVvWfq/HohHTdy1QCA4e0a8OGkZLeYABERERE5qEu3L+FmUToAoHexGk4thla7r3WHyi9+wJXZyH4xASIiIiJyUCbT34qKgZbVu/8nPU+NvedKE6nmdT3RqZGPTeIjuh+YABERERE5qH13pr/JhEBvJxVQv121+tl4OAV6Q+nqB090awRZNR+iSvQgMAEiIiIickD5Jfk4ln4MANBWUwLf5kOAaiQuBoPAt4nXAQAuTnKM6hhkyzCJbI4JEBEREZEDKl3+Wg/gzupv1Vz+ev/lLCRnFwMAHm1THz4eLjaLkeh+YAJERERE5ID2pfx1/09EiQEI6VutftbdufoDAE9w8QN6CDABIiIiInIwQgj8nvwrAMBXr0d4YC/AxV1yP1kFGvx8+iYAoLGfO3qE+Nk0TqL7oVYlQBcuXEBMTAx69OiBgIAAeHl5oUOHDli8eDEKCwtN6i5YsAAymczi1/vvv19De0BERER0/53POY8MTTaA0tXf5NVc/W3zkVRo9aWLH4zvGgy5nIsfkP1zrukAbGnVqlVYtmwZoqKiMHHiRCgUCsTHx+ONN97Ahg0bkJCQADc3N5M2H374Ifz9/U3KOnfu/CDDJiIiInqgyk9/61OsBloMkdyHEMI4/c1ZLsOYzg1tFh/R/VSrEqAxY8bgtddeg0qlMpY999xzaN68ORYvXoyVK1fihRdeMGkzcuRINGnS5AFHSkRERFRz9iX/AgCQC4FeXiGASnry8ue1HFzJKJ1hMzCsLup6KW0YIdH9U6umwHXp0sUk+Skzfvx4AMCpU6cstsvLy4NOp7uvsRERERHZg1xNLo5nngQAtNdooGoxrFr9rDtUfvGDRjaJjehBqFVXgCqSkpICAKhXr57Ztnbt2iE/Px9OTk7o1q0b3nzzTQwdOtSqfpOTk419lzl5svQPilarRUlJyT1GXn1arRY6nQ5arbbGYqgtOJa2w7G0LY6n7XAsbYvjaTv3Yyz3Xd8HA0rv24koUkMbMhBC4jlLXrEWO07eAAAEqpTo0VhVo+c91uBxaVv2MJ7Vfe9anwDp9Xq89dZbcHZ2xoQJE4zlderUwcyZM9GrVy/4+Pjg/Pnz+OijjzB8+HCsWrUKU6dOrbLvlStXYuHChRa35eXlITs721a7IZlWq0VBQQGEEFAoFDUWR23AsbQdjqVtcTxth2NpWxxP27kfY7n36h7j970MrshSNgYknrN8dzwdaq0BADAszAe5t3NsEtv9xOPStuxhPPPy8qrVrtYnQC+99BIOHDiAt99+Gy1btjQpv9u0adPQpk0bzJ49G2PGjIGnp2elfU+fPh1DhpjeNHjy5Ek8++yz8Pb2hq+vr032oTq0Wi1kMhl8fHz4S36POJa2w7G0LY6n7XAsbYvjaTu2HkuDMOBw5kEAQIBOh5ZNBsLg519FK1NCCPxw9jwAQC4DJvduBl+V/d//w+PStuxhPL29vavVrlYnQG+++SaWLl2KmTNn4rXXXquyvp+fH5577jksWLAA+/fvx+DBgyutHxwcjOBgyw/8UigUcHGp2SchOzs720UctQHH0nY4lrbF8bQdjqVtcTxtx5ZjeTrzNLK1+QBKV39z7jkckNjv8eTbOHezAADQt0UAGgdU7yS0JvC4tK2aHs/qJl61ahGE8hYsWIBFixbh6aefxvLly61uV7YiXGZm5n2KjIiIiKhm/Jb6m/H7CLUWaNpfch/fJnLxA3q41coEaMGCBVi4cCGmTJmCFStWQCaz/qFcFy9eBGB5wQQiIiKih9nv1/YCAJyFQI+AjoCrl6T2hRodth1LAwD4e7piQKu6No+R6H6rdQlQbGwsFi5ciMmTJ2PVqlWQy813UafTITc316w8OTkZn376Kfz8/NCrV68HES4RERHRA5GjzsHJnHMAgA5qDbxaPSa5j++Pp6GwRA8AGNulIRROte5UkhxArboHaNmyZZg/fz4aNWqEQYMGYe3atSbb69Wrh8jISBQUFCAkJAQjR45EWFiYcRW4FStWoKCgAOvWrYObm1sN7QURERGR7f2R9sedxa+BiOJioHnl9zpbsi4x2fj9E10t3wdNZO9qVQKUmJgIALh+/TqmTJlitr1v376IjIyEm5sbRo8ejYMHD+J///sfCgoK4O/vj0GDBuHVV19Ft27dHnToREREREa5mlxsvbQVe6/vRW5xLlRuKgxsPBBRTaOgcjV/6Ls19l3/xfh9H2UDwDdEUvuzN/JwPPk2AKBXUz809vOoVhxENa1WJUCrV6/G6tWrq6zn6uqKFStW3P+AiIiIiCTacnELFh9cDI1e81dhPnA4/TA+PvIx5nWfh+jm0ZL61Bv0+CN1HwCgnk6H5k0flRzXt4e4+AHVDrUqASIiIiJ6mG25uAUx+2Mq3K7Ra4zbpSRBp7JOIVdXBACIKCqGrOWwKtvkFmmx8XAydp+9hbxiHc7fKl0+W+XmjCGtuVgUPbyYABERERHZgVxNLhYfXGxV3bcPvo0BjQZYPR1uX8o+4/cRemegYddK629ITEbM1lNQ6wxm2wo0emw9moZxvAeIHlJcuoOIiIjIDmy7vM102lsl1Ho1vr/8vdV970v6GUDp8tfdGz4COFX8P/ANicl4ddMJi8kPAOgNAq9uOoEN5RZEIHqYMAEiIiIisgPxyfH3pX5mcSbO5F0FAHRWa+BRyfS33CItYraesqrfmG2nkFuktaoukT1hAkRERERkBwrUtyXVT7p9BelF6RVuz9XkYs3pNZi2c5qxzN0gkNuoe4VtvjuSUuGVn7uptQZsOpJifcBEdoIJEBEREZEd8NQUSqqfrs7EoI2DMOPnGdh2eRuKtEXGbVsubsHAjQPw3p/v4eqdqz8AEO/hhoHfj8SWi1ss9rnrzE1JMew6c0tSfSJ7wEUQiIiIiOxA/6JiJMqktREQSLiRgIQbCVjkvAgDGg2Ar6sv4s7GAUIAMvMONbqKV5LLV+skvX+emlPg6OHDK0BEREREdmCQWg+ZEFVXFAKuBgP+kZOL1k5exuJiXTG2X9leafIDoLRcCLx9IBa5mlyTTV5Kaf8b91YqJNUnsgdMgIiIiIhqmBAC7yt1EGVJS0WJ0J3EZl5WDp65nYtvL53G1pQ0zMgtQIPyE3sqSn7KbVcLHb4/t96kODK8vqS4I8P5PCB6+DABIiIiIqphcWfi8LOs9B4eT70BLhUkQEohEJuRheiCQkDhAQAI1erwYnY2dl69glaaEknvG39hs8nrMZ0awtXZutNDpUKO0Z0bSno/InvAe4CIiIiIatDhW4fxweEPAABOQmDprQw005Zgm6cnfnF3Q75cDi+DAf2LivF4QQFUBgEo3IDZp4DsK8CFncCFnyC/eQISbyFCfmGGyWsvpTNC/T1w9mZ+lW1jo9pA5cYpcPTwYQJEREREVEMyijLw8q8vQy/0AIC52bfRWVP6MNTJefmYnFdBIjL0PcDdt/SrYRdgwBtA3g14boiU9P5eBtMlrz/fd6XK5EepkCM2qg3GdQ2W9F5E9oIJEBEREVEN0Bq0ePnXl5FZnAkAeLSwCJPy8gG5MyBzAvQa80YKt9Lkp9Nk823eDdDf2ReJyLE6hv7yvxZROHQ1G+/9dL70bZxkWD21G87dysfuM7eQp9bCW6lAZHg9jO7UECp3XvmhhxcTICIiIqIa8MGfH+BI+hEAQKhOYGFGVukUtmHvA61HAsfWwXBuO/SF2XDy8IU87DGg/ROAm0+FfUY1i8bHF1dAI5NVvhCCEFAKgagWowAAmQUazFp3BHpD6b1HbwwPR+/m/ujd3B/T+4TYaI+J7AMTICIiIqIHbGfSTnx99msAgDtk+PBmGtyFANqMBjpPLU1eev4Nus7PIDs7G76+vnBxcamyX1XnqZiX+BFifL0rXgr7TvnrOQXw7jQVeoPAS98ew6280itOw9s2wFM9G9tyd4nsCleBIyIiInqALt++jJg/YoyvF91KR6hWB/iGAo99VPUS1pVx80F030WIzciCa1UryfV9C3Crg6V7L+H3S6XT8Jr4ueNfo9tCdi8xENk5XgEiIiIiekAKSgrwUvxLKNYVAwCm5uYjsqgYcHIBxq4GlN73/iadJiMawIAfX8E2N2fzleTUeqgefRfoNBl/XMrER3suAABcnOX478TO8OLDTamWYwJERERE9AAIIRCzPwZJeUkAgC5aA/6RfWfBgiFvAw3a2+7NOk2GKuwxTD62DpPP7wDUuYBSBXQYbryP6FaeGv/49qjxmauxUa0RHmiDBIzIzjEBIiIiInoA1pxZg13XdgEA6sIJ76WllJ6IhY8Auj5j+zd08wF6/q306y46vQGz1h1FZkHpg1NHdQzCeC5rTQ6CCRARERGRDeVqcrH10lb8kvILCkoK4OniiaaqpthwfgMAwBky/CctFf4GA+DTBIj65N7u+6mGD3dfwKGr2QCA5nU9sSi6De/7IYfBBIiIiIjIRrZc3ILFBxdDc9czfBJvJhq/fzkrBx00JYBcAYz5snRq2gMUfz4dy+IvAwDcFE7478ROcHfhKSE5Dh7tRERERDaw5eIWxOyPqbKem0Ff+s3gRUBQJ4t1cou02Hg4GbtO30ROoRo+HkoMbtMAY+7xIaRpt4sxe/0x4+u3R7VB83peFTcgqoWYABERERGVY2kKW//g/ohqGgWVq+WrNbmaXCw+uLjqzoXAO34+GBgUAVX3Zy1W2ZCYjJitp6DWGf4qzCjGwaQcvLfzHGJHtME4K+7XKUuidp+9hXy1Dp6uzkjJKcLtIi0A4MluwYju2LDqmIlqGSZARERERHdUNoXt4yMfY173eYhuHm3WbtvlbWZtLJLJoJbJ8H34IEyycM/NhsRkvLrpRIXN1TqDcXtlSZDFJKqcBiol5j/euup4iWohPgiViIiI7EKuJhdrTq/BtJ+mYdz34zDtp2mIOxOHXE3uA3n/silsFSUyGr0GMftjsOXiFpNytU6N7y9/L+m94m8mmJXlFmkRs/WUVe1jtp1C7p0rOXcrS6IqSn4A4EauGtuOpVkXLFEtwytAREREVOOqe+XFVqyewgZgUcIi5JXk4UruFZzOPI1Lty9BL/SS3i+/JN+s7LsjKZUmLeWptQasSUjC3/s1g1z+15UkqUnUkNb17+meIqKHERMgIiIiqlFVLR5QduUFwH1LgqyewgagxFCC9/98/57ez8tZaVa268xNSX385+cL+Gj3Rfh7uqCulxIBXq7ILiyRlERtOpKCaX1CJL0v0cOOCRARERHVGClXXt4++DYGNBpQ4UIEZf1JXcAAAOKT4yXHDgDuzu4I9wuHLC8NicXWTynrD3fz2It1kt9fbxC4lafBrTzrkre77TpziwkQORwmQERERFRjpFx5UetL77WZFD7J4vbSaXSLoNGXmJSXTqP7CPO6v2F2BSm9KB0H0g7gfNY5SXEHKv3xafhMNCkuhPx2EnKv/YqB/m7QyGSVP9RUCCiFQNSt68YivUFg85EUXE4vkBSDv6cLWtb3Qka+Bhn5GuRUcE9QZfLU0tsQPeyYABERET3kqnvV437Fsff6XuQW50LlpsLAxgMrjUPqlZedSTsxIWwC5DLTdZyM0+iEsJiAaHQa4wIHgZ6BOJB2AAk3EnDp9iVJ71+mYU4KQjc9Z3ytAjBP5oGYAL8KYygrfz0zG96evgCAfRczsHj7WZy7aX5PUFX+1q+ZydWbEp0BT3x+AEeu37a6D28l7/8hx8MEiIiI6B7ca/Jxr+2rc9XDYhy517H1j0X4Jf0ICoQOnjJn9K/bGVG950GlalS9OPKBw+mHLcaRq8lFwo0EXMi5UGXf5R3POI4ea3sgRBWCUFUoQlWhqO9eH4sOLKw48QBKy4WwerpdVfoXFZuVRRcUAgAW+/mUXgm6i1IIvJ6ZjeiCQhR6e+L5VYfw24UMkzpOMkAvqn5/pUKO0Z1Nn+Hj4izH8HaBkhKgyPB6Vtclqi2YANUyyTevYPWuGJwqPo1i6OAGZ7R1a4MpkQsRXD9UUnu1TAelkNbeXvqwdQzVGUt73A97+HnU1Fjaej/s5efB3/OaHcstF7dgccIiaAwWko/DH2Fej8qTD1u0t+aqB1D54gFbdr+Cxck/QiOXATKUfkGPxIz9+HjzMMwLHoroQe/dcxzX8q7BWe6MA2kHcCrrFAzCupv171asK8aZrDM4k3XGdENlU88sbHcTAp2L1ehVrEZbtQbPNKhr/RQ2nQIYtADwCQF8Q4BLu4E9sYguKMSAoiJs8/TEL+5uyJfL4WUwoH9RMR4vKIDKUJrdvH+9KX7T/ZX8RDT3x2tDw3AqNbfS5wCViY1qA5Wb+dWbMZ0a4r2d56xaCMFSEkXkCGRCCCv+z1A7GQwGfPzxx/jss8+QlJSEgIAAjBs3DrGxsfDw8KhWnwcOHECvXr2wf/9+9OzZ08YRV+6D9X/D2qLfSj/A7uJqEJjg/gjmjP/vfWtvL33YQwzcD/uKgfthXzHUlv2o6qS/rDy2V6zF5ONe2+dqcjFwfT9oDNqqT9jlCuwe/4vFK0pbdr+CmNSdVccR9KjFJEhKHFUmKFZoo/CBzM0HVwrTUKhXV6uPBlodFmdmob1aA5dy5Vs8rZvCFpuRhWj/TsDUH/7aVpwD3Xst4aTXVDkMarigu2YZ8uCBVvW98PqwMDzSIsBYp7KHmCoVcsRGtanyIajWJFHvjm5XaT+1TUlJCbKzs+Hr6wsXF5eqG1Cl7GE8q3ve7dAPQp09ezbmzJmD8PBwfPLJJxg7diyWLFmCxx9/HAZD9f4rVVM+WP83fKneB00Ff3Q1MuBL9T58sP5v96W9vfRhDzFwP+wrBu6HfcVQW/YjV5OLt/ZbN+Vq0f6FZg/yvNf2ap0aa45/Do3QWXXVQy10eDdhEX5P/R3H0o/hUs4l3Cy8idSMM1ic/KN1U8eSf0Ry+mncLLyJK7ev4FTmKRy6cQgfHHzH6jjKOMuc0Nm3NWY1icKKIhe4GgylMVRGCCgNBnx26QTWHv8FBy5dwO7rqfjsRjrq6aStnlbHYEDXEgNcAsKAsCgg4mWUhI9BdEEhYjOy4FpBLEohSpOfgkIUhz5qsi1XeCJGO7VsuCraBchkQIxuKly9fPDumHbY/mKESfIDAOO6BuPg64Pw5mPh6BHigxYBbugR4oOYx8Jx8LVBVSYt47oG493R7aB0tnyap1TIHS75ISrPYafAnT59Gp988glGjRqFTZs2GctDQkLw4osv4ttvv8WECRNqMELrJd+8grVFv92ZtlD5B9jaot8w9uYVk6kd99reXvqwhxi4H9wP7odj7MeGk2uhhd6qk/4S6LHh5DrM6PLXDfNS2z/z43So3OsgoygDGUUZyNdKv2F+W9JObEvaab7BwhUwS3FoZMCwH5+Q/L53a16iQ1xaMjyuXDWWzbPyysvrmdnwvjOFTAagnl6Peno9Gml1uOVs/SmNp5MSmHcTcPqrzfr44xgjtmJkfuVT2Lz1AsVwwed53TEwNRcanR5qrQHfH0/Dt9q+0BoEYp2/hBvMV1dTwwUx2qnYqO+H1/qEYlyXihMQlbsC0/uEYHK3oGr9l31c12AMaV0f3x1Jwe4zt5Cn1sJbqUBkeD2M7tSQDz8lh+awU+DeeOMNLF68GL/99hsiIiKM5Wq1Gn5+fujbty927Nghud+amAK3KG4y1huOWV2/o8YdrVThxtdnc8/gmGuR1e07aNzQShUOgb8OnXN5Z3HcxfyG0Ar7KHFDS+9WJmXn8s5J6qOdxg3NvZobX18ouICTLtZPh2hTokRzz2YAAFnphHdcKLiIUxL6aFuuj7/iuIhTLtY/j6FtiSualevjYv4lnHK1vn2bElc082xqUnax4DJOS4ihdYkrmnqEmJRdKryCMy4lFbQwF1biglD3JgAAAYErRddwTkL7ViUuCHE3vdH6atF1SX2EWejjisQ+WpW4oIlbwztHt0BScQrOu1i/TGyzEgWClfUhyv2GJKtv4oqL9f+hDtE6IdC1rsm/kVNLMpCksP5J8421Tqiv8DXGcFObhesK669sB+vkqO/sgzs3gwAAbmmzJfURpJPD39m7dCxE6Xhk6vNx09n6j50AnQy+Tn89LyVHX4R0Ce39dTLUkSuNP08B4LZQI9vJ6i7gpQc8ZAqTn2kOdNBKmEMhFwIKyGG404cOtpkO9jAK05RgQ5r5Az+3eHqULh4gNx9YpcGA17NyEF1QiEy5P076D4VW5oqSO1+pxRvwuY/1P5CJ2UokKj+GziCgNxig0wtcyyrCY4Y9eE/xeVV5GF7RzsRGfb8K+/dGAcY47cMg+WF4y4qQJ9yxy9AZm/QRyIMnAKBnqB/WzexRZaz2MM2otuBY2pY9jGd1z7sdNgEaMmQIdu/ejaKiIri6upps6927Ny5cuICMjIwKWpdKTk5GSkqKSdnJkyfx7LPP4tdff0WPHlX/YbOFyau744yr9IenERHRw8NJCPjr9QjQ6xGg0+OUqwsyJFz1CCnRYlx+AQrkMhTI5SiQybHLww15TtZng956PQYXFsFdCLgbBNyEAZs9PXHNxfqrCZ2LNZiY2hA3hQ9uCR80l6dghNMBAECuXFbl4gELtZPxpX6oSZ+TFNuwM/R3qxcwGHwlAt9oH7dYZazTL6VXcGTm//goFi6I0U2tNPmxVngDL/zv+arPE7RaLXJycuDj4wOFgldt7gXH0rbsYTwTEhLQt29fyQmQw06BS0tLg7+/v1nyAwBBQUHYv38/SkpKKs1oV65ciYULF1rclpeXh+zsbJvFW5liMPkhIjskhPFDRi4AOQQ0MhmEhCsfciHgeeeeTAEZCuUyGCS0dxICqjvtZaL0etZtJzl0EvpwMQgE6nTGxdFkEEhzdkaxhSsVFfHS69GyRFt6460AzrkqJCUe7YpL8FyqL7RwgQYKaKBAqzqX8Km/9R/jg/ME8nP6QQ4DfGCAHwwIaXgSx92s7gKhJQKhtzrDABkMkENAhkcNR/GZv/V9NC3wwgztXONrb30BBsv/hBJaqAwCk/PyMTnPfIpf2eIBm/SPmG3bph2AeVk7sCigTpXT6F7OzMNi7QB4uMjhJJfBSS6Ds0yGXLUOJXqBjfp++EnfpcorOHU9FRga5gdXZzlcneX438kMJN+2/sq7mxOsOk/QarUoKCiAEIIn7feIY2lb9jCeeXl51WrnsAmQpSs/ZZRKpbFOZQnQ9OnTMWTIEJOysitA3t7e8PX1tV3AlXCDMyAhCQrVAI/7jTe+3pa1HlctD0WF7aP87swDv/Mhsy1zHa5I7cP/SZMyqX001QAjAyahbIrO/zLicFli+1EBU0zKNmd8JbmP6LpTTcq2pK+uRh/TyrVfJal9Mw0QXXe6Sdnm9JWS+xhdb6ZJ2aZbn+OShD6aa4Ax9f9ufP3dzWW4KKF9Cw0wtsEsk7INNz6R1EdzDTCuwSyT6ZkbbyyVHkfgSwBKj6z1aR9Jat9SLcOTjf5556gsnVy59vrbOKe0vo8wtQyTmpT+c0V253cs7moMziqtv2AfrpZhcrN3jVGsufQKzkhs/1SzD4yvBQTiLs2V1EdrjROmtloGQAYhK41k9dnncUZp/TS6VhonTGnzlfH1V6emSWrfUuOEKe2+KX0hkwOQ4avjEyX10azEGU912lwucZPh9O9P4Gsf6092o/I80LrvZuPr079G4xsJ7dupvZE3ZqNxQqILAM2P/4arYa/VVz10uiFo+cQ/TTZ57Z0FuFn/HB6PktYIfHKJSdnJH96RFIfK0AcbZnSFTCaDTAYs+P4sYm49bdXUsxjtVIQGB+KjsW2N7WUAXlx/An+mPYFYfFPlM3j250xEeEhDrHm6i8n21fuv4e2dpWORB0+s0g/FqruuNJU3IyIUU3r+NeXWy8Pd2N4aj7YNtOo8QavVQiaT8aqFDXAsbcsextPb27ta7Rw2AXJ3d0d6errFbWq12linMsHBwQgOtnwDo0KheGDzIdu6tcEZCfcAdXXriGdGv2F8fTPuPK5KbD999DyTshtxZ3FFah+jXr+nPrq4dcTU6P8zvk6JO4nLEts/Ff2ySdn1uOOS+5gycq5JWXLcsWr0Mbtc+yOS2nd264inRr5kUnY97rDkPiaNME0+kuIO4ZKEPjq5dcSEqL9u8r4S9wcuSrk3za0jnnjcNAm7FLdPUh+dLPRxOe536XE89ldCeTHuF0ntO7h3wOihpguonI7bgXMS+mjn3gFRQ6JNyo7HbcJZCX20de+Axwb+tUrV0bSvJf2daOveAcMHDjIpO5bWXlIfbdzb49G+fUzKDl9rJzGO9hjWu7Px9ZEr1Wjfs71J2ZGLUvtoh+FdW5iUuZ0fio0lm60+6e8WMBQDOv71eeF+Zii+k9C+a8BQDGhv+ryWrOxn8Mrh/1l91UPbbToi2wSabE66NReJ12eWroZXRRyuAujSeg4GtjbtIy1dYhxdp6Fb07rGTdGdCvDWD/0AwKrFA2LaB6FJXdPlvB9rH4S3kvsBOcD2wtX42cvVbBpdZH4J3i+ZUtpH6wZmn9HjuzXBB7svWf38nHHdGsOl3NS/e21fGWdn5wd6XlGbcSxtq6bHs7qJl8Mugx0YGIjMzExoNOb/gUtNTYW/v/9D88sxJXIhXA3CqiVEXQ0CU4fE2rS9vfRhDzFwP+wrBu6HfcVQm/ajy9AX8WpWvnG1uIraQybDy1n56DzsRZu2B4Co7uE4nvukVcs2H897Ao/3CDfbPq5nV7TKaGtVHK0y22Jsr642j2NMp4ZQOsuxUd8P3TXLEKudjP36cJwyNMF+fTgWaieju2YpNur7VfjgzvJ9RBYvxdWskZie6o+YFCWmp/rjctZIRBZ/UmkfKncFYke0sTwGd7H0ENJ7bU9ED47DJkBdu3aFwWDAoUOHTMrVajWOHTuGLl26VNDS/gTXD8UE90es+gCb4P4IGtZtYtP29tKHPcTA/bCvGLgf9hVDbdoPlW8AQkLnWnXSHxo6Fyoff5u2B0pPuDtEzcL+nInYfj0dr2bloFuxGmGaEnQrVuP/snLww/UM7M+ZiA6Pz7J4wq1yVyCq/7toc7MNXCsYClcBtLnZBlH93q2wj3uJo3ziUDb1bIL2DTxW8jYmaN/Al/qhxvtuKkocbNEHcO/Pz+Hzd4geDg67CtzJkyfRvn17REdHmzwH6JNPPsGLL76IuLg4TJo0SXK/NbEMdpna8GR17od9xcD9sK8YuB/2FQMAJG7+GI1PLsZPXi4Wp1xdbzsPXUf94761B4ANicl4f2sCHhO/mt20v13eFy9H9ajyhHtDYjLe+z4eLb02Q+2ZBI2THq56JygLmuB8wSi88lh/q/q4lzg2JCYjZuspi1PIlAo5YqPaWBXDvfYBALlF2nt6fs69ti/PHpYari04lrZlD+PJZbCrYdasWVi6dCmio6MxbNgwnD17FkuWLEHv3r2xd+9eyCWs8FOmJhMgoPQBf1/tmo+TxadQDB3c4Iy2bm0xJXKB2YP8Kmt/qvgUimU6uAlntJHQ3l76sGUM1R1Le9sPe/h51ORY2nI/7OXnwd/zmh9LAMjNzsDZncvhlbQLrvoCaJw8kd9kMMIefRYq34D73h6wzQm3LfvYdfoGsgvU8PVUYnDrBg80cbBl8mEP7OEks7bgWNqWPYwnE6Bq0Ov1+Oijj/D5558jKSkJ/v7+GD9+PGJjY+Hp6VmtPms6ASpjDwdlbcGxtB2OpW1xPG2HY2lbHE/b4VjaDsfStuxhPKt73u2wq8ABgJOTE+bOnYu5c+dWXZmIiIiIiB56DrsIAhEREREROR4mQERERERE5DCYABERERERkcNgAkRERERERA6DCRARERERETkMJkBEREREROQwmAAREREREZHDYAJEREREREQOw6EfhHo/FBYWAgBOnjxZo3FotVrk5eXB29sbCoWiRmN52HEsbYdjaVscT9vhWNoWx9N2OJa2w7G0LXsYz7Lz7bLzb2sxAbKxK1euAACeffbZGo6EiIiIiKj2Kzv/tpZMCCHuUywOKS0tDT/88ANCQ0Ph4eFRY3GcPHkSzz77LD777DO0bdu2xuKoDTiWtsOxtC2Op+1wLG2L42k7HEvb4Vjalj2MZ2FhIa5cuYLHHnsMgYGBVrfjFSAbCwwMxMyZM2s6DKO2bduiZ8+eNR1GrcCxtB2OpW1xPG2HY2lbHE/b4VjaDsfSth7G8eQiCERERERE5DCYABERERERkcNgAkRERERERA6DCVAt1bBhQ8yfPx8NGzas6VAeehxL2+FY2hbH03Y4lrbF8bQdjqXtcCxt62EeT64CR0REREREDoNXgIiIiIiIyGEwASIiIiIiIofBBIiIiIiIiBwGEyAiIiIiInIYTICIiIiIiMhhMAEiIiIiIiKHwQSIiIiIiIgcBhOgh5RMJrP45enpaVb3/PnzGDlyJHx8fODh4YGIiAjs3bu3BqK2PwsWLKhwLGUyGRQKhVV133///RrciwfvnXfewdixYxEaGgqZTIYmTZpUWv/gwYMYNGgQvLy84O3tjUcffRTHjh2zWDctLQ1PPfUUAgIC4Obmhi5dumDjxo223wk7Yu14qtVqfPHFFxgxYgSaNGkCNzc3hIaG4sknn8TZs2fN6iclJVV4zLZp0+Y+71XNkHJsTp06tcLx+e6778zqazQaxMTEICQkBK6urmjatCkWLVoErVZ7H/eo5lg7lpUdZ2Vf33zzjVX1a+txeeHCBcTExKBHjx4ICAiAl5cXOnTogMWLF6OwsNCsvpTP7dzcXMyaNQtBQUFQKpVo3bo1Pv30U9TWxzxaO5ZCCHz99dd44okn0KxZM7i7u6NRo0aIiorCwYMHLfYt5dyqtpBybEo9DzIYDPjwww/RqlUrKJVKBAcHY+7cuRaP+QfNuaYDoOqLiIjAzJkzTcrKn7ADwOXLl9GrVy84Ozvj1VdfhUqlwhdffIEhQ4bgxx9/xKBBgx5kyHZn1KhRaNasmVn5iRMn8N577+Hxxx832/bhhx/C39/fpKxz5873LUZ79Prrr8PX1xedOnXC7du3K62bkJCAfv36ISgoCLGxsQCApUuXIiIiAvv370fbtm2NdbOzs9GnTx+kp6djzpw5aNiwIdauXYtx48Zh1apVePrpp+/nbtUYa8czKSkJM2fORJ8+fTB9+nQEBgbiypUr+PTTT7F582bs3LkT/fv3N2sXHR2NUaNGmZTVqVPHxnthH6Qcm2Xi4uLMyrp162ZWNn78eGzduhXTpk1Dz549ceDAAbz55pu4dOkSVq9efY+R2x9rxzIgIMDiGALACy+8gOLiYgwZMsRsmyMdl6tWrcKyZcsQFRWFiRMnQqFQID4+Hm+88QY2bNiAhIQEuLm5AZD2uV1SUoLIyEgcPXoUs2bNQlhYGH788Uf87W9/w61bt7BgwYIa2uP7x9qx1Gg0mDx5Mjp06IAnnngCISEhuHHjBpYvX46ePXtizZo1mDRpkln/1pxb1SZSjs0y1p4HzZ49G0uWLEF0dDTmzp2Ls2fPYsmSJTh69Ch2794NubwGr8MIeigBEFOmTKmy3tixY4VcLhdHjx41luXn54tGjRqJFi1aCIPBcP+CfIjNnDlTABA//PCDsWz+/PkCgLh69WrNBWYnLl++bPy+devWonHjxhXW7dq1q/Dy8hIpKSnGspSUFOHl5SUiIyNN6r7yyisCgNi2bZuxTKfTia5duwpfX1+Rn59vu52wI9aOZ2ZmpsnvcpnTp08LFxcX0blzZ5Pyq1evCgBi/vz5NozWvkk5NqdMmSKs/Rjcvn27ACDmzJljUj5nzhwBQPzxxx/ViteeSRlLS/bv3y8AiDFjxpiUO+JxmZiYKG7fvm1WPm/ePAFAfPLJJ8YyKZ/by5YtEwDEkiVLTPodNWqUUCgUIikpyfY7U8OsHUutVit++eUXs3o3b94Ufn5+om7dukKv15tss/bcqjaRcmxKOQ86deqUkMlkYtSoUSblS5YsEQDEN998c8+x3wtOgXvIlZSUoKCgwOK2wsJCbNu2Df369UOHDh2M5Z6ennjmmWdw4cIFJCYmPqBIHx6FhYX49ttv0bBhQzz66KMW6+Tl5UGn0z3gyOxHaGioVfUuXbqExMREjB07FkFBQcbyoKAgjB07Frt378bNmzeN5WvXrkXTpk1Nrrw5OTlh1qxZyM7Oxo4dO2y3E3bE2vH08/Mz+V0uEx4ejjZt2uDUqVMVtlWr1SgqKqpuiA8Na8eyPCEE8vLyYDAYKqyzdu1aAMBLL71kUl72+uuvv5b8vvauOmNZ3ooVKwAAzzzzTIV1HOW47NKlC1QqlVn5+PHjAcD4uyv1c3vt2rVwd3fHjBkzTPp96aWXoNVqsX79+vuwNzXL2rF0dnZG3759zerVq1cPffv2RXp6OtLT0y2+R2XnVrWNteN5t6rOg9atWwchhNnfzBkzZsDd3b3G/2YyAXqIfffdd3B3d4eXlxfq1q2LWbNmITc317j9xIkT0Gg06Nmzp1nbHj16AAATIAs2btyIvLw8TJ06FU5OTmbb27VrB5VKBaVSiV69euHHH3+sgSgfDmXHV0XHoBAChw8fBgDcuHEDqampxmPz7rrl+yNTBoMBN27cQL169Sxu/89//gN3d3d4eHggODgYMTEx0Gg0DzhK+6VSqaBSqeDm5obIyEiL9wckJiYiKCgIwcHBJuXBwcEIDAzksXmXgoICbNiwAY0bN0ZkZKTFOjwugZSUFAAw/u5K+dw2GAw4cuQIOnbsCKVSaVK3W7dukMlkDnVc3j2WVdV1cXGxOOWyqnMrR1HZeFpzHpSYmAi5XG42nVipVKJDhw41fmzyHqCHVLdu3TB27Fg0a9YMeXl52LFjB5YuXYpff/0V+/fvh6enJ9LS0gDA5D/vZcrKUlNTH2jcD4OVK1dCJpNh2rRpJuV16tTBzJkz0atXL/j4+OD8+fP46KOPMHz4cKxatQpTp06tmYDtmJRjkMdr9S1fvhw3btzAm2++aVIul8sxYMAAjBw5Eo0bN0ZGRgY2bNiAt956CwcOHMDOnTstJvmOon79+pg9ezY6d+4MDw8PHD9+HB999BEiIiKwY8cOk3st0tLSEB4ebrGfoKAg48kClVq/fj0KCgrw8ssvm83z53FZSq/X46233oKzszMmTJgAQNrfwZycHBQXF1us6+rqCn9/f4f5m2lpLCuyY8cOHDp0CJMnT7aYOFZ1buUIKhpPKedBaWlp8Pf3h6urq1n/QUFB2L9/P0pKSuDi4vIgdslcjU7AI5tavHixACAWLVokhBBizZo1AoBYuXKlWd3Lly8LAOIf//jHA47Svp07d04AEAMHDrSqfmZmpqhfv76oU6dOrb0/pSqV3RsQGxsrAIg9e/aYbduzZ48AID788EMhhBC//fabACDefPNNs7p6vV4AECNGjLBh5PZJ6r0Wf/zxh3B1dRXt27cXxcXFVrWZMWOGACC+/vrrakb5cKjOfSsXLlwQ7u7uolmzZiblcrlcREREWGwTEREhVCpVNaN8OEgdyx49egi5XC6uXbtmdRtHOS7LvPDCCwKAePvtt41lUj63r1+/LgCIyZMnW+w/ODhYtG/f/n6EbncsjaUlFy5cEL6+viIoKEikp6db1ffd51aOwNrxFKLi86DQ0FARHBxssc3kyZMFAJGTk2OrkCXjFLha5JVXXoGLiwu2b98OAHB3dwcAi1MK1Gq1SR0qtXLlSgCVz1kvz8/PD8899xxu376N/fv338/QHkpSjkEer9IdPnwYw4cPR2BgILZv327238yKzJs3DwCMfyvoL82bN8e4ceNw6dIlXLhwwVju7u5e4fQstVrNY7OcM2fOICEhAZGRkWjUqJHV7RzpuHzzzTexdOlSzJw5E6+99pqx3FZ/M8vqO8JxWdFY3u3q1asYOHAgZDIZfvzxRwQEBFjV/93nVrWdteNZpqLzoKr+ZpbVqSlMgGoRhUKBwMBAZGZmAgACAwMBWJ42VFZm6dK5o9LpdFizZg38/PwQHR1tdbuyZ2OUjTv9RcoxyONVmiNHjiAyMhIqlQrx8fGSxiY4OBhOTk48Zitg6Xc6MDCwwulEqampPDbLkfqPpDKOclwuWLAAixYtwtNPP43ly5ebbJPyd9DHxwdubm4W62o0GmRmZtb647KysSwvKSkJ/fv3R0FBAXbt2mXy+IWq3H1uVZtZO553q+hvZmZmpsUkKDU1Ff7+/jU3/Q1MgGoVtVqNlJQU4w1rbdu2haurKw4cOGBWNyEhAUDp6h9U6vvvv8etW7cwadIki3NWK3Lx4kUA1t146Wi6du0KABUegzKZzPjsgAYNGiAoKMh4bN5dF+DxWubIkSPGB8vGx8ejcePGktpfuXIFer2ex2wFLP1Od+3aFampqUhOTjapm5ycjLS0NB6bd5SUlCAuLg4BAQEYMWKEpLaOcFwuWLAACxcuxJQpU7BixQrIZDKT7VI+t+VyOTp16oSjR4+anWQeOnQIQohafVxWNZZlkpKS0K9fP+Tm5mLXrl3o2LGjpPe5+9yqtrJ2PC2p6G+mwWDAoUOHTOqq1WocO3as5o/NGpt8R9WWmZlpsfzll18WAMS///1vY9mYMWOEXC4Xx44dM5aVPU+gefPmfA5QOcOHDxcAxIkTJ8y2abVai+vkX79+Xfj6+go/Pz9RVFT0IMK0O1XdG9ClSxfh5eUlUlNTjWWpqanCy8vL7F6rsmPY0nOA6tSpI/Ly8mwev72pajyPHDkifH19RXBwsMlzWiyx9LdCr9eL8ePHCwBi/fr19xquXatsLAsKCizeM3XkyBHh4uIiwsLCTMp/+OGHSp8DtG/fPpvFbY+svQdo48aNFsepPEc9LhcuXGi8Z+fu58+UJ+Vze+nSpRU+B8jZ2bnWPrfO2rFMSkoSTZo0ESqVShw6dKjSPqWcW9U21oyn1POgEydOVPocoLi4ONvuhEQyIYSoicSLqm/27NlISEhA//790ahRIxQUFGDHjh2Ij49H9+7dER8fb3xq76VLl9CtWzcoFArMnj0b3t7e+OKLL3Dy5Els377d4tO5HVFaWhoaNWqEzp07W1wC9/bt2wgJCcHIkSMRFhZmXP1kxYoVKCgowLp16zB27NgaiLxmxMXF4dq1awCATz75BCUlJZg7dy4AoHHjxpg8ebKx7v79+9G/f380bNgQs2bNMra5desW/vjjD7Rv395YNysrC507d0ZWVhbmzJmDoKAgrFu3Dr/88gtWrFiB6dOnP8C9fHCsHc9r166hc+fOyM7Oxvz589G0aVOzvqKjo+Hh4QEAGDVqFPLy8tCrVy8EBwcjMzMTmzZtwuHDhzFixAhs3ry5Zp/EfR9YO5bHjh3D0KFDMXLkSDRv3ty4CtyqVasgl8vx888/o0+fPiZ9P/744/jhhx8wffp09OzZEwcOHMDKlSsxadIkxMXFPdgdfQCk/J6XGTp0KHbu3IkzZ84gLCzMYr+OeFwuW7YML7zwAho1aoS33nrLbP/q1atnXC5cyud2SUkJevXqhePHj+PFF19EWFgYduzYgS1btuCNN97AW2+99UD380Gwdizz8/PRvn17XL16FbNmzTJbjhkAIiMjjVctpJxb1SbWjmd1zoNmzZqFpUuXIjo6GsOGDcPZs2exZMkS9O7dG3v37q3Z3/MaTb+oWv73v/+JwYMHi8DAQOHq6irc3d1F+/btxeLFiy3+R/PMmTMiKipKqFQq4ebmJnr37i127dpVA5Hbr7JVXj7//HOL29VqtZg+fbpo06aNqFOnjnB2dhb169cXo0ePFgcPHnzA0da8vn37CgAWv/r27WtWf//+/WLAgAHCw8NDeHp6isGDB4vDhw9b7DslJUVMmjRJ+Pn5CVdXV9GxY0fx7bff3uc9qlnWjmd8fHyF9cq+yv/Hd8WKFaJv376iXr16QqFQCE9PT9G9e3exbNmySv9r+jCzdixv3LghJk2aJFq2bCm8vLyEs7OzCA4OFk899ZQ4e/asxb6Li4vFvHnzROPGjYWLi4sICQkRsbGxoqSk5AHt3YMl9ff8+vXrQi6Xi169elXaryMel1OmTKn09/bu8ZTyuZ2TkyP+/ve/iwYNGhivXn7yySe1doaHtWN59erVKv9exsfHG/uVem5VW1g7ntU5D9LpdOL9998XLVq0EC4uLiIwMFDMnj3bLlbN5RUgIiIiIiJyGLXrGjMREREREVElmAAREREREZHDYAJEREREREQOgwkQERERERE5DCZARERERETkMJgAERERERGRw2ACREREREREDoMJEBEREREROQwmQERERERE5DCYABERERERkcNgAkRERERERA6DCRAR0QP2yy+/QCaTQSaT4YUXXrBYJz09HS4uLpDJZOjXr9+DDZDsXlJSEhYsWIBjx47VdChERA8dJkBERDVEqVRi7dq10Gg0Ztvi4uIghICzs3MNREb2LikpCQsXLmQCRERUDUyAiIhqSHR0NHJycrB161azbV9++SWGDRsGV1fXGoiMrJGfn1+tbfSX4uJi6HS6mg6DiBwMEyAiohrSqVMntGvXDl9++aVJ+aFDh3D69Gk8/fTTFbb9888/ER0dDX9/f7i6uqJly5ZYvHix2cnkoUOHMHXqVLRo0QLu7u7w8vJC7969sWXLFrM+p06dCplMhtzcXDz//POoW7culEolevfujYMHD1q9X3l5eZg3bx7CwsKgVCrh5+eHPn364NtvvzWpd+LECURHR8PPzw9KpRLh4eF49913odfr7ykuIQS++OILdO/eHZ6envD09ETbtm0RExNjrLNgwQLIZDIkJSWZtW/SpInZtEOZTIapU6diz5496NOnDzw9PfH444+b1D969CiGDBkClUqFdu3aGdtevHgRkydPRoMGDeDi4oImTZrglVdeQWFhYbX2c/Xq1ejfvz8A4OmnnzZOp6xqqmRZ/5aU7V95a9asQbdu3VCnTh14eHggNDQUEydOREZGhkk9qfuXkZGBadOmoV69evDw8EBKSoqk9yMiulecW0FEVIOmTZuGOXPmIDU1FUFBQQCAVatWoW7dunjssccsttm+fTtGjRqFZs2aYe7cufD19cWBAwcQExODY8eOYePGjca6W7Zswblz5zBu3Dg0btwYWVlZ+OqrrzBq1Ch88803mDBhgln/Q4YMQUBAAGJiYpCVlYUPPvgAw4cPx9WrV+Hl5VXp/ty+fRt9+vTB6dOnMWbMGDz//PPQ6/U4evQofvjhBzzxxBMAShO4vn37QqFQ4O9//zvq16+P77//Hv/3f/+H48eP45tvvql2XJMnT8Y333yD7t27Y968eahTpw7OnTuH7777DrGxsVX/UCrw559/YtOmTZgxYwamTJlisu369esYMGAAxo4di9GjR6OgoAAAcPjwYQwYMAB16tTBs88+i6CgIBw/fhxLlizBH3/8gV9//RUKhULSfj7yyCN4/fXX8fbbb2PmzJmIiIgAANSrV6/a+3a3uLg4TJkyBREREYiNjYWbmxuSk5OxY8cOpKenIyAgoNr7FxkZifr16+PNN99EYWEhPD09rX4/IiKbEERE9EDFx8cLAOK9994TmZmZwsXFRSxevFgIIURRUZFQqVRi7ty5QgghPDw8RN++fY1ti4uLRb169URERITQarUm/X7wwQcCgIiPjzeWFRQUmL1/YWGhaNGihQgLCzMpnzJligAgnn/+eZPyDRs2CABi+fLlVe7b888/LwCIzz77zGybXq83ft+rVy/h5OQkjh8/biwzGAxi7NixAoDYvXt3teJav369ACAmTZpk8n53v//8+fMFAHH16lWzOBs3bmwy5kIIAUAAELt27bJYH4D44osvzLa1a9dOtGzZUuTl5ZmUb968WQAQX375ZbX2s+wYKt++KmX9WwJATJkyxfg6OjpaeHl5mR1jd6vO/k2cONGsH2vfj4jIFjgFjoioBvn5+SEqKgqrV68GAGzevBm5ubmYNm2axfq7du3CrVu38PTTT+P27dvIzMw0fg0bNgwA8PPPPxvre3h4GL8vKipCVlYWioqKMGDAAJw9exZ5eXlm7zF79myT1wMGDABQOtWpMgaDAd9++y3CwsIwc+ZMs+1yeelHTnp6Ovbv34+oqCiTqWIymQzz5s0DAItT9KyJq+zK0fvvv298v7vfv7rat2+PQYMGWdzm6+trNmXx5MmTOHHiBCZMmACNRmPys+rTpw88PDxMflZlqjv+tqRSqVBUVITt27dDCGGxTnX37+WXX67W+xER2QoTICKiGvb000/j4sWL+P3337Fq1Sp069YN4eHhFuuePXsWQOnUuYCAAJOvVq1aAQBu3bplrJ+eno6ZM2ca77fw9/dHQEAAli9fDqB0ytrdQkNDTV77+fkBALKysirdj8zMTOTk5KBDhw6V1rt69SoAoHXr1mbbwsLCIJfLceXKlWrFdfHiRTRo0MCm08HKtGjRosJtTZs2hZOTk0lZ2c9q/vz5Zj+runXrorCw0ORnVaa6429Lr7/+Oho3boyRI0ciICAAo0ePxooVK0wWd6ju/lkaR2vej4jIVngPEBFRDRsyZAiCgoKwcOFCxMfH49NPP62wbtl/x997770KE43AwEBj3cGDB+Ps2bP4xz/+gS5dukClUsHJyQlffvkl1q5dC4PBYNb+7hP5u9+7ptgyrooWAwBQ4apk7u7uFbaxtK0srrlz5+LRRx+12M7Hx8es7H6Nf0X7bGl/mzdvjjNnzmDPnj3Ys2cPfv31V8yYMQPz58/Hb7/9hqZNm1Z7/yyNlTXvR0RkK0yAiIhqmJOTE5566im88847cHNzw5NPPllh3ebNmwMondpW0XSsMidOnMDx48cRExODhQsXmmxbsWLFvQd+F39/f/j4+OD48eOV1gsJCQEAnD592mzbuXPnYDAYzK6CWKtFixbYunUrbt26VelVIF9fXwBAdnY2mjRpYixXq9W4ceMGmjVrVq33L6/sZ+Xk5FTlz0qqyhK4ipTf57LvAVi82gYArq6uGDZsmHFq5Y4dOzB8+HB88MEHWLZsmc33r6r3IyKyFU6BIyKyA8899xzmz5+P5cuXw9vbu8J6Q4YMQd26dfGvf/0L2dnZZtuLi4uN04bKriTcfeXg1KlTFu+xuVdyuRxPPvkkzpw5g5UrV5ptL4ujbt266NWrF77//nucOnXKZPs777wDoPQZSdUxceJEAMCrr75qdnWr/DiUTcPavXu3SZ0PP/zQ4lWx6ujYsSPatGmD5cuXW0wydDqdxZ+hNTw9PQFAUvuK9vk///mPWd3MzEyzsk6dOpm8py33z5r3IyKyFV4BIiKyA40aNcKCBQuqrOfh4YE1a9Zg5MiRaNmyJaZNm4ZmzZrh9u3bOHfuHDZv3owtW7agX79+CAsLQ+vWrfHuu++iqKgILVu2xIULF/DZZ5+hbdu2OHz4sM33Y9GiRdi7dy+eeeYZ/Pzzz+jTpw+EEDh69Ch0Oh3i4uIAAB9//DH69u2LiIgI4zLYP/zwA3766SdMmDABAwcOrNb7jx07FuPHj8eaNWtw8eJFREVFwcfHBxcuXMBPP/1kTLgGDRqEli1bGpeaDgkJwe+//46EhAT4+/vbZCxkMhni4uIwYMAAtGvXDtOmTUPr1q1RVFSES5cuYfPmzXjnnXfMnr9jjfDwcHh5eeG///0v3N3dUadOHdStW9e4YIIlTz75JF5//XXMnDkT586dg6+vL3bu3Gkx+Rg8eDDq1KmDiIgIBAcH4/bt21i9ejVkMhkmT55s8/2z5v2IiGymJpaeIyJyZOWXwa7K3ctglzl58qSYOHGiCAwMFAqFQtStW1f07NlTxMbGiqysLGO9pKQkMWbMGOHv7y/c3NxE165dxebNmy0uAy1lmeTK5OTkiFdeeUU0bdpUKBQK4evrK/r06SPWr19vUu/YsWNixIgRwsfHR7i4uIhWrVqJf//730Kn05nUkxqXXq8XS5cuFR07dhRubm7C09NTtG3bVixYsMCk3vnz58WQIUOEm5ubUKlUYuzYsSIlJaXCZbAr2n9L9ctLSkoSzz77rGjcuLFxPDp16iT++c9/iuvXr1d7P7dv3y46duwoXF1dBYBKYyiTkJAgevXqJVxdXYWfn5+YMWOGyMnJMev/888/F4MGDRL16tUTCoVC1K9fXwwdOlTs3bv3vuyflPcjIrpXMiG43iQRERERETkG3gNEREREREQOgwkQERERERE5DCZARERERETkMJgAERERERGRw2ACREREREREDoMJEBEREREROQwmQERERERE5DCYABERERERkcNgAkRERERERA6DCRARERERETkMJkBEREREROQwmAAREREREZHDYAJEREREREQOgwkQERERERE5DCZARERERETkMP4f4W47IOPAbfEAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAH6CAYAAAAurSx4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAT/gAAE/4BB5Q5hAAAyVdJREFUeJzs3Xd4FFUXwOHfJtlk0wtIS0INJYRmCEiVFopIrwLSDEVAEFARkI4In4qCNGlSBZUmIEUEQTpEaqjSe0shIaRtkvn+WLMQswlJdpNNOe/z+Lgz987Mmd27Yc7OnXtViqIoCCGEEEIIIUQ+YGHuAIQQQgghhBAiu0gCJIQQQgghhMg3JAESQgghhBBC5BuSAAkhhBBCCCHyDUmAhBBCCCGEEPmGJEBCCCGEEEKIfEMSICGEEEIIIUS+IQmQEEIIIYQQIt+QBEgIIYQQQgiRb0gCJIQQQgghhMg3JAESQgghhBBC5BuSAAkhhBBCCCHyDUmAhMgFSpYsiUqlYt++feYORYgM2bdvHyqVioYNG6ZrvRBCCJHVJAESQgDQsGFDSbJEhkm7EcIwlUqFSqUydxhCCAOszB2AEEKIvKtmzZpcvHgROzs7c4cihBBCAJIACSGEyEJ2dnZUqFDB3GEIIYQQetIFTog86I8//mDw4MFUqVIFNzc3NBoNpUuX5v333+fWrVvJ6t68eROVSsVff/0FQKNGjfRdNwx1bbp16xZDhgzBy8sLjUaDi4sLjRo1YuPGjQZjSXp+6ebNm2zfvp369evj6OiIk5MTLVq04OTJk6mex+PHjxk7dixVqlTBwcEBR0dHKlSowPvvv8+5c+cAOHz4MCqVisqVK6e6n9OnT6NSqShXrhyKorzy/Zs0aRIqlYpJkyZx/fp1unXrRqFChdBoNFStWpXvv/8+1f0kJiayevVqGjdujJubGzY2NpQuXZoPP/yQR48epai/fPlyVCoVffr04fHjx7z//vsUL14ctVrN8OHD9fXi4uKYN28e9evXx9XVFY1GQ6lSpejYsSPbt29Psd+4uDjmzp1LnTp1cHFxQaPR4O3tzfjx43n27Fma53z//n369u1LkSJF0Gg0VKxYkblz5yarn952k9lnfTLazh48eMAnn3yCj48PTk5OODg4UKJECdq2bcv69etfebz4+HiKFCmCSqXi2rVrqdarWLEiKpWKo0eP6tddvXqVgQMHUr58eezt7XFycqJMmTJ07dqVPXv2ZOi80/Ls2TOmT59OjRo1cHZ2xs7ODi8vL3r16sXhw4dT1L9x4wYDBgygZMmS2NjYUKBAAZo3b85vv/1mcP8vd2c8cuQILVq0wMXFBTs7O+rVq5fmuaQ3tqR2U7JkSYP7Sc8zY5GRkXz66ad4eXlhY2NDu3btAOjTpw8qlYrly5dz8uRJ2rVrR6FChbCwsODXX3/V7+vJkyeMHj0aHx8f7OzscHR0pFatWixZssTg9zqj70vSdzrJy9+L9HaJe1XX0pf/rr4sM9+Dbdu28fbbb1OoUCGsra3x9PTkvffe4/r16ynqpudzAPjrr79o27Ztsrbn4+PDoEGD0vx+CZFd5A6QEHnQoEGDuHfvHj4+PjRq1AitVsuZM2dYuHAh69at4/Dhw5QvXx4ABwcHevfuzc6dO3n06BHNmzenSJEi+n29/Hr37t106NCBZ8+eUb58ed5++21CQkI4evQo+/btY8yYMXzxxRcGY1q4cCFffvklderU4a233uLkyZP8/vvvHDx4kJMnT1KuXLlk9U+cOEHLli15/PgxhQoVwt/fH7VazfXr11m8eDFFihShUqVK1KlTh2rVqnH69GkOHjxIvXr1Uhx7wYIFALz//vsZ6pN//fp1/Pz8sLe3p3HjxoSFhbF3714GDRrEyZMnWbRoUbL6Wq2Wzp07s3nzZhwcHPDz88PNzY3Tp0/z3XffsWHDBvbv30/p0qVTHOvJkyfUqFGD6Oho6tevj6IouLi4ABAaGkqLFi0IDAzEzs6OunXrUqBAAe7cucPvv/9OSEgILVu21O/r6dOntGzZkiNHjuDm5kbNmjWxs7MjMDCQzz//nE2bNrF//37c3NxSxHH79m2qV6+ORqOhYcOGPHz4kAMHDjB06FAiIiIYO3YskLF2k1EZbWcPHjzg9ddf59GjR5QqVYomTZqgVqu5e/cuu3fvJjY2lk6dOqV5TCsrK7p37863337LypUrmTx5coo6gYGBXLx4kXLlylGrVi0Azp49S926dYmMjKRixYq89dZbKIrCnTt32LRpE66urjRp0iTT70WSGzdu0KxZM65evYqzszP169fH3t6eW7du8fPPP2NhYUGdOnX09Q8fPsxbb71FREQEZcuWpUOHDjx8+JA9e/awa9cuRo8ezfTp0w0ea9u2bcyaNYuqVavSokULzp8/z6FDh2jRogV79uzhzTffNCo2Y0RHR9OgQQOuXr1KgwYNeP311ylQoECyOgcPHmTgwIGULFmSJk2aEBwcjFqtBuDMmTO0aNGChw8fUqJECZo1a0ZUVBRHjx6lf//+7N27lx9//NGo98XLy4vevXuzYsUKAHr37m2Sc3+VzHwPBg8ezIIFC7C2tqZGjRoULVqUCxcusGzZMjZu3MiuXbuoWbNmimOl9Tn88MMPBAQEYGFhQa1atahduzYRERHcvHmT77//ngYNGlCmTJlseU+ESJUihMjxSpQooQDK3r1701X/119/VZ4+fZpsXXx8vDJhwgQFUJo3b55imwYNGqR5jHv37ikuLi6KWq1W1q5dm6zs4sWL+hj37NljMHaNRqPs27dPvz4uLk5p166dAih9+/ZNtk1ERIRSrFgxBVBGjhypxMbGJiu/ffu28vfff+uXFy9erABKjx49UsQdERGhODg4KBqNRgkJCTF4bv81ceJEBVAApWvXrkpMTIy+7MyZM4qbm5sCKJs3b0623SeffKIAir+/v/LgwQP9+oSEBGXs2LEKoNSvXz/ZNsuWLdMfq2XLlkpkZGSKeFq1aqUASqNGjZTHjx+nOL/du3cnW9e5c2cFULp3766Eh4fr10dHRyu9e/dWAKVnz56pnvMHH3ygxMfH68vWrVunAIqDg0OK+F7Vbvbu3asASoMGDdK1PjPtbNKkSQqgDBo0KMXxnz17phw+fNhgbP91+vRpBVBKly6tJCYmpij/4IMPFED5/PPP9ev69OmjAMqMGTNS1A8JCVFOnDiRrmOnJSEhQalataoCKN26dVMiIiKSlT958kQ5cOCAfjk6Olrx8PBQAGXs2LHJzuXQoUOKg4ODAijbt29Ptp+kz1KlUiV77xMTE/Xn3qhRI6Niu3HjhgIoJUqUMHiur2ovgFK9enXlyZMnKbZNatuAMnny5BSf4fPnz5WSJUsqgPLNN98oCQkJ+rK7d+8qvr6+CqAsXbrU6PdFURR9LJnxqu9V0vfgxo0b+nUZ/R7MmzdPAZRq1aopV65cSVa2YMEC/XdBq9Xq16fnc0h6j48cOZKi7MqVK8r169fTOnUhsoUkQELkAhlNgNLi7u6uWFhYpLhQedU/uEkX9xMmTDBYvmHDBgVQ2rdvbzD2Tz/9NMU2gYGBCqCULFky2fpvvvlGAZTGjRun65yioqIUV1dXxcbGRgkODk5WlvSPfO/evdO1L0V5kQzY2dkZ/Ad+xowZKeILDg5WNBqN4urqmiIGRUl+oXjmzBn9+qQEyNraWrl161aK7U6ePKkAipubmxIWFvbK2M+dO6cAStmyZZMlbkmeP3+uFC5cWLGyskqWECadc4kSJQxu5+PjowDJklhFMX0ClJl2NnjwYAVQNm3aZHCbjKhSpYoCKPv370+2Pi4uTilYsKCiUqmSfU4tW7ZUAOXUqVNGHzs1GzduVAClfPnySlxc3Cvrr1ixQl//5Yv8JEmfdZMmTZKtT/osu3btmmKbJ0+e6NvpyzFkNDZTJECGLqwV5UUC5O3tbfC8k/4W9OrVy+D2J06cUADl9ddfT7Y+M++LomR/ApSR70F8fLxSpEgRxcLCIkXyk6R169YpfuhJz+dgZ2enuLi4vDIGIcxJngESIo+6desW8+fPZ/jw4QQEBNCnTx/69OmDVqslMTGRq1evZmh/O3bsAKBz584Gy5O6f7z8bMTL3nrrrRTrkrrh3b9/P9n6nTt3AvDee++lKzZbW1v69u1LbGwsy5YtS1b2cve3jGrWrBkFCxZMsf7dd98FdN2M4uPjAV3f+JiYGBo3bpyiSw6AhYWFvnueoffo9ddfp3jx4inWJ70XHTp00HeJS0tS/TZt2mBjY5Oi3M7ODj8/P+Lj4/n7779TlDdq1Mjgdql9VqaWmXbm5+cHwJgxY9iyZQtRUVGZPn5Sd6WVK1emiCs4OJhGjRol+5ySjj148GD27NlDXFxcpo+dmqTPtGfPnvquXGnZv38/oGunFhYp/5lP+l4dOnSIhISEFOWGvqsFCxbEzc2NuLg4goODMx2bsQoXLqzvfpiaNm3aGDzvV7Wt119/HQcHB86cOUNMTEyK8oy8L+aQke/B6dOnefjwIa+//jpeXl4G66T1Nz2tz8HPz4+nT5/Sp08fzpw5k67nLoXIbpIACZEHjRs3jjJlyjBkyBBmz57NDz/8wIoVK1ixYgWPHz8GICIiIkP7THogtnLlyike6lWpVLz22muA7lkWQzw9PVOsc3R0BEhx0Xj79m3gxUV3egwePBiVSsWiRYv0/+AePHiQc+fOUa1atVdeNBmS2oPaxYoVw9rampiYGEJCQoAX78+GDRsMvj8qlYp58+YBht+jEiVKGDxWRt+LpDhmzpyZahzbtm1LNQ5DnxO8+KxiY2PTFUdmZaad9e7dm169enHp0iXatm2Ls7Mzfn5+fPzxx5w+fTpDx+/RowdWVlasW7cu2UVwUkLUq1evZPVHjRpFixYtOHLkCP7+/jg5OVG3bl3Gjx/PlStXMvMWpJDRNnDv3j0ASpUqZbDcw8MjRft9WUbaQGa+q8ZI7XuSnjpJbat169YG25aFhQWRkZEkJiYa/b6YQ0a+B0nvxYkTJ1L9O/HJJ58AGft7BbofncqXL8+KFSuoVq0aBQoUoGXLlsyePZuwsDDTnbAQRpBBEITIY9avX8+0adNwcnJi1qxZNGrUiKJFi+p/1a9Tpw5HjhzJ8K9ySb8Ud+/ePVO/9Br6RTY1mZk8sEyZMrRo0YIdO3awZ88e/P39+f777wHdoBBZLen9qVixIjVq1Eizro+PT4p1tra2Butm9L1IiqNmzZp4e3unWdfQRUxGPqeskJl2ZmFhwYoVK/j000/57bff2Lt3L4cPH+bEiRPMnDmT8ePHM2XKlHTtq3DhwjRr1ozt27ezefNmunbtytOnT/ntt9+wt7enY8eOyerb29uzY8cO/v77b7Zt28Zff/3F0aNHOXz4MNOnT2fBggX0798/Y2/Cf2T3ZJpZ/V1NS2JiYprlqX1P0lMnqW21adMGV1fXNPdh6C6oub8bLzP0PmXke5D0XhQvXpxGjRqleaw33ngjxbq0PoeKFSsSFBTEnj172LlzJwcOHOD3339nx44dTJkyhV27dlG9evWMnK4QJicJkBB5TNJQp9OmTaNv374pyjPa9S2Jp6cnV69eZcqUKVk+gk/x4sW5ePEi//zzj75bR3p88MEH7NixgwULFlCtWjXWr1+Pk5MTPXr0yFQc/x0yPMn9+/eJi4vTD+8KL34d9vX1Zfny5Zk6niFJ3a3++eefdNVPiqNZs2ZMnTrVZHFkF2PaWcWKFalYsSKjRo0iPj6e9evX06dPHz7//HO6d++e7vmIevfuzfbt21m5ciVdu3bl559/JjY2lq5du+Lg4GBwGz8/P31bjYmJYdGiRQwfPpxhw4bRpUsXnJ2dM3QuL8toG3B3dwcwOIwxwN27d4mLi0Oj0RgcCTArY7O2tgYgMjLSYPmdO3eMiictnp6eXL58mWHDhplkZL6slNb7FB8fz4MHD1LdNj3fg6S/E8WLFzfp36skarWaFi1a0KJFC0A3pcGoUaNYsWIFH3zwAUeOHDH5MYXIiJzzc4YQwiRCQ0MBw9019uzZk2oXtaR/cJOeafmvpH/I0jOnirGaNWsG6IZTzYgWLVpQpkwZtmzZwrRp04iNjaVnz57Y29tnKo5du3YZ7AqzZs0aQHc3zcpK9ztS0pCzO3fuTPXiLjOS3ouNGzcSHh7+yvpJn9OmTZte+Wu6Kbyq3WSUqdqZlZUV77zzDm+++SaKohAUFJTubdu0aYOLiwu7du3i0aNHqXZ/S41Go2HYsGF4eXkRExOT7uQgNUltYNWqVWi12lfWT3p248cffzTYBpKek6tbt66+/WZXbAULFkStVhMSEmLwmZldu3YZFU9asvNvGKC/g5mZ70axYsUAuHz5coqyvXv3pnufqX0PatasiZubG8ePH8/SpDNJoUKF9EPXnz17NsuPJ8SrSAIkRB6T9Cv34sWLk12Q3Lx5M82uYEm/Gl+8eNFg+ccff4yjoyOTJk1i6dKlKR6eVhSFwMBA/vjjD2NPgX79+lG0aFH27NnDp59+muIZoTt37nDixIkU21lYWDBo0CDi4+OZNWsWkLnBD5I8f/6cYcOGJTv+uXPn+N///gfA0KFD9euLFCnCoEGDCA4Opn379gZ/fX/69CkLFy7M0AWRr6+vfh6cTp06pbhofPbsWbKJGKtXr06bNm04f/48PXr0MDj56qNHj1i8eHG6Y0jLq9pNRmWmna1cuZJTp06l2Nfdu3c5c+YMgMEBJlKj0Wjo0qUL8fHxTJ06lcOHD+Pp6Wmwq9D8+fMNPusTFBTErVu3sLCwwMPDQ79+7ty5VKhQId3JFEDbtm2pUqUKly5d4r333kuRYAcHB3Pw4EH9cufOnXF3d+fy5ctMnDgxWXfXY8eOMXPmTABGjhyZ7hhMFZu1tTV169YFSNEtceXKlaxdu9bomFIzYMAAPDw8WLhwITNmzDD4zM6FCxdSnWw3o4z5biS1tfnz5+uf2wTdHfyX/+68LCPfA7Vazbhx44iLi6Nt27YGn5WLiopizZo1Bv+GpCYqKopvv/3WYHKbNAFvRr6LQmQZ8w1AJ4RIr6QhT729vZU33njD4H/+/v6KoujmWXByctIPNdu5c2elefPmikajUd58802lTp06BodX3bx5swIoNjY2SuvWrZWAgAAlICBAuXTpkr7OH3/8obi4uCiA4uHhoTRv3lzp3r270rx5c6Vw4cIGh7s2NFzry0hlqNhjx44pBQsWVAClcOHCSvv27ZVOnTopvr6+ioWFhTJx4kSD+wsNDVVsbW0VQKlXr1763+SXJA0T3LNnT8XV1VXx9PRUunbtqjRv3lyxtrZWAOW9995LsV1sbKzSoUMHBVDUarVSs2ZNpUuXLvq4raysFECJjo7Wb5M0DHZaw3Q/efJEP0eJnZ2d0rx5c+Wdd95R6tWrp9jb26cYMjgsLEypV6+evn6dOnWUbt26Ke3bt1d8fHwUlUqlFC5c2OA5p/a+Jg0xvGzZsmTrX9VuMjoMtqJkvJ21bdtWARRPT0+lVatWSo8ePZSmTZsqGo1GAZQuXbqk+t6m5tChQ/q2yb/z6RiSNLS5l5eX0q5dO6V79+5KgwYN9J/1J598kqx+0vts6LzTcvXqVaVUqVIKoLi4uCitWrVSunbtqrzxxhuKtbV1ivZz8OBB/d+B8uXLK926dVMaN26sWFpaKoAyevToFMfIzNDLmYlt3759+vencuXKSqdOnZTKlSsrVlZWyscff5zh9pIktTb6stOnT+vnSHrttdeUJk2aKD169FDefvttpXjx4gaHu87s+zJixAj9cbp27ar/bqRHTEyMUqlSJQVQChYsqLRt21Zp2LChYmtrq3Tr1s3gMTPzPUiax0ilUimvv/660rFjR6VLly7KG2+8odjY2CiAcvHiRX39V30OYWFhCqBYWloqvr6+SpcuXZSuXbsq1apVUwDFysoqxfxpQpiDJEBC5AJJ/9il9Z+zs7O+/pUrV5ROnTopxYoVUzQajVK+fHll4sSJSkxMTJr/mM+fP1+pWrWqPoEwVO/evXvKqFGjlMqVKyv29vaKra2tUqpUKaVp06bKrFmzlHv37hmMPaMJkKIoyv3795WPPvpIKV++vKLRaBRHR0elQoUKyuDBg5Xz58+n+n4lXfz/+OOPqdZJy8vJwJUrV5TOnTsrBQsWVGxsbJTKlSsrc+fONTjPSJKNGzcqrVq1UgoXLqyo1WqlYMGCSpUqVZT3339f2blzZ7K66UmAFEU3ueW3336r1KxZU3F0dFQ0Go1SsmRJpXPnzsqOHTtS1NdqtcqyZcuUJk2aKAUKFFCsrKyUwoULK9WrV1dGjhypHDp0KNVzNiSti8u02k1mEiBFyVg7++uvv5Rhw4Ypfn5+SqFChRRra2vFw8NDadKkibJ27dpkk7pmRNmyZfXn8/IPAS/bunWrMmDAAKVq1apKgQIFFBsbG6VEiRJKq1atUkw0qiiZT4AURVGePn2qTJo0SalSpYpiZ2en2NnZKV5eXkrv3r0Nzsly7do1pV+/fkrx4sUVtVqtuLq6Kk2bNk31AjSzF/qZiW337t1KvXr1FDs7O8XR0VFp0qSJcvDgwUy3F0VJXwKkKLofSaZOnar4+fkpjo6Oio2NjVK8eHHlzTffVL744gvl6tWrJnlfoqKilJEjRyqlSpVS1Gp1hucFevTokdK3b199my5fvrzy1VdfKQkJCQaPmdnvwZ9//ql07txZcXd3V6ytrRVXV1elYsWKSu/evZWNGzcmm9/oVZ+DVqtV5s+fr3Tp0kUpV66c4ujoqNjb2yvly5dX3nvvPSUoKCjd5y9EVlIpigzQLoTIO27fvk3p0qVxc3Pj7t27+mdUMmLSpElMnjyZiRMnMmnSJNMHKYQQQgizkWeAhBB5yuTJk0lISGDQoEGZSn6EEEIIkbfJMNhCiFzv8OHD/PDDD/zzzz8cOHCAokWLmuQBbyGEEELkPXIHSAiR6/3zzz8sXbqUkydP0qhRI3bs2GHUvCtCCCGEyLvkGSAhhBBCCCFEviF3gIQQQgghhBD5hiRAQgghhBBCiHxDEiAhhBBCCCFEviEJkBBCCCGEECLfkGGwTez+/fv89ttvlC5dGnt7e3OHI4QQQgghRJ70/Plzrl+/TqtWrShWrFi6t5MEyMR+++03Bg4caO4whBBCCCGEyBcWLlzIgAED0l1fEiATK126NKD7ICpXrmzmaERatFotERERODk5oVarzR2OyAOkTQlTkvYkTEnakzC1nNCmgoKCGDhwoP76O70kATKxpG5vlStXpnbt2maORqQlLi6O0NBQ3NzcsLa2Nnc4Ig+QNiVMSdqTMCVpT8LUclKbyuhjJzIIghBCCCGEECLfkARICCGEEEIIkW9IAiSEEEIIIYTINyQBEkIIIYQQQuQbkgAJIYQQQggh8g0ZBc5MFEUhLCyMZ8+eodVqURTF3CHlGyqVCrVaja2trbzvQgghhBD5TK64AxQZGckXX3xB5cqVcXR0pGDBgtSpU4fly5enuIA9duwY/v7+ODo64uTkRIsWLTh9+rTB/d6/f59evXrx2muvYWtri5+fH+vWrcvy89Fqtdy4cYNHjx4RFRVFfHy8XIhnE0VRiI+PJyoqiuDgYMLCwtBqteYOSwghhBBCZJMcfwcoMTGRt956i8OHD9O7d2+GDh1KVFQUa9eupW/fvly8eJH//e9/ABw9epSGDRvi7u7OlClTAJg7dy7169fn8OHDySYmDQ0NpV69ejx+/JiRI0fi4eHBmjVr6NKlCz/88AN9+/bNsnMKCQkhNjYWBwcHChcujFqtRqVSZdnxRHKKoqDVann48CERERE8ffo0w+PHCyGEEEKI3CnHJ0DHjh3j4MGDDB8+nG+//Va/fvDgwVSoUIGFCxfqE6Bhw4ZhbW3N/v37cXd3B6BLly54e3vz0UcfsWvXLv32M2bM4MaNG2zZsoXWrVsDEBAQQO3atfn444/p3LkzDg4OWXJOkZGRqFQq3N3dsbDIFTfh8hSVSoW1tTXFihXj+fPnPH/+3NwhCSGEEEKIbJLjr74jIiIAKFasWLL11tbWFCxYUP/L/dWrVwkMDKRz58765AfA3d2dzp07s3v3bh4+fKhfv2bNGsqUKaNPfgAsLS0ZOnQooaGhbN++PcvOSVEULC0tJfkxMwsLCywsLKT7oRBCCCFEOoXHhrPy/EoG7BnAoMODGLBnAKsurCI8NtzcoaVbjr8DVLNmTVxcXPjyyy8pWbIkb7zxBlFRUaxYsYITJ07w/fffAxAYGAhA7dq1U+yjVq1a/PDDD5w4cYK3336bBw8ecO/ePXr06GGwbtL+unTpkmZsd+7c4e7du8nWBQUFAbrnfOLi4gxul5iYiEqlIjEx8RVnL7JSUuKjKEqqn5UQGaHVaomPj5fnyoRJSHsSpiTtSZjC5mub+d+J/xGbEPti5TM48fgEs0/O5tPqn9K2TNtsiyez7TnHJ0Curq5s2bKFfv36JUtIHB0d2bBhA+3atQN0AxoAye7+JElad+/evQzXTcvSpUuZPHmywbKIiAhCQ0MNlmm1WtRqNQkJCa88hsg6iqLonwdK7bMSIiO0Wi2RkZEoioJarTZ3OCKXk/YkTEnakzDWzrs7mXl+ZqrlsQmxTDk+hefPn9PCo0W2xJTUUyyjcnwCBODg4EClSpVo06YNderUITQ0lHnz5tG9e3c2b95M06ZNiYqKAsDGxibF9hqNBkBfJyN10xIQEEDz5s2TrQsKCmLgwIE4OTnh5uZmcLvw8HBUKhWWlpavPIbIOoqi6IfETu2zEiIjtFotKpUKV1dXucAQRpP2JExJ2pMwRkRcBHMvzU1X3XmX5tGqQiucrJ2yOCpwcsrcMXJ8AhQUFESdOnX49ttvef/99/Xru3XrRqVKlejfvz/Xrl3Dzs4OgNjY2BT7iImJAdDXyUjdtHh6euLp6WmwTK1WY21tbbAs6dkfeQbIvJK6ICYNiiCEKVhZWaX5/RciI6Q9CVOS9iQya8fVHcm7vaUhJiGGnbd38m7Fd7M4KjKdzOf4K/Bvv/2WmJgYOnfunGy9nZ0db7/9Nrdu3eLmzZv6QRIMdV1LWpfUvS0jdYUQQgghhMjP9t7Zm6X1s1uOT4CSEhJDz8vEx8fr/1+jRg0Ajhw5kqLe0aNHUalUVK9eHYCiRYvi7u7O0aNHDdYF8PPzM80JZLPwKC1LDlznnUVHePu7A7yz6AhLD94gPMp8Dz3u27cPlUqV7D8HBweqV6/O7Nmz9Z/tzZs3U9RL+q9SpUoG952RiW+FEEIIIUTGRcZFZqj+s7hnWRSJaeT4LnAVK1Zk165dLF++nFGjRunXP336lM2bN+Pq6oqXlxeWlpb4+fmxbt06pk6dqr/Lc//+fdatW0fjxo0pUqSIfvtu3brx9ddfs3XrVv1Q2AkJCcyZMwcXFxdatmyZvSdqAr8E3mHC5nPExCcfXe7o9VC+2nmJKW0r0aWG4S572aFbt260bNkSRVG4f/8+y5cvZ/jw4Zw/f55Fixbp67Vv354OHTok29bFxSXF/jIy8a0QQgghhMgcB+uMzY3paO2YRZGYRo5PgIYPH87KlSsZPXo0QUFB1K1bl9DQUBYvXsyDBw+YN2+efjCB2bNn06hRI+rXr8/QoUMBmDNnDomJicycmXzUitGjR7Nu3Tq6d+/OyJEjcXd3Z+3atQQGBrJkyRIcHXP2B/dfvwTeYdSGs6mWx8Qn6svNlQT5+vry7rsv+oMOGjQIb29vlixZwtSpU/Xrq1SpkqxeajIy8a0QQgghhMicN93fJPBhYLrrN/JslIXRGC/Hd4ErUaIEx48fp2fPnuzdu5ehQ4cyY8YMPD092bBhA4MHD9bXrVOnDvv27aNkyZKMGzeO8ePH4+Xlxf79+6latWqy/RYoUIBDhw7Rrl075s2bx7BhwwgPD+enn34iICAgu0/TKOFRWiZsPpeuuhO2nDNrd7iXOTk5Ubt2bRRF4fr168nKYmJi0hyJL6MT3wohhBBCiIzTJmo5/vB4uutrLDW08WqThREZL8ffAQIoU6YMK1asSFfd2rVrs2fPnnTVdXd3Z9WqVcaEliOsP3k3Rbe31MRoE9lw8i7v1SuVxVG9mqIoXL16FYCCBQvq18+cOZMpU6agKAoeHh707duXzz77LNmw5RmZ+FYIIYQQQmRcQmICYw+M5cC9A+neZuwbY7NlCGxj5IoEKD/pseQo98KiM7TNw/CYDNX/cuclVh65maFt3F1t+bFfrQxt819RUVEEBwejKAoPHjxgzpw5nDlzhlq1alG2bFlu375N48aNadeuHSVKlODJkyf88ssvTJ06lSNHjrBz5059d0dTTWYrhBBCCCFSSlQSmXB4Ajtv7gTAUe1Id+/uLD+/3OCQ2BpLDWPfGEv7su2zO9QMkwQoh7kXFs3NkFdPwmqMmPjELD+GIRMnTmTixIn6ZQsLC9q0aaMfAKF48eIp7t4FBAQwYMAAFi9ezE8//USPHj0A001mK4QQQgghklMUhalHp7Ll2hYA7KzsWNB0AVVfq0rPij3Zcm0Lf976k6fRT3GxdaFJiSa0LtMaZxtnM0eePpIA5TDurrYZ3uZheEy6u8ABaKwsKOKsydAxMhPXfw0YMIDOnTujUqmwt7enXLlyuLm5vXK7zz77jMWLF7Nt2zZ9AmSqyWyFEEIIIcQLiqLwv8D/sf6f9YDuzs68JvOo+prueXpnG2d6VuxJV6+uhIaG4ubmlusm15UEKIfJTDezpQdvMPW3C+muP6pFBbM8A1S2bFn8/f0zvJ2npyeWlpYEBwfr18lktkIIIYQQpqUoCt+e/JYfL/4IgLWFNd81/g6/Ii/NjxkdBqfXYHVxGwWiwrC0cwXvVlCtG9i6minyjMnxo8CJV+vk64HGKn0fpUZtQcfqHlkckWldv36dhIQEChcurF+XkYlvhRBCCCHEqy04s4Bl55YBYGVhxbeNvqV2sZcGnDq5CmZWgN/HYnH7EOrgC1jcPgS/j9GtP5k7BheTBCgPcLZTM6VtpXTVndKmEs626iyOKHNCQkJSrEtMTGTcuHEA+glrAby8vPQT3yYNiACpT3wrhBBCCCFStyRoCQvOLADAUmXJV29+xZseb76ocHIVbPkA4lMZfCs+RleeC5Ig6QKXRyRNbjph8zmDzwNp1BZMaVPJbJOgpkf//v2JiIigTp06eHp6EhwczIYNGzhx4gRt27alU6dOyepnZOJbIYQQQghh2KoLq5h9cjYAKlR8Ue8L/Eu89NhCdBhs/zh9O9vxia5LXA7uDicJUB7SpYYnzX2KsP7kXXZfeEREjBYnjZqmFQvT0dcDZ7uceecnydtvv82qVatYtGgRoaGh2NjY4OPjw7x583j//fexsEh+wzJp4ttx48Yxbtw4VCoVderUYd26dSkmvhVCCCGEECn9cvkXvgz8Ur88pe4UWpZumbzS6bWp3/n5L200nPkJag0yYZSmJQlQHuNspyagXikCcsBEp0kaNmyIoiivrBcQEEBAQECG9p2RiW+FEEIIIcQLv179lalHp+qXx9caTzuvdikrXt6esR1f2pajEyB5BkgIIYQQQoh8Zvv17Uw8/GJ+xlE1RtGlfBfDlWPCM7bzjNbPZpIACSGEEEIIkY/svrWbsQfHkqjonhv/0PdDelbsmfoGmgxOcJrR+tlMEiAhhBBCCCHyif139/PJ/k9IUBIAGFR1EP0q90t7o3ItMnaQCm9nMrrsIQmQEEIIIYQQ+cCR+0cYsXcE8YnxAPSt1JdBVV/xrE5iAtw7mf6DqG2hajcjosx6kgAJIYQQQgiRx/398G+G/TmMuMQ4AHp492CE7whUKlXqGyUmwK+D4fyG9B/ora/A1sW4YLOYJEBCCCGEEELkYacfn2bIniHEJOiGsu5UrhOf1vg0fcnP2Z90y2o7qPshWGkM11fbQpu54JvGs0Q5hAyDLYQQQgghRB51PuQ8g3cPJio+CoA2Zdowvtb4dCQ/g+Dsz7pltT30WAcl60K9EXB6LYmXtpHwPBRLezcsvFtB1Xdy9OSnL5MESAghhBBCiDzocuhlBv4xkGfaZwC0KNmCKXWmYKFKoxNYYgJseh+CftEtq+3h3fVQoo5u2dYVag8mvno/QkNDcXNzw9raOovPxLQkARJCCCGEECKPuf70OgP+GEB4rG5Onsaejfmi/hdYWlimvlFCPPz6PgSt0y3/N/nJIyQBEkIIIYQQIg+5HXGbfrv6ERoTCkA993p81eAr1Bbq1DdKiIdNA+Hcet2ytQP0WA8lamdDxNlLEiAhhBBCCCHyiPuR9+m3qx9Pop8A8EbRN/i24bdYW6bRTS0hHjYNgHP/jvZm7QDvboDitbIh4uwno8AJIYQQQgiRBzx6/oiA3wN48PwBAL6FfPmu0XdoUhu5DfJd8gNyB0gIIYQQQohcLzg6mH67+nE38i4AVQpWYV6Tedip7VLfKCEeNvaH8xt1y9aO/yY/b2RDxOYjd4DymugwODIPlreC7+vr/n9kvm69mezbtw+VSpXsPwcHB6pXr87s2bNJSEjQ17127Ro9evSgcOHC2NjY4OXlxcSJE4mJiUmx3z59+qTYb9J/69evz85TFEIIIYQwm7CYMPrv6s/NiJsAeLt5s6DpAhysHVLfKCEeNvZLnvz03Jjnkx+QO0B5y8lVsP1jiP9PsnDzAOyZDC2/NuvkVN26daNly5YoisL9+/dZvnw5w4cP5/z58yxatIhLly5Ru3Zt4uPjGTJkCKVKleLIkSNMnTqVY8eOsWPHDoNj1q9atSrFupo1a2bHKQkhhBBCmFV4bDgD/xjI1adXAfBy8WJh04U4WTulvlGCFjb0gwu/6paTkh/P/HH9JAlQXnFyFWz5IPXy+JgX5WZKgnx9fXn33Xf1y4MGDcLb25slS5YwdepURo8eTXh4OAcPHqROHd1wiwMHDqR8+fKMHTuWH3/8Mdn2SQytE0IIIYTI6yLjIhm0exAXQy8CUNKpJIubLcZVk8aEpAla2BAAFzbrlm2c4N2N4FkjGyLOGaQLXF4QHaa785MeOz4xa3e4lzk5OVG7dm0UReH69evs3buXcuXK6ZOfJH369AFg2bJlBvejKAoREREkJiZmdchCCCGEEDlClDaKIXuGEBQcBICHgwdLmi2hoG3B1DdK0ML695InPz035avkByQByhtOr03Z7S012mg481PWxpNOiqJw9arudm3BggWJjY3Fzi7lg3pJ644fP46iKCnKnZ2dcXZ2xtbWlqZNm3Ls2LGsDVwIIYQQwoxi4mMY9ucwTj4+CUBR+6Isbb6UwvaFU98oKfm5uEW3nJT8ePhlQ8Q5i3SBy2lWtIHwOxnbJuJ+xurvngTHF2VsG2dP6L0lY9v8R1RUFMHBwSiKwoMHD5gzZw5nzpyhVq1alC1bFh8fHy5cuMDDhw8pUqSIfru9e/cCEBkZSVhYGG5ubgAUKVKEESNGUL16dezt7Tlz5gyzZs2ifv36bN++HX9/f6PiFUIIIYQwp/DYcDZf3cy+u/uIjIvEwdqBN93f5ND9Qxx7qPvB9zXb11jSbAnFHIqlvqMELazvCxe36pZtnP9Nfqpnw1nkPJIA5TThdyD0etYeIz4m649hwMSJE5k4caJ+2cLCgjZt2rBokS4Z++ijj+jRowdt27blyy+/pGTJkhw7dowPP/wQtVqNVqslKipKnwDNmDEj2f7btWtH9+7dqVatGoMGDeLKlSvZd3JCCCGEECa06comph2bRmxCbLL1gQ8D9a/dNG4sab6E4k7FU99RfJwu+bn0m27Zxhl6bQL3/Jn8gCRAOY+zZ8a3ibif/i5wAFYacErjVwJDMhPXfwwYMIDOnTujUqmwt7enXLly+mQGoHv37oSEhDB+/HgaNmwIgLW1NWPHjmXbtm0EBgbi5JTGiCZA2bJl6dKlC8uXL+eff/6hXLlyRscthBBCCJGdNl3ZxITDE15Z750K71DauXTqFST5MUgSoJwmM93MjsyH38ekv77/JKg1KOPHMVLZsmVf2S1t6NChDBgwgKCgIGJjY/Hx8cHFxYV58+ZRtGjRVyZAACVLlgQgODhYEiAhhBBC5CrhseFMOzYtXXV/CPqB7hW642zjnLIwPg7W9YHL23TLGmfo+Su4+5os1txKBkHIC6p1093VSQ+1LVTtlrXxGMnGxgY/Pz/q1q2Li4sLf//9N0+ePKFly5bp2j6p61vhwmk8CCiEEEIIkQNtubYlRbe31MQkxLD12taUBYaSn16bJfn5V45PgCZNmoRKpUr1P7Vanaz+5cuXadeuHa6urtjb21O/fn3+/PNPg/sODw9n6NChuLu7o9Fo8PHxYcGCBQZHGsvRbF11k5ymx1tfga1LloZjSjExMQwfPhwbGxs+/vjFUN/Pnz8nJiZlt79Tp06xbt06vL29KVOmTHaGKoQQQghhtL139hpXPz4O1vV+Kflx0SU/xV43TYB5QI7vAtehQwe8vLxSrD979ixfffUVrVu31q+7du0aderUwcrKilGjRuHs7MzixYtp3rw5O3bsSNb9Ki4ujqZNm3Lq1CmGDh2Kt7c3O3bsYPDgwTx69IhJkyZlx+mZTtLkpts/Nvw8kNpWl/yYaRLU9Dh//jx9+vShVatWeHh48OjRI1asWMG1a9dYtmwZFSpU0Ne9cuUKb731Fu3ataNs2bL6UeB++OEHLC0t9QMrCCGEEELkJpFxkRmq/yzu2YuF+Fj4pTf8s0O3rE9+qpksvrwgxydAVapUoUqVKinWDxw4EICAgAD9ujFjxvD06VNOnDhBtWrVAOjVqxc+Pj4MGTKES5cuoVKpAFiyZAmBgYF89913DB06FID+/fvTsWNHvvjiC/r27UuJEiWy+OxMzLcneLfSzQt0eTvEhOtueVZ4G6q+o7tTlIMVLFgQDw8PFi9ezOPHj3F2dqZ+/fqsWrWKmjVrJqtbpEgR/P392bt3Lz/++CPR0dEULVqUrl27MmbMmGTJkhBCCCFEbuFg7ZCh+o7WjroX8bHwSy/4Z6duWZKfVOX4BMiQ58+f89NPP+Hh4UGLFi3067Zs2ULDhg31yQ+Ag4MD/fr1Y8KECQQGBuovpNesWYOdnR39+/dPtu/hw4ezceNGfv75Z0aNGpVt52Qytq5Qe7DuvxyiYcOG6epWWLhwYTZt2pSufRYpUoRVq1YZG5oQQgghRI7SyLNRsqGu01Of+Fj4uSdc+V230tZVl/wUrZpFUeZuuTIBWrduHREREQwbNgxLS0tA1yUuNjaW2rVrp6hfq1YtAH0ClJiYyMmTJ/H19UWjST54QM2aNVGpVAQGvrrh3blzh7t37yZbFxQUBIBWqyUuLs7gdomJiahUKhITE199siLLJCVliqKk+lkJkRFarZb4+Hi0Wq25QxF5gLQnYUrSnnIPd1v3dNfVWGp4q1hjEn/qgcXVPwBQbF2J774BpYA3ZOH1TU5oU5k9dq5MgJYuXYpKpeK9997Tr7t//z4A7u4pG03Sunv37gEQFhZGdHS0wbo2NjYULFhQX/dVcUyePNlgWUREBKGhoQbLtFotarWahISEVx5DZB1FUVAUBa1Wm+pnJURGaLVaIiMjURQlxQAtQmSUtCdhStKecocbz24w9vjYdNcfUm4A9hvfx+L2XwAk2rgQ+vYy4tXukMXXNjmhTUVERGRqu1yXAF2+fJmDBw/SpEkTSpUqpV8fFRUF6BKY/0q6y5NUJ626SfWT6qQlICCA5s2bJ1sXFBTEwIEDcXJySjbJ58vCw8NRqVT6u1fCPBRF0Y8kmNpnJURGaLVaVCoVrq6ucoEhjCbtSZiStKec737kfcaeGsvz+OcAVC5QmX+e/mNwSGyNpYZRr4+g48kN+uRHsXUjofsGnApXypZ4c0KbSs/8kIbkugRo6dKlAPTr1y/Zejs7OwBiY1M2kqThkpPqpFU3qX5SnbR4enri6elpsEytVmNtbW2wzMLCItn/hXkkdUFUqVSpflZCZJSVlVWa338hMkLakzAlaU85V2hMKEP/GkpwdDAAdd3rMqfxHKK0UWy5toV9d/bxLO4ZjtaONPJsROsSzXDeNBiu7dbtwNYNVe8tqItUzta4zd2mMpt45aoEKD4+npUrV1KgQAHat2+frKxYsWIABruuJa1L6vLm6uqKra2twbqxsbEEBwfToEEDU4cvhBBCCCFEMlHaKAbvHszNiJsAVC5YmW8afIPaQo1zYiI9wyPo+eDRv6P7RoFDCAT2gxu6Oz/YFYBeW6BI9tz5yQtyVQK0detWHj16xIcffpii+1rlypWxsbHhyJEjKbY7evQoAH5+foDuzouvry+nTp0iNjY22b6OHz+Ooij6ukIIIYQQQmQFbYKW4XuHcz7kPAAlnUoyr8k87NR2cHKV4fkdbx548dquAPTeCoV9sjHq3C9X9cFK6v728tw/SRwcHGjdujX79u3jzJkz+vWRkZEsWbKEsmXLJptLplu3bkRFRaWYMHPWrFlYWVnRtWvXLDoLIYQQQgiR3yUqiXx26DOOPND9eF/IrhCLmi7CVeOqS362fGB4cvuX1RwoyU8m5Jo7QPfv32fnzp3UrFmTypUN92+cPn06e/bsoVmzZowYMQInJycWL17MvXv32LZtm34SVNBNerps2TJGjhzJzZs38fb2Zvv27WzatIlx48ZRsmTJbDozIYQQQgiRnyiKwpeBX7Ljxg4AnKydWOi/kKIORSE6THfnJz0OfQtvDMjxk93nNLkmAVq+fDkJCQkpBj94mZeXF4cOHWL06NHMmDGDuLg4fH192blzJ/7+/snqWltbs3v3bsaNG8fatWsJCQmhTJkyzJkzhyFDhmT16QghhBBCiHxqSdASfrz4I6Ab0W1ek3l4uXrpCk+vffWdnyTaaDjzE9QalEWR5k25JgEaO3YsY8e+elx0b29vNm/enK59uri4MHfuXObOnWtseEIIIYQQQrzShn828N2p7wCwVFnydYOvqVao2osKl7dnbIeXtkkClEG56hkgIYQQQgghcqs/b//JlKNT9MuT6kyiged/Rh6OCc/YTjNaX0gCJIQQQgghRFY78egEo/aPIlHRzUM4ovoI2nm1S1lR45yxHWe0vpAESAghhBBCiKx0OfQyQ/cMJTYhFoBeFXvR16ev4crl38rYziu8bWR0+Y8kQHlMeGw4K8+v5L3f36PL1i689/t7rLqwivBY890e3bdvHyqVKtl/Dg4OVK9endmzZ5OQkKCve+3aNXr06EHhwoWxsbHBy8uLiRMnEhOT8mFARVH4/vvvef3117G1tcXFxYUWLVro530SQgghhDC3u8/uMmj3IJ5pnwHQqnQrPvL7KNnoxMlEh6V/52pbqNrNBFHmL7lmEATxapuubGLasWn6XxeSBD4MZPbJ2Xz2xme0L9veTNHp5l5q2bIliqJw//59li9fzvDhwzl//jyLFi3i0qVL1K5dm/j4eIYMGUKpUqU4cuQIU6dO5dixY+zYsSPZH4vBgwfz/fff07BhQ7788kv9vE4NGjTg999/p2HDhmY7VyGEEEKIkOgQ3t/9Pk+inwBQz70eU+pOwUKVyj2IwKWw/6v0H+Ctr8DWxfhA8xlJgPKITVc2MeHwhFTLYxNi9eXmSoJ8fX1599139cuDBg3C29ubJUuWMHXqVEaPHk14eDgHDx6kTp06AAwcOJDy5cszduxYfvzxR/32p0+f5vvvv6dFixZs375dnxgNHDiQChUqMGDAAC5duoSFhdzkFEIIIUT2e659zuA9g7kVcQuAKgWrMLPBTNQWasMbBK2HbR+9WK72Lpxbb3hIbLWtLvnx7ZkFked9cnWYB4THhjPt2LR01f3i2Bdm7Q73MicnJ2rXro2iKFy/fp29e/dSrlw5ffKTpE+fPgAsW7ZMv27v3r0A9O7dO9ldIRcXF9q2bcuVK1c4dOhQ1p+EEEIIIcR/aBO0DN87nAshFwAo5VyKeU3mYae2M7zBP7/DpoGAoltuPh3azYOPLulel6wPRaro/t9iBoy8KMmPEeQOUB6w5dqWFN3eUhOTEMPWa1t5t+K7r66cxRRF4erVqwAULFiQ2NhY7OxS/mFIWnf8+HEURUGlUhEbG5uszFD9o0ePUr9+/awKXwghhBAihUQlkc8OfsbRB7pnkgvbFWah/0JcNC6GN7h5CH7pBYnxuuUGn0LtwbrXtq6610nLwiQkAcph+u3qx4PIBxna5lHUowzVn3VyFmsvrc3QNkUdirKk2ZIMbfNfUVFRBAcHoygKDx48YM6cOZw5c4ZatWpRtmxZfHx8uHDhAg8fPqRIkSL67ZLu9kRGRhIWFoabmxs+Pj4A/Pnnn7Rp00ZfV1EU/vrrLwDu3LljVLxCCCGEEBmhKAr/O/4/dtzcAYCTtRMLmy6kqENRwxvcPw1r33nRza3mQGg4JnuCzcckAcphHkQ+4Paz21l6jNiE2Cw/hiETJ05k4sSJ+mULCwvatGnDokWLAPjoo4/o0aMHbdu25csvv6RkyZIcO3aMDz/8ELVajVarJSoqCjc3N9566y0qVqzI/PnzKVasGB06dCAqKopvvvmGc+fOAbqESwghhBAiuywOWsyaS2sA0FhqmNdkHmVcyhiu/OQfWN0BYiN0y1Xe0XVvS210OGEykgDlMKn+QpCGR1GP0t0FDsDG0obCdoUzdIzMxPVfAwYMoHPnzqhUKuzt7SlXrhxubm768u7duxMSEsL48eP1I7hZW1szduxYtm3bRmBgIE5OTgBYWVmxY8cOevfuzaeffsqnn34KQJUqVZgxYwYfffSRvq4QQgghRFZb/8965pyaA4ClypKZDWdSrVA1w5Wf3oFV7SAqRLdcviW0nQsyeFO2kAQoh8lMN7NVF1bxZeCX6a4/3He4WZ4BKlu2LP7+/mnWGTp0KAMGDCAoKIjY2Fh8fHxwcXFh3rx5FC1aNFlSU7x4cfbu3cvt27e5efMmBQoUwMfHh/nz5wNQoUKFLD0fIYQQQgiAPbf2MPXoVP3ylLpTeNPjTcOVI5/okp+Ie7rlkvWh0zKwTGV0OGFykgDlAW3KtGH2ydnpuguksdTQxqvNK+uZk42NDX5+fvrlv//+mydPnhAQEGCwfvHixSlevLh+efv27VhYWNC8efMsj1UIIYQQ+dvfD/9m1P5RJCqJAIysPpI2ZVK51op+CqvbQ4huECiK+UK3taDWZE+wApBhsPMEZxtnPnvjs3TVHfvGWJysc0/XsJiYGIYPH46NjQ0ff/zxK+tv2bKFbdu20bNnT0qUKJENEQohhBAiv7oceplhfw4jLjEOgN4Ve9O3Ul/DleOidAMePAzSLb9WAd7dADaO2RStSCJ3gPKIpMlNpx2bZvBOkMZSw9g3xpptEtT0OH/+PH369KFVq1Z4eHjw6NEjVqxYwbVr11i2bFmKLm0BAQEoikK1atWwtbXl4MGD/Pjjj9SoUYPZs2eb6SyEEEIIkR/cfXaX93e/zzPtMwBal27NSL+RhivHx8EvPeH2Ed2yS3HouQns3AzXF1lKEqA8pH3Z9jQu3pgt17aw784+nsU9w9HakUaejWhdpjXONs7mDjFNBQsWxMPDg8WLF/P48WOcnZ2pX78+q1atombNminq16xZk0WLFrFhwwbi4uLw8vJiypQpjBgxAltbWzOcgRBCCCHyg5DoEAb+MZDg6GAA6rvXZ3LdyVioDHSuSkyATQPg6m7dskNh6LUZnIplY8TiZZIA5THONs70rNiTnhVzzuzADRs2RFGUV9YrXLgwmzZtSvd+Bw4cyMCBA40JTQghhBAiQ55rnzN4z2D9lCJVXqvC1w2+Rm1hYBADRYHfRsD5f69vNM7w7kZwK52NEYv/kmeAhBBCCCGESIe4hDg+3PshF0IuAFDauTTzGs/DTm1neIPdk+DkCt1rtR30WA9FKmVPsCJVkgAJIYQQQgjxColKIp8d/IxjD44BUNiuMAubLsRF42J4g4PfwqFZuteW1vDOj+CZsku/yH6SAAkhhBBCCJEGRVGYcXwGO2/uBHSPHCxsupAi9kUMb/D3D7q7PwAqC+i4FMo0zp5gxStJAiSEEEIIIUQaFp1dxNpLawHdyLpzG8+ljEsZw5WD1sNvL40G12YOVMzZczDmN5IACSGEEEIIkYp1/6xj7um5AFiqLJnZcCbVClUzXPmfXbBpIPDv4E/Nv4DX382WOEX6yShwQgghhBAiXwuPDWfz1c3su7uPyLhIHKwdaOTZCGdrZz4/+rm+3pS6U3jT403DO7l1WDfXT2K8bvnNUVB7SDZELzJKEiAzUKlUxMfHk5iYiIWF3IQzl8TERBITE7G0tDR3KEIIIYQwk01XNhmcSD7wYWCy5Y+qf0SbMql0ZXtwBtZ0hfgY3XLNgdBobFaEK0xArr7NwMHBAUVRuHfvHnFxcemaI0eYjqIoxMXFcf/+fRISErC3tzd3SEIIIYQwg01XNjHh8IQUyc9/1S1Wlz6V+hguDL4CqzpAbIRuuUpXaDEDVCrTBitMRu4AmUGBAgWIiooiMjKSyMhIVCoVFhYWqOSLkuUURSExMRFFUVAUBQsLC1xcXMwdlhBCCCGyWXhsONOOTUtX3ROPThAeG46zjXPygqd3YGU7iArWLZd7C9rOA+nhk6PJp2MGarWaUqVKUbhwYezs7FCr1ZL8ZBOVSoVarcbOzo6CBQvi6uqKWm1g5mYhhBBC5Glbrm155Z2fJDEJMWy9tjX5ysgnsKodRNzVLZesD52Xg6VcV+R0cgfITFQqFW5ubri5uZk7lHwrLi6O0NBQc4chhBBCCDPYe2dvhuu/W/HfEd1iwmF1Bwi5qlsu9jp0WwtqjYmjFFlB7gAJIYQQQoh8JzIuMkP1n8U9072Ii9INePDwrG75tQrQYwPYOJo4QpFVJAESQgghhBD5joO1Q4bqO1o7Qnwc/NILbh/RrXQpDj03gX2BLIhQZBVJgIQQQgghRL7TyLNRxup7NNBNcnr1D90K+0LQ81dwKmb64ESWkgRICCGEEELkO23KtMHG0iZddTWWGtpcPQbnN/67wll356dAmSyMUGSVXJMAhYaG8vHHH+Pl5YVGo+G1116jUaNGHDhwIFm9Y8eO4e/vj6OjI05OTrRo0YLTp08b3Of9+/fp1asXr732Gra2tvj5+bFu3bpsOBshhBBCCGFOzjbOdC3XNV11xzr64HRqtW5BbQc91kORSlkYnchKuWIUuFu3btGwYUMiIyMJCAigXLlyhIeHc/bsWe7du6evd/ToURo2bIi7uztTpkwBYO7cudSvX5/Dhw9TuXJlfd3Q0FDq1avH48ePGTlyJB4eHqxZs4YuXbrwww8/0Ldv32w/TyGEEEIIkT3CY8PZeXNnmnU0lhrGutWg/fEfdSss1PDOj+BZMxsiFFklVyRA7777LvHx8Zw9e5aiRYumWm/YsGFYW1uzf/9+3N3dAejSpQve3t589NFH7Nq1S193xowZ3Lhxgy1bttC6dWsAAgICqF27Nh9//DGdO3fGwSFjD8cJIYQQQoicT1EUph6dyuPoxwA082hItdg49j0+wTMlHkeVFY0K+dHasRzOeybrNlJZQKelUKaxGSMXppDjE6D9+/dz8OBBvvvuO4oWLYpWq0Wr1WJnZ5es3tWrVwkMDOS9997TJz8A7u7udO7cmWXLlvHw4UOKFCkCwJo1ayhTpow++QGwtLRk6NCh9OrVi+3bt9OlS5fsOUkhhBBCCJFttt3Yxu83fwegiNqRiUfX4aSNpufLlW5eSb5R6++gYttsi1FknRyfAG3fvh2A4sWL07p1a3bs2EFCQgJly5ZlwoQJvPuubkKqwMBAAGrXrp1iH7Vq1eKHH37gxIkTvP322zx48IB79+7Ro0cPg3WT9veqBOjOnTvcvXs32bqgoCAAtFotcXFxGTxbkZ20Wi3x8fFotVpzhyLyCGlTwpSkPQlTkvb0woPnD5h2dJp+edrtqzhqY9PcJsG7HQmVuoJc2+nlhDaV2WPn+ATo8uXLAPTv35+yZcuyYsUK4uLimDlzJj179kSr1dK3b1/u378PkOzuT5KkdUnPC2WkblqWLl3K5MmTDZZFREQQGhr6yn0I89FqtURGRqIoCmq12tzhiDxA2pQwJWlPwpSkPekkKomM+3sckVrdJKi9Ip5TIyYWVRrbKIDFlZ0EP7iBYuOcLXHmBjmhTUVERGRquxyfAD17ppt119HRkb1792JtbQ1Au3btKF26NGPHjqV3795ERUUBYGOTcjhDjUYDoK+TkbppCQgIoHnz5snWBQUFMXDgQJycnHBzc0vXOQrz0Gq1qFQqXF1d8/U/BsJ0pE0JU5L2JExJ2pPOj5d+5HToaQDKqF0ZFno7zeQH0JXHx1Dgzi4Saw7M4ghzj5zQppycnDK1XY5PgGxtbQHo1q2bPvkBcHV1pU2bNqxcuZLLly/rnwmKjU15CzMmJgZAXycjddPi6emJp6enwTK1Wp0sXpEzWVlZyWclTEralDAlaU/ClPJ7e7oSdoW5Z+YCYGVhxYw4DTZK+re3uvo71BuaRdHlTuZuU5lNvHL8PEAeHh4A+sELXpY0IlxYWBjFiulm4TXUdS1pXVL3tozUFUIIIYQQuVtcQhxjDowhLlH3DM8H1T6gQkx0xnYSE54FkQlzyPEJUM2aunHW/zvYwMvrChUqRI0aNQA4cuRIinpHjx5FpVJRvXp1QJc4ubu7c/ToUYN1Afz8/ExzAkIIIYQQwqzmnZ7H5TDdc+W+hXzp49MHNBl8niej9UWOleMToHbt2uHo6Mjq1auJjIzUr3/w4AG//vor5cqVw8vLCy8vL/z8/Fi3bp1+kAPQDXiwbt06GjdunOwuUrdu3bh27Rpbt27Vr0tISGDOnDm4uLjQsmXL7DlBIYQQQgiRZU48OsGyc8sAsFfb80X9L7C0sITyGbzWq/B2FkQnzCHHJ0Curq58/fXX3Lt3j1q1avHNN98wY8YMatWqRVxcHHPmzNHXnT17NrGxsdSvX59Zs2Yxa9Ys6tevT2JiIjNnzky239GjR1OiRAm6d+/OxIkTWbRoEf7+/gQGBvL111/j6OiY3acqhBBCCCFMKDIuks8OfoaC7mGf0TVH4+7w72MO1bqBlSZ9O1LbQtVuWRSlyG45fhAEgAEDBlCwYEG+/PJLxo8fj4WFBbVr12bNmjXUrVtXX69OnTrs27ePcePGMW7cOFQqFXXq1GHdunVUrVo12T4LFCjAoUOHGD16NPPmzSMyMpKKFSvy008/0bVr1+w+RSGEEEIIYWIzjs/gXqTu+e4mxZvQtsxLE5nauoJHDbh54NU7eusrsHXJmiBFtssVCRBAhw4d6NChwyvr1a5dmz179qRrn+7u7qxatcrY0IQQQgghRA6z+9ZuNl/bDEABTQEm1J6ASvXSoNcXf3t18qO21SU/vj2zMFKR3XJNAiSEEEIIIUR6BEcHM/nIi8nqp9SdgpvmpfkZw+/C5iEvltsvgqgQuLxdN9qbxln3zE/Vd3R3ikSeIgmQEEIIIYTIMxRFYcKhCTyNfQpAl3JdeNPjzRcVEhNg4wCI0ZVTox9U/ffxh9qDszVWYR45fhAEIYQQQggh0mvdP+s4cE/Xta24Y3E+8vsoeYUDM+HWId3rQhWh2efZHKEwN0mAhBBCCCFEnnAz/CZf//01AJYqS6bXn46d2u5FhdtHYd903WsrDXT6Qfecj8hXJAESQgghhBC5XnxiPGMPjiU6PhqA/lX6U+W1Ki8qRIfBhn6gJOqWW0yHQt5miFSYm1HPAGm1Wvbu3cu+ffs4f/48jx8/RqVS8dprr1GpUiUaNGhAo0aNUKvVpopXCCGEEEKIFBYHLSYoOAiASgUqMaDKgBeFigJbhkH4Hd2yd2uo3tcMUYqcIFMJ0KNHj/jmm29Yvnw5wcHBKIqClZUVbm5uKIrC33//zdatW5kxYwYFCxakb9++jBgxgsKFC5s6fiGEEEIIkc+dCz7HwjMLAdBYavii/heoLV76Af7kCri4RffayQNafwcvD4kt8pUMd4GbOnUqZcuWZcGCBbz11lusWbOGmzdvEhcXx8OHD3n06BFxcXHcuHGDNWvW0Lx5c+bNm0fZsmX5/HN5yEwIIYQQQphOlDaKMQfGkKAkAPCR30eUci71osLjS7BjtO61ygI6LgY7NwN7EvlFhu8Aff/990ybNo2AgADs7OxSrVeiRAlKlChB165diYqKYvHixfzvf/9j3LhxRgUshBBCCCFEkm9OfMPNiJsA1C1Wl67lu74o1MbA+vfg3+eCaPAplKiT/UGKHCXDCdC1a9fQaDQZ2sbOzo4PP/yQgQMHZvRwQgghhBBCGHTg7gF+vvwzAM42zkypOwXVy13b/hgPj8/rXhevA/U/NkOUIqfJcBe4jCY/ptpWCCGEEEKIJE9jnjLh8AT98sTaEylkV+hFhUvb4fgi3WuNC3RYBJZGjf8l8ogsaQXx8fFs3ryZ0NBQWrduTZEiRbLiMEIIIYQQIh9SFIUpR6cQHB0MQJsybWhaoumLChH3YfPgF8tt5oCLZzZHKXIqo+cBGjVqFDVq1NAvK4qCv78/Xbp0YeDAgVSuXJlr164ZexghhBBCCCEA2Hp9K3/c+gOAovZFGV1z9IvCxATYOEA37w+A33tQsY0ZohQ5ldEJ0M6dO6lfv75+eevWrezfv59PPvmENWvWADBjxgxjDyOEEEIIIQT3Iu/xxbEvAFChYlq9aThaO76ocPAbuHlA9/o1b2j+hRmiFDmZ0V3g7ty5Q9myZfXLW7dupVSpUvqk5/z58/z444/GHkYIIYQQQuRzCYkJfHbwM55rnwPQ26c3NYq86InE7WOwd7rutZUGOv0AalszRCpyMqPvAMXFxWFl9SKP2rt3L/7+/vrl0qVL8+DBA2MPI4QQQggh8rlVF1Zx4tEJAMq6lmXo60NfFEY/hQ394N/5gGg+DQpXzP4gRY5ndALk6enJkSNHAN3dnuvXr9OgQQN9+ePHj3FwcDD2MEIIIYQQIh+7HHqZ7059B4DaQs30etOxtrTWFSoKbP0Qwm/rliu0Ar8AM0Uqcjqju8C98847TJ06lcePH3P+/HmcnJxo2bKlvvzUqVOUKVPG2MMIIYQQQoh8KjYhljEHx6BN1AIw7PVhlHcr/6LCqVVw4Vfdayd33ahvL88HJMRLjL4DNGbMGPr06cORI0dQqVSsXLkSFxcXAMLDw9myZQtNmjQx9jBCCCGEECKfmntqLlfCrgDgV9iPnhV7vih8chl2fKp7rbLQzfdj52aGKEVuYfQdIBsbG5YuXcrSpUtTlDk6OvLgwQPs7OyMPYwQQgghhMiHAh8GsuL8CgAc1A5MqzcNSwtLXaE2BtYHgDZKt/zmJ1CynpkiFblFlk6Ha2FhgbOzc1YeQgghhBBC5FHP4p7x2cHPUFAAGPvGWIo5FHtRYfdEeBSke+1ZC94cZYYoRW6T4QRo5cqVmTpQr169MrWdEEIIIYTIn2Ycn8GD57rRhJuWaEqr0q1eFF7eAce+173WOEPHxWCZpb/tizwiw62kT58+qFQqFEXRr1O99JBZ0nrVfx48kwRICCGEEEKk166bu9hybQsAr9m+xoRaE15cX0Y8gF8Hv6jc+jtwKW6GKEVulOEEaO/evcmWtVotn376KSEhIbz//vtUrKgbb/38+fMsXLiQggUL8r///c800QohhBBCiDzvcdRjphydol+eUncKLhoX3UJiAmzsD9GhuuXqfcCnXXaHKHKxDCdAL8/xAzBhwgRiYmIICgrC0dFRv75NmzYMGTKEWrVqceDAARkJTgghhBBCvJKiKEw4NIHw2HAAupbvSj33lwY2ODQLbh7QvS5YHppPz/4gRa5m9DDYy5cvp2/fvsmSnyROTk707duXZcuWGXsYIYQQQgiRD/x8+WcO3T8EQEmnknzk99GLwjuB8Oc03WtLG+j0A1jLaMMiY4xOgJ48eUJCQkKq5QkJCTx+/NjYwwghhBBCiDzuRvgNZv49EwBLlSXT60/H1spWVxgTDhveA+Xf687m06BIJTNFKnIzoxOgChUqsHjxYsLCwlKUhYaGsnjxYry9vY09jBBCCCGEyMO0iVrGHBhDTEIMAAOrDqRSwX8THEWBrcPh6W3dcvmWUKOfeQIVuZ7RYwVOmjSJDh06UL58ed577z3Kly8PwKVLl1i2bBmhoaGsX7/e6ECFEEIIIUTetejsIs6HnAegcsHK9K/c/0Xh6R/h/Ebda8di0HYe/GfEYSHSy+gEqG3btqxfv54PP/yQL7/8MlmZh4cHP//8M+3atTP2MEIIIYQQIg8Ijw1n89XN7Lu7j8i4SBysHSjvWp41F9cAYGtly/T607Gy+PcyNfgKbP/k361V0GER2LmZJ3iRJ5hktqj27dvTtm1bTpw4wfXr1wEoXbo01atXx8LC6F52QgghhBAiD9h0ZRPTjk0jNiE22frAh4H61x/7fUwJpxK6hfhYWN8XtFG65Tc/hlL1sytckUeZLDuxsLCgRo0adO3ala5du1KjRg2TJT8qlcrgfw4ODinqXr58mXbt2uHq6oq9vT3169fnzz//NLjf8PBwhg4diru7OxqNBh8fHxYsWJBsklchhBBCCGG8TVc2MeHwhBTJz39ZqV76fX73JHgYpHvtURMajM66AEW+YZI7QEmioqIICQkxmEAUL27c7Lz169dnwIABydap1epky9euXaNOnTpYWVkxatQonJ2dWbx4Mc2bN2fHjh34+/vr68bFxdG0aVNOnTrF0KFD8fb2ZseOHQwePJhHjx4xadIko+IVQgghhBA64bHhTDs2LV11px+fTpMSTXC+dQyOztettHGGjkvA0qSXriKfMroVJSYm8uWXXzJnzhwePnyYar20hspOj9KlS/Puu++mWWfMmDE8ffqUEydOUK1aNQB69eqFj48PQ4YM4dKlS6j+fWBuyZIlBAYG8t133zF06FAA+vfvT8eOHfniiy/o27cvJUqUMCpmIYQQQggBW65teeWdnyQxCTFsvfAj7/4x88XKNrPBVa7LhGkYnQCNHj2ar7/+Gh8fHzp27EiBAgVMEZdBcXFxxMXFGez69vz5c7Zs2ULDhg31yQ+Ag4MD/fr1Y8KECQQGBlKzZk0A1qxZg52dHf3790+2n+HDh7Nx40Z+/vlnRo0alWXnIoQQQgiRX+y9szdj9c8u492oYN2Cby/waZ8FUYn8yugEaPXq1bRo0YLt27ebIp5UrV+/ntWrV5OQkMBrr71G165d+fzzz3F2dgbg7NmzxMbGUrt27RTb1qpVC0CfACUmJnLy5El8fX3RaDTJ6tasWROVSkVgYGCK/fzXnTt3uHv3brJ1QUG6fqparZa4uLhMnavIHlqtlvj4eLRarblDEXmEtClhStKehCmZuz1FxEZkqP6zf+srBcqibTwF5JoqxzF3m0qKITOMToDCwsJo27atsbtJU82aNencuTNeXl5ERESwfft25s6dy19//cXhw4dxcHDg/v37ALi7u6fYPmndvXv39DFHR0cbrGtjY0PBggX1ddOydOlSJk+ebLAsIiKC0NDQdJ+jyH5arZbIyEgURUnxPJkQmSFtSpiStCdhSuZuTxo0r670EsfERBQLNSGNviY+MhZIX/c5kX3M3aZAd72dGUYnQJUrV+bBgwfG7iZNx44dS7bcq1cvqlSpwmeffcbs2bP57LPPiIrSDY9oY2OTYvukuzxJddKqm1Q/qU5aAgICaN68ebJ1QUFBDBw4ECcnJ9zcZIz6nEyr1aJSqXB1dZWLC2ES0qaEKUl7EqZk7vbkX9KfM2Fn0l2/UVQ0CU0m41SuThZGJYxh7jYF4OTklKntjE6AJk6cSEBAAAEBAXh6ehq7u3T75JNPmDx5Mtu2beOzzz7Dzs4OgNjYlL8QxMTEAOjrpFU3qX5SnbR4enqmes5qtRpra+tXn4gwKysrK/mshElJmxKmJO1JmJI521P78u2Ze3buqwdCUBQ0ikKbwrWwqjMY/h28SuRM5v4bldnEy+gE6MSJE5QoUYKKFSvSvn17SpUqhaWlZbI6KpWK8ePHG3uoZNRqNcWKFSM4WPeAXLFixQAMdl1LWpfU5c3V1RVbW1uDdWNjYwkODqZBgwYmjVcIIYQQIr9ysnaiYoGKnHp8KvVKigIqFWMjE3DqslCSH5FljE6AXp4vZ/Xq1QbrZEUCFBMTw927d/UDHFSuXBkbGxuOHDmSou7Ro0cB8PPzA3STtvr6+nLq1CliY2OTdYU7fvw4iqLo6wohhBBCCOOs+2fdi+Tn30TnvzSKwtjgUNp3WAv2WTeqsBBGJ0A3btwwRRypCgkJMTi09vjx44mPj6d169aAbrjr1q1bs3HjRs6cOUPVqlUBiIyMZMmSJZQtW1Y/BDZAt27dOHToEIsWLdLPAwQwa9YsrKys6Nq1a5aelxBCCCFEfnD2yVmmH58OgEpRmPk4mIdWVuyzs+WZhQWOiYk0ioqmdWQkzokKPL1t5ohFXmd0ApTVk4V+/vnnHD16lEaNGlG8eHEiIyPZvn07e/fu5Y033kiWvEyfPp09e/bQrFkzRowYgZOTE4sXL+bevXts27ZNPwkq6CY9XbZsGSNHjuTmzZt4e3uzfft2Nm3axLhx4yhZsmSWnpcQQgghRF4XHB3MiH0jiE+MB2BYWDhNo6IB6BnxzPBGOz4B71Zg65pdYYp8xugE6GUhISH6O0KlSpUyyaSoDRs25MKFC6xYsYKQkBAsLS0pW7Ys06ZNY+TIkcnm8fHy8uLQoUOMHj2aGTNmEBcXh6+vLzt37sTf3z/Zfq2trdm9ezfjxo1j7dq1hISEUKZMGebMmcOQIUOMjlsIIYQQIj+LT4xn1P5RPI56DEDj51EEhKdj2GJtNJz5CWoNyuIIRX5lkgTozJkzDBs2jIMHDyZbX79+fb777juqVKmS6X23bds2Q/MMeXt7s3nz5nTVdXFxYe7cucydOzez4QkhhBBCCANmnZhF4EPdxPIlFSumPQkh3cMaXNomCZDIMkYnQOfOnaNevXrExMTQtm1bfHx8ADh//jxbt26lfv36HD58WL9eCCGEEELkbTtv7GTFhRUA2FrZMivSCgdFSf8OYsKzKDIhTJAATZgwAbVazaFDh1Lc6Tl37hxvvvkmEyZMYMOGDcYeSgghhBBC5HBXwq4w4fAE/fLndT+nzL7vMrYTjbOJoxLiBQtjd7B//36GDBlisJtbpUqVGDx4MH/99ZexhxFCCCGEEDncs7hnjNg3guh43UAHfX360qxkMyjfMmM7qvB2FkQnhI7RCdDz588pUqRIquVFixbl+fPnxh5GCCGEEELkYIlKImMPjuVWxC0AahapyTDfYbrCat3AUp2+HaltoWq3LIpSCBMkQKVLl+a3335Ltfy3336jdOnSxh5GCCGEEELkYIvPLmbfnX0AFLEvwlcNvsLK4t+nLZ49JN2XnW99BbYuWRChEDpGJ0C9evXi999/p3v37pw/f56EhAQSEhI4d+4cPXr0YNeuXfTp08cEoQohhBBCiJzo4L2DzDs9DwC1hZpvG36Lm8ZNVxgVCmu7QUKsblllaXgnaltoMxd8e2ZDxCI/M3oQhI8//piTJ0/y008/8fPPP2NhocupEhMTURSFLl268NFHHxkdqBBCCCGEyHnuPrvLp/s/RUE3yttnb3xGpYKVdIUJ8bD+PQjTzRNJqQbQ8QcI+gUub9eN9qZx1j3zU/UdmfxUZAujEyBLS0t+/vln+vXrx6+//qqfCLV06dK0a9cuxQSkQgghhBAib4iOj2bEvhFExOkmOO1YtiMdy3V8UeGPCXB9r+61a0novBzs3KD2YN1/QpiBSSZCBWjatClNmzY11e6EEEIIIUQOpigKU49M5VLoJQAqFajEmDfGvKhweg0c1XWLQ20P76zVJT9CmJnRzwCFhoZy9uzZVMvPnj1LWFiYsYcRQgghhBA5yE+Xf2Lr9a0AuNq48m2jb7GxtNEV3v0btg5/UbnDQihcMfuDFMIAoxOgUaNGpTnIQd++fRkzZkyq5UIIIYQQInc5/fg0Xx7/EgALlQVfNfiKIvb/TosS8QB+6vFi0IOGY8G7tZkiFSIloxOgvXv30rp16o26TZs27N6929jDCCGEEEKIHCA4OpiR+0YSr8QDMNx3OG8UfUNXqI2Bn9+FyIe6Ze/W8OYnZopUCMOMToDu379P8eLFUy338PDg/v37xh5GCCGEEEKYmTZRy0f7PuJJ9BMAmpZoSh+fPrpCRYHfRsC9v3XLhXyg3fdgYfTlphAmZXSLtLe359atW6mW37p1CxsbG2MPI4QQQgghzGzm3zM5+fgkAKWdSzO17lRUKpWu8OgCOLNG99rWFbqtARsHM0UqROqMToDeeOMNVqxYwbNnz1KUPXv2jJUrV1KzZk1jDyOEEEIIIcxo2/Vt/HjxRwDs1fbMajQLe7W9rvDaXtj1me61yhI6r9ANey1EDmR0AvTxxx9z9+5d6tSpw/r167l69SpXr15l/fr11KlTh7t37/LJJ9L3UwghhBAit7oceplJhyfpl6fVnUYp51K6hZBrsK4PKIm65RYzoHSDbI9RiPQyeh6gRo0aMX/+fD788EO6du2arEytVjN37lyZDFUIIYQQIpcKjw1n+N7hxCTEANCvcj+alGiiK4x9Bj91h5inuuXXe0LN/uYJVIh0MslEqAMHDqRVq1b88ssvXL16FYBy5crRqVMn3N3dTXEIIYQQQgiRzRKVRMYcGMPdyLsA1C5amw+qffBvYSJsHAhPdBOh4vkGvD0Tkp4JEiKHMkkCBODu7s6IESNMtTshhBBCCGFm35/5ngP3DgBQzL4Y/3vzf1haWOoK902Hy9t0rx2LQZdVYCUDX4mcz2QJ0PPnzzly5AiPHj3C39+fwoULm2rXQgghhBAim/115y8WnFkAgLWFNd82+hZXjauu8PyvsF83ESpWGnjnR3CUaz+RO5hkYPYFCxbg7u5Os2bN6NWrF+fPnwfg8ePHaDQaFi9ebIrDCCGEEEKIbHA74jZjDozRL4+vPZ6KBSrqFh4Gwa+DXlRuMwfcfbM5QiEyz+gEaMOGDQwZMoRGjRqxZMkSFEXRlxUqVIgWLVrw66+/GnsYIYQQQgiRDaK0UQzfN5xnWt0UJ13KdaGdVztd4fMQWNsdtFG65TrDoEoX8wQqRCYZnQB99dVXNGrUiE2bNtG2bdsU5X5+fpw7d87YwwghhBBCiCymKAqTjkziStgVAKq8VoVPa36qK0zQwrreEH5bt+zlD/6TzBOoEEYwOgEKCgqiffv2qZYXLVqUx48fG3sYIYQQQgiRxX68+CM7buwAwE3jxjcNvsHa0lpXuHMM3NQNiIBbGei4BJIGRBAiFzE6AbK0tCQxMTHV8vv372Nvb2/sYYQQQgghRBb6++HfzPx7JgCWKku+bvA1he3/HdjgxHII/PeZbhsn6PYT2LqaJ1AhjGR0AlS1alV+//13g2WJiYmsW7eOGjVqGHsYIYQQQgiRRR5HPebjvz4mXokHYGT1kdQo8u/1260jsO3jf2uqdHd+XitnnkCFMAGjE6APPviAHTt2MH78eEJDQwFd4nP58mU6d+7M+fPnGTZsmNGBCiGEEEII09MmaBm5byQhMSEAtCjZgp4Ve+oKw+/CLz0hUatbbjIByjU3U6RCmIbR8wB17dqVoKAgpk2bxvTp0wFo0aIFiqLoHqSbNIm33nrL6ECFEEIIIYTp/S/wf5x5cgYALxcvJteZjEqlgrgo+Kk7PH+iq+jTAerJpPf5XXiUlnUn7vDH+YeEPY/B1V5Ds0pF6eTrgbOd2tzhpYtJJkL9/PPP6dChAz/++COXLl1CURTKli1Lz5498fPzM8UhhBBCCCGEiW2+upmfL/8MgIPagVmNZmGntgNFgS1D4YEuMaJIFWg7D1QqM0YrzO2XwDtM2HyOmPiXnv9/Es2xm2F8tfMSU9pWoksNT/MFmE4mSYAAfH198fWVSbCEEEIIIXKDiyEXmXp0qn55ev3plHAqoVs4NBvOrde9tisI76wBazszRClyil8C7zBqw9lUy2PiE/XlOT0JMvoZoNScOHGCP/74g5iYmKw6hBBCCCGEyISnMU8ZsW8EsQmxAAysMpCGng11hf/sgt2TdK8trKDrKnDJ2Re0ImuFR2mZsDl983pO2HKO8ChtFkdkHKPvAH399df89ddfbN26Vb+ue/fu/Pyz7nZq6dKlOXjwIIULFzb2UEIIIYQQIgPCY8PZfHUzf97+k/DocJxtnWlUvBH77+7nXuQ9AOq512NQ1UG6DYKvwIYAQNEtt/wKStQxT/Aix1h/8m7ybm9piNEmsuHkXd6rVyqLo8o8o+8A/fTTTxQvXly//Oeff/LTTz/xzjvvMG3aNB48eMCXX35p7GH0oqKiKF26NCqVig8++CBF+eXLl2nXrh2urq7Y29tTv359/vzzT4P7Cg8PZ+jQobi7u6PRaPDx8WHBggUoimKyeIUQQgghzGHTlU00WdeEr/7+ihOPT3D12VVOPD7B139/zfGHxwFwd3BnRv0ZWFpYQvRTWPsOxEboduAXAH7vme8ERI7xx4WHGaz/KIsiMQ2j7wDdvHmTPn366Jd//fVXihYtyurVq1GpVAQHB7NlyxZmzpxp7KEAmDBhAk+ePDFYdu3aNerUqYOVlRWjRo3C2dmZxYsX07x5c3bs2IG/v7++blxcHE2bNuXUqVMMHToUb29vduzYweDBg3n06BGTJk0ySbxCCCGEENlt05VNTDg84ZX12pRpg7ONMyQmwIZ+EHJVV1CiLrSYkcVRitziWUx8hupHxOTsLnBG3wF6/vw5tra2+uU///wTf39/3fCJQMWKFbl3756xhwHg5MmTzJo1i8mTJxssHzNmDE+fPuX3339nzJgxDB48mAMHDlCsWDGGDBmS7M7OkiVLCAwM5JtvvuGbb76hf//+bNy4kQ4dOvDFF19w69Ytk8QshBBCCJGdwmPDmXZsWrrqLju3jPDYcNgzBa7+oVvp7AldVoKVdRZGKXITK4uMjf7npMnZw2EbnQC5u7sTFBQEwK1bt7hw4QINGjTQl4eFhWFjY2PsYUhISKB///60aNGCDh06pCh//vw5W7ZsoWHDhlSrVk2/3sHBgX79+vHPP/8QGBioX79mzRrs7Ozo379/sv0MHz4crVarf4ZJCCGEECI32XJti35wg1eJSYhh64GpcGiWboWVrW7EN/uCWRegyDVitAnM3HWZoHvhGdquacWc/ey/0V3gWrduzfz584mPj+fYsWPY2Njw9ttv68vPnTtHyZIljT0M3377LZcuXWLDhg0Gy8+ePUtsbCy1a9dOUVarVi0AAgMDqVmzJomJiZw8eRJfX180Gk2yujVr1kSlUiVLllJz584d7t69m2xdUjKo1WqJi4tL17kJ89BqtcTHx6PV5uzbtCL3kDYlTEnak8isPbf2ZKj+n9e28u6/r+NbfUdigQog1zD53qGrIUz87SK3Q6MztJ1GbUGbyoWy5To4s38fjU6AJkyYwNmzZ5k/fz42NjbMmjVLP+JbdHQ0mzZtIiAgwKhj3Lhxg4kTJzJhwgRKlizJzZs3U9S5f/8+oLsj9V9J65K64oWFhREdHW2wro2NDQULFkxXt72lS5em2h0vIiKC0NDQV+5DmI9WqyUyMhJFUVCrc/atWpE7SJsSpiTtSWRWeHTGfq2P/Ld3U6Tv+0QWeRPk+iVfC3muZfb+O+y6HKZfZ6u2oF4pZ/74JyyNLXU+auhJfPQzMpg3ZUpERESmtjM6AXJ1dWXPnj1ERERga2ub4o/0X3/9haencWPHv//++5QuXZqRI0emWicqKgrAYHe7pLs8SXXSqptUP6lOWgICAmjevHmydUFBQQwcOBAnJyfc3NxeuQ9hPlqtFpVKhaurq1xcCJOQNiVMSdqTyCxnW2d4lv76jomJJJZtjnXzybipsmyKSJHDJSYq/HLiHl/9cSXZoAf+3q8xvmUFijprWH/yHpN/u0SsgSGxNWoLJrxdgU6+KW8wZBUnJ6dMbWd0ApRWALa2tlStWtWo/a5evZo//viD/fv3p/kPgJ2dbnbi2NiUfV6TJmNNqpNW3aT6SXXS4unpmWpyp1arsbaWhwdzOisrK/mshElJmxKmJO1JZEaTEk048fhEuus3Ujli0XEJ1jaaV1cWedLFBxF8timIk7ef6tcVc9YwuW2lZM/zdK9VirereLD+5F3+OP+A0MgY3Bw0NPMpSkdfD5ztsvfHmsz+OJThBOiff/6hXLlymTrY5cuXKV++fLrrx8bGMnLkSFq2bEmRIkW4elU3NGNS97Tw8HCuXr1KwYIFKVasWLKylyWtS+ry5urqiq2trcG6sbGxBAcHJxvIQQghhBAit2hTpg2zT85+9UAIioJGgTZtl4Emc7+ki9wtKi6e2buvsOTgDRISdaMlW1qoeK9uSYb7l8PeJmWq4GynJqBeKXrWdCc0NBQ3N7dc9yNNhu9z+vj48N5773Hu3Ll0b3Pq1Cl69uxJpUqVMnSs6Ohonjx5wrZt2yhbtqz+v4YNGwK6u0Nly5ZlyZIlVK5cGRsbG44cOZJiP0ePHgXAz88PAAsLC3x9fTl16lSKu0DHjx9HURR9XSGEEEKI3MTZxpnPijRKu5KigErFWJdqOBUxrreOyJ32XHxE02/2s3D/dX3yU83Tha0f1OOztysaTH7yigyf2ZYtW/j444+pWrUqVapU4e2336ZGjRqUKVMGNzc3FEUhNDSUK1eucPToUbZv387FixepWLEiv/32W4aOZW9vz7p161Ksf/LkCYMHD6ZFixYEBARQpUoVHBwcaN26NRs3buTMmTP6rneRkZEsWbKEsmXLUrNmTf0+unXrxqFDh1i0aBFDhw7Vr581axZWVlZ07do1o2+NEEIIIYT5RYfR9NgqZhQrQJSF4d+6NYrC2OBQ2t/dDS3CwNY1m4MU5vIgPJrJWy6w8/xD/TpHjRWjWlSge83iWGZwzp/cKMMJ0FtvvUWzZs345ZdfmD9/Pl988YV+0tOXJU062rBhQyZOnEjHjh2xSOVLmBq1Wk2nTp1SrE8aBa5MmTLJyqdPn86ePXto1qwZI0aMwMnJicWLF3Pv3j22bduWLM7+/fuzbNkyRo4cyc2bN/H29mb79u1s2rSJcePGmWTobiGEEEKIbHd6LcvsrfXJz+vRMaiBZxYWOCYm0igqmtaRkTj/+6s/Z36CWoPMF6/IFgmJCisO32Tmrss8j0vQr29dtRjjW3lTyDH/PAOWqXtblpaWdOvWjW7duvHo0SP++usvLly4wJMnT1CpVLz22mtUqlSJBg0aULBg9k2k5eXlxaFDhxg9ejQzZswgLi4OX19fdu7cib+/f7K61tbW7N69m3HjxrF27VpCQkIoU6YMc+bMYciQIdkWsxBCCCGEKT25vIVVzo4A2CUm8u3jYAokphy1S+/SNkmA8rizd58ydlMQ5+69GDa6uJsdU9tVokG518wYmXkY3bmvcOHCdOnSxRSxpFvJkiX1d5j+y9vbm82bN6drPy4uLsydO5e5c+eaMjwhhBBCCLOZn/CEaCvd3Z++4RFpJz8AMRmbN0jkHs9itMzc9Q8rj9wk6Yaf2lLFwDfL8EFjLzRqS/MGaCZ59+kmIYQQQoh85nr4dTZZxgFQMD6BXuHpmBBI45zFUYnspigKO849ZPLW8zyKeDHgV81SbkxrV4myhR3NGJ35SQIkhBBCCJFHzD4xm4R/H3ke9DQcu1R6zCRT4e2sDUpkqzuhUUzYfI69l5/o17naqRnT0pvO1T0MPruf30gCJIQQQgiRB5x6fIo/7/wJQEltPB2eRb56I7UtVO2WxZGJ7KBNSGTpwRvM2v0PMdoX3R47VfdgbEtv3Oxz11w9WUkSICGEEEKIXE5RFL75+xv98vAynbC6+92rN3zrK7B1ybrARLY4cSuUzzad49LDF10ey7xmz7T2lalVuoAZI8uZJAESQgghhMjl/rzzJ6efnAag2mvVaFyxG/w1B0ilC5zaVpf8+PbMthhFxoVHaVl34g67Lz7iWUw8jhormlYsQidfD5zt1IRHaZmx8xJrj9/Wb2NtZcHQRl4MaFAaG6v8OcjBq0gCJIQQQgiRi8UnxjP75Gz98sjqI1Dt+gx98lOxHYnPg0l4HoqlvRsW3q2g6jsy+WkO90vgHSZsPkdMfPJR/I5eD+WrnZdo97o7uy8+IjgyTl9Wv2xBpratRMmC9tkdbq5idAK0evVqOnfujI2NjSniEUIIIYQQGbDp6iZuhN8AoJFnI14PfwLXdM8CUbgSdPqB+PgEQkNDcXNzw9pangXJ6X4JvMOoDWdTLY+JT+SnwDv65YIO1oxvVZE2VYvJIAfpYGHsDnr16kXRokUZOnQop06dMkVMQgghhBAiHaK0Ucw/PR8AC5UFw6sOgd/HvqjQ/AuwkG5QuUl4lJYJm8+lu36n6h7sGdmQttXcJflJJ6MToJ9//pmaNWuyYMEC/Pz8qF69Ot9//z0RERGv3lgIIYQQQmTaqgurCI4OBqC9V3tK/7MHQq7qCiu0gtINzBidyIz1J++m6PaWlopFnXC2U2dhRHmP0QlQ586d2blzJzdv3mTixImEhYUxePBgihYtSu/evdm/f78p4hRCCCGEEC8JjQll2fllAGgsNQwu1w3+mqErtFBD0ylmjE5k1h8XHmaw/qMsiiTvMjoBSuLh4cGECRO4fv06u3btok2bNvzyyy80atSI8uXL8+WXX/L48WNTHU4IIYQQIl9beGYhz7XPAehZsSeFji2CmHBdYa1BUKCMGaMTmfUsJj5D9SNitFkUSd5lsgToZf7+/owcOZLWrVujKApXrlxh9OjRFC9enCFDhhAZmY6JuYQQQgghhEF3Iu7wyz+/AOBq48p7hevA3z/oCu0KwpsfmzE6kVmx8QlEZjABctJI97eMMukw2GFhYaxatYqlS5dy7tw5bGxsePfddxkwYAA2NjbMmTOH77//ntDQUNauXWvKQwshhBBC5BvfnfqO+ETdhfLAKgNw2DMVlH+fG2kyHjTOZoxOZJSiKPx29gFf/n6JO6HRGdq2acXCWRRV3mWSBOiPP/5g6dKlbN68mdjYWCpVqsSsWbPo2bMnLi4u+norV66kRIkSfPddOmYmFkIIIYQQKZwLPsfOmzsB8HDwoIvKGa7v0xUWrgyvy+SmucnxG6FM236RM3eeZnhbjdqCjtU9TB9UHmd0AlSyZEnu3LmDRqPhnXfeYcCAAdSuXTvV+pUqVeLZs2fGHlYIIYQQIt9RFIVvT3yrXx5WdTDq7RNfVGgxXYa9ziWuPYnkfzsuses/gxi0rloMn6JOzNh56ZX7mNKmEs620gUuo4xOgJydnfnkk0949913cXZ+9e3W1q1bc+PGDWMPK4QQQgiR7xy8d5DjD48DULFARZo/ugmh13SF3q2hVH3zBSfSJTgyltm7r7Dm+G0SEhX9+pql3PispTdVPV0AcLO3ZsLmcwaHxNaoLZjSphJdanhmV9h5itEJ0JkzZzJU387OjhIlShh7WCGEEEKIfCUhMYFvT764+zPSJwCLn/rpFiytoelUM0Um0iM6LoEfDt1gwb5rRMa+GOig9Gv2jHnLG3/vQskmMu1Sw5PmPkVYf/Iuuy88IiJGi5NGTdOKheno6yFz/xjB6ATo1KlTHD58mCFDhhgsnzdvHnXr1qVatWrGHkoIIYQQIt/67fpvXAm7AkBd97q8cX4HxCYNez0Y3EqZMTqRmoREhY0n7zJz1z88jIjRry9gb83wpuV4p4YnakvDAzM726kJqFeKgHry2ZqS0QnQ5MmTiYuLSzUB2rFjB3v27GHjxo3GHkoIIYQQIl+KTYhl7um5AKhQMaJEa1jzrq7QvhDU/8iM0YnUHLjyhC+2X+Ligwj9Oo3agn71SjOwQWkcZQhrszA6AQoMDGTYsGGpljdo0IDZs2cbexghhBBCiHxrzcU1PHz+EIDWpVtR/vDC/wx77WTG6MR/XXoYwfTtl/jrnyf6dSoVdPL1YGSzchR1tjVjdMLoBCg4OBg3N7dUy11cXAgODjb2MEIIIYQQ+VJ4bDiLgxYDYG1hzQdOPnBjnq6wSGWo1sOM0YmXPQyP4Zs/LrP+xF1eGt+A+mULMuYtbyoWk0Q1JzA6ASpUqBDnz59PtfzcuXNpJkhCCCGEECJ1S4KW8CxON4VI9/JdKbrvqxeFLWbIsNc5QGRsPAv/usbiA9eJ0b4Yta1CEUfGtvTmzXKvmTE68V9GJ0D+/v4sWbKE/v374+Pjk6zswoULLF26lA4dOhh7GCGEEEKIfOdB5APWXFwDgKO1I/1igLB/pxPxbgMl65kvOEF8QiI/Bd5h1u5/CI6M068v7GTDx83K08HXA0sLVRp7EOZgdAI0btw4Nm7cSI0aNXjvvff0o72dPn2aH374AWtra8aPH2/sYYQQQggh8p25p+cSl6i7sO5frhvOu77UFVhaQzMZ9tpcFEVhz8XHTN9xkWtPnuvX21tbMqhhGQLqlcbWWu7M5VRGJ0BlypRhz5499OnTh/nz5ycr8/HxYdmyZZQtW9bYwwghhBBC5CuXQy+z9dpWAIrYF6H7vcsQ++9oYrWHgGtJ8wWXj529+5Rp2y5y7Eaofp2lhYpuNT35sEk5XnO0MWN0Ij2MToAA/Pz8OHfuHKdPn+bKFd349OXKlaNq1aqm2L0QQgghRL7z7clvUdA9Sf9BqXbY/DZOV+BQWIa9NrHwKC3rTtxh98VHPIuJx1FjRdOKRej00oSjd0Kj+HrXZTafvp9s26YVC/Npiwp4FXIwR+giE0ySACWpVq2aTHgqhBBCCGGkYw+OcejeIQDKupSlVdD2l4a9ngA2jmaMLm/5JfAOEzafIyY+Mdn6o9dD+WrnJUa/5c398GiWH7pJXMKLOlU9nBnb0ps3ShfI7pCFkUyaAEVFRRESEoKiKCnKihcvbspDCSGEEELkSYlKIt+c+Ea/PKJQHSxP/fu8T9GqULW7mSLLe34JvMOoDWdTLY+JT2TS1uSjHXu42jKqRQVaVS6KhQxwkCsZnQAlJiby5ZdfMmfOHB4+fJhqvYSEBGMPJYQQQgiR5/1+83cuhFwAoGZhP+odX/misMUMsLAwU2R5S3iUlgmbz6W7vqONJcOalKNXnRLYWMkAB7mZ0QnQ6NGj+frrr/Hx8aFjx44UKCC3AYUQQgghMkOboOW7k9/pl0daFUMVtlG3ULEdlKhjnsDyoPUn76bo9paW9xt60f/N0lkYkcguRidAq1evpkWLFmzfvt0U8QghhBBC5Fu//PMLdyPvAtDCoyE+x1boCixtoOkUM0aW9/xxIfWeS4YcvBLMkEZeWRSNyE5G30MNCwujbdu2pohFCCGEECLfioyLZOGZhQBYWVgxLCIa4p7pCut8AK4lzBhd3vMsJj5D9SNitFkUichuRidAlStX5sGDB6aIxaDLly/To0cPvL29cXZ2xs7OjgoVKjBy5EiDx718+TLt2rXD1dUVe3t76tevz59//mlw3+Hh4QwdOhR3d3c0Gg0+Pj4sWLDA4CAOQgghhBBZ6YdzPxAWGwZAF4/GeJ5ZrytwKAz1RpoxsrzJwSZjHaGcNOosikRkN6O7wE2cOJGAgAACAgLw9PQ0RUzJ3L17lwcPHtC+fXs8PDywsrIiKCiIRYsW8dNPP3H69GkKFSoEwLVr16hTpw5WVlaMGjUKZ2dnFi9eTPPmzdmxYwf+/v76/cbFxdG0aVNOnTrF0KFD8fb2ZseOHQwePJhHjx4xadIkk5+LEEIIIYQhj6Mes+rCKgDs1fYMvHke/p0DiCYTwUbmmDGlSw8juBXyPEPbNK1YOIuiEdnN6AToxIkTlChRgooVK9K+fXtKlSqFpWXykTFUKhXjx4/P1P6bNGlCkyZNUqx/88036dKlC8uXL2fUqFEAjBkzhqdPn3LixAn9fES9evXCx8eHIUOGcOnSJVQq3XCFS5YsITAwkO+++46hQ4cC0L9/fzp27MgXX3xB3759KVFCbjULIYQQIuvNPz2fmIQYAPoWqo3bwR90BUWrQdVu5gssj4lPSGTh/uvM2v0P2oT09/jRqC3oWN0jCyMT2cnoBOjlOyWrV682WMeYBCg1SclJWJjuVvHz58/ZsmULDRs2TDYZq4ODA/369WPChAkEBgZSs2ZNANasWYOdnR39+/dPtt/hw4ezceNGfv75Z31iJYQQQgiRVa4/vc6mq5sAeM22ID3P7X5RKMNem8zVx8/4aN1Zztx5ql9XsoAdN0OiXrntlDaVcLaVLnB5hdEJ0I0bN0wRxyvFxMQQGRlJTEwMFy5c4NNPPwWgZcuWAJw9e5bY2Fhq166dYttatWoB6BOgxMRETp48ia+vLxqNJlndmjVrolKpCAwMfGVMd+7c4e7du8nWBQUFAaDVaomLi8v4iYpso9VqiY+PR6uVhxqFaUibEqYk7Sn/+Obvb0hUdMMxD7T1wu7pSQASvNuRULQ6mOB6Ij+3p4REheWHb/Htn9eI+3fYaxsrC0Y08aJ37eJsOn2fyb9dItbAkNgatQUT3q5Au6qF5bruP3JCm8rssY1OgLKrm9iSJUv0XdUASpYsyerVq6lfvz4A9+/fB8Dd3T3Ftknr7t27B+juGkVHRxusa2NjQ8GCBfV107J06VImT55ssCwiIoLQ0NBX7kOYj1arJTIyEkVRUKvlVx1hPGlTwpSkPeUP58LO8de9vwAobluM9md/A0CxtCHEdxiJJrqWyK/t6XZYDJ//cZOz91887+NTxJ7xzUpS0k1D+NMwGpe0xa9fZbZfCOHA9XCexcbjaGPFm2Wcecu7AE4aK7mmMyAntKmIiIhMbWd0AvSyq1ev8ujRIypVqoSzs7Mpd027du2oUKECkZGRnDp1ii1bthAcHKwvj4rS3b60sbFJsW3SXZ6kOmnVTaqfVCctAQEBNG/ePNm6oKAgBg4ciJOTE25ubuk4M2EuWq0WlUqFq6trvvrHQGQdaVPClKQ95X2KorDsxDL98nCcsdbqrj8Saw3BpURlkx0rv7WnxESF1cfv8PUfV4jR6u7sqC1VDGtUhoC6JbCyTN6t0A0YXKwQg80Qa26VE9qUk5NTprYzSQL022+/8eGHH3Lz5k0A/vjjDxo3bszjx4+pU6cOM2bMoFOnTkYdw8PDAw8P3cNn7dq1o2PHjtSoUYOoqCjGjBmDnZ0dALGxsSm2jYnRPVSYVCetukn1k+qkxdPTM9WR79RqNdbW1q/chzAvKysr+ayESUmbEqYk7Slv23NrD2eDzwJQzbks/qd36Qoci2L55kdYmvhzzy/t6U5oFB+vO8OxGy/u2lRyd2Jm52qUL+JoxsjyHnO3qcwmXkY/Vbdv3z7at2+Pm5sbEydOTDaHTqFChShTpgw//fSTsYdJoUqVKrz++uvMnz8fgGLFigEY7LqWtC6py5urqyu2trYG68bGxhIcHGywe5wQQgghhCnEJ8Yz6+Qs/fLI0KeoZNhroyiKwuqjt2g+a78++bGyUDHCvxybBteV5EfoGZ0ATZkyhapVq3Ls2DGGDBmSorx27dqcPHnS2MMYFB0dre+TWblyZWxsbDhy5EiKekePHgXAz88PAAsLC3x9fTl16lSKu0DHjx9HURR9XSGEEEIIU9t4ZSM3I24C0MilAq/fPqErKOYLVbqaL7Bc6v7TaHr9cJxxv54jKi4BgApFHPl1SF0+9C+L2lJG0hMvGN0aAgMD6dGjBxapDNHo4eHBw4cPM73/1Lbdu3cv586d04/w5uDgQOvWrdm3bx9nzpzR14uMjGTJkiWULVtWPwQ2QLdu3YiKimLRokXJ9jtr1iysrKzo2lX++AghhBDC9KK0USw4swAAC5UFw29delEow15niKIo/BJ4h+bf7ufAFd2z4ZYWKj5o5MWWD+pRyd20z6SLvMHoZ4ASExNTHUwAIDg42Kh+gYMGDeLBgwc0btyYEiVKEBMTw4kTJ/jpp59wdHRk5syZ+rrTp09nz549NGvWjBEjRuDk5MTixYu5d+8e27Zt00+CCrpJT5ctW8bIkSO5efMm3t7ebN++nU2bNjFu3DhKliyZ6ZiFEEIIIVKz8sJKgqN1F+vtHbwoff3feX8qdYLib5gxstzlUUQMozecZe/lJ/p1XoUcmNm5KlU9XcwXmMjxjE6AvL29OXDgAIMHGx4347fffqNq1aqZ3n+3bt1YuXIlq1at4smTJ6hUKkqUKMHAgQP55JNPKF68uL6ul5cXhw4dYvTo0cyYMYO4uDh8fX3ZuXMn/v7+yfZrbW3N7t27GTduHGvXriUkJIQyZcowZ84cg135hBBCCCGMFRIdwrJzupHfNJY2DL6s66aPlS34TzJfYLmIoij8evoeEzefJyImHgCVCgbUL82IpuXQqC3NHKHI6YxOgAICAhg2bBj+/v60adMGAJVKRVRUFKNHj+bIkSOsXLky0/vv0qULXbp0SXd9b29vNm/enK66Li4uzJ07l7lz52Y2PCGEEEKIdFt4diFR8bqhrntaFaJQ7BVdQd1h4GJ4ZFnxwpNnsXy2KYhdFx7p15UqaM/XnatQvYRMPyLSx+gEaNCgQRw6dIj+/fvz0UcfoVKp6NatGyEhISQkJNC3b1969OhhiliFEEIIIXKt2xG3WXd5HQCuakfeu3xYV+BYDOp+aMbIcoffzt5n/K/nCIvS6tf1rVuSUc0rYGstd31E+plkHqDVq1fTsWNHVq9ezaVLl1AUhTfeeINevXrRsWNHUxxCCCGEECJX++7Ud8Qrui5bA2NUOCRNHeI/CaztzRdYDhf6PI7xm8+x7ewD/TpPN1u+6lSVWqULmDEykVuZJAECaN++Pe3btzfV7oQQQggh8oxzwef4/ebvAHhYu9Ll8r8j1rr7QeXOZowsZ/v9/EM+2xREcGScft27tYoz5i1v7G1Mdhkr8hmjx1ls3Lgxe/bsSbV87969NG7c2NjDCCGEEELkSoqi8M2Jb/TLw0JD0c9fL8NeGxQepWXEz6cZuOqEPvkp5qxhdcAbfN6usiQ/wihGt559+/bRr1+/VMsfP37MX3/9ZexhhBBCCCFypQP3DhD4MBCAitYFaP7klK6gchfwrGHGyMwjPErLuhN32H3xEc9i4nHUWNG0YhE6+XrgbKdm76XHfLrhLI+fvZisvqufJ5+18sZJo05jz0KkT5anz0+fPk1zniAhhBBCiLwqITGBb098q18eee+6rvuNlS34TzRbXObyS+AdJmw+R0x8YrL1R6+H8uXOS1T2cObvm2H69YWdbJjRoQqNKhTK7lBFHpapBOjs2bOcPn1av3zgwAHi4+NT1AsNDWX+/P+3d9/hUVR9G8e/m94DgdBCr9IhFAHhARGIoqCAAQERAQEVsQDyICpNsaBiAVSkKoooAi+o6IMo2KjSi4CU0FsK6WWTnfePmJWYQhKS7CZ7f64rF9kzZ2bu2Ryy+8vMnnmfRo0aFTigiIiISEn19cmvOX7tOAC3OZfl1rgz6Qs6Pg3+VW0XzAa+3HmWiav257g8OdWSqfjp2zKIqb0a4++lsz5SuApUAK1Zs4bp06cD6ff8mT9/PvPnz8+2r6+vL++9917BE4qIiIiUQEmpSczdk36vQRMmnjl9OH2BXxB0eNKGyYpfdIKZKWsP5rn/2/2b0yfYsQpEKT4FKoAefvhhunTpgmEYdO3alcmTJ9O9e/dMfUwmEz4+PjRq1AgPD49CCSsiIiJir6KTo1l7fC2bz20mLiWO2JRYLiek37Czl8WDBua/71/TbTq4edkwafH7ave5LJe95eb6e/2IFLYCFUA1atSgRo0aACxZsoTOnTtTs2bNwswlIiIiUmKs+WsNM7fPJDktOdvldaMupH9TtQ00vb8Yk9mHHw5fymf/ywzvWKuI0oiju+lJEIYOHVoYOURERERKpDV/rWHKlik5dzAMZpcrSxmLhT53vgYmU/GFsxOxSVk/K56bmCSdAZKiU2izwP3xxx9s376dqKgoLJbMpzhNJhMvvvhiYe1KRERExC5EJ0czc/vM3DuZTGAYvBIYSNfAevgXTzS74uuRv7ecmu5aitJNF0CJiYn07duXDRs2YBgGJpMJwzAArN+rABIREZHSaN2JdTle9paJyUQSFr4+8TUPNnqw6IPZEcMwKOvllq91ujeqWERpROCmbz08Y8YMNmzYwPPPP8+mTZswDIOPP/6Y7777jk6dOtGmTRsOHz5cGFlFRERE7Mqms5uKtH9JF5+cylMr9vLdwbx/BsjD1Yl+rTQDnBSdmy6AvvrqK0JDQ5kxYwZNmjQBICgoiJCQEDZu3EhKSgpLly692d2IiIiI2J24lLh89Y9NiS2iJPbn2OVYes/9jXX70ieAyOsnn2b0boK/py6Bk6Jz0wXQ2bNn6dy5MwDOzs4ApKSkAODi4sLAgQNZsWLFze5GRERExO74OOfvVh++Lo5xa5A1e85x79zfOXE1HoDyPu4sH9mOWf2a4eGS/dtPD1cnZvVrRv821Yozqjigm/4MkK+vL6mpqdbvnZycuHDhgnW5v78/ly7lb+pDERERkZLgdjzZma/+pfv+P0nmNGZ8c5jl289Y226tFcCcgS2p4OdB+zrlCGlcia92n2Pj4cvEJJnx83Cle6OK9Auuir+XzvxI0bvpAqhOnTocO3YMSD8D1LhxY7766iuGDx+OYRisXr2aatVUyYuIiEjp0/vKGd41LCSbTLlPb20YeBgGvS+fyblPCXcmIoHHl+/i4PkYa9tjXeowvnt9XJz/Oevj7+XKiI61GKH7/IiN3PQlcN26dWPVqlWkpaUBMHr0aL7//nvq1KlDvXr12LhxIyNGjLjpoCIiIiL2xj8pjrFR0TcsfjCZmBwRhV9S6fwM0A+HL3P3nF+txY+fhwuLhrbmv3fekqn4EbEHN30GaNKkSQwZMsQ69fXjjz9OUlISn376Kc7OzowcOZJnn332poOKiIiI2B0Pf46l5n7ZlodhMDk8kj5x8VC+dN0FKDXNwhsbjjL/55PWtmZV/Zk3KJhqAaX7cj8puW66APLx8aFBgwaZ2saNG8e4ceNudtMiIiIidu1A9VasO3sagMDUVB6MieV3T09inZzwtVi4PSGRXnFx+FvS/1DMLXfbMG3huhyTxNjle9gRFmltG9KuBi/c0xB3F2cbJhPJ3U0XQDcyf/583n33Xd0LSEREREoVwzB4PeGo9fH4yGvcHZ/A8OgcLnNz9YTmA4spXdH6/Xg4T63YQ3hc+sy/Xm7OvNq3Kfe2CLJxMpEbK/ICKDw8nKNHj964o4iIiEgJsv7UevZFHAKgeVIyPeMTcl/hrjfAs0zRBytCFovBvE3HeXvjMTJOatWr4MMHDwZTt4KvbcOJ5FGRF0AiIiIipU2COYG3d71tfTwpIirnG326eqYXP8FDiiVbUYmKT+GZL/ey+ehVa9t9LarwSt+meLnpLaWUHBqtIiIiIvm09NBSLidcBqB3QjJNUlLAyQ1uexLOboekaPDwT//MT/MHwLOsjRPfnD1nohjz2W4uRCcB4ObsxNTejRjUtjqm3GbAE7FDKoBERERE8uFS/CWWHFwCgCdOPBUenr6g41PQ9QUbJit8hmHw8ZYwZq7/E3Na+jVv1QI8+WBwK5oEla4Z7cRxqAASERERyYe3d71NUlr6mZBHIiOpkJYGflWh4zM2Tla4YpPMTFp1gG8PXLS2dWtYkbdCm+PvlfvU3yL2rEAF0OzZs/Pc9/fffy/ILkRERETszt4re1l/aj0AVQwnHor5e8a3Hi+Bm7cNkxWuI5dieOzT3ZwKjwfA2cnExJAGjPpPbV3yJiVegQqgCRMm5Ku//qOIiIhISWcxLLy+43Xr42euXsHDMKBmJ2jcx4bJCtdXu87xwv8dIMlsAaCCrztzBwXTtlaAjZOJFI4CFUCbNm0q7BwiIiIidu2bk99wMOIgAMEpaYTEJ4DJGe56HUrBH3uTzGlMXXuIL/44a23rUKcc7z7QkkBfdxsmEylcBSqAOnfuXNg5REREROxWgjmBd3a9A4AJ+O/VK+nTXrd5BCo2tmGywhEWHs9jn+3mz4sx1rYnu9blqW71cXYq+cWdyPU0CYKIiIjIDSw8sJCrien3v7kvNp5GKWbwKge3P2fjZDfv+4MXeXblfmKTUwEo4+XK2wNacHuDCjZOJlI0nGwd4EaOHTvGlClTaNeuHYGBgfj6+tKiRQtmzpxJfHx8lv5Hjx7lvvvuo2zZsnh7e9OpUyd++umnbLcdHR3N2LFjCQoKwsPDg8aNG/PBBx9gGEZRH5aIiIiUEOfjzvPxoY8B8DZMPBkVlb7gjil2f3+f6AQzC389yZDFf/DQZ4cZsvgPFv12iugEM+Y0Cy9/c5hHP91tLX5aVCvDt092UvEjpZrdnwFavHgx8+bNo3fv3gwePBhXV1c2bdrECy+8wJdffsm2bdvw9PQE4MSJE3To0AEXFxcmTpyIv78/CxYsICQkhO+++45u3bpZt5uSkkL37t3Zs2cPY8eOpWHDhnz33Xc8/vjjXL58mWnTptnoiEVERMSezP5jNimWFABGRkVSPs0ClVtAyyG2DXYDX+48y5S1B0lKtfzTeDWR7WFRzPr+CJX8PTgdkWBd9HCHmkzu2RA3F7v/+7jITbH7Auj+++/nueeew9//n5ttPfroo9SrV4+ZM2eyaNEinnjiCQCee+45rl27xq5du2jRogUADz30EI0bN2bMmDEcOXLEOiPdwoUL2blzJ++99x5jx44FYOTIkfTr149XXnmFYcOGUaNGjeI9WBEREbEruy7vYsPpDQBUTTMYEv33tNc93wQnZxsmy92XO88ycdX+HJcnp1qsxY+Puwuv92vG3c0qF1c8EZuy+xK/devWmYqfDAMGDADg4MH02Vji4+NZt24dXbp0sRY/AD4+PjzyyCMcO3aMnTt3WtuXL1+Ol5cXI0eOzLTdp59+GrPZzBdffFEERyMiIiIlxb+nvZ4QHo4bQPNBUK2NzXLdSHSCmSlrD+aprwn47JG2Kn7Eodj9GaCcnDt3DoCKFSsCsH//fpKTk2nfvn2Wvu3atQNg586dtG3bFovFwu7duwkODsbDwyNT37Zt22IymTIVSzk5e/asNUeGAwcOAGA2m0lJScn/gUmxMZvNpKamYjabbR1FSgmNKSlMGk+2t/bEWv6M/BOANknJdE1IxHDzwdx5Mtjxa/wXO05nvuwtFwaw42QEDSuWnpu4SvGwh99RBd13iSyA0tLSeOmll3BxcWHQoEEAXLhwAYCgoKAs/TPazp8/D0BUVBSJiYnZ9nV3d6d8+fLWvrlZtGgR06dPz3ZZTEwMkZGReTsgsQmz2UxcXByGYeDq6mrrOFIKaExJYdJ4sq341Hjm7J0DgJMB/42IxATEtBpDQoor2PFr/PcHL+Sv/4EL9GrgU0RppLSyh99RMTExN+6UjRJZAD399NNs3bqVV155hQYNGgCQkJB+Hau7e9YbdWWc5cnok1vfjP4ZfXIzYsQIQkJCMrUdOHCA0aNH4+fnR0CA7phsz8xmMyaTibJly+rNhRQKjSkpTBpPtvXp3k+JSkmf7a1vbCwNUswY5erh8Z8n8XB2s3G63CWl5e++PYlp6D2L5Js9/I7y8/Mr0HolrgB68cUXmTt3LqNGjeK55/6Ze9/LywuA5OTkLOskJSVl6pNb34z+GX1yU61aNapVq5btMldXV9zc7PsXpICLi4t+VlKoNKakMGk82cbZmLMsP7ocAB8DnoiKBsB01+u4edr/mRI/z/y9GfX3dNMYkwKx9e+oghZedj8JwvWmTZvGyy+/zLBhw/jwww8zLatSpQpAtpeuZbRlXPJWtmxZPD09s+2bnJxMeHh4tpfHiYiISOn31q63MFvSP1vwaGQU5SwWuOUeqHuHjZPlTfdGlfLZv2IRJRGxTyWmAJo2bRrTp09n6NChLFy40DqddYamTZvi7u7O1q1bs6y7bds2IH1GOQAnJyeCg4PZs2dPlrNAO3bswDAMa18RERFxHDsu7uDHMz8CUMOcxqCYWHB2h5CZNk6Wd3HJef9guIerE/1aVS3CNCL2p0QUQDNmzGD69OkMGTKExYsX4+SUNbaPjw+9evVi8+bN7Nu3z9oeFxfHwoULqVevHm3btrW2Dxw4kISEBD766KNM23nnnXdwcXGxTrMtIiIijiHNksbrO6+b9joiEleA256CsjVtFSvPLBaDl785zNs//JXndWb0boJ/Pi+ZEynp7P4zQPPmzWPq1KlUr16dbt26sXz58kzLK1asSPfu3QF49dVX+fHHH+nRowfPPPMMfn5+LFiwgPPnz/Ptt99mOms0cuRIlixZwrhx4wgLC6Nhw4asX7+eNWvW8MILL1CzZs3iPEwRERGxsdXHV3Ms6hgA7RMT6ZyYCP7VoOMzNk52YympFp79ah9r96bPAOdkgj4tg/h2/8Vsp8T2cHViRu8m9G+T/WeZRUozuy+AMu7Hc+bMGYYOHZpleefOna0FUN26dfn999+ZNGkSr732GikpKQQHB/P999/TrVu3TOu5ubmxceNGXnjhBT7//HMiIiKoU6cOc+bMYcyYMUV/YCIiImI3YlNimbtnLpA+7fWzEdcwAfR4GdxuPDGSLcUlp/LYp7v49a9wANxdnJgzsCU9Gldiyj2N+Wr3OX44dJHIuCQCfDzo0bgy/YKr4u+lMz/imOy+AFq6dClLly7Nc/+GDRuydu3aPPUtU6YMc+fOZe7cuQVMJyIiIqXB/H3ziUxKv7dPaGws9cxmqPUfaHSvjZPlLjwumeFLd7L/XPpMdX4eLix6uA1taqZPa+3v5cqIjrUY0jaIyMhIAgICNOObODy7L4BEREREitLpmNN8duQzAHwtBmOiosHkDHfNAlP+7qlTnM5GJjBk0XbCItLvXVjJz4OPh7elQSVfGycTsW8qgERERMShvbnzTVItqQA8HnWNshYL3PoYVGho42Q5O3QhmoeX7ORqbPpstnUr+PDx8LYElfG0cTIR+6cCSERERBzWlgtb2HxuMwC1UswMiIkFr/LQZZJtg+Viy4lwRn2yi7jk9KKtZfUyLB7ahrLeurRNJC9UAImIiIhDSrWk8sbON6yPn42MSp/2uttU8Cxjq1i5+nb/RZ75Yi8paekzu3W9pQLzBgXj6eZs42QiJYcKIBEREXFIK4+t5Pi14wB0TEikU2ISVAmGFg/aOFn2PtkaxtR1hzCM9Mf3t6rKq32b4upcIm7rKGI3VACJiIiIw4lOjmbe3nkAuBgGz0ZGpS/o+QZkc8N1WzIMg9k/HGPOT8etbY93qcOzIQ0y3eNQRPJGBZCIiIg4nA/3fUh0cvrU0Q/ExFLbnAotBkPV1jZOlllqmoUX/u8gK3aetbZNuacRwzvWsmEqkZJNBZCIiIg4lJPRJ1lxZAUA/mkWHr0WA+5+0G2abYP9S5I5jSeW72Hjn5cBcHU28Vb/FvRuXsXGyURKNhVAIiIi4lDe2PkGqUb6DGpjoq7hb7Gkz/rmU8HGyf5xLSGFRz7+gz9Op1+a5+3mzPwhrelYr7yNk4mUfCqARERExGH8eu5Xfjv/GwB1U1IIjY2D8g2g7SgbJ/vHxehEHlq0g7+uxAFQ3seNpcPa0iTI38bJREoHFUAiIiLiEMwWM2/8cd201xHX0t8I3fU6OLvaLNf1jl+J5aFFO7gQnQRA9QAvlo1oS41y3jZOJlJ6qAASERERh/DFkS84FX0KgC7xCXRISoKGvaDO7TZOlm7X6ShGfLyTawlmABpX8WPpsLYE+rrbOJlI6aICSEREREq9qKQo3t/3PpA+7fWEyGvg4gE9Zto22N9+/PMyY5bvJsmcfoPT2+qW48MHW+HrYR9npkRKExVAIiIiUuq9v/d9YlNiARgcE0uN1FToPAHK1rBxMvjyj7M8t/oAaZb0O5ze3awys/s3x93F2cbJREonFUAiIiJSqh2POs7KYysBCEhLY3RUNPhXh45P2zSXYRi8v/kEb/zvqLXt4Q41mXJPI5ycdINTkaKiAkhERERKLcMwmLVzFmlGGgBjoqLxNQwImQmunjbLZbEYzPjmMEu3hFnbJt7ZgMc618FkUvEjUpRUAImIiEip9fO5n9l6cSsA9ZNT6BcbB7U6p09+YCPJqWmM/3If3+y/CICzk4lX+zalf+tqNssk4khUAImIiEipZE4z8+Yfb1of/zcyCmcnF7hrFtjoLEtskplHP93F78cjAPBwdWLeoGDuaFjRJnlEHJEKIBERESmVlh9ZzumY0wDcEZ9A26RkaDcGKtxikzxXY5N5eMkODl2IAcDf05XFD7ehVY2yNskj4qhUAImIiEipE5EYwYf7PgTA1TAYHxkF3oHQ5b82yRMWHs9Di3dwJjIBgMr+HnwyvC31KvraJI+II1MBJCIiIqXO3L1ziTPHATAkOoZqqWlw9zTw8C+yfUYnmFm56ywb/7xMbFIqvh4udG9UicaV/Xji892Ex6UAUL+iDx8Pb0tlf9tNwiDiyFQAiYiISKlyNPIoq/9aDUC51DRGXYuBoNbQfFCR7fPLnWeZsvYgSamWTO3bTkZmety6RlkWDW2Dv5ducCpiKyqAREREpNTImPbaYqQXIk9FXcPbMKDnLHByKpJ9frnzLBNX7b9hv4aV/fj0kVvxcNUNTkVsqWh+E4iIiIjYwE9nfmLHpR0ANExO4d64eGj5IAS1KpL9RSeYmbL2YJ76ngqPI9lsuXFHESlSKoBERESkVEhJS8k87XVEFE7u/nDHtCLb51e7z2W57C0nSWYLq3afK7IsIpI3KoBERESkVFh2eBnn4tILjB5x8bRKTobbnwOfwCLb5w+HL+Wz/+UiSiIieaXPAImIiEiJE50czdrja9l8bjNxKXG4O7tzKOIQAG4Wg3FR1yCwIbR5pEhzxCal5qt/TJK5iJKISF6pABIREZESZc1fa5i5fSbJacnZLm+XlEhQahrc9To4F+1sa74e+Xsr5eeh2d9EbE2XwImIiEiJseavNUzZMiXH4gfD4BcvL9bU7wi1OxdplsSUNBKS0/K1TvdGFYsojYjklQogERERKRGik6OZuX1m7p1MJjAMXrFcJjo5usiynAqPp8/7v7P/fN734eHqRL9WVYssk4jkjQogERERKRHWnViX85mf65lMJKUl8/WJr4skx4ZDl+g95zeOXIoFwNstb/f1mdG7Cf6eugROxNbsvgB69dVXCQ0NpXbt2phMJmrWrJlr/+3bt9OtWzd8fX3x8/PjzjvvZO/evdn2vXDhAg899BCBgYF4enrSunVrVq5cWfgHISIiIjdt09lNRdr/RlLTLLz23RFGLdtFbHL65Actq5dh4/jOzOrXDA+X7N9Webg6MatfM/q3qVaoeUSkYOx+EoTJkycTEBBAcHAw165dy7Xvtm3b6NKlC0FBQcyYMQOAuXPn0qlTJ7Zs2ULTpk2tfSMjI+nYsSNXrlxh3LhxVK1aleXLl9O/f38WL17MsGHDivKwREREJJ/ikq7lq39sUlSh7ftqbDJPfr6HrScjrG1D29fg+bsb4ebiRP821QhpXImvdp9j4+HLxCSZ8fNwpXujivQLroq/l878iNgLuy+ATpw4Qe3atQFo0qQJcXFxOfZ98skncXNz45dffiEoKAiA/v3707BhQ8aPH8+GDRusfV977TVOnTrFunXr6NWrFwAjRoygffv2TJgwgdDQUHx8fIrwyERERCQ/fJLj89XfNyWhUPa763Qkj3+2m8sx6Zffebo681q/ptzbIihTP38vV0Z0rMWIjrUKZb8iUjTs/hK4jOLnRo4fP87OnTsJDQ21Fj8AQUFBhIaGsnHjRi5d+udmZcuXL6dOnTrW4gfA2dmZsWPHEhkZyfr16wvvIEREROSm3Z6QmL/+8TdXABmGwdLfTzFg/jZr8VO7vDf/N+a2LMWPiJQcdn8GKK927twJQPv27bMsa9euHYsXL2bXrl3cfffdXLx4kfPnzzN48OBs+2Zsr3///rnu8+zZs5w7dy5T24EDBwAwm82kpKQU6FikeJjNZlJTUzGbdVM6KRwaU1KYNJ6y6pWYxrseFpJNpvTZ3nJiGHgYBvckpRX4tTg+OZUX1/3JNwf++eNpj0YVeO2+xvh4uJS413iNJyls9jCmCrrvUlMAXbhwASDT2Z8MGW3nz5/Pd9/cLFq0iOnTp2e7LCYmhsjIyDwkF1sxm83ExcVhGAaurro2W26expQUJo2nrPydPalpvspRd/ecOxkGmExMDo/E0y+oQK/FYZFJPPfNCU5FJgHgbILHO1ZlUHAFUhJiiCycK+uKlcaTFDZ7GFMxMTEFWq/UFEAJCem/jdyz+aXo4eGRqU9++uZmxIgRhISEZGo7cOAAo0ePxs/Pj4CAgHwcgRQ3s9mMyWSibNmyejGQQqExJYVJ4ymrTyrX4Gjk5fQHfxc6/+ZhGEwOj6RPXDyp7Xrl+7X4+0OXeW7NEeJT0m9wWt7HjXdCm9K2Vsl+Tdd4ksJmD2PKz8+vQOuVmgLIy8sLgOTkrPcHSEpKytQnP31zU61aNapVy35KS1dXV9zc3PKQXGzJxcVFPyspVBpTUpg0nv7xx6U/mBu1CwAXw+D9S1c47ubGZi9PYp2c8LVYuD0hkV5xcfhbDHD1xKXVEMjjc2dOs/D6d0dY+Nspa1ubmmWZOyiYin4eRXJMxU3jSQqbrcdUQQuvUlMAValSBcj+0rWMtozL2/LTV0RERGwrPDGcib9MJM1IPyszITKK9knJtE9KZkhMbPYr3fUGeJbJ0/avxCTxxPI97Aj753K5ER1rMemuW3B1tvv5okQkn0rN/+o2bdoAsHXr1izLtm3bhslkolWrVgBUrlyZoKAgtm3blm1fgNatWxdhWhEREcmLNEsak36ZxNXEqwD0iItnUEwcmJyzX8HVE3rPheAhedr+9pMR3D3nN2vx4+3mzLxBwbx4TyMVPyKlVKn5n123bl1at27NypUrrZMcQPqEBytXrqRr165UqlTJ2j5w4EBOnDjB119/bW1LS0tjzpw5lClThp49exZrfhEREcnqg30fsP3SdgBqmM1MD4/EVCUYnjkMIa9CzU5QqVn6v3e+BuP+zFPxYxgGC345yaCF27kam35JfN0KPqx94jbubla5SI9JRGzL7i+BW7ZsGadPnwbg6tWrpKSk8PLLLwNQo0YNhgz555fcu+++y+23306nTp0YO3YsAHPmzMFisfDWW29l2u6kSZNYuXIlgwYNYty4cQQFBfH555+zc+dOFi5ciK+vbzEdoYiIiGTn9/O/89H+jwBwt1h463I4Pl6BMOBT8KsE7R9P/8qn2CQzE7/az3cH/5ni+p5mlXm9XzO83e3+rZGI3CS7/1++aNEifv7550xtL774IgCdO3fOVAB16NCBzZs388ILL/DCCy9gMpno0KEDK1eupHnz5pm2Ua5cOX7//XcmTZrEvHnziIuLo1GjRqxYsYIBAwYU/YGJiIhIji7FX2LSr5MwMAB4PiKKBmnAgGXgX/DP6R67HMujn+7i5NV4AFycTDx/d0Me7lATU273FhKRUsPuC6DNmzfnq3/79u358ccf89Q3KCiIZcuWFSCViIiIFBVzmpkJP0/gWvI1AO6LjaNPXDzc8w5Ub1fg7a7de55Jqw6QaE6fTKGinzvzBgXTumbJnuJaRPLH7gsgERERcSyzd81m39V9ANRPTmFyRBS0GgathxVoeympFl5Z/ydLt4RZ29rVDmDOwGACfXO5qaqIlEoqgERERMRu/HD6Bz7981MAvC0WZl8Jx7PqrXDXrAJt72J0ImM+283uM9esbY92rsOEHvVx0SxvIg5JBZCIiIjYhTMxZ5jy+xTr4xlXI6jhGQj9PwGX/N9occvxcMZ+voeI+BQAfN1deLN/c0IaV7rBmiJSmqkAEhEREZtLSk1i3OZxxJnjABgcHUuP5DQY9hn4VszSPzrBzMpdZ9n452Vik1Lx9XChe6NK3B9cFT9PFz78+SRv/O8IlvQ5FGhQ0ZcPh7SiVnnv4jwsEbFDKoBERETE5l7b8RpHo44C0CwpmfGRUXDvPKjaKkvfL3eeZcragySlWjK1bzsZyazvj1An0IfDF2Os7X1aBjGzTxO83PS2R0RUAImIiIiNrTuxjlV/rQLAPy2NN6+E49p2NLR8MEvfL3eeZeKq/TluKznVYi1+XJ1NTOnVmAdvra4prkXESgWQiIiI2MxfUX/x0taXrI9fvRpB5artIWRmlr7RCWamrD2Y520vHtqGTvUDCyWniJQemv5EREREbCLeHM+4zeNISksCYOS1aDq5BUL/j8HZNUv/r3afy3LZW27+uhJXaFlFpPRQASQiIiLFzjAMpm2ZRlhMGABtE5MYE5sMAz4F7/LZrvPD4Uv52scPhy/fbEwRKYV0CZyIiIgUuxVHV/B92PcAlE9N4/Wr4TjfOx+qtMhxndik1HztIybJfDMRRaSU0hkgERERKVYHww8ya0f6jU2dDINZV8Mp3/ZxaNY/1/V8PfL3d1s/j6yX0YmIqAASERGRYhOdHM34zeNINdLP5oyNiqZNlfbQbfoN121ZvWy+9tW9Udb7B4mIqAASERGRYmExLDz/2/NciL8IQOeERIabysD9S8A597M7X+06x5LfTuV5Xx6uTvRrVfVm4opIKaXPAImIiEixWHJwCT+f+xmAKuZUZkYl4DRiLXgF5LhOfHIqL649yOrd5/O1rxm9m+DvqUvgRCQrFUAiIiJS5HZe2smcPe8B4GIYvHUlHP97F0DFxjmuc/hCDE98vpuTV+MBMJng8S51qFrGk+lfH852SmwPVydm9G5C/zbViuZARKTEUwEkIiIiRSo8MZyJP08gzUgvWCZGRNHk1rHQ+L5s+xuGwafbz/DSN4dJ+bvIKe/jxtsDWtCpXvqNTXs2rcJXu8+x8fBlYpLM+Hm40r1RRfoFV8XfS2d+RCRnKoBERESkyKRZ0vjvz88SnhQJwF1x8TxQsT3c/ny2/aMTzUxatZ/vDv5zz5/b6pbj7QEtqODrYW3z93JlRMdajOhYq2gPQERKHRVAIiIiUmTm7Z3Hjst/AFAzxczUNH9M/RaCk3OWvnvPXuOJ5bs5F5UIgJMJxnWvz2Nd6uLsZCrW3CJSeqkAEhERkSLx67lfWXBgAQAeFguzoxLwHrYWPMtk6mexGCz67RSvf3+EVIsBQGV/D94b2JI2NXOeIEFEpCBUAImIiEihuxh3ked+ftb6+IWIKOr1XgCBDTL1i4hLZsLKfWw6etXadsctFXgztDllvd2KLa+IOA4VQCIiIlKozGlmJvz0JNGp6bO39Y2N497WT8Itd2fqt+1kBE+t2MPlmGQAXJ1NTLqrIcNvq4nJpEveRKRoqAASERGRQjV75xvsjzoCQIPkFJ4LuBX+M9G6PM1iMOenv3jvx7/4+4o3qgd4MXdQS5pVLWODxCLiSFQAiYiISKHZELaBT49+DoCPxcJssy8efT8CJycALsck8fSKvWw9GWFd5+5mlXm1b1P8PDR9tYgUPRVAIiIiUijCosOY8utz1scvXUuk+pC14OEHwOajVxj/5T4i4lMAcHdxYmqvxgxsW02XvIlIsVEBJCIiIjctKTWJ8T88Rrwlvbh5MDqWbnd/BOXrYk6z8OaGo8z/+aS1f51Ab+YNDuaWSn62iiwiDkoFkIiIiNy0V357gWPx5wBolpTMuBaPQ/0enI1M4MkVe9hz5pq1b2irqky/tzFebnobIiLFT795RERE5Kb839GVrDn9PwDKpKXxln8rXDs9y/cHLzHxq33EJKUC4OXmzMw+TejTsqot44qIg1MBJCIiIgV2LPIoM7e9DIDJMHjV7EOZXvOZuu4QH289be3XqLIfcwe1pHagj62iiogAKoBERESkgOJS4hj/v0dIwgLAqPgUqod8Qd+F+zh8Mcba76H2NZjcsyEers62iioiYqUCSERERPLNMAymbXyCsJRrANyamETzOi9z1ydniU9JA8DXw4U37m/GnU0q2zCpiEhmKoBEREQkV9HRZ1j7+8tsvrKbOCMVH5MLfp6B/JiUPulBYGoqXY3eDNnsA6QXPy2rl+G9B1pSLcDLhslFRLJSAVSKnL10kqU/TOFg4iGSTKl4GC409WzC0O7TqVaptjJlkymRVDyxr0z28jzZay57z6QxpUyFmckextOajc8y8+x3JDuZwET6F2nwd/FjMgwGRFZjcsTt1nVGd67NhB4NcHV2Kva8IiI3YjIMw7B1CFuxWCy8++67zJ8/n7CwMAIDA+nfvz8zZszA29u7QNvcunUrHTp0YMuWLbRv376QE+ds9hePszzhl/QXqH9xtxgM8voP4wa8X2x5lKlkZ7LXXMqkTMpUvJnWbHyWKee/B8OAXG5U2vxSQ36LGko5bzfe6t+cLg0qFFtGyZuUlBQiIyMJCAjAzc3N1nGkFLCHMVXQ990O/aeZZ555hnHjxtGoUSPmzJlDaGgo7733Hr169cJisdg6Xp7N/uJxliT9SnIOr03JJliS9Cuzv3hcmZSpxOZSJmVSpuLNFB19hplnv7th8YNhcKTCYTrXNLP+qU4qfkTE7jlsAXTo0CHmzJlD3759Wb16NSNHjmT27NnMnj2bTZs2sWLFCltHzJOzl06yPOGX3F+gTCYwDJYn/MLZSyez76NMymTHuZRJmZTp5jMZhoE5zUyCOYGYlBgikyK5knCFC3EXOBNzhpPXTnI08iiHwg+x98pe3t044e/L3nIpfv7OlexkonPQeir6eeQ7l4hIcXPYS+BeeOEFZs6cyS+//EKnTp2s7UlJSZQrV47OnTuzfv36fG+3uC+Be3nZEL6w7M1z//bJfjQP7FB0gYB9V7ew1T3mxh3/lp6paJ+rvVe3si2/mcrfWoSJYG/49nxlapfsR/NybfO1j4L8594XsYPt+ch1a7Ivzcvl/bkyyP/Z1f0RO9nuHpuvTE0DWufj+PP/TB2I/IMd7nF57t822YcmAa2y2XMO+84xUs5ZD0btZqd7fJ4ztU72pnGZFtls1cjmu3+1Z3rpyL6/gcGf0QfZ456Q50wtk71o4N8oy54xck9oZFn47/7/PD4We5R97kl5ztQ0xZ063nXASN/KP9vK/F2mn+W/+lr/Na7P+886p5MucMzNnOdMlVNNlHXyIhULqVhIwyANg9S//834PhWDNBOkAmk3qGNuVnOzK58+srtodyIFZg+XK0npYg9jqqDvux22AAoJCWHjxo0kJCTg7u6eadltt93GsWPHuHr1aq7bOHv2LOfOncvUduDAAUaPHs3PP/9Mu3btCj33vw1ZeiuH3VOLfD8iIiK5qZ0CK4fusnUMyYHZbCYqKoqyZcvi6upq6zhSCtjDmNq2bRudO3fOdwHksLPAXbhwgfLly2cpfgCCgoLYsmULKSkpuVa0ixYtYvr06dkui4mJITIystDy5iQRFT8iIg7HMPA0DFwMcMXAxTBwNcAFA2cDXAxwNsCZv/81TDgDToYJJ8OEswFOmP5+7ISTYcJE+vcmwwSGE/v84riYjxuXuluci+V1TwrGbDYTFxeHYRgqgKRQ2MOYionJ+xUr13PYAii7Mz8ZPDw8rH1yK4BGjBhBSEhIpraMM0B+fn4EBAQUXuAceOIC+SiCqqUY9PDtWnSBgA2xP3HWLe/XWqRnuqMIE8GG2B/zlal6ikF3325FmAg2xG7Md6YeRZwJ4H8FyBXi1z1Le25bMHJdmk2mmA2cyWemO/1CsrSbcttvjouyX/Bd9Hf5ylQjxeAu/5557p+7nDJ9y+l8ZKqZAj3L9Pp7i6brNv3PNkzWfzNvN+NneH2rCdN1DenfrItcRVg+royolQz3lut/3Ub/fTxZP7pqyvYzKqYc+/zflU85mf2v/2zVSYa+FUfgZEo/btPfc0Gnb/PvZ8Zksj5H6c9Dxv6c0nub0v+1Pm9/P85Yf/mZNzmWj4/PNEp25pGWyzBMzpicXMHZGcPkAk7OmExOpH90x2T9cTr9/b0pYyZrk+nv703XtV3fDvHfPsZF16N5zlQprX6xvO5JwZjNZkwmk84ASaGxhzHl5+dXoPUctgDy8vLiypUr2S5LSkqy9slNtWrVqFatWrbLXF1di+V6yKaeTTicj88AdfAI5ukH3iu6QEBcPj+XlJ7p3aILRP4ztfcI5ukH3imyPFCwTE8VcSaA2ALkenLA20UXCIhZNoQz+cw0dsBbRRcIuLbsUr4ytfMIZkz/WUUXCIhadoHT+ch0q0dLHgt9pegCAZeXnSAsH5naerZkRL8Xiy4QcH7ZQU7mI1Nrz5Y8dO/TRZYH4M9lGzmWj0xNvZrTvW2zogsE7G44jh1nRqXPSneDWeDcDWjW4Gl9tsTOubi4FNv7E3EMth5TBS28HHYWuCpVqhAeHk5ycnKWZefPn6d8+fIl4hfE0O7TcbcYWT4gnIVh4G4xeDhkhjIpU4nLpUzKpEzFn6l/+zbccrWpdfa5nPJgMnFLeFNCO7Qp8kwiIoXBYQugNm3aYLFY2LFjR6b2pKQk9u7dS+vWrW2ULH+qVarNIK//5OkFapDXf6haoaYyKVOJy6VMyqRMxZ/J38uV3rfPosmlJrjnEMndgCaXmtC7yyz8PXVZlYiUDA5bAA0YMACTycQ777yTqX3BggUkJCQwePBg2wQrgHED3meYR6dcX6CGeXQq1ruHK1PJzWSvuZRJmZSp+DP1b1ONPl1nYTo1keZX6tAgwZmaydAgwZnmV+pgCptIn66z6N8m+8vBRUTskcNOgw0wduxY5s6dS58+fejZsyd//vkn7733Hrfddhs//fQTTk75rw+L+z5A1zt76SQf/zCVg4kHSTSl4mm40MSzKUO7T6NapdrFmqUkZDqQeJBEUvHEhaZ2ksmenid7zWXPmTSmlKkwM9nTeIpOMPPV7nNsPHyZmCQzfh6udG9UkX7BVfH30pmfksAe7tkipYs9jCndB6gA0tLSeOedd/joo48ICwujfPnyDBgwgBkzZuDj41OgbdqyAJL8sYf/uFK6aExJYdJ4ksKk8SSFzR7GVEHfdzvsLHAAzs7OjB8/nvHjx9s6ioiIiIiIFAOH/QyQiIiIiIg4HhVAIiIiIiLiMFQAiYiIiIiIw1ABJCIiIiIiDkMFkIiIiIiIOAwVQCIiIiIi4jBUAImIiIiIiMNQASQiIiIiIg7DoW+EWhTi4+MBOHDggI2TyI2YzWZiYmLw8/PD1dXV1nGkFNCYksKk8SSFSeNJCps9jKmM99sZ77/zSgVQITt58iQAo0ePtnESEREREZHSL+P9d16ZDMMwiiiLQ7pw4QLffPMNtWvXxtvb29ZxJBcHDhxg9OjRzJ8/n6ZNm9o6jpQCGlNSmDSepDBpPElhs4cxFR8fz8mTJ7nnnnuoUqVKntfTGaBCVqVKFUaNGmXrGJIPTZs2pX379raOIaWIxpQUJo0nKUwaT1LYSuKY0iQIIiIiIiLiMFQAiYiIiIiIw1ABJCIiIiIiDkMFkDisqlWrMnXqVKpWrWrrKFJKaExJYdJ4ksKk8SSFrSSPKc0CJyIiIiIiDkNngERERERExGGoABIREREREYehAkhERERERByGCiAREREREXEYKoBERERERMRhqAASERERERGHoQJIREREREQchgogKZWOHTvGlClTaNeuHYGBgfj6+tKiRQtmzpxJfHx8lv5Hjx7lvvvuo2zZsnh7e9OpUyd++uknGySXkiIhIYHatWtjMpl44oknsizXmJK8iIyMZMKECdStWxcPDw8CAwO5/fbb+fXXXzP12759O926dcPX1xc/Pz/uvPNO9u7da5vQYpfi4uJ45ZVXaNq0Kb6+vpQvX54OHTqwdOlS/n3LR40nud6rr75KaGio9TWtZs2aufbPz/i5cOECDz30EIGBgXh6etK6dWtWrlxZ+AeRT7oRqpRKkyZNYt68efTu3Zt27drh6urKpk2b+PLLL2nWrBnbtm3D09MTgBMnTtC2bVtcXFx4+umn8ff3Z8GCBRw8eJDvvvuObt262fhoxB5NmDCB+fPnExcXx5gxY5g7d651mcaU5MXp06fp0qULcXFxjBgxgvr16xMdHc3+/fsJCQnhgQceAGDbtm106dKFoKAga7E9d+5crly5wpYtW2jatKktD0PsgMVioXPnzmzZsoWhQ4fSrl07EhIS+Pzzz9mxYwcTJ07k9ddfBzSeJCuTyURAQADBwcHs2rULPz8/wsLCsu2bn/ETGRlJ69atuXLlCuPGjaNq1aosX76cn3/+mcWLFzNs2LDiOLzsGSKl0M6dO41r165laX/++ecNwJgzZ461LTQ01HBycjL27NljbYuNjTWqV69u1K9f37BYLMURWUqQXbt2Gc7OzsZbb71lAMaYMWMyLdeYkrzo2LGjUbVqVePChQu59mvTpo3h6+trnDt3ztp27tw5w9fX1+jevXtRx5QSYMuWLQZgPP3005nak5OTjVq1ahn+/v7WNo0n+bcTJ05Yv2/cuLFRo0aNHPvmZ/w8++yzBmCsW7fO2paammq0adPGCAgIMGJjYwvvIPJJl8BJqdS6dWv8/f2ztA8YMACAgwcPAhAfH8+6devo0qULLVq0sPbz8fHhkUce4dixY+zcubNYMkvJkJaWxsiRI7nzzjvp27dvluUaU5IXv/zyC7/99hsTJ06kcuXKmM1mEhISsvQ7fvw4O3fuJDQ0lKCgIGt7UFAQoaGhbNy4kUuXLhVndLFDMTExAFSpUiVTu5ubG+XLl8fb2xvQeJLs1a5dO0/98jt+li9fTp06dejVq5e1zdnZmbFjxxIZGcn69esL7yDySQWQOJRz584BULFiRQD2799PcnIy7du3z9K3Xbt2AHqzKpm8/fbbHDlyJNMlb9fTmJK8yHjhr169Or169cLT0xNvb2/q16/Pp59+au2XMVZyGk+GYbBr167iCS12q23btpQpU4ZZs2axcuVKzpw5w5EjR3juuefYtWsX06ZNAzSe5ObkZ/xcvHiR8+fPW1/3/t33+u3ZgovN9ixSzNLS0njppZdwcXFh0KBBQPqH84BMf8nIkNF2/vz54gspdu3UqVNMnTqVKVOmULNmzWyvkdaYkrw4evQoACNHjqRevXp8/PHHpKSk8NZbbzFkyBDMZjPDhg3TeJI8KVu2LOvWreORRx6hf//+1nZfX19WrVrFfffdB+j3k9yc/Iwfex9rKoDEYTz99NNs3bqVV155hQYNGgBYLzlxd3fP0t/DwyNTH5FHH32U2rVrM27cuBz7aExJXsTGxgLpb1A3bdqEm5sbAPfddx+1a9dm8uTJDB06VONJ8szHx4cmTZrQu3dvOnToQGRkJPPmzWPQoEGsXbuW7t27azzJTcnP+LH3saYCSBzCiy++yNy5cxk1ahTPPfectd3LywuA5OTkLOskJSVl6iOO7dNPP+WHH37gl19+wdXVNcd+GlOSFxmzUA4cONBa/ED6X/J79+7NJ598wtGjRzWeJE8OHDhAhw4dePvtt3n00Uet7QMHDqRJkyaMHDmSEydOaDzJTcnP+LH3sabPAEmpN23aNF5++WWGDRvGhx9+mGlZxgdGszsNm9GW3elbcSzJycmMGzeOnj17UqlSJY4fP87x48c5ffo0ANHR0Rw/fpxr165pTEmeVK1aFYBKlSplWVa5cmUAoqKiNJ4kT95++22SkpIIDQ3N1O7l5cXdd9/N6dOnCQsL03iSm5Kf8WPvY00FkJRq06ZNY/r06QwdOpSFCxdiMpkyLW/atCnu7u5s3bo1y7rbtm0D0meUE8eWmJjI1atX+fbbb6lXr571q0uXLkD62aF69eqxcOFCjSnJk7Zt2wL/TMxyvYy2ChUq0KZNG4Acx5PJZKJVq1ZFmFRKgow3lGlpaVmWpaamWv/VeJKbkZ/xU7lyZYKCgqyve//uCzZ+LbTZBNwiRWz69OkGYAwZMsRIS0vLsd/9999vODk5GXv37rW2ZdyzpV69erpnixgpKSnGypUrs3y9//77BmDceeedxsqVK42jR48ahqExJTcWGRlp+Pr6GkFBQZnuhXHhwgXD29vbqF+/vrWtdevWhq+vr3H+/Hlr2/nz5w1fX1/jjjvuKNbcYp+efvppAzBef/31TO1RUVFG5cqVjbJlyxqpqamGYWg8Se5udB+g/IyfCRMm5HgfoDJlyhgxMTGFnj+vTIZhGLYrv0SKxrx583jiiSeoXr06L730Ek5OmU92VqxYke7duwPp89q3bdsWV1dXnnnmGfz8/FiwYAEHDhzg22+/JSQkxBaHICVAWFgYtWrVYsyYMZmmxdaYkrz46KOPGD16NI0bN2b48OGkpKTwwQcfcPHiRb755ht69OgBwJYtW7j99tupWrUqY8eOBWDOnDlcvnyZ33//nebNm9vyMMQOnD59muDgYKKiohg8eDC33XYbkZGRLFiwgLCwMObNm8fjjz8OaDxJVsuWLbNe0j1nzhxSUlIYP348ADVq1GDIkCHWvvkZPxEREbRq1YqIiAjGjRtHUFAQn3/+OZs3b2bhwoWMGDGiGI/yX2xWeokUoaFDhxpAjl+dO3fO1P/w4cNG7969DX9/f8PT09O47bbbjB9++ME24aXEOHXqlAEYY8aMybJMY0ryYtWqVcatt95qeHl5GT4+Pkb37t2N3377LUu/LVu2GF27djW8vb0NHx8fo0ePHsauXbtskFjs1fHjx42HHnrICAoKMlxcXAxfX1+jU6dOxqpVq7L01XiS63Xu3DnP75cMI3/j59y5c8aDDz5olCtXznB3dzdatmxprFixooiP6MZ0BkhERERERByGJkEQERERERGHoQJIREREREQchgogERERERFxGCqARERERETEYagAEhERERERh6ECSEREREREHIYKIBERERERcRgqgERERERExGGoABIREREREYehAkhERERERByGCiAREREREXEYKoBERIrZ5s2bMZlMmEwmnnjiiWz7XLlyBTc3N0wmE126dCnegGL3wsLCmDZtGnv37rV1FBGREkcFkIiIjXh4eLB8+XKSk5OzLFu2bBmGYeDi4mKDZGLvwsLCmD59ugogEZECUAEkImIjffr0ISoqirVr12ZZtmTJEnr27Im7u7sNkklexMbGFmiZ/CMxMZHU1FRbxxARB6MCSETERoKDg2nWrBlLlizJ1L5jxw4OHTrEsGHDclz3jz/+oE+fPpQvXx53d3caNGjAzJkzs7yZ3LFjBw8//DD169fHy8sLX19fbrvtNtasWZNlmw8//DAmk4no6Ggee+wxKlSogIeHB7fddhvbt2/P83HFxMTw/PPP07BhQzw8PChXrhwdO3ZkxYoVmfrt37+fPn36UK5cOTw8PGjUqBGzZs0iLS3tpnIZhsGCBQu49dZb8fHxwcfHh6ZNmzJlyhRrn2nTpmEymQgLC8uyfs2aNbNcdmgymXj44Yf58ccf6dixIz4+PvTq1StT/z179hASEoK/vz/NmjWzrvvXX38xZMgQKleujJubGzVr1uTZZ58lPj6+QMe5dOlSbr/9dgCGDRtmvZzyRpdKZmw/OxnHd71PPvmEtm3bUqZMGby9valduzaDBw/m6tWrmfrl9/iuXr3K8OHDqVixIt7e3pw7dy5f+xMRuVm6tkJExIaGDx/OuHHjOH/+PEFBQQAsXryYChUqcM8992S7zrfffkvfvn2pW7cu48ePJyAggK1btzJlyhT27t3LypUrrX3XrFnDkSNH6N+/PzVq1CAiIoKPP/6Yvn378tlnnzFo0KAs2w8JCSEwMJApU6YQERHB7Nmzufvuuzl16hS+vr65Hs+1a9fo2LEjhw4d4v777+exxx4jLS2NPXv28M033/DAAw8A6QVc586dcXV1ZcyYMVSqVImvv/6a//73v+zbt4/PPvuswLmGDBnCZ599xq233srzzz9PmTJlOHLkCF999RUzZsy48Q8lB3/88QerVq1i5MiRDB06NNOyM2fO0LVrV0JDQ+nXrx9xcXEA7Nq1i65du1KmTBlGjx5NUFAQ+/bt47333uP333/n559/xtXVNV/H+Z///IfJkyfzyiuvMGrUKDp16gRAxYoVC3xs/7Zs2TKGDh1Kp06dmDFjBp6enpw9e5b169dz5coVAgMDC3x83bt3p1KlSrz44ovEx8fj4+OT5/2JiBQKQ0REitWmTZsMwHjjjTeM8PBww83NzZg5c6ZhGIaRkJBg+Pv7G+PHjzcMwzC8vb2Nzp07W9dNTEw0KlasaHTq1Mkwm82Ztjt79mwDMDZt2mRti4uLy7L/+Ph4o379+kbDhg0ztQ8dOtQAjMceeyxT+5dffmkAxocffnjDY3vssccMwJg/f36WZWlpadbvO3ToYDg7Oxv79u2ztlksFiM0NNQAjI0bNxYo1xdffGEAxoMPPphpf//e/9SpUw3AOHXqVJacNWrUyPScG4ZhAAZg/PDDD9n2B4wFCxZkWdasWTOjQYMGRkxMTKb21atXG4CxZMmSAh1nxhi6fv0bydh+dgBj6NCh1sd9+vQxfH19s4yxfyvI8Q0ePDjLdvK6PxGRwqBL4EREbKhcuXL07t2bpUuXArB69Wqio6MZPnx4tv1/+OEHLl++zLBhw7h27Rrh4eHWr549ewKwYcMGa39vb2/r9wkJCURERJCQkEDXrl35888/iYmJybKPZ555JtPjrl27AumXOuXGYrGwYsUKGjZsyKhRo7Isd3JKf8m5cuUKW7ZsoXfv3pkuFTOZTDz//PMA2V6il5dcGWeO3nzzTev+/r3/gmrevDndunXLdllAQECWSxYPHDjA/v37GTRoEMnJyZl+Vh07dsTb2zvTzypDQZ//wuTv709CQgLffvsthmFk26egxzdhwoQC7U9EpLCoABIRsbFhw4bx119/8dtvv7F48WLatm1Lo0aNsu37559/AumXzgUGBmb6uuWWWwC4fPmytf+VK1cYNWqU9fMW5cuXJzAwkA8//BBIv2Tt32rXrp3pcbly5QCIiIjI9TjCw8OJioqiRYsWufY7deoUAI0bN86yrGHDhjg5OXHy5MkC5frrr7+oXLlyoV4OlqF+/fo5LqtTpw7Ozs6Z2jJ+VlOnTs3ys6pQoQLx8fGZflYZCvr8F6bJkydTo0YN7rvvPgIDA+nXrx8LFy7MNLlDQY8vu+cxL/sTESks+gyQiIiNhYSEEBQUxPTp09m0aRMffPBBjn0z/jr+xhtv5FhoVKlSxdq3R48e/Pnnnzz11FO0bt0af39/nJ2dWbJkCcuXL8disWRZ/99v5P+9b1spzFw5TQYA5DgrmZeXV47rZLcsI9f48eO58847s12vbNmyWdqK6vnP6ZizO9569epx+PBhfvzxR3788Ud+/vlnRo4cydSpU/nll1+oU6dOgY8vu+cqL/sTESksKoBERGzM2dmZhx56iFdffRVPT08GDhyYY9969eoB6Ze25XQ5Vob9+/ezb98+pkyZwvTp0zMtW7hw4c0H/5fy5ctTtmxZ9u3bl2u/WrVqAXDo0KEsy44cOYLFYslyFiSv6tevz9q1a7l8+XKuZ4ECAgIAiIyMpGbNmtb2pKQkLl68SN26dQu0/+tl/KycnZ1v+LPKr9wKuJxcf8wZ3wPZnm0DcHd3p2fPntZLK9evX8/dd9/N7NmzmTdvXqEf3432JyJSWHQJnIiIHXj00UeZOnUqH374IX5+fjn2CwkJoUKFCrz22mtERkZmWZ6YmGi9bCjjTMK/zxwcPHgw28/Y3CwnJycGDhzI4cOHWbRoUZblGTkqVKhAhw4d+Prrrzl48GCm5a+++iqQfo+kghg8eDAAEydOzHJ26/rnIeMyrI0bN2bq8/bbb2d7VqwgWrZsSZMmTfjwww+zLTJSU1Oz/RnmhY+PD0C+1s/pmN96660sfcPDw7O0BQcHZ9pnYR5fXvYnIlJYdAZIRMQOVK9enWnTpt2wn7e3N5988gn33XcfDRo0YPjw4dStW5dr165x5MgRVq9ezZo1a+jSpQsNGzakcePGzJo1i4SEBBo0aMCxY8eYP38+TZs2ZdeuXYV+HC+//DI//fQTjzzyCBs2bKBjx44YhsGePXtITU1l2bJlALz77rt07tyZTp06WafB/uabb/jf//7HoEGDuOOOOwq0/9DQUAYMGMAnn3zCX3/9Re/evSlbtizHjh3jf//7n7Xg6tatGw0aNLBONV2rVi1+++03tm3bRvny5QvluTCZTCxbtoyuXbvSrFkzhg8fTuPGjUlISOD48eOsXr2aV199Ncv9d/KiUaNG+Pr68v777+Pl5UWZMmWoUKGCdcKE7AwcOJDJkyczatQojhw5QkBAAN9//322xUePHj0oU6YMnTp1olq1aly7do2lS5diMpkYMmRIoR9fXvYnIlJobDH1nIiII7t+Guwb+fc02BkOHDhgDB482KhSpYrh6upqVKhQwWjfvr0xY8YMIyIiwtovLCzMuP/++43y5csbnp6eRps2bYzVq1dnOw10fqZJzk1UVJTx7LPPGnXq1DFcXV2NgIAAo2PHjsYXX3yRqd/evXuNe++91yhbtqzh5uZm3HLLLcbrr79upKamZuqX31xpaWnG3LlzjZYtWxqenp6Gj4+P0bRpU2PatGmZ+h09etQICQkxPD09DX9/fyM0NNQ4d+5cjtNg53T82fW/XlhYmDF69GijRo0a1ucjODjYmDRpknHmzJkCH+e3335rtGzZ0nB3dzeAXDNk2LZtm9GhQwfD3d3dKFeunDFy5EgjKioqy/Y/+ugjo1u3bkbFihUNV1dXo1KlSsZdd91l/PTTT0VyfPnZn4jIzTIZhuabFBERERERx6DPAImIiIiIiMNQASQiIiIiIg5DBZCIiIiIiDgMFUAiIiIiIuIwVACJiIiIiIjDUAEkIiIiIiIOQwWQiIiIiIg4DBVAIiIiIiLiMFQAiYiIiIiIw1ABJCIiIiIiDkMFkIiIiIiIOAwVQCIiIiIi4jBUAImIiIiIiMNQASQiIiIiIg5DBZCIiIiIiDiM/wcInpnylydcXQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -565,7 +575,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 33, "id": "9b9f0236", "metadata": {}, "outputs": [ @@ -573,13 +583,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/tmp/ipykernel_127715/23993299.py:28: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", + "/tmp/ipykernel_19002/23993299.py:28: UserWarning: This figure includes Axes that are not compatible with tight_layout, so results might be incorrect.\n", " fig.tight_layout()\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABRoAAAS8CAYAAADjFzZsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAT/gAAE/4BB5Q5hAABAABJREFUeJzs3Xd4FNX+BvB3N9lk0wuBhDQgBAghoYcmJXQVCS10lSogKMJFAf3RRJQmgqIgepEiNop0QXpTQCCg9GIAE0qAJKQQNtlkz++P3B2z7G6ym9309/M83htmzsx+z5aZM985c45MCCFAREREREREREREZAF5SQdAREREREREREREZR8TjURERERERERERGQxJhqJiIiIiIiIiIjIYkw0EhERERERERERkcWYaCQiIiIiIiIiIiKLMdFIREREREREREREFmOikYiIiIiIiIiIiCzGRCMRERERERERERFZjIlGIiIiIiIiIiIishgTjURERERERERERGQxJhqJiIiIiIiIiIjIYkw0EhERERERERERkcWYaCQiIiId1atXh0wm0/nP0dERISEheOuttxAfH1/SIVIFo/0eUsUTExODBQsWoF+/fqhRo4b0Xbhw4UJJh0ZEREQGyIQQoqSDICIiotKjevXquH37Nrp27QofHx8AwP3793HixAmkpKTA09MThw4dQnh4eAlHShWFNsnIZmvF07NnT2zdulVv+fnz5xEWFlYCEREREVF+bEs6ACIiIiqdpk6disjISOnfCQkJePHFFxETE4NRo0bh+PHjJRccEVUILVu2RHh4OJo0aYKmTZuidevWuH37dkmHRUREREYw0UhEREQm8fb2xieffILIyEicOHECd+/eha+vb0mHRUTl2JQpU0o6BCIiIjIDx2gkIiIikzVu3Fj6O2+vIo1Gg3Xr1qFDhw7w9PSEvb09goKC8NZbbyEhIUFvP6tXr4ZMJsPQoUPx4MEDjBkzBoGBgVAoFJgwYUKBcdy4cQOjR49GnTp14OTkBFdXV9SsWRP9+/fH/v379cpbO75JkyZBJpNh+vTpRmOcP38+ZDIZxowZo7du586d6NatG6pUqQI7OzsEBARg+PDhiI2N1St76NAhyGQyREZGIj09HVOmTEFwcDDs7e3Rs2fPAt8rra1bt6JLly5S/WvUqIExY8bo9Q7bvn07ZDIZ2rRpY3RfJ0+ehEwmQ0hIiN66CxcuYOjQoQgMDIS9vT0qVaqEbt264dChQwb3pR1zTwiB5cuXo0mTJnB2doa7u3uBddq7dy/Gjh2L+vXrw9PTE0qlEkFBQQbrJYRAnTp1IJPJcPr0aaP7bNiwIWQyGX777Tdpmbnft9LiwYMHWLJkCbp06YLq1atDqVTCw8MDbdu2xdq1aw1uk/f79uTJE7zzzjuoUaMGlEolqlevjsmTJyMtLU1vu1mzZkEmk2HWrFmIjY3FwIEDUaVKFSiVSjRo0ABffvklH30nIiKqAJhoJCIiIpOlpqZKf9vb2wMA1Go1evfujVdeeQWnTp1CgwYN8NJLL0Emk+Gzzz5DkyZNDCbQAODhw4eIiIjAzz//jIiICHTv3r3ABNNff/2FRo0a4auvvoKtrS1eeOEFdO7cGZUqVcLmzZuxYcMGnfJFEd+QIUMAAOvWrTOaPPn2228BQCqrNXbsWLz00kvYt28fateujR49esDV1RWrVq1C48aN8ccffxjc39OnT9GuXTt8+eWXCA0NRVRUlDSGZkHeeecd9OzZEwcOHEDDhg3Ru3dvKBQKrFixAg0bNsTJkyelsi+88AKqVKmC3377DTdv3jS4P22S6tm6rVu3Do0bN8aaNWvg6emJqKgohISE4Ndff0WHDh3w5ZdfGo1x3LhxGD9+PNzc3NC9e3fUq1evwHq9/vrrWLVqFezs7NC+fXt06dIFOTk5WLFiBRo3boyrV69KZWUyGcaOHQsARuM4fvw4/vzzT4SHh+O5554DYP73rTTZs2cPJk6ciKtXryI4OBi9evVCeHg4fv/9dwwZMgTjxo0zum1WVpb0mdWvXx/dunVDamoqFi5ciHbt2iE9Pd3gdrGxsWjatCmOHTuGDh06oF27drh8+TJef/11jB49uqiqSkRERKWFICIiIsqjWrVqAoA4ePCg3rply5YJAMLe3l5kZGQIIYR45513BADRqVMnce/ePalsTk6OeO+99wQA0aZNG539rFq1SgAQAMSLL74o0tPTTY5v6NChAoCYN2+e3rrExERx5swZnWVFFV/Dhg0FAHHo0CG9dadPnxYARK1atXSWf/HFFwKAaNiwobh+/brOuuXLlwsAIigoSKjVamn5wYMHpViaNGkiHj58mM+7o2/79u0CgHBzcxMnT57Uqb/2vQkMDBQqlUpaN2HCBAFAzJo1S29/mZmZolKlSkIul4t//vlHWn727FmhUCiEm5ub2Ldvn842x48fF+7u7kKhUIgrV67orNPWzcPDQ8TExBisg7bMs7Zs2SIeP36ssyw7O1vMmDFDABBdu3bVWff48WPh5OQknJycREpKit7+XnnlFQFALFu2TFpm7vetNLl06ZL4448/9JbfuHFDBAYGCgDi+PHjOuvyft/q1q2r85tJTEwUERERAoCYOHGiznYzZ86Utuvfv7/O9+nPP/8Unp6eAoDYunWrRXXSHp/Onz9v0X6IiIioaDDRSERERDoMJRrv378vVqxYIVxcXAQA8frrrwshhHj06JFQKpXCw8NDPHr0SG9fOTk5okGDBgKA+PPPP6Xl2kSenZ2duH37tlnxvfjiiwKAOHv2bIFlizK+Tz75RAAQw4cP11v31ltvCQDigw8+kJZlZ2cLHx8fIZfL9ZKMWt27d9dLxuRN/DybFDJF+/btBQAxZ84cvXVqtVrUrFlTABDffvuttDwmJkYAEDVr1tTbZvPmzQKA6Nixo87yvn37CgDim2++MRjHokWLDCaotHWbO3eu0ToYSzTmx8/PT8jlcpGamqqzfPTo0QKAWLp0qc7yxMREoVQqhbOzs8425nzfypKvvvpKABBvv/22zvK837edO3fqbXfixAkBQDg7O0s3G4T4N9Ho6OhoMBk+b948AUB06NDBoriZaCQiIird+Og0ERERGdS+fXtp/DwfHx+MHj0aaWlp6N27Nz755BMAueO5qVQqdOjQAZUqVdLbh1wuR+vWrQEAJ06c0FvfqFEjBAYGmhVX06ZNAeQ+grx//35kZWUZLVuU8Q0ePBi2trbYuHEjnj59Ki3Pzs7GDz/8AJlMhldeeUVafu7cOdy/fx+NGjVCcHCwwX22bdvWaCze3t5o0aKF0boakp2djd9//x2A/mPOAGBra4tXX30VAHD48GFpeaNGjRAeHo6///5bZ6xCwPBj0xqNBr/++itsbGzQu3dvg7HkVzcAZo03mdft27exbNkyTJgwASNGjMDQoUMxdOhQqNVqaDQa3LhxQ6e89nHhFStW6CxftWoVVCoVBg8eDBcXF2m5Od+30kitVmPXrl2YOXMmxowZg2HDhmHo0KHYuHEjAODatWsGt/Pw8MCLL76ot7x58+YIDg5Geno6YmJi9NZ36dIFXl5eestffvllAMDvv/+O7OxsS6pEREREpRhnnSYiIiKDunbtCh8fH8hkMiiVSgQGBqJLly5o0qSJVEY7tuGmTZsgk8ny3d/Dhw/1llWrVk1v2bx583DlyhW95atXrwYATJ48GX/88Qd2796NTp06wd7eHk2aNEGHDh3w6quvolatWkUan1aVKlXw/PPPY8eOHdiyZQsGDhwIANi9ezcePHiAyMhIne21sZw5c8bqsRiTmJiIzMxM2NnZwc/Pz2CZoKAgAMCdO3d0lg8ZMgRvv/021q5dK41XmJSUhJ07d8LZ2VknoZiYmCiN31nQGJuG6gYUrn7Tpk3DvHnzkJOTY7RM3nFFASA8PBxt27bFkSNHcOzYMbRu3RpCCCnx+Prrr+uUN+f7lp+3334bjx49MrOGhrVu3RojR44ssNyVK1fQo0cPo8lEQP/90crv86hevTpu3LiB+Ph4g+sM8fX1hZ2dHVQqFRITE+Ht7V3gb52IiIjKHiYaiYiIyKCpU6ciMjIy3zLaBE9oaCgiIiLyLWtocg8HBwe9Zbt379bpXaelTT44OTlh165dOH36NHbu3InDhw/jxIkT+P333zF37lwsX74cr732WpHFl9err76KHTt2YO3atVKi0dgkMNpYAgMD0b59+3z327x5c7NjsbbBgwdjypQpWL9+PT777DPY29vjp59+QlZWFgYOHAgnJyeprLZudnZ20vtgjKHeboD59du4cSM+/PBDuLq6YsmSJWjfvj2qVq0qTVLUqlUrHD9+3OBkPePGjcORI0fw5ZdfonXr1ti/fz+uX7+Oli1bokGDBjplzfm+FRTvszNhW8KURGN0dDSuXbuGnj17YsqUKahTpw5cXV1hY2ODPXv2oGvXriU6E3RBv3UiIiIqe5hoJCIiokILCAgAADRu3NhqyYFDhw6ZVK5p06bSY60qlQpfffUVJkyYgPHjx6Nfv35wc3MrkvjyioqKgoeHB/bu3Yv79+/DwcEB27Ztg5OTE6Kjo3XKamMJDAwstkRKpUqVYG9vj8zMTMTHx0sx5KXtaflsj0cfHx906dIFu3btwrZt29C3b1+js017eXlBqVRCrVZjxYoVUrKvKGkf/f3www8xbNgwvfXPPjKdV+/eveHr64uNGzdiyZIlWL58OQD93ox5mfJ9y8+tW7cKqpJVXblyBRcvXoS3tzc2btwIGxsbnfX5vT8A8k2KautiqJesse3u3r2LrKws2NvbS8MYmPpbJyIiorKDYzQSERFRoXXs2BEKhQK7d+9Genp6icWhVCoxfvx4BAcHQ6VSSY+KFnV89vb26N+/P3JycvDdd99h/fr1UKlU6NWrF5ydnXXKNmvWDJ6envjjjz8QFxdn9VgMsbW1RatWrQD8O7ZiXjk5OVIPzHbt2umt1yYU165di+vXr+PEiRMIDAzU6+lqa2uLTp06IScnB1u2bLFuJYxISkoCAIPJ0/379xt9RBvIjXfUqFHIzMzEhx9+iG3btqFSpUro27evSa9t7PtWmmjfn6pVq+olGQHgxx9/zHf75ORk7N69W2/5qVOncOPGDTg5OaFx48Z66/fs2YPExES95d9//z2A3J6mtrbs60BERFReMdFIREREhebj44PXX38djx49Qq9evaTecXk9fvwYK1assNoEEMuWLcP169f1lp8/fx63b9+GXC6Hv79/scWnnUxl7dq1Rh+bBgCFQoFp06YhKysLPXr0wLlz5/TKZGRk4Pvvv0dCQkKhYjFk4sSJAICFCxfi9OnT0nKNRoNp06bhxo0bCAwMNJhk69GjB9zc3LB7924sWrQIAPDKK68YHGNyxowZsLW1xdixYw0mG3NycnDw4EGjk8GYKyQkBADw9ddfQ61WS8tv3bqVb89ErdGjR0OhUGDJkiXIzs7G0KFDoVQq9cqZ830rTWrVqgW5XI4LFy7g6NGj0nIhBD766COdZca8/fbbOt/Fx48fY/z48QCAESNGwNHRUW+bJ0+eYPz48TqT5ly4cAHz588HALz55puFrhMRERGVfrydSERERBZZuHAh4uPj8fPPPyMkJASNGjVC9erVodFoEBsbi7/++gvZ2dkYMmSIVXoyffXVVxg3bhyCg4MRFhYGR0dH3LlzB7/99huys7PxzjvvoGrVqsUWX8uWLVG7dm389ddfAAB/f3906NDBYNmJEyciNjYWn3/+ORo3boyGDRsiKCgINjY2uH37Ns6dO4fMzExcvnwZ3t7ehXuDntG9e3dMmjQJixYtQosWLdCuXTt4e3vjzJkzuHbtGtzd3fHTTz8ZfNxZqVSiX79++Prrr6XJUrSJ1WdFRERg9erVGDFiBHr16oWaNWsiJCQErq6uSEhIwNmzZ5GcnIzly5ebPXu2IePHj8eaNWuwc+dO1KpVC82aNUNqaioOHz6MZs2aoXLlytKM24b4+Pigd+/e+OmnnyCTyTBmzBiD5cz9vpUWlStXxpgxY7Bs2TK0b98ekZGRqFy5Ms6cOYPY2Fi8/fbb+Pjjj41u36JFC+Tk5KBWrVro0KEDbG1tcfDgQSQlJaFBgwaYM2eOwe1eeeUV7NixA8HBwWjVqhUeP36MgwcPIisrC8OHD0evXr3MqsfOnTvxwQcfSP++d+8egNwxRLXjejZu3BjLli0za79ERERUNNijkYiIiCxiZ2eHTZs24eeff0bXrl1x+/ZtbN68GYcOHUJ2djZGjhyJ3bt3G+wtVhhz5szBqFGj4OTkhKNHj2LTpk24desWnn/+efzyyy9YsGBBsceXN/n28ssvQy433sRaunQpDhw4gOjoaDx48ADbt2/H3r17kZaWhgEDBuDnn39GzZo1Cx2LIR9//DE2b96M9u3bIyYmBhs3boRKpcKoUaNw9uzZfBN/eXtntmjRArVr1zZadvDgwTh//jzGjh0LGxsbHDhwANu2bcM///yD1q1b46uvvkK/fv2sUqfg4GCcOXMG0dHRUKvV2L59O27duoUpU6Zgz549UCgUBe6jc+fOAIBOnTohODjYYBlzv2+lydKlS/HFF1+gXr16OH78OPbu3YvatWvj6NGj6NatW77b2tvb48CBAxg5ciTOnj2L7du3w8nJCZMmTcKRI0fg4uJicLugoCD88ccfaNGiBfbv349Dhw6hTp06+Pzzz/H111+bXYeHDx/i5MmT0n/anpJ//fWXtOzSpUtm75eIiIiKhkyU5FRzREREREQlpHPnzti3bx9+/vlns3valVeHDh1C+/bt0a5dO7Mma5k1axbef/99zJw5E7NmzSqy+IiIiKh0Y49GIiIiIqpwjhw5gn379qFGjRqIiooq6XCIiIiIygWO0UhEREREFcbIkSORlpaGnTt3AgDmzZtncFZmIiIiIjIfE41EREREVGGsXLkSNjY2qF69OiZNmmS1MSOJiIiIiGM0EhERERERERERkRVwjEYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGomIiIiIiIiIiMhiTDQSERERERERERGRxZhoJCIiIiIiIiIiIosx0UhEREREREREREQWY6KRiIiIiIiIiIiILMZEIxEREREREREREVmMiUYiIiIiIiIiIiKyGBONREREREREREREZDEmGiuA48ePY/DgwahevTrs7e3h4uKCoKAgdO7cGe+//z4uXLhQ0iFWGEOHDoVMJsPq1astWl4alObY8nr06BHc3d3RrVs3s7ctzjoOGjQITk5OuHPnTpG/FhERkSnYhixbZDIZZDKZ2dvNmjULMpkMs2bNsn5QxaQ81AEAvv76a8hkMmzYsEFa1qJFC8hkMqxZs8bgNocPH5Y++5UrVxos89tvv0Emk6FKlSoQQlgU41dffQWZTIYtW7ZYtB8iKr+YaCznFi5ciOeeew7ff/89FAoFunbtiu7du8PPzw+///47Zs2aVeoTRWXFrVu3IJPJUL169ZIOxWLlqS4zZsxAamoqPvzww5IOJV+zZs1CZmYm3nvvvZIOhSqwsnIDgYiKHtuQ5UdhE5ClSXmoQ0HS0tIwffp0NGrUCNHR0dLydu3aAQCOHDlicLvDhw9LfxdUpm3btha/j8OGDUNQUBDeeecdZGVlWbQvosJavXo1ZDIZhg4dWtKhkAG2JR0AFZ1z585hypQpsLW1xXfffYe+ffvqrH/69Cl27tyJzMzMEoqw4pk7dy6mTp2KqlWrFkn54lSaY9O6ceMGvvrqK7z00kto2LBhSYeTr9q1a6N///749ttvMWnSJNSvX7+kQyIiogqKbciy6fLly4Xa7o033sCAAQPg5eVl5YiKT3mow8cff4yEhAQsW7ZMJxnYrl07LFiwQCehmNfhw4fh6OgIf3//fMto92UphUKBqVOnYtSoUfjqq6/wxhtvWLxPIipf2KOxHNu4cSOEEOjbt69eAxEAHBwcEB0djcGDB5dAdBVT1apVERISAjc3tyIpX5xKc2xay5YtQ05ODoYPH17SoZhk6NChEELgiy++KOlQiIioAmMbsmwKCQlBSEiI2dt5eXkhJCSkTCfpynod1Go1VqxYAS8vL3Tv3l1nXevWrWFjY4O///5bb4gdtVqN48ePo0WLFujQoQNu376N27dv65TJzs7G77//DsA6iUYA6N+/PxwcHPD5559bZX9EVL4w0ViOPXjwAABQpUqVQm1/+/ZtjBs3DsHBwVAqlXB3d0f79u3x888/GyxfvXp1yGQy3Lp1C+vXr0fr1q3h5uYGmUyGxMRE2Nvbw8nJCWlpaQa3z8zMhIeHB2xsbPROog8fPsTUqVNRr149ODo6wsXFBS1atMB///tfg+OMREZGQiaT4dChQ9i3bx+6dOkCT09PyGQynDt3rsC65/d4hqHHimfNmoUaNWpI75t2+2fLmftYoqHy2jFo8vsvMjJSKp+WloYVK1YgKioKNWvWhIODA1xdXdGsWTN8+umnyM7O1nlNa9QlKysLS5YsQdOmTeHi4gJHR0fUr18fH3zwAdLT0/XK5+36npKSgrfeegsBAQGwt7dHzZo18f777+vFWRCVSoXVq1fD09PT4PiMhw4dkt6r9PR0TJkyBcHBwbC3t0fPnj31yl+5cgV9+vSBl5cXlEolGjdujJ9++sno6z948ACTJk1C7dq1pd9P27ZtsXbtWqNj43Ts2BG+vr747rvvjP5OnjVp0iTIZDJMnz7daJn58+dDJpNhzJgx0rKnT59i6dKliIiIQOXKlaFUKuHr64u2bdvio48+Mum1TbVz505ERUXBx8cHdnZ28PX1Rfv27fHZZ5/plS3u746pseU9phiS9/hnbPmzx8XHjx+b/D3UaDRYt24dOnToAE9PT9jb2yMoKAhvvfUWEhISrPK+5B3/adiwYTq/fVOOWQU9wmJs/KycnBysXbsWrVu3RtWqVWFvbw8fHx80b94c//d//weVSqW3L2uenx4/fgwAuHfvHt555x3Uq1cPrq6ucHZ2RrVq1dCjRw9s3LixwPoTlSdsQxauDVm3bl3IZDLExcXpLN++fbt0PD169KjOusuXL0Mmk6Fly5bSMrVajW+//Rb9+/dH7dq14ezsDGdnZzRo0ACzZ8/GkydPDL7+s+1X7XH52fXPljN2fM67/O7duxg2bBh8fHygVCoRGhqab5Lp3r17GDlyJKpWrQqlUom6deti/vz5yMnJMXrONMSadbh9+zZefvlleHt7w8nJCS1atMCePXukstu2bUPr1q3h6uoKDw8PDBgwAHfv3jUa24ULFzB06FAEBgbC3t4elSpVQrdu3Yy2FfKzefNmJCQkYMCAAVAoFDrrXF1d0ahRIwD6j0afOnUKT58+Rdu2bdGmTRuDZWJiYpCeng5PT0+Eh4frvfb69evRvHlzODo6olKlSujevTtiYmLyPa+7urqiR48euHr1Kg4cOGBSHbW/A22chpw8eRIymUwvYb5161Z07twZ/v7+sLe3R5UqVdCwYUP85z//wcOHD016fVOcP38ew4cPR40aNaBUKlGpUiU0adIE06dPR2Jiol75rVu3SscIe3t71KhRA2PGjNFL9gK615AajQZLlixBvXr1oFQq4e3tjeHDh0vHXktiK2i8UlPmBoiJiUHPnj1RpUoVyOVyaTxO7e9OCIHly5ejSZMmcHZ2hru7u86+fvvtN/Tt2xe+vr6ws7ODj48P+vXrZ/AYWpj3JTIyEsOGDQMArFmzRueYYMqj1AUNE5a3ff6sw4cPo0ePHtLYxZUqVUK9evXw+uuv4++//9Yrn56ejo8++giNGzeWrm0aNmyIjz/+2ODQA6Z8DsV5HVdogsqtDz74QAAQ/v7+4u7du2Ztu3fvXuHi4iIAiDp16ojevXuLdu3aCaVSKQCId999V2+batWqCQDi9ddfFwBEy5YtxcCBA0WTJk3E48ePRa9evQQA8c033xh8zfXr1wsAokuXLjrLz507J3x8fAQAUa1aNdGjRw/RuXNnKb5Bgwbp7atdu3YCgBg9erSQyWSiYcOGYuDAgaJ169bizz//LLD+AISxn8fNmzelWLQ2b94s+vTpIwAIJycnMWTIEOm/SZMmSeWGDBkiAIhVq1bp7NOc5Zs3b9bZf97/ateuLQCIDh06SOWPHj0qAAgfHx/Rrl07MWDAANGhQwfps3zppZeERqOxWl0yMjJEmzZtBADh4uIioqKiRJ8+fUSlSpUEABEeHi4ePnyos82qVasEANGjRw9Rt25d4e3tLaKjo0WnTp2Evb29ACBee+01g5+HMXv27BEARFRUlMH1Bw8eFABEs2bNROPGjYWrq6vo3r27iI6OFqNHj9ap45tvvimcnJxE3bp1Rf/+/UWzZs2k78h3332nt++rV68KX19f6ffXr18/8fzzz0t1GTRokM57ntfAgQMFALF582aT6vnnn38KAKJ69epG91mvXj0BQPz+++9CCCFycnJEZGSkACDc3d1Ft27dxMCBA0VkZKSoUqWKsLe3N+m1C6LRaMTIkSMFACGXy0WLFi3EwIEDRceOHYW3t7feb6w4vzvmxqY9phw8eNBgXbXHv5s3bxpcbuy4aMr3MCsrS/To0UMAEM7OziIyMlL07t1bBAUFCQDCz89P/P333xa/L0OGDBE1a9YUAMRzzz2n89s/evSo0c/52dccMmSIwfUzZ84UAMTMmTN1lr/yyisCgHB0dBRdunSRPoeAgAABQNy7d0+nfFGcn+7evSt97jVq1BA9e/YUffv2FS1bthSOjo6ia9euBdafqDxhG7JwbcixY8cKAGL16tU6y9966y2p3TBr1iyddUuXLhUAxHvvvScti4uLEwCEp6eneO6550T//v1F586dhZubmwAgmjRpIjIyMvRe/9n269GjR6W2jPb4nPc/LWPHZ+3yYcOGCR8fH1G9enXRv39/0a5dOyGXywUA8eGHH+rFERcXJx3DfX19pXaQUqkUffr0MXrONMRadRgyZIjw8vISwcHBon///iIiIkIAELa2tuLQoUPi008/FTY2NiIyMlL06dNHVK1aVQAQdevWFSqVSi+ub7/9VigUCgFANGjQQERHR4tWrVoJGxsbIZPJxPLlywusW16DBg0SAMTPP/9scP2kSZOk72VeH330kQAg9u/fL31vRowYoVNmwYIFAoDo2bOn3n7nzJkjtYW01wnBwcHC3t5ejBkzJt/z+ooVKwQA8dZbb5lUR7VaLapUqSJkMpmIjY01WEb7G/roo4+kZdOnTxcAhEKhEO3btxcDBw4UXbt2FcHBwQKAOH78uEmvX5BvvvlG+kzr1Kkj+vXrJ7p16yZq1aplsA349ttvCwDCxsZGtG/fXgwYMEAq6+7uLk6cOKFTPu815KBBg4Sjo6N48cUXRY8ePYSXl5cAIMLCwgx+38yJzdhvQaug684RI0YIOzs7Ubt2bTFgwADRqVMnsWPHDiHEv8eY119/Xdja2kr1btWqlbSfefPmCZlMJuRyuWjWrJno27evaNKkiQAg7OzsxLZt2yx+X+bOnSuee+45AUDUrFlT55jw9ddfG/uIDb6mIdr2ebt27XSWr1y5Uvq9tGrVSgwYMEC8+OKLIjQ0VAAQP/zwg075f/75R9SpU0e6Fn/xxRdFt27dpGubyMhIkZmZadbnUFzXcZZiorEcu3XrlnBycpIu4Pr27Ss+/fRTcezYMfH06VOj2925c0e4u7sLhUKh92O5fPmy1DjYv3+/zjrtcoVCIX799Ve9/W7ZskX6QRny0ksvCQBi3bp10rInT56I6tWrCwDik08+ETk5OdK6+Ph40bhxYwFArFy5Umdf2kaioYOoKZ5tqOVl7MBU0AFLCOskGo05fvy4UCqVQqlU6pxw4+LixIEDB/SSUPfv35fev2c/Z0vqom0INWjQQCQkJEjLU1JSRPv27QUA0a9fP51ttAkKAKJXr146388TJ05IjTZTGqRa7733nl5DJS/tCUTbYH82gZW3jgDE/PnzddYtXLhQSko8q2nTplLDLO/J48qVK1ICctmyZQbj+vTTT81qtAkhRMOGDQUAcejQIb11p0+fFgBErVq1pGWHDh2S6p2enq5TPjs7W++3XVgff/yxACACAgJETEyM3us829Aozu+OubFZmmg0dlw05Xv4zjvvCACiU6dOOkm3nJwc6Xvepk0bq7wv5hxznlWYROOtW7cEABEYGCgePHigt81vv/0mnjx5Iv27qM5Ps2bNkhrOz0pLS5OS9EQVBduQhWtDbty4UQAQr776qs7y8PBw4e/vL9zd3fWO19ok6r59+6RlqampYvv27UKtVuuUffz4sXjxxRcFADF37ly91zfWfs2vXStEwUk6AOKNN94Q2dnZ0roNGzYIIPcG2LNtie7duwsAok+fPjrfl6tXr0oJPFMTjdasw6RJk3S+B9pzaO3atYW7u7vOsT45OVmEhIQIQD9xfPbsWaFQKISbm5vO5yZEbntc+xu4cuWKyfXz8/MTAIwm9rdt2yYAiJCQEJ3lXbt2FQqFQko8V69eXQQHB+uU6datmwAgFi9erLP8zJkzQi6XC3t7e53fZE5Ojhg/frz0vhk7r2tvdjdo0MDkek6YMEEA+gl3IYTIzMwUlSpVEnK5XPzzzz9CCCGePn0qlEqlcHZ2FtevX9fb5ty5czptxsLSto3s7OwMdiI4deqUiIuLk/69fft2AUC4ubmJkydPSstzcnKkdltgYKBOckx7faVtl2vrKIQQCQkJokaNGgKAWLNmjUWxWZpoBCDef/99gx0YtOs9PDz02s9CCLFjxw6p7mfOnNFZt23bNmFrayvc3NxEYmKixe9LQe3O/BQ20ag9pxhKbl+/fl0nga7RaETz5s2lY0/e70JycrLo2rWrACCmT5+us5+CPofiuo6zFBON5dyRI0ekHip5/7OzsxPdu3c3ePGkPTjOmDHD4D43bdokXbzmpW0kPnunTSsrK0t4eXkJmUwmbt++rbPuwYMHwtbWVri4uOhcVH7xxRcGG2xaZ86cEQBEo0aNdJZrG4mF7YVS1hKNsbGx0h3CDRs25Fs2L22vv+joaKvUJSMjQ7owOXbsmN42169fFzY2NkIul+t8B7QnChcXF4PJBm0D6dmGXn60DXFjPQPzJniM3QnV1rFFixZ667KysoSHh4cAIG7duiUtP3z4sAByeyGkpqbqbaeta82aNQ2+pvYzefbElp9PPvlEABDDhw/XW6ftRfHBBx9Iy7Q9P8xJZporKytLult3+PDhAssX53fH3NiEsDzRaOy4WND38NGjR0KpVAoPDw/x6NEjvfU5OTmiQYMGAoBOT5vC/qaKO9H4xx9/CCC356Upiur8pO1BYWpPYqKKgG1I89uQiYmJQiaTiYCAAJ34ZDKZGDp0qOjRo4dQKBRSnDk5OcLT01PY29vnm8DN69q1awKAaNq0qd66oko0VqtWzWAvK+0TE3lvdN68eVPIZDJhb2+v1yNdCCGWLVtWIonGGjVq6PUcSk5Olvb7f//3f3r7XLJkiQAghg4dqrO8b9++AjDew3bRokUCgJg4caJJdXvw4IGUtDImOTlZ6kWqTaxlZ2cLFxcX0bJlS6mc9ikBbcIyJydHuLu7CwB6iaFhw4YJwPBNNpVKJd0cN3Zez8rKEkBu7668Sej8xMTEGG0Hb968WQAQHTt2lJZp3xtzkpmFERUVJSV2TKG9AT5nzhy9dWq1Wjp2fvvtt9LyvAm1Xbt26W2n7cTw7PfN3NgsTTTWrVtXJyGflzZ+Qzc6hBBST+EDBw4YXP/mm28KAOLTTz+VlhX2fSmJRKOjo6Nwd3c36TV27twp7cNQ0vbu3bvCzs5OVKpUSWd9QZ9DcVzHWQPHaCzn2rRpgytXruCXX37BhAkT0KpVKzg4OCArKwvbt29H69atsWLFCp1tdu3aBQAGB/8GgLZt2wIATpw4YXC9ofHtgNwZygYOHAghBL799luddT/88AOys7PRt29fODo6mhxLo0aN4OzsjD///NPgOF7GYilPHj9+jG7duuHBgweYO3cuoqOj9coIIXD48GHMmTMHY8eOxbBhwzB06FB8+eWXAIBr165ZJZYzZ87gyZMnqFmzJp577jm99cHBwWjbti00Go3eGEUA0KRJE1SuXFlveZ06dQAg33FynqUdy6NSpUr5lvP29kaLFi3yLfP888/rLVMoFNJYlnnj0o6L06tXL7i4uOht9/LLL0OhUBgc0DtvvPmN0fKswYMHw9bWFhs3bsTTp0+l5dnZ2fjhhx8gk8nwyiuvSMsbNWoEGxsbfPPNN/jyyy/Nei1TnT59GomJidJnXpDi/O6YG5s1FHQsMvY9PHToEFQqFTp06GDwuyyXy9G6dWsAho/J1vxNFYWQkBA4Oztj586dmD9/vt64Zs8qqvNT06ZNAQDvvvsutm3bhoyMDFPCJyrX2IY0HEt+PD090aBBA8TFxeH69esAgIMHD0IIgQ4dOqBDhw5Qq9XSeezcuXNISkpCy5YtoVQq9fZ36tQpLFiwAOPGjZPabnPmzAFgvbabKdq3bw97e3u95YbOJUePHoUQAm3btoWPj4/eNoMGDSq6QPMRGRkJOzs7nWXu7u7SubVLly5629SsWROAbv00Gg1+/fVX2NjYoHfv3gZfq6Dv+bNMabO6u7ujQYMGAP5ta8bExCAtLU2nLaP9WzvL9J9//onHjx/rbK+lLWNoUid7e3ujvx0thUIBFxcXaDQag+MXGtKoUSOEh4fj77//xm+//aazbu3atQCAIUOGSMsqV66MwMBA/Pnnn5g8eXKRfO9zcnKwb98+AMCIESMKLJ93cp28sWrZ2tri1VdfBQCDs4ArFAp06tRJb7mh35O5sVlDVFQU5PL800SGjo+PHj3CqVOn4OXlZXBsQyD/34Y570tJadq0KR4/foyhQ4fizz//NDruPvDvOSg6Otrg3A9Vq1ZFrVq1kJiYKJ0v8jL2ORTHdZw1MNFYAdja2uKFF17A4sWL8dtvvyEpKQlbtmxBnTp1oNFoMH78eJ2Lu9jYWABAeHi4wYlGtBetxgberVatmtFYtAfjZxuJ2hOL9qD8bCzdu3c3GItcLkd6errRE1x+sZQHarUaffr0weXLlzFy5EhMmTJFr8z9+/fRsmVLREZGYvr06Vi+fDlWr16NNWvWSIOyp6amWiUebeJMm4AzJCgoSKdsXgEBAQa30SbsMjMzTY5FO8GDoWRfXqZ8R8yJq6D3wNbWFoGBgTpl83J1dQXwb/ymqFKlCp5//nmkpqZKgwQDwO7du/HgwQO0a9dOp57BwcH49NNPoVar8frrr8Pb2xu1atXC8OHDsXPnznxPmqb6559/APzbOChIcX53zI3NGgr6nhlbrz0Gbtq0yejkT9pZyg0dk635myoKLi4uWL16NZydnTF16lQEBgYiMDAQgwYNwk8//aQ3YU1RnZ+GDBmCV199FVeuXEGPHj3g5uaGpk2b4u233zZpAjGi8optSPN16NABALB//36d/9cmGo2tyys9PR0vvfQSmjVrhilTpmDZsmVS201bX2u13UxRmHaQsffPzc0Nbm5uVo6wYP7+/gaXOzs7G12vXZe3fomJiUhNTUVOTg7c3d0NfrciIiIAGP+eP8vUNqt2xmht8kr7/3kTjdqJVp4t06ZNG72khfazMjYhhrHleRWm3ar9LWu/ywCQlJSEnTt3wtnZWS+Bu27dOvj6+mLhwoWoU6cOfHx80Lt3b/z3v/+1yo3BR48eISMjA05OTvDz8yuwfGJiIjIzM2FnZ2e0fH5tVh8fH9ja2uotN/R7Mjc2azDl2GeozM2bNwHkxiyXyw3+NrTJa0O/DXPel5KyfPly1KlTB2vWrEHDhg1RqVIlvPjii/j000+RnJysU1Z7DnrzzTeNtuEvXrwIwPD7YexzKI7rOGvQ/ySp3FMqlejRowciIiJQq1YtZGRkYPfu3XjttdcA5N45AXLvOD4765kpHBwcjK5r0qQJ6tWrh4sXL+LkyZNo3rw5Ll++jDNnzqB69ep6vYu0sURFRcHDwyPf1zV0pzW/WApLo9FYfZ+FNWbMGBw4cACdOnXC8uXLDZYZOXIkTp48iTZt2uD9999H/fr14ebmBltbW1y7dg116tQpNQekgu6emUM7+1lBDXFTviPWjKsgKSkpAKA3e1tBXn31VezYsQNr167FwIEDAfx7MWbobuu4cePQp08f7NixA/v378fRo0exatUqrFq1Ch07dsTu3bsNnuxNZejOXVEy5zMqitgKOi4U9D0ztl57DAwNDZUuXIypV6+e3rLi/O4WxNh71KdPH3Ts2BE7d+7E3r17cfToUfzwww/44YcfEB4ejqNHj0oXpUV1fpLL5VizZg2mTJmCHTt24ODBg/j9999x5swZLFq0CNOnT8fs2bPNfj2i8oZtyIJ16NABn3zyCQ4cOCC10+rUqQM/Pz/4+fnB29tbSjBqZ+t9NtE4depU7Ny5E/Xq1cP8+fPRtGlTeHp6QqFQICsry2C8Rakw55L8zrUlcW4q6DVNjUn7vbKzs5PaW8Z4eXmZtE9T26zt2rXDkiVLpB6NR44c0XmyAci9iVqlShWdMtpti0Jh2q2DBw/GlClTsH79enz22Wewt7fHTz/9hKysLAwcOBBOTk465du0aYPr16/j119/xa+//oqjR49i8+bN2Lx5M2bPno2jR49a1LmEbVZdphz7DJXR/jY8PT3RvXv3fLd/dlZxoGy0WUNDQ3H+/Hns378fu3fvxtGjR/Hrr79i165dmD17Nvbs2YMmTZoA+Pf96NChg9GbNVqGejPn9zkU9XWcNTDRWIH5+voiJCQEMTExOln0gIAA3LhxA7Nnz5YeGbCmV199FVOmTMHatWvRvHlznTvRzx5MAwICcPXqVYwfPx4dO3a0eizGKBQKqNVqpKenS3cztQp6tK+4zJ07F9988w3q1auHjRs3GjyYPHnyBLt27YKNjQ22b9+udwf5xo0bVo1Je6dNewfHEO26or4r5+3tDSD3DmlxKug9yM7OlnrUGXoPtPFWqVLFrNfVXkjt3bsX9+/fh4ODA7Zt2wYnJyeDj9MDuXcOR44ciZEjRwIATp48iYEDB2L//v1YuXIlRo8ebVYMeWl7bZr6iEtxfnfMjQ2A9LhVenq63rrs7Gzcu3fPopiM0TZMGjdujNWrVxfJa1hLfu8RkP+x093dHYMHD5Ye37p06RKGDBmC06dPY968eZg7dy6Aoj8/hYaGIjQ0FJMnT0Z2djY2btwoPao4aNAggw1jooqIbUjj2rZtC1tbWxw6dAj//PMPbty4gddff11a3759e6xfvx4PHjzAsWPH4OzsjGbNmunsY+PGjQCAH3/8EWFhYTrrrN12szZfX18A/z498KzU1FS9nj9liZeXF5RKJdRqNVasWGGVpK+pbda2bdtCJpPh/PnzePToEY4ePYoGDRpIvQq12rRpg02bNuHBgwf5Jhr9/PwQGxuL27dvG2xb3bp1K994tNdKcrnc5KQqkNv+7NKlC3bt2oVt27ahb9++Bh+bzsvR0RG9evVCr169AAC3b9/GmDFjsHv3bkydOhU//PCDya//rEqVKsHR0RFPnjzB3bt3pe9wfuXt7e2RmZmJ+Ph4g0kka7VZzY0NsKw9Zgnt++Do6Fiu26wKhQLPP/+8NLTWgwcPMHnyZKxZswZvvPEGjh8/DuDf92PQoEFF8th7UV7HWUPpSRuT1RXUSy0nJ0fq4pz3cQHtj0bbyLG2l19+GXK5HD/99BNUKhW+++47APqPvBRHLMZoD+JXr17VW7dnzx6D22gPWM8+6lcU1q9fj//7v/+Dt7c3du7cafQRlJSUFGg0Gri4uBgsY+ykXNi6NGnSBE5OToiNjdUbdwUA/v77bxw9ehRyuVx6tKOoNGzYEEBuwqI4aXtUbNmyBWlpaXrrv/vuO6jVatSsWdNg40Mbb6NGjcx6XXt7e/Tv3x85OTn47rvvsH79eqhUKvTq1UsvWW5M8+bNpZPVX3/9ZdbrP6tJkyaoVKkSrl+/jmPHjplUvri+O+bGBuR/TDh48GCR/e47duwIhUKB3bt3G20MWZMlx7H83qOsrCwcOnTI5H2FhoZi4sSJAHS/i8V5TrC1tcWAAQPQtm1bCCFw/vz5In9NotKCbcjCc3FxQdOmTfHw4UMsWbIEgG6PxQ4dOkCj0WDevHlIT09H69at9Xp/ahNOhhIYhUmoaPdfHG1Ube+6w4cPIyEhQW99YRNCxVmH/Nja2qJTp07IycnRGa7GEl5eXvD390dKSkq+Ny49PT0RHh4OIQS++OILPH782OBY09p20vLly5GYmAhXV1eD7Urttt9//73euqysrAJ/O9o2a/369c3ujZb38enr16/jxIkTCAwMNDq237OqVauG6dOnA7C8zWpjYyPdjPjmm28KLG9ra4tWrVoB0H38WysnJ0d6qsjSnqTmxgbk3x5LTExETEyMRTEZ4+fnh7CwMMTHx+PkyZNF8hp5WdJm9fLygkKhQGJiIh49eqS33tj1viFVqlTBRx99BKDk2qyAda/jrIGJxnJs2rRp+M9//oPLly/rrUtLS8Nrr72G5ORkODs744UXXpDWvf3223BxccGsWbOwcuVKqduvlhACp06dwt69ewsVl6+vLzp16oTExES88847iIuLw3PPPWfwzveoUaPg7++PFStWYN68eQbHZrh06ZI01qC1tG/fHgDw4Ycf6hy89uzZg8WLFxvcpnLlyrCzs0NCQkKR3qk9ceIEhgwZAqVSiW3btuX7qIC3tzfc3d3x+PFjvYbdunXrpAb6swpbFwcHB+nuyRtvvKHTyyEtLQ2jR49GdnY2oqOjpV5lRUXbUDF1IG5radu2LZo0aYKkpCSMHz8earVaWnf9+nX83//9HwBg0qRJBrfXxmtqQysv7YXW2rVr831s+sCBA9i1a5feiTkrK0v6Xef9fO7cuYOQkBCEhIQYHGvGEIVCgalTpwLIfUTm2RNeTk4Otm/fLv27OL875sYG/HtMWLZsmc6gyzdu3MCbb75pUTz58fHxweuvv45Hjx6hV69eBnt8Pn78GCtWrLDKxZc2+W3ovFGQiIgIODk54cKFC9i0aZO0PCsrCxMmTDDYM+Ls2bNSUjwvIQR++eUXALrfxaI6P61duxZnz57VWx4fH48///xTLw6i8o5tSMtoE4vLly+HTCaTziEApKSBdsibZx+bBv59rHDZsmU6y/ft24dFixaZHY8lx3ZzBQUF4cUXX4RKpcKbb76p875re7sWRnHWoSAzZsyAra0txo4dazDZmJOTg4MHD5rVBtUmpLS9oQoq9+mnnwJAvolGbZnWrVvDxsZGr9y4ceMgl8uxcuVKnZuBGo0GU6dOLbDNZ0mbVTse8u7du6Xv9CuvvKLXM/n27dtYuXKlwZv3O3bsAKB/fu7YsSNCQkKwefNmk+N57733YGNjgzlz5mD9+vV668+cOYP4+Hjp39qboQsXLsTp06el5RqNBtOmTcONGzcQGBhY4IQ6RRFbZGQkZDIZdu3apZPwS0tLw8iRI4t0fFft73vgwIEGJ8LRTiZ25coVi1/LkmOCnZ2dNPnks8ektWvXGrwhkpGRgcWLFxtMTBr6Lvbq1QuNGjXC7t27MXHiRIPv+61bt7Bu3TqzYjf3Oq7EFPs811Rs3nrrLWmq+OrVq4vu3buLQYMGiQ4dOghXV1cBQNjb24uNGzfqbbt3717h7u4uAAh/f3/RtWtXMWjQING1a1fh7e0tAIgpU6bobFOtWjUBQNy8ebPA2L777jspNgDiq6++Mlr23Llzwt/fXwAQlStXFh07dhSDBw8W3bp1E4GBgQKA6N+/v8427dq1EwDEwYMHTXqvnnXlyhXh5OQkAIjg4GARHR0tmjZtKmQymZg6daoAIKpVq6a3Xa9evaR1gwYNEiNGjNB5n7TT1a9atUpnO3OWd+jQQQAQISEhYsiQIQb/mzt3rlR+wYIF0vv83HPPiYEDB4oGDRoIAEVSl4yMDNGmTRsBQLi6uooePXqI6Oho4eXlJQCIsLAw8fDhQ51tVq1aJQCIIUOGGPw8Zs6cKQCImTNnGlxvyNOnT4WHh4fw8PAQmZmZeusPHjwoAIh27doZ3YexOmoZ+55dvXpV+Pr6CgAiICBA9O/fX7zwwgvC3t5eABADBw4UGo1Gb385OTmiatWqwsnJSaSmpppc17xq164tfd7+/v4iJydHr8zixYsFAOHu7i46duwoBg0aJKKiokTlypUFAFG7dm2RnJwslb9586a0T1N+31oajUZ6D+VyuWjVqpUYOHCg6NSpk3Qcyas4vzvmxqZSqURYWJgAILy8vESPHj1EZGSkcHBwEAMHDjR6/CvouGjK9zAzM1P07t1bABAKhUI0a9ZM9OvXT0RHR4vGjRsLW1tbAUA8ffrU4vfl7NmzQi6XC7lcLrp06SKGDx8uRowYIX777Tej8eU1Z84c6T1t166d6Nmzp/D39xfe3t5i2LBheq+5efNmAUA4OTmJtm3bioEDB4pevXqJgIAAAUB4e3uL2NhYndcoivNTjx49pN/rSy+9JAYPHiw6d+4slEqlACD69etnUv2Jygu2IQvfhhRCiH379knxNWzYUG+9tr4AxOnTp/XW//TTT9L6Ro0aiYEDB4qWLVvqtN0MXcYZWz5x4kTpPejfv78YMWKEGDFihLTe2DmhoPaXsXbS7du3hZ+fnwAg/Pz8RL9+/cSLL74olEql6NWrl/Te37lzx+B+DSmqOuT33cvvHL1u3TqpXVezZk3RrVs3MXDgQNGhQwfh4eEhAIjly5ebXD/tZz5u3Lh8y23cuFHn+//gwQO9Mjk5OdLvFICYP3++0f29//770nk7MjJSDBw4UNSqVUvY29uL0aNH59uW6NevnwAg9u/fb3I983rttdd06nL16lW9MmfPnpWONy1atBADBgwQ0dHRUnvX2dlZnDx5Umcb7WdqrP1uzIoVK4SNjY10ndW/f3/x0ksviVq1ahk8JkyaNEkAEDY2NqJDhw5i4MCBUlzu7u7i+PHjOuW17WlD111C5P99Mze2kSNHSu9b586dRbdu3UTlypVFSEiI1OYx9Xo0L2PHmLzmz58v5HK5ACBCQ0NFz549xYABA0SbNm2Es7OzACB27dpl8fuiUqmEj4+PACCaNGkiXn31VTFixAjxzTff5Buf1qFDh6Q2dHh4uIiOjhbh4eHC1tZWvP3223qvmZycLH3ejRs3Fv369RP9+/cXDRs2FACEra2t2Lp1q85r3L59W4SGhgoAws3NTbRt21a67tJ+ds2bN9fZpqDPwdzruJLCRGM59ujRI/H999+LYcOGiYYNGwpvb29ha2srXFxcRIMGDcSECRPEjRs3jG5/584dMXnyZBEeHi6cnJyEg4ODqFGjhujcubNYsmSJXuPAnEZiRkaGdAJUKpXi8ePH+ZZPSkoSH3zwgWjatKlwcXER9vb2IjAwULRt21Z89NFHevWwRiPxzJkzomvXrsLFxUU4OjqKli1bim3btuV7MHz06JEYMWKE8Pf3lw5cectZI9GorVt+/z17IP7xxx9FRESEcHFxEW5ubiIyMlLs3LmzSOoiRG5i5JNPPhGNGzcWTk5OQqlUinr16on3339fpKWl6ZUvikSjEP82Sjdt2qS3rigTjUIIkZCQICZOnCiCg4OFnZ2dcHFxEa1btxarV682mGQUQohff/1VABCjRo0ypXoGaRM92osRQ65fvy5mzJghIiMjhb+/v7C3txeVK1cWTZs2FQsXLhQpKSk65QubaNT6+eefRdeuXUWlSpWEQqEQvr6+okOHDuLzzz/XK1vc3x1zYktISBDDhg0TVapUEXZ2dqJOnTpi4cKFIicnp0gTjXljfemll4S3t7dQKBTCy8tL1K9fX4wZM0bs3r1bp6wl78uGDRtE8+bNpcaguY31zz//XNStW1fY2dmJypUri5dfflnExcUZfM179+6Jjz76SHTt2lVUq1ZNKJVK4eHhIRo0aCCmT58uEhISDL6Gtc9Phw8fFuPHjxdNmzaVPl9/f3/RsWNH8cMPP4js7GyT609UHrANaVkb8unTp1IS6j//+Y/e+uHDhwsAwsPDw+ANQSFyk5Vt2rQR7u7uwtnZWTRv3lysXbtWCGH8Yt/Y8oyMDPGf//xH1KhRQygUCr1y1k40CpH7HRg+fLjw9vYW9vb2onbt2mLOnDlCpVIJOzs7IZfLdW6QFaSo6lDYRKMQQly7dk2MHTtW1K5dWzg4OAgnJycRHBwsunfvLr766iuRmJhocv2ysrKEt7e3qFSpksEb5FoPHjwQMplMABB169Y1Wu7555+X3qMTJ07k+9o//PCDiIiIEA4ODsLd3V288MIL4tSpU/m2JVJSUoRSqRR16tQxuY7POnbsmBRjixYtDJZJTU0Vn3zyiYiKihJBQUHCyclJuLq6itDQUDFhwgSDn1thE41CCBETEyMGDx4s/Pz8hEKhEJUqVRJNmjQRM2fONPh5bt68WXTq1Em4u7sLhUIhAgMDxahRowzGZUmi0dzY1Gq1eP/990VQUJDUvh07dqxITk42+3o0L1MSjULkXkcPGTJEVK9eXdjb2wtXV1dRp04d0bdvX7Fu3TqRnp5ulffl3Llzolu3bsLT01NKbhpr+xqyb98+0bp1a+Ho6ChcXFxEx44dxbFjxwy+plqtFsuWLRP9+vUTtWvXFi4uLsLJyUnUqVNHDB8+XJw/f97ga2RkZIglS5aI5557Tvqe+Pr6ihYtWohp06aJP//8U6d8QZ+DuddxJUUmRCmZbpaIyMpu3LiBkJAQPP/881KX9tJs0KBB+PHHH3Hu3DnUr1+/pMMhIiIisqrffvsNrVu3Rr169XDhwoWSDqdUmTlzJmbPno0NGzYYncivOK1evRrDhg3DkCFD9Cb3+OqrrzB69GgsXboUb7zxRskESESlFsdoJKJyKzg4GKNGjcIvv/xSZAMfW8u1a9ewfv16vPLKK0wyEhERUZmVnZ1tcNzbq1evYtSoUQCMzy5ckb399tvw9vbGhx9+WOCETCVJrVZj/vz5UjubiOhZTDQSUbk2e/ZsuLq6SjPTlVazZs2Cvb29NGsZERERUVmkUqnQuHFj1KhRAy+88AL69++PFi1aICwsDJcuXULbtm0xYcKEkg6z1HFxccEHH3yAc+fOFfts6eZYtWoVYmNjsXDhQmnmXyKivPjoNBEREREREVlFdnY2pk+fjv379+PmzZt4/PgxHB0dUbduXQwYMABjx45lgqoMyO/RaSKi/DDRSERERERERERERBbjo9NERERERERERERkMSYaiYiIiIiIiIiIyGJMNBIREREREREREZHFmGgkIiIiIiIiIiIii9mWdADlzd27d7Fjxw4EBQXBycmppMMhIiKicuLJkyeIjY3FSy+9BF9f35IOh0oJtj2JiIioqBSm/clEo5Xt2LEDo0ePLukwiIiIqJxasWIFRo0aVdJhUCnBticREREVNXPan0w0WllQUBCA3A8hPDzc6vtXq9VITU2Fq6srFAqF1fdfGrHOrHN5xTpXjDoDFbPerLP163z+/HmMHj1aamsQAUXf9gT4e2adyy/WmXUur1hn1tlaCtP+ZKLRyrSPrISHh6Nly5ZW339WVhaSkpLg6ekJOzs7q++/NGKdWefyinWuGHUGKma9WeeiqzMfj6W8irrtCfD3zDqXX6wz61xesc6ss7WZ0/4ss5PBzJ07F3379kVQUBBkMhmqV69eqP2sXbsWjRo1goODA7y9vTFy5Eg8fPjQusESERERERERERGVc2U20fjee+/hwIEDqFmzJjw8PAq1j8WLF2PIkCFwc3PDp59+itGjR+PHH39EZGQknjx5YuWIiYiIiIiIiIiIyq8y++j033//LT0jHhYWhvT0dLO2f/ToEaZNm4aIiAjs378fNjY2AICIiAhERUXh008/xXvvvWf1uImIiIiIiIiIiMqjMptotHQg9C1btiAjIwNvvvmmlGQEgO7duyMoKAjr1q1jopGIiCySkqHGhjNx2HvxPpKfqODhpESXsKqIbuwPN8eKMUg1EREREREZp71m2Hc5AWmqbLgobdE51KfMXjOU2USjpU6dOgUABgfNbtGiBX744Qekp6fD2dnZ6D7i4uIQHx+vs+z8+fMAcmf/ycrKsmLEkPabnZ0NtVpt9X2XVqxzxcA6VwwVqc4bY+7g/R1XkJmt+Xfhw6c4eSsZC3ZfwcyXQhDd2E9nm5Snavx89i4OXHmItMxsuNjbomNIZfRq5As3h7LVyKhIn7VWUde5Ir2XRERERBXB+lNxmLH1AlR5rxkAnIhNwsLdVzC7Rxj6RQSUUHSFU2ETjXfv3gUA+Pn56a3z8/ODEAJ3795F7dq1je5j5cqVeP/99w2uS01NRVJSktFtc3JykJGRgaysLAghTI5bCIHs7GwkJydDJpOZvF1ZVlrrLJPJYGNjA3t7eyiVSqvGplarkZ6eDiFEkU1TX9qwzqxzebL94iN8uPe20fWZ2Rq8t+USnjx5gu71vKRtPj74DzKzdc8JJ28lY9G+63i7faBUtiyoKJ91XkVd59TUVKvvkyoOIQRSUlKQlpaGzMxMs9qfGo0GarUaKSkpkMvL7BDvZimtdZbJZHB2dkalSpUqzLGViKi8Wn8qDpM3/WV0vSpbI60vS8nGCptozMjIAADY29vrrVMqlTpljBkxYgS6du2qs+z8+fMYPXo0XF1d4enpaXA7IQTi4uKgVqthY2NjduPFzs6uVCXcikNprLNGo4FGo8HTp09hY2MDb29vq8WoVqshk8ng4eFRYRqRrDPrXF6kPFXj44NnTSq76FAcejatgb2XHxSQmBT4cO9tODk56fWCLK0qwmf9rKKus6urq9X3SRWD9ga6Nlktl8vNan/KZDIoFIpS1xYrSqW1ztqb7xkZGahRo0api4+IiEyTkqHGjK0XTCo7Y9sFdK3nU2Yeo66wiUZHR0cAQGZmJhwcHHTWqVQqnTLGBAQEICDAcFZZoVDAzs7O4LqkpCSo1Wq4uLjAz8/PrIaeRqNBTk5OoRKUZVVprbMQAiqVCvfu3cOTJ0+gUqng5uZmtf3b2trm+z0qj1jniqG813nbH3d0H5fOh0qtwfoz97D0wHWTys/eeQXd6pedsVrK+2dtSFHWuaIkbMn6UlJSkJqaCnt7e1StWtXsJzFKa1usKJXWOms0Gty5cwfp6elITk422rGBiIhKt40x8XqPSxujUmuwKSYew1vXKOKorKP0nDWLma+vLwDgzp07euvu3LkDmUwmlbG2tLQ0AIC3t3epariQeWQyGRwcHFC1alUAfKSNiHLtvXTfrPLf/HbT7EYGEZE5tG3PqlWrwsHBgb3gyjC5XA5vb28A/36uRERU9ph7zbD3UkIRRWJ9FTbLFRERAQA4fvy43roTJ06gTp06+U4EYwnto1XsmVA+KJVKyOVyZGZmlnQoRFQKpKmyzSqf+MS8icPKUiODiEqHzMxMyOVyaXggKtu0j3RnZ5t3viEiotLD3GuGVFXZmRSwQiQa//nnH1y5ckVntsYePXrAwcEBn3/+OXJycqTl27dvR2xsLAYPHlxk8QghIJfLeTe5nJDJZJDJZGYNqk5E5ZeLsmhHJSlLjQwiKh3Y9ixfZDIZ5HI5NBrTesMTEVHpY+41g6uy7HRUK7OJxm+//RZz5szBnDlz8PDhQ6SkpEj//vbbb3XKvvrqq6hbt67OY9KVK1fGBx98gD/++AOdOnXCV199hZkzZ2LgwIEICQnBhAkTijR+NvTKF36eRKTVqa63WeUrO+tPSpafstTIIKoI0tPT8dFHHyE8PBwuLi7w8vJCq1atsHr1ar2bkCdPnkSnTp3g4uICV1dXPP/88zh37lzJBE5lGtueRERlW+dQHzPLm3eNUZLK7GQwK1euxOHDh3WWTZ8+HQDQrl07vPLKKwXuY9KkSahUqRIWL16M8ePHw9XVFf369cO8efOK7LFpIiIqv7KyNfjjZpLJ5ZUKOYY+Vx0Lf71q8jZlqZFBVN5pNBq88MIL+P333zFkyBC8+eabyMjIwA8//IBhw4bh8uXLmD9/PoDcoXkiIyPh5+eH2bNnAwA+//xztGnTBr///jvCw8NLsipERERUjKIb+2Ph7ismjdWuVMjRp4l/MURlHWU20Xjo0CGrlB06dCiGDh1qcTxERFSxqdQ5eH3dGRy8+tDkbWZHhaFrPR8s3X+9XDYyiMq7kydP4tixY5gwYQIWL14sLR87dixCQkKwYsUKKdE4fvx42NnZ4ciRI/Dz8wMA9OvXD3Xr1sWkSZOwZ8+eEqkDERERFT83RwVm9wjD5E1/FVh2dlQY3BzKzlNNZfbRaSIiIkukZKjx36OxGPDVcXT77CgGfHUcK4/dREqG+WMgpmdmY+iqP6Qko6vSFuPa14TS1vBpVqmQY0Gf+ugXESA1MkzRJtirTDUyiMq71NRUAICvr6/Ocjs7O3h5ecHJyQkAcOPGDZw6dQp9+/aVkowA4Ofnh759+2Lfvn24f9+82SeJiIiobOsXEYAFfepDYWN4OIy81wxlSZnt0UiGpWSoseFMHPZdTkCaKhsuSlt0DvVBdGN/uDny4tSQq1ev4uuvv0ZMTAxiYmKQkpKCmTNnYtasWSUdGhEVkfWn4jBj6wW9XoQnYpOwcPcVzO4RpndCN3Z87Vy3Ct788Rz+jHsMAPBytsO3I5qjblVXjGpTExtj4rH34j0kpavg6axEl3pV0eeZY7L2tQzFlNfeyw+w8thNjGhdw0rvBBFZolmzZnB3d8eCBQtQvXp1NG/eHBkZGVizZg3OnDmDL7/8EgBw6tQpAEDLli319tGiRQt88803OHPmDLp165bv68XFxSE+Pl5n2fnz5wEAarUaWVmGZ7HXaDSQyWSFnjxECCH9Z2gfKU/V2HgmHvsvP0BaZjZc7G3RKbRK7rGujN4cKajOlrh69Sr++9//4uzZs1Lbc8aMGZg5c6bZ8Rn7zAtDrVYjOztbZwLN8o51rhhY54qhrNa5ZwNv3EhIwVfHbussD/F2xrfDm8LNQWH0WF8cdS7MvploLEcKc+FMwPHjx/HJJ5+gZs2aaNKkCQ4cOFDSIRFREVp/Ki7fRxRU2RppvfaYmd/xdc6OS9BO9+DrpsS6kc0RVDl3nF83RwVGtK6BV5r5ISkpCZ6enrCzszP4uv0iAtC1ng82xsRj36UEpKrUcFUq0DnUG0qFHP+35QKEAD7YcQku9rY8nhOVAh4eHti2bRtGjhyJfv36SctdXFywadMm9OzZEwBw9+5dANDpzailXZZ30kJjVq5ciffff9/gutTUVCQlGR4jVq1WQ6FQICcnp8DXMEQIIW377CQkG87cwfs7LiPz2ePjzSQs/PUaZr5UF32b6Ne7tMuvzpb6/fffsXjxYtSsWRONGzfGwYMHodFozPp8hBBQq9VGP/PCUKvVSE9PhxACCkXZTBCbi3Vmncsr1rls1fny3cfS3y72NkjLzEHq0yzkPE1D0lPj2xVHnbVPb5iDicZyojAXzpQrKioKSUlJcHd3x+nTpxEREVHSIRFREUnJUGPG1gsmlZ2x7QK61vPBrxfv53t81SYZKznZYf2YlvD3cCx0fNrEpKEeixoBTNuSG/vUn/+Co70N2gRXZi92ohLm7OyMsLAwREVFoVWrVkhKSsIXX3yBQYMGYevWrejcuTMyMjIAAPb2+rPMK5VKAJDK5GfEiBHo2rWrzrLz589j9OjRcHV1haenp8HtUlJSIJPJYGNjY271AECaPdvGxkYn6bb+dBze23LR6HaZ2Rq8t+Ui5HIZ+jUtW+1PY3W2hh49eqBXr15S27N58+aQy+VmfT4ymQwKhcLoZ14YarUaMpkMHh4eZe4ivbBYZ9a5vGKdy1adrz1SAQD83ZWoVcUZB689wt3ULMiVLnDPp01fHHV2dXU1exsmGsuBwlw4F+cFaFpaGubPn4+9e/fi77//RlpaGgICAhAdHY0ZM2bA0TH3ovzQoUNo3749Vq1ahbS0NCxduhT//PMPAgMDMXbsWIwfP15nv5GRkbh16xYOHDiAiRMn4tChQxBCoGPHjli0aBGCgoJMis+aDTQiKt02xsSbNOkKAKjUGqw9cQtfHLhhUvn0zGy42BfdsfXlFtWQnpmNebuuQCOA8T+chY1cBnWO0CnHXuxExef8+fNo1aoVFi9ejDFjxkjLBw4ciLCwMLz22mv4+++/pbZOZmam3j5UqtyLC22Z/AQEBCAgwPDvWqFQGO0xLZfLdf7fXNpHr2UymbSPlAw1Zm27ZNL2s7ZfwgthvsXW/rRG2/ONN97A66+/rlNna7U9vby8pL+1+877OqbQfh7GPvPCsrW1zfe7VB6xzhUD61wxlMU6P0zLREJqbvsg3N8dtb1dcPDaIwDA9UdP8VywU77bF3WdC5PA5GQw5YC5F86bYuILLmhFd+7cwX//+180bdoU06dPxyeffILGjRtjwYIF6NWrl175pUuXYt68eXj55Zcxd+5cuLu7Y+LEiZg9e7Ze2SdPniAyMhJ2dnaYO3cuRowYgV9++QXPPfccB1UnIj17L5l3XFi055rJx9fM7KI/vo5pVxPj2tcEkNvD8dkko5a2F/v6U3FFGg9RRbd48WKoVCr07dtXZ7mjoyO6deuG27dv49atW9JkMYYej9YuM/RYdWlWmtuf1mh7vvXWW/jggw/0yrLtSURE1nThTor0d5ifG8L83AyuK0vYo7GUGfzfE7iTbPwhfKH9HxmgfYjjforKrNdYsPsK1h6/ZdY2fh4O+G5kC7O20QoKCkJcXJxOJnzcuHGYPn065syZgz/++APNmjWT1l27dg2XL1+Gv78/AOD1119HmzZt8OGHH2LkyJHScgB49OgR3nrrLSxZskRa1rZtW/Tu3RuzZs2SBmEnIgKANFV2ke5/76UEDC/iiVpeaxOELw/HIkdjOMmYV0n0YieqSLRJQkNj62VnZ0v/rx2W5fjx4xg5cqROuRMnTkAmk6FJkyZFHK1x5a39aWnbc9y4cWjdujXmzp2LkSNHIjAwUCrLticREVnT+TzJxHA/N9Tydja4rixhj8ZS5k7yU9xKzDD63+3EDNxOyv1/7TJT7yZrqbI1+b6Gof/ya3wWxM7OTmroZWdnIzk5GY8ePUKnTp0AACdPntQpP3jwYJ1kop2dHcaPH4/s7Gxs375db/9Tp07V+XevXr1Qp04dbNmypdAxE1H55KI07/6a3MxhuVJVRT/L3aaYOyYlGYGS6cVOVJGEhoYCAFavXq2z/PHjx9i6dSs8PDwQHByM4OBgNG3aFBs2bJAmhgFyJ4nZsGEDOnToAB8fn+IMXUd5a39ao+351ltvse1JRERF7tlEo4+rEl7OuY9BX7xr/kQspQF7NJYyfh4O+a43dkfZnMae0lYOHzelVeMqyLJly/Dll1/i4sWL0Gh0Y01OTtb5d926dfW21y6LjY3VWe7u7m6wYV63bl1s2bIFT548gZOTk96jLHZ2dhybkagCahNcGSdiTZ+hM8DTEbcTC56gQctVWfQ9B819/Ls4elkSVVQTJkzA2rVrMXXqVJw/fx7PPfcckpKS8PXXX+PevXv44osvpAk+Pv30U7Rv3x5t2rTBm2++CSD3kV2NRoNFixaVZDXKZfvT0ranNol88+ZNneVsexIRkTVpH4/2c3eAh1NugrGerxsOX3uIm4+eIE2lhksxXGNYExONpUxBj4doNBrk5OTAxsZGGjB65bGb+GCHaYNxA8Dk50OK9aLzk08+waRJk9ClSxeMHz8evr6+sLOzw507dzB06FC9xl9RqFq1qs6/27Vrh0OHDhX56xJR6ZGYnoltf94tuOD/KBVy9GsagIW/XjV5m86h3oUJzSzmPv5dHL0siSqqatWq4Y8//sDs2bOxf/9+/Pjjj3BwcEDDhg2xaNEi9O7dWyrbqlUrHDp0CNOmTcO0adMgk8nQqlUrbNiwAQ0aNCjBWpS/9ifbnkREVBY8Ss/Evf8NRRLm9+/szmF+rjh87SGA3F6NLYIqlUh8hcVEYzkQ3dgfC3dfMemuslIhR58m/gWWs6Zvv/0W1atXx65du3Rm09u9e7fB8pcvXza67NnZ/B4/foz79+/r3Vm+fPkyqlSpAien3Bma9u7dq7Pew8PD/IoQUZmVkKrC4P+exI0H6SZvMzsqDF3r+WDp/uul6vhq7uPfeXtZpmSoseFMHPZdTkCaKhsuSlt0DvVBdGN/juNIVEg1a9bEmjVrTCrbsmVL7N+/v4gjKh6luf1pjbbnpUu5SdQaNXSTo2x7EhGRtTz72LShvy/cSWGikYqfm6MCs3uEYfKmvwosOzsqDG4OxXsxaWNjA5lMBiH+HVMsOzsb8+bNM1j+u+++w7Rp06SxcrKysvDZZ5/BxsYGL730kl75efPm6QzIvXnzZly9ehWjRo2SlmnH5CGi8stYEq1lTU+8vi5GegS6ZmUnDIgIxKI9Vw1eICsVcsyOCkO/iAAAKHXH186hPmY9/p0jBB5nZGHPxQTM2HpBr84nYpOwcPcVzO7xb52JiApSmtuf1mh7fvrpp2x7EhFRkboQrzvjtFY933//LovjNDLRWE5oLw4NXUQC+hfOxSk6OhrvvvsuXnjhBfTu3Rupqan4/vvvdWYCzKt27dpo3rw5xowZAxcXF3z//fc4ffo0pk2bhoAA3fi9vLzw888/4+7du4iMjMT169exbNkyeHt7Y9asWSbFl5KSgqVLlwKANED7kSNHMGfOHABAVFQU6tevX8jaE1FxWH8qzmgSLa+6VV3x7Yhm8HK2R7+mAdgYE499lxKQqlLDValA51Bv9Hmmd19pO76a04sIAP64mYQWH+3Pt7wqWyMlC5hsJCJTlbbjo5Y12p6nTp3Ce++9x7YnEREVGWM9Gv09HODmoEDKU3WZnHmaicZypF9EALrW8zHpwrk4vfPOOxBCYOXKlXjrrbfg4+OD/v37Y9iwYdJA23m9+eabSE1NxdKlS/HPP/8gMDAQixYtwoQJE/TKOjk54cCBA5g4cSKmTp0KIQSef/55LFq0SG9sHGOSk5Mxffp0nWUHDx7EwYMHAQD+/v5s7BGVYutPxZnUoybAwwE/vtZCOha6OSowonUNjDBhzLDSdHw1pxeRo50NMrJyTE5Kzth2AV3r+fAxaiIyWWk6PmpZo+25ePFijBs3Tq8s255ERGQt2olgfN2UqORsLy2XyWQI93PDsRuP8PfDdGRkZcPRruyk78pOpGQScy6ci4uNjQ3effddvPvuu3rr8j7Sktf48eMxfvx4AP8OQG5MUFAQtm7dWuj4qlevbjQOIirdUjLUmLH1gkllH6ZnWvRapen4amovoq5hPhjz7Rkcj000ab8qtQabYuI5SzURmaU0HR8By9ueQP7tT7Y9iYjIUonpmbgrTQTjpre+np8rjt14BCGAy/dS0aSaZ3GHWGhMNBIRUZm1MSbe5N565S2JZmovIgHzLmb3XkooN+8REREREVFpZOyxaa2wPOM0no9PYaKRiIioOOy9dN/M8uUriWZKL6I0VbZZ+0xVqS0Ni4iIiIiI8nEhT6IxzF8/0agz83QZmxCGiUYiIiqzmEQrmIvSvFO9q/Lf8dSMzeQdXYLj/hIRERERlXUF9WgM9HSEi70t0jKzdZKSZQETjVRqREZGmjVezaFDh4ouGCIqcQUludQ5GmRkGR+/1ZC8SbSKonOoj97s2/mJS87An3GPcfV+mtGZvBfuvoLZPYp/JlkiImti25OIiErKhTu5vRSruinhlWciGC25XIZ6fq44EZuE6w/SoVLnQKmwKe4wC4WJRiIiKnXWn4ozmuRasPsKejXyw/HYRNxOzDBrv51Dva0ZZpkQ3dgfC3dfMXksy/jkp+jxxW/5llFla6RZr5lsJCIiIiIyXdKTLNx5/BSA4YlgtMJ83XAiNgk5GoEr99PQMMC9mCK0jLykA6ioONNc+cLPk8h61p+Kw+RNfxlNjGVma/DjqTizk4xKhRx9mvhbI8Qyxc1Rgdk9wkwqG+jpYNa+Z2y7gJSMivc4OhFRSWPbk4io7CrosWmtvEnIsvT4NBONJUAmk0Gj0bCBUE4IISCEgEwmK+lQiMq8lAw1Zmy9YHL5LqHeeLtLbZPKzo4Kg5tDxXt0GsjtdbigT30obQ2f9pUKORb0qY/D77RHr0a+Ju9XO5M3EZVubHuWL0IIaDQayOW8lCMiKosulPNEIx+dLgEKhQJqtRpqtRp2dnYlHQ5ZSKVSQaPRwNHRsaRDISrzNsbEm/yILwC0CKqE4a1roIqL0uCj1kBuEm12FMcT7BcRgK71fLAxJh77LiUgVaWGq1KBzqHe6JNncpd7KSqz9lveZvImKo/s7e2Rnp4OlUoFBwfzei5T6aNWqyGEgK0tL+WIiMqi8/F5ZpzOJ9FYw8sJjnY2yMjKwYW7TDRSPlxcXJCRkYGEhAT4+fnxbmQZJYSASqXCvXv3AACurq4lHBFR2bf30n0zy+cmuUxNolV0bo4KjGhdAyPySQxyJm+i8sfFxQXp6em4d+8eqlatCqVSyScxyiiNRoOEhAQAuZ8rERGVPdqkoY+rEpVd9CeC0bKRyxBa1RWnbyfj6v00ZGVrYGfkCaXShInGEuDh4YHHjx8jPT0d165dg1wuN7mxl/cx3YrSQCyNddbGpNHk9p5ydXVlopHICixJcpmSRKOCuSjNaxpUxJm8icoaNzc3PHnyBKmpqbh165bU9mT707jSWGdt21MIAXt7e3h4eJR0SEREZKbkJ1mITy54IhitMD83nL6dDHWOwLWENJO2KWmlPxVaDslkMgQEBMDDwwO2trZmNV6EENLjEhVFaayzTCaDjY0NnJ2d4evrC19f31LTCCUqy5jkKnmdQ33MKt+6llcRRUJE1iKTyaT2irOzM2xsbNj+LEBprLNMJoOtrS08PDwQEBDAticRURmU9xHo/MZn1CqL4zSyR2MJUSgU8PEx72IOALKyspCUlARPT88KM75jRawzUUXVOdQHJ2KTzCjvXYTRVEzRjf2xcPcVk8fKXHf8NlrVrIRGgbk9a1Iy1NhwJg57L95H8hMVPJyU6BJWFdF8hJ2oRMlkMri5ucHNzfyeEBWxLVYR60xEREVPZ8Zp/4Kfigzz+7dMWRmnkT0aiYio1Ihu7A87G9NOTUqFHH2a+BdxRBWPm6MCs3uEmVz+XqoKfb88jv8ejcVPp/5B84/2Yc7Oyzh5KxnXHj7FyVvJ+GDHJTT/aB/Wn4orwsiJiIiIiEq3vL0STXkMOriyM+z/Ny7j+TupRRaXNbFHIxERlRpO9jao5Gxn0szHs6PC4ObAHnJFQTtDd34zeU99PgTHbiRi3+UEZGsE5uy8nO8+VdkaTN70l87+iYiIiIgqEm2PRm9Xe1RxURZY3tZGjrpVXXEu7jEu30uFOkcDhYkdM0oKE41ERFRqfHvitpRklMsAjYGhsZQKOWZHhTFZVcRMmcl7SKvqWHnsJub+chk5Jg5jNmPbBXSt58PHqImIiIioQnmckYW4pNyJYEwZn1ErzC830ZiVrcHfD9MR4lO6J6JlopGIiEqFB6kqfLLnGgBAYSPD+tEtEPNPitEkFxW9gmbylslkGNkmCHceP8Wq326ZtE+VWoNNMfEYztnBiYiIiKgCuZDn0WdzZo/Om5Q8H5/CRCMREZEp5u66grTMbADAiNZBaBToiUaBnkaTXFR6XL5n3ngxey8lMNFIRERERBWKzkQwZiQa6/n+W/bi3VT0tWpU1le6H+wmIqIK4URsIjafvQMA8HVTYnzH4BKOiMyRpso2q3yqSl1EkRARERERlU4XCplorO3tIk2YmXcfpRUTjUREVKLUORrM2HpB+veM7qFwtGOH+7LERWne5+Wq5KPvRERERFSxaHs0VnGxRxXXgieC0bKzlaOOjwuA3B6NOYYGsi9FeCVHREQlatVvN3EtIR0A0K52ZXSt51PCEZG5Oof64ERskhnlvQv9WikZamw4E4d9lxOQpsqGi9IWnUN9EM2xO4mIiIiolErJUOOfpAwA5vVm1Arzc8X5Oyl4qs7BzUfpCK7iYu0QrYaJRiIiKjH3Up5iyb7rAAA7Gznej6oHmUxWwlGRuaIb+2Ph7itQZWtMKu/n7iD9bU7icP2pOMzYekHvdU7EJmHh7iuY3YOzkRMRERFR6XPh7r+PPJszEYzuNnG5+7qTykQjERGRIXN2XkZGVg4AYEy7IFT3cirhiKgw3BwVmN0jDJM3/WVS+THfncG4yGD4uSvx/vZLJiUO15+Ky3f/qmyNtJ7JRiIiIiIqTQo7EYxWWJ4JYc7fSUHPRn5WiasoMNFIREQl4tj1R9j51z0AQICnA8a25wQwZZk2uWeoxyEAKBVy1K3qirP/PIYQwOcHb+S7v7yJw671fHTG8czPjG0X0LWeDx+jJiIiIqJSQyfR6G9+orGOjwts5TJka0SpnxCGiUYiIipy2sdj9168j+QnKrg52iP2UYa0flb3elAqbEowQrKGfhEB6FrPBxtj4rH34j0kpavg6axEl3pV0aexP1wdbLHxTDymbzGcjDRkxrYLeJiWaXJ5lVqDTTHxGN66hiVVISIiIiKyGm1ysLKLPbzNmAhGS6mwQS1vF1y+l4pLd1OhKcUTwjDRSEREZrN8XL2n0l91q7qiY93CTw5CpYubowIjWtfAK838kJSUBE9PT9jZ2Unr+zYNQOyjdCw/FGvS/lRqDZYdyr/347P2XkpgopGIiIiISoWUp2rcTiz8RDBaYb6uuHwvFWmZ2bidlAE/19L5BA8TjUREZBZzJuQoaFw9ALh8LxXrT8VxXL0K5Ow/j80q/+R/43iaKlWllv7mLNVEREREVJIu3rFsIpi82244Ew8gt4ekn6uXxbEVBSYaiYjIZOZMyMFx9ciYNFV2ke4/O0cgRyOw6Uw8Z6kmIiIiohJl6UQwWnmTlBfupqBrXSYaiYioDEvJUJuVOLyV+ITj6pFBLkrzmh8BHg6IS35acMH/uZqQhuYf7cOj9CyjZThLNREREREVB2slGutWdYFcBmgESvWEMPKSDoCIiMqGjTHxZiUOlx3626z9772UUJiwqAzqHOpjVvkBEYFQ2prXZMkvyZjXjG0XkJKhLrggEREREVEhaJOCXs728Ha1L/R+HO1sUbOy8//2mQohSueEMEw0EhGRSfZeul+k+887rh6Vb9GN/U1OHCoVcrzcshpm9wgzqfwb7YMRWtXV5Fi0vWmJiIiIiKwtVaXGLWkiGFfIZDKL9qftEZnyVI07j1UWx1cUmGgkIiKTmDuuno3cvJOoq5LjM1YUbo4KkxOHs6PC4OagQL+IACzoU99oglKpkGNBn/p4u2sduDqY92g2e9MSERERkTEpGWr892gsBnx1HN0+O4oBXx3HymM3TXoq5oKVHpvWqpdnHxfvplq8v6LAMRqJiMgkhRlXT3v3zhSdQ73NDYnKMO24iIYmawFyE4ezo3Qna+kXEYCu9XywMSYe+y4lIFWlhqtSgc6h3uiTZxZpc5Pilvam1c5svffifSQ/UcHDSYkuYVU5szURERFRGbf+VJxFkwtesNKM09I+fP99cufivTREVPW0eJ/WxkQjERGZpHOoD07EJplcvm+TACw9cN2kcR2VCjn6NPG3JDwqg0xNHObl5qjAiNY1MCKfiYPMTYpb0pvWYOPz4VOcvJXMma2JiIiIyrD1p+KkyQMNMWVywfN3/u11GO5fBD0aGzPRSEREZVRwFWeTy2rH1avsYp/vyVlL+3gsVTymJA7NZW5SvLC9aa3R+CQiIiKi0iclQ40ZWy+YVHbGtgvoWs/H4E3yfyeCsYOPq9LiuJztbRHk5YTYR09w8V7pnBCGYzQSEVGBLt9LxZvfx5hc3txx9ZiEIWsyd7KZwvSmNbfxyZmtiYiIiMqOjTHxJj2ZBRifXDBVpcbNR08A5D42belEMFraXo1JT9R4mF762phMNBIRUb5uPXqCV1b+gdT/jXtX398N9mYkDvtFBODke50w/aVQtKjhgdqVHdCihgdmvBSKk+92YpKRrM6cyWY61/UuVG9aazQ+iYiIiKh02nvpvpnl9ScXvJj3sWkrjM/4777+HafxygPTx8QvLnx0moiIjLqX8hSD/3sSj9IzAQCRdSrjq1ea4mlWTqHG1XulmR+SkpLg6ekJOzu74q4OVSAFTTajtfviffwZ9xgNAtzN2n9hGp/Drfh4OBEREREVHUsmF9ROFPjt8dvSsvupKqRkqK0yUWCY779Jy6tMNBIRUWmkPRnuu5yANFU2XJS2eK6mFzbFxOPO46cAgIjqHlg+uAnsbOWws5VbfVw9ImvLb7KZtEw1Fu+9DnWOwLjvY7BzfBuzejYW98zWRERERFR8zJ1cMCVDjZQMNX69eN/gje4Np+Ox/dxdq0wUGODpKP3949kEXEhQoUtYVUQb6fRR3JhoJCKq4AzOmgvoTKZRz9cVK4dGwMHOprjDI7KIsclmNBqBP+NScODKA8QnP8WUjX9h+cuNTR47pzhntiYiIiKi4mXu5ILxj5+i+Uf78n2SxhoTBWqv3bSeZGlw8lYyTt5KxsLdV6ySyLRUmR2jUaPRYPHixQgJCYFSqURAQAAmTZqEJ0+emLR9eno6PvroI4SHh8PFxQVeXl5o1aoVVq9eXSpn7SEiKgraWXMLGmuuT2M/JkqoXJHLZVjUtwGquuXO/rf74n2szfN4S0HMmYUdKPzM1kRERERU/MyZXFDL1PG7CztRYEHXbtpE5vpTcWbv25rKbKJx4sSJ+M9//oPQ0FAsXboUffv2xWeffYbu3btDo8n/w9VoNHjhhRcwffp0REREYNGiRZg2bRpycnIwbNgwTJ06tZhqQURUcsyZNXfBr1c5ay6VOx5Odlg6sBFs5Lm9GD/ceRkX7qTku40QAl8ficV3J/4x+XUKO7M1EREREZUMcyYXnNE9FK1qVjJ534WZKNCca7fCJjKtpUw+On3x4kUsXboUvXv3xqZNm6TlNWrUwPjx4/Hjjz9i0KBBRrc/efIkjh07hgkTJmDx4sXS8rFjxyIkJAQrVqzA/Pnzi7QOREQlrTCz5nIyCypvmlb3xKQutbFg91Vk5WgwZt0ZDGwWiKPXH0rjlXYO9UF0Y3/Y2coxZdNf2PbnXbNeY3ZUWKFmtiYiIiKiktMvIgDrz8Th9K1kg+uVCjlmR+U+qrznYtFOFFiWrt3KZI/GH374AUIITJgwQWf5a6+9BkdHR6xbty7f7VNTc6cY9/X11VluZ2cHLy8vODk5WTVeIqLSqDCz5hKVR2Pa1kS72pUBAPHJT7Hw16s4EZuEi3dTcSI2CR/suIRmH+1Dh0WHpCSjrVyG96PqYX6fcKOP1SgVcizoU7/Ex8mhopeUlIS3334bwcHBUCqVqFy5Mtq3b4+jR4/qlDt58iQ6deoEFxcXuLq64vnnn8e5c+dKJmgiIiLKV3aOBrEPc4fnc7KzQcugSqjn64qWQZUw46VQnHy3k9TOK+qJAsvStVuZ7NF46tQpyOVyNGvWTGe5UqlEw4YNcerUqXy3b9asGdzd3bFgwQJUr14dzZs3R0ZGBtasWYMzZ87gyy+/NCmOuLg4xMfrdnc9f/48AECtViMrK8uMWplGrVYjOzsbanXFeYSRda4YWOfil/rUvNdNeZpl8XGtpOtcUipivctanVvX9MDhaw+Nrs/M1uBeigoA4OmkwNL+DRBR3QMA0KF2JWw+exf7rjzA4yeZcHeyR+e63ujZsCrcHBRWaw+Ulfeyorl9+zYiIyORnp6OESNGoHbt2khJScFff/2FO3fuSOVOnDiByMhI+Pn5Yfbs2QCAzz//HG3atMHvv/+O8PDwkqoCERERGXDmdjKSnuS246Ia+mFub+Pn6qKeKLCoE5nWVCYTjXfv3oWXlxfs7e311vn5+eH3339HVlYW7OzsDG7v4eGBbdu2YeTIkejXr5+03MXFBZs2bULPnj1NimPlypV4//33Da5LTU1FUpLpMxSZSq1WIz09HUIIKBQV4zEs1pl1Lq9Kus62MK3rvZaDDSw+rpV0nUtKRax3WapzqiobH++9blJZGYClvWqhpqvQ+T1EhbjghZpKpKenw9nZGQqFAjlP05D01Ipx/u+JDCpdXn75ZWRnZ+Ovv/5C1apVjZYbP3487OzscOTIEfj5+QEA+vXrh7p162LSpEnYs2dPcYVMREREJtiTp1dgl3r5T+xn7izV5k4UWNSJTGsqk4nGjIwMg0lGILdXo7aMsUQjADg7OyMsLAxRUVFo1aoVkpKS8MUXX2DQoEHYunUrOnfuXGAcI0aMQNeuXXWWnT9/HqNHj4arqys8PT3NqJVp1Go1ZDIZPDw8Sv2Fm7WwzqxzeVWUdU55qsbPZ+/iwJWHSMvMhou9LTqGVEavRr5wc1DgyPVH+DtRZdY+nw/3tfi4VhE/Z6Bi1rss1Xnb77eRmS1MKisAXErMQURt/d9CUdfZ1dXV6vss79RqNQ4ePIhDhw7h4sWLePDgAWQyGSpXroywsDC0a9cO7du3L/TndeTIERw7dgyfffYZqlatCrVaDbVaDUdHR51yN27cwKlTpzB8+HApyQjk3iDv27cvVq1ahfv378PHx8ei+hIREZF1CCHw6//GXXS2ty1wspfoxv5YuPuKSeMoFmaiwKJOZFpTmUw0Ojo64sGDBwbXqVQqqYwx58+fR6tWrbB48WKMGTNGWj5w4ECEhYXhtddew99//w0bG5t84wgICEBAgOFxlxQKRb6JTkvY2toW6f5LI9a5YmCdrWP9qTjM2HpB7yR38lYyFu27gabVPfDbjUSz9qlUyNGvWTXY2VmePKmInzNQMetdVup84Noj88pffYTX2gUbXFeUdS7tCdvSJCEhAZ988glWr16NR48eQQgBW1tbeHp6QgiB06dPY/v27Zg3bx68vLwwbNgwTJw4Ed7e5jXKf/nlFwBAYGAgunfvjl27diEnJwe1atXCjBkz8PLLLwOANKxPy5Yt9fbRokULfPPNNzhz5gy6deuW7+uVxLA92n2XpaEQrIF1rhhY54qBda4YrF3ny/fTEJ+c+2hK21qVINPkICsrx2h5B1tgxksheG/LpQL3PaNbCBxshFnn7ajwKliw+woyTUxkRoVXsUq7oDDvZ5lMNPr6+uLSpUvIzMzU69l4584deHl55dvAX7x4MVQqFfr27auz3NHREd26dcPnn3+OW7duoWbNmkUSPxFRUVl/Kg6TN/1ldH1mtkYnydgk0ANn/jE8i1penDWXyrOyNOYNFeyDDz7AwoULAQC9e/fGCy+8gJYtWyIwMFCn3O3bt3HixAns3LkTX3zxBZYtW4bJkydj2rRpJr/W1atXAeROSFirVi2sWbMGWVlZWLRoEV555RWo1WoMGzYMd+/mTiKUtzejlnZZ3vEcjSmJYXuAsjUUgrWwzqxzecU6s87llbXrvD3mrvR3ywBHk86xHao74P86V8PHB/8x+LSMva0cb7cPQIfqDoU6Z7/dPgAf7r1dYLlJkQHIttIQPoUZuqdMJhojIiKwZ88e/PHHH2jTpo20XKVS4dy5c2jbtm2+22sbcjk5+tno7Oxsnf8nIiorUjLUmLH1gsnl5/cJR/+IQKM9IIHcu2Gzo8I4ay6Va2VpzBsq2JdffokPP/wQI0aMyPcJl2rVqqFatWro378/MjIy8PXXX2P+/PlmJRrT0tIA5I7zffDgQelGd8+ePREUFIT33nsPQ4YMQUZGBgAYHPon77A/BSmJYXuAsjUUgrWwzqxzecU6s87llbXrfOxW7s1EhY0M3RpVh7OJ7cUhbTzRs2kNbD57FweuPkSqKhuuSlt0DKkiTRRYWEPaeMLJyQnv7zDcs1GpkGNGtxBEN9a/sVlYhRm6p0wmGvv374+PPvoIS5Ys0Uk0fv3118jIyMDgwYOlZX///TfUajVCQkKkZaGhodizZw9Wr16NyZMnS8sfP36MrVu3wsPDA8HBhh+JIiIqCSkZamw4E4d9lxOQpsqGi9IWnUN9EN3YH26OuSerjTHxJo0JovUkM/dmS7+IAHSt54ONMfHYdykBqSo1XJUKdA71Rp88+ycqr8rSmDdUsL///ltK3pnK0dERb731FkaPHm3Wdg4ODgByh9/J+zSNh4cHoqKisHbtWly9elVKeGZmZurtw5Rhf7RKatgeoOwMhWBNrHPFwDpXDKxzxWCtOsclZeDK/XQAQKuaXvB0LfgcnVdlOzuMiqyFUZG1LIrDkEEtaqBbfX9sjInH3ov3kJSugqezEl3qVS2Sa7fCJG3LZKIxPDwc48aNw+eff47evXvjxRdfxOXLl/HZZ5+hXbt2GDRokFS2Y8eOuH37NoT4t9vqhAkTsHbtWkydOhXnz5/Hc889h6SkJHz99de4d+8evvjiiwLHZyQiKi7GehyeiE3Cwt1XMLtHbo/DvZfum7XfvZcSMLx1DQCAm6MCI1rXwIj//ZuoIinqwbupeJmbZLRkW3//3O+CoUlctDNQJycnw9fXF4Dhx6O1yww9Vk1ERETFz5zZpkuC9trtlWZ+SEpKgqenZ6lKKMtLOoDCWrJkCT7++GNcvHgR48aNw48//og333wTO3bsgFyef7WqVauGP/74A6+88goOHjyIN998E/PmzUNAQAA2bdqEsWPHFlMtiIjypx1z0VgCRJWtweRNf2HJvmu4+eiJWfvmOHNEudwcFZjdI8ykshyvtHzIzs7Gpk2b8PXXX+P+ffNu0uTVrFkzANCboCXvsipVqiAiIgIAcPz4cb1yJ06cgEwmQ5MmTQodBxEREVmPdrZpmYxPshRGmU002tjYYNKkSbh69SoyMzNx584dfPLJJ3B2dtYpd+vWLZ3ejFo1a9bEmjVrEB8fD7VajdTUVBw5cgS9e/curioQEeXLnDEXl+y7joRU/Ufy8sNx5oj+1S8iAAv61IfS1nDTSKmQY0Gf+hyvtAyaPHmylOgDACEEOnXqhH79+mH06NEIDw/H33//Xah99+zZEy4uLli3bh3S09Ol5ffu3cOWLVtQu3ZtBAcHIzg4GE2bNsWGDRukiWEA4O7du9iwYQM6dOhgsFckERERFa/E9EycvpU7pE6jAHdUcSn8kxIVVZl8dJqIqCzTjre49+J9JD9RwcNJiS5hVXXGWwTMH3PRXLw7R6SL45WWT7t370anTp2kf2/fvh1HjhzB5MmT0bBhQ+nJlq+//trsfXt4eODjjz/G6NGj0aJFCwwfPhxZWVlYvnw5srKysHTpUqnsp59+ivbt26NNmzZ48803AQBLly6FRqPBokWLLK8oERERWWz/lQfQ/K+vWpd6vAlYGEw0EhEVI4PjLT58ipO3knXGWwT+7bJvqiAvJ9x5/NTgDGTP4jhzRIZxvNLyJy4uDrVq/TsY+/bt21GjRg3MmzcPAHDx4kV89913hd7/qFGj4OXlhQULFmD69OmQy+Vo2bIlvv/+ezz33HNSuVatWuHQoUOYNm0apk2bBplMhlatWmHDhg1o0KBB4StIREREVrMnzzVYVyYaC4WJRiKiYqIdb9EY7XiLx2MTkfpUjVM3TZ8FFwAc7GzwQY+wfF9Di+PMEVFFkZWVBVvbf5u8Bw8e1OnhGBQUhHv37ln0Gr179zZp+J2WLVti//79Fr0WERERFY0nmdk4cv0RAKBWFWfU8HIq4YjKpjI7RiMRUVlizniLm8/ewf4rD6A/umz+XJUKjjNHRPSMgIAAaRKWixcvIjY2Fu3atZPWP3jwQG+MbyIiIqp4jl5/iKz/PR3G3oyFxx6NRETFoDDjLXo52+FRepbJ5bVjLnKcOSKifw0YMAAffPABHjx4gIsXL8LV1RUvvviitP7s2bOoWbNmCUZIREREpcGvFxOkv7vU43j2hcVEIxFRMdh7ybzxFhsHumPV0GZo/tE+kxKUz465yHHmiIhyvfvuu4iLi8OWLVvg5uaGtWvXwt3dHQCQkpKCbdu2YeLEiSUbJBEREZUodY4G+y/nJhqruikR7udWwhGVXUw0EhEVgzRVtlnlM7M1cHNUYDbHXCQisoi9vT1WrlyJlStX6q1zcXHBvXv34OjoWAKRERERUWlxMjYJqf+7ZusS6g2ZTFbCEZVdTDQSEVkoJUONDWfisO9yAtJU2XBR2qJzqA+i//eYcnaOBumZ5iUaXZW5SUPtWIp6M1X/j1Ihx+yoMI65SERUCHK5HG5u7LFARERU0e3J8wRaF47PaBEmGomILLD+VJzBJOCJ2CQs3H0Fr7UJwsFrD3A7McOs/WrHWwQ45iIRkTnWrl1bqO1effVVK0dCREREZYEQAnv+Nz6jm4MCzWp4lnBEZRsTjUREhbT+VFy+jzWrsjVYevCG2ft9drxFgGMuEhGZaujQoZDJZBBCSMvyPv6kXf7sI1FMNBIREVVMf8Wn4H6qCgDQMaQKFDbyEo6obGOikYioEFIy1Jix9YLJ5ZsEuiMypAoW7blWYFmOt0hEVHgHDx7U+bdarcaUKVOQmJiIMWPGIDQ0FABw8eJFrFixAl5eXpg/f35JhEpERESlgO5j05xt2lJMNBIRFcLGmHiTZoPW6la/Koa3DoK3i5LjLRIRFaF27drp/HvGjBlQqVQ4f/48XFxcpOVRUVEYN24cWrRogaNHj6Jjx47FHSoRERGVAtrHpu1t5Whbu3IJR1P2sT8oEVEh7M1z18u08g8A5I63ePK9Tpj+Uiha1PBA7coOaFHDAzNeCsXJdzsxyUhEZGWrV6/GsGHDdJKMWq6urhg2bBhWrVpVApERERFRSYt9mI7rD9IBAG1qVYajHfvjWYrvIBFRIaSpzJtFOlWllv7Wjrf4SjM/JCUlwdPTE3Z2dtYOkYiIADx8+BA5OTlG1+fk5ODBgwfFGBERERGVFnsuJUh/87Fp62CPRiKiQnBRmnefxlXJMReJiEpCSEgIvv76ayQnJ+utS0pKwtdff426deuWQGRERERU0vZczH1STS7LnQiGLMcejUREZnqSmY1MM8ZnBIDOobw7RkRUEmbNmoXevXujTp06GD58OOrUqQMAuHLlClatWoWkpCRs3LixhKMkIiKi4pCSocaGM3HYdzkByU/UuJqQBgBoFOCOSs72JRxd+cBEIxHRM/KefNJU2XBR2qJzqA+iG/sj9lE6Jv50DrcSM0zen1IhR58m/kUYMRERGdOjRw9s3LgRb731FhYsWKCzzt/fHz/99BN69uxZMsERERFRsVl/Ks7oxJx/xqdg/ak4jplvBUw0EhHlYezkcyI2CXN/uYwcISBE7jInOxs8yTI+7pfW7KgwuDnw0WkiopLSq1cv9OjRA2fOnEFsbCwAICgoCE2aNIFczpGEiIiIyrv1p+IwedNfRtdna4S0nslGyzDRSET0P6acfLQi61TGguj6OHTlodG7YkqFHLOjwniiIiIqBeRyOSIiIhAREVHSoRAREVExSslQY8bWCyaVnbHtArrW84GbIzuKFBYTjUREMO/ko7CRYUn/hnB3tEO/iAB0reeDjTHx2HcpAakqNVyVCnQO9Uafxv48QRERlSIZGRlITEyEEEJvXWBgYAlEREREREVtY0y8wY4hhqjUGmyKicfw1jWKOKryi4lGIiKYd/JR5wj8HHNHOvm4OSowonUNjODJiIio1NFoNFiwYAGWLl2K+/fvGy2Xk1PwUBhERERU9uy9ZPz8b7h8AhONFmCikYgIPPkQEZVXU6dOxccff4x69eqhT58+qFSpUkmHRERERMUoTZVtVvlUlbqIIqkYmGgkIgJPPkRE5dW6devw/PPP45dffinpUIiIiKgEuCjNS325Kjn8lSU4zR4REXjyISIqr5KTk9GjR4+SDoOIiIhKSOdQHzPLexdRJBUDE41ERODJh4iovAoPD8e9e/dKOgwiIiIqIc8FV4LMxLJKhRx9mvgXaTzlHRONREQAohv7Q2Fj2umHJx8iorJj5syZ+PLLLxEXF1fSoRAREVExu5aQhqHfnIIwsfzsqDC4OfDpNUtwjEYiIgByOeBkZ4vHTwsee5EnHyKisuPMmTOoVq0aQkND0atXL9SoUQM2NjY6ZWQyGaZPn15CERIREVFhpWSoseFMHPZevI/kJyp4OCnRJawqohv742pCGkauOYXU/43H7+fugEfpmcjM1ujtR6mQY3ZUGPpFBBR3FcodJhqJiAB8uPOylGSUywCNgVtePPkQEZU9s2bNkv5et26dwTJMNBIREZU960/FYcbWC1DlTRw+fIqTt5Ixb9dlaASQ878Luza1vLD85SbIyRHYGBOPfZcSkKpSw1WpQOdQb/Rp7A83R3YmsQYmGomowjt09QF+PJX7SJ2Xsx02jmmF/Vce8ORDRFQO3Lx5s6RDICIiIitbfyoOkzf9ZXS9OuffniM9G/piQXQD2Nnmjh44onUNjGhdo8hjrKiYaCSiCi3lqRpTN52X/j2nZziqeznx5ENEVE5Uq1atpEMgIiIiK0rJUGPG1gsmlbWVyzCzez0pyUhFj+80EVVos7dfwv1UFYDcO13Ph5k3+zQREZUdiYmJOH36NE6fPo3ExMSSDoeIiIgKYWNMvO7j0vnI1ghsPnuniCOivJhoJKIKa++lBGyKiQcAVHGxx6yoeiUcERERFYU///wT7dq1Q5UqVdC8eXM0b94cVapUQWRkJP76y/hjV0RERFT67L1038zyCUUUCRnCR6eJqEJKfpKF9zb/+8j03N7hcHe0K8GIiIioKFy4cAGtW7eGSqVCjx49UK9e7k2lixcvYvv27WjTpg1+//13aTkRERGVbmn/m0XaVKkqdRFFQoYw0UhEZU5KhhobzsRh3+UEpKmy4aK0RedQH0SbMVnLzG0X8TAtEwAQ3cQfHet6F2XIRERUQmbMmAGFQoHffvsN9evX11l34cIFtG3bFjNmzMCmTZtKKEIiIiIyh4vSvFSWq5ITehYnJhqJqExZfyoOM7Ze0BuT40RsEhbuvoLZPcLQLyJAZ92ziUl1jgbXEtIBAFXdlJj+UmixxU9ERMXryJEjGDdunF6SEQDCwsIwduxYfPnllyUQGRERERVG51AfnIhNMqM8O5UUJyYaiajMWH8qDpM3GR9LS5WtkdZrk43GEpNaL4ZXhZsD73AREZVXT548gY+P8Ym+qlatiidPnhRjRERERGSJ6Mb+WLj7ikkTwigVcvRp4l8MUZEWJ4MhojIhJUONGVsvmFR2xrYLSMlQS4nJ/E5AK4/dxPpTcdYKk4iISpmgoCDs2LHD6PodO3YgKCioGCMiIiIiS7g5KjC7R5hJZWdHhbFjSTFjopGIyoSNMfEm3bECAJVag3UnbpudmCQiovLn1Vdfxa+//opBgwbh4sWLyMnJQU5ODi5cuIDBgwdjz549GDp0aEmHSURERGboFxGAgc0Cja5XKuRY0Ke+3rBaVPT46DQRlQl7L903q/yS/degzhEmlVWpNdgUE4/hrWsUJjQiIirF3n77bcTExODHH3/ETz/9BLk89z67RqOBEAL9+vXDpEmTSjhKIiIiMtf1hDTp7/p+rlBlqeHprESXelXRx4yJQsm6mGgkojIhTZVtVnlTk4xaey8lMNFIRFQO2djY4KeffsLIkSOxZcsW3Lx5E0DuI9U9e/ZEp06dSjhCIiIiMtfFuyk4fTsZANCshifWDWuCpKQkeHp6ws7OroSjq9iKJdGYmpqKffv2ITY2FkBuw65z585wcXEpjpcnolJMOyP03ov3kfxEBQ8nJbqEVUV0njtQNx89wf0UVZHGkario9NEROVZ586d0blz55IOg4iIiKzg2+O3pb9fbVmtBCOhZxV5ovG///0vJk2ahPT0dAiR28NIJpPB2dkZn3zyCUaMGFHUIRBRKWVwRuiHT3HyVjIW7r6CiZ1rI/bhE2yMiUeOxrweitUqOeJ2YobJ5V2V7FZPRFQeJSUlIT4+HvXr1ze4/q+//kJAQAA8PDyKOTIiIiIqjJQMNbacuwMAqOJij671fCByzHsCjopOkU4Gs23bNowaNQqVK1fG4sWLsXfvXuzduxeLFy9GlSpVMGrUKGzfvr0oQyCiUqqgGaFV2RrM3XUFP52Ok5KMMhP3rVTI0a+peYP+dg71Nqs8ERGVDZMnT853spdhw4bh3XffLb6AiIiIyCIbzsRBpc69jhzUPBAKG85zXJoUaY/GBQsWoG7dujh58iScnZ2l5R07dsSwYcPQokULzJ8/H927dy/KMIiolEn5f/buPC6qqv8D+GcGBoZ9EQEFFHdF3FBUUEQNxDT3fcU09ekpy6W9nxullVaamW1qpmbmVpqa5YJWrjzuC7hjgOaGsogDA5zfHzQT48zADMwwwHzer1ev8N5z7z3fuTP3fufMPefkKA2eERoAarrY4eWnGkMqAd76sfTt4voGI6a5Lz7de9mgmarlMikGtfU3uD5ERFR1xMfHY/To0XrX9+3bF2vWrKnAGhEREVFZFRYKrDlS1G3aVirByBJmnibLMGuz7+nTpzFu3DiNRkYVFxcXxMbG4vTp0+asAhFVQptOpBrUAKgyMaI+Rnesi5Ed6mLBoJaQ2+q+dMllUiwY1BJDQwPg5ihDXL9gg/Yf1zcYbg7sOk1EVB3dvHkTdero/xLi7++PmzdvVmCNiIiIqKwOXL6rHiLr6Ra14O0qt3CN6ElmfaJRNSajPhKJoR0hiag62X3hb6PKxyfdxaQuDQAAQ0MDENPcF5tOpGLPhdvIVCjhKpchOsgHg4pNIKMqC0B7HMh/yGVSxPUNVpcjIqLqx8nJCTdu3NC7/saNG7C3t6/AGhEREVFZrT6UrP6bk8BUTmZtaGzVqhVWrVqF//73v3ByctJYl52djVWrVqFVq1bmrAIRVUJZCuMG6n1yRmg3RxkmdK6HCZ3rlbqtMQ2TRERU/XTo0AHffvstXn31Vbi4uGisy8rKwurVq9G+fXsL1Y6IiIgMdeP+I+y/dBcA0KyWK9rV5URulZFZGxpfffVVDBw4ECEhIXjppZcQFBQEADh//jw+/fRTXLlyBVu2bDFnFYioEnKRG3fpKe+M0MY0TBIRUfXyyiuvICoqCuHh4Zg9ezZat24NADh16hTmzp2L1NRULF++3LKVJCIiolKtPXIDqo6zY8PqspdsJWXWMRr79++PpUuX4ubNm5gyZQqioqIQFRWFl156CTdv3sTSpUvRr18/c1aBiCqh6CBfI8tzRmgiIiqbbt26YdmyZbh8+TKGDRuGJk2aoEmTJhg2bBguX76MpUuXIioqymTHy8nJQf369SGRSPDiiy9qrb948SL69+8PDw8PODk5ISIiAvv27TPZ8YmIiKqjx3kF+CEhBQDgKrdFv9a1LVwj0sesTzQCwH//+1+MHDkSu3fvxvXr1wEA9evXR3R0NNzc3Mx9eCKqhAaH+GPBriTkckZoIiKqAJMnT8YzzzyDDRs24MqVKwCAxo0bY/DgwfDz8zPpsWbNmoW7d+/qXHf16lWEh4fD1tYWr732Gtzc3PD1118jJiYGv/zyi0kbPImIiKqTbafTkPnPEFxD2wXA0c7szVlURhVyZtzd3TFkyJCKOBQRVQFujjJ0auiFfUl3Si3LGaGJiMgU/Pz8MG3aNLMe48SJE1i8eDEWLFiAGTNmaK1/88038fDhQxw/flzdhXvs2LFo3rw5XnjhBSQlJbEbGBER0ROEEPj20L8Tu43uyElgKjOzdp0mItLlXFoGDlzS/bSHilwmxYJBLTkjNBERmcSjR4+wZ88efPfdd7h9+7bJ919QUICJEyeiZ8+eGDhwoM7jb9u2DV27dlU3MgKAs7MznnvuOVy6dAkJCQkmrxcREVFVd/zGA1y4lQkA6NqkJgK9nErZgizJ7A2N69evR6dOneDt7Q0bGxut/2xt+bgrkTXJyy/EKxtPo6CwaBTft55uipnPBKFjPQ80rumAjvU8MOuZIBx9M4qNjEREZBKff/45/Pz80KNHD4wdOxbnz58HANy5cwdyuRxff/11uY+xaNEiJCUlYenSpTrXnzlzBrm5uQgLC9Na17FjRwBgQyMREZEOqw//+zTj2DA+zVjZmbWVb+HChXjjjTdQo0YNdOzYETVq1DDn4YioCli2/wqS/s4CAHSs74nnIupDKpVgTHs/pKenw9PTE3Z2dhauJRERVRebN2/GCy+8gH79+qFPnz547rnn1Ou8vb3Rs2dP/PTTT5g4cWKZj3H9+nXMnj0bs2bNQmBgIJKTk7XK3Lx5EwB0jgmpWpaWllbicVJSUpCamqqx7OzZswAApVKJvLy8slS/VEqlEvn5+VAqlWbZf2XEmK0DY7YOjLlqu5uVi1/O3QIABHg4ICzQXef9rjrFbKiKiLks+zZrQ+Nnn32GDh06YO/evXBwcDDpvgsLC/HJJ5/gyy+/RHJyMmrWrImhQ4ciLi4OTk6GPUabnp6O+fPn46effkJqaipcXFwQHByMuLg4REREmLS+RAQk3srE0n1Fg/A7yGzwwaCWkEo5FhUREZnPwoUL0a1bN/z444+4f/++RkMjALRr167cTzT+5z//Qf369TF9+nS9ZXJycgAA9vb2WuvkcrlGGX1WrFiBuXPn6lyXmZmJ9PR0Q6tsFKVSiezsbAghIJNZx7jJjJkxV1eMmTFXNd8evQVlQVFvuP7Bnsh4+EBnueoUs6EqIubMzEyjtzFrQ+Pff/+N1157zeSNjAAwbdo0LFmyBAMGDMCMGTOQmJiIJUuW4OTJk9izZw+k0pJ7hd+4cQNdu3ZFdnY2JkyYgMaNGyMjIwNnzpwp9ddkIjKesqAQr246jfx/uky/GtMEdWtwbA0iIjKvs2fP4oMPPtC7vlatWrhzp/TJyfRZu3Ytdu/ejd9//73EJN/R0REAkJubq7VOoVBolNFnwoQJiImJ0Vh29uxZTJ48Ga6urvD09DS2+gZRKpWQSCTw8PCwqi9vjLn6Y8yMubqqLjErCwrx07lzAAB7WynGdGoEd0fd8VSXmI1RETG7uroavY1ZGxobNmyIhw8fmny/58+fx6effoqBAwdi8+bN6uX16tXDSy+9hPXr12PkyJEl7mP06NHIz8/HmTNnUKtWLZPXkYg0ffX7NZxLK/o1pF1dD4wLD7RshYiIyCrY2NigsLBQ7/qbN28a3BvmSbm5uZg+fTp69eoFX19fXLlS9NS+6kfrjIwMXLlyBV5eXqhdu7bGuuJUy3R1qy4uICAAAQG6xy+WyWRmHXrE1tbW7MeobBizdWDM1oExVx0ZOUpsPJ6CPYm3kfbgMe5kFf1A1yu4FrzdS75fV9WYy8PcMZelAdOsk8HMmDEDK1asQHZ2tkn3+/3330MIgalTp2osnzhxIhwdHbF27doSt//999/x559/4rXXXkOtWrWgVCpL7apCRGV36XYWPtlzGUDRL1ELBrPLNBERVYxWrVrh119/1bmusLAQGzduRGhoaJn2/fjxY9y9exc7duxAo0aN1P917doVQNHTjo0aNcLy5cvRokUL2Nvb4/Dhw1r7OXLkCICibtxERETWakNCCjrM34N3dyTiyLV0pDx4rF634+wtbEhIsWDtyFAmfaJx9erVGv+2sbGBt7c3mjZtivHjx6NevXqwsbHR2m7s2LFGHSchIQFSqRTt27fXWC6Xy9G6detSZ+zbuXMnAKBOnTro06cPfvnlFxQUFKBRo0aYNWsWRo8ebVA9LDEgNwc4tQ5VOeaMx0psOXkT+5LuIis3H872Nkh58Bh5BUVPk0zt3gD+bnZan4+qHHNZMWbrYY1xM2bz7J+M9+KLL2LEiBGYOXOmOucsLCzExYsX8dZbb+H8+fMldq0uiZOTEzZu3Ki1/O7du/jvf/+Lnj17YsKECWjZsiWcnZ3Rp08fbNmyBadPn0arVq0AANnZ2Vi+fDkaNWqkldsSERFZiw0JKXht8xm96/MKCtXrh4bqfrqfKgeTNjSOGzcOEokEQgitde+++67ObSQSidENjTdv3oSXl5fOwbT9/Pxw6NAh5OXl6X109OLFiwCKnoBs1KgRvv32W+Tl5eGjjz7CmDFjoFQq8eyzz5ZaD0sMyM0BThlzZfbz+Xv4MP4v5OZrXwMAoJarHfo2ddH52aiqMZcHY7aOmAHrjJsxmz7msgzGTcCwYcNw9uxZzJs3D++99x4AoGfPnhBCQAiBOXPm4Omnny7TvmUyGQYPHqy1XDXrdIMGDTTWv/fee9i7dy969OiBadOmwdXVFV9//TXS0tKwY8cOSCR82p+IiKxPRo4Ss7aeM6jsrG3nENPcF256xmokyzNpQ2N8fLz675ycHNy5cwe3bt1CWFiYKQ+DnJwcnY2MgOasffoaGrOysgAALi4uiI+PV5fr378/6tevj7feeguxsbGlTihjiQG5OcApY66sNp1Iw7zdN0oscyszDwf+UmBwiPYYVFUx5vJizNYRM2CdcTNm08dclsG4qci7776LgQMH4rvvvkNSUhKEEGjUqBHGjBlTod2VGzZsiIMHD+KNN97A+++/j7y8PISEhGDXrl2IioqqsHoQERFVJptOpEKRr3885eIUykJsPpGK8Z3rmblWVFYmbWiMjIxU/11YWAgHBwd88sknGstNwdHRUe/sgIbM2qeaBXvEiBEajZEeHh7o27cvVq9ejYsXL6JZs2Yl1sNSA3JzgFPrUJVizshRIm57kkFl43YkoXdLf52/QFWlmE2FMVsPa4ybMZuWtTTYmktISAhCQkIq5FiBgYE6e/gAQLNmzbB169YKqQcREVFVsPvC30aWv82GxkrMbLNOS6VSBAQEmKWbT+3atXHhwgXk5uZqPdmYlpYGLy+vEhN8f39/AICvr6/WOtUM1A8ePDBhjYmqruKzfmUp8uEit0V0kC8Gh/zbWMhfoIiIqKo5fvw40tPTERERoe4RQ0RERBUvS5FvVPlMBcetrszMOut0bGws1qxZg9zcXJPuNzQ0FIWFhTh27JjGcoVCgVOnTpXaBUY10PaTE7kUX+bt7W2i2hJVXU/O+nX+ZiaOXEvHO9svoMP8PepZv8ryCxQREVFF+PDDD9GnTx+NZSNHjkT79u3Rs2dPtGjRArdv875ERERkKS5y456Bc5Wzl0dlZtaGxvDwcNja2qJ169b49NNPsWvXLvz+++9a/xlr2LBhkEgkWLx4scbyr7/+Gjk5ORg1apR62dWrV5GUpNmls3///nBxccHatWuRnZ2tXn7r1i389NNPaNy4MRo2bGh0vYiqE9WsX/qeVFTkF8369dGvF3HlTrbOMvrwFygiIqoo69evR506ddT/3rdvH9avX4/hw4dj3rx5uHXrFhYsWGDBGhIREVm36CDt3qYll/cxU03IFMzWdRoAoqOj1X+//PLLWjPpCSEgkUhQUFBg1H5btGiBF154AUuXLsXAgQPRq1cvJCYmYsmSJYiMjMTIkSPVZZ966incuHFDY5wcDw8PfPjhh5g8eTI6duyI8ePHIy8vD59//jny8vLw6aefljFiourBmFm/Po2/YvT++QsUERFVlOTkZIwbN079759++gm1atXC2rVrIZFIcO/ePWzbtg0fffSR5SpJRERkxYJ8DZ/wTi6TYlBbfzPWhsrLrA2N33zzjdn2vXjxYgQGBuKrr77Cjh074OXlhSlTpiAuLq7U2aIBYNKkSfDy8sKCBQswc+ZMSKVShIWFYd26dejUqZPZ6k1UFRgz5mJZ8BcoIiKqKI8ePVJPBAgUPdEYFRWl/gE8KCgIn3/+uaWqR0REZNVuZTzGyz+cNLh8XN9guDnwwZXKzKwNjbGxsWbbt42NDWbMmIEZM2aUWC45OVnvuoEDB2LgwIEmrhlR1WfsmIsNazoh5cFj5BrQOMlfoIiIqCL5+fnh7NmzAIAbN27gwoULmD59unr9gwcPtCYXJCIiIvN7lJuP8av+hztZRfN6NKvlgmt3H+n8XimXSRHXNxhDQwMquppkJLM2NBJR1WTsrF/2Mhu80y8Yr20+U2pZ/gJFREQVqU+fPli2bBny8/Nx9OhR2Nvbo3fv3ur1586dQ2BgoOUqSEREZIUKCgVe+v4kEm9lAgCCarli43/CkF8gsOlEKvZcuI1MhRKuchmig3wwKMQfbo78HlkVsKGRiLSUZdYv1S9Ls7ae09ntmr9AERGRJcyaNQtnzpzBsmXLYG9vj8WLF8PHp2gIj8ePH+PHH3/EhAkTLFxLIiIi6/LujgvYm3QHAODjao8V49rByb7oe+iEzvUwoXM9S1aPyoENjUSkJTrIF0eupRtRvugL29DQAMQ09+UvUEREVGl4eHhg7969yMzMhIODA2QyzXvRgQMHEBDAH8GIiIjMISNHiY3HU7An8TayFPlwkdvC3dEOu84VDdflILPBithQ1HJzKGVPVFWwoZGItAwO8cfCXUkGTQjz5JiLbo4y/gJFRESVjqur9oyWDg4OaNWqlQVqQ0REVP1tSEjR2+NNZcmINgj2c6vAWpG5lT49MxFZHTdHGZ6LqG9QWY65SERElcmlS5fKvO3FixdNWBMiIiLrtSEhBa9tPlPqwysPHuVVUI2oorChkYi0CCFw6Oq9EsvIZVIsGNSSYy4SEVGl0rx5c4wfPx7nzp0zeJuTJ09izJgxCA4ONmPNiIiIrENGjhKzthp2H5617RwycpRmrhFVJHadJiItP5+5hRN/PQQAtPR3Rb9WftiTeIdjLhIRUaW3bds2vPLKK2jVqhVatmyJ3r17IzQ0FA0aNICnpyeEEEhPT8fly5dx5MgR7Ny5E4mJiQgKCsL27dstXX0iIqIqb9OJVIOG4QIAhbIQm0+kYjyH3qo22NBIRBoUygJ88EuS+t9x/VqgdYA7JhjYlZqIiMiSnn76afTo0QMbNmzAsmXLMH/+fEgkEq1yQggAQNeuXTF79mwMGjQIUik7+xAREZXX7gt/G1n+NhsaqxE2NBKRhuV/XEPaw8cAgAFt/NA6wN2yFSIiIjKSjY0NRowYgREjRuD27ds4cOAALly4gLt370IikaBmzZoIDg5GZGQkvLy8LF1dIiKiaiVLkW9U+UwFu05XJ2xoJCK125kKLNt/FUDRGIyv9Wxi4RoRERGVj4+PD4YOHWrpahAREVkNF7lxTU2ucg7JVZ2wfwgRqX3460Xk5BUAACZ3aYBabg4WrhERERERERFVJdFBvkaW9zFTTcgS2NBIRACAs6kZ2HQiFQDg6yrH5EiOyUhERERERETGGRziD7mtYc1NcpkUg9r6m7lGVJHYdZqoCsvIUWLj8RTsSbyNLEU+XOS2iA7yxWAjZ4QWQuCd7Rfwz7j4eP3pJnC04+WBiIiIiIiIjOPmKENcv2C8tvlMqWXj+gbDzYFdp6sTtiQQVVEbElIwa+s5KPILNZYfuZaOhbuSENcvGENDAwza165zf+NYcjoAoJW/G/q18jN5fYmIiIiIiMg6DA0NwMmUB/j+WIrO9XKZFHF9Df/OSlUHGxqJqqANCSkl/jqkyC9Ury/twq1QFmD+L4nqf8/qEwSpVGKaihIREREREZFVyiw2+3QrfzfkFwq4ymWIDvLBICN74VHVwYZGoiomI0eJWVvPGVR21rZziGnuq3EBf7K7dZYiHynpjwEAz7SshbZ1Pc1SbyIiIiIiIrIOufkF2J90BwBQx9MRP73QCRIJH2ixBmxoJKpiNp1I1eourY9CWYjNJ1IxvnM9APq7W6sE+7mZrJ5ERERERERknQ5fvY9HeQUAimaVZiOj9WBDI1EVs/vC30aWv43xneuV2t0aAN7/JQmejnYcJ4OIiKqNuLg4o7eRSCSYOXOmGWpDRERkHXZfuK3+OzrIx4I1oYrGhkaiKiar2DgXhrh6NxsHLt3FzHJ0tyYiIqqq5syZo36KQgihsa6k5WxoJCIiKpvCQqFuaPRwlKFdXQ8L14gqEhsaiaoYF7lxH9s7WbmIXXnM4PJPdrcmIiKqys6ePYuxY8fC1tYW06ZNQ1BQEADg/PnzWLRoEQoLC7F69Wo4OTlZuKZERETVw5m0DNzJygUAdG/qA1sbqYVrRBWJDY1EVUxooCeOXEs36zFU3a2JiIiqui+//BL29vb4/fffYWv7b+rbsmVLDB48GF26dMEXX3yBJUuWWLCWRERE1Ufx4b7Ybdr6sFmZqBLJyFFi+R/XMGbl/zD2uwsYs/J/WPHndWTkKCGEwIaEFKz445rB+5PbSvHRkJbwdLIzqh6ZCqWxVSciIqqUNmzYgOHDh2s0MqrIZDIMHz4cGzdutEDNiIiIqqffzhd1m7a3laJLYy8L14YqGp9oJKokdM4IffcxjiY/wIJdSahf0xmJtzKN2mdcv2AMahuAjcdTjXoK0lXO8RmJiKh6yMzMREZGht71Dx8+LHE9ERERGS753iNcvpMNAIho5AVHOzY7WRs+0UhUCahmhNZoZCwmN79Q3cgokQD/iWyAeQOCIbfV/RGWy6RYMKilevbo6CBfo+rDx9uJiKi6aNOmDZYuXYqrV69qrbty5Qo+++wzhISEWKBmRERE1Q9nmyY2LRNZWEaOErMMnBFaAmDluFB0a+INAHimRW1sOpGKPRduI1OhhKtchuggHwwK8deYNXpwiD8W7krS25BZnFwmxaC2/mWKhYiIqLL54IMPEB0djebNm6N///5o0qQJACApKQlbt26FRCLB+++/b+FaEhERVQ+//TM+o0QCPNWMDY3WiA2NRBa26USqQQ2AACAAXL/7CN2KviPBzVGGCZ3rYUIpE7e4OcoQ1y8Yr20+U+ox4voGw82BXaeJiKh66Ny5M/bv349p06Zhw4YNGus6duyIjz/+GB07drRQ7YiIiKqP+9m5OH7jAQCgbR0PeDnbW7hGZAlsaCSysOIzchlWvmwzQqu6UWuNA/kPuUyKuL7B6nJERETVRYcOHXDo0CHcvXsX164VTapWr149eHt7W7hmRERE1cfepDsoFEV/s9u09WJDI5GFZSnyjSpfnhmhh4YGIKa5r0HdrYmIiKqq9PR0eHp6ai2vWbMmatasaYEaERERVX+q2aYBoEdz4+YJoOqDDY1EZpSRo8TG4ynYk3gbWYp8uMhtER3ki8H/NOoJIZBXYFi3aZXyzghtaHdrIiKiqqpmzZpo2bIlIiMj0a1bN0RGRsLd3d3S1SIiIqq2HucV4M8rdwEADb2dUc/LycI1IkthQyORmWxISNHZTfnItXQs3JWE57s1wOGr93H5drZR++Uj6ERERCWLjo7GwYMHcfr0aXz66aeQSCRo2bIlunXrhq5du6JLly5wc3OzdDWJiIiqjT8u34VCWfTdl99ZrRsbGonMYENCSokTryjyC7Fo92Wj98sZoYmIiEq3a9cuFBQUICEhAfv370d8fDwOHTqEU6dOYfHixZBKpWjdujW6du2Kbt26ISIiAi4uLpauNhERUZX124Vi3abZ0GjV2NBIZGIZOUrM2nrO4PJBtVzRtUlNLNt/tdSynBGaiIjIMDY2NujYsSM6duyIN954AwUFBTh27Bj279+P/fv349ChQzhx4gQ+/vhj2NraIjc319JVJiIiqpIKCgX2Jd0BAHi72KOVv7tlK0QWJbV0BYiqm00nUnXO6qzPwBA/vNazKRYMagm5re6PpFwmxYJBLTkjNBERURnZ2NggLCwMb775Jn788UesX78eEREREEIgP9+4idmIiIjoX8dvPED6ozwAwFPNfCCVSixcI7IkPtFIZGK7L/xtVPm9iXfwXER9jRmhd5+/hfRsBTyd5ejRvBZnhCYiIiqHx48f4+DBg+pu1P/73/+Qn58PT09P9O/fH5GRkZauIhERUZX12/l/vwP3aM5u09aODY1EJpalMO6piEyFUv23akboMe39kJ6eDk9PT9jZ2Zm6ikRERNWaQqHAoUOH1A2LCQkJyMvLg7e3N7p06YKRI0ciMjISwcHBlq4qERFRlSaEwO7EovEZnexsEN6ghoVrRJbGhkYiE3ORG/excpXzSUUiIiJT8vDwQF5eHnx9fdGlSxeMGjUKXbt2RdOmTS1dNSIiomrl8p1s3LifAwCIbFIT9rY2Fq4RWRrHaCQysQ71jPsFJ5ozchEREZlUbm4ubGxs0KZNG4SEhCAkJASNGze2dLWIiIiqHY1u00G+FqwJVRZ8opHIhM6lZWDdsRsGl5fLpBjU1t+MNSIiIrI+hw8fRnx8PPbv34+4uDjk5OTA2dkZ4eHhiIyMRGRkJEJDQ2Fry1SYiIioPHZfKOo2bSOVoFsTbwvXhioDZldERsjIUWLj8RTsSbyNLEU+XOS2iA7yxeAQf/zvRjqmfH8SOXkFBu8vrm8w3BzYdZqIiMiUOnTogA4dOuCNN95AQUEBjh07hv379+PAgQOYN28e3nrrLTg6OiIsLEzd8BgREWHpahMREVUpf2cocDo1AwDQoZ4nJzAlAGxoJDLYhoQUzNp6Dor8Qo3lR66l472diSgoFBD/LItq5o3IxjUxb0eiVnmg6EnGuL7BGBoaUAE1JyIisl42NjYICwtDWFgY3nzzTRQUFCAhIQH79+/H9u3bMXv2bEgkEuTnGzeZGxERkbVTTQIDAD04JBj9gw2NZNVKekKx+K8xGxJS8NrmM3r3k18o1H+PCw/EzGeCYCOVoG8rP2w6kYo9F24jU6GEq1yG6CAfDHpi/0RERGR+jx8/xp9//qmejfr48eMQQpS+oR6XLl3C2rVr8dtvv+Hq1atQKBRo0KABhgwZgqlTp8LJyUmj/MWLF/H666/jwIEDyMvLQ0hICObOnYvu3buXNzQiIqIKp+o2DQBRbGikf7ChkaxWSU8oLtyVhLh+RU8cZuQoMWvrOYP2KbORYFpUY9hIJQAAN0cZJnSuhwmd65m8/kRERFQyhUKBgwcPqhsW//e//0GpVEIIAblcjs6dO6Nbt27o1q1bmfa/cuVKfPbZZ+jbty9GjRoFmUyG+Ph4/N///R82bNiAI0eOwMHBAQBw9epVhIeHw9bWFq+99hrc3Nzw9ddfIyYmBr/88guioqJMGToREZFZqB7W+fX830hIfgAA8HG1h4s9H6ShImxoJKtU2hOKivxC9fqs3Hyd3Z91URYIbD6RivFsWCQiIrKYWbNmYf/+/UhISEBeXh6EELCzs0OHDh3UDYthYWGws7Mr13EGDx6MN998E25ubupl//nPf9CoUSPMmzcPK1aswIsvvggAePPNN/Hw4UMcP34crVu3BgCMHTsWzZs3xwsvvICkpCRIJJJy1YeIiMic9D2sczszFx3m71E/rEPWjQ2NZHWMeULx/346Bz8PuVH7333hNhsaiYiILOjdd9+Fra0tQkND1Q2LnTp1glxu3D29NO3atdO5fNiwYZg3bx7OnSvKNx49eoRt27aha9eu6kZGAHB2dsZzzz2HWbNmISEhAe3btzdp/YiIiEzFmId12Nho3djQSFZn04lUg59QzCsoxPV7OUbtP1OhLEu1iIiIyER++eUXdO7cWWuMxIqSmpoKAPDxKRqv6syZM8jNzUVYWJhW2Y4dOwIAGxqJiKjSMuZhnVnbziGmuS/nJLBibGgkq7P7wt9m3b+rnBdUIiIiS4qJibHYsQsKCvDOO+/A1tYWI0eOBADcvHkTAODn56dVXrUsLS2t1H2npKSoGzFVzp49CwBQKpXIy8srV931USqVyM/Ph1JpPT+mMmbrwJitA2Muvx+O3TD4YR2FshAbEm4gNqyOSY5tKJ5n8x3DWGxoJKuTpcg3qrybXIYMI55SjOZsW0RERFZr6tSpOHz4MObPn48mTZoAAHJyinpH2Nvba5VXdedWlSnJihUrMHfuXJ3rMjMzkZ6eXtZql0ipVCI7OxtCCMhk1vGDKmNmzNUVY2bMZbHr3E3jyp+9iT5NnMt9XGPwPJsn5szMTKO3YUMjVRuq2a/2JN5GliIfLnJbRAf5YnCIv/qx7b/u5yD1wWOj9tvYxxln0zIM+gVHLpNiUFv/MtWfiIiIqraZM2di6dKlmDRpEt588031ckdHRwBAbm6u1jYKhUKjTEkmTJig9bTm2bNnMXnyZLi6usLT07M81ddLqVRCIpHAw8PDqr68MebqjzEz5urK1DErCoybrOxxAcx2T9KH59k8Mbu6uhq9DRsaqVrQN/vVkWvpWLgrCbP6BCFTkY/Fey5BoTTskW+Vp1vUwpB2ASUOfKsS1zcYbg7WcVEjIiKif82ZMwfvvvsunn32WXzxxRca62rXrg1Ad/do1TJd3aqfFBAQgIAA3QPsy2Sycs+iXRJbW1uzH6OyYczWgTFbB8ZcPq5Gfsd1c7CzyGvN82x6ZWnAZEMjVXmGzH711o+aA9dKAAgD9q16QlHVeKirMVNVLq5vMGfXIiIiskJz5szB3LlzERsbi+XLl0Mi0Xzyo0WLFrC3t8fhw4e1tj1y5AgA/TNYExERWVp0kC+OXDN8eA4OJ2bd2NBIVZoxs18BgMxGgpefagRPJzutxkddij+hODQ0ADHNfbHpRCr2XLiNTIUSrnIZooN8MKhY92wiIiKyHnFxcZg7dy7GjBmDlStXQiqVapVxdnZGnz59sGXLFpw+fRqtWrUCAGRnZ2P58uVo1KgRZ5wmIqJKa3CIPxbuSuJwYmQQNjRSlbbpRKrBs18BwKQuDfBi90YAAFup1OgnFN0cZZjQuR4mdK5XvooTERFRlffZZ59h9uzZqFOnDqKiorBu3TqN9T4+PoiOjgYAvPfee9i7dy969OiBadOmwdXVFV9//TXS0tKwY8cOracgiYiIKgs3Rxni+gVzODEyCBsaqUrbfeFvo8qfuPFA/TefUCQiIqLySEhIAAD89ddfiI2N1VofGRmpbmhs2LAhDh48iDfeeAPvv/8+8vLyEBISgl27diEqKqpC601ERGSsoaEBOJnyAN8fS9G5nsOJkUqVbWgsLCzEJ598gi+//BLJycmoWbMmhg4diri4ODg5ORm1r5ycHAQHB+P69et44YUXsHTpUjPVmkwtS5FvVPlMhVLj33xCkYiIiMpq1apVWLVqlcHlmzVrhq1bt5qvQkRERGb0KLdA/XcrfzfkFwo+rENaqmxD47Rp07BkyRIMGDAAM2bMQGJiIpYsWYKTJ09iz549OsfH0WfWrFm4e/euGWtL5uIiN+4t7CrnhY+IiIiIiIjIGPkFhThwqajdpLabHD+90InDfpBOVbKh8fz58/j0008xcOBAbN68Wb28Xr16eOmll7B+/XqMHDnSoH2dOHECixcvxoIFCzBjxgxzVZnMhLNfEREREREREZnXib8eIuNxUQ/B7s282chIehn+2F8l8v3330MIgalTp2osnzhxIhwdHbF27VqD9lNQUICJEyeiZ8+eGDhwoBlqSuY2OMQfclvD3sac/YqIiIiIiIjIePuS7qj/7t7U24I1ocquSjY0JiQkQCqVon379hrL5XI5WrdurR6YuzSLFi1CUlISx2SswlSzXxmCs18RERERERERGS/+n4ZGuUyK8AZeFq4NVWZVsuv0zZs34eXlBXt7e611fn5+OHToEPLy8mBnZ6d3H9evX8fs2bMxa9YsBAYGIjk52eh6pKSkIDU1VWPZ2bNnAQBKpRJ5eXlG77M0SqUS+fn5UCqVpReuJkqL+akmnnC0s0FOXoHO9XKZFLN6N0X/Vj5mOSfmwPNsHRiz9bDGuBmzefZPREREVNFSH+Tg4u0sAEB4Ay/IZTYWrhFVZlWyoTEnJ0dnIyNQ9FSjqkxJDY3/+c9/UL9+fUyfPr3M9VixYgXmzp2rc11mZibS0w0fO9BQSqUS2dnZEEJAJrOOp/NKi/nzg2nqRsZWtZ1gK5UiKzcfLva26NLADU83qwFXua1Zzoe58Dwz5urKGmMGrDNuxmz6mDMzM02+TyIiIqLSxBfrNt2N3aapFFWyodHR0RF37tzRuU6hUKjL6LN27Vrs3r0bv//+e7m+CEyYMAExMTEay86ePYvJkyfD1dUVnp6eZd63PkqlEhKJBB4eHlb1xU1fzLcyFFh/sui94Gxviy/HtIOnk/4G5qqC55kxV1fWGDNgnXEzZtPH7OrqavJ9EhEREZVmL8dnJCNUyYbG2rVr48KFC8jNzdV6sjEtLQ1eXl56n2bMzc3F9OnT0atXL/j6+uLKlSvq7QAgIyMDV65cgZeXF9zd3UusR0BAAAICAnSuk8lkJT5RWR62trZm3X9lpC/mT+IvIDe/EADw324N4OvhbInqmQXPs3VgzNbDGuNmzKZlLQ22REREVHnk5OXj0NX7AICmvi7wc3ewcI2osquSk8GEhoaisLAQx44d01iuUChw6tQptGvXTu+2jx8/xt27d7Fjxw40atRI/V/Xrl0BFD3t2KhRIyxfvtycIZAJnL+ZgR9PFjUQ13aTY3ynehauEREREREREVH1cejKfeT983APn2YkQ1TJJxqHDRuG+fPnY/HixYiIiFAv//rrr5GTk4NRo0apl129ehVKpRJNmzYFADg5OWHjxo1a+7x79y7++9//omfPnpgwYQJatmxp/kCsTEaOEhuPp2BP4m1kKfLhIrdFdJAvBof4w83RuKc0hBCYvzMRQhT9+5WYJhyQloiIiIiIiMiE9l1kt2kyTpVsaGzRogVeeOEFLF26FAMHDkSvXr2QmJiIJUuWIDIyEiNHjlSXfeqpp3Djxg2If1qkZDIZBg8erLVP1azTDRo00LmeymdDQgpmbT0HxT+/hKgcuZaOhbuSENcvGENDdXdD12X/pbs4eKXo8e3mtV3Rv7WfSetLREREREREZM2EEOqJYNwdZWhTx8PCNaKqoEo2NALA4sWLERgYiK+++go7duyAl5cXpkyZgri4OEilVbJHeLW1ISEFr20+o3e9Ir9Qvd6Qxsb8gkK8tzNR/e+3ezWDVCopf0WJiIiIiIiICACQeCsLtzKKJtzt2rgmbPi9mwxQZRsabWxsMGPGDMyYMaPEcqonFUsTGBiofuqRTCcjR4lZW88ZVHbWtnOIae5bajfqTcdTcel2NgCgW5OaCG/oVe56EhEREREREdG/9iXdVv/dvZmPBWtCVQkf/SOz2nQiVau7tD4KZSE2n0gtscyj3Hx8vPsSAEAqAd7s1azcdSQiIiIiIiIiTfv+6TZtI5UgslFNC9eGqgo2NJJZ7b7wt5Hlb5e4/us/ruFOVi4AYFhoABr7uJS5bkRERERERESk7X52Lk6mPAQAtK3jYfQErmS9qmzXaaoashT5RpXPVCjVf6tmqd59/m88eKSAk9wO525mAgAc7WwwLaqxSetKRERERERERMCBS3ehGl2uezPONk2GY0MjmZWL3Li3mKq87lmqH6v/6tSgBrxd5aaoIhEREREREREVs/efbtMA0L0pGxrJcOw6TWYVHeRrVPnEW1mYseEUXtt8psSxHXcn3sGGhJTyVo+IiIiIiIiIilEWFOL3S3cBAP4eDmjk7WzhGlFVwoZGMqvBIf6Q2xr+Nst4rMTmE2kGlZ217RwycpSlFyQiIiIiIiIig/wv+YF6GLTuTb0hkUgsXCOqStjQSGbl5ijDG083NahsmwB3GHP5MmSWaiIiIiIiIiIyXPxFdpumsmNDI5ndtXuPSlwvl0mxYFBL/PhCJ7QKcDNq36XNUk1EREREREREhtubWPQ920Fmg471a1i4NlTVcDIYMqvzNzOw9sgNAICHowzPRdTHn5fvIVOhhKtchuggHwwK8YebowwAoCwQRu2/+CzVRERERERERFR2N+4/wtW7RQ8LdWpYA3KZjYVrRFUNGxrJbIQQmL31PAr/aTt88+lmGBoagBe6NdS7jbGzVLvKZeWpIhERERERERH9Y5/GbNM+FqwJVVVsaCSz+elUGv534wEAoFWAOwa39S91m+ggXxy5lm7wMaKDeOEjIiIiIiIiyshRYuPxFOw+/zcePFLAw0mOHsG1MLhYL8LSFG9o7Na0prmqStUYGxrJLLIUSszfmQQAkEiAuL7NIZWWPtXL4BB/LNyVBEV+Yall5TIpBhnQeElERERERERUnW1ISMGsrec0v0vffYyjyQ+wcFcS4voFY2hoQIn7eJSbj6P/PPgTVMsVtdwczFllqqY4GQyZxZK9l3E3KxcAMKxdAFoFuBu0nZujDHH9gg0qG9c3GG4O7DpNRERERERE1mtDQgpe23xG7wM7ivxCvLb5DDYkpJS4nz+v3ENeQdE+ONs0lRUbGsnkLt/OwjcHkwEArnJbvBrTxKjth4YGYMGglpDb6n57qmapLu3XGCIiIiIiIqLqLCNHiVlbzxlUdta2c8jI0T+h6r7EYuMzNmNDI5UNu06TSQkhMOfn88j/ZwaYV2KaoIazvdH7GRoagJjmvth0IhW7z99CerYCns5y9GheS2OWaiIiIiIiIiJrtelEqkFDjwGAQlmIzSdSMb5zPa11hYUC8ReLGho9nezQyt/dlNUkK8KGRjKpX879jYNX7gMAmtVyxcj2dcq8LzdHGSZ0rocx7f2Qnp4OT09P2NnZmaqqRERERERERFXa7gt/G1n+ts6GxvM3M3Hnn+HPujapCRsD5lgg0oUNjWQyOXn5eHf7BfW/4/o1h60Ne+cTERERERERmUOWIt+o8pmKf7tOq2ap3pN4G9fuPlIv71jf02T1I+vDhkYqs+IXpSxFPh7mKHEzQwEAGNDGD6GBvDgRERERERERmYuL3LhmnXvZufjrfg6OXLuvPUv1P2b+dB4QEs6LQGXChkYqkw0JKXovSgDQvLZrBdeIiIiIiIiIyLpEB/niyLV0g8vfzsxF5MJ4iBLK5P4zSzUANjaS0divlYy2ISEFr20+U+KAs+/uSMSGhJQKrBURERERERGRdRkc4g97W+OadkpqZCyutFmqiXRhQyOpZeQosfyPaxj+1WH0XvIHhn91GCv+vK5xYcnIUWLW1nMG7Y8XJSIiIiIiIiLzcXOUIaqZt0Fl5/UPRq9gX4P3rZqlmsgYbGgkAEVPKXaYvwfv7kjEkWvpOH8zE0eupeOd7RfQYf4e9dOJm06klvgkY3G8KBERERERERGZz5U72dideKfEMnKZFAsGtcSojnWRnpNn1P53X7hdnuqRFeIYjaTuCq2Potj4DL+e/9uofe++cBvjO9crV/2IiIiIiIiISFNBocBrm04j75+HgaZ0bwh3RzvsPn8L6dkKeDrL0aN5LQwK8YebowxA+WapJjIEGxqtnDFdod/YcgaFhg7m8A9elIiIiIiIiIhMb+Wf13Hir4cAgJb+bnj5qUawtZFiTHs/pKenw9PTE3Z2dhrbGDtLtatcZqrqkpVg12krZ0xXaGMbGQFelIiIiIiIiIhM7erdbHz420UAgJ2NFAsHt4KtTelNPNFBho/RWFTep0z1I+vFhkYrt/uCcV2h7WwkRpXnRYmIiIiIiIjIdIq6TJ9B7j8PDb0c1QhNfF0M2nZwiD/kBs5SLZdJMaitf5nrSdaJDY1WztjxGerXdOZFiYiIiIiIiMhCvjl4HcdvPAAAtPBzw+Qu9Q3e1s1Rhrh+wQaVjesbDDcH9lIk47Ch0coZOz6Dh6MdL0pEREREREREFnDtbjYW/lrUZVpmI8GHQwzrMl3c0NAALBjUUu9DRKpZqoeGBpS7vmR9OBmMlYtq5oMj19INLh8d5KO+2Mzaek7n+I5ymRRxfYN5USIiIiIiIiIqo4wcJTYeT8GexNvIUuTD2d4WNx8+/rfL9FOGd5l+0tDQAMQ098WmE6nYc+E2MhVKuMpliA7y0ZilmshYbGi0YoWFAufSMgwuX7wrNC9KREREREREROaxISFF78M9AODnLsfkyAblOoabowwTOtfDhM71yrUfouLY0FhFqH7J2H3+bzx4pICHkxw9gmthcBkb9QoLBV7ffAY/nbpp8DZPdoXmRYmIiIiIiIjIME8+oegit0V0kK/W9/oNCSl4bfOZEveV9lCBH0+ksSchVTpsaKwCdP6ScfcxjiY/wMJdSYjrZ1w35YJ/Ghk3HU8FUPSk4tiwulh96Aa7QhMREREREZHVMbQRsKzb6HtC8ci1dI3v9Rk5Sszaes6gOs/adg4xzX3Zo5AqFTY0VnKl/ZKhyC9Ury/eEKjvgjegjR/e3XEBW06kAQAcZDZYOS4UYQ1q4IWujdgVmoiIiIgAGN+jxtgv6eYuX55jVJaYK/J1ZcyM2ZpjNrQRsKzbGPO9Pis3X293aa3tlIXYfCIV49nLkCoRiRBCWLoS1cnhw4cRHh6OQ4cOISwsrFz7yshRosP8PQZdZOQyKY6+GQU3R1mJYzlIJUDhP2fcQWaDb54NRcf6NcpVT3PLy8tDeno6PD09YWdnZ+nqVAjGzJirK2uMGbDOuBmz6WM2ZY5BllNYWIhPPvkEX375JZKTk1GzZk0MHToUcXFxcHJyMnp/5npflJRPym2lWl+6K1v5ylgna4yBMTPmqhCzId2UAWjMwmzMNjHNfQ3+Xm9vK4W/hwOu3n1UalmVsPo18P2kjhrLmIcxZlMpS57BJxorsU0nUo3+JcPZ3rbEC56qkdHORoJVz4aiQyVvZCQiIiKqTqZNm4YlS5ZgwIABmDFjBhITE7FkyRKcPHkSe/bsgVQqtXQVje5RU9nKM4aqWR5gzJWhTtYWc0xzX6O7KQMwaps7WQqDv9fn5hca1cgIAJkKpVHliczN8pkM6bX7wt9Glf/l7C2DL3iQSNDU17UMtSIiIiKisjh//jw+/fRTDBw4EFu2bMHEiRPx8ccf4+OPP0Z8fDzWr19v6SoaPTZYyv2cSlU+I0fJGKpgecZcOepkjTGvPaJ7ngJdFMpCfPn7VSyNv2zUNh/9dsmgsmXlKucwZ1S58InGSixLkW9U+YQbDwwum5fPsRyIiIiIKtL3338PIQSmTp2qsXzixIl44403sHbtWowcOdIylfuHsT1q3tlxoVKV33wiFQKoVHWyxhiMLb/xeAqEEEZtE7fduGPM3X7eqPJzfjZv+e+O3oAQxp3nmdt0dwXWW37rWaPKv/2TceXfMrL84r2XUFBo3Hl+af1Jo8pPWX/CqPJL468YVFZl2f6rRpUHAGPHqnOV2yLTiLaA6CAfI49AZF5saKzEXOTmPT27L9xmQyMRERFRBUlISIBUKkX79u01lsvlcrRu3RoJCQklbp+SkoLU1FSNZWfPngUAKJVK5OXllbuOv527ZVz5C7crVfm47ReMKl+WYzAG05d/d0eiUeUBYHeiccfYk3jHqPJ7k8xbfsGvF40qDwD7L941rvyle0aV//2yceX/MLL8NweTjSoPACdTHhpV/lRKhlHlHysLjCpfFsXnSTBEY28nnL2ZhVwD52ro28Jb6/qvVCqRn58PpdJ6ulUzZvMdw1hsaKzEooN8ceRausHlZTYSKAsMv4JxLAciIiKiinPz5k14eXnB3t5ea52fnx8OHTqEvLw8vQO6r1ixAnPnztW5LjMzE+nphueN+jx4pCj3PoiIqisfZxkkEgn+zjL8h53arvZIzcg1uHxEPRfENHHHvN03Si07o2sA8h9nIf2x5nKlUons7GwIISCTWUfXasZsnpgzMzON3oYNjZXY4BB/LNyVZPCs08F+bvhfsuHdpzmWAxEREVHFycnJ0dnICBQ91agqo6+hccKECYiJidFYdvbsWUyePBmurq7w9PQsdx09nOTA3celF/yHjVSCAiMe1TF3eTe5LQRgVLfDSheDQ9FXtIzH5ovBVipBfiUq7+5Q9L3k4WPDH4SobDEYW76GU9Hn/P4jwxusjH2wpLKV93eXQyKRIOWB4dcYua3U4K7QQNH3YoXS8PJ1PBzwlxH1eS6iPoQQmL/L8HEXh4YG4LP91wx+QnFUeEO4Osjg5OSEuduTdG4nl0kxq3dTDA7x07kfpVIJiUQCDw8Pq2p0Y8ym5+pq/NwebGisxNwcZYjrF1zijFkqcX2DkZWbb1RDI8dyICIiIqo4jo6OuHNHd/dKhUKhLqNPQEAAAgICdK6TyWR6GyiN0SO4Fo4akU8+1dTbqG6y5i7/clRjCADvGNH9uNLF8JT5Y+heycq/9FQjo2OubDEYW/6Fbg2NjrlbE+OOUdnKj+9c3+iYuzSuadQxujQyrvyw0Dr4dJ9hk7vIZVIMbV8XEMDHe64YvE1sp/rwdXM0+Hu9l5sTAGBkx3ro3dIfm06kYs+F28hUKOEqlyE6yAeDQvzh5lhyw5Ktra3J7g1VBWM2vbI0YHLW6UpuaGgAFgxqCbmt7lMll0mxYFBLDA0NwOAQf73ldG03qK2/KatKRERERCWoXbs27t27h9xc7S50aWlp8PLysviXI2PzyZnPBFWq8oPa+jOGKlieMVeOOlljzKPD6iKuX7BB5eP6BsPNQaZ+IMiYbYz5Xl+cm6MMEzrXw/eTOmLHSxH4flJHjO9cr9RGRiJLYkNjFTA0NABH34rCzGeC0LGeBxrXdEDHeh6Y9UwQjr4Zpb4YleWCR0REREQVIzQ0FIWFhTh27JjGcoVCgVOnTqFdu3YWqtm/jM0nAzwdK1X5sjQCMAbLl2fMlaNO1hhzWRsBy7qN6nt9WP0aaF7bFWH1a2h9ryeq6th1uopQ/ZIxpr0f0tPT4enpqfMXb9XFadbWczof5ZbLpIjrG8yLGBEREVEFGzZsGObPn4/FixcjIiJCvfzrr79GTk4ORo0aZcHa/cvYfLKyla+MdbLGGBgzY64qMau2iWnua1Q35bJso/peP6FzPa11RNWFRAhhxETrVJrDhw8jPDwchw4dQlhYmMn3n5eXV2JDo0pGjrLMYzlUNobGXJ0wZsZcXVljzIB1xs2YTR+zuXMMqhhTpkzB0qVLMWDAAPTq1QuJiYlYsmQJOnXqhH379kEqNa7DkTnfF6p8cvf5W0jPVsDTWY4ezWvpzSeNzT/NXb48x6gsMVfk68qYGbO1x1ydMA9jzKZSljyDDY0mVlkaGqsTxsyYqyvGbB0xA9YZN2NmQyPpVlBQgMWLF+Orr75CcnIyvLy8MGzYMMTFxcHZ2dno/VXE+4KfZ8ZcXTFmxlxdMWbGbCplyTPYdZqIiIiIqILY2NhgxowZmDFjhqWrQkRERGRynAyGiIiIiIiIiIiIyo0NjURERERERERERFRubGgkIiIiIiIiIiKicuMYjSb26NEjAMDZs2fNsn+lUonMzEy4urpCJqveM2WpMGbGXF0xZuuIGbDOuBmz6WNW5RaqXIMIMH/uCfDzzJirL8bMmKsrxsyYTaUs+ScbGk3s2rVrAIDJkydbuCZERERUHalyDSKAuScRERGZnzH5p0QIIcxYF6tz8+ZNbN++HfXr14eTk5PJ93/27FlMnjwZX375JVq0aGHy/VdGjJkxV1eM2TpiBqwzbsZs+pgfPXqEa9eu4ZlnnkHt2rVNvn+qmsydewL8PDPm6osxM+bqijEzZlMpS/7JJxpNrHbt2pg0aZLZj9OiRQuEhYWZ/TiVCWO2DozZOlhjzIB1xs2YicyronJPwDrf24zZOjBm68CYrQNjtjxOBkNERERERERERETlxoZGIiIiIiIiIiIiKjc2NBIREREREREREVG5saGxivH398fs2bPh7+9v6apUGMZsHRizdbDGmAHrjJsxE1Uf1vjeZszWgTFbB8ZsHRhz5cFZp4mIiIiIiIiIiKjc+EQjERERERERERERlRsbGomIiIiIiIiIiKjc2NBIRERERERERERE5caGRiIiIiIiIiIiIio3NjQSERERERERERFRubGhkYiIiIiIiIiIiMqNDY2VjEQi0fmfs7OzVtmLFy+if//+8PDwgJOTEyIiIrBv3z4L1Lrs5syZozdmiUQCmUxmUNkPP/zQglHo995772HIkCGoX78+JBIJAgMDSyx/9OhRREVFwcXFBa6urujZsydOnTqls+zNmzcxduxY1KxZEw4ODmjXrh02btxo+iCMZGjMCoUCX3/9Nfr164fAwEA4ODigfv36GDFiBBITE7XKJycn6z3/wcHBZo6qZMac53HjxumNY9OmTVrlc3NzMWvWLNSrVw/29vZo0KAB3n33XSiVSjNGVDpDYy7pvKn+++677wwqb+nzfOnSJcyaNQsdO3ZEzZo14eLigtatW2PevHl49OiRVnljrtEZGRmYMmUK/Pz8IJfL0bx5c3z++ecQQpg7rBIZGrMQAmvXrsXw4cPRsGFDODo6ok6dOujbty+OHj2qc9/G3O8qkjHn2dj7UmFhIRYtWoSmTZtCLpcjICAAM2bM0Pn+IapIzD+ZfzL/ZP5ZHPPPynOerS3/tMbcE6h++aet2fZMZRYREYFJkyZpLCue8ADA1atXER4eDltbW7z22mtwc3PD119/jZiYGPzyyy+IioqqyCqX2cCBA9GwYUOt5WfOnMHChQvRp08frXWLFi2Cl5eXxrK2bduarY7l8dZbb8HT0xMhISF4+PBhiWWPHDmCrl27ws/PD3FxcQCApUuXIiIiAocOHUKLFi3UZdPT09G5c2fcuXMH06dPh7+/P9atW4ehQ4di5cqVePbZZ80ZVokMjTk5ORmTJk1C586dMWHCBNSuXRvXrl3D559/ji1btmDXrl3o1q2b1nYDBgzAwIEDNZa5u7ubOArjGHOeVdasWaO1rH379lrLhg0bhq1bt2L8+PEICwvD4cOHMXPmTFy5cgWrVq0qZ83LztCYa9asqTNWAHjxxRfx+PFjxMTEaK2rjOd55cqV+Oyzz9C3b1+MGjUKMpkM8fHx+L//+z9s2LABR44cgYODAwDjrtF5eXmIjo7GyZMnMWXKFDRr1gy//PIL/vvf/+L27duYM2eOhSI2PObc3FyMGTMGrVu3xvDhw1GvXj3cunULX3zxBcLCwrB69WqMHj1aa/+G3O8qmjHnWcXQ+9K0adOwZMkSDBgwADNmzEBiYiKWLFmCkydPYs+ePZBK+fsvWQ7zT+afzD+Zf6ow//yXpc+zteWf1ph7AtUw/xRUqQAQsbGxpZYbMmSIkEql4uTJk+plWVlZok6dOqJx48aisLDQfJWsAJMmTRIAxPbt29XLZs+eLQCI69evW65iRrp69ar67+bNm4u6devqLRsaGipcXFxEamqqellqaqpwcXER0dHRGmVfffVVAUBs27ZNvSw/P1+EhoYKT09PkZWVZbogjGRozPfu3dN4/6qcP39e2NnZibZt22osv379ugAgZs+ebcLamoYx5zk2NlYYeundsWOHACCmT5+usXz69OkCgDh48GCZ6msKxsSsy6FDhwQAMXjwYI3llfk8JyQkiIcPH2otf/vttwUA8emnn6qXGXON/uyzzwQAsWTJEo39Dhw4UMhkMpGcnGz6YAxkaMxKpVLs379fq9zff/8tatSoIby9vUVBQYHGOkPvdxXNmPNszH3p3LlzQiKRiIEDB2osX7JkiQAgvvvuu3LXnaismH8WYf5ZhPnnvypzXsL8k/lndcw/rTH3FKL65Z/86bySysvLQ3Z2ts51jx49wrZt29C1a1e0bt1avdzZ2RnPPfccLl26hISEhAqqqek9evQI69evh7+/P3r27KmzTGZmJvLz8yu4ZsarX7++QeWuXLmChIQEDBkyBH5+furlfn5+GDJkCPbs2YO///5bvXzdunVo0KCBxi/uNjY2mDJlCtLT07Fz507TBWEkQ2OuUaOGxvtXJSgoCMHBwTh37pzebRUKBXJycspaRZMzNObihBDIzMxEYWGh3jLr1q0DAEydOlVjuerfa9euNfq4plKWmItbvnw5AOC5557TW6ayned27drBzc1Na/mwYcMAQP2eNfYavW7dOjg6OmLixIka+506dSqUSiV++OEHM0RjGENjtrW1RWRkpFY5Hx8fREZG4s6dO7hz547OY5R0v7MEQ2N+Umn3pe+//x5CCK3P88SJE+Ho6GjRzzORCvNP5p8A8099KltewvzTeMw/K3/+aY25J1D98k82NFZCmzZtgqOjI1xcXODt7Y0pU6YgIyNDvf7MmTPIzc1FWFiY1rYdO3YEgCqd6G3cuBGZmZkYN24cbGxstNa3bNkSbm5ukMvlCA8Pxy+//GKBWpqW6nzpO6dCCBw/fhwAcOvWLaSlpanP9ZNli++vKiosLMStW7fg4+Ojc/1HH30ER0dHODk5ISAgALNmzUJubm4F17L83Nzc4ObmBgcHB0RHR+scSyQhIQF+fn4ICAjQWB4QEIDatWtX2fOcnZ2NDRs2oG7duoiOjtZZpiqd59TUVABQv2eNuUYXFhbixIkTaNOmDeRyuUbZ9u3bQyKRVMrz/GTMpZW1s7PT2fWotPtdZVJSzIbclxISEiCVSrW6qMnlcrRu3bpSnmeyLsw/mX8Wx/xTU1XKS0rC/JP5J1A1809rzD2Bqpt/cozGSqZ9+/YYMmQIGjZsiMzMTOzcuRNLly7FgQMHcOjQITg7O+PmzZsAoPHLo4pqWVpaWoXW25RWrFgBiUSC8ePHayx3d3fHpEmTEB4eDg8PD1y8eBGLFy9G7969sXLlSowbN84yFTYBY85pdT//X3zxBW7duoWZM2dqLJdKpejevTv69++PunXr4u7du9iwYQPeeecdHD58GLt27dL5xaCy8fX1xbRp09C2bVs4OTnh9OnTWLx4MSIiIrBz506NsVNu3ryJoKAgnfvx8/NT33iqmh9++AHZ2dl45ZVXtMYEqWrnuaCgAO+88w5sbW0xcuRIAMZ9Rh88eIDHjx/rLGtvbw8vL69K93nWFbM+O3fuxLFjxzBmzBidiWxp97vKQl/MxtyXbt68CS8vL9jb22vt38/PD4cOHUJeXh7s7OwqIiQiDcw/mX8+iflnkaqWl+jD/JP5J1B1809rzD2BKp5/mqVDNpnUvHnzBADx7rvvCiGEWL16tQAgVqxYoVX26tWrAoB4+eWXK7iWppGUlCQAiKeeesqg8vfu3RO+vr7C3d3douPCGKKkcUTi4uIEALF3716tdXv37hUAxKJFi4QQQvz+++8CgJg5c6ZW2YKCAgFA9OvXz4Q1Lztjx045ePCgsLe3F61atRKPHz82aJuJEycKAGLt2rVlrKVplWW8mEuXLglHR0fRsGFDjeVSqVRERETo3CYiIkK4ubmVsZamZWzMHTt2FFKpVNy4ccPgbSrbeVZ58cUXBQAxf/589TJjrtF//fWXACDGjBmjc/8BAQGiVatW5qh6memKWZdLly4JT09P4efnJ+7cuWPQvp+831UWhsYshP77Uv369UVAQIDObcaMGSMAiAcPHpiqykTlxvxTP+afmph/Wh7zz9Ix/6y6+ac15p5CVO38k12nq4BXX30VdnZ22LFjBwDA0dERAHQ+xq1QKDTKVDUrVqwAUPK4GcXVqFED//nPf/Dw4UMcOnTInFUzK2POaXU9/8ePH0fv3r1Ru3Zt7NixQ+sXKH3efvttAFB/PqqiRo0aYejQobhy5QouXbqkXu7o6Ki3u4ZCoaiS5/nChQs4cuQIoqOjUadOHYO3q4zneebMmVi6dCkmTZqEN998U73cVJ9nVfnKdJ71xfyk69ev46mnnoJEIsEvv/yCmjVrGrT/J+93lYGhMavouy+V9nlWlSGqLJh/6sf8s+SyVQnzT+afJamM59na8k9rzD2Bqp9/sqGxCpDJZKhduzbu3bsHAKhduzYA3d0TVMt0PQZd2eXn52P16tWoUaMGBgwYYPB2gYGBAKB+faoiY85pdTz/J06cQHR0NNzc3BAfH29U/QMCAmBjY1Olzz+g+31cu3Ztvd0W0tLSqtx5Boz/MqdS2c7znDlz8O677+LZZ5/FF198obHOmM+oh4cHHBwcdJbNzc3FvXv3Ks15Linm4pKTk9GtWzdkZ2dj9+7daNGihcHHePJ+Z2mGxvwkfZ/ne/fu6Uz20tLS4OXlxW7TVKkw/ywZ80/9ZasK5p/MP0tT2c6zteWf1ph7AtUj/2RDYxWgUCiQmpqqHgC0RYsWsLe3x+HDh7XKHjlyBEDRrEVVzc8//4zbt29j9OjROscQ0Ofy5csADBsYtrIKDQ0FAL3nVCKRoG3btgCAWrVqwc/PT32unywLVK3zf+LECURFRcHFxQXx8fGoW7euUdtfu3YNBQUFVfr8A7rfx6GhoUhLS0NKSopG2ZSUFNy8ebNKnWegaIa3NWvWoGbNmujXr59R21am8zxnzhzMnTsXsbGxWL58OSQSicZ6Y67RUqkUISEhOHnypFYCcOzYMQghKsV5Li1mleTkZHTt2hUZGRnYvXs32rRpY9RxnrzfWZKhMeui7/NcWFiIY8eOaZRVKBQ4depUpTjPRMUx/ywZ80/NskDVOv/MP4sw/yxZZTrP1pZ/WmPuCVSj/NPknbGpzO7du6dz+SuvvCIAiA8++EC9bPDgwUIqlYpTp06pl2VlZYk6deqIRo0aicLCQrPX19R69+4tAIgzZ85orVMqleLhw4day//66y/h6ekpatSoIXJyciqimmVW2jgi7dq1Ey4uLiItLU29LC0tTbi4uGiNGaR6T2zbtk29LD8/X4SGhgp3d3eRmZlp8vqXRWkxnzhxQnh6eoqAgABx9erVEvel6/NRUFAghg0bJgCIH374obzVNYmSYs7OztY59s+JEyeEnZ2daNasmcby7du3CwBi+vTpGsunT58uAIg//vjDZPUuD0PHyNm4caPOeIqr7Od57ty56jFtCgoK9JYz5hq9dOlSAUAsWbJEYx8DBw4Utra24vr16yaPwxiGxpycnCwCAwOFm5ubOHbsWIn7NOZ+ZwmGxGzsfenMmTNCIpGIgQMHapRfsmSJACDWrFlj2iCIDMT8k/kn80/9KnteosL8Uz/mn1Uv/7TG3FOI6pV/SoQQwjxNmGSsadOm4ciRI+jWrRvq1KmD7Oxs7Ny5E/Hx8ejQoQPi4+Ph4OAAALhy5Qrat28PmUyGadOmwdXVFV9//TXOnj2LHTt2ICYmxsLRGOfmzZuoU6cO2rZti6NHj2qtf/jwIerVq4f+/fujWbNm6tmVli9fjuzsbHz//fcYMmSIBWpesjVr1uDGjRsAgE8//RR5eXmYMWMGAKBu3boYM2aMuuyhQ4fQrVs3+Pv7Y8qUKeptbt++jYMHD6JVq1bqsvfv30fbtm1x//59TJ8+HX5+fvj++++xf/9+LF++HBMmTKjAKDUZGvONGzfQtm1bpKenY/bs2WjQoIHWvgYMGAAnJycAwMCBA5GZmYnw8HAEBATg3r172Lx5M44fP45+/fphy5YtWjPIVRRDYz516hSefvpp9O/fH40aNVLP+rdy5UpIpVL89ttv6Ny5s8a++/Tpg+3bt2PChAkICwvD4cOHsWLFCowePRpr1qyp2ECLMea9rfL0009j165duHDhApo1a6Zzv5X5PH/22Wd48cUXUadOHbzzzjta9fDx8UF0dDQA467ReXl5CA8Px+nTp/HSSy+hWbNm2LlzJ3788Uf83//9H955550KjbM4Q2POyspCq1atcP36dUyZMgXt27fX2ld0dLT6F1Zj7ncVzdCYy3JfmjJlCpYuXYoBAwagV69eSExMxJIlS9CpUyfs27fPYu9tsm7MP5l/Mv/UxPyT+WdlOs/Wln9aY+4JVMP80yzNl1QmP/30k+jRo4eoXbu2sLe3F46OjqJVq1Zi3rx5On+FunDhgujbt69wc3MTDg4OolOnTmL37t0WqHn5qWZ7+uqrr3SuVygUYsKECSI4OFi4u7sLW1tb4evrKwYNGiSOHj1awbU1XGRkpACg87/IyEit8ocOHRLdu3cXTk5OwtnZWfTo0UMcP35c575TU1PF6NGjRY0aNYS9vb1o06aNWL9+vZkjKp2hMcfHx+stp/qv+C9py5cvF5GRkcLHx0fIZDLh7OwsOnToID777LMSf+mqCIbGfOvWLTF69GjRpEkT4eLiImxtbUVAQIAYO3asSExM1Lnvx48fi7ffflvUrVtX2NnZiXr16om4uDiRl5dXQdHpZux7+6+//hJSqVSEh4eXuN/KfJ5jY2NLfL8+Gbcx1+gHDx6IF154QdSqVUv9dMGnn35q8aeDDI35+vXrpX6e4+Pj1fs19n5XkQyNuSz3pfz8fPHhhx+Kxo0bCzs7O1G7dm0xbdq0Sj9rLVVvzD+ZfzL/ZP75JOaflec8W1v+aY25pxDVL//kE41ERERERERERERUbuyjQ0REREREREREROXGhkYiIiIiIiIiIiIqNzY0EhERERERERERUbmxoZGIiIiIiIiIiIjKjQ2NREREREREREREVG5saCQiIiIiIiIiIqJyY0MjERERERERERERlRsbGomIiIiIiIiIiKjc2NBIRERERERERERE5caGRiIiIiIiIiIiIio3NjQSERERERERERFRubGhkchK7N+/HxKJBBKJBC+++KLOMnfu3IGdnR0kEgm6du1asRWkSi85ORlz5szBqVOnLF0VIiIiqgKYf1J5Mf8kqnrY0EhkZeRyOdatW4fc3FytdWvWrIEQAra2thaoGVV2ycnJmDt3LhM9IiIiMgrzTyor5p9EVQ8bGomszIABA/DgwQNs3bpVa90333yDXr16wd7e3gI1I0NkZWWVaR396/Hjx8jPz7d0NYiIiKwG88+qjfln+TH/JGvChkYiKxMSEoKWLVvim2++0Vh+7NgxnD9/Hs8++6zebf/3v/9hwIAB8PLygr29PZo0aYJ58+Zp3TSPHTuGcePGoXHjxnB0dISLiws6deqEH3/8UWuf48aNg0QiQUZGBp5//nl4e3tDLpejU6dOOHr0qMFxZWZm4u2330azZs0gl8tRo0YNdO7cGevXr9cod+bMGQwYMAA1atSAXC5HUFAQFixYgIKCgnLVSwiBr7/+Gh06dICzszOcnZ3RokULzJo1S11mzpw5kEgkSE5O1to+MDBQq7uQRCLBuHHjsHfvXnTu3BnOzs7o06ePRvmTJ08iJiYGbm5uaNmypXrby5cvY8yYMahVqxbs7OwQGBiIV199FY8ePSpTnKtWrUK3bt0AAM8++6y6G1RpXZxU+9dFFV9xq1evRvv27eHu7g4nJyfUr18fo0aNwt27dzXKGRvf3bt3MX78ePj4+MDJyQmpqalGHY+IiIjKjvkn88+yxMn8k6hq4vPpRFZo/PjxmD59OtLS0uDn5wcAWLlyJby9vfHMM8/o3GbHjh0YOHAgGjZsiBkzZsDT0xOHDx/GrFmzcOrUKWzcuFFd9scff0RSUhKGDh2KunXr4v79+/j2228xcOBAfPfddxg5cqTW/mNiYlCzZk3MmjUL9+/fx8cff4zevXvj+vXrcHFxKTGehw8fonPnzjh//jwGDx6M559/HgUFBTh58iS2b9+O4cOHAyhKVCMjIyGTyfDCCy/A19cXP//8M15//XWcPn0a3333XZnrNWbMGHz33Xfo0KED3n77bbi7uyMpKQmbNm1CXFxc6SdFj//973/YvHkzJk6ciNjYWI11f/31F7p3744hQ4Zg0KBByM7OBgAcP34c3bt3h7u7OyZPngw/Pz+cPn0aS5YswcGDB3HgwAHIZDKj4uzSpQveeustzJ8/H5MmTUJERAQAwMfHp8yxPWnNmjWIjY1FREQE4uLi4ODggJSUFOzcuRN37txBzZo1yxxfdHQ0fH19MXPmTDx69AjOzs4GH4+IiIjKj/kn80/mn8w/yUoIIrIK8fHxAoBYuHChuHfvnrCzsxPz5s0TQgiRk5Mj3NzcxIwZM4QQQjg5OYnIyEj1to8fPxY+Pj4iIiJCKJVKjf1+/PHHAoCIj49XL8vOztY6/qNHj0Tjxo1Fs2bNNJbHxsYKAOL555/XWL5hwwYBQHzxxRelxvb8888LAOLLL7/UWldQUKD+Ozw8XNjY2IjTp0+rlxUWFoohQ4YIAGLPnj1lqtcPP/wgAIjRo0drHO/J48+ePVsAENevX9eqZ926dTVecyGEACAAiN27d+ssD0B8/fXXWutatmwpmjRpIjIzMzWWb9myRQAQ33zzTZniVL2Him9fGtX+dQEgYmNj1f8eMGCAcHFx0XqPPaks8Y0aNUprP4Yej4iIiMqG+SfzT+afmph/kjVg12kiK1SjRg307dsXq1atAgBs2bIFGRkZGD9+vM7yu3fvxu3bt/Hss8/i4cOHuHfvnvq/Xr16AQB+++03dXknJyf13zk5Obh//z5ycnLQvXt3JCYmIjMzU+sY06ZN0/h39+7dARR1UShJYWEh1q9fj2bNmmHSpEla66XSosvcnTt3cOjQIfTt21eji4dEIsHbb78NADq71hhSL9Uv0R9++KH6eE8ev6xatWqFqKgones8PT21uhqdPXsWZ86cwciRI5Gbm6txrjp37gwnJyeNc6VS1tfflNzc3JCTk4MdO3ZACKGzTFnje+WVV8p0PCIiIjIN5p/MP5/E/JP5J1VPbGgkslLPPvssLl++jD///BMrV65E+/btERQUpLNsYmIigKIuLzVr1tT4r2nTpgCA27dvq8vfuXMHkyZNUo9H4uXlhZo1a+KLL74AUNTV5En169fX+HeNGjUAAPfv3y8xjnv37uHBgwdo3bp1ieWuX78OAGjevLnWumbNmkEqleLatWtlqtfly5dRq1Ytk3bjUGncuLHedQ0aNICNjY3GMtW5mj17tta58vb2xqNHjzTOlUpZX39Teuutt1C3bl30798fNWvWxKBBg7B8+XKNQcbLGp+u19GQ4xEREZHpMP/8F/NP5p/MP6m64hiNRFYqJiYGfn5+mDt3LuLj4/H555/rLav6tW3hwoV6E6ratWury/bo0QOJiYl4+eWX0a5dO7i5ucHGxgbffPMN1q1bh8LCQq3tn0xYnjy2pZiyXvoGpQagdxY6R0dHvdvoWqeq14wZM9CzZ0+d23l4eGgtM9frry9mXfE2atQIFy5cwN69e7F3714cOHAAEydOxOzZs/H777+jQYMGZY5P12tlyPGIiIjIdJh/Gob5J/NPoqqMDY1EVsrGxgZjx47Fe++9BwcHB4wYMUJv2UaNGgEo6pKirxuFypkzZ3D69GnMmjULc+fO1Vi3fPny8lf8CV5eXvDw8MDp06dLLFevXj0AwPnz57XWJSUlobCwUOtXVUM1btwYW7duxe3bt0v8VdnT0xMAkJ6ejsDAQPVyhUKBW7duoWHDhmU6fnGqc2VjY1PquTJWSYmqPsVjVv0NQOev9wBgb2+PXr16qbtE7dy5E71798bHH3+Mzz77zOTxlXY8IiIiMh3mn/9i/mkY5p9EVQ+7ThNZsf/85z+YPXs2vvjiC7i6uuotFxMTA29vb7z//vtIT0/XWv/48WP14/6qXyaf/CXy3LlzOsegKS+pVIoRI0bgwoULWLFihdZ6VT28vb0RHh6On3/+GefOndNY/9577wEABgwYUKY6jBo1CgDw2muvaf1aXvx1UHWf2LNnj0aZRYsW6fyVvSzatGmD4OBgfPHFFzqTqfz8fJ3n0BDOzs4AYNT2+mL+6KOPtMreu3dPa1lISIjGMU0ZnyHHIyIiItNi/sn80xjMP4mqHj7RSGTF6tSpgzlz5pRazsnJCatXr0b//v3RpEkTjB8/Hg0bNsTDhw+RlJSELVu24Mcff0TXrl3RrFkzNG/eHAsWLEBOTg6aNGmCS5cu4csvv0SLFi1w/Phxk8fx7rvvYt++fXjuuefw22+/oXPnzhBC4OTJk8jPz8eaNWsAAJ988gkiIyMRERGBF154Ab6+vti+fTt+/fVXjBw5Ek899VSZjj9kyBAMGzYMq1evxuXLl9G3b194eHjg0qVL+PXXX9WJZVRUFJo0aYJZs2bh/v37qFevHv78808cOXIEXl5eJnktJBIJ1qxZg+7du6Nly5YYP348mjdvjpycHFy5cgVbtmzBe++9h3Hjxhm976CgILi4uGDZsmVwdHSEu7s7vL291QN36zJixAi89dZbmDRpEpKSkuDp6Yldu3bpTLJ69OgBd3d3REREICAgAA8fPsSqVasgkUgwZswYk8dnyPGIiIjItJh/Mv80BvNPoiqoYia3JiJLi4+PFwDEwoULSy3r5OQkIiMjtZafPXtWjBo1StSuXVvIZDLh7e0twsLCRFxcnLh//766XHJyshg8eLDw8vISDg4OIjQ0VGzZskXMnj1bABDXr19Xl42NjRX6LkUARGxsrEHxPXjwQLz66quiQYMGQiaTCU9PT9G5c2fxww8/aJQ7deqU6Nevn/Dw8BB2dnaiadOm4oMPPhD5+fka5YytV0FBgVi6dKlo06aNcHBwEM7OzqJFixZizpw5GuUuXrwoYmJihIODg3BzcxNDhgwRqampom7dulqveUnx6ypfXHJyspg8ebKoW7eu+vUICQkRb7zxhvjrr7/KHOeOHTtEmzZthL29vQBQYh1Ujhw5IsLDw4W9vb2oUaOGmDhxonjw4IHW/r/66isRFRUlfHx8hEwmE76+vuLpp58W+/btM0t8xhyPiIiIjMf8swjzT+afZTkeUVUlEYJzqhMREREREREREVH5cIxGIiIiIiIiIiIiKjc2NBIREREREREREVG5saGRiIiIiIiIiIiIyo0NjURERERERERERFRubGgkIiIiIiIiIiKicmNDIxEREREREREREZUbGxqJiIiIiIiIiIio3NjQSEREREREREREROXGhkYiIiIiIiIiIiIqNzY0EhERERERERERUbmxoZGIiIiIiIiIiIjKjQ2NREREREREREREVG5saCQiIiIiIiIiIqJyY0MjERERERERERERlRsbGomIiIiIiIiIiKjc2NBYRR0+fBijRo1CYGAg7O3t4eLigvr16yM6Ohpz587FuXPnLF1FMpE5c+ZAIpFgzpw5lq6KVXj77bchkUiQkJBg6arolJeXh8DAQISEhKCwsNDS1SEiokqM+aLprVq1ChKJBOPGjbN0VSrc/v37IZFI0LVrV0tXxexyc3PRoEEDtGzZUiPfSk5OhkQiQWBgoOUqV4quXbtCIpFg//79JtunKeNmLktU/bGhsQpauHAhOnXqhHXr1kEmkyEmJgZ9+vSBn58fDh06hDlz5mDVqlWWriZRmUkkEkgkkgo/7l9//YWPP/4Y/fv3R2hoaIUf3xB2dnaYOXMmTp48iW+//dbS1SErFhgYCIlEguTkZEtXhYh0YL5YNry2VX2myCM/+eQTXLt2De+88w6kUn5lNiXmslRZ8HpvPraWrgAZ59SpU3j99ddha2uL7777DkOGDNFY//jxY+zYsQO5ubkWqiGZ2osvvojhw4fDy8vL0lWp9mbOnAmFQoGZM2dauiolio2NRVxcHN5++22MGjUKdnZ2lq4SERFVIswXicouIyMD8+bNQ8uWLdGvXz9LV6daYi5LVL3x55kqZtOmTRBCYMiQIVpJIwA4ODhg8ODBGDVqlAVqR+bg5eWFpk2bsqHRzO7evYv169ejVatWCAkJsXR1SmRra4vRo0fj1q1b2Lx5s6WrQ0RElQzzRaKy+/bbb5GZmYlnn33W0lWptpjLElVvbGisYu7cuQMA8Pb2LtP2N27cwAsvvICGDRtCLpfD3d0d3bp1w5YtW3SWL/448YYNG9C5c2e4ublBIpHg/v37sLe3h5OTE7KysnRun5ubCw8PD9jY2CAtLU1j3d27d/HGG2+gefPmcHR0hIuLCzp27Ijly5dDCKG1r+LjjezZswc9evSAp6cnJBIJTp06VWrst27dwquvvormzZvD1dUVzs7OqFu3Lvr164dNmzbp3GbHjh3o3bs3vL29YWdnh4CAAIwfPx7Xrl3TKlt83Jrs7Gy8/vrraNiwIezt7dG/f398+umnkEgkGDNmjN46/vDDD5BIJOjZs6d6WWljNB48eBDDhg2Dv78/7O3t4ePjg/DwcLz//vt4/PixzvJDhgxB7dq1YWdnB19fXwwdOtSg19CYeAFAqVRizZo1GDZsGBo3bgxnZ2c4OzujVatWiIuLw6NHjzT2qRr3SEXV9UVfFxhTxQIA33zzDfLy8vSen+LvvwMHDiAqKgpubm7w8PBA//79cfnyZQBAYWEhPvroIzRv3hwODg7w8/PD66+/jry8vBL3qUtJj/OPHTsWAPD5558bHGPbtm0hkUiwd+9evWWefvppSCQSrF+/Xr2sLJ+dssjLy8Nnn32GiIgIeHh4QC6Xo169ehg0aBB27typVf7OnTuYMWMGGjdurL6edenSBatXr9Z5DRk3bhwkEglWrVqFpKQkDBo0CF5eXpDL5QgJCcEPP/xgkrqV1GVL3xhHxZcrlUrMnz9f/R5q3bo1AM1rwdWrVzF69GjUqlULNjY2WLx4sXpf2dnZmD9/PkJCQuDi4gJHR0e0bt0aH374oc73obGvi+qzf+PGDQBAvXr1ND6nhnQ/KX5MXfR9Nh4+fIh3330XrVq1goeHBxwcHBAQEIAePXrgq6++0rkvY64ThpwHoOhpsZEjR6Jhw4ZwcHCAh4cHGjdujHHjxuHEiROlxk9kbswXjc8Xy3Jty8jIwMsvv4yAgADY29ujQYMGmDt3LvLz87XKFr/unThxAv3794e3tzekUil++ukndbkzZ85g1KhR8PPzg52dHXx8fDBgwAAcPHhQZ73Lcs9R+e2339C1a1c4OzvD3d0dUVFROHDggEFjMebm5mL27Nnq3M/f3x9Tp07Vyu0AzfvXtWvXMGLECHh7e0Mul6NVq1b44osvdJ7L0ro1Phm7sXmkPl988QVsbGwwcuRIg7cBgM2bN2PcuHEICgqCm5sbHBwc0LRpU7zyyiu4d++ezm2Kx/jjjz8iPDwczs7O8Pb2xtixY3H79m0ARU8hz5w5U/2ZrF+/PhYsWKDzdStu79696N69O9zc3ODi4oJu3bph3759esufOHECzzzzDNzd3eHs7IyOHTti48aNJo8bYC4LMJdlLluNc1lBVco777wjAAh/f39x8+ZNo7bdvXu3cHFxEQBEkyZNxMCBA0VkZKSQy+UCgHjzzTe1tqlbt64AIJ5//nkBQISFhYkRI0aItm3biocPH4oBAwYIAGLlypU6j7lhwwYBQPTo0UNj+alTp4Svr68AIOrWrSv69esnoqOj1fUbOXKk1r4iIyMFADF58mQhkUhE69atxYgRI0Tnzp3F6dOnS4z95s2bwsfHRwAQ9erVE/379xdDhgwRYWFhwtHRUcTExGhto4rZzs5OdOrUSQwePFgEBQUJAMLNzU0cPXpUo3x8fLwAINq3by9CQkKEq6ur6NOnjxg8eLCYPHmyuHv3rpDJZMLJyUlkZWXprGevXr0EALFu3Tr1stmzZwsAYvbs2Vrl4+LiBAABQLRu3VoMHz5cxMTEiDp16ggA4vr16xrl33//fSGRSIRUKhXt27cXQ4YMEW3btlXHuW3bthJfR2PiFUKIlJQUAUB4enqKTp06iWHDhono6Gjh5uYmAIi2bduKnJwc9T7/+OMPERsbq44pNjZW4z9zxSKEEOHh4QKAOHHihM71qvff1KlThY2NjQgLCxNDhgwR9evXFwCEr6+vuHPnjhg0aJBwdnYWffr0Eb179xZOTk4CgHj22Wf17jM+Pl7nMVWfvyfPo0qtWrWERCIR9+/fNyjGTz75RAAQY8eO1bn+1q1bwsbGRri5uYnHjx8LIcr22SmL+/fvi9DQUAFAODo6iujoaDF8+HDRqVMn4eTkJCIjIzXKX7x4UdSuXVt9PRw6dKjo2bOnsLe3V19DCgsLNbZRvbemTJkinJycRLNmzcSwYcNE+/bt1e+57777rtx1U+1Ll+vXr6uve7qWBwQEiN69ewu5XC5iYmLE0KFDRf/+/YUQ/14LRowYIdzd3UVAQIAYOnSo6N27t/jyyy+FEEL89ddfokmTJur3ZK9evUTv3r1FjRo1BADRtWtXkZubW67XJTExUcTGxqrf24MGDdL4nN69e1fveX7ymN98843O9bo+G9nZ2aJp06bq2Pr27SuGDRsmOnfuLNzd3UWTJk209mPsdcKQ8/Drr78KW1tb9TVs6NChom/fvqJ169ZCKpWK9957r9T4icyN+aLx+aKh17ZvvvlGABD9+vUTzZo1Ez4+PmLw4MEiKipKfQ+aOHGi1v5V170JEyYIOzs70bhxYzF8+HARFRUltm/fLoQQYvPmzcLOzk4AEK1atRIjRowQHTt2FACEVCoVy5Yt09pvWe45qjgkEokAIDp06CBGjBihvo5NnTpVANC6v6lyv7CwMBEZGSnc3d1Fv379RK9evdTn5MlzKMS/968xY8YIDw8P4e/vL4YNGyZ69OghZDKZ3testDzoydiNySP1uXTpkgAgWrZsqXN9Sa+pjY2NcHFxER06dBBDhgwRTz/9tPD29hYARGBgoLhz547eGGfMmCFsbGxEt27dxKBBg9Q5TlBQkMjMzBRhYWGiRo0aYuDAgSIqKkr9us2dO1drn6rPwJQpU4RUKlW/l1T3dYlEItasWaO13Z49e9Tv4eDgYDF8+HD1++/ll182adwqzGWZyzKXrZ65LBsaq5jk5GT1B8LR0VEMGTJEfPLJJ+LPP/9UX0x1SUtLE+7u7kImk4nvv/9eY11iYqL6Jrd3716NdarlMplM/Prrr1r7/emnn9QfeF2eeeYZAUCsXbtWvezRo0ciMDBQABAff/yxKCgoUK9LTU0VISEhAoBYsWKFxr5UH9aSPtD6zJkzR50APykrK0scOnRIY9lnn32mbry7fPmyxrrPP/9cABD169cXSqVSvVyVfKk+sLouUP379xcAxKpVq7TW/f3338LW1la4urpqNL7pa2jctGmTACDc3d3Fnj17NNYVFhaKffv2iYcPH6qXbd++XQAQderUEcePH9cov23bNmFrayvc3NwMvtEbEm9mZqb4+eefNV4nIYR4+PChulFV14WspJubOWJ59OiRkMlkwtHRUeTn5+sso3r/SaVS8eOPP6qXKxQK0a1bNwFANG/eXDRr1kzcunVLvf7MmTNCJpMJiUSilSiXt6FR9cWteH1KomrsdnZ2FtnZ2VrrP/zwQwFAPPfcc+plxn52ykp1rejWrZtWQpqZman1Hm/Xrp36S0TxZCMpKUmdtD35haz4l48PPvhAY93ChQvVCWh561ae5EyVlOs656prgeoc5eXlaawvLCwUHTp0UH9hUSgU6nUPHjwQMTExAoCYOXOmSV6X0t6fJSlLcrZq1SoBQDzzzDNa1xSFQiEOHDigsaws1wlDzkPXrl0FALF+/XqtdWlpaeL8+fOlRE9kfswXy5YvFo9F37VN1dAIQAwYMEDj9Txy5IiwsbHRec8vfq2dO3euVgPCzZs31Y11X3zxhca6LVu2CBsbG2Fra6vVWFqWe85ff/0lHB0dhUQiET/88IPGuiVLlqj3qa+hUdXYmJ6erl535coV9Q/JT16Pi9+/hg0bpnF/On36tPD09BQAxNatWzW2M7ah0ZDXpDRfffWVACAmTZqkc31JDY0bNmzQyOGFEOLx48diwoQJAoD6h/jiVDE6Ojpq5FQPHz5UP+DQvHlzERkZKTIzM9Xrd+3aJQDozOmKfwYWL16ssW7NmjUCgHBychJpaWnq5Y8ePRK1atUSAMS8efO04pJKpSaNW4W5LHPZ4pjLVp9clg2NVdDvv/8uGjRooH4Dqf6zs7MTffr00XmxfPXVVwUAMWvWLJ373Lx5szphKk714dN3g8jLyxNeXl5CIpGIGzduaKy7c+eOsLW1FS4uLuLRo0fq5apGPH2/RB0/flwAEG3atNFYrvqwluVXp//+978G38Ty8/OFr6+vkEqlWo2MKn369NFKiIonX4cPH9a53ZYtWwQA0b17d611ixYtEkDRL93F6WtobNmypQAgvv3221JjEkKof8Xat2+fzvVTpkwRAMQnn3xi0P4Mibckql+M27Vrp7WutATR1LEcO3ZMAEVPD+ijev+NGjVKa53qCxQAsXv3bq31+hqYy9vQ+NZbb+l8b5Skb9++AoBYvXq11rpWrVoJAOKPP/5QLzPms1NWJ06cEEDRk68PHjwotfyBAwfU5Ysn3SqqL4ENGjTQWK5KCDp27Ki1TV5envDw8BAARHJycpnrJkT5k7Mnv9yrqK4FNWrU0PlU9I4dO9RfDJ/8AitE0ZdYOzs7UaNGDY31ZXldhKj45GzBggUCgFi0aJFBxyjLdcKQ86D64mfo+4HIUpgvlu0pJUMbGl1cXHQ+qdW7d2+d93zVda9Zs2YajaYqc+fOFQBEVFSUzuMWfyKyuLLcc1QNL3379tW5neqLvr6GRqlUqvOL6AsvvCAAiDlz5mgsV92/HB0ddf4w/f777+vMjy3R0KjKe/Tda0pqaNQnJydH2NraCi8vL611qhjffvttrXWLFy9Wv95JSUla61u3bi0AiP3792ssV30G2rdvr7M+PXv2FABEXFycetm3334rgKJGTV05xMCBA00atwpzWeayxTGX1VSVc1mO0VgFRUREICkpCTt37sTUqVMRHh4OBwcH5OXl4eeff0bnzp3x5Zdfamzzyy+/AIDOAcEBoEuXLgCAI0eO6FyvGnPvSTKZDCNGjIAQAmvWrNFY9/333yM/Px9DhgyBo6OjwXVp06YNnJ2dcfr0aSgUCoPrUpJ27doBAN58801s27YNOTk5esueOnUKf//9N9q0aYOGDRvqLFPS6+Xj44OOHTvq3K53796oUaMG9u/fj5SUFI11q1evBlA0C1tpbt26hTNnzsDR0REjRowotfy9e/eQkJAALy8vvePtlPYe0KekeFUSEhKwYMECvPDCC3j22Wcxbtw4vPvuuwCAS5cuGXU8c8SiGsuqRo0apZbt0aOH1rIGDRoAKPo8dOvWTe/6mzdvGlQfQ6nqq6q/IVTvL9X7TeXs2bM4ffo0GjRogM6dO6uXG/PZKatdu3YBAAYOHAh3d/dSy//+++8AgAEDBsDFxUVr/ejRoyGTyXD16lWtsb4AaIyBqiKTyVCvXj0AmufJ2LqZQmkzXEZFRcHZ2VlrueraOnjwYJ3j6tSqVQuNGjXC/fv31WOKFmfM62IJqvfiggULsG7dOmRkZOgta4rrhL7zoKrH6NGjcfjwYRQUFBgaAlGFYr6ouy6m0rZtW9SsWVNreZMmTQDov2b27dsXUqn2VzDVvU1fHjh+/HgAwIEDB8pUX13HGjZsmM71peWWderUQVBQkNby0mLv0aOHzskNR48eDQA4dOiQzvEtK5IxOaEuiYmJWLx4MaZMmYLx48dj3LhxeP7552FnZ4d79+7hwYMHOrcrKb+sW7eu+rXVtV7f661vjEnV6616HwD/vq9GjBihM4coaYx5oOxxM5dlLlscc9l/VfVc1tbke6QKYWtri6effhpPP/00AEChUODXX3/F66+/josXL+Kll15Cr169EBAQAADqyUtatGhR4n7v3r2rc3ndunX1bhMbG4tPP/0Ua9aswdtvv61errr4qwb6VVHVpU+fPiXWBQDu378PPz8/g+tSUh3379+P1atXo1+/frC1tUWrVq3QtWtXjB49WmNgVFX9jh8/XurA0bper5LqZ2dnhxEjRmDp0qVYu3Yt3nzzTQDA+fPncfLkSdSrV0/jxqjPX3/9BaBo4FqZTFZq+evXrwMoumDpSm6L0/ce0KekeLOzszF8+HDs2LFDb5nMzEyjjmeOWB4+fAgAOm/0T/L399daprpR+vr6wsbGRu/63Nxcg+pjKFdXVwD/1t8QzzzzDDw9PbFv3z6kpaWpP1/ffvstAO1E0pjPTlmp3s+6kmhdVAmXKml4kq2tLerUqaNOzp68hqiui09Snf/i58nYupWXt7c3HBwcSiyj7zOnunZNmTIFU6ZMKXEfd+/eRePGjTWWGfO6WEK3bt3w5ptvYsGCBRg1ahSkUimaNWuGyMhIDBs2TJ1sAeW/TpR0Ht5//30kJSVhx44d2LFjB5ydndG+fXtERUUhNjYWtWvXLkeURKbFfNF8ynrN1Fev0u5t9evX1yhXHqp96KtLaa9dWWPXNymNaoIDhUKB+/fvw8fHp8Tjm5MxOWFx+fn5mDx5MlauXFliuczMTHh4eGgtLym/1LWu+HpjX2/V8tTUVPUy1XuitG2eVN64mcsyly2OuWz1yWXZ0FhNyOVy9OvXD6GhoWjUqBFycnKwa9cuTJw4EQDUrdQjR440qGHqSSVdLNq2bYvmzZvj/PnzOHr0KDp06IDExEQcP34cgYGBGh+Y4nXp27evzhtOcfb29kbVRR+pVIpvv/0Wr7/+OrZv3474+HgcOnQIx48fx0cffYSZM2ciLi5Oo3516tTR+XRacR06dDC6fmPHjsXSpUuxZs0adUNj8STbkFnxjJk5D/g3Jk9Pz1IT9qZNmxq175LifeONN7Bjxw40b94cH3zwAdq1awdPT0/IZDLk5eXpPL+lMUcsql/3DGn0LOlCX9pNwFiFhYUlrlf9CmbMr5N2dnYYPnw4li1bhrVr1+L1119HQUEB1q1bB4lEovVFz5jPTlkZ+34uL2POk6nrVto5NeT6pq+M6rPRvXt3vYmWiq4nNUz9/i0Pfa/T/PnzMWnSJPz888/Yt28f/vzzTyxbtgzLli3D2LFj1V8yypyU9ScAAQAASURBVHudKOk81KpVC4cPH8aff/6JX375Bb///jv++OMP7Nu3D++88w42btyI3r17GxoqUYVivmg6Zb1mmrtexZV2z9F3jysttspwvygttrIyJicsbvHixVi5ciX8/PywaNEihIWFwdvbG3Z2dgCKGlNv3bqld5boiswvTam8cTOXLRvmssxli6uMuSwbGquZ2rVro2nTpjhx4oRGy3ZAQACuXLmCuLg49WP2pjR27Fi8/vrrWL16NTp06FBiw1lAQID6V/SnnnrK5HUpSVBQEIKCgvDaa68hPz8fmzZtUnfjHTlyJJo2baq+qNWpU0fvdPXlERoaimbNmiExMREJCQlo27YtvvvuO503Rn1Udbx+/TqUSmWpXwZU5R0dHc0Skz6bNm0CAKxfvx7BwcEa665cuVKmfZojFtUv5+np6SbZn6FUSVh2drbWuvz8fNy6davE7VX19fb2Nuq4sbGxWLZsGdasWYPXX38de/bswa1bt9ClSxe9v6wa8tkpqzp16gAwvBu96ldd1a+eT8rPz1f/evvkL8DmrhtQ1EVDqVQiOztbq1vIk0MmmJLqszFy5EhMmDDBbMcxhZLe+0DJr1NgYKD6l24hBHbv3o3hw4dj9erVGDlyJGJiYsx+zZNKpejSpYu6YSQzMxPvvfce3n//fUycONHiXXOISsN8sfLx8/NDUlISrl27hk6dOmmtV93znryvleWeU7t2bVy8eBF//fUXwsPDtdYnJyeXMYqS3bhxQ+fymzdvqn+ALt54UNK9wlz307LmhKqc94svvsAzzzyjse7Ro0f4+++/TVNBI+h7vVXnt/h7SfV3ads8qbxxM5dlLlscc9nqk8tWniZfMoi+X4NUCgoK1I/ZFn/MXjVegepmYGqjR4+GVCrFDz/8AIVCge+++w6AdjeYiqiLoWxtbTF8+HB06dIFQgicPXsWANC+fXt4enri2LFjZruQFh9bZO/evUhLS0OnTp3U3WJKU6tWLbRo0QI5OTn44YcfSi3v5+eH4OBgpKam4ujRo+WquzFUyYOuX6S+//57vdupGk51jdNjjliCgoJgZ2eHy5cvV+jYQKrH0i9evKi1Lj4+vtS6XLhwAUDROFXGaN++PZo2bYrz58/j+PHjerut6aPvs1NWqnGJtmzZUuJYJSqqG+JPP/2ErKwsrfXfffcdlEolGjRoUO7kzNi6ASWf199++61c9SlJRV9bVQlWWT4zJb1GSUlJ6uS6NBKJBD169MDgwYMBAGfOnAFQ8dc8V1dXzJ8/H3Z2drh165bRQ1AQmRrzxbIrz7WtPFT3tifHnVP55ptvAACRkZEay8tyz4mIiAAAvTnk+vXrDaix8X777Tfcv39fa/m6desAAOHh4bC1/fc5mLLeT0vKI0uj6karyrEMVVLOu379+lI/k+agL9dWvd7FnyJW/a2vrqrP6pPKGzdzWeayxTGXrT65LBsaq5j/+7//w/Tp05GYmKi1LisrCxMnTsSDBw/g7OysHo8HAF555RW4uLhgzpw5WLFihdaAn0IIJCQkYPfu3WWqV+3atREVFYX79+/j1VdfRUpKCjp16qTz1/BJkybB398fX375Jd5//32dYyVcuHABW7ZsKVNddFm9ejVOnjyptTw1NRWnT58G8O+vPTKZDP/3f/+HvLw89OvXD6dOndLaLicnB+vWrcPt27fLVB9Vor1+/Xr1mCaGTAJT3MyZMwEAL730EuLj47XW79+/X+NmouoSMGLECJ0DiasGh09KSjKqHiVR/TK4bNkyjeV79uzBRx99pHc71Q1V1/scMH0sjo6OCA0NRU5OjvriXhFUXfOXLVumMQj2lStXSh2XBACOHj2q/jXKWKpEbNmyZfjpp5/g4OCgc8B9Yz47APDjjz+iadOmRj19EhISgt69e+P+/fsYPHgw7t27p7E+KysLe/fuVf+7S5cuaNu2LdLT0/HSSy9BqVSq112+fFk99teMGTMMroOp6gb8e17nzZunkbj89ttvWLRoUbnrpM+AAQPQpk0b7Nq1C9OmTdPZ7Ss5ORlr1641yfFK+5yWRPUarVmzBlevXlUvv337NiZMmKCzu8mPP/6IP//8U+tLS0ZGBv78808Amu9Fc13zPvroI41xrVR2796NvLw8uLq6Vthg60T6MF8su/Jc28pj4sSJcHZ2xp49e/D1119rrNu2bRvWrl0LW1tbvPTSSxrrynLPmTBhAhwcHLB161Zs3rxZY93nn3+Ow4cPmyIkLY8ePcJLL72EvLw89bJz587hgw8+AACt3EcV24cffohHjx6plx8/flydB+tSnnOomnTB2MkRVTnv559/rnGfOnXqlHqopIp25MgRLF26VGPZ999/j507d8LR0VE9wRBQNPmGr68vzp49iwULFmhss2XLFr2fs/LGzVyWuWxxzGWrUS5rtvmsySxefvll9XTlgYGBok+fPmLkyJGie/fuwtXVVQAQ9vb2YtOmTVrb7t69W7i7uwsAwt/fX8TExIiRI0eKmJgY4ePjIwCI119/XWMbY6Z8/+6779R1AyC++uorvWVPnTol/P39BQBRs2ZN8dRTT4lRo0aJ3r17izp16ggAYtiwYRrb6Joi3lD9+vUTAERAQIB45plnxKhRo0R0dLSQy+UCgBg6dKjWNi+++KIAICQSiWjTpo0YNGiQGDp0qOjQoYOwt7cXAERiYqK6fHx8vAAgIiMjDapTdHS0+rVycHAQGRkZOsvNnj1bABCzZ8/WWjdz5kz1Ptq0aSNGjBghevbsqX4NnzxvH3zwgZBKpQKACAoKEv379xfDhw8XERERwtnZWQAQv/zyi0H1NyTeH374Qat+YWFhAoB444031OueNG3aNPV7Y9iwYWLChAliwoQJZotFtT8AYuHChTrXl/T+u379ugAg6tatq3NbfedQoVCI4OBgAUB4eXmJfv36ia5duwoHBwcxYsSIEj9/Fy5cEABERESEwTEWl5KSon79AIiRI0fqLGfsZ+ebb74p8bXQ5+7duyIkJEQAEI6OjiImJkYMHz5cdO7cWTg5OWm9zy5evChq166trtuwYcPE008/rf5sjhgxQhQWFmpsExsbKwCIb775Rmcd9J1jY+uWlJQknJycBADRsGFDMXjwYNGuXTshkUjU7/snX5/S3kNClHwtULlx44YICgoSAISbm5vo0qWLGDlypOjbt69o1KiRACA6dOhgktflk08+EQCEi4uLGDRokPpzeu/ePb31UyksLFRfA11cXETv3r1Fjx491HUODw/XOqbq/uft7S169uwpRo0aJXr16qW+93Xq1Enk5eVpHMfY64Qh58HNzU1IJBLRvHlzMWjQIDFixAjRsWNHIZFIBADx2WeflRo/kbkxXyxbvihE6dc21X0uNjZW5/b6rtWlXWuFEGLz5s3Czs5OnTeNHDlSfT2USCRi2bJlWtuU5Z4jhBDLly9XX7c6duwoRowYIdq0aSOkUqmYMmWKACCio6M1tikt99P32qhekzFjxggPDw/1fTsmJkYd7/jx47X2d/fuXVGrVi0BQPj5+YmBAweK8PBwYWtrK958881y5ZEladasmZBKpeLvv//WWqfvPnHw4EEhk8kEANGkSRMxbNgw0a1bN2FjY1NiTlfSZ6e011vfe0r1GXjxxReFRCIRrVu3FiNGjBAdOnRQv5dWrVqltb/ffvtNnUe1aNFCI29/6aWXTBq3EMxlmcvqxly2euSybGisYu7duyfWrVsnnn32WdG6dWvh4+MjbG1thYuLi2jVqpWYOnWquHLlit7t09LSxGuvvSZatGghnJychIODg6hXr56Ijo4WixcvFmlpaRrljUkcc3Jy1B8SuVwuHj58WGL59PR08c4774h27doJFxcXYW9vL+rUqSO6dOki5s+frxVHeRLHAwcOiJdeekm0a9dOeHt7Czs7O+Hv7y+eeuop8f3334v8/Hyd2+3bt08MGTJE+Pn5CTs7O+Hh4SGCgoJEbGys2LJli8aFwNiGxrVr16pvjMOHD9dbrrQLcnx8vBgwYIDw8fERMplMeHt7i/DwcLFgwQLx+PFjrfLHjx8XsbGxIjAwUNjb2wtXV1fRpEkTMWTIELF27VqRnZ1tUP0NjXfPnj0iIiJCuLu7C2dnZ9GhQwexevVqIYTQmyDm5OSI6dOni3r16qmTF13lTBWLEELcuXNH2NnZiRYtWuhcb46GRiGEuH37tnj22WfV78smTZqIhQsXioKCghI/f6oEe926dQbH+KSoqCj1a7tr1y6dZYz97JQ1ORNCiMePH4tFixaJ9u3bCxcXFyGXy0VgYKAYMmSIzkbj27dvi2nTpomGDRsKOzs74eLiIjp37ixWrVqllZgJUfYkpCx1O378uIiJiREuLi7C0dFRhIWFiW3btul9r5gqOROi6POzePFi0alTJ+Hu7i5kMpmoXbu26Nixo/i///s/cfr0aZO8LgUFBeKdd94RTZs2VSfFht4vhBAiOztbTJ06VX19DQwMFG+99ZZ4/PixzmOePHlSvPbaayIsLEzUqlVL2NnZCV9fX9GpUyfx5ZdfCoVCofM4xlwnDDkPa9asEWPHjhVBQUHC3d1dODg4iAYNGohhw4aJgwcPGhQ7kbkxXyx7Q2Np1zZzNjQKUdS4OmLECOHr6ytkMpn6h8g//vhD7zbG3nNUfvnlFxERESEcHR2Fq6ur6Natm9izZ49Ys2aNuqGjuPI2NM6ePVtcvnxZDBkyRHh5eQl7e3vRokULsXTpUlFQUKBzn1euXBGDBw8WHh4eQi6Xi9atW4uVK1cKIcqfR+qjanz46KOPtNaV9JoeP35c9OzZU9SsWVM4OjqKli1bikWLFpWY05mzoTE+Pl78+uuvIjIyUri4uKgblH777Te9sSckJKgbPpycnERoaKhYt26dyeMWgrmsEMxl9WEuq6kq5rISISwwYAQRUSUUGxuL1atXIyEhAe3atbN0dfTKz89H/fr1kZ+fj+TkZPX4IkRERETlNXHiRCxfvhwLFy7EK6+8Uu79zZkzB3PnzsXs2bMxZ86c8lfQzDIyMlCnTh3UqVOn3GP3kW7MZYmqN47RSET0j7i4OMjlcrzzzjuWrkqJvv32W6SkpGDevHlMzIiIiMhoycnJOgf7X716NVauXAk7OzuMGDHCAjWzPDc3N7z99ts4d+4cfvzxR0tXp1piLktUvbGhkYjoH3Xr1sX06dOxbds2JCQkWLo6OuXl5eGdd95BmzZtjJ5AiIiIiAgAtm/fjlq1aiE0NBSDBw9G37590ahRI8TGxkIIgU8++aTcs91WZS+//DLq16+PWbNm6ZzUgcqOuSxR9Wdr6QoQEVUm8+bNw7x58yxdDb3s7OyQnJxs6WoQERFRFdalSxeMGjUKBw8exMWLF6FQKODl5YUBAwZg6tSpZZoFuDqxt7fXmEmWTIe5LFH1xzEaiYiIiIiIiIiIqNzYdZqIiIiIiIiIiIjKjQ2NREREREREREREVG5saCQiIiIiIiIiIqJyY0MjERERERERERERlRtnnTaxmzdvYvv27ahfvz6cnJwsXR0iIiKqJh49eoRr167hmWeeQe3atS1dHaokmHsSERGRuZQl/2RDo4lt374dkydPtnQ1iIiIqJr68ssvMWnSJEtXgyoJ5p5ERERkbsbkn2xoNLH69esDKDoJLVq0MPn+lUolMjMz4erqCplMZvL9V0aMmTFXV4zZOmIGrDNuxmz6mM+ePYvJkyercw0iwPy5J8DPM2OuvhgzY66uGDNjNpWy5J9saDQxVZeVFi1aICwszOT7z8vLQ3p6Ojw9PWFnZ2fy/VdGjJkxV1eM2TpiBqwzbsZsvpjZPZaKM3fuCfDzzJirL8bMmKsrxsyYTc2Y/LNaTQaTnZ2N+fPno0WLFnBxcYGXlxfCw8OxatUqCCHU5caNGweJRKLzv02bNlkwAiIiIiIiIiIioqqp2jzRWFhYiKeffhqHDh1CbGwspkyZgpycHHz//fd49tlnkZiYiA8++EBjmzVr1mjtp3379hVVZSIiIiIiIiIiomqj2jQ0Hj16FH/++SemTp2KRYsWqZf/97//RdOmTfHll19qNTSOHj26oqtJRERERERERERULVWbrtOZmZkAoDXdtp2dHby8vHT2JxdCIDMzE4WFhRVSRyIiIiIiIiIiouqq2jzR2L59e7i7u2PBggUIDAxEhw4dkJOTg2+//RbHjx/HF198obWNm5sbsrKyYGdnhy5duuDdd99Fhw4dDD5mSkoKUlNTNZadPXsWQNHsP3l5eeULSgelUon8/HwolUqT77uyYszWgTFbB2uMGbDOuKtqzBmPldhy8ib2Jd1FVm4+XOxt8VTTmhjQpjbcHEqezc/cMVe115KIiIjI3DJylNh4PAW7z/+NB48U8HCSo0dwLQwO8Yebo3XMPl3ZVJuGRg8PD2zbtg3PPfcchg4dql7u4uKCzZs3o3///uplvr6+mDZtGtq2bQsnJyecPn0aixcvRkREBHbu3ImoqCiDjrlixQrMnTtX57rMzEykp6fr3bagoAA5OTnIy8vTmKimNEII5Ofn48GDB5BIJAZvV5VV1pglEglsbGxgb28PuVxu0roplUpkZ2dDCGG2aeorG8bMmKsza4y7Ksb88/l7+DD+L+Tma96XjyY/wEd7LuOVbnXQp7mX3u3NHbOq9wZRWQghkJGRgaysLOTm5hqVfxYWFkKpVCIjIwNSabXpEFWiyhqzRCKBs7MzatSoUWWurURE5rIhIQWztp6DIr9YL9W7j3E0+QEW7kpCXL9gDA0NsFwFDaRqLN2TeBtZiny4yG0RHeRbZRtLq01DIwA4OzsjODgYffv2RXh4ONLT0/HZZ59h5MiR2Lp1K6KjowEA77//vsZ2/fv3x8iRI9G6dWs8//zzuHz5skHHmzBhAmJiYjSWnT17FpMnT4arqys8PT11bieEQEpKCpRKJWxsbIxOXuzs7CpVg1tFqIwxFxYWorCwEI8fP4aNjQ18fHxMVkelUgmJRAIPDw+rSSIZM2Ouzqwx7qoW86YTaZi3+4be9bn5AvN234CTkxMGh/jpLGPumF1dXU2+T7IOQgjcvHlT3VgtlUqNyj8lEglkMlmly8XMqbLGrPrxPScnB/Xq1at09SOi6s/cjWKG7n9DQgpe23xG734U+YXq9cUbGytbo57OxlIAR66lV6nG0uKqTUPj2bNnER4ejkWLFuE///mPevmIESMQHByMiRMn4urVq7CxsdG5faNGjTB06FCsWrUKly5dQuPGjUs9ZkBAAAICdJ9wmUwGOzs7nevS09OhVCrh4uICPz8/oxK9wsJCFBQUlKmBsqqqrDELIaBQKHDr1i08evQICoUCbm5uJtu/ra1tie+j6ogxWwdrjBmwzrirSswZOUrEbU8yqGzcjiT0bqk/ETVnzFWhwZYqp4yMDGRmZsLe3h61atUyuidGZc3FzKmyxlxYWIi0tDRkZ2fjwYMHeh9sICLrZGw3YmMb3crSKGbMMQzdf0aOErO2njPoNZm17RximvvCzVFWYY16FdVYWlm7i1ebhsZFixZBoVBgyJAhGssdHR3Ru3dvLF26FMnJyWjQoIHefQQGBgIA7t27Z1BDY1llZWUBAHx8fCpV4kLGkUgkcHBwQK1atZCcnIzMzEyTNjQSEVHF2HQiVSvh1EehLMTmE6kY37memWtFZDqq3LNWrVpwcHCwcG2oPKRSKXx8fJCdnY2srCw2NBKRmrHdiI1tdCtLo5gxxzBm/1m5+Ubnbs72tmVq1AOqQGNpJesuXm0aGtPS0gAUjX34pPz8fI3/66PqMu3j42Pi2mlSda3ikwnVg1wuh1QqRW5urqWrQkREZbD7wt9Glr/NhkaqUnJzcyGVSiGXyy1dFTIBVZfu0r7bEJH1MLYR0NjyZWkU+/X83wYfI6a5r8H7f+vHs3AtZYK+Jy3eewmPcrXbinQp3qgHVJ/G0opUbR6nCwoKAgCsWrVKY/nDhw+xdetWeHh4oGHDhuourk86efIkNm7ciGbNmpX41KMpCCEglUo5pko1IZFIIJH8P3t3HhdVuf8B/DPDDAz74oZsiuKGuKGYkhaaSFbuSt2uaYlpt7KyxauVpKTlL9vTNrVrtruUWhqlpi0qSmIBIu4Li+KCMGwDM3B+fxAjyHbOMBszn/fr1b16zjNnnq8HZp75zvM8X5mkTdWJiMh6FGmkfVhXa1j9mVoXjj1ti0wmg1wuR1WVuA+oRGTbpCYBs66VSmpfWKqVvPrj86Tzkp7j86Tzoq+vqxKQX1Ihqm0NdZkOlVXiPq/XJPWAG4nDxvpWk9jbkJwl6T48/10a3t9zSlzn/7HtrxzJ981SbGZG41NPPYX169djwYIFSEtLw6233or8/HysXr0aFy9exKpVq+Dg4ICTJ09izJgxmDBhArp166avOv3JJ5/AwcEBH3/8sVn6y4GebeH9JCJqvdxV0oZDHiquSCAiy+LYk4hqSE0CPvHNEUntZ356CKcvl0jq03t7Tkp6jjd2Hpd0fVN775eTyCkoxfoDjRcKrG3R1nTsP31VUrL0msRk6V/ZhaLbWnqrH5tJNHbq1AmHDh1CQkICdu/eja+//hrOzs7o378/3njjDUyaNAkA4Ovri1GjRmHPnj344osvUFZWho4dO+Lee+/FwoUL0bNnTwtHQkREROYUHeqLpDP5EtqbdosVIiIiIrGkbgFz5EKBpPaHz0trD1QnuqQQOdlQr52bI64Ui0/UdfBwQp5a/FZn10u1WPvHOdHty3VV2PJXruj25mDJrX5sJtEIAF27dsWnn37aZBtfX1989tlnZuoRERERWbsp4QFYkZgp6ltolVKOyQMDzNArIiIiouZJ3QLGGslkgJSdyDq3cUWRRtwehyqlHIE+LpISjebQzs0JV4rF98lJIUe5yBmTgGW3+rGZPRqJiIiIDOHpokTC+DBRbRPGhcFT4gbkRERERKYidQsYlVJaGmhAkBcW3iVt5WcnHxeTth/Tp6OksduYsI6Srj//zh4Ibusq6TGODtL+XTu3cYFKIe4xKqUcfQI8JV3fklv9MNFoYwpLtVjz+xnc9/EB3P3u77jv4wNY+8dZi24Eau2OHz+OZ599FiNHjoSXlxdkMhkWL15s6W4REZEZxUYE4rXJfeHUyIBP6SDDa5P7WrSCH5G14vhTGo49iciYbuvWzqTtx/b1w32DgiQlxaSOl6YODJR0/ckDA/Rjt8Yep1LK9WO3KeEBkq7/71s6oYOHk+j+A4Cfl0pSe1MnSy251Q8TjTZkQ3IWbnllF5ZuP4akM/k4mqtG0pl8vPxDBm55ZRc2JGdZuotW6cCBA3jzzTeRlZWFgQMHWro7RERkIbERgfh69hD9352VDvo/39PHj0lGogZw/Ckdx55EZCwFpRXYnnZRdHuVUo5F94RKTupJXf0x7ZZOkp5j2tBOBq0uiY0IxMHnR2HRPaEYEuyN7u2cMSTYG/H3hOLgwlH6sZshq1eiQ31Fta9hbclSS271Y1N7NNqzmrLrjakpuw6AH5RuMm7cOOTn58PLywt//vknIiIiLN0lIiKykNwCjf7P/72zB97ZfRLXS7VIPi++WAyRveD40zAcexKRMVwpKscDaw8i81KR6MckjAtDoI8LEsaHNfn6Xbt97aQeAMRvTW9wb0SVUo6EcWH6dlKfQ+r1a3i6KBE3LBgPDPZHfn4+fHx84OjoWO/xUq8vdQ/vaUM7oZ27k0H/rjG9fbEpJRu7MvKg1mjhoVIiOrQDJodXJ3lr4jTkvlkCZzTagMJSLeK3potqG78t3ezLWIqKivDiiy/illtuQdu2beHk5ISQkBAsWLAApaWl+nZ79+6FTCbDunXr8N5776F79+5QqVTo2bMnVq1aVe+6UVFR6Ny5M86cOYPx48fD09MTHh4emDhxIs6cOSO6fz4+PvDy8jJGqERE1MplXlLr/9yroweGdm0DAMi+XoYL10obexiR3bHm8WdLx57du3fHypUr612XY08iMrfGtqY4dkmN2I8O6JOMwW1dsXBMT1Ez4wBImklXW+0ZhEO7tEFvPw8M7dKm3gxCQ59DyvUNIeX6hsyCNPTftSZZ+tXsIdj+xHB8NXsIZg4L1icZa/ffkOubG2c02oBNKdmisuxAdZn5zSnZZi1znpOTgzVr1mDy5Mm4//77oVAo8Ouvv+K1117DkSNH8NNPP9Vp/9577+HSpUuYM2cO3N3d8dVXX2HevHkoKCiot39NSUkJoqKicMstt+DVV1/FyZMn8f777yMpKQlHjhyBr6+06c5ERGTfas8K6OnrgaFd22JH2iUAwP7TVxHUJshSXSOyKtY8/jTG2PPJJ5/E1atXOfYkIovZkJzV4Oy7pDN1V1n06OCOz2YNRnt3Fe6LCMKmlGzsPHoR+cUa+LipMLp3xzoz42qInUl3s5qkWJyI13RDnkPK9Q0htf+AtFmWhv67ilX7+mLusyUw0Whl/r0mCTnXyxo9L9T8jwyQ/XPsUqGm0fYNeS0xE+sPnJP0GH9vZ3wxa0jzDRvQpUsXZGVlQam88QP/2GOPYdGiRVi6dCkOHTqEwYMH68+dOHECx44dQ0BA9Z4C//nPfzB8+HAsW7YMs2bN0h8HgKtXr+LJJ5/E22+/rT922223YdKkSVi8eDE+/PBDg/pMRET26fg/icaOnip4uihx6z8zGgFg3+lruG8wE41ke2xt/NnSsedjjz2GYcOG4dVXX8WsWbMQFHTj955jTyIyh+a2pqgR4O2Mr2cPgbdr9VJhscuIa5g6qWeu5zAla06Wir3P5sZEo5XJuV6GcyZemqXRVZn8OWqr/QOv0+lQVFSEyspKjBo1CkuXLsXBgwfrDPb+/e9/10kmOjo64oknnsD06dPx/fff4z//+U+d6y9YsKDO3ydOnIgePXpgy5YtHOwREZFoxeU6XMivfn/s6esOoHopUkdPFS4WanDg9FUIggCZTNbUZYhaHVsbfxpj7Pnkk09i2rRp+P777/HYY4/VuT7HnkRkSlK2prhaXA45xyUm19qTpebGRKOV8fd2bvJ8Y98oi126AgAqhRy+ntJKrzfXr+a8//77+PDDD3H06FFUVdXt6/Xr1+v8vVevXvUeX3Ps5v1vvLy8Glyi0qtXL2zZsgUlJSVwdXXFpUuX6px3dHSEj4+PQbEQEZFtOpF3Y9l0D18PAIBMJsPQrm3wbUoOrhZX4EReMXr8k4QkshW2OP5s6dgzNDQUAHD27Nk6xzn2JCJTs+atKYjEYKLRyjS3PKSqqgqVlZVwcHCAXF69AejaP87i5R8yRD/H/Dt7mvWF6M0338QzzzyD0aNH44knnoCfnx8cHR2Rk5ODBx98sN7gzxQ6duxY5++333479u7da/LnJSKi1uN4nf0ZbyQTb+3aFt+m5AAA9p26ykQj2RxbG39y7ElE1qqwVIuNh7Ow61geijQ6uKsUiA71xZRaS3B3Zlxq5ip17czIY6KRrAoTjTZAatn1yQMDmm1nTJ999hk6d+6MH3/8UT84BYDExMQG2x87dqzRY126dKlzvKCgAJcuXar3zfKxY8fQvn17uLq6AgB27txZ57y3t7f0QIiIyKZlXrxRcbpnxxvJxMiQG/s07j99lYN5Ilj3+NMYY8+MjOokanBw3d93jj2JyFBNFXdZkZiJhPHVRUXUZTpJ11VrtMbsJlGLNVwTm1oVQ8qum5ODgwNkMhkEQdAf0+l0WL58eYPtv/jiC2RnZ+v/XlFRgXfffRcODg6455576rW/+Trfffcdjh8/jgkTJuiPjRo1qs5/AwcObGFURERka2oqTivkMnRp66Y/3tHTGV3aVicPDp7Jh67S9LOhiKydNY8/jTH2fOeddzj2JCKjqSnu0tiXMxpdFeZvTsUjnx/GqcvFkq7tobJ8lWGi2jij0UYYUnbdXKZMmYKFCxdizJgxmDRpEtRqNb788ss6lQBr6969O2655RY88sgjcHd3x5dffok///wTL774IgID6/a/bdu2+Pbbb5Gbm4uoqCicPHkS77//Pjp06IDFixeL6l9hYSHee+89AEBubi4A4LfffsPSpUsBAOPGjUPfvn0NjJ6IiFoDQRD0icau7dzgqKj7XWxkSBucuVqConId0nIKMSCIs5OIrHX8aYyxZ3JyMp5//nmOPYmoxaQUd0lMl7ZsGgCiQztIfgyRKTHRaEMMKbtuDs899xwEQcDatWvx5JNPwtfXF/feey8eeugh/Ubbtc2dOxdqtRrvvfceLly4gKCgILzxxht46qmn6rV1dXXFL7/8gnnz5mHBggUQBAF33nkn3njjjXp74zTm+vXrWLRoUZ1je/bswZ49ewAAAQEBHOwREdm4PHU5Csuqlx7VXjZd49aubfF50gUAwP7T15hoJPqHNY4/jTH2fOutt+pVmwY49iQi6aQUdwEA+T9Vt6qEptsBltkajag5TDTaGGssu+7g4ICFCxdi4cKF9c7VXtJS2xNPPIEnnngCwI0NyBvTpUsXbN261eD+de7cudF+EBGRfci8dGN/xoaKvQzp0gYyGSAI1QVhHhsRYs7uEVk1axt/tnTsCTQ9/uTYk4ikkFrcJTzIG7GDAjF/c2qzbS2xNRpRc7hHIxEREdm9zFoVp3v5etQ77+3qiNCO1cf/PH8dGm3jX4ARERER1SjSSCvuUqatRGxEIF6b3BcqRcMpG5VSjtcm97XI1mhEzeGMRiIiIrJ7x2slGhua0QgAt4a0xdFcNSp0VUg5fx2RIW3N1T0iIiKyQoWlWmw8nIVdx/JQpNHBXaVAdKgvpvyzdYQgCKgUswa6lpriLta4NQWRGEw0EhERkd07drF66bS7SoGOnqoG2wzt2gYf/3YGALDv9FUmGomIiOzYhuSsBothJZ3Jx4rETDw0LBh/nsuvs2pCjNrFXaxtawoiMZhoJKsRFRUlab+avXv3mq4zRERkN7SVVTh9pRhA9bJpmUzWYLvBnX2gkMugqxKw//Q1c3aRiEyAY08iMtSG5Kwm91DU6Krwwd7Tkq/L4i5kC7hHIxEREdm1s1dLoK2sTjY0tmwaAFydFBgQ5AUASM0uRJFGa47uERERkRUpLNUifmu66PZ9Ajww+7YuotqyuAvZAiYaLYSV5mwL7ycRUetVs2waaDrRCACRXauXS1dWCTh4Jt+k/SIiagzHnkSWsyklu95y6aZM7O+P5+/qxeIuZDe4dNoCZDIZKisrIQhCo8uzqPUQBAGCIEAuZ96eiKg1ql0IplfH5hKNbfDO7pMAgP2nr2FUrX2UiKwVx562RRAEVFVVQankrCciS9iZcUli+8uYOawLi7uQ3WCi0QKUSiW0Wi20Wi0cHR0t3R1qIY1Gg6qqKri4uFi6K0REZIDam7R379B0onFAkDeclQ4o01Zi/+mrpu4akVE4OTmhuLgYGo0Gzs7Olu4OtZBWq4UgCFAo+FGOyJiaqyBd41pxhaTrqmtttcLiLmQP+O5kAe7u7igtLUVeXh78/f05E66VEgQBGo0GFy9eBAB4eHhYuEdERGSImhmNAd7OcFc1PZvAUSFHRLAPfjtxBZmXinC1uBxt3ZzM0U0ig7m7u6O4uBgXL15Ex44doVKpOLOxlaqqqkJeXh6A6vtKRMbRXAXphPFhCO/kjVV7TuHk5WJJ1/ZoZmxBZGuYaLQAb29vFBQUoLi4GCdOnIBcLhc92KtZpiuTyexmgGiNMdf0qaqq+o3Iw8ODiUYiolZIrdEip6AMANCzmf0Za0R2bYPfTlwBABw4fQ1j+/mZrH9ExuDp6YmSkhKo1WqcO3dOP/bk+LNx1hhzzdhTEAQ4OTnB29vb0l0isgliKkg3db450dxmhewMp9JZgEwmQ2BgILy9vaFQKCQNXgRB0C+XsBfWGLNMJoODgwPc3Nzg5+cHPz8/qxmEEhGReLX3Z2yuEEyNW/8pCAOAy6epVZDJZPrxipubGxwcHDj+bIY1xiyTyaBQKODt7Y3AwECOPYmMQGoFaQDw81RBIRf3+6dSyjF5YIAhXSNqtTij0UKUSiV8fX0lP66iogL5+fnw8fGxm/0d7TFmIiIyj9r7M/b0FTczPdTPA57OShSWabHv1DVTdY1akfz8fLzyyivYsmULsrOz4e7ujrCwMCQkJGD48OH6dgcPHsQLL7yAgwcPQiaTITIyEsuXL0f//v1N3keZTAZPT094enpKfqw9jsXsMWYieyS1gvS4fn54I7YfvkvJETXLMWFcGDyduXSa7AsTjURERGS3Mi+q9X8Wu3TaQS7DkC4++OloHi7klyIrvxSBPiwIZq/Onz+PqKgoFBcXIy4uDt27d0dhYSFSU1ORk5Ojb5eUlISoqCj4+/sjISEBALBy5UoMHz4c+/fvR58+fSwVAhGR3ZJaQfpKUTmUDnLERgQCQIP7OgLVMxkTxoXp2xHZEyYaiYiIyG7VLJ12dJCjc1tX0Y+7NaQtfjpaXZDhwOlrTDTasWnTpkGn0yE1NRUdO3ZstN0TTzwBR0dH/Pbbb/D39wcAxMbGolevXnjmmWfw888/m6vLRET0jyKNTlL72hWkYyMCEdPbF5tSsrErIw9qjRYeKiWiQztg8k2VqonsCRONREREZJcEQdAnGkPau0HpIH7r6sha+zTuO32VMxbs1G+//YY//vgD7777Ljp27AitVgutVgsXl7qJ51OnTiE5ORkzZ87UJxkBwN/fH1OnTsX//vc/XLp0yaBtdYiIyHDuKmkpkZsrSHu6KBE3LBhxw4KN2S2iVo2JRiIiIrJLOQVlKCqvnskgdtl0ja7tXNHe3QmXi8qx//Q1qyoYQeazY8cOAEBQUBDGjh2LH3/8EZWVlejWrRvi4+Mxbdo0AEBycjIAYOjQofWuMWTIEHzyySc4fPgw7r777iafLysrC9nZ2XWOpaWlAQC0Wi0qKipaHFNDtFotdDodtFpt841tBGO2D4zZPjQV88jubZF0Jl/0tUb2aGuy11pj4n22D+aI2ZBrM9FIREREdql2xemeHaUlGmUyGW4NaYvvjuTgSlE5Tl0uRidvJ2N3kazc8ePHAQAPP/wwunXrhk8//RQVFRV444038MADD0Cr1eKhhx5Cbm4uANSZzVij5ljt/Rwbs3btWixZsqTBc2q1Gvn54j8sS6HValFcXAxBEKBU2sdSQMbMmG0VY64bc1RnZ7zhIEN5ZfNfGDop5IjqpDLZa60x8T4zZmNRq9XNN7oJE41ERERkl2pXnO4hsuJ0bZFd2+C7I9XJoX2nrqJTRP0kEtm2oqLqnyF3d3fs2bNHX514woQJ6NKlC55//nnMmDEDpaWlAAAnp/rJaJVKBQD6Nk2Ji4tDTExMnWNpaWmYM2cOPDw84OPj06J4GqPVaiGTyeDt7W1XH94Ys+1jzIzZB8A9fTti85HcZq/z0j090cmvvYl6aVy8z4zZWDw8pI+RmWgkIiIiu1Q70Sh16TQARIbc2Kdx/+lruJ+JRrvj7OwMAPjXv/6lTzICgLe3N8aNG4f169fj+PHj+j0by8vL611Do9EAQL19HRsSGBiIwMCG9wNVKpV1+mBsCoXC5M9hbRizfWDM9qGxmC8VavDzsctNPra1VpDmfbYPpo7ZkAQmE41ERERkl45fql4K4u2iRHt36cue/b2c0bmNC85dK0XSmWuorOI+jfYmICAAABos4lJTgfr69evw8/MD0PDy6JpjDS2rJiIi0xEEAQu/TdVXnp42JAjBbd1YQZqohZhoJCIiIrtTrqvE6SslAIAevu6QyWQGXScypC3OXbsAtUaHoxfVCHA2Zi/J2g0ePBgffvhhvQItAPTH2rdvj/btq5faHThwALNmzarTLikpCTKZDAMHDjR9h4mISG/T4WzsOX4FABDc1hUv3BUKZ0cHVpAmaiG5pTtAREREZG6nL5foZyD2NGB/xhqRXdvo/3zgtPVvDk/GNWHCBLi7u+Pzzz9HcXGx/vjFixexZcsWdO/eHSEhIQgJCcGgQYOwceNGfWEYAMjNzcXGjRsxcuTIBmdFEhGRaVwq1CDhhwwAgEwGrJjSF86ODhbuFZFt4IxGIiIisjvH825U0DNkf8YaQ7vcSDSu/uMcvv9bCW9XFUaHdcQULrWyed7e3nj99dcxZ84cDBkyBDNnzkRFRQU++OADVFRU4L333tO3feeddzBixAgMHz4cc+fOBQC89957qKqqwhtvvGGpEIiI7M7NS6bjbg3GoM6mKaZFZI+YaCQiIiK7k3mxdsVpwxONu49dhgyAAECt0UGt0QFXynDw3HWsSMxEwvjWt3k8STN79my0bdsWr732GhYtWgS5XI6hQ4fiyy+/xK233qpvFxkZib179+LFF1/Eiy++CJlMhsjISGzcuBH9+vWzYARERPal9pLpLm1d8WxMDwv3iMi2MNFIREREdqem4rRMBnTvYFiicUNyFuZvTm30vEZXpT/PZKNtmzRpEiZNmtRsu6FDh2L37t1m6BERETXk5iXTr03pC5WSS6aJjImJRiIiIrI7mf9UnA7ycYGrk/ThUGGpFvFb00W1jd+WjpjevlxGTUREZEaFpVpsPJyFnUcv4XqJBl6uKlwrqeCSaSITY6KRiIiI7EpBaQXy1OUAgB4GzmbclJINja5KVFuNtgqbU7Ixk1UsiYiIzGJDchbit6bXfa++Uqb/Y1s3Ry6ZJjIRVp0mIiIiu1KzbBoAenY0rOL0zoxLEtvnGfQ8REREJE3N1iZNfSF4tbgC2/7KNWOviOwHE41ERERkVzIvtrzidM2yK7HUGq1Bz0NERETiSd3apLCU789Exsal00RERGRXjue1vOK0u0raEMpDxf0ZiYiIWqJmz8Vdx/JQpNHBXaVAdKgvpoQH6PdB5tYmRJbHRCMRERHZlWMXqxONTgo5OrdxNega0aG+SDqTL6F9B4Oeh4iIiBrZcxFA0pl8rEjMRML4MMRGBBq0tQkTjUTGxaXTREREZDeqqgSc+GdGY/cO7nCQywy6zpTwAKgU4oZRKqUckwcGGPQ8RERE9q65PRc1uirM35yKZdszcCKvWNK1ubUJkfEx0UhERER2I/t6GUorKgEYvj8jAHi6KJEwPkxU24RxYfB05tJpIiIiqaTsubj697PIL6mQdH1ubUJkfEw0EhERkd04dulGIRhD92esERsRiNcm9210ZqNKKcdrk/siNiKwRc9DRERkr6TsuWgIbm1CZHzco5GIiIjsxvFLNwrB9PT1aPH1YiMCEdPbF5tSsrHz6EXkF2vg46bC6N4dMbnW5vREREQkndQ9F3t0cMe5ayUoF5Gc5NYmRKbBRCMRERHZjcxaMxp7dmzZjMYani5KxA0LxgOD/ZGfnw8fHx84Ojoa5dpERET2rEijk9Re4SDDy+PDMH9zarNtubUJkWlw6TQRERHZjcx/ZjS2dXNEWzcnC/eGiIiImuKukjY3ykOl5NYmRBZmc4nG4uJivPLKK+jTpw/c3d3Rtm1bREZGYt26dRAEoU7bgwcPYtSoUXB3d4eHhwfuvPNO/PXXX5bpOBEREZmURluJc1dLALR8f0YiIiIyvZE920tqX7PnYmxEIA4+PwqL7gnFkGBvdG/njCHB3oi/JxQHF45ikpHIhGxq6XRVVRXGjBmD/fv3Y8aMGZg7dy5KS0vx1Vdf4aGHHsKxY8fwf//3fwCApKQkREVFwd/fHwkJCQCAlStXYvjw4di/fz/69OljyVCIiIjIyE7mFaPqn+8cjbE/IxEREZmOtrIKB8/ki25/856L3NqEyDJsKtF48OBB/PHHH3jqqafw1ltv6Y8/+uij6NmzJz766CN9ovGJJ56Ao6MjfvvtN/j7+wMAYmNj0atXLzzzzDP4+eefLRIDERERmUamEStOExERkeloK6sw98sj2J15WfRjuOcikXWwqaXTanX1Bwg/P786xx0dHdG2bVu4uroCAE6dOoXk5GRMnTpVn2QEAH9/f0ydOhW7du3CpUvSqlsRERGRdatdcboXZzQSERFZpZokY+LR6s/k7ioF5o4I4Z6LRK2ETc1oHDx4MLy8vPDaa6+hc+fOuOWWW1BaWopPP/0Uhw8fxocffggASE5OBgAMHTq03jWGDBmCTz75BIcPH8bdd9/d5PNlZWUhOzu7zrG0tDQAgFarRUVFhTHCqkOr1UKn00Gr1Rr92taKMdsHxmwf7DFmwD7jtsaYM3ILAQByGdDJ29Ho79Omjtma/i2JiIhaqrBUi42Hs7DrWB6KNDq4qxQY2bM9Dp7J189kdFcp8HncLegX6IVZw7tgU0o2dmXkQa3RwkOlRHRoB0wOD4CnC2cyElkLm0o0ent7Y9u2bZg1axZiY2P1x93d3bF582ZMmDABAJCbmwsAdWYz1qg5lpOT0+zzrV27FkuWLGnwnFqtRn6++P0kxNJqtSguLoYgCFAq7ePFlDEzZlvFmO0jZsA+47bGmGuWTgd4OaG0qBClRr6+qWOuWblBRETU2m1IzkL81nRodFV1jifV2pOxdpIRuLHnYtywYHN2lYgksqlEIwC4ubkhLCwM48aNQ2RkJPLz87Fq1Srcf//92Lp1K6Kjo1FaWv3RwsnJqd7jVSoVAOjbNCUuLg4xMTF1jqWlpWHOnDnw8PCAj4+PESKqS6vVQiaTwdvb22o+uJkaY2bMtoox20fMgH3GbW0xXyuuQH6pDgAQ6ufZKt+jPTy43JuIiFq/DclZmL85tdl2Dw7trE8yElHrYVOJxrS0NERGRuKtt97CI488oj/+r3/9C2FhYXj44Ydx+vRpuLi4AADKy8vrXUOj0QCAvk1TAgMDERjY8D4QSqXSZBWtFAqFSa9vjRizfWDM9sEeYwbsM25riLlmWdbmlBtbnZRpBZTpZCZZZmXKmK0hYUtERNQShaVaxG9NF9V29R9nMGt4Fy6LJmplbKoYzFtvvQWNRoOpU6fWOe7i4oK7774b58+fx7lz5/TFYhpaHl1zrKFl1URERNR6bEjOwi2v7MLS7cdw7OKNQjC/nriCW17ZhQ3JWRbsHRERkf3ZlJJdb7l0YzTaqjpfFBJR62BTicaaJGFlZWW9czqdTv//ERERAIADBw7Ua5eUlASZTIaBAweasKdERERkSjXLshr7MKPRVWH+5lQmG4mIiMxoZ8Ylie3zTNQTIjIVm0o0hoaGAgDWrVtX53hBQQG2bt0Kb29vhISEICQkBIMGDcLGjRv1hWGA6iIxGzduxMiRI+Hr62vOrhMREZGRSFmWFb8tHYWlrOZMRERkDkUanaT2ag3fo4laG5vao/Gpp57C+vXrsWDBAqSlpeHWW29Ffn4+Vq9ejYsXL2LVqlVwcHAAALzzzjsYMWIEhg8fjrlz5wIA3nvvPVRVVeGNN96wZBhERETUAoYsy5rJCpZEREQmJwjS2nuouD8jUWtjU4nGTp064dChQ0hISMDu3bvx9ddfw9nZGf3798cbb7yBSZMm6dtGRkZi7969ePHFF/Hiiy9CJpMhMjISGzduRL9+/SwYBREREbWEIcuymGgkIiIyXE3xtV3H8lCk0cFdpUB0qC+mhAfA00UJtUaL5T9mIuOiWtJ1o0M7mKjHRGQqNpVoBICuXbvi008/FdV26NCh2L17t4l7RERERObEZVlUQ6vVYs+ePdi7dy+OHj2Ky5cvQyaToV27dggLC8Ptt9+OESNGsKI3EVELbEjOQvzW9HqrCZLO5GNFYibujQhC4tGLyFOXS7quSinH5IEBxuwqEZmBzSUaiYiIyL65q6QNb7gsy/bk5eXhzTffxLp163D16lUIggCFQgEfHx8IgoA///wT33//PZYvX462bdvioYcewrx589ChA2fOEBFJUVN8rTEaXRU+PXBO//c2ro4Y3dsXXx260Oy1E8aFwdOZ79FErY1NFYMhIiIiig6VVtCNy7Jsy8svv4xu3brhgw8+wJgxY/Dll1/i3LlzqKiowKVLl5CXl4eKigqcPXsWX375JWJiYrBq1Sp069YNS5cutXT3iYhaDSnF1wDgnj4dsfPp2/HqpD54bXJfqBQNpyNUSjlem9wXsRGBxuoqEZkRZzQSERGRTZkSHoAViZmiCsJwWZbt+fDDD7Fs2TLExcXBxcWl0XadOnVCp06dcO+996K0tBSrV6/G//3f/+HFF180Y2+JiKxTc3suAtKKrwFAeCdv+Lg6AgBiIwIR09sXm1KysSsjD2qNFh4qJaJDO2ByrecgotaHiUYiIiKyKZ4uSiwe1xsLvk1rti2XZdme06dPQ6VSSXqMi4sLnnzyScyZM8dEvSIiaj2a23MxYXwYYiMCW1x8zdNFibhhwYhjQTYim8JEIxEREdkc92b2XVQp5UgYF8ZlWTZIapLRWI8lIrIFYvZcnL85FdqqKuRcL5N0bRZfI7IPTDQSERGRTamsEvDWrhP6v8cNC0ZGrprLskhPp9Nh69atyM/Px9ixY+HrK21fTyIiWyRlz8UXvhO/N2MNFl8jsg9MNBIREZHFiNkDSqrv/87FqcvFAKoLvSy6J9SYXaZWZv78+dizZw+Sk5MBAIIgYNSoUfj9998hCAKef/55JCUloWvXrhbuKRGR6dS83+48egnXSzTwdlVhdFjHFu25KBWLrxHZByYaiYiIyCLE7gElha6yCu/sPqn/+7xR3Y3SV2q9EhMTMWrUKP3fv//+e/z222+YP38++vfvj7lz52L58uVYvXq1BXtJRGQ6Db7fXinDwXPXW7TnYnt3JxSUalFRyeJrRHQDE41ERERkdmL3gAIgKdn43ZEcnL1aAgC4q48vQv08WtZRavWysrLQrVs3/d+///57BAcHY/ny5QCAo0eP4osvvrBU94iITEr0nouVVcgt0Ei6djt3Jzw7ukeT16/B4mtE9kNu6Q4QERGRfZGyB1T8tnQUlorbPF5bWYV3f6mezSiTAU9xNiMBqKiogEJx47v1PXv21Jnh2KVLF1y8eNHg68tksgb/c3Nzq9f2+PHjmDBhAry9veHq6orhw4fjl19+Mfi5iYiaImnPxS3puJBfKun6HiolYiMC8drkvlApGk4tqJRyvDa5L4uvEdkRzmgkIiIis5KyB5RGW4XNKdmYOSy4+esezkZWfnUFzLF9/dC9g3uL+km2ITAwEAcOHMDDDz+Mo0eP4syZM0hISNCfv3z5coNJQSmGDx+O2bNn1zmmVNaduXP69GlERkZCoVBg/vz58PT0xOrVqxETE4Mff/yxTvKTiMgYzLXnYmxEIGJ6+2JTSjZ2ZeSx+BqRnWOikYiIiMxK6h5QOzPymk00lusqsfKXUwAAuQx4clS3JtuT/bjvvvvw8ssv4/Llyzh69Cg8PDxw11136c8fOXKkxYVgunTpgmnTpjXZZuHChSgoKMDhw4fRv39/AMD06dPRu3dvPPbYY8jMzIRMJmtRP4iIapP6fuvr4YT8kgpUVArNtr15z0VPFyXihgUjTsQXg0Rk27h0moiIiMyqSKOT1F6taX7p9IbkLOQUVM9mnDDAH13btWyGGtmOhQsX4sEHH8SBAwcgk8mwfv16eHl5AQAKCwuxbds23HHHHS1+noqKChQXFzd4rqSkBNu2bUNUVJQ+yQgAbm5umDVrFk6cOKGvik1EZCxS32/buDlh6YQ+otpyz0UiagwTjURERGRW7ippCyo8VE1/kNFoK7FyT/VsRge5DE/ewdmMdIOTkxPWrl2La9eu4cyZMxg3bpz+nLu7Oy5evIjFixe36Dk2bdoEFxcXuLu7o3379pg7dy4KCwv151NTU1FeXo6hQ4fWe+yQIUMAgIlGIjI6x0b2TWwM91wkImPg0mkiIiIyq+hQXySdyZfQvkOT5788eAF56nIAwJTwAHRq49qi/lHrd+utt2LSpEkYP348QkJCGm0nl8vh6enZoucaPHgwpk6dipCQEKjVauzYsQMrV67Er7/+iv3798PNzQ25ubkAAH9//3qPrzmWk5PT7HNlZWUhOzu7zrG0tDQAgFarRUVFRYtiaYxWq4VOp4NWK64wky1gzPahNcdcWKbFt0dy8UvmFRSV6+DupMAdPdth4gA/uDkp8FnSBaTnFDZ/oVpG9miLiooKTOjXASO6++C7I7n45fgVqDU6eKgUuKNne0zo3xGezkqTvd6YQmu+z4ZizPbBHDEbcm0mGomIiMispoQHYEVipqgN6mUAwoO8Gz1fVlGJ9/eeBgAoHWR4fGTjSSWyH97e3njxxRcxf/58hIaGYuLEiZgwYQLCw8ON/lwHDx6s8/fp06ejb9++eOGFF/DOO+/ghRdeQGlpdSVXJyeneo9XqVQAoG/TlLVr12LJkiUNnlOr1cjPF5/Al0Kr1aK4uBiCINQrcmOrGDNjtmbfH72K1/dcQLmu7l6KB89dx4qdJ9HGRYlLRdISgU4KOaI6qeq8jozr6Y5xPesWVqssK8I/dddajdZ6n1uCMTNmY1Gr1ZIfw0QjERERmZWnixKL7gnFC1vSm20rAJjxv0P4+IGBuKVLm3rnP0s6h6vF1bMZYwcFItDHxdjdpVbohx9+QHFxMXbs2IEtW7bg3XffxbJlyxAQEKBPOt52222Qy02zi9Bzzz2HJUuWYPv27XjhhRfg4lL9c1leXl6vrUajAQB9m6bExcUhJiamzrG0tDTMmTMHHh4e8PHxMULv69NqtZDJZPD29rarD2+M2fa1xpg3peRg2c7zjZ7XVgr6JKPSQYbhIW3wy/GrzV73pXt6opNfe6P105q0xvvcUoyZMRuLh4eH5Mcw0UhERERmVyk0XdFSpZDDz8sZZ66WoLBMiwfWHsKKqX0R1b09Nh7Owq5jeSgs0+JkXnXxDaWcsxmpLjc3N8TGxiI2NhZarRa7du3Cli1b8M033+Ddd9+Fj48Pxo4di4kTJ2L06NH6mYXGoFQq4efnh6tXqz/c+/n5AWh4eXTNsYaWVd8sMDAQgYEN74umVCrh6OhoaJebpVAoTP4c1oYx24fWFHNhqRYJP2SKaiuXARvmDMGAIB9sSM5C/Nb0BlcSqJRyJIwLs/k9F1vTfTYWxmwfTB2zIQlMsyUaL1++jC1btmDv3r04evQoLl++DJlMhnbt2iEsLAxRUVEYP3482re3zW9RiIiIqJq2sgof/XoGQPUHocdGhODPc9eh1mjhoVIiOrQDJocHQOUox4LNafjuSA4qKqvw5Nd/QSGXQVdVP0lZBeD3E1dt/oMSGUapVGLMmDEYM2YMPvzwQ+zfvx/fffcdtmzZgk8//RQuLi6IiYnBc889py/O0hIajQbZ2dn6a/Xp0wdOTk44cOBAvbZJSUkAgEGDBrX4eYnItm1KyRa17QgAVAnAkQuFGBDkg9iIQMT09sWmlGzsPHoR+cUa+LipMLp3R0wOD4Cni33M/iIi8zB5ojE1NRXLli3D1q1bUVFRAScnJwQEBKBTp04QBAH5+fnYvHkzvvrqK8ydOxcTJkzACy+8gD59+pi6a0RERGQB3x3JQU5B9QZPEwb445nRPRpt+2ZsPwR6O+PdX6qrSjeUZASAyioB8zenAgCTjdQkmUyGW2+9Fbfeeitef/11pKamYsuWLdiyZQt27twpKdF47do1tGlTf0n/okWLoNPpMHbsWADVsyvHjh2Lb7/9Fn///Tf69esHACguLsaaNWvQrVs3DB482DgBEpHN2plxSWL7PMwcFgygetuSuGHBeGCwP/Lz8+Hj42NXs76IyHxMmmicOXMm1q9fj86dO2PBggUYM2YMwsPD6029rKiowJEjR7B9+3Z88cUXCA8Px4wZM7BmzRpTdo+IiIjMrLJKwAf/FG+RyYBHo5pe7iyTyRA3rAve33u60SRjbfHb0hHT25ezM0i0vn37om/fvoiPj5dcWXHp0qVISkrCiBEjEBQUpN8Xcs+ePbjlllswd+5cfdtXX30Vu3fvxujRozFv3jx4eHhg9erVyMnJwfbt2yGTyYwdGhHZmCKNTlJ7tcZ+qu8SkfUwaaLx77//xnfffaf/Nrcxjo6OuOWWW3DLLbcgISEBW7dubbSiHhEREbVe29Mu4uzVEgDAmDBfhLR3a/Yxm1KyRSUZAUCjrcLmlGz9DA6i5mRlZeHs2bO47bbbJO9DFBUVhYyMDHz66ae4du0aHBwc0K1bNyxbtgxPP/10nX0fQ0JCsG/fPixYsADLly9HRUUFwsPDkZiYiFGjRhk7LCJqZQpLtfo9iIs0OrirFIgO9cWUf5Y2qzVaXCuWVknaQ8Uv3YjI/EyaaDx8+LBBjxs/fjzGjx9v5N4QERGRJVVVCVj1zxJooHpvRjFaslSMqDnr169HfHw8KisrJT9W6pi1V69e2Lp1q+TnISLb1lixlqQz+ViRmIlJ4QHYdSwPl4vqV65vSnRoB2N2k4hIFFadJiIiIrPYdSwPx/OKAAAje7ZHbz9PUY/jUjEiIrJVG5Kz9HsMN0Sjq8KXhy5Ivq5KKcfkgQEt6RoRkUHMmmisrKxEeXk5XFxc9McKCgqwdu1a5Ofn47777mMRGCIiIhskCAJW7ZE+mxEA3FXShitcKkbr168X3fbIkSMm7AkRUeMKS7WI35ouuv3E/v7oE+iJhO8zmm2bMC4Mns58PyQi8zNronHOnDlISkpCenr1i6lWq8WwYcOQkVH9Qvnmm2/iwIED6N+/vzm7RURERCb2x6mr+Du7EAAQ2bUNBnbyFv3Y6FBfJJ3Jl9CeS8Xs3YMPPgiZTAZBELe3JwuxEJElbErJrrdcuil9Ajwx89ZguDkqGlxqDVTPZEwYF4bYiEBjdpWISDSzJhr/+OMPTJo0Sf/3TZs2ISMjA6tWrcKAAQNw3333Yfny5fj666/N2S0iIiIysZW19mZ8XMJsRgCYEh6AFYmZoj6McakYAYCrqyv69++Pp556qtm2mzdvxjfffGP6ThER3cTQPYhjIwIR09sXm1KysSsjD2qNFh4qJaJDO2DyP8VjiIgsxayJxosXLyI4+Mbm7Nu3b0fv3r3xn//8BwAwe/ZsfPTRR+bsEhEREZlY8rl8HDxbPSNxQJAXhnZtI+nxni5KJIwPa3IPqxpcKkYA0K9fPxQUFGDy5MnNts3MzDRDj4iI6mvJHsSeLkrEDQtGHIufEZGVkZvzyQRBqFPRb+/evRgxYoT+7x07dsTly5fN2SUiIiIysZtnMxqyTDU2IhCvTe4LlaLhoYtKKcdrk/tyqRgBAMLDw5GZmYmysjJR7cUusSYiMibuQUxEtsisMxqDg4Px008/4ZFHHsG+fftw8eLFOonG3NxceHqKq0BJRERE1i89V41fT1wBAPTq6IGRPdsbfC0uFSOxHnjgAbRp0wbFxcVwdnZutu2wYcPM1DMiohu4BzER2SKzJhofeughPP300wgLC0NOTg7at2+PmJgY/fmDBw+iZ8+e5uwSERERmdAHv57V/9nQ2Yy1cakYiREREYGIiAhRbYOCghAUFGTiHhER1TclPADLfzwGbWXzs6q5BzERtRZmTTQ++eSTKCoqwpYtWzBgwAC88sorcHFxAQBcu3YNSUlJePbZZ83ZJSIiIjKiwlItNh7Ows6jl5CnLsO5fA0AoFMbF9wZ5mvh3hEREVkPja4SCgc5tLW2F2sM9yAmotbCrIlGmUyGRYsWYdGiRfXOtWnThvszEhERtWIbkrMQvzW9werQuQVl2Hw4m3soEhERAaiqEvDsxr9RVlGdZHSQyVDZwH6xKqUcCePC+P5JRK2GyYvBBAYGYu7cudi9e3edQjBERERkOzYkZ2H+5tQGk4wAoK0UMH9zKjYkZ5m5Z2Rvhg8fjt9++03y43755Rfu1UhEZrNu/zn8fvIqAKBLO1fsWzASi+4JxdAubdDbzwNDu7RB/D2hOLhwFJOMRNSqmHxG4/jx47FlyxasWrUK3t7euOuuuzBp0iTExMTol00TERFR61VYqkX81nRRbeO3pSOmty8Lt5DJ+Pn5ISoqCgMGDMCMGTMwZswYdOvWrcG2GRkZ2LFjBz777DOkp6fj3nvvNXNvicgeHb9UhOWJmQAAhVyGd+4dAF9PFfcgJiKbYPIZjStXrkRWVhaSkpIwe/Zs/Pnnn5g8eTLatWuH8ePHY926dbh27Zqpu0FEREQmsiklu9GZjDfTaKuwOSXbxD0ie/bNN9/g999/R9u2bTFv3jz07NkTbdq0waBBgzB69GhER0dj4MCB8PLyQp8+fbBgwQIEBARg3759+PLLLy3dfSKyceW6Sjz59RFU/PO+OS+6O/oEeFq4V0RExmO2PRoHDx6MwYMH49VXX0VmZia+++47bNmyBXFxcZDL5Rg2bBgmTpyICRMmsPIfERFRK7Iz45LE9nmYyRkbZEK33norfvrpJ5w+fRobN27Eb7/9hoyMDBw7dgwymQzt2rXD8OHDERUVhcmTJ6Nz586W7jIR2YkViceReakIADC4sw8eub2rhXtERGRcJp/R2JCePXti4cKFOHjwIC5cuIC33noLDg4OePbZZxEcHIzw8HAkJiZaomtEREQkUZFGJ6m9WqM1UU+I6uratSsWLFiAHTt24Ny5cygpKUFxcTHOnj2L77//Hs888wyTjERkNvtOXcWaP84CANydFHjz3n5wkMss3CsiIuOySKKxNn9/fzz++OPYtWsX8vLy8L///Q+dO3dGerq4vZ6IiIjIstxV0hZIeKi4PyMREdmXgtIKPLPhb/3fX54QhgBv1iwgIttjtqXTYnh7e2P69OmYPn26pbtCREREIkWH+iLpTL6E9h1M2BsiIiLjKizVYuPhLOw6locijQ7uKgWiQ30xJTygweJmDbUvLNPikloDABjbzw/j+/uZOwwiIrOwqkRjWloajhw5wkQjERFRKzIlPAArEjNFFYRRKeWYPDDADL0iIiJquQ3JWYjfml7vPS7pTD5WJGYiYXwYYiMCm21fw8tZgaXjwyCTcck0Edkmiy+drm3btm146KGHLN0NIiIiksDTRYmE8WGi2iaMC4OnM5dOExGR9duQnIX5m1MbTRpqdFWYvzkVG5KzRLUHgIIyHX46Kq2IGhFRa2JViUYiIiJqnWIjAjGki0+j51VKOV6b3LfOrA8iIiJrVViqRfxWcXUD4relI+taqaT2haUsjEZEtsnkS6cTEhJEt/31119N2BMiIiIylcoqAaculwAAnJVy9PX3xPUSDXzcVBjduyMmN7KPFRERkTXalJItaksQANBoqzDlo/2S2m9OycbMYcEt6SIRkVUyeaJx8eLFkMlkEARBVHvuVUFERNT6HDqbj6vF5QCA8f39kTC2J/Lz8+Hj4wNHR0cL946IiOiGmmItO49ewvUSDbxdVRgd1rFOcZedGdKWN+epyyW135mRx0QjEdkkkycaPT09MWjQICxfvrzZtmvXrsVHH31k6i4RERGRke1Iu6j/8119OlqwJ0SNKy4uRkFBAaqq6s86CgoKskCPiMjcGizWcqUMB89dr1Pc5bqJlzarNVw6TUS2yeSJxvDwcFy4cAEDBw5stm1iYqKpu0NERERGVlklIPGfje29XJQY2rUNhEqdhXtFdMPXX3+NpUuX4tixY422qaysNGOPiMgSaoq1NKamuMu3R7JxIq9I0rXdVQoUacS/93mouJ0IEdkmkxeDGTBgAE6fPg21Wt1sW0EQRC+xJiIiIuvw57l8XCmqXjI2OrQDlA6sNUfWY8uWLbj//vuh0+kwZ84cCIKAf/3rX5g6dSqUSiUGDhyI+Ph4S3eTiExMSnGXpDP5kPqxdGiXNpLaR4d2kPYERESthMk/CcyePRtr165tcInKzZ544gmcPXvW1F0iIiIiI+KyabJmr7/+Onr16oW//vpLX6Rw5syZ+Prrr/Hnn3/i+PHj6N+/v2U7SUQmJ6W4CwC4KOVQyMXVD1Ap5Vh0TyhUCnEfr1VKOSYPDBDdFyKi1sTkicbu3btjxowZ8PLyarath4cHOnXqZOouERERkZFUVQn4Mb162bSnsxK3hrS1cI+I6kpNTcWMGTOgUqkgl1cPfWuWSYeFhWH27Nl49dVXLdlFIjIDqcVd+gR44ZWJfUS1TRgXhkAfFySMDxPd3tOZS6eJyDZxbRMREREZ7M/z13GZy6bJilVWVqJNm+oljc7OzgCAwsJC/fkePXogPV3cckoiar2k7J8IAMXlOsRGBOK1yX0bnamoUsrx2uS+iI0IBADJ7YmIbJFJi8HodDooFIY9RUseS0REROZRZ9l0Xy6bJusTEBCA8+fPA6hONLZv3x6HDx/GlClTAADHjx+Hq6urJbtIRGbgrpL22bKmWEtsRCBievtiU0o2dmXkQa3RwkOlRHRoB0wOD4CnS92ZiVLbExHZGpNOO+jRowfWr18vqYqfTqfDJ598gu7du0t+vsWLF0MmkzX6n1KpFNX29ddfl/zcRERE9qZ62XR1otFDpcCtXblsmqxPZGQkdu3apf/7uHHj8PbbbyMhIQGLFy/GqlWrEBUVZbkOEpFZRIf6Smx/o1iLp4sSccOC8dXsIdj+xHB8NXsIZg4LbjRpKLU9EZEtMemUwSlTpmDOnDmYP38+7r//fowZMwYRERH19mvMz89HUlISduzYgW+++QYlJSV48sknJT/fpEmTEBISUu94amoqVqxYgbFjx9Y799Zbb6Ft27ofjAYOHCj5uYmIiOxNyoXryFNXL5uODvWFo8hN8InM6dFHH8V3332HsrIyODs7Y9myZTh06BAWL14MAOjduze/ZCayA1PCA7AiMVNUQRgWayEiMpxJE43/93//h0ceeQTLly/H6tWr8c477wAAvL294ePjA0EQkJ+fj4KCAgCAm5sbpk2bhvnz5xtUFKZv377o27dvveNz5swBAMTFxdU7N2HCBHTu3FnycxEREdm77bWWTd/dV9pMESJziYiIQEREhP7v7dq1w19//YXU1FQ4ODigV69e+iIxRGS7PF2UeHh4F7y351SzbVmshYjIcCbfBDE4OBgfffQRXn/9dWzfvh2//fYbMjIycOXKFchkMvTt2xdhYWGIiorCnXfeafQ9ckpKSvD1118jICAAd955Z4Nt1Go1XFxcuCckERGRSFVVAn5Mq67g6a5SYFhIOwv3iEiahr6cJiLbpa2sws5jeU22USnlSBgXxmItREQtYLbMmru7O+677z7cd9995npKAMDGjRuhVqvxxBNPwMHBod75vn37oqioCA4ODhg8eDAWLVqEMWPGiLp2VlYWsrOz6xxLS0sDAGi1WlRUVLQ8gJtotVrodDpotVqjX9taMWb7wJjtgz3GDNhm3EcuFOCSWgMAuKNnO6BKh9pve7YYc3NMHbM9/VsSERnb6t/PIPNSEQAgopM37gzzxc6MS8gv1sDHTYXRvTuyWAsRkRHY/BS+tWvXQiaTYebMmXWOe3l5Yfbs2YiMjIS3tzeOHz+Ot99+G3fffTc++eQTPPjgg6KuvWTJkgbPqdVq5OfnGyOEOrRaLYqLiyEIQp3iNraMMTNmW8WY7SNmwDbj/u5wlv7Pw4Jc6r3n2WLMzTF1zGq12ujXtEVyuRwymUzSY2QyGXQ6nYl6RESWdu5qCd7ZdRIA4KiQ47Wp/RDc1hUP3BKA/Px8+Pj4wNHR0cK9JCKyDTadaDx+/Dj++OMP3HHHHQgODq5z7qmnnqrXfubMmQgLC8O8efMwZcoUuLm5NXn9uLg4xMTE1DmWlpaGOXPmwMPDAz4+Pi2O4WZarRYymQze3t529cGNMds+xsyYbZmtxV1VJeDXM0cBAG5OCtzZv3O9QjC2FrMYpo7Zw8PD6Ne0RdOnT6+XaDx8+DDS09PRo0cP9OrVCwCQkZGBEydOICwsjIUAiWyYIAh4/rs0lP9TBObJO7ohuK1xt+siIqIbbDrRuHbtWgDArFmzRLVv06YNHnnkESxevBj79+/H6NGjm2wfGBiIwMCG9+9QKpUm+1ZMoVCY9PrWiDHbB8ZsH+wxZsC24k65cB0XC6uXTUeHdoCbi6rBdrYUs1imjNleErYttW7dujp/37lzJzZt2oQtW7Zg3Lhxdc5t2bIFDzzwAN58802jPX9paSnCwsJw9uxZPPbYY1i5cmWd88ePH8d///tf/Prrr6ioqEB4eDiWLFmCkSNHGq0PRHTDxsPZ2H/6GgCgp687Zt/WxcI9IiKybTZbYk+n02H9+vVo06YNJk6cKPpxNRWor169aqKeERERtW47Um9Um76rT0cL9oSoeYsWLcKcOXPqJRkBYMKECZg9ezZefPFFoz1ffHw8rly50uC506dPIzIyEgcOHMD8+fOxYsUKFBcXIyYmBrt27TJaH4io2pWicizbfgwAIJMByyf3hdLBZj8CExFZBZt9lf3++++Rl5eHadOmwcnJSfTjTp6s3rujQ4cOpuoaERFRqyUIAn5Mr6427eakwPBubS3cI6KmpaamomvXro2eDwkJ0Rfza6mUlBS8/fbbje7hvXDhQhQUFOCnn37CwoUL8eijj+L333+Hn58fHnvsMQiCYJR+EFG1hB8yUFhWXUjrochg9A/0smyHiIjsgM0mGmuWTcfFxdU7p9PpUFhYWO94VlYWPvjgA7Rp0waRkZEm7yMREVFr83d2IXIKygAAo3q1h0rpYOEeETXN29sbP//8c6PnExMT4enp2eLnqaysxMMPP4w777wTkyZNqne+pKQE27ZtQ1RUFPr3768/7ubmhlmzZuHEiRNITk5ucT+IqNqezMv4/u9cAIC/lzOeGd3dwj0iIrIPNrlHY25uLhITEzF48GD06dOn3vni4mIEBwdjwoQJ6NWrl77q9Jo1a1BcXIyvvvoKzs7OFug5ERGRdduRdmPZ9Bgum6ZW4P7778cbb7yBuLg4PPvss+jevTrZcOLECaxYsQI//PADnn766RY/z1tvvYXMzExs3ry5wfOpqakoLy/H0KFD650bMmQIACA5ORmDBw9u9DmysrKQnZ1d51jNbEytVouKigpDu98krVYLnU4HrVZrkutbI8bcupWU6/DCdzdmKi++pyeUsqp6vyO2FLNYjNk+MGb7YI6YDbm2WRONv/32m6h2t912W4ueZ926daisrGy0CIyzszMmT56MgwcPYsuWLSguLkbbtm0xatQozJ8/v8kBHhERkb0SBAHb/9mf0dXRAbd3b2fhHhE1b+nSpTh16hT+97//Yd26dZDLqxf0VFVVQRAEjB07FkuXLm3Rc5w9exYvvfQS4uPj0blzZ5w7d65em9zcf2ZW+fvXO1dzLCcnp8nnWbt2baPLstVqNfLz8yX2XBytVovi4mIIgmA3RYkYc+uKWa3RYXvGNfx+pgDF5ZUoKNPhcnH1h+PRPbzRp628wd+P1hyzoRgzY7ZVjNk0MavVasmPMWuiMSoqCjKZrNl2lZWVLXqe559/Hs8//3yj552cnLBmzZoWPQcREZG9Sa21bPqOXh24bJpaBScnJ3z33Xf4+eefsXXrVpw5cwYA0KVLF4wfPx6jR49u8XM88sgj6NKlS5MzI0tLS/X9uZlKparTpjFxcXGIiYmpcywtLQ1z5syBh4cHfHx8pHZdFK1WC5lMBm9vb7v68MaYW4dNKTlY8kMmynVVDZ4fFNyu0d+N1hpzSzBmxmyrGLNpYvbw8JD8GLMmGv/3v//VO6bT6XD69GmsW7cOnTt3xpw5c8zZJSIiIhJpRzqrTVPrNXr0aKMkFW/2+eefY+fOnfjtt9+aHOS7uLgAAMrLy+ud02g0ddo0JjAwEIGBgQ2eUyqVcHR0FNttyRQKhcmfw9owZuu3ITkLz2/JaLLNK4kn4OWqQmxEw787rS1mY2DM9oEx2wdTx2xIAtOsicYZM2Y0eu65555DeHi4GXtDREREYgmCoN+f0dXRAVE9uGyaWp/S0lKcP38eANCpU6dmE3vNKS8vx9NPP4277roLvr6+OHXqFIAbS6ALCwtx6tQptG3bFn5+fnXO1VZzrKFl1UT2qLBUi42Hs7DrWB6KNDq4qxSIDvXFlPAAeLoo9W3it6aLul78tnTE9PbVP5aIiEzHaqpOe3t7Y9asWXjttdcs3RUiIiJC9Ye4Nb+fwX0fH8Adb/6KrPzqZdPDurXjsmlqVTIyMnDXXXfBy8sLYWFhCAsLg5eXF+666y4cPXrU4OuWlZXhypUr2L59O7p166b/LyoqCkD1bMdu3bphzZo16NOnD5ycnHDgwIF610lKSgIADBo0yOC+ENmKDclZuOWVXVi6/RiSzuTjaK4aSWfy8fIPGbjllV3YkJwFANiUkg1NI8ulb6bRVmFzSnbzDYmIqMWsquq0t7e3ft8cIiIispwNyVmI35re4Ie4XzLzsCE5q9FlaETW5MiRI4iKikJxcTGio6MRGhoKADh69Ch+/vln7Nu3D7/++iv69+8v+dqurq7YuHFjveNXrlzBo48+ijvvvBNxcXHo27cv3NzcMHbsWHz77bf4+++/0a9fPwBAcXEx1qxZg27durEgIdm9DclZmL85tdHzGl0V5m9OhbaqCpv+zJJ07Z0ZeZg5LLilXSQiomZYTaJRo9Hgs88+g6+vr6W7QkREZNea+6CnrRT055lsJGv33HPPQS6XIzk5ud42PSkpKRg5ciSee+457Ny5U/K1lUolpkyZUu94TdXprl271jn/6quvYvfu3Rg9ejTmzZsHDw8PrF69Gjk5Odi+fbuooolEtkrKUugXvhPXrja1Riv5MUREJJ1ZE40zZ85s8Hh+fj4OHDiAK1euYMWKFebsEhEREdXCPa/I1iQlJWHevHkN7gUeHh6Oxx57DO+8845Z+hISEoJ9+/ZhwYIFWL58OSoqKhAeHo7ExESMGjXKLH0gslZSlkIbwkPF9yoiInMwa6Jx3bp1DR738fFB9+7d8dZbb+H+++83Z5eIiIioFkP2vOJSNLJmKpWqyRUzfn5+cHZ2Nupzdu7cGYIgNHiuV69e2Lp1q1Gfj8gW7My4JKm9h0oBtUYnun10aAepXSIiIgOYtRhMVVVVg/9dvXoV+/fvZ5KRiIjIwqR+0NuZkWeinhAZx1133YVt27Y1en7btm0YM2aMGXtERA0pkpA0BAA/L2eoFOI+zqqUckweGGBIt4iISCKrqTpNRERElif1gx73vCJr9+abb+LatWuYOnUqkpOTUVRUhKKiIhw6dAhTpkxBfn4+3nrrLUt3k8juuaukLbbzdnFEwvgwUW0TxoXB05lLp4mIzMFqisEQERGR5Un9oMc9r8jayOXyekVVBEFASkoKvv3223rHAaBDhw7Q6aQl2YnIuKJDfZF0Jl9C+w76gmTxW9Mb3PZDpZQjYVwYC5cREZmR2RONX375JVatWoWTJ0/i2rVr9c7LZDIO9IiIiCzEkA96RNZk+vTprN5M1ApNCQ/Aa4mZKBexT3DtpdCxEYGI6e2LTSnZ2JWRB7VGCw+VEtGhHTA5PIAFy4iIzMysicalS5fipZdeQocOHRAZGQlvb29zPj0RERE1Y0p4AFYkZooqCMM9r8gaNVZ8kIism6eLEqF+HjhyoaDZtjcvhfZ0USJuWDDiWJyMiMjizJpofP/99xEVFYXExEQolfxmiYiIyNp4uiiRMD4M8zenNtuWe14REZGxHDh9rdkkI5dCExFZP7MmGtVqNWJjY5lkJCIismJTBwVg5Z6TuJBf1uB5ftCj1qi0tBTnzp3DtWvX9Hsz1nbbbbdZoFdEBADayirEb03X//2NqX1RUKbjUmgiolbIrInGAQMGICsry5xPSURERBLtP31Nn2QM8naBv7czP+hRq1VSUoJ58+Zh/fr10GrrV0kXBAEymQyVlZUW6B0RAcAnf5zFycvFAIDbu7fDpPAAyGQyLoUmImqFzL5H4+TJkzF58mQMGDDAnE9NREREIr27+6T+z8smhWF4t3YW7A1RyzzyyCP44osvMHHiRAwfPpx7hBNZmdyCMry9q/p9x1Ehx5JxvVnQiYioFTNrovH222/H2rVrMWTIEAwZMgSdO3eGg4NDnTYymQxr1641Z7eIiIjoH4fO5uPg2eqq0/0DvTAspK2Fe0TUMlu3bkVcXBxWr15t6a4QUQNe/iEDZdrqGcX/ub0rOrd1tXCPiIioJcyaaDx48CBmzJgBrVaL33//Hb///nu9Nkw0EhERWc57v9yYzfjEHSGcVUKtnlKpREREhKW7QUQN+PXEFfyYfgkAEOTjgv9EdbVwj4iIqKXMmmh88skn4ejoiK1bt2L48OHw8vIy59MTERFRE45cuI7fT14FAIT5e2BEj/YW7hFRy40cORIHDx7E7NmzLd0VIptQWKrFxsNZ2HUsD0UaHdxVCkSH+mKKxP17NdpKvFSrAMyScb2hUjo08QgiImoNzJpoTE1NxeLFizF27FhzPi0RERGJ8N4vp/R/fnxEN85mJJvwxhtv4LbbbsM777yDRx99FEolCxkRGWpDchbit6ZDo6uqczzpTD5WJGYiYXwYYiMCRV3ro1/P4Ny1UgBATO8OGNGTX24REdkCsyYa27dvD0dHR3M+JREREYmQnlOIXzIvAwB6dHDH6NAOFu4RkXEEBQXhlVdewfTp0/Hcc8+hY8eODe4Rfvr0aQv1kKh12JCchfmbUxs9r9FV6c83l2y8cK0U7++t/nLLWemA+LG9jddRIiKyKLMmGmfOnInPP/8cjz/+OBQKsz41ERERNaH23oyPjwyBXM7ZjGQb1q1bh7i4ODg6OqJHjx6sOk1kgMJSLeJrLXNuSvy2dMT09tUvo25oqfW14gqU/zMrcu4dIfD3cjZZ34mIyLzMmu0bNmwYfvjhBwwZMgSPPvoogoOD632jDAC33XabObtFRERk1zIvqfHT0TwAQJd2rrirT0cL94jIeJYtW4b+/fvjp59+Qtu2rKJOZIhNKdn1lks3RqOtwuaUbMwcFtzoUusa7dwcMWtYF2N2lYiILMysicZRo0bp/zxr1qx6ez8JggCZTIbKykpzdouIiMiurayzN2MIHDibkWxITk4O5s2bxyQjUQvszLgksX0e3JwUTS61BoArxRXYciRH9L6ORERk/cyaaPzf//5nzqcjIiKiZpy6XIztaRcBAJ3auGBcPz8L94jIuHr06IH8/HxLd4OoVSvS6CS1P5pbiORz4n7vbl5qTURErZtZE40zZsww59MRERFRM97fcwqCUP3nR6O6QuEgt2yHiIzs+eefx5NPPokHH3wQAQEBlu4OUavk6iTtY6NaQmKy9lJrIiJq/ViRhYiIyE6dv1aCrX/nAgD8vZwxcQCTMGR7jh07Bn9/f/Tq1QsTJ05scI9wmUyGRYsWWaiHRJZVU6xl59FLuF6igberCqPDOmJKeAA8XZRIOnMNpy4Xm7QPOzPymGgkIrIRTDQSERHZiZsrf14pKkdlVfV0xkeiusJRwdmMZHsWL16s//Pnn3/eYBsmGsleNVis5UoZDp67jtcSM9Ev0BOHzl6XdE2VUg4/T2ecuVoi+jFqjVbScxARkfViopGIiMgONFf5kylGslVnz561dBeIrNKG5Kwmi7WU66rqJBl7dXTHsYtFzV43YVwYvj2SLSnR6KHi/oxERLaCiUYiIiIb19yHSQB4YUs6lA5yVv4km9OpUydLd4HI6hSWahG/NV10+9em9MHUgYHY+Gd2o19aqZRyJIwLQ2xEIIrKdUg6I74IU3RoB9FtiYjIujHRSEREZMOkfJhk5U8iIvuwKSW70RnuDSnWVEImkyE2IhAxvX2xKSUbuzLyoNZo4aFSIjq0Ayb/s6cjAEwJD8CKxExRz6FSyjF5IPcIJiKyFUw0EhER2TApHyZZ+ZNslU6nw5YtW3Dw4EFcv34dVVV1fydkMhnWrl1rod4Rmd/OjEsS298o1uLpokTcsGDENfFe4emiRML4sGZn0wPVS609nfkFFxGRrWCikYiIyIa15MMkkS3Iz8/HiBEjkJ6eDkEQIJPJIAjVRZBq/sxEI9mbIo1OUntDirXUbMUhZqk1ERHZDiYaiYiIbJg5PkwSWbMXX3wRmZmZWLNmDaKiotC1a1f89NNPCAoKwssvv4yTJ0/ip59+snQ3icxK4SCT1N7QYi1il1oTEZHtYKKRiIjIhrmrpL3Vs/In2Zrt27dj+vTpeOihh3Dt2jUAgIODA3r06IHPP/8cUVFRWLhwIT744AML95TIOApLtdh4OAu7juWhSKODu0qB6FBfTAkPgJtKgTW/n0F6jlrSNVtSrEXMUmsiIrIdTDQSERHZsOhQX1b+JLt26dIlREREAAAUiuqhr0aj0Z+fMGECVqxYwUQj2YQNyVkNLlVOOpOP/0vMRHt3J2RfL5N0TRZrISIiKeSW7gARERGZzpTwADgpxL3d88Mk2SIfHx+UlJQAANzd3aFUKpGVlaU/r1Qqcf36dUt1j8hoNiRnYf7m1EYLgFXoqvRJRkcHOe7s7SvquizWQkREUjDRSEREZMM8XZToF+glqi0/TJIt6t69OzIyMgAAcrkcAwYMwLp161BeXo7S0lKsX78eXbp0sXAviVqmsFSL+K3potrKZMDXs2/Bhw8MxGuT+0LVyJdRKqUcr03uy2ItREQkCZdOExER2bCdGXk4dLbppdOs/Em2bPTo0Xj99dexcuVKODk54emnn8Z9990HHx8fyGQylJWV4eOPP7Z0N4laZFNKdqMzGW8mCMBfWYUI7+RTp1jLzqMXkV+sgY+bCqN7d2SxFiIiMggTjURERDbqcpEG/92cqv/7W7H9kF+qZeVPsivPP/88nn32WTg5OQEAYmNjoVAo8Pnnn8PBwQFTpkzBvffea+FeErXMzoxLEtvnYeY/xVlqirU8MNgf+fn58PHxgaOjoym6SUREdoCJRiIiIhskCALmb0pFfkkFAOBfgwMxMbx6/0VW/iR7IpPJ9EnGGpMmTcKkSZMs1CMi4yvS6CS1V2u0JuoJERHZO+7RSEREZIM+SzqPvcevAAA6t3HBi3eHWrhHRERkKu4qafNHPFScxU5ERKbBGY1EREQ25mReEZZtPwYAcJDL8PZ9A+DqxLd8sg/r16836HHTp0+X/Jjjx48jISEBKSkpyM3NhVarRVBQEO666y4899xz6NixY732//3vf/Hrr7+ioqIC4eHhWLJkCUaOHGlQn4kAoLRCJ3lGY3RoBxP1hoiI7B0/dRAREdmQCl0Vnvz6L5T/UxTgqTu6ob/IqtNEtuDBBx+ETCaDIAiiHyOTyQxKNGZnZ+PixYuYOHEiAgICoFAokJaWho8//hhff/01/vrrL7Rv3x4AcPr0aURGRkKhUGD+/Pnw9PTE6tWrERMTgx9//BGjRo2S/PxEZ6+W4JHPDuN4XpHox6iUckweGGDCXhERkT1jopGIiKiVKizVYuPhLOw6locijQ7uKgVkMhkyLqoBAAM7eeM/UV0t3Esi89qzZ4/ZnuuOO+7AHXfcUe/4bbfdhtjYWKxbtw7z588HACxcuBAFBQU4fPgw+vfvD6B6FmXv3r3x2GOPITMzEzKZzGx9p9ajodf66FBftHF1xKIt6Sgqr57N6ObkgOLyymavlzAuDJ7OXDpNRESmwUQjERFRK7QhOQvxW9Oh+Wfm4s2cFHK8fW9/KBy4HTPZl9tvv93SXUCnTp0AANevXwcAlJSUYNu2bYiKitInGQHAzc0Ns2bNQnx8PJKTkzF48GBLdJesWGOv9Uln8uv8PTzIC+//eyB+O3Gl0fcGlVKOhHFhiI0INGmfiYjIvjHRSERE1MpsSM7C/M2pTbYp11XhwOlrCPRxMVOviOyXRqNBcXExNBoNMjIy8N///hcAcNdddwEAUlNTUV5ejqFDh9Z77JAhQwBAVKIxKysL2dnZdY6lpaUBALRaLSoqKlocS0O0Wi10Oh20WvupVGyqmAvLtPj2SC5+ybyConId3J0UuKNnO0wc4FdvluGmlBw8vyWj2WsOCfbGmgfC4aiQY0K/DhjR3QffHcnFL8evQK3RwUOlwB0922NC/47wdFY2+nPC+2wfGLN9YMz2wRwxG3JtJhqJiIhakcJSLeK3potqG78tHTG9feHpwiVyRKa0Zs0azJ07V//3zp074/PPP8fw4cMBALm5uQAAf3//eo+tOZaTk9Ps86xduxZLlixp8JxarUZ+fn6D51pKq9WiuLgYgiBAqbSP1xNTxPz90at4fc8FlOvq7h968Nx1vLHrJJ4dEYSxvdsCANQaHZb8cEzUdY9kFSL38lV41Ko8Pa6nO8b1dK/TrrKsCPlljV+H95kx2yrGzJhtlTliVqvVkh/DRCMREVErsiklu9Hl0jfTaKuwOSUbM4cFm7hXRPZtwoQJ6NmzJ4qLi3HkyBFs27YNV69e1Z8vLS0FADg5OdV7rEqlqtOmKXFxcYiJialzLC0tDXPmzIGHhwd8fHxaEkajtFotZDIZvL297erDmzFj3pSSg2U7zzd6vlwnYNnO83B1dcWUcH9s2Xe+XkKy8cdW4dfzGswYGtSiPvI+M2ZbxZgZs60yR8weHh6SH8NEIxERUSuyM+OSxPZ5TDQSmVhAQAACAqqr+E6YMAGTJ09GREQESktLsXDhQri4VG9hUF5eXu+xGo0GAPRtmhIYGIjAwIb311MqlXB0dDQ0hGYpFAqTP4e1MVbMhaVaJPyQKartoq3H8OmBLJy4LL6KNAD8cvwqHr49xJDu1cH7bB8Ys31gzPbB1DEbksDkDvFEREStSJFGJ6m9WmM/+9QQWYu+fftiwIABeP/99wEAfn5+ABpeHl1zrKFl1WQbpMxErxQEHM8rgiBuMqMeX+uJiMhaMNFIRETUirirpC1G8FDZx9IRImtTVlam3zOxT58+cHJywoEDB+q1S0pKAgAMGjTIrP0j85E6E91BJoObE1/riYiodbKpROPixYshk8ka/e/mKZ/Hjx/HhAkT4O3tDVdXVwwfPhy//PKLhXpPRETUvOhQX4ntO5ioJ0R06VLDCaQ9e/YgPT1dX1Hazc0NY8eOxd69e/H333/r2xUXF2PNmjXo1q1bsxWnyToVlmqx5vczuO/jA7j73d9x38cHsPaPsygsvTHDUOpM9J4d3TEvurukx/C1noiIrIVN7dE4adIkhITU35skNTUVK1aswNixY/XHTp8+jcjISCgUCsyfPx+enp5YvXo1YmJi8OOPP2LUqFHm7DoREZEoU8IDsCIxU9QyPJVSjskDA8zQKyL79J///AcXL17EyJEj0alTJ2g0Ghw+fBhff/013N3d8cYbb+jbvvrqq9i9ezdGjx6NefPmwcPDA6tXr0ZOTg62b98OmUxmwUjIEBuSsxC/Nb3e63HSmXysSMxEwvgwdGrjgvPXmi/0U5uHSsnXeiIiarVsKtHYt29f9O3bt97xOXPmAKiu1Fdj4cKFKCgowOHDh9G/f38AwPTp09G7d2889thjyMzM5ICPiIisjqeLEgnjwzB/c2qzbRPGhcHTmcvpiEzlX//6F9avX4/PPvsMV65cgUwmQ6dOnTBnzhw899xzCAq6UQU4JCQE+/btw4IFC7B8+XJUVFQgPDwciYmJ/IK7FdqQnNXk67BGVyXqdboh0aEd+FpPREStlk0lGhtSUlKCr7/+GgEBAbjzzjv1x7Zt24aoqCh9khGoXtYya9YsxMfHIzk5mUtYiIjIKsVGBEKjq0T81qMNnlcp5UgYF4bYiIar0xKRccTGxiI2NlZ0+169emHr1q0m7BGZQ2GpFvFb0yU9RiaDqAIvtWcn1ryGNzRrsqYtX+uJiMja2HyicePGjVCr1XjiiSfg4OAAoHopdXl5OYYOHVqvfc1eOmISjVlZWcjOzq5zLC0tDQCg1WpRUVFhjBDq0Gq10Ol00Grtp7IcY7YPjNk+2GPMgGni9lI56P/s76WCp7MSHioF7ujZHhP6d4Sns9Ik70Ni2eO9NnXM9vRvSWTNpFSRBoD7IgIxIMgL/92c1mzbm2cnxkYEIqa3LzalZGNXRh7UGi08VEpEh3bA5PAAeLpwJiMREVkXm080rl27FjKZDDNnztQfy83NBQD4+/vXa19zLCcnR9S1lyxZ0uA5tVqtrzRoTFqtFsXFxRAEoV5xG1vFmBmzrWLM9hEzYJq4f0y98UXXsjGd0bODq/7vlWVFyC8zytMYzB7vtaljVqvVRr8mEUkntYr0+WulWD65L2SQGTQ70dNFibhhwYgbFmxwn4mIiMzFphONx48fxx9//IE77rgDwcE33phLS6s3ZHZycqr3GJVKVadNU+Li4hATE1PnWFpaGubMmQMPDw/4+Pi0pPsN0mq1kMlk8Pb2tqsPbozZ9jFmxmzLjB23rrIKB84VAQDauzthaM8Aq9tX2B7vtalj9vDwMPo1iUg6qVWk1Zrq2cicnUhERPbAphONa9euBQDMmjWrznEXFxcAQHl5eb3HaDSaOm2aEhgYiMDAhvdEUSqVcHR0lNRfsRQKhUmvb40Ys31gzPbBHmMGjBv3kTPXUFBW/cE1OrRDg1+cWQN7vNemjNleErZE1s5dJe0jlIfqxu8uZycSEZGtk1u6A6ai0+mwfv16tGnTBhMnTqxzzs/PD0DDy6NrjjW0rJqIiMga7MzI0/95VGgHC/aEiMj+RIf6SmzP12kiIrIfNpto/P7775GXl4dp06bVm+nRp08fODk54cCBA/Uel5SUBAAYNGiQWfpJREQkhSAI2HmsOtHo4uiAoV3aWLhHRET2ZUp4AFQKcR+jaleRJiIisgc2m2isWTYdFxdX75ybmxvGjh2LvXv34u+//9YfLy4uxpo1a9CtW7dmK04TERFZwukrxTh/rXof4du7t4NK6dDMI4iIyJg8XZRYdE+oqLY3V5EmIiKydTa5R2Nubi4SExMxePBg9OnTp8E2r776Knbv3o3Ro0dj3rx58PDwwOrVq5GTk4Pt27db3ab6REREALAz47L+z6N6cTkeEZElXC+taPJ8U1WkiYiIbJlNJhrXrVuHysrKekVgagsJCcG+ffuwYMECLF++HBUVFQgPD0diYiJGjRplxt4SERGJt+ufZdNyGTCiZ3sL94aIyP7kqTV4f+9pAICTQoZHbg/BobP5rCJNREQEG000Pv/883j++eebbderVy9s3brVDD0iIiJquStF5Ui5cB0AMKiTD3xc7aeaMxGRtVjx03GUVlQCAP4TFYKnRnW3cI+IiIish83u0UhERGRr9mRehiBU/3lUKGczEhGZW1p2ITYdzgYAdPRUYc5tXS3cIyIiIuvCRCMREVErUVNtGgCiQ30t2BMiIvsjCAKWfH9U//cFY3rC2ZEFuYiIiGqzyaXTREREtkajrcTvJ68AALq2c0VwW1cL94iIyPoVlmqx8XAWdh3LQ5FGB3eVAtGhvphiwB6K29Mu4s/z1dtXDAjywrh+fqboMhERUavGRCMREVErsO/UVWi0VQCAUaGsNk1E1JwNyVmI35oOja6qzvGkM/lYkZiJhPHiq0JrtJV4dUem/u+L7gmFTCYzan+JiIhsARONRERErcDOjFrLpnsx0UhE1JQNyVmYvzm10fMaXZX+vJhk49o/ziKnoAwAMKG/H8KDvI3TUSIiIhvDPRqJiIisXFWVgF3HLgMA2rg6YgA/4BIRNaqwVIv4remi2sZvS0dhqbbJNpfVGqzacwoAoFLKMf/Oni3uIxERka1iopGIiMjK/Z1dgKvF5QCAkT3bw0HO5XpERI3ZlJJdb7l0YzTaKmxOyW6yzWs/HUdpRSUA4JHbu8LPy7nFfSQiIrJVTDQSERFZuV21qk1zf0YioqbtzLgksX1eo+fSc9XYdLg6EdnRU4U5t3VtUd+IiIhsHfdoJCIisnK7MqqXTTsq5Bjera2Fe0NEZN2KNDpJ7dWaG0una6pU7zx6CddLNMhV3zj33zt7wtnRwWj9JCIiskVMNBIREVmxC9dKcTyvCAAwLKQtXBz51k1E1BR3lbTXyZrtKBqrUg0AMll15WkiIiJqGj+tEBERWbGdtZZNR3PZNBFRs6JDfZF0Jl90+9TsQoxYsRdnr5U02kYQgAXfpkEuk4mqUk1ERGSvuEcjERGRFdtVa++wO3q2t2BPiIhahynhAXBSSPuY01SSsTYxVaqJiIjsGRONREREVqqwVItD56pn5fQL9EJ7D5WFe0REZP08XZS4JdhHVNt/3xKEQG/xVaTFVKkmIiKyZ0w0EhERWam9Jy6jskoAAET34mxGIiIx0nMK8cepq022USnleG1yXyyb2Af+EhKNQNNVqomIiOwd92gkIiKyUj/X+jA7ivszEhE1S1dZhQXfpuKf72gQf08oBFRvQ6HWaOGhUiI6tAMmhwfA00UJoGVVqomIiKguJhqJiIisUIWuCr8evwIACPRxRo8O7hbuERGR9Vu3/xzSc9QAgMGdffBgZGfI5TLEDQtu9DFSq1R7qJQt6iMREZEt49JpIiIiK3Tw7DUUl1fPshnVqwNkMpmFe0REZN2y8kvxxs8nAACODnK8MikMcnnzr53Rob6SnieaM8yJiIgaxUQjERGRFapdbTq6Fz/UEhE1RRAEvLglHWXaSgDAoyO6IqS9uJngU8IDoBJZpVqllGPywACD+0lERGTrmGgkIiKyEoWlWqz5/Qzu+/gAvjx0AQDgpJCjuy+XTRMRNeX71Iv49UT1dhNd27niP1FdRT/W00WJhPFhotomjAuDpzOXThMRETWGezQSEZHJFZZqsfFwFnYevYTrJRp4u6owOqwjptTajN/a1cSw61geijQ6uKsUiA71bTIGKXFvSM5C/NZ0aHRVdY6X66owbPkvSBgfhtiIQJPFR0TUWhWUViDh+6P6v786qS+cFA6SrlHz+trQ6zBQPZMxYRxfh4mIiJrDRCMREZlUgwm0K2U4eO46ViRmtooEWmNJwKQz+Y3GICXuDclZmL85tdHn1+iq9Oet/d+KiMjcXt2RiavFFQCAfw0OwuBgH4OuExsRiJjevtiUko2dRy8iv1gDHzcVRvfuWKdKNRERETWOiUYiIjIZW0igGRKDlMfE9PZF/NZ0UX2J35aOmN6+/LBLRPSPA6ev4Zs/swAA7dydsGBMzxZdz9NFibhhwXhgsD/y8/Ph4+MDR0dHY3SViIjILjDRSEREJlFYqm31CTRDYgAg6TFXisobXKbXEI22CptTsjFzWLCo9kREtuTmLSxcnRQ4fblYf37x2N7cP5GIiMjCmGgkIiKT2JSS3aIEmiF7Ihqb1Bie3vAXNNpKSY95Y+dxSX3amZHHRCMR2Z3GtrCo0cvXHXf18TVzr4iIiOhmTDQSWRFbKJhB1sEaknQ7My5JbH8jgWbInoimiFlqDLszL0t+jipBWnu1Riv5OYiIWrPmtqMAgGOXirDxz2yr3YaDiIjIXjDRSGQlbKFgBlkHQ5J0plCk0Ulqn3lJjeRz+ThzpRj/3ZzWaLvG9kQ0RcxSYzCEXCYt2eih4pcORNbixIkT+Pzzz/Hzzz/j9OnT0Gg06Nq1K6ZOnYqnnnoKrq6uddofP34c//3vf/Hrr7+ioqIC4eHhWLJkCUaOHGmhCCxLzBdEtrANBxERkT1hopEMZuoZU/Y0u8/QghnWMGutpcxxn23h30ksa/pZcldJe4u5XqrF1A8PQCayfc0Hyp+OXjJZwRmpMYR29ICDXIa0nELRjwnyccG5a6Wi20eHdpDUJyIynU8++QSrVq3CuHHj8O9//xtKpRJ79uzBiy++iA0bNiApKQnOzs4AgNOnTyMyMhIKhQLz58+Hp6cnVq9ejZiYGPz4448YNWqUhaMxL7FfELV0Gw4iIiIyLyYaySCmnjFlyOw+cySTTPEchn5Tb+g9sKakmzlmcVrLElxzMPfPUpN9KdNCXWbYbECxk/s02ip8nnQe7/1yUlR7Q2a6RIf6IulMvuj2UwYGQAAkJRqnDgzEe7+cFPVBWqWUY/LAANHXJiLTmjJlChYuXAhPT0/9sUceeQTdunXDsmXLsHbtWjz++OMAgIULF6KgoACHDx9G//79AQDTp09H79698dhjjyEzMxMymdivWlo3KV+K/XzU8G04iIiIyPyYaCTJDJ0xZcrrm2OpqKmew5Bv6t2cFAbdA2tZUlvTF1P+HBn6HOb4NzJkFqeY5Kc5f5aa6s+Zq8WY+9URZF8vE/tPApVSjjem9EP8tqO4VlIh+nFv7jqBSpHrjg2Z6TIlPAArEjOlJQEFSHrMtKGd0M7dqdn9xwAgYVwYK6oSWZFBgwY1ePzee+/FsmXLkJ5e/eVPSUkJtm3bhqioKH2SEQDc3Nwwa9YsxMfHIzk5GYMHDzZHty1KypdiC79NgyD666dq3MeWiIjIsphoJElMvU+OIdc35bLJGqZMikktNvHVoQu4kC9umeXNs9ZM/e8kVkt/jky1p5O5fpakzuIUm/yU+rO0KSUbpy8Xi2ordgbkqzuOoUoQ9HsOeqgUUIvY5zBhXBju7ueH9389LSnRKDbJWEPqTBdPFyUeHRGCN3eeaLZt7SRgwvgwSYnDmnveWEVVlVKOhHHcp5WotcjOzgYAdOhQvdVBamoqysvLMXTo0HpthwwZAgCiEo1ZWVn6a9dIS6ve01ar1aKiQvzrpxRarRY6nQ5abcuTeN8cOi/6S7FKQWK1LADuTg5G+XcwZsytBWO2D4zZPjBm+2COmA25NhONJImp98mRen1TL5sEWpYUE5MQk1ps4qTIxBBw4x5MDg+wqo3UW/JzZKo9nd7edQJfHrogqr0h97mm74bMsBTzmJOXi3D8UpGo/tfIyFWLbit2BqSuVuJvZM/2eH1qP+zKyBOdQJO6J6IM4pdaA9Jnuugqq7D7WF6TbRpKAhqSOIyNCERMb19sSsnGrow8qDVaeKiUiA7tgMlWvmyfiG6orKzEyy+/DIVCgfvvvx8AkJubCwDw9/ev177mWE5OTrPXXrt2LZYsWdLgObVajfx88Vs9SKHValFcXAxBEKBUtuy1KDE9V1J7qQWzhga5GuXfwZgxtxaMmTHbKsbMmG2VOWJWq8V/ZqzBRGMrYS0FM6TOmKo9e8gU1//g11Mm3yDc0KSYmITYyF7tkS9h9pYhPth7CruP5Rn872SK/QoN/TmSknTbnnZR0nP8b/850W2l3ufYiECDEtYARD9m9e9nRfffUJ/8cRZ5RRpRbRVyGd6M7QcvF8c6CbSdRy8iv1gDHzcVRvfuWC+BJnVPxKA2LjgvoZCK1IrNH/9+Bn9nV++32CfAA+P7+WP3scuikoBS4q7h6aJE3LBgxHF/MaJW66mnnsKBAwfwyiuvoEePHgCA0tLq1yknJ6d67VUqVZ02TYmLi0NMTEydY2lpaZgzZw48PDzg4+PT0u43SKvVQiaTwdvbu8UfZDSV0vah7NbeDeeulaJc5HYU/44MgYcRtpgwZsytBWNmzLaKMTNmW2WOmD08PCQ/honGVsAaCmYsHtcbvp4qpOdIy2ZfL60Qdf2aGKQWjygur5TU3pANwg1Jiond907pIIO2UtqyIHcnBYrKxf87XSmuwJXia5Keo3ZizxSFVKTO4vzzfD5mrjuE305cFdXeHEm3n45ekrS/YVG5TlKyd80fZ6CrqhL9GEO4ODqgtEL871B2gfg9F3VVAr5NydH/vtUk0B4Y7I/8/Hz4+PjA0dGx3uOk7okYOygQK346LrpfUio2n8wrwts7q2dMOyrkeCt2AELau2HW8C6iryE2biKyDYsWLcLKlSsxe/ZsLFy4UH/cxcUFAFBeXl7vMRqNpk6bpgQGBiIwsOExn1KpNOnri0KhMMpzSE0C+rg6IW5YF9HbUbT1dDW0a/UYK+bWhDHbB8ZsHxizfTB1zIYkMJlotHLWUjBjwbdpBl37RF4R/vVxEg6caTzRVRPDppQsHM+TtvRTqpuXTTaXFBMEARcLxM3gqnH4fD4OnRM3I0tqklGllKNHR3f8ee66pMdJdaW4HN8kX8B/Nzd+3w0tpNI/yAtXiup/0GqKtlLAL5lXJEYhjUIuq7PstzkHz4q/z4u2piPQp/kPkLW998spSe0BoEcHd5y7ViJ61keon4dJf5YMSex7uigl7W8Y09sX7+0WV7HZSSG+YrOusgrPbvwbFZXV130mujtC2ruJeiwR2afFixdj6dKleOihh/Dhhx/WOefn5weg4eXRNccaWlZti6TOXI8O7cB9bImIiFoRJhqtmKkLr0h9DkNUCWgyyVjbobPSEx4B3s6SKtteKtTg8PnrGNjJu8mk2GuJmbg3IhB/ZRXgvMjCKzUqJCYPb+/eDnf0bI/4bUebbZswLgxF5TpJyaGnR3XDzmN5SJMwG/XU5eImk4y1GVJIRSqxBUVq6+DhhDy1+ISmv7ezpCW4ACB2j/pyXRVOSdhb01AKBxlelpCkk/qz5OPiiPxS8Uv9Da38KfUDpdjEZBs3RzjIxS3ZW/37Wf2S6f6BXpJmMRKR/Vm8eDGWLFmCGTNmYM2aNZDJ6r7W9OnTB05OTjhw4EC9xyYlJQFovIK1rbm7T0cs254hat9FlfLGF0Tcx5aIiKh1YKLRipm68IrU5wCAfw0OxHcpOaIeo5DL4KiQobRC/PVdlHKUVwqiKsmqlHL8a3CQpGWT10oqMPmD/QjyccaF/MYTlOW6Kqw/cF70dVuiQleF6ZGdoVI6iEqsFJZqJS0tnXFrMFxVSqTlZJii+9Boq/Dhr6fwyb5zJrm+SinH7/8didiPDkgqduLt4ojCUq3JluA6Osj1s91MwdfDCTKZDBcLxc+o9VBJq14s9WepS3tX5J8Tn2iUuh9ibVI+UDYXc03BmNwCDR79IgVrZwyC0kHe6HOfzCvCW/9UmXZUyPH61L6iE5REZH8SEhKwZMkSPPDAA/jkk08gl9d/fXFzc8PYsWPx7bff4u+//0a/fv0AAMXFxVizZg26devWbMVpSzD2HuFlFZV4esNfoou7JIwLg2etpdbcx5aIiMj6MdFoxUxdeMWQ5zh3tVT07KFXJvbBppRsHDorfnlM30AvTBoQYJJlk7Wr0zaVZLzZoCAvpOYUipqpqFLKEeTjghN54mev1cz6Els4QurSUk9npaR975QOMrg5KXC9VPxstA9+PSO6LQBM6O+HwcE+eP675mfT1sTgLfEDjbeLI2aODzbJz5JKKUfnNq7IlJD4lLq35uzbukIA8PIP4hPENfsPik3SSf1ZkjoDUsp+iA2R8oGyqZhvDWmDGZ8k45Jag99OXMHCb9OwYkrfejOOgH+WTG9K1SeRn47ujpD27i2Kg4hs16pVq/DSSy8hKCgIo0aNwpdfflnnfIcOHRAdHQ0AePXVV7F7926MHj0a8+bNg4eHB1avXo2cnBxs3769wdckSzL2HuFlFZWI+zQZ+09Xr3RxUylQoatCBZdCExER2RQmGq2Y1IIZuYVlqKoSsOlwdrP75I3r74fE9EtI/WdpoFhqjVbSjKlPD5yTdP0ijc5kyyZfndQH7dydkPBDhqQlsnf19UNsRJDoZMy3R7JFXxuoO+tLbOEIqf9GUhJKyyb0wacHzklKNEqVpy7H/bd0gkIuFx2DOfZ0kpJ0k3qfe/q6Iy2nUHQic/LAAECApBmHtfcfFJukM+UMSLH7IRpLUzGvmxmBqR8cQFG5DpsOZ8PPyxlPR3ev127NH2fxd1YBgOol0w9zyTQRNSE5ORkAcOHCBcyYMaPe+dtvv12faAwJCcG+ffuwYMECLF++HBUVFQgPD0diYiJGjRpl1n43x9h7hJdVVGLW+htJxnbuTvjq4SFo5+bEpdBEREQ2holGK+auknZ7zl8rxaBlu5Bf0vjSxpqB4UvbjqJMK61iM3AjKSZ2xpTUGBq6flOz+2raAuKTSat/PyMp0bgzIw9fzR4i+jmKynWSE2KGkLpXkZR/J6lJNKmFVKTO4gSkVyM2ZE8nKf9GUu/zmD4dMXVQoKSZqIC05KenxEqeNUw1A9LQ/phCT18PfDR9IGZ8cgjaSgHv7j4JL2clqgRBP/NbIZchPbd6L1MumSYiMdatW4d169aJbt+rVy9s3brVdB0ygpbsEd7Qipqo7u2x53geDv6zF3dNkrGmwBaXQhMREdkWJhqtmNQZXACaTDLWZkiSEaibFBMzY8qQWWg3X7+52X2AtGSS1JmiDSXFmnoOQxNihpC6V5HYGKTeN6mFVAyZxdmSJJexluC29D7X9ElK1UxzVdo0xQxIaxPZtS1en9oPT379FwAgoYll6Xf0bM8l00RklwzdI7ypIns12rrVTTISERGR7WGi0YpJSWQ4OsjRpZ20PeMGB/tgfkwPTFtz0GRJMWtMuhk6y1Lsc1j7rC8xMUi9b1ILqbRkFidgHUk3Q++zlFmcNayt0qa19UeK8f39kZh+CT+mN70/7Y/pl7AhOcsqE6ZERKZkyB7hbk4KUe+HMyI7MclIRERk45hotGJSEhlLJ0jfM85BJsOgzj4mTYpZY9KtJbMsxWrNs74A6fdNaiGVliSUrSnJZeh9ljJb9+bHWMvyMmvrj1iFpVrsybwsqu3NSwKJiOyB1JUfyeeu4eDZa6LartpzCtOHdObrKhERkQ1jotHKmbLwSu0lwWKfwxDWlnQz1yxLa0qIGcKUhVRamlC2piRXa7/P9sbQJYFERPZC6soPkS+pAPi6SkREZA+YaGwFxC61bMmSYFMnS6wpGWPOWZbWlBAzhKkKqdia1n6f7YkhSwL5gZiI7InUlR8OMqBSfD04vq4SERHZOCYaWwkxSy1buiTY1MkSa0rG2HNSTCpTFFIhshRDi0EREdkLqSs/OreRtkc4X1eJiIhsGxONNsSchVdsAZNipmFNCWWim7Vk5jcRkT2QuvJD6h7hfF0lIiKybUw02hBrLLxi7ZgUI7Iv5igGRUTU2klZ+VFUruPrKhEREekx0WhjuCSYiKhxnPlNRCSO2D3C+bpKREREtTHRaIO4JJiIqGGc+U1EJJ6YPcL5ukpERES1MdFoo7gkmIioYZz5TURkXHxdJSIiohpMNBIRkd3hzG8iIuPi6yoREREBTDQSEZGd4sxvIiLj4usqERERyS3dASIiIiIiIiIiImr9mGgkIiIiIiIiIiKiFmOikYiIiIiIiIiIiFqMezQaWUlJCQAgLS3NJNfXarVQq9Xw8PCAUmkfm2ozZsZsqxizfcQM2GfcjNn4MdeMLWrGGkSA6ceeAH+fGbPtYsyM2VYxZsZsLIaMP5loNLIzZ84AAObMmWPhnhAREZEtqhlrEAEcexIREZHpSRl/ygRBEEzYF7uTm5uLH374AV26dIGrq6vRr5+WloY5c+bgo48+Qp8+fYx+fWvEmBmzrWLM9hEzYJ9xM2bjx1xSUoIzZ87gnnvugZ+fn9GvT62TqceeAH+fGbPtYsyM2VYxZsZsLIaMPzmj0cj8/Pwwe/Zskz9Pnz59MHToUJM/jzVhzPaBMdsHe4wZsM+4GTORaZlr7AnY5882Y7YPjNk+MGb7wJgtj8VgiIiIiIiIiIiIqMWYaCQiIiIiIiIiIqIWY6KRiIiIiIiIiIiIWoyJxlYmICAAL730EgICAizdFbNhzPaBMdsHe4wZsM+4GTOR7bDHn23GbB8Ys31gzPaBMVsPVp0mIiIiIiIiIiKiFuOMRiIiIiIiIiIiImoxJhqJiIiIiIiIiIioxZhoJCIiIiIiIiIiohZjopGIiIiIiIiIiIhajIlGIiIiIiIiIiIiajEmGomIiIiIiIiIiKjFmGi0MjKZrMH/3Nzc6rU9fvw4JkyYAG9vb7i6umL48OH45ZdfLNBrwy1evLjRmGUyGZRKpai2r7/+ugWjaNyrr76KqVOnokuXLpDJZOjcuXOT7Q8ePIhRo0bB3d0dHh4euPPOO/HXX3812DY3NxfTp09Hu3bt4OzsjEGDBmHjxo3GD0IisTFrNBqsXr0a48ePR+fOneHs7IwuXbrgX//6F44dO1av/blz5xq9/2FhYSaOqmlS7vODDz7YaBybNm2q1768vBzx8fEIDg6Gk5MTunbtiqVLl0Kr1ZowouaJjbmp+1bz3xdffCGqvaXv84kTJxAfH48hQ4agXbt2cHd3R//+/bFs2TKUlJTUay/lNbqwsBBz586Fv78/VCoVevfujQ8++ACCIJg6rCaJjVkQBHz++ee47777EBISAhcXFwQFBWHcuHE4ePBgg9eW8n5nTlLus9T3paqqKrz11lvo2bMnVCoVAgMD8cwzzzT480NkThx/cvzJ8SfHn7Vx/Gk999nexp/2OPYEbG/8qTDZlclgw4cPx+zZs+scqz3gAYDTp08jMjISCoUC8+fPh6enJ1avXo2YmBj8+OOPGDVqlDm7bLBJkyYhJCSk3vHU1FSsWLECY8eOrXfurbfeQtu2bescGzhwoMn62BLPP/88fHx8EB4ejoKCgibbJiUlISoqCv7+/khISAAArFy5EsOHD8f+/fvRp08ffdv8/HwMGzYMly9fxtNPP42AgAB8+eWXiI2NxSeffIKHHnrIlGE1SWzM586dw+zZszFs2DDExcXBz88PZ86cwQcffIBvv/0WiYmJGDFiRL3HTZw4EZMmTapzzMvLy8hRSCPlPtf47LPP6h0bPHhwvWP33nsvtm7dipkzZ2Lo0KE4cOAAFi1ahFOnTmHdunUt7LnhxMbcrl27BmMFgMcffxxlZWWIiYmpd84a7/Mnn3yCVatWYdy4cfj3v/8NpVKJPXv24MUXX8SGDRuQlJQEZ2dnANJeoysqKhAdHY0jR45g7ty56NWrF3788Uc8+uijyMvLw+LFiy0UsfiYy8vL8cADD6B///647777EBwcjIsXL+LDDz/E0KFDsX79ekybNq3e9cW835mblPtcQ+z70rx58/Duu+9i4sSJeOaZZ3Ds2DG8++67OHLkCHbt2gW5nN//kuVw/MnxJ8efHH/W4PjzBkvfZ3sbf9rj2BOwwfGnQFYFgDBjxoxm202dOlWQy+XCkSNH9MeKioqEoKAgoXv37kJVVZXpOmkGs2fPFgAIP/zwg/7YSy+9JAAQzp49a7mOSXT69Gn9n3v37i106tSp0bYRERGCu7u7kJ2drT+WnZ0tuLu7C9HR0XXaPvfccwIAYdu2bfpjOp1OiIiIEHx8fISioiLjBSGR2JivXr1a5+e3xtGjRwVHR0dh4MCBdY6fPXtWACC89NJLRuytcUi5zzNmzBDEvvRu375dACA8/fTTdY4//fTTAgBh3759BvXXGKTE3JD9+/cLAIQpU6bUOW7N9zk5OVkoKCiod/yFF14QAAjvvfee/piU1+hVq1YJAIR33323znUnTZokKJVK4dy5c8YPRiSxMWu1WmHv3r312l26dElo06aN0L59e6GysrLOObHvd+Ym5T5LeV9KT08XZDKZMGnSpDrH3333XQGA8MUXX7S470SG4vizGsef1Tj+vMGaxyUcf3L8aYvjT3scewqC7Y0/+dW5laqoqEBxcXGD50pKSrBt2zZERUWhf//++uNubm6YNWsWTpw4geTkZDP11PhKSkrw9ddfIyAgAHfeeWeDbdRqNXQ6nZl7Jl2XLl1EtTt16hSSk5MxdepU+Pv764/7+/tj6tSp2LVrFy5duqQ//uWXX6Jr1651vnF3cHDA3LlzkZ+fjx07dhgvCInExtymTZs6P781QkNDERYWhvT09EYfq9FoUFpaamgXjU5szLUJggC1Wo2qqqpG23z55ZcAgKeeeqrO8Zq/f/7555Kf11gMibm2NWvWAABmzZrVaBtru8+DBg2Cp6dnveP33nsvAOh/ZqW+Rn/55ZdwcXHBww8/XOe6Tz31FLRaLb755hsTRCOO2JgVCgVuv/32eu06dOiA22+/HZcvX8bly5cbfI6m3u8sQWzMN2vufemrr76CIAj1fp8ffvhhuLi4WPT3magGx58cfwIcfzbG2sYlHH9Kx/Gn9Y8/7XHsCdje+JOJRiu0adMmuLi4wN3dHe3bt8fcuXNRWFioP5+amory8nIMHTq03mOHDBkCAK16oLdx40ao1Wo8+OCDcHBwqHe+b9++8PT0hEqlQmRkJH788UcL9NK4au5XY/dUEAQcPnwYAHDx4kXk5OTo7/XNbWtfrzWqqqrCxYsX0aFDhwbPv/HGG3BxcYGrqysCAwMRHx+P8vJyM/ey5Tw9PeHp6QlnZ2dER0c3uJdIcnIy/P39ERgYWOd4YGAg/Pz8Wu19Li4uxoYNG9CpUydER0c32KY13efs7GwA0P/MSnmNrqqqQkpKCgYMGACVSlWn7eDBgyGTyazyPt8cc3NtHR0dG1x61Nz7nTVpKmYx70vJycmQy+X1lqipVCr079/fKu8z2ReOPzn+rI3jz7pa07ikKRx/cvwJtM7xpz2OPYHWO/7kHo1WZvDgwZg6dSpCQkKgVquxY8cOrFy5Er/++iv2798PNzc35ObmAkCdbx5r1BzLyckxa7+Nae3atZDJZJg5c2ad415eXpg9ezYiIyPh7e2N48eP4+2338bdd9+NTz75BA8++KBlOmwEUu6prd//Dz/8EBcvXsSiRYvqHJfL5Rg5ciQmTJiATp064cqVK9iwYQNefvllHDhwAImJiQ1+MLA2vr6+mDdvHgYOHAhXV1f8/fffePvttzF8+HDs2LGjzt4pubm5CA0NbfA6/v7++jee1uabb75BcXExnn322Xp7grS2+1xZWYmXX34ZCoUC999/PwBpv6PXr19HWVlZg22dnJzQtm1bq/t9bijmxuzYsQOHDh3CAw880OBAtrn3O2vRWMxS3pdyc3PRtm1bODk51bu+v78/9u/fj4qKCjg6OpojJKI6OP7k+PNmHH9Wa23jksZw/MnxJ9B6x5/2OPYEWvn40yQLssmoli1bJgAQli5dKgiCIKxfv14AIKxdu7Ze29OnTwsAhCeffNLMvTSOzMxMAYBwxx13iGp/9epVwdfXV/Dy8rLovjBiNLWPSEJCggBA2L17d71zu3fvFgAIb731liAIgvDbb78JAIRFixbVa1tZWSkAEMaPH2/EnhtO6t4p+/btE5ycnIR+/foJZWVloh7z8MMPCwCEzz//3MBeGpch+8WcOHFCcHFxEUJCQuocl8vlwvDhwxt8zPDhwwVPT08De2lcUmMeMmSIIJfLhfPnz4t+jLXd5xqPP/64AEB45ZVX9MekvEZfuHBBACA88MADDV4/MDBQ6Nevnym6brCGYm7IiRMnBB8fH8Hf31+4fPmyqGvf/H5nLcTGLAiNvy916dJFCAwMbPAxDzzwgABAuH79urG6TNRiHH82juPPujj+tDyOP5vH8WfrHX/a49hTEFr3+JNLp1uB5557Do6Ojti+fTsAwMXFBQAanMat0WjqtGlt1q5dC6DpfTNqa9OmDR555BEUFBRg//79puyaSUm5p7Z6/w8fPoy7774bfn5+2L59e71voBrzwgsvAID+96M16tatG2JjY3Hq1CmcOHFCf9zFxaXR5RoajaZV3ueMjAwkJSUhOjoaQUFBoh9njfd50aJFWLlyJWbPno2FCxfqjxvr97mmvTXd58ZivtnZs2dxxx13QCaT4ccff0S7du1EXf/m9ztrIDbmGo29LzX3+1zThshacPzZOI4/m27bmnD8yfFnU6zxPtvb+NMex55A6x9/MtHYCiiVSvj5+eHq1asAAD8/PwANL0+oOdbQNGhrp9PpsH79erRp0wYTJ04U/bjOnTsDgP7fpzWSck9t8f6npKQgOjoanp6e2LNnj6T+BwYGwsHBoVXff6Dhn2M/P79Gly3k5OS0uvsMSP8wV8Pa7vPixYuxdOlSPPTQQ/jwww/rnJPyO+rt7Q1nZ+cG25aXl+Pq1atWc5+birm2c+fOYcSIESguLsbOnTvRp08f0c9x8/udpYmN+WaN/T5fvXq1wcFeTk4O2rZty2XTZFU4/mwax5+Nt20tOP7k+LM51naf7W38aY9jT8A2xp9MNLYCGo0G2dnZ+g1A+/TpAycnJxw4cKBe26SkJADVVYtam++//x55eXmYNm1ag3sINObkyZMAxG0Ma60iIiIAoNF7KpPJMHDgQABAx44d4e/vr7/XN7cFWtf9T0lJwahRo+Du7o49e/agU6dOkh5/5swZVFZWtur7DzT8cxwREYGcnBxkZWXVaZuVlYXc3NxWdZ+B6gpvn332Gdq1a4fx48dLeqw13efFixdjyZIlmDFjBtasWQOZTFbnvJTXaLlcjvDwcBw5cqTeAODQoUMQBMEq7nNzMdc4d+4coqKiUFhYiJ07d2LAgAGSnufm9ztLEhtzQxr7fa6qqsKhQ4fqtNVoNPjrr7+s4j4T1cbxZ9M4/qzbFmhd95/jz2ocfzbNmu6zvY0/7XHsCdjQ+NPoi7HJYFevXm3w+LPPPisAEP7v//5Pf2zKlCmCXC4X/vrrL/2xoqIiISgoSOjWrZtQVVVl8v4a29133y0AEFJTU+ud02q1QkFBQb3jFy5cEHx8fIQ2bdoIpaWl5uimwZrbR2TQoEGCu7u7kJOToz+Wk5MjuLu719szqOZnYtu2bfpjOp1OiIiIELy8vAS1Wm30/huiuZhTUlIEHx8fITAwUDh9+nST12ro96OyslK49957BQDCN99809LuGkVTMRcXFze4909KSorg6Ogo9OrVq87xH374QQAgPP3003WOP/300wIA4ffffzdav1tC7B45GzdubDCe2qz9Pi9ZskS/p01lZWWj7aS8Rq9cuVIAILz77rt1rjFp0iRBoVAIZ8+eNXocUoiN+dy5c0Lnzp0FT09P4dChQ01eU8r7nSWIiVnq+1Jqaqogk8mESZMm1Wn/7rvvCgCEzz77zLhBEInE8SfHnxx/Ns7axyU1OP5sHMefrW/8aY9jT0GwrfGnTBAEwTQpTJJq3rx5SEpKwogRIxAUFITi4mLs2LEDe/bswS233II9e/bA2dkZAHDq1CkMHjwYSqUS8+bNg4eHB1avXo20tDRs374dMTExFo5GmtzcXAQFBWHgwIE4ePBgvfMFBQUIDg7GhAkT0KtXL311pTVr1qC4uBhfffUVpk6daoGeN+2zzz7D+fPnAQDvvfceKioq8MwzzwAAOnXqhAceeEDfdv/+/RgxYgQCAgIwd+5c/WPy8vKwb98+9OvXT9/22rVrGDhwIK5du4ann34a/v7++Oqrr7B3716sWbMGcXFxZoyyLrExnz9/HgMHDkR+fj5eeukldO3atd61Jk6cCFdXVwDApEmToFarERkZicDAQFy9ehWbN2/G4cOHMX78eHz77bf1KsiZi9iY//rrL4wZMwYTJkxAt27d9FX/PvnkE8jlcvz8888YNmxYnWuPHTsWP/zwA+Li4jB06FAcOHAAa9euxbRp0/DZZ5+ZN9BapPxs1xgzZgwSExORkZGBXr16NXhda77Pq1atwuOPP46goCC8/PLL9frRoUMHREdHA5D2Gl1RUYHIyEj8/fffeOKJJ9CrVy/s2LED3333HV588UW8/PLLZo2zNrExFxUVoV+/fjh79izmzp2LwYMH17tWdHS0/htWKe935iY2ZkPel+bOnYuVK1di4sSJuOuuu3Ds2DG8++67uPXWW/HLL79Y7Geb7BvHnxx/cvxZF8efHH9a0322t/GnPY49ARscf5okfUkG2bJlizB69GjBz89PcHJyElxcXIR+/foJy5Yta/BbqIyMDGHcuHGCp6en4OzsLNx6663Czp07LdDzlqup9vTxxx83eF6j0QhxcXFCWFiY4OXlJSgUCsHX11eYPHmycPDgQTP3Vrzbb79dANDgf7fffnu99vv37xdGjhwpuLq6Cm5ubsLo0aOFw4cPN3jt7OxsYdq0aUKbNm0EJycnYcCAAcLXX39t4oiaJzbmPXv2NNqu5r/a36StWbNGuP3224UOHToISqVScHNzE2655RZh1apVTX7TZQ5iY7548aIwbdo0oUePHoK7u7ugUCiEwMBAYfr06cKxY8cavHZZWZnwwgsvCJ06dRIcHR2F4OBgISEhQaioqDBTdA2T+rN94cIFQS6XC5GRkU1e15rv84wZM5r8eb05bimv0devXxcee+wxoWPHjvrZBe+9957FZweJjfns2bPN/j7v2bNHf12p73fmJDZmQ96XdDqd8Prrrwvdu3cXHB0dBT8/P2HevHlWX7WWbBvHnxx/cvzJ8efNOP60nvtsb+NPexx7CoLtjT85o5GIiIiIiIiIiIhajGt0iIiIiIiIiIiIqMWYaCQiIiIiIiIiIqIWY6KRiIiIiIiIiIiIWoyJRiIiIiIiIiIiImoxJhqJiIiIiIiIiIioxZhoJCIiIiIiIiIiohZjopGIiIiIiIiIiIhajIlGIiIiIiIiIiIiajEmGomIiIiIiIiIiKjFmGgkIiIiIiIiIiKiFmOikYiIiIiIiIiIiFqMiUYiIiIiIiIiIiJqMSYaiezE3r17IZPJIJPJ8PjjjzfY5vLly3B0dIRMJkNUVJR5O0hW79y5c1i8eDH++usvS3eFiIiIWgGOP6mlOP4kan2YaCSyMyrV/7N332FNXf8fwN8JBMIeIkNAEHHhRnFbR9174qriqqPDVm2ttu4uq9W237Zqax111UrVqrV14WwdRVw4cA9w4GCDSIDz+4NfUmMCSUggjPfreXyEc86953NzT0Lyybn3yLFx40Y8f/5co27dunUQQsDS0tIMkVFJd/v2bcybN49v9IiIiMggfP9JhcX3n0SlDxONROVM3759kZiYiO3bt2vUrV69Gt26dYO1tbUZIiN9pKamFqqO/vPs2TNkZ2ebOwwiIqJyg+8/Sze+/zQe339SecJEI1E5ExwcjHr16mH16tVq5f/++y8uXryIUaNG5bvtqVOn0LdvX7i5ucHa2ho1atTAp59+qvFH899//8XIkSNRvXp12NrawsHBAS1btsS2bds09jly5EhIJBIkJydj4sSJcHd3h1wuR8uWLXHy5Em9jyslJQUfffQRatWqBblcjgoVKqBVq1bYtGmTWrvz58+jb9++qFChAuRyOYKCgrBw4ULk5OQYFZcQAitWrEDTpk1hb28Pe3t71K1bF7Nnz1a1mTt3LiQSCW7fvq2xvb+/v8blQhKJBCNHjkRERARatWoFe3t79OzZU639mTNn0LlzZzg5OaFevXqqba9du4bhw4fDy8sLVlZW8Pf3x/vvv4/09PRCHeeaNWvQrl07AMCoUaNUl0HpusRJuX9tlMf3orVr16JJkyZwdnaGnZ0dAgICMGzYMDx+/FitnaHH9/jxY4wePRoeHh6ws7NDXFycQf0RERFR4fH9J99/FuY4+f6TqHTi/HSicmj06NGYMmUK7t27B29vbwDAqlWr4O7ujh49emjdZteuXejXrx8CAwMxdepUuLq64vjx45g9ezbOnj2L8PBwVdtt27YhJiYGoaGh8PPzw9OnT/Hzzz+jX79+2LBhA4YOHaqx/86dO6NixYqYPXs2nj59iiVLlqB79+64desWHBwcCjyepKQktGrVChcvXsSAAQMwceJE5OTk4MyZM/jjjz8wePBgAHlvVNu0aQOZTIY333wTnp6e2LlzJz744AOcO3cOGzZsKHRcw4cPx4YNG9C0aVN89NFHcHZ2RkxMDH777TfMnz9f90nJx6lTp7Blyxa8/vrrCAsLU6u7e/cu2rdvj4EDB6J///5IS0sDAERFRaF9+/ZwdnbG+PHj4e3tjXPnzuF///sf/vnnHxw+fBgymcyg43zllVfw4Ycf4rPPPsO4cePQunVrAICHh0ehj+1l69atQ1hYGFq3bo358+fDxsYGsbGx+PPPP/Ho0SNUrFix0MfXsWNHeHp6YtasWUhPT4e9vb3e/REREZHx+P6T7z/5/pPvP6mcEERULhw8eFAAEIsWLRJPnjwRVlZW4tNPPxVCCJGRkSGcnJzE1KlThRBC2NnZiTZt2qi2ffbsmfDw8BCtW7cWCoVCbb9LliwRAMTBgwdVZWlpaRr9p6eni+rVq4tatWqplYeFhQkAYuLEiWrlmzdvFgDE8uXLdR7bxIkTBQDxww8/aNTl5OSofm7RooWwsLAQ586dU5Xl5uaKgQMHCgBi//79hYrr119/FQDEa6+9ptbfy/3PmTNHABC3bt3SiNPPz0/tMRdCCAACgNi3b5/W9gDEihUrNOrq1asnatSoIVJSUtTKt27dKgCI1atXF+o4lWPoxe11Ue5fGwAiLCxM9Xvfvn2Fg4ODxhh7WWGOb9iwYRr70bc/IiIiKhy+/+T7T77/VMf3n1Qe8NJponKoQoUK6NWrF9asWQMA2Lp1K5KTkzF69Git7fft24f4+HiMGjUKSUlJePLkiepft27dAAB79+5Vtbezs1P9nJGRgadPnyIjIwPt27fH5cuXkZKSotHH5MmT1X5v3749gLxLFAqSm5uLTZs2oVatWhg3bpxGvVSa9zL36NEjHDt2DL169VK7xEMikeCjjz4CAK2X1ugTl/Kb6C+//FLV38v9F1b9+vXRoUMHrXWurq4alxpFR0fj/PnzGDp0KJ4/f652rlq1agU7Ozu1c6VU2MfflJycnJCRkYFdu3ZBCKG1TWGP77333itUf0RERGQafP/J958v4/tPvv+ksomJRqJyatSoUbh27Rr+/vtvrFq1Ck2aNEFQUJDWtpcvXwaQd8lLxYoV1f7VrFkTABAfH69q/+jRI4wbN051PxI3NzdUrFgRy5cvB5B3qcnLAgIC1H6vUKECAODp06cFHseTJ0+QmJiIBg0aFNju1q1bAIDatWtr1NWqVQtSqRQ3b94sVFzXrl2Dl5eXSS/jUKpevXq+dVWrVoWFhYVamfJczZkzR+Ncubu7Iz09Xe1cKRX28TelDz/8EH5+fujTpw8qVqyI/v3746efflK7yXhhj0/b46hPf0RERGQ6fP/5H77/5PtPvv+ksor3aCQqpzp37gxvb2/MmzcPBw8exLJly/Jtq/y2bdGiRfm+oapUqZKqbadOnXD58mW88847aNy4MZycnGBhYYHVq1dj48aNyM3N1dj+5TcsL/dtLqaMK7+bUgPIdxU6W1vbfLfRVqeMa+rUqejSpYvW7VxcXDTKiurxz++YtR1vtWrVcOnSJURERCAiIgKHDx/G66+/jjlz5uDIkSOoWrVqoY9P22OlT39ERERkOnz/qR++/+T7T6LSjIlGonLKwsICI0aMwOeffw4bGxsMGTIk37bVqlUDkHdJSn6XUSidP38e586dw+zZszFv3jy1up9++sn4wF/i5uYGFxcXnDt3rsB2VapUAQBcvHhRoy4mJga5ubka36rqq3r16ti+fTvi4+ML/FbZ1dUVAJCQkAB/f39VeWZmJh48eIDAwMBC9f8i5bmysLDQea4MVdAb1fy8eMzKnwFo/fYeAKytrdGtWzfVJVF//vknunfvjiVLluD77783+fHp6o+IiIhMh+8//8P3n/rh+0+i0oeXThOVYxMmTMCcOXOwfPlyODo65tuuc+fOcHd3x4IFC5CQkKBR/+zZM9V0f+U3ky9/E3nhwgWt96AxllQqxZAhQ3Dp0iWsXLlSo14Zh7u7O1q0aIGdO3fiwoULavWff/45AKBv376FimHYsGEAgGnTpml8W/7i46C8fGL//v1qbb766iut37IXRsOGDVGnTh0sX75c65up7OxsredQH/b29gBg0Pb5HfPixYs12j558kSjLDg4WK1PUx6fPv0RERGRafH9J99/GoLvP4lKH85oJCrHKleujLlz5+psZ2dnh7Vr16JPnz6oUaMGRo8ejcDAQCQlJSEmJgZbt27Ftm3b0LZtW9SqVQu1a9fGwoULkZGRgRo1auDq1av44YcfULduXURFRZn8OD755BMcOHAAY8eOxd69e9GqVSsIIXDmzBlkZ2dj3bp1AIBvvvkGbdq0QevWrfHmm2/C09MTf/zxB/bs2YOhQ4fi1VdfLVT/AwcOxKBBg7B27Vpcu3YNvXr1gouLC65evYo9e/ao3lh26NABNWrUwOzZs/H06VNUqVIFf//9N06cOAE3NzeTPBYSiQTr1q1D+/btUa9ePYwePRq1a9dGRkYGrl+/jq1bt+Lzzz/HyJEjDd53UFAQHBwcsHTpUtja2sLZ2Rnu7u6qG3drM2TIEHz44YcYN24cYmJi4Orqit27d2t9k9WpUyc4OzujdevW8PX1RVJSEtasWQOJRILhw4eb/Pj06Y+IiIhMi+8/+f7TEHz/SVQKFc/i1kRkbgcPHhQAxKJFi3S2tbOzE23atNEoj46OFsOGDROVKlUSMplMuLu7i+bNm4v58+eLp0+fqtrdvn1bDBgwQLi5uQkbGxsREhIitm7dKubMmSMAiFu3bqnahoWFifxeigCIsLAwvY4vMTFRvP/++6Jq1apCJpMJV1dX0apVK/Hrr7+qtTt79qzo3bu3cHFxEVZWVqJmzZriiy++ENnZ2WrtDI0rJydHfPfdd6Jhw4bCxsZG2Nvbi7p164q5c+eqtbty5Yro3LmzsLGxEU5OTmLgwIEiLi5O+Pn5aTzmBR2/tvYvun37thg/frzw8/NTPR7BwcFi+vTp4u7du4U+zl27domGDRsKa2trAaDAGJROnDghWrRoIaytrUWFChXE66+/LhITEzX2/+OPP4oOHToIDw8PIZPJhKenp+jatas4cOBAkRyfIf0RERGR4fj+Mw/ff/L9Z2H6IyqtJEJwTXUiIiIiIiIiIiIyDu/RSEREREREREREREZjopGIiIiIiIiIiIiMxkQjERERERERERERGY2JRiIiIiIiIiIiIjIaE41ERERERERERERkNCYaiYiIiIiIiIiIyGhMNBIREREREREREZHRmGgkIiIiIiIiIiIiozHRSEREREREREREREZjopGIiIiIiIiIiIiMxkQjERERERERERERGY2JRiIiIiIiIiIiIjIaE41ERERERERERERkNCYaiYiIiIiIiIiIyGhMNBIREREREREREZHRmGgkIqJCOX78OIYNGwZ/f39YW1vDwcEBAQEB6NixI+bNm4cLFy6YO8QSx9/fHxKJBLdv3zZ3KGXWsGHDIJfLERsba+5QVCQSCSQSicHbzZ07FxKJBHPnzjV9UKQ3c56Hy5cvw8LCAu+++26x901ERERUGEw0EhGRwRYtWoSWLVti48aNkMlk6Ny5M3r27Alvb28cO3YMc+fOxZo1a8wdZpk2cuRISCQSPs4vOHnyJH755RdMnDgRvr6+5g5Hp8ImIKn8qFWrFoYOHYqlS5fi6tWr5g6Hyqnbt29DIpHA39/f3KEQEVEpYGnuAIiIqHQ5e/YsPvjgA1haWmLDhg0YOHCgWv2zZ8+wa9cuPH/+3EwRUnk1bdo0WFpaYvr06eYORc3ly5cLtd1bb72FwYMHw83NzcQRkSHMfR5mzZqF9evX48MPP8Rvv/1mlhiIiIiI9MVEIxERGeS3336DEAIDBw7USDICgI2NDQYMGGCGyKg8O3/+PI4cOYLevXvDw8PD3OGoqVmzZqG2c3NzK9FJxrZt2+Lw4cMQQpg7lCJl7vNQvXp1tGjRAr///jvi4uLg4+NjtliIiIiIdOGl00REZJBHjx4BANzd3Qu1/Z07d/Dmm28iMDAQcrkczs7OaNeuHbZu3aq1/Yv3Ndy8eTNatWoFJycnSCQSPH36FNbW1rCzs0NqaqrW7Z8/fw4XFxdYWFjg3r17anWPHz/G9OnTUbt2bdja2sLBwQHNmjXDTz/9pDV50rZtW0gkEhw6dAj79+9Hp06d4OrqColEgrNnzxbq8QDyLvmdOnUqGjVqBHd3d1hbW8PX1xevvfaa1ntdSiQS/PzzzwCAUaNGqS7B1XYptTHHePz4cXTp0gXOzs6wtbVFq1atEBERke9xpKam4vPPP0dISAicnJxga2uLwMBAjBgxAseOHQMA3L17F5aWlnBzc8t31uujR49gbW0NZ2dnpKen6/UYLl++HAAwfPhwjbpatWpBIpFo3Ldx586dqsft6NGjanWXL1+GRCJB8+bNVWUKhQLr1q3DoEGDUL16ddjb28Pe3h7169fH/Pnz84315Uuk16xZo/b7i+fvxfL87g34Yvn9+/cxatQoeHp6Qi6XIygoCN99912+j9ODBw8wduxYeHl5QS6Xo1atWvjiiy+Qk5NT5PcQffDgAd5//33Url0bjo6OsLe3h5+fH3r37p3vTL1du3ahe/fucHd3h5WVFXx9fTF69GjcvHlTo+2hQ4cgkUjQtm1bpKWl4YMPPkBgYCCsra3Rp08ffPvtt5BIJFrHiNKvv/4KiUSCLl26qMp03aPxn3/+waBBg+Dj4wNra2t4eHigRYsWWLBgAZ49e6a1/cCBA1GpUiVYWVnB09MToaGhBb6GjBgxAjk5Ofjxxx/zbfMiY14bz549i6FDhyIwMBA2NjZwcXFB9erVMXLkSJw+fVqv/vXx6NEjfPjhh6hXrx7s7e3h4OCAmjVrYsKECVpf986fP49hw4bB29sbVlZW8PDwQN++ffHPP/9o3f+L4/nPP/9E69at4eDgAEdHR3Tp0qXAY9E3thfHnDbK5/rIkSPzLX/06BEmTJiAypUrQyaTqe7Hqe/fG2P+purzuMydOxdVqlRR9fXia5W+l1Lrem3J7zYS169fx/jx41GjRg3Y2dnB0dERVatWxaBBg7T+LcrNzcX69evRvn17uLq6wtraGgEBAXjnnXcQHx+v0V6f8wAA27dvR8eOHVXPcXd3dzRo0ABTpkzB48eP9XoMiIjKFUFERGSAjz/+WAAQPj4+4v79+wZtu2/fPuHg4CAAiBo1aoh+/fqJNm3aCLlcLgCIGTNmaGzj5+cnAIiJEycKAKJ58+ZiyJAholGjRiIpKUn07dtXABCrVq3S2ufmzZsFANGpUye18rNnzwpPT08BQPj5+YnevXuLjh07quIbOnSoxr7atGkjAIjx48cLiUQiGjRoIIYMGSJatWolzp07p/P4lcdy69YttfJXX31VWFpaivr164tevXqJvn37iurVqwsAwsbGRhw+fFitfVhYmKhataoAIFq2bCnCwsJU/44ePWqSY3zvvfeEpaWlaNSokRg0aJCoU6eOACAsLS014hFCiJs3b4rAwEABQDg5OYnu3buL0NBQ0bRpU2FlZSXCwsJUbfv06SMAiHXr1ml9nD777DMBQLz99ts6H1Mlb29vIZFIxNOnTzXq3njjDQFArFmzRq38nXfeEQAEADF37ly1um+//VYAEB9++KGqLDY2VgAQrq6uomXLlmLQoEGiY8eOwsnJSQAQjRo1EhkZGRr9K/tQOnr0qAgLC1OVv3j+Xnyc5syZIwCIOXPmqO1PWT5q1Cjh6ekp/P39xaBBg0SbNm2EVCoVAMSnn36qEUdsbKzw9fUVAESlSpVEaGio6NKli5DL5aJ///75js/8KMeKPu7fvy88PDwEAFGlShXRp08fMXDgQNG8eXNha2srOnfurLGN8jlvZWUlWrZsKQYMGCCCgoJUY+zkyZNq7Q8ePCgAiCZNmojg4GDh6OgoevbsKQYMGCDGjx8vHj9+LGQymbCzsxOpqala4+zWrZsAIDZu3Kgqy+88CCHE/PnzVeexQYMGYvDgwaJz586icuXKWh/LBQsWCIlEIqRSqWjSpIkYOHCgaNSokeo4d+zYoTWuK1euCACifv36BT/QLyjMa+OePXuEpaWlajyHhoaKXr16iQYNGgipVCo+//xzvfsvyKlTp4S7u7sAINzd3UXv3r3FgAEDRHBwsJBKpRqP9ZYtW4SVlZXqMRgyZIho1qyZACCkUqlYunSpRh/K8Tx9+nQhlUpFq1atxMCBA1WvnXZ2duLKlStGxaYcc23atNF6nKtXr1Y9x7WVd+vWTVSuXFlUrFhR9OvXT/Tt21e1f33+3hjzN1Xfx2Xbtm2if//+qroXX6umTp2q9bjz6zO/15aXXyOFEOLcuXPC3t5eABBBQUGif//+ol+/fiIkJETIZDIxfvx4tfZZWVmid+/eAoCwt7cXbdu2Ff369RMBAQECgPD29hY3btww+DzMmjVLABAymUy0a9dODBkyRHTu3Fn19+748eN6PQZEROUJE41ERGSQ27dvCzs7OwFA2NraioEDB4pvvvlG/P333+LZs2f5bnfv3j3h7OwsZDKZ+OWXX9TqLl++rPogEhERoVanLJfJZGLPnj0a+/39998FANG2bVut/fbo0UMAEOvXr1eVpaenC39/fwFALFmyROTk5Kjq4uLiRHBwsAAgVq5cqbYv5Qc/AGL16tX5Hmt+8vuw9ddff4n4+HiN9itWrBAARM2aNUVubq5anTJRlV8cxh6jRCJRO0+5ubnirbfeEgBEu3bt1LbJyckR9evXFwDEkCFDREpKilr948eP1RKg+/btUyVJX5aTk6OK++LFi1qP7WVXr14VAET16tW11v/2228CgBgxYoRaed26dYWPj49wdnYWrVu3VqtTJmn279+vKktJSRE7d+4UCoVCrW1SUpIqQaUtEaPtQ3RB5Uq6Eo0AxFtvvSWys7NVdeHh4aoP2mlpaWrb9ezZUwAQ/fv3V3uuXrlyRXh5ean2WRSJxrlz56q+MHhZamqqOHbsmFrZ999/r0reXbt2Ta1u2bJlAoAICAhQOxfKpI8ySfb48WONvpRJ7peTzkII8fDhQ2FpaSkcHR3VEsb5nQfluHJ2dlYbJ0LkPV8OHDggkpKSVGV//PGHACAqV64soqKi1Nrv2LFDWFpaCicnJ63JciGEcHV1zTeZrk1hXhvbtm0rAIhNmzZptL93757ez8mCpKSkiEqVKgkAYsqUKeL58+dq9Xfv3hWnTp1S/X7//n1VMm358uVqbbdu3SosLCyEpaWlxpc9ytdbuVwuDh06pCrPyspSjYNRo0YZFZuxiUZlkuvl56oQuv/eGPs31ZDH5datW6ovrAqjMInGkSNHCgBiwYIFGu2fPn2q8Rx6//33BQDRoUMH8eDBA1V5Tk6O+PDDDwUAjdd5Xefh2bNnQi6XC3t7e43XISHyvszT9rebiKi8Y6KRiIgMduTIEdXshxf/WVlZiZ49e2okDYT470PA7Nmzte5zy5YtAoDo27evWrnyA8rLsxeUsrKyhJubm5BIJOLOnTtqdY8ePRKWlpbCwcFBpKenq8qVSYyXE09KUVFRAoBo2LChWrnyg5+22Vf6MHTGmBBCtGjRQgAQFy5cUCvXlWg09hgHDRqksc3jx49V5zkrK0tVvnXrVtWMmhfLC1KzZk0BQERHR6uV79q1q8AP7tooZ2b17t1ba/3Tp0+FRCIRvr6+qrJHjx4JiUQiRo4cKXr37i1kMplqjOTk5AhXV1dhbW1dYPL8RcpkZ+PGjTXqiirR6OfnJzIzMzW2q127tgCglkS4deuWkEgkwtraWu1DuNLSpUuLNNGonFW6bds2nW2zs7OFp6enkEqlWj/cC/Ff0nT79u2qshcTjfnNMlKO1fbt22vUffXVVwKAGDNmjFp5fuehXr16AoD4+eefdR6TEEKEhIQIAOLAgQNa699++20BQHzzzTda65WvBQcPHtSrv8K8NipnjCYmJurVR2EsWbIk33Ogzbx581QJJG2Ur4Uvnzfl6+0HH3ygsU1kZKQAIPz9/Y2KzdhEo5WVlca5UdL198bYv6mGPC7mSDQqv7w5c+aMzv0/efJEyOVy4eLiIp48eaJR/+KXYS8mpHWdh0ePHgnAsJnEREQkBO/RSEREBmvdujViYmLw559/4t1330WLFi1gY2ODrKws7Ny5E61atcIPP/ygts1ff/0FAFoXkAGAV155BQBw4sQJrfV9+vTRWi6TyTBkyBAIIbBu3Tq1ul9++QXZ2dkYOHAgbG1t9Y6lYcOGsLe3x7lz55CZmal3LMZ49OgRVq5cialTp2Ls2LEYOXIkRo4ciYcPHwIArl69atD+jD3Grl27apS5ubnB1dUVWVlZePLkiap89+7dAPLujyiTyfSK74033gDw370VlZYtWwYAmDBhgl77Af67b2iFChW01ru6uqJ+/fqIjY3FtWvXAAAHDx6EEALt27dH+/btoVAoVPdpPHv2LBISEtC8eXPI5XKN/UVGRmLhwoV48803MWrUKIwcORKffPIJAMPPkzHatWsHa2trjfIaNWoAAO7fv68qO3r0KIQQeOWVV+Dp6amxzdChQ/Pt56efflKNxxf/xcTEAIDWuvfee09tH40bNwYAzJgxAzt27EBGRka+/Z09exYPHz5Ew4YNERgYqLVNQa8XHh4eaNasmdbtunfvjgoVKuDQoUMa9+xcu3YtACAsLCzf2JQePHiA8+fPw9bWFkOGDNHZ/smTJ4iMjISbm1u+9/PT9RqoHN/K8a5LYV4blefptddew/Hjx5GTk6NXX4ZQvl6MHj1ar/ZHjhwBkP95Ue7n8OHDWuu1vZZpe44UJjZjNWzYEJUrVy6wTX5/b4z9m2rI42IOyrH4xhtvICIiAllZWfm2PXToEDIzM9G+fXutfwekUilatWoFQPvjkd95qFixIipXroxz585h2rRpxfr6TkRUmnHVaSIiKhRLS0t07dpV9WElMzMTe/bswQcffIArV65g0qRJ6NatG3x9fQFAtXhD3bp1C9xvfjdW9/Pzy3ebsLAwfPvtt1i3bh0++ugjVbkycTBixAi19spYevbsWWAsQN6iCt7e3nrHUhhLly7F1KlTtSb8lFJSUgzap7HHqDxvL3NwcEBCQoLaQi53794F8N+HVH2EhYXhww8/xPr16/HFF1/Azs4Od+/exZ9//gl3d3f069dP730lJSWpYstP+/btcfbsWURERKBatWqqhQTat2+PxMREAEBERAQ6d+6sVveitLQ0DB48GLt27cq3H0PPkzEKOkcA1M6RcrGP/Mauk5MTnJyckJycrFH3999/qxYf0kZbnZ+fH7788kvV72FhYTh06BDWrl2L3r17w9LSEvXr10fbtm3x2muvoUGDBqq2yrEbFRWldYGIF2l7vSjo+WllZYUhQ4bgu+++w/r16zFjxgwAwMWLF3HmzBlUqVJFlZAoiHLMV6lSRa/k+q1btwDkJRyl0oK/58/vNdDR0RHAf+NdH4a+Ni5YsAAxMTHYtWsXdu3aBXt7ezRp0gQdOnRAWFgYKlWqpHff+TH09UI5dpULkrwsICBArd3LtD1PlM+Rl5NXhXktM4Y+f0vya2Ps31RDHhdzmDZtGv7991/s3r0bHTp0gLW1NRo1aoT27dtjxIgRqFatmqqt8rHYsmWLyV8z1q9fj8GDB2PRokVYtGiRarGnbt26YejQoWqJeiIiysNEIxERmYRcLkfv3r0REhKCatWqISMjA7t378brr78OAKqZMUOHDtV71tuLbGxs8q1r1KgRateujYsXL+LkyZNo2rQpLl++jKioKPj7+6tmdigpY+nVqxdcXFwK7FfbjLGCYjFUZGQk3nrrLVhaWmLJkiXo0aMHfHx8VH0MHToUv/zyi9YVogti7DHqSoa8SNcHO20cHR0xfPhwLFu2DL/88gvGjh2LH3/8Ebm5uRgzZgysrKz03pezszOAgpN87du3x5IlS3DgwAFMmDABBw4cQI0aNeDt7Q1vb294eHioEowHDhxQbfOi6dOnY9euXahduza++OILNG7cGK6urpDJZMjKytL6OBYlQ86RUkHnKr/9rVmzRmM1cyBvVdzDhw/rNTalUil+/vlnfPDBB/jjjz9w8OBBHDt2DFFRUVi8eDFmzZqF+fPnA/hv7FauXBnt2rUrcL9NmzbVKNP1/BwxYgS+++47rFu3TpVofDHxps94NnTMK4/J1dVVZ/K/Zs2aWsuVSWDleNeHoa+NXl5eOH78OP7++2/89ddfOHLkCI4ePYoDBw7g448/Rnh4OLp37653/9oU5vXCGEX9WlaQ3NzcAuv1+VuSXxtj/6YW5vWjKOT3GNnZ2eGvv/7CqVOnsGvXLhw+fBgnTpzAsWPH8Pnnn2PZsmUa7y+CgoIQEhJSYH+1a9fWKCvoPLRu3RrXrl3Dnj17sGfPHhw9ehTbtm3Dtm3bMH/+fBw9etTkXz4SEZV2TDQSEZFJVapUCTVr1sTp06fVZg74+vri+vXrmD9/PqpWrWryfkeMGIEPPvgAa9euRdOmTQtMHPj6+qpmXb766qsmj8UQW7ZsgRACkyZNwuTJkzXqr1+/Xqj9FucxKi85M/SysjfffBPLli3D8uXLERYWhpUrV0IqlWLcuHEG7cfDwwMAkJCQkG+bV155BZaWljh06BDu3r2L69evY+LEiar6du3aYfPmzXj06BH+/vtv1UyuF/32228AgE2bNqFOnTpqdYU9T8VFORNNOWPrZSkpKaqZnUUpKCgIQUFBmDZtGrKzs/Hbb7+pLj0fOnQoatasqZppVblyZa0JTmOFhISgVq1auHz5MiIjI9GoUSNs2LABEolEY4ZffpQx3rp1CwqFQmeiR9ne1ta20MekHN/u7u4GbWfIayOQl4B65ZVXVEnIlJQUfP7551iwYAFef/11oy+rrVy5Mi5fvoyrV6+qLo8tiLe3N2JiYnDz5k20bNlSo145m+3lWdnFEZvyC5G0tDSt9S9fnm9KRf031ZQKepx0PUaNGzdWnYvMzEz8+OOPePfddzFp0iSEhobCyclJ9fwKDg4uktcMW1tb9O3bF3379gUA3LlzBxMmTMDu3bsxffp0/PLLLybvk4ioNCsZX2UREVGpoWv2Uk5OjuoyQR8fH1V5ly5dAPyXrDG11157DVKpFL/++isyMzOxYcMGAJqXBhZHLIZQJg+0XcYWExODM2fOaN1O+cEtOztba31xHmOnTp0AAOvWrYNCodB7u9q1a6Nt27aIiorCRx99hIcPH6Jr167w9/c3qH/lZbeXLl3Kt42DgwMaN26Mx48f4+uvvwagPmOxffv2yM3NxYIFC5CWloZWrVppJI8KOleF+aCp3H9+59CUlJcDHz58GPHx8Rr15vigbGlpicGDB+OVV16BEALR0dEAgCZNmsDV1RX//vtvkSVqlPf7W7t2LSIiInDv3j20bNlSdRmuLl5eXqhbty4yMjLw66+/6mzv7e2NOnXqIC4uDidPnjQ4XiEEYmJiIJVKUb9+fYO2NeS1URtHR0d89tlnsLKywoMHD/K9FFdfyteLVatW6dVemfBUJkhftnr1agBAmzZtjIqrMLEpE/g3b97U+tq3d+9eo2PKT3G+xuv6e6OL8nG6cuWKRp0hj5FcLsekSZMQGBiIzMxM1Zdbr776KmQyGXbv3p1v0teU/Pz8MGvWLADA+fPni7w/IqLSholGIiIyyMyZMzFlyhRcvnxZoy41NRWvv/46EhMTYW9vr3az+ffeew8ODg6YO3cuVq5cqbHIgBACkZGR2LdvX6HiqlSpEjp06ICnT5/i/fffR2xsLFq2bKl1pse4cePg4+ODH374AQsWLFC7l53SpUuXsHXr1kLFYgjlZZJr165V+4D05MkTjBo1Kt8PdsrZO9rOA1C8x9i7d2/Uq1cPMTExGD16tMYHvSdPnuDvv//Wuu1bb70FAFi0aBEAwxaBUQoMDISPjw+uXbtW4KxGZWJx2bJlkEgkapflKmd9KhejefmyaeC/c7V06VK18v3792Px4sUGx63rHJpSQEAAunXrhszMTLz99ttq40E5K6oorV27VmvSPC4uDufOnQPw38xYmUyGmTNnIisrC71798bZs2c1tsvIyMDGjRu1Jk31oUy+bdq0SZVU0mcRmBcpEw2TJk3CwYMHNeoPHTqkds9L5WM8ZMgQrQuXKBfTUi6y86KrV68iISEB9erV03krhJcZ8tq4ePFixMXFaZTv27cPWVlZcHR0VLt0e8aMGahZs6bqEnR9jB07Fl5eXoiIiMAHH3ygcT/A2NhYREVFqX5//fXXYW9vj/3792PFihVqbXfs2IH169fD0tISkyZN0jsGU8Xm7+8Pf39/JCYm4n//+5+qXAiBTz/9FMeOHTM6pvwU9d/UF1WsWBFWVlaIj48v1Mxn5Wvtl19+ifT0dFV5VFSU6nn0sqVLl6oW73pRdHQ07ty5A6lUqvoy09PTExMnTsSTJ0/Qt29f1SzXFyUlJeGHH34wKFl6584drFy5EqmpqRp1f/zxBwDoXMyHiKhcMsta10REVGq98847AoAAIPz9/UXPnj3F0KFDRfv27YWjo6MAIKytrcVvv/2mse2+ffuEs7OzACB8fHxE586dxdChQ0Xnzp2Fh4eHACA++OADtW38/PwEAHHr1i2dsW3YsEEVGwDx448/5tv27NmzwsfHRwAQFStWFK+++qoYNmyY6N69u6hcubIAIAYNGqS2TZs2bQQAcfDgQb0eq5dpO5aEhARVHO7u7qJfv36iZ8+ewsHBQdSoUUP06dNHABCrV69W29eZM2eEVCoVUqlUdOrUSYwePVqMGTNG/PPPP0V6jPmdj+vXr4sqVaoIAMLZ2Vn06NFDDBo0SDRt2lRYWVmJsLAwrftTKBSqGP38/EROTo6+D6eaiRMnCgAiPDw83zb79+9XjY0GDRrke2wAxKlTpzTqf/31V1V9w4YNxZAhQ0Tz5s0FADF9+nRV3cvyK588ebLq3AwaNEiMGTNGjBkzRlU/Z84cAUDMmTNHbbv8ypXCwsK0jpk7d+4Ib29vAUB4e3uL0NBQ0a1bNyGXy0Xfvn1VY+LevXta9/sy5VjRR+/evQUA4evrK3r06CGGDRsmOnbsKORyuQAgQkNDNbZ56623BAAhkUhEw4YNRf/+/UVoaKho2rSpsLa2FgDE5cuXVe0PHjwoAIg2bdroFVPHjh1V58bGxkYkJydrbVfQ4z1r1iyNMdGlSxfVY/ny8+SLL74QUqlUABBBQUGiT58+YvDgwaJ169bC3t5eABB//fWXRj9Lly4VAMSsWbP0OraX6fva6OTkJCQSiahdu7bo37+/GDJkiGjWrJmQSCQCgPj+++/V2ivHWn7P7/ycPHlSuLm5CQDCw8ND9O3bVwwYMEAEBwcLqVSq8Vhv2bJFWFlZqR7noUOHihYtWqjGx9KlSzX60PW3I7/npaGxrV+/XrWvpk2biv79+4vAwEBhZ2cn3n77ba2Pz+rVq3U+bvr8vSmKv6n5PS59+/ZVvU4PHTpUjBkzRmPf+Xn8+LHw8vJSvfb069dPtGjRQlhaWooZM2Zo7bN+/foCgAgMDBR9+vQRQ4cOFW3atBGWlpYCgHj//ffV2j9//lz069dPABAymUw0adJEhIaGqs6dcrtnz56pttF1Hs6cOaN6T9OsWTMxePBgMWDAAFG9enUBQNjb24uTJ0/q9RgQEZUnTDQSEZFBnjx5IjZu3ChGjRolGjRoIDw8PISlpaVwcHAQ9evXF++++664fv16vtvfu3dPTJs2TdStW1fY2dkJGxsbUaVKFdGxY0fx9ddfayQ5DEk0ZmRkqJKdcrlcJCUlFdg+ISFBfPzxx6Jx48bCwcFBWFtbi8qVK4tXXnlFfPbZZxrHURSJRiGEePDggRg9erTw8/MT1tbWwt/fX7z77rsiMTEx36SREEKEh4eLpk2bqhIU2tqZ+hgLOh9JSUli7ty5ol69esLW1lbY2tqKwMBAERYWJo4fP57v4/Laa68JAOLTTz/Nt40u586dEwBEz549823z7NkzVYJqypQpGvWjR48WAISLi0u+Cc/9+/eL1q1bC2dnZ2Fvby+aNm0q1q5dK4TI/wN6fuUZGRliypQpokqVKkImk2m0M3WiUYi859/o0aOFh4eHsLa2FtWrVxeffPKJyMzMFFZWVkIqlap9EC+IIYnGw4cPi0mTJonGjRsLd3d3YWVlJXx8fMSrr74qfvnlF5Gdna11uwMHDoiBAwcKb29vYWVlJVxcXERQUJAICwsTW7duFVlZWaq2hiYaX0wQDR48ON92uh7vgwcPir59+woPDw8hk8mEu7u7aNGihVi4cKHWxzIqKkqEhYUJf39/YW1tLRwdHUWNGjXEwIEDxfr160VaWprGNs2bNxcWFhbi7t27eh3by/R9bVy3bp0YMWKECAoKEs7OzsLGxkZUrVpVDBo0SO1LDKXCJhqFEOL+/fti6tSpokaNGkIulwsHBwdRs2ZN8cYbb4iLFy9qtD979qwYMmSI8PT0FDKZTLi5uYnevXuLo0ePat1/YRNqhYnt119/FcHBwcLa2lo4OzuL3r17i4sXL+abyDJVolEI0/9Nze9xefLkiRgzZozw8fFRJe38/PwKjO1F169fFwMGDBAuLi5CLpeLBg0aiFWrVuXb586dO8W4ceNE/fr1RYUKFYS1tbXw8/MTPXr0EH/++We+/WzdulX06NFD9Xx0c3MT9erVExMmTBC7d+9Wa6vrPKSkpIglS5aIXr16iYCAAGFnZyccHR1FUFCQePfdd/V6X0JEVB5JhDBwGUsiIiIiE0lPT4e3tzeePXuGu3fvqhZ2KYw2bdrg2LFjuHv3Lry8vEwYZdn3zz//oFWrVqhduzYuXLhg7nDoBVevXkWNGjXQv3//EnFfWSIiIqKC8B6NREREZDZLlixBcnIyBg8ebFSSEQAWLlyInJwcLFiwwETRlS3Z2dla75N45coV1Urfht6nkIrexx9/DJlMhs8++8zcoRARERHpxBmNREREVKyuXLmCRYsWIS4uDnv37oWNjQ0uXLiAKlWqGL3vYcOGYcuWLbh27ZrW1aHLs7S0NDg4OMDf3x81a9aEo6Mj7ty5g6ioKGRnZ+OVV17B/v37NVbbJvO5fPky6tSpg7ffflu1WjoRERFRScZEIxERERWrQ4cOoV27dpDL5ahbty4WLlyItm3bmjusMi87OxuzZs1CREQEbt26haSkJNja2qJWrVoYPHgw3njjDVhZWZk7TCIiIiIqxZhoJCIiIiIiIiIiIqPxHo1ERERERERERERkNCYaiYiIiIiIiIiIyGhMNBIREREREREREZHRmGgkIiIiIiIiIiIio1maO4Cy5v79+/jjjz8QEBAAOzs7c4dDRERERERERERksPT0dNy8eRM9evRApUqV9NqGiUYT++OPPzB+/Hhzh0FERERERERERGS0H374AePGjdOrLRONJhYQEAAg7yTUrVvXzNGYlkKhQEpKChwdHSGTycwdDpVAHCOkC8cI6YPjhHThGCF9cJyQLhwjpAvHCOmjLI+T6OhojB8/XpXr0gcTjSamvFy6bt26aN68uZmjMa2srCwkJCTA1dUVVlZW5g6HSiCOEdKFY4T0wXFCunCMkD44TkgXjhHShWOE9FEexokhtwbkYjBERERERERERERkNCYaiYiIiIiIiIiIyGhMNBIREREREREREZHReI9GIiIiIiIiIiIq1ZIzFAiPisX+y/FIzcyGg9wSHYM8MSDYB062ZWuRlpKMiUYiIiIiIiIiIiq1NkfGYvb2C8jMzlUrP3EzAYt2x2B+7zoIDfE1U3TlCxONZpKdnY2HDx/i+fPnyM3N1b1BCZCbmwuFQoHk5GRIpbzqXiKRQCaTwcHBAS4uLpBIJOYOiYiIiIiIiKhc2RwZi2lbzudbn5mdq6pnsrHoMVtkBtnZ2bh79y5SU1OhUCgghDB3SHpRJtaYUAOEEMjOzkZGRgbi4+Nx69YtKBQKc4dFREREREREVG4kZygwe/sFvdrO3nEByRn83F7UOKPRDJQzGR0dHVGpUqVSk7jLzc1FTk4OLCwsOKMReclGhUKB+Ph4pKWl4enTp/D09DR3WERERERERETlwm+n4zQul85PpiIXW07HYXSrKkUcVfnGbJEZPH/+HBKJpFQlGUmTRCKBlZUVvL29IZFIkJaWZu6QiIiIiIiIiMqNfZceGtg+vogiISUmGs0gNzcXUqmUScYyQiqVQiqVlppL4ImIiIiIiIjKgtTMbIPap2Ty0umixkSjmTDJWLbwfBIREREREREVLwe5YXcEdJTLiigSUmKikYiIiIiIiIiISp2OQYatk9AxyKOIIiElJhqJiIiIiIiIiKjUGRDsA7mlfqktuUyK/o18ijgiKvGJxs8//xwDBw5EQEAAJBIJ/P39C2x/8uRJdOjQAQ4ODnB0dESXLl1w9uxZrW3v37+PESNGoGLFirCxsUHjxo0RHh5u+oMgIiIiIiIiIiKTcrKVYX7vOnq1nd+rDpxseOl0USvxicYPP/wQBw4cQNWqVeHi4lJg2xMnTqBNmza4desW5s+fj3nz5uHatWto3bo1oqOj1domJCSgVatW2Lp1KyZOnIhvvvkG9vb2CA0NxerVq4vykIiIiIiIiIiIyARCQ3wxqqV/gW3m9aqN0BDf4gmonDPsrplmcOPGDQQEBAAA6tSpg7S0tHzbTpo0CVZWVjhy5Ai8vb0BAKGhoahVqxamTp2KvXv3qtouWLAAt27dwo4dO9CzZ08AwJgxY9C8eXO89957GDhwIOzt7YvwyIpGcoYC4VGx2H85HqmZ2XCQW6JjkCcGBPvAyZaZe22uXLmCFStW4PTp0zh9+jSSk5MxZ84czJ0719yhEREREREREZEO8SmZqp/rVHKEQF5+JC7pGQBAKuUCrsWlxM9oVCYZdbl+/ToiIyMxcOBAVZIRALy9vTFw4EDs378fDx8+VJVv3LgRVatWVSUZAcDCwgJvv/02EhIS8Oeff5ruIIrJ5shYNP1sPz7ZdRknbibg4v0UnLiZgI//uISmn+3H5shYc4dYIh0/fhxLlixBbGwsGjVqZO5wiIiIiIiIiEhPCelZ2HcpHgAQ4GaHnW+3wq5JrbFpfDNI/j+/uPHkXQghzBhl+VHiZzTqKzIyEgDQvHlzjbpmzZph1apViIqKQvfu3fHgwQPcu3cPw4YN09pWub/Q0NAC+4yNjUVcXJxamfISbYVCgaysLK3b5ebmQiKRIDc3V/eB6WnzqVhM33oh3/rM7FxM23IeuSIXoY0LN11YCKH6Z8rYza1Hjx548uQJnJ2dcerUKTRt2tTgY1Q+Lvmd8/JCoVAgOzsbCoXC3KFQCcUxQvrgOCFdOEZIHxwnpAvHCOnCMVI6bDl1F4qcvCRi3wZeqvPlbmeJVwLdcPjaE1x+kIJTt56gvo+Tyfsvy+OkMMdUZhKN9+/fBwC12YxKyrJ79+4Z3LYgK1euxLx587TWpaSkICEhQWudQqGATCZDTk6Ozj70kfxMgTk7LunVdu7OS+hQs2KhboAqhFDFLJHoP+04NTUVixYtQkREBG7evInU1FT4+vqib9++mDlzJmxtbQEAhw8fRseOHfHTTz8hNTUV33//PWJjY+Hr64s333wTb775ptp+O3TogDt37mDPnj147733cOTIEQgh0K5dOyxcuFDv2bBOTnkvNDk5OarkYm5urkHnRwgBhUKR7zkvLxQKBdLS0iCEgEzGS/VJE8cI6YPjhHThGCF9cJyQLhwjpAvHSMknhMCmyLsAAKkEaOtvo/a5vHtNJxy+9gQAsPafG/ioo7/JYyjL4yQlJcXgbcpMojEjIwMAYG1trVEnl8vV2hjStiBjxoxB586d1cqio6Mxfvx4ODo6wtXVVet2ycnJkEgksLCw0NmHPn4/dxfPs/WbfZepyMX2cw913ihVG+U0YwsLC4MSjQ8fPsTq1avRr18/DB06FJaWljh8+DAWL16Mc+fOYffu3QAAqTTvSv6lS5fi4cOHGDduHBwcHLBp0yZMnjwZSUlJmD17tmq/EokE6enp6NixI5o0aYLPPvsM165dw7Jly/Dvv/8iKioKnp6eBh2jMgapVGrQ+ZFIJJDJZPme8/JCoVBAIpHAxcWlzL3AkmlwjJA+OE5IF44R0gfHCenCMUK6cIyUfBfup+DGk7z7ML5SzQ01KqvnAHo4OePLQ3F4lPoc+68mYm7vunCQm/ZcluVx4ujoaPA2ZSbRqJwV9/z5c426zMxMtTaGtC2Ir68vfH21X4Ysk8lgZWWlte7FZNbLhv10AvcSn+ns+0UPkzN1N3rBoj1XsO7EHYO28XaxwbrRTSCRSCCRSLTGnp/AwEDExsaqPeHeeustzJo1C5988glOnTqFJk2aqPZ59epVXL58GT4+Pqq2rVq1wqeffoqxY8eqygHgyZMneOedd/D111+rytq0aYN+/fph/vz5WL58uUHHqYzB0GNUPi75nfPyxNLSssDxT8QxQvrgOCFdOEZIHxwnpAvHCOnCMVKy/X7uv7U4BjeprHGerAAMDvHF/w5cxzNFLv68+BjDm/ubPI6yOk4Kkzgt8YvB6KtSpUoAtF/yrCxTXhZtSNvidi/xGW4/zTDoX6aesxmVMrNzDe7D0OTni6ysrFSDMzs7G4mJiXjy5Ak6dOgAADh58qRa+2HDhqklE62srDB58mRkZ2dj586dGvufPn262u99+/ZFjRo18Pvvvxc6ZiIiIiIiIiIquTIVOfj9TF4Ox9XOCu1remhtN6hJZdWiMBu4KEyRKzMzGkNCQgDkrSA8duxYtboTJ05AIpGoVhT28vKCt7c3Tpw4obEfZVnjxo2LOGLtvF1sDN7mYXKmQclGuaUUnk5yg/ooTFwvWrp0KZYvX46LFy9qLLKSmJio9nutWrU0tg8KCgIA3Lx5U63c2dlZ6+XRtWrVwu+//4709HTY2dmprTgO5CUvy/tlzkRERERERESl1d5L8UjJzAYA9GngDStL7XPpvJ1t0LZ6RRy88hgxD1NxNjYJDSu7FGeo5UqZSTQGBgaicePGCA8Px8cff6yatXj//n2Eh4ejffv2agmpIUOG4Msvv8TOnTvRs2dPAHmLgXz77bdwdnZGt27dzHIcG8Y2M3iblX/fwsd/6LcYDABM61ITo1tVMbifwq40vWTJEkydOhWdOnXCpEmTUKlSJVhZWeHevXsYOXJksaxg7eXlpfZ7mzZtcOjQoSLvl4iIiIiIiIhML/xUrOrn0BCfAloCQ5v64eCVxwCAjSfvMtFYhEp8onHdunW4cyfvfoKPHz9GVlYWPvnkEwCAn58fhg8frmr7zTffoF27dmjdujXefvttAMC3336L3NxcLF68WG2/06dPR3h4OIYOHYopU6bA29sbv/zyCyIjI/HTTz/BwcGhmI7QeAOCfbBod4xesxrlMin6Nyr4CWhq69atg7+/P/766y+1+x4qF4F52eXLlzXKLl3KS6S+vJJ0UlISHj58qDGr8fLly3B3d4ednR0AYN++fWr1Li58USEiIiIiIiIqje4lPcPf1/NWk67n44SangUvWtKuRkV4OsrxMCUTO8/fx6yeQXA08aIwlKfEJxpXrlyJw4cPq5XNmjULQN6stBcTjS1atMChQ4cwc+ZMzJw5ExKJBC1atEB4eDjq16+vto8KFSrgn3/+wfTp0/H9998jLS0NQUFB2LRpEwYNGlT0B2ZCTrYyzO9dB9O2nNfZdn6vOnCyKd4nk3KV6hfvg5CdnY0FCxZobb9hwwbMnDlTdZ/GrKwsfPXVV7CwsECPHj002i9YsEBtMZht27bhypUrGDdunKpMeT9IIiIiIiIiIirdtkTFQZliGKjHZCpLCylCQ3zxv4hryFTk4vcz9zCiCBaFoVKQaDT08tbmzZsjIiJCr7be3t5Yt25dIaIqeUJD8la/nr39gtaZjXKZFPN71VG1K04DBgzAjBkz0LVrV/Tr1w8pKSnYuHFjvqsXVa9eHU2bNsWECRPg4OCAjRs3IjIyErNmzdJY5dvNzQ1bt27F/fv30bZtW1y7dg1Lly6Fh4cH5s6dq1d8ycnJ+PbbbwHkXWoPAEeOHFHNnO3Vqxfq1atXyKMnIiIiIiIiIlPJzRUIj8q7bNrKUope9fVbzHdQiC++O3ANuSLv8unhzfwgUa4SQyZT4hONpL/QEF90ru2J307HYf+leKRkKuAol6FjkAf6B/vAydY804Lff/99CCGwcuVKvPPOO/D09MSgQYMwatQo1SIvL3r77beRkpKCb7/9Fnfv3kXlypXx9ddf45133tFoa2dnhwMHDmDy5MmYPn06hBDo0qULFi9erHFfxvwkJiaqZskqHTx4EAcPHgQA+Pj4MNFIREREREREVAKcuPUUsQnPAABdanvqnevwdrZB2xruOBDzCDEPU3EmNgnBvFejyTHRWMY42cowplUVjCnEYi9FxcLCAjNmzMCMGTM06vJbVn7SpEmYNGmSXvsPCAjA9u3bCx2fv78/l7cnIiIiIiIiKgXCT8Wpfg5tbNhVm0ObVMaBmEcA8mY1MtFoetrX/iYiIiIiIiIiIipBUjIV+OvCAwB5MxRbVK1g0PZta1SEl5McAPDH+ftIfqYweYzlHRONRERERERERERU4v1x7gEyFXnrUvRv5AOp1LB7LFpaSFWzIJWLwpBpMdFIREREREREREQl3uZTsaqf9VltWptBIb5Q5ic3nrzLW6mZGO/RSCVG27ZtDXqCG7oiORERERERERGVTlfjU3E2NgkA0KJqBfi62hZqP5WcbdCuhjsiYh7hSnwqTt9NQiM/3qvRVDij0UyYMS9beD6JiIiIiIiIik74C7MZDV0E5mVDm1ZW/bzx5F2j9kXqmGg0A4lEgtzcXCanygghBIQQkEgMuzcEEREREREREemmyMnFtv+/n6KDtSU61/Y0an9ta7irLwqTwUVhTIWJRjOQyWQQQkCh4EAuCzIzM5Gbmwtra2tzh0JERERERERU5hyMeYQnaVkAgJ4NKsHGysKo/VlIJRgUkjcr8nl2LradiTM6RsrDRKMZODg4AADi4+ORm5tr5miosIQQePbsGR48eAAAcHR0NHNERERERERERGXP5lP/JQKNvWxaSW1RmH+5KIypcDEYM3BxcUFSUhLS0tJw9epVSKXSUnHZ7YuXCJeGeIuS8rFQJoodHR2ZaCQiIiIiIiIysUepmTh45REAoLqHPer7OJlkv15ONmhf0x37Lz/C1fg0nL6biEZ+ribZd3nGGY1mIJFI4OvrCxcXF1haWpaapJ3ycm9m+fPOoYWFBezt7VGpUiVUqlSp1JxHIiIiIiIiotLi9zP3kJObl4cIbexr0s/eLy4Ks4GLwpgEZzSaiUwmg6encTcvLW5ZWVlISEiAq6srrKyszB0OEREREREREZVhQgjVZdOWUgn6NPQ26f7bVHdHJSc57idnYtf5B5jTozacbGUm7aO84YxGIiIiIiIiIiIqcc7EJuH6ozQAQPua7nCzN+0irHmLwuTNanyenYutXBTGaEw0EhERERERERFRiRN+Klb1s6kWgXmZ2qIwJ7kojLGYaCQiIiIiIiIiohIlIysbO889AABUdLBG2xoVi6QfTyc52tf0AABce5SGqDuJRdJPecFEIxERERERERERlSi7LzxE2vNsAEC/ht6wtCi6FNawFxaF2chFYYzCRCMREREREREREZUom1+4bHpgY58i7euV6hXh7WwDAPgj+gGSMrKKtL+yjIlGIiIiIiIiIiIqMe48TceJmwkAgODKzgh0dyjS/vIWhcm7B2RWdi62nr5XpP2VZUw0EhERERERERFRifFb1H+rPxfVIjAvC23sC4v/XxVm479cFKawmGgkIiIiIiIiIqISISdXqBKNNjILdK/nVSz95i0K4w4AuP4oDae4KEyhMNFIREREREREREQlwj/Xn+BBciYAoGtdTzjIZcXW91AuCmM0JhqJiIiIiIiIiKhEeHERmOK6bFrplWr/LQqzi4vCFAoTjUREREREREREZHZJGVnYezEeAOBXwRZNq7gWa/8WUgkGv7AozBYuCmMwJhqJiIiIiIiIiMjstp+9j6ycXADAwEY+kEgkxR5DaMh/i8L8wkVhDMZEIxERERERERERmV14VN5l0xIJ0C/YxywxeDjK8eoLi8JE3uaiMIZgopGIiIiIiIiIiMzq4v1kXLiXAgBoXa0iKv3/vRLNQX1RmDtmi6M0YqKRiIiIiIiIiIjMKvxUnOrn0Mbmmc2o1PqFRWH+vPAQielcFEZflsZsrFAocPDgQRw6dAgXL17Eo0ePIJFIULFiRdSpUwdt2rRBu3btIJMV31LkRERERERERERUejzPzsHvZ/MWXnG2laFjkIdZ47GQSjCkiS++3Hv1/xeFicPY1gFmjam0KFSiMT4+HkuWLMGaNWvw5MkTCCFgaWkJV1dXCCFw6tQp7Ny5EwsWLICbmxtGjRqFyZMnw8PDvAOFiIiIiIiIiIhKlv2XHiEpQwEA6NPAG9aWFmaOCAht7Iuv9l9DTq7AL//exZhWVcyyOE1pY/Cl0x9//DGqVauGZcuWoWvXrti4cSNu376NrKwsPHz4EPHx8cjKysKtW7ewceNGdO7cGd9//z2qVauGTz75pCiOgYiIiIiIiIiISinlIjAAMKCReS+bVnJ3lKNDrbxFYW48Tse/txLMHFHpYPCMxuXLl+PTTz/FmDFjYGtrm287Pz8/+Pn5YdCgQcjIyMCKFSvwxRdfYObMmUYFTEREREREREREZcOD5Gc4cvUxACDIyxF1vJ3MHNF/hjb1w56L8QCAjf/eRdOACmaOqOQzeEbjjRs38PbbbxeYZHyZra0t3nnnHdy8edPQ7oiIiIiIiIiIqIzaevoeckXez+ZeBOZlrQPd4OOStyjMX9FcFEYfBica5XJ5oTszZlt9paWl4bPPPkPdunXh4OAANzc3tGjRAmvWrIEQQq3tyZMn0aFDBzg4OMDR0RFdunTB2bNnizxGIiIiIiIiIqLyTgiB8FN5l01bWUjRu4G3mSNSJ5VKMKRJZQBAVk7eojBUMIMTjfrIzs7Gli1bsGLFCjx8+LAoutAqNzcXXbt2xaxZsxASEoLFixdj5syZyMnJwahRozB9+nRV2xMnTqBNmza4desW5s+fj3nz5uHatWto3bo1oqOjiy1mIiIiIiIiIqLyKPJ2Im4/zQAAdAzygIudlZkj0jSwkQ8spXmLwGz8967GJDZSZ3Sicdq0aQgJCVH9LoRAhw4dEBoaivHjx6Nu3bq4ceOGsd3o5eTJk/j7778xadIkrFq1CuPGjcO7776Lo0ePokqVKvjhhx9UbSdNmgQrKyscOXIEkydPxuTJk3HkyBFIJBJMnTq1WOIlIiIiIiIiIiqvNp/6bxGYgSXssmmlvEVhPAAANx+n4yQXhSmQ0YnG3bt3o3Xr1qrfd+7ciSNHjuD999/Hxo0bAQALFiwwthu9pKSkAAAqVaqkVm5lZQU3NzfY2dkBAK5fv47IyEgMHDgQ3t7/Tcv19vbGwIEDsX///mKdiUlEREREREREVJ6kPc/GrvMPAACejnK0rlbRzBHlb2jTyqqfN568a8ZISj6DV51+WWxsLKpVq6b6fefOnahSpYoquXjx4kVs2LDB2G700qRJEzg7O2PhwoXw9/dH06ZNkZGRgZ9//hlRUVFYvnw5ACAyMhIA0Lx5c419NGvWDKtWrUJUVBS6d+9eYH+xsbGIi1O/Pl952bVCoUBWVtm6SahCoUB2djYUCoW5Q6ESimOEdOEYIX1wnJAuHCOkD44T0oVjhHThGCla20/fwzNFDgCgbwMv5GQrkGPmmPLTpLIjfFxsEJf4DH9deICHidXg+v+XeZflcVKYYzI60ZiVlQVLy/92c/DgQXTo0EH1e0BAAB48eGBsN3pxcXHBjh07MHbsWISGhqrKHRwcsGXLFvTp0wcAcP/+fQBQm82opCy7d++ezv5WrlyJefPmaa1LSUlBQkLZmk6rUCiQlpYGIQRkMpm5w6ESiGOEdOEYIX1wnJAuHCOkD44T0oVjhHThGClam/69o/q5fYBtic+h9KzlgmXHnkGRI7Dh2A0Ma5R3OXVZHifKK4cNYXSi0dfXF8ePH8frr7+Oixcv4ubNm5g/f76q/tGjR7C3tze2G73Z29ujTp066NWrF1q0aIGEhAR8//33GDp0KLZv346OHTsiIyPvRqPW1tYa2ytXxla2KciYMWPQuXNntbLo6GiMHz8ejo6OcHV1NcERlRwKhQISiQQuLi5l7slDpsExQrpwjJA+OE5IF44R0gfHCenCMUK6cIwUnZtP0hH9IB0AEOLnjPoBlXRsYX6vtbTDihMPkJ0r8MelBLzVoSYkEkmZHieOjo4Gb2N0onHw4MH4+OOP8ejRI1y8eBGOjo7o1q2bqv7MmTOoWrWqsd3oJTo6Gi1atMBXX32FCRMmqMqHDBmCOnXq4PXXX8eNGzdga2sLAHj+/LnGPjIzMwFA1aYgvr6+8PX11Vonk8lgZVXyVksylqWlZZk9NjINjhHShWOE9MFxQrpwjJA+OE5IF44R0oVjpGj8fu6m6udBTfxKxePrXcEKHYM88NeFh7j1NAOn49LQvGoFAGV3nBQmcWr0YjAzZszAyJEjcfz4cUgkEqxduxbOzs4AgOTkZOzYsQOvvvqqsd3o5auvvkJmZiYGDhyoVm5ra4vu3bvjzp07uH37tmqxGG2XRyvLtF1WTUREREREREREhZedk4stp/PWu7CzskC3up5mjkh/aovC/MtFYbQxekajtbU1Vq5ciZUrV2rUOTg44MGDB3rNDjQFZZIwJ0fz9qHZ2dmq/0NCQgAAx48fx9ixY9XanThxAhKJBI0aNSriaImIiIiIiIiIypfDVx/jcWreFaY961eCrZXRqali07KqGyq72uJuQgb2XHiIp2nP4WAlMXdYJYrRMxoL3LlUCicnp2K7Rj0oKAgAsGbNGrXypKQkbN++HS4uLggMDERgYCAaN26M8PBw1cIwQN4iMeHh4Wjfvj08PUtPRp2IiIiIiIiIqDTYfCpW9fPAxj5mjMRwUqkEg5vk3UIv64WZmfQfg9PGERERhb4Uev/+/WorUpvau+++i7Vr12L69OmIjo5Gy5YtkZCQgBUrVuDBgwf4/vvvYWFhAQD45ptv0K5dO7Ru3Rpvv/02AODbb79Fbm4uFi9eXGQxEhERERERERGVR0/TniPi8iMAQEBFOwRXdjFzRIYb0MgHS/ZeRXauwPLDN7H/UjyS0jPhYidHpzpeGBDsAyfbsrUojCEMTjR26dIFrVu3xpQpU9C1a1dV4i4/CoUCf/zxB77++mscP34cWVlZhQ5WFz8/P/z777+YP38+IiIisGnTJtjY2KBBgwZYvHgx+vXrp2rbokULHDp0CDNnzsTMmTMhkUjQokULhIeHo379+kUWIxERERERERGROSRnKBAeFYv9l+ORmpkNB7klOgZ5FltybNuZe8jOFQCA0Ma+kEhK32XH7g5y1PJyQPS9FCSkZ+Hf9P/Pcz1+hpO3E7Fodwzm966D0BDtiweXdQYnGs+cOYMpU6agV69eqFixIjp06IAmTZqgatWqcHV1hRACCQkJuHbtGk6cOIGIiAgkJSWhU6dOOHv2bBEcgrqqVavi559/1qtt8+bNERERUcQRERERERERERGZ1+bIWMzefgGZ2blq5SduJhRLckwIobps2kIqQb+GpXMR3s2RsYi+l5JvfWZ2LqZtOQ8A5TLZaHCisU6dOti7dy+OHz+OpUuXYvv27fjll180stBCCDg6OqJfv36YOHGiagEWIiIiIiIiIiIqPpsjY1XJL22KIzl2Pi4ZV+PTAADtalSEu6O8SPopSskZCszefkGvtrN3XEDn2p7l7jLqQi/t07x5czRv3hw5OTmIiorCpUuX8PjxY0gkElSsWBF16tRBw4YNIZUW6XozRERERERERESUD3Mmx168VPvKw1RVedc6XibZf3H77XScxozQ/GQq8haLGd2qShFHVbIYvYa4hYUFmjRpgiZNmpgiHiIiIiIiIiIiMhFzJcfyu1QbAD7cFo2cXFHqLi3ed+mhge3jmWgkIiIiIiIiIqKywdDk2PqTd1DZ1RYV7K3gZm8NN3tr2FgVvBDwy3Rdqv28lN7HMDUz26D2KZmKIoqk5GKikYiIiIiIiIiojDI0OXbzcTrGrj2lVmZrZQE3e2tUsLdCBTtrVHTI+1+ZjKxgb4WK9taoYG8NCVBm72PoIDcsjeYoLx3HZUpMNBIRERERERERlVGGJse0ycjKwd2EDNxNyNDZViIBhNBvv6XtPoYdgzxx4maCAe09ijCakomJRiIiIiIiIiKiMsrQ5NiARj6o5+OEJ2lZeJr2HE/SnuNpWpbq/9TnBc+Q1DfJqFSa7mM4INgHi3bH6HXPS7lMiv6NfIohqpKFiUYiIiIiIiIiojJqQLAPFu6OwXM9k2OzegTBySb/S34zFTl4mp6XhHyaloXH//+/Mim573I80p/n6B1fabqPoZOtDPN71ynw/pNK83vVKfBxLKuYaCQiIiIiIiIiKqOcbGVoEVgBB2Me62yrT3JMLrOAt7MNvJ1ttNYP/vG4QTMoS9t9DJWL1+S3orZcJsX8XnVK1SI3pmR0ovGTTz7BmDFj4OXlZYp4iIiIiIiIiIjIRPZditeZZDRlcqw83McwNMQXnWt74rfTcdh38QES0jLhai9Hp9pe6B/sU2oWtykKRicaZ8+ejXnz5qFLly4YM2YMevbsCQsLw5Y9JyIiIiIiIiIi07rzNB1TNp9V/f5p39rIVAjsvxSPlEwFHOUydAzyMGlyrLzcx9DJVoYxrapgeBNvJCQkwNXVFVZWVuYOy+yMTjSePHkSK1euxKZNm/Dnn3/C3d0dYWFhGD16NKpXr26KGImIiIiIiIiIyADPsnIwYf1ppGbmLd4yvJkfhjX1BwCMKcLFV3gfw/JNauwOQkJCsHz5cjx48ACrV69G9erVsXDhQtSqVQuvvPIK1q1bh2fPnpkiViIiIiIiIiIi0kEIgZm/X8DlBykAgPq+zpjZo1ax9R8a4ouF/etBbqk97SSXSbGwf71yex/DsszoRKOSjY0NRowYgcOHD+PKlSuYNm0abty4gZEjR8LLywtvvPEGzp49a6ruiIiIiIiIiIhIi1/+jcWW03EAABdbGZYNC4a1ZfHe5i40xBcnP+yAWT2C0DygAmpXckTzgAqY3SMIJ2d0YJKxjCqSVaerVKmCRo0aITIyEg8ePEBaWhpWrFiBH374AV26dMFPP/3ExWOIiIiIiIiIiEzsXGwS5u64CACQSID/DWmISvmsEF3UlPcxLMpLtalkMdmMRgC4ePEipkyZgkqVKmHQoEGIiYnBzJkzcfPmTcTGxuKjjz7CwYMHMXr0aFN2S0RERERERERU7iWmZ+GNDaeRlZO3EMvUjtXRulpFM0dF5YnRMxrT0tLwyy+/YOXKlYiMjIRUKkWXLl0wbtw4dO/eHVLpf7nM+fPnw97eHvPmzTO2WyIiIiIiIiIi+n85uQLv/HoW95Ly1sl4taY73mgbaOaoqLwxOtHo4eGBzMxM+Pj4YPbs2RgzZgx8fPJfmtzPz4+LwxARERERERERmdD/Iq7hyNXHAIDKrrZYEtoAUqnEzFFReWN0orFjx454/fXX0bVrV7XZi/kZNGgQBg0aZGy3REREREREREQE4OCVR/jfgWsAAGtLKZa9FgwnW5mZo6LyyOhE4++//26CMIiIiIiIiIiIyFCxCRl4d9NZCJH3+8d96qB2JSfzBkXlltGLwURERGDGjBn51s+YMQMHDx40thsiIiIiIiIiInpBpiIHb2w4jeRnCgDAkCa+CG3sa+aoqDwzOtH4xRdf4Pr16/nW37p1C1988YWx3RARERERERER0Qvm7byI6HvJAIC63k6Y07O2mSOi8s7oROO5c+fQrFmzfOubNm2Kc+fOGdsNERERERERERH9v82nYvHLv7EAACcbGZYOC4ZcZmHmqKi8MzrRmJycDDs7u3zrbWxskJiYaGw3REREREREREQE4MK9ZMz6/QIAQCIBvh7cAL6utmaOisgEiUZvb29ERUXlWx8VFQVPT09juyEiIiIiIiIiKveSMxSYuCEKz7NzAQCT2ldDuxruZo6KKI/Ricbu3bvj559/xv79+zXqIiIi8PPPP6Nbt27GdkNEREREREREVK7l5gpM3nwWsQnPAABtqlfEO69WM3NURP+xNHYHH330EbZs2YLOnTuja9euaNCgAQDg7Nmz+Ouvv+Dp6YlZs2YZ2w0RERERERERUbm29NB1HIh5BADwdrbB14MaQCqVmDkqov8YnWj08PDAsWPHMHHiRPz111/4888/AQASiQRdu3bFd999By8vL6MDJSIiIiIiIiIqr45ee4zF+64CAKwspFj2WjBc7KzMHBWROqMTjQDg5+eHP//8E4mJibh+/ToAIDAwEC4uLqbYPRERERERERFRuXUv6Rkm/XIGQuT9PrdXbdTzcTZrTETamCTRqOTi4oKQkBBT7pKIiIiIiIiIqNx6np2DNzacRmKGAgAwoJEPhjTxNXNURNqZLNGYkZGB27dv4+nTpxDKFPsLXnnlFVN1RURERERERERULnzyx2Wci00CANTycsTHvetAIuF9GalkMjrRmJGRgSlTpmD16tXIzs7WqBdCQCKRICcnx9iuiIiIiIiIiIjKjW1n4rDuxB0AgIPcEstfC4aNlYWZoyLKn9GJxnfeeQcrV65Et27d0L59e1SoUMEUcRERERERERERlVuXH6RgxtZo1e9fhTaAXwU7M0ZEpJvRicZt27ZhyJAh2LBhgyniISIiIiIiIiIq11IyFZi4PgqZilwAwJvtqqJDkIeZoyLSTWrsDjIzM9G2bVsThGI6CQkJeO+99xAYGAi5XI6KFSuiXbt2OHr0qFq7kydPokOHDnBwcICjoyO6dOmCs2fPmidoIiIiIiIiIip3kjMU+OnoTQz+8Ti6/+8oBv94HAOXHcPtpxkAgJaBFTClYw0zR0mkH6NnNDZu3BjXrl0zRSwmcefOHbRt2xZpaWkYM2YMqlevjuTkZJw/fx737t1TtTtx4gTatm0Lb29vzJ8/HwDw3XffoXXr1jh27Bjq1q1rrkMgIiIiIiIionJgc2QsZm+/gMzsXK31TjaW+N/ghrCQcvEXKh2MTjQuWLAAPXv2RGhoKBo3bmyKmIzy2muvITs7G+fPn4eXl1e+7SZNmgQrKyscOXIE3t7eAIDQ0FDUqlULU6dOxd69e4srZCIiIiIiIiIqZzZHxmLalvMFtkl+lo2Iy48QGuJbTFERGcfoROOPP/4IHx8fNGvWDM2bN0dAQAAsLNRXQJJIJFi5cqWxXel05MgR/P333/jf//4HLy8vKBQKKBQK2NraqrW7fv06IiMjMXr0aFWSEQC8vb0xcOBArF69Gg8fPoSnp2eRx0xERERERERE5UtyhgKzt1/Qq+3sHRfQubYnnGxlRRwVkfGMTjSuWbNG9fM///yDf/75R6NNcSUa//zzTwBA5cqV0bNnT/z111/IyclBtWrVMHv2bLz22msAgMjISABA8+bNNfbRrFkzrFq1ClFRUejevXuB/cXGxiIuLk6tLDo6b0UohUKBrKwso4+pJFEoFMjOzoZCoTB3KFRCcYyQLhwjpA+OE9KFY4T0wXFCunCMkC5FOUZ+/fdOvpdLvyxTkYvNkXcQ1ryyyeMg45Xl15LCHJPRicbcXP2eGMXhypUrAIDXX38d1apVw88//4ysrCwsXrwYw4cPh0KhwKhRo3D//n0AUJvNqKQse/F+jvlZuXIl5s2bp7UuJSUFCQkJhT2UEkmhUCAtLQ1CCMhk/CaFNHGMkC4cI6QPjhPShWOE9MFxQrpwjJAuRTlGdl+4b1j76PvoWcPepDGQaZTl15KUlBSDtzE60ViSpKamAgAcHBxw8OBBWFlZAQD69OmDgIAAfPjhhwgLC0NGRt7KTdbW1hr7kMvlAKBqU5AxY8agc+fOamXR0dEYP348HB0d4erqatTxlDQKhQISiQQuLi5l7slDpsExQrpwjJA+OE5IF44R0gfHCenCMUK6FOUYeZZt2OIuz3JQ5nIMZUVZfi1xdHQ0eBuTJRrT09Nx/PhxxMfHo0OHDvDw8DDVrvVmY2MSHXNLAABUaklEQVQDABgyZIgqyQgALi4u6NWrF9auXYsrV66o7tn4/PlzjX1kZmYCgMZ9HbXx9fWFr6/2G7LKZDK1GMoKS0vLMntsZBocI6QLxwjpg+OEdOEYIX1wnJAuHCOki6nHSHZOLraeuYcbT9IN2s7JxorjtAQrq68lhUmcSk3R8bJly+Dt7Y1OnTphxIgRuHjxIgDg0aNHkMvlWLFihSm60cnHxwcAtC7iolyBOjExEZUqVQKg/fJoZZm2y6qJiIiIiIiIiAyVkyuw/ew9dPzqCKb9dh5Zet6fUaljUPFP5iIqDKMTjVu2bMGbb76Jdu3a4aeffoIQQlXn7u6OLl264Pfffze2G700adIEADQWaHmxzN3dHSEhIQCA48ePa7Q7ceIEJBIJGjVqVISREhEREREREVFZJ4TA7gsP0PWbI3hn01ncemEmo1TPq6flMin6N/IpogiJTMvoROOiRYvQrl07bNu2Db1799aob9y4MS5c0G/JdmP16dMHDg4OWL9+PdLS0lTlDx48wO+//47q1asjMDAQgYGBaNy4McLDw1ULwwDA/fv3ER4ejvbt22udFUlEREREREREpIsQAgdjHqHnd39jwvrTuBr/X46iW11P7Jv8Chb0q6fXvub3qgMnm7J17z8qu4y+R2N0dDS++OKLfOu9vLzw6NEjY7vRi4uLC7788kuMHz8ezZo1w+jRo5GVlYVly5YhKysL3377rartN998g3bt2qF169Z4++23AQDffvstcnNzsXjx4mKJl4iIiIiIiIjKlmPXn+DLvVdw+m6SWnmHWu6Y3LE6aldyAgBU83AAAMzefgGZWi6llsukmN+rDkJDtK8NQVQSGZ1otLCwQG5u/vcWuH//Puzs7IztRm/jxo2Dm5sbFi5ciFmzZkEqlaJ58+bYuHEjWrZsqWrXokULHDp0CDNnzsTMmTMhkUjQokULhIeHo379+sUWLxERERERERGVfqduJ2Dx3qs4fvOpWnnram6Y0rE6GlZ20dgmNMQXnWt74rfTcdh/KR4pmQo4ymXoGOSB/sE+cLLlTEYqXYxONNavXx979uzBpEmTNOpyc3MRHh6uuidicenXrx/69euns13z5s0RERFRDBERERERERERUVkUHZeMxfuu4NCVx2rlIf4umNqpBpoFVChweydbGca0qoIxraoUZZhExcLoRONbb72FIUOGYNasWRgxYgSAvATjlStX8OGHH+LixYsFXlpNRERERERERFRSJGcoEB4Vi30XHyIxPRMudnJ0quOFAS/NMIx5mIIle69i76V4te3r+zhhaqcaaF3NDRKJniu+EJURRicaBw0ahOjoaHz66af4/PPPAQBdunSBEAJCCMydOxddu3Y1OlAiIiIiIiIioqK0OTJW856Jj5/h5O1ELNodg/m966CRvwu+3n8Nf5y/DyH+a1bT0wFTO9VAh1ruTDBSuWV0ohEAPvnkE/Tr1w8bNmxATEwMhBCoVq0ahg8fjsaNG5uiCyIiIiIiIiKiIrM5MhbTtpzPtz4zOxfTtpyHBMAL+UVUrWiHyR2ro1sdL0ilTDBS+WaSRCMABAcHIzg42FS7IyIiIiIiIiIqFskZCszefkGvtsokY2VXW7zboRp6N/CGBROMRAAAqbE7CAgIwI4dO/Kt/+OPPxAQEGBsN0REREREREREReK303Hql0vr0KOeFyKmtkG/YB8mGYleYHSi8fbt20hLS8u3Pj09HXfu3DG2GyIiIiIiIiKiIrHv0kOD2j9Ny4LMwuiUClGZU+TPivj4eNja2hZ1N0REREREREREhZKamW1Q+5RMRRFFQlS6FeoejUeOHMGhQ4dUv2/duhXXr1/XaJeQkIBNmzahQYMGhY2PiIiIiIiIiKhIOcgNS484ymVFFAlR6VaoROPBgwcxb948AIBEIsHWrVuxdetWrW0DAwPx1VdfFT5CIiIiIiIiIqIi1DHIEyduJhjQ3qMIoyEqvQqVaHz33XcxcuRICCEQEBCAr7/+Gr1791ZrI5FIYG9vD1dXV5MESkRERERERERUFHrW98Knuy4hV+huK5dJ0b+RT9EHRVQKFSrR6OTkBCcnJwB5sxuDgoJQsWJFkwZGRERERERERFTUsnNyMev3C3olGQFgfq86cLLhpdNE2hQq0fiiNm3amCIOIiIiIiIiIqJilZsrMG3Leey5GA8AsLGyQE6uQFZ2rkZbuUyK+b3qIDTEt7jDJCo1jE40AkB2djZ+//13nDx5EomJicjNVX9CSiQSrFy50hRdEREREREREREZTQiBuTsvYuvpewAAe2tLbHy9Kfxc7fDb6Tjsu/gACWmZcLWXo1NtL/QP9oGTLWcyEhXE6ERjQkIC2rVrhwsXLkAIAYlEAiHy5hsrf2aikYiIiIiIiIhKki/3XsHa43cAANaWUqwMa4x6Ps4AgDGtqmB4E28kJCTA1dUVVlZWZoyUqPSQGruDmTNnIiYmBj/99BNu3LgBIQT27NmDy5cvY8iQIQgJCcHTp09NESsRERERERERkdGWH76B7w/eAABYSiVY/lojNA2oYOaoiEo/oxONu3btwogRIzBq1Cg4OjoCACwsLFCjRg2sX78eNjY2mDFjhtGBEhEREREREREZa/2JO1jwVwwAQCoBvhncEO1qups5KqKywehE48OHDxESEgIAsLTMuxI7MzNTVd+nTx/s2LHD2G6IiIiIiIiIiIzy+5l7mLX9gur3Bf3qoXs9LzNGRFS2GJ1odHV1RXp6OgDAwcEBMpkMsbGxqnqZTIbExERjuyEiIiIiIiIiKrS9Fx9iavg5/P+yEpjVI4grSBOZmNGJxurVq+PSpUt5O5NK0bBhQ6xZswbPnz9HRkYG1q5di4CAAKMDJSIiIiIiIiIqjH+uP8FbG88gJzcvy/huh2oY06qKmaMiKnuMTjR26tQJv/32G54/fw4AmDJlCk6ePAlXV1e4u7vj1KlTmDx5stGBEhEREREREREZKupOIl5fewpZObkAgLGtquCdV6uZOSqissnS2B18+OGHeO+992BtbQ0ACA0NhaWlJdavXw8LCwsMGDAAgwYNMjpQIiIiIiIiIiJDXLqfglGr/0VGVg4AYHCILz7qXgsSicTMkRGVTUYnGiUSiSrJqNSvXz/069fP2F0TERERERERERXKzcdpGLHqJFIyswEAPep54dO+dZlkJCpCRl86TURERERERERUktxLeobXfjqJJ2lZAID2Nd2xJLQBLKRMMhIVJYNnNK5du7ZQHY0YMaJQ2xERERERERER6etx6nO89tNJ3E/OBAA0C3DF0mHBsLLkXCuiomZwonHkyJGQSCQQyvXg9SCRSJhoJCIiIiIiIqIilZSRheErT+LWk3QAQH0fJ/wUFgK5zMLMkRGVDwYnGg8ePFgUcRARERERERERFVra82yMXB2JmIepAIAaHg5YM6oJ7K2NXp6CiPRk8LOtTZs2RREHEREREREREVGhZCpyMG7tKZyNTQIA+FWwxboxTeBiZ2XewIjKGd6ggIiIiIiIiIhKLUVOLt7aeBrHbjwFAHg5ybF+TFO4O8rNHBlR+cNEIxERERERERGVSjm5Au+Fn8P+y48AABXsrLBuTFP4utqaOTKi8ok3KiAiIiIiIiKiEi05Q4HwqFjsvxyP1MxsOMgt0bGWBy49SMX2s/cBAA5yS/w8ugkC3e3NHC1R+cVEIxERERERERGVWJsjYzF7+wVkZueqlZ+4maD62UZmgdUjQ1DH26m4wyOiFzDRSEREREREREQl0ubIWEzbcl5nu2HNKqOxv2sxREREBTHqHo05OTm4e/cuEhISdDcmIiIiIiIiItJTcoYCs7df0Kvt+hN3kJyhKOKIiEgXoxKNCoUCAQEBWLlypaniMamMjAwEBARAIpHgrbfe0qi/cuUK+vTpAxcXF9jZ2aF169Y4cOCAGSIlIiIiIiIiohf9djpO43Lp/GQqcrHldFwRR0REuhiVaJTL5XBzc4OdnZ2p4jGp2bNn4/Hjx1rrbty4gRYtWuD48eOYNm0aFi1ahLS0NHTu3Bn79+8v5kiJiIiIiIiI6EX7Lj00sH18EUVCRPoyKtEIAN26dcMff/xhilhM6vTp0/j6668xb948rfUzZsxAUlIS9uzZgxkzZuCNN97A0aNHUalSJbz55psQQhRzxERERERERESklJqZbVD7lExeOk1kbkYnGhcuXIgHDx4gLCwM0dHRyMzMNEVcRsnJycHrr7+OLl26oF+/fhr16enp2LFjB9q2bYsGDRqoyu3t7TF27FhcvXoVkZGRxRgxERERERERESmlZCqQZOA9Fx3lsiKKhoj0ZfSq0+7u7pBIJDh37hzWr1+vtY1EIkF2tmHfRBjjq6++QkxMDLZs2aK1/vz583j+/DmaN2+uUdesWTMAQGRkJJo0aVJgP7GxsYiLU78HRHR0NIC8+1dmZWUVJvwSS6FQIDs7GwoFvyUi7ThGSBeOEdIHxwnpwjFC+uA4IV04RkqmTEUONpyMxQ9HbyPpmWHnpn0NN5N+DucYIX2U5XFSmGMyOtE4YsQISCQSY3djMrdu3cKcOXMwe/Zs+Pv74/bt2xpt7t+/DwDw9vbWqFOW3bt3T2dfK1euzPfS7JSUlDK3GrdCoUBaWhqEEJDJ+E0RaeIYIV04RkgfHCekC8cI6YPjhHThGClZsnMEdl58glUnH+BxuuHJDWtLKdr6yU36OZxjhPRRlsdJSkqKwdsYnWhcs2aNsbswqQkTJiAgIABTpkzJt01GRgYAwNraWqNOLpertSnImDFj0LlzZ7Wy6OhojB8/Ho6OjnB1dTUk9BJPoVBAIpHAxcWlzD15yDQ4RkgXjhHSB8cJ6cIxQvrgOCFdOEZKhtxcgV0XHuKbAzdwN+GZqtzKUoqhIT7wdpbj07+u6tzPnB414VfJ3aSxcYyQPsryOHF0dDR4G6MTjSXJ+vXrsW/fPhw5cqTAk2trawsAeP78uUad8h6TyjYF8fX1ha+vr9Y6mUwGKysrfcIuVSwtLcvssZFpcIyQLhwjpA+OE9KFY4T0wXFCunCMmI8QAhGXH+HLvVcQ8zBVVW4hlWBgIx9MerUaKjnbAACcbOWYvf0CMrNzNfYjl0kxv1cdhIZo/2xuLI4R0kdZHSeFSZyaJNGYk5ODDRs2YO/evYiPj8fChQvRsGFDJCYmYufOnXj11Ve1XqZsSs+fP8eUKVPQrVs3eHp64vr16wD+uwQ6OTkZ169fh5ubGypVqqRW9yJlWVHHS0RERERERFQenbj5FIv2XEHUnUS18h71vDClY3UEVLRXKw8N8UXn2p747XQc9l+KR0qmAo5yGToGeaB/sA+cbMvWLDKi0szoRGNGRgY6deqEY8eOwc7ODhkZGUhMzHuxcHR0xPTp0zF69Gh88sknRgdbkGfPnuHx48fYtWsXdu3apVG/fv16rF+/HosWLcKECRNgbW2N48ePa7Q7ceIEAKBx48ZFGi8RERERERFReRIdl4yFe2Jw9NoTtfK2NSrivU41UMfbKd9tnWxlGNOqCsa0qlLUYRKREYxONM6dOxenTp3Ctm3b0KJFC3h4eKjqLCws0K9fP+zZs6fIE412dnYIDw/XKH/8+DHeeOMNdOnSBWPGjEG9evVgb2+Pnj17YuvWrTh37hzq168PAEhLS8NPP/2EatWq6VxxmoiIiIiIiIh0u/4oFYv3XsVfFx6qlYf4u+D9zjXRpErZWt+AqDwzOtEYHh6OcePGoXfv3nj69KlGfWBgIH799Vdju9FJJpNhwIABGuXKVaerVq2qVv/5558jIiICnTp1wuTJk+Ho6IgVK1bg3r172LVrV4laSZuIiIiIiIioJEnOUCA8Khb7L8cjNTMbDnJLdAzyxIAXLmWOS8zAN/uvYcvpOOSK/7YN8nLE+11qoG31ivzsTVTGGJ1ovH//vmpGoDa2trZITU3Nt95cAgMD8c8//2D69OlYsGABsrKyEBwcjN27d6NDhw7mDo+IiIiIiIioRNocGat1cZYTNxOwaHcM3u9cA7GJz7Dx5F1k5fzXpoqbHaZ0rI7udb0glTLBSFQWGZ1orFChgtZFVZQuXryoWnzFHPz9/SGE0FpXq1YtbN++vZgjIiIiIiIiIiqdNkfGYtqW8/nWZ2bn4uNdl9XKvJzkeOfVahjQyAeWFtKiDpGIzMjoZ/irr76K1atXIyMjQ6Pu1q1bWLVqFbp06WJsN0RERERERERkRskZCszefkHv9s62MszsXgsH32uLwU0qM8lIVA4Y/SyfM2cOEhMTERISgmXLlkEikWD37t2YMWMGgoODYW1tjRkzZpgiViIiIiIiIiIyk99Ox2lcLl2Q8a8EYGzrAMhlFkUYFRGVJEYnGgMDAxEREQFLS0vMnj0bQgh8+eWX+OKLL+Dr64uIiAj4+vqaIlYiIiIiIiIiMpN9lx7qbvSCI1efFFEkRFRSGX2PRgBo1KgRzp07hwsXLuDy5csQQqBatWpo2LChKXZPRERERERERGaWmpltUPuUTEURRUJEJZXRicacnBxYWORNg65Tpw7q1KljdFBEREREREREVLI4yA1LITjKZUUUCRGVVEZfOl2pUiVMmTIFZ8+eNUE4RERERERERFQSdQzyNLC9RxFFQkQlldGJxoCAAHz99ddo1KgR6tevjyVLliA+Pt4UsRERERERERFRCTEg2AcyC4lebeUyKfo38iniiIiopDE60Xj8+HFcvXoVH374IVJTU/Hee+/B19cXPXr0QHh4OLKyskwRJxERERERERGZUVxSBoSebef3qgMnG146TVTeGJ1oBPJWnv74449x8+ZNHDx4EMOHD8fff/+NQYMGwdPTExMmTDBFN0RERERERERkBonpWRi/LgrZOXmpRgup9pmNcpkUC/vXQ2iIb3GGR0QlhEkSjS9q06YNVq5ciYcPH2LFihXIzc3FihUrTN0NERERERERERWDnFyBSZvOIC7xGQDgleoVEflRB8zqEYTmARVQu5IjmgdUwOweQTg5owOTjETlmNGrTmtz4MABrF27Flu3bkVaWhoqVKhQFN0QERERERERURFbvPcKjl57AgCo7GqL/w1uAGdbK4xpVQVjWlUxc3REVJKYLNEYExODtWvXYsOGDYiLi4OlpSW6du2KsLAw9OjRw1TdEBEREREREVEx2X3hAZYeugEg77Lo5a81grOtlZmjIqKSyuhE43fffYe1a9ciKioKQggEBwdj6tSpGDp0KNzc3EwRIxEREREREREVs+uPUjF18znV71/0r4egSo5mjIiISjqjE42TJk2Cp6cnpk6dirCwMNSuXdsUcRERERERERGRmaRmKjBuXRTSs3IAAKNbVkHvBt5mjoqISjqjE41//vknOnXqBKnU5OvKEBEREREREVExy80VmLL5HG4+TgcANK3iihndapo5KiIqDYzKDqalpeHNN9/Et99+a6p4iIiIiIiIiMiMlh66jn2X4gEAno5yfDc0GDILTi4iIt2MeqWwt7fH06dPYWdnZ6p4iIiIiIiIiMhMDl55hMX7rgIArCykWPZaMCo6WJs5KiIqLYz+SqJZs2Y4deqUKWIhIiIiIiIiIjO58zQd7/xyBkLk/T6vd200rOxi3qCIqFQxOtG4YMECbN68GatXr4ZQvhoRERERERERUamRkZWN8euikJKZDQAY0sQXQ5pUNnNURFTaGL0YzJQpU+Di4oKxY8di2rRpqFq1KmxtbdXaSCQSREREGNsVEREREREREZmYEALTt0Qj5mEqAKC+rzPm9qpt5qiIqDQyOtF48+ZNSCQSVK6c901HfHy80UERERERERERUfFY9c9t7Dh3HwDgZm+F5a8Fw9rSwsxREVFpZHSi8fbt2yYIg4iIiIiIiIiK2/EbT/HZn5cBABZSCb4bGgwvJxszR0VEpRXXpyciIiIiIiIqh+4nPcNbG08jJzdvvYWPutVCs4AKZo6KiEozo2c0Kt2+fRv79+9HfHw8hg0bBn9/f2RlZeHhw4fw9PSElZWVqboiIiIiIiIiIiNkKnIwcX0UnqZnAQB6N6iEUS39zRsUEZV6JpnR+MEHH6BatWoYN24cZs+ejZs3bwIAMjMzERQUhKVLl5qiGyIiIiIiIiIygbk7LuJcXDIAoJaXIxb0qweJRGLmqIiotDM60fjDDz9g0aJFePPNN7F3714IIVR1jo6O6NWrF3bu3GlsN0RERERERERkAhtP3sWmyFgAgJONDD+81gg2Vlz8hYiMZ3SicenSpejbty++/vprNGzYUKO+Xr16uHLlirHdEBEREREREZGRTt9NxJwdFwAAEgnwzeAGqFzB1sxREVFZYXSi8erVq+jYsWO+9RUrVsSTJ0+M7YaIiIiIiIiIjPA49TneWH8aipy8KxHf61QDbWu4mzkqIipLjE40yuVypKen51t/584dODs7G9sNERERERERERWSIicXb244jYcpmQCATkEemNimqpmjIqKyxuhEY5MmTbBt2zatdZmZmVi3bh1atmxpbDdEREREREREVEif/XkZ/95OAABUrWiHxaH1IZVy8RciMi2jE43vv/8+jh8/juHDh+P8+fMAgIcPH2LPnj1o27Yt4uLi8N577xkdKBEREREREREZbtuZOKz+5zYAwN7aEj8MbwwHucy8QRFRmWRp7A46dOiAZcuW4Z133sHGjRsBAMOHDwcAWFlZYcWKFWjevLmx3RARERERERFRAZIzFAiPisX+y/FIzcyGg9wSdb2dsPb4bVWbLwfWR6C7vfmCJKIyzehEIwCMGzcOvXr1Qnh4OGJiYiCEQLVq1RAaGgpvb29TdEFERERERERE+dgcGYvZ2y8gMztXrfzEzQTVz2+2q4oudTyLOzQiKkdMkmgEAE9PT7z99tum2l2hXL16FevXr8fevXtx48YNZGZmomrVqhg4cCDeffdd2NnZqbW/cuUKPvjgAxw+fBhZWVkIDg7GvHnz0L59ezMdAREREREREZFhNkfGYtqW8zrb+brYFkM0RFSeGX2PxpdlZ2fj2LFjCA8Px8WLF029+wKtWrUKX331FapWrYrZs2dj0aJFqFGjBmbOnIkWLVrg2bNnqrY3btxAixYtcPz4cUybNg2LFi1CWloaOnfujP379xdr3ERERERERESFkZyhwOztF/RqO3fnRSRnKIo4IiIqzwo1o/HQoUPYunUrZs6cCXd3d1X5rVu30KdPH1y48N+LXFhYGFatWmV8pHoYMGAAZsyYAScnJ1XZhAkTUK1aNXz66adYuXIl3nrrLQDAjBkzkJSUhKioKDRo0AAAMGLECNSuXRtvvvkmYmJiIJFwBS4iIiIiIiIquX47HadxuXR+MhW52HI6DqNbVSniqIiovCrUjMY1a9Zgz549aklGABg5ciSio6PRokULTJ48GUFBQfj555/x888/myRYXRo3bqyWZFQaNGgQAKgSoOnp6dixYwfatm2rSjICgL29PcaOHYurV68iMjKyWGImIiIiIiIiKqx9lx4a2D6+iCIhIipkovHff/9Fp06d1MpiYmJw9OhRvPLKKzh69Ci+/PJL/Pvvv6hWrRrWrl1rkmALKy4uDgDg4eEBADh//jyeP3+udTXsZs2aAQATjURERERERFTipWZmG9Q+JZOXThNR0SnUpdMPHz5EtWrV1MoOHToEiUSCsWPHqspsbGwwdOhQfPvtt8ZFaYScnBx8/PHHsLS0xNChQwEA9+/fBwCtK2Iry+7du6dz37GxsaokplJ0dDQAQKFQICsry6jYSxqFQoHs7GwoFPzDRNpxjJAuHCOkD44T0oVjhPTBcUK6lJUxYm9lYVB7B2uLMvdZtaiUlTFCRassj5PCHFOhEo3Pnz+HjY2NWplyBmCbNm3Uyn19fZGcnFyYbkzi3XffxfHjx/HZZ5+hRo0aAICMjAwAgLW1tUZ7uVyu1qYgK1euxLx587TWpaSkICEhobBhl0gKhQJpaWkQQkAmk5k7HCqBOEZIF44R0gfHCenCMUL64DghXcrKGGle2Q4nbyca1L6sfVYtKmVljFDRKsvjJCUlxeBtCpVorFy5ssaK0n///Tfc3d3h6+urVp6RkQFnZ+fCdGO0WbNm4bvvvsO4ceMwY8YMVbmtrS2AvITpyzIzM9XaFGTMmDHo3LmzWll0dDTGjx8PR0dHuLq6GhN+iaNQKCCRSODi4lLmnjxkGhwjpAvHCOmD44R04RghfXCckC5lZYwMa+mA7/+5B0WO0NlWLpNiWItAONqU3uMtTmVljFDRKsvjxNHR0eBtCpVobN26NdauXYuxY8eiTp062LZtG65du4aRI0dqtI2OjtZ6iXJRmzt3Lj755BOMGjUKy5cvV6urVKkSAO2XRyvL9InZ19dXI7GqJJPJYGVlZWjYJZ6lpWWZPTYyDY4R0oVjhPTBcUK6cIyQPjhOSJeyMEZynuXC2lIKRU6Ozrbze9WBm5NdMURVdpSFMUJFr6yOk8IkTgu1GMyMGTPw/Plz1K9fH+7u7hgwYACsrKwwdepUtXY5OTnYsWMHWrVqVZhuCm3u3LmYN28ewsLC8NNPP0EikajV161bF9bW1jh+/LjGtidOnACQt4I1ERERERERUUmVlZ2LNzZEIe15XpJRKtHeTi6TYmH/eggN0T5RhojIVAo1o7FKlSo4fPgw5s2bh+vXr6NJkyaYOXMmateurdbu4MGDqFChAnr37m2SYPUxf/58zJs3D8OHD8eqVasglWrmUu3t7dGzZ09s3boV586dQ/369QEAaWlp+Omnn1CtWjU0adKk2GImIiIiIiIiMtSnuy7h9N0kAEANDwesGR2CP6MfYv+leKRkKuAol6FjkAf6B/vAybZsXdJJRCVToRKNQN6Mv507dxbYpkOHDqpVmIvD999/jzlz5qBy5cro0KEDNm7cqFbv4eGBjh07AgA+//xzREREoFOnTpg8eTIcHR2xYsUK3Lt3D7t27dKYBUlERERERERUUmw7E4efj98BADhYW2L58EbwcrLBmFZVMKZVFTNHR0TlVaETjSWRcuXru3fvIiwsTKO+TZs2qkRjYGAg/vnnH0yfPh0LFixAVlYWgoODsXv3bnTo0KFY4yYiIiIiIiLS1+UHKZix9b9JPYtD66OKG++9SETmV6YSjWvWrMGaNWv0bl+rVi1s37696AIiIiIiIiIiMqHkZwpMWB+FTEUuAODNdlXRqbanmaMiIspTqMVgiIiIiIiIiKh45eYKTN18FneeZgAAWgW6YUrHGmaOiojoP0w0EhEREREREZUCSw9dx/7LjwAA3s42+N+QhrDIb6lpIiIzYKKRiIiIiIiIqIQ7cvUxFu+7CgCwspBi6bBguNpZmTkqIiJ1TDQSERERERERlWCxCRmYtOkMhMj7fV7v2qjv62zWmIiItGGikYiIiIiIiKiEylTk4I0Np5GUoQAAhDb2weAQXzNHRUSkHRONRERERERERCXU3B0XEX0vGQBQx9sR83vXgUTC+zISUcnERCMRERERERFRCbTp37vYFBkLAHC2lWHZsEaQyyzMHBURUf6YaCQiIiIiIiIqYc7HJWH2josAAIkE+HpQA/i62po5KiKigjHRSERERERERFSCJKRnYeL608jKzgUATO5QHW1ruJs5KiIi3ZhoJCIiIiIiIiohcnIF3tl0BveSngEA2td0x1vtAs0cFRGRfphoJCIiIiIiIiohvtp3FUevPQEAVHa1xVehDSCVcvEXIiodmGgkIiIiIiIiKgH2XYrHdwevAwCsLaVY/lojONnKzBwVEZH+mGgkIiIiIiIiMrNbT9Ix5dezqt8/61sXQZUczRcQEVEhMNFIREREREREZEYZWdmYuD4Kqc+zAQDDm/mhfyMfM0dFRGQ4JhqJiIiIiIiIzEQIgRlboxHzMBUA0LCyM2b1CDJzVEREhWNp7gCIiIiIiIiIiktyhgLhUbHYd/EhEtMz4WInR6c6XhgQ7GOW+yGuPX4H28/eBwC42Vth6bBgWFlyThARlU5MNBIREREREVG5sDkyFrO3X0Bmdu5/hY+f4eTtRCzaHYP5vesgNMS32OKJupOAj/+4BACwkErw7ZBgeDnZFFv/RESmxkQjERERERERlXmbI2Mxbcv5fOszs3NV9cWRbHyUmok3NpxGdq4AAHzQpQaaV61Q5P0SERUlzscmIiIiIiKiMi05Q4HZ2y/o1Xb2jgtIzlAUaTyKnFy8tfEM4lOeAwC61vHE660DirRPIqLiwBmNREREREREVKb9djpO/XLpAmQqcrHldBxGt6pidL/K+0HuvxyP1MxsOMgt0THIE3eepOHfWwkAgKoV7bBoYH1IJBKj+yMiMjcmGomIiIiIiKhM23fpoUHtN5y8gwaVnVHN3R4O8sItEKP1fpAATtxMUP1sZ2WBH4Y3gr01P5oTUdnAVzMiIiIiIiIq01Izsw1qf+NxOvotPQYA8HKSo5qHA6q726O6hwOqedgjUEcCUtf9IJX6NPRGoLuDQbEREZVkTDQSERERERFRmXU1PhX3k54VevsHyZl4kJyJI1cfq5VXUiYgPez//38HBLrbIydH6H0/yC2n4zCtc0042RZu1iQRUUnDRCMRERERERGVOfeSnuGrfVex9XQc/n9hZ731aVgJXk42uBafiqvxaYhNzIB4aR/3kzNxPzkTh19KQDrJZWa5HyQRUUnARCMRERERERGVGYnpWfj+4HWsPXEHWS8k/CQA9Mk3ymVSzOtVB042/80yfJaVgxuP03D1/xOP1+JTcfVRKmITNGdKJmcatmL1vkvxTDQSUZnBRCMRERERERGVehlZ2Vj19y38cPgmUp//d09GT0c5pnSsjpzcXMzYpvuS5vkvJRkBwMbKAnW8nVDH20mjz+uP0vKSj49ScS0+DUevPYYiR/8plCkGJiaJiEoyJhqJiIiIiIio1FLk5GJTZCz+F3ENj1Ofq8qdbGR4s11VjGjuD7nMAgBgIZVqXQkayJvJOL9XHYSG+Ordt62VJer5OKOej7OqbPCPx9VWltbFsZCrWhMRlURMNBIREREREVGpk5srsCv6ARbvvYLbTzNU5XKZFKNbVsH4NlU1ZiaGhviic21P/HY6DvsuPkBCWiZc7eXoVNsL/YN9TLIoS8cgT4MSjR2DPIzuk4iopGCikYiIiIiIiEqVv689wRe7YxB9L1lVZiGVILSxL97tUA0ejvJ8t3WylWFMqyoY3sQbCQkJcHV1hZWVlcliGxDsg0W7Y/RaEEYuk6J/Ix+T9U1EZG5MNBIREREREVGpEB2XjC92x+Dv60/UyrvX9cKUTtVRtaK9mSL7j5OtDPN718G0Led1ttV2P0giotKMiUYiIiIiIiIyq+QMBcKjYrH/cjxSM7PhILdExyBPDPj/y5lvPUnHl3uvYNf5B2rbtahaAR90qYn6vs7mCTwfyvs8mvJ+kEREpQETjURERERERKRGV+LPlDZHxmpNyJ24mYCFu2PQ0NcZkXcSkZP730rOtSs54oMuNdG6mhskEolJ4/m/9u48Lupq/x/4a4Z931HZcQ0FxLVE+KImUloqKFouuRVdb9lNqHt/VwtcUtsX1Jtel0rTzMrKlLppkfcWbinihqkJJWAqKiIg65zfHzoTwwzwmYUBhtfz8eAhcz5nPu9zZo5nPp835/MZY6l/P8i9py+jtLIGzrZWiO3dyWj3gyQiamuYaCQiIiIiItKDKZNxpozXVOLvtW/OYMk4463E2374YpOXGFfVKnAg788vVgn0sEfKqF54KKwL5PK2mWCsT3k/yDlRwa3dFCIik2CikZqlPKDZc+oP3CivhJuDLUaFdmmRAyhzPVgzdSxTxzPlGKkfj+9b+4vFMdK+4rVW3/h5035imToe55L2Gc9c5xJTJuNMGa+5xF9lrUK13dB4NytqkPrlScn1F4wOwayhQbCykBsUl4iIWo5MCCGar2aeFAoF3nnnHaxduxb5+fnw8vLCpEmTsGTJEjg4OOi1z/379yMyMhJZWVkYMmSIkVtseo0d0ACAraXc6H/NNFUsU8dj39i3thbPXGOZOh77xr61tXjsG/vW1uKZa9+aS8YpvTohvF3Fu1lRg3uX75X8bckH/zlSI3mrUAhU1NShoqoW5dV1KK+qRUV1Hcqra1FRVYeK6j8fZ52/pvGlLk1Jfag3ZhtxZWB1dXWLfOs0mQ+OEZLCnMeJPjmuDr2icf78+UhPT0d8fDxSUlKQm5uL9PR0ZGdnY+/evZDLO/Zfykz510xTxjJ1PPaNfWtr8cw1lqnjsW/sW1uLx76xb20tnrn2TZdVeKk7TyKuT2eDVlIaK54QAlW1irs/daiqufNvZc2fj3fmFElKMgJAZY0CY9L/B0dby3pJxDrcrqnTqX+62HP6slETjUREZHwddkXjqVOnEBYWhvj4eHz22Weq8pUrV+KZZ57Bli1bMGXKFJ33ay4rGo3x18y2GMvU8dg348QydTz2rf3FMnU89s04sUwdj30zTixTx2PfjBPL1PHaU9+EEFAIoKZOgVqFQG2dAjV1ArUKBWrrhKq8pu7O4y+yC/FeVr7ktj0c3gWR3T1RpxCqWAoh7j6+87uyTKGo9/vdn+zfS5D16zXJ8Tq72MDJxgqVqmSiApU1daiSmEBsy/r4OGP3M9FG2585r0Ii4+AYISnMeZzok+PqsInGF154AcuWLcN///tfREf/+WFVWVkJDw8PxMTEICMjQ+f9mkuiccOPeVi667Tk+tE9PBHh76pXrGMXS/C/c9IvmYju7om+esZSxtPlEg1D4ukaK6q7h0F9y7lYgh/PSz8QNSSerrGGdvdAXz/9Yinj/aTDQfbQ7h4I1zNezkXdDugNiaVPvMhu+sc7XqB7rDA/Fz1j3cR+XWP56hdLFe+CaeIZEkvKh27Dj+YThTdx4ML1Rmprui/YHaGN9K25+CcLb+JgnvRY9wa7o49P46+jaCbiqaKbOJR3Q3K8wUHu6O3jLLl+w1iH800TS594g4LccE9n9XgNX7+GR23Kh2culeLo7yWSY/UPcEWvzvr37cwfpcjWIV4/f1f06uyketzY0ae28fLLH7eQU3BTcqy+fi7o0clJ6zYpR73nrtzCcR3ihfu6oLu3458xGqmn7ZD7/JUynCwqlRzrns5OCHC3h7i7PyHuxFPU+/3P8rv/3k1aCQB/lFTi9xsVkuP5utrB29kGAKDtKzcaftNv/UeXSytx8cZtybH83Ozg7WSjeqx8teq/bKpf6xUqf7t6qwqXblZKjmdjKYdcJkOt4k5SkfQjlwHeTrawt7GAg7Ul7Kwt4GBtAXsbyzv/WlvCwebuv6pyS1X9pbtO40Sh9P9vQ7p64KOk+4zWfnNODpBxcIyQFOY8Tpho1EFcXBz27t2LiooK2NjYqG0bOnQozp49i6tXrza5j4sXL6KgoECt7MSJE3jyySexb98+3Hef8T4ETW36xp9xUIeTIyIiIiIian0Wchk6OdnAxkoOG0s5bCwtYGsph7WlHLZWFnfL5BrbbSzl2PZzAX67Lj1BfF+wGzbNGqh3W9/P+g3Lvzkruf7CB3thxpAAveM1VFNTgxs3bsDNzQ1WVsb/YiJq/zhGSApzHicHDhxATEwM79EoRVFRETw9PTWSjADg6+uLrKwsVFdXN5mN3rBhAxYvXqx1W2lpKa5fl74ipK25US79L8JERERE1PpkAGSyuz+Q3f33z8dVtQpJq6qV5DLAwdpCrUxzVW2DVbd3/71do5C0grR+LDsrOWR310UqF0uqVknWWy6p/FW5olIGoLSyFrosTLS1lCOkkz0s5DJYymWqfy3lMlha1PtdS1lG7jVcKq2WHKurhy2eHOILmexOElB2t78ymQwW8jvvjerx3X/lMtz9kWHFd78h97L0lagRPo5YPbGn9BejnqpKD7z934LmK941JMDBoHOeYUF2eMNShqra5t88G0s5hgXaGvUcq6amBmVlZRBCmF1ygIyDY4SkMOdxUloq/coLpQ6baNS2klHJ1tZWVaepROOcOXMQFxenVqZc0ejs7Ax3d3fjNdjE3BxsgavS/5oZ6uOMpWND9Ir14s7TOFl0yySx9IkX5uOMpeP0i/fCl/rE6q1XrD/jSZ8IDImncyxfZ7xkQN8WfqF7vGV6xlv4xWmcMFEsfeKF+zpj2Xj94i344jROFOoWa/n4PnrF+ucXp0wWy9Tx9Im1Iv7PWNouQdRQr9L/23EKx3WI19fPGS/Hh0quX98/dpzUOdYrCX/GktK3+ldbPv/ZSeQUSI8X4eeC1yY03jdZEw1I+fSEzrFen6jf62hIvKYuRwU0+ygD8Oz2Ezimw+W+/fxd8M6kcMn1G/rb9uPIvig9Xn9/F7wzWT1ew36qyhs8fnpbjk6xBgS4YtUjfRvd3tQYAYC/fnQMR3/XLd6/pjQRr4n/FXO3HsMRHS5BHxTkivceG3Bnv3eTUH8mF5v/36frFSuDg/RfrWbKWPrEi/B30TteJzfdVuE9OjgQ8YP1X4UXf70OuTrEeyDMR+/zkKlDnfBuVpGk+znaWskxNbI7nO30P6l2B5D2UAgWfNH8LZvSHroHgT7eesfSpqamBjKZzCxXIZFxcIyQFOY8Tpyddb/VTodNNNrb2+PKlStat1VWVqrqNMXf3x/+/tq/sc7KyqpdX5s/KrSLTgdrCf390C/IU69Y8f39cbJI+v0gDYmlT7z4/n6ICDRN3+7E8tArlvL5poqnc6x+fugbYMK+9fNDuJ7xxvf3wwkTxdIn3vh+fgjz17Nv/fxwolC3WKH++p2smDKWqePpE6uPn/59G9fPD8d1iDcuwg8hvm4mi3WPj36xAGBshB9yCqTHGxvhix5dXE0Wq3tn/WKZOt7DEb46JRof7uuLAC/979H4UF9fnZJ/D/X1hb+nfvF0jTUm3Add3B2br9jo8311SjSOCfdBJ1f94o0O99Ep0fhgqA8c7W31igXofnw3qk8XvY9nTRnL1PEmDw7Cm3vPS/7imUmDA2Ftrf+JpynjeVlbY+m40Ca/vVtpydhQeLo46BWnvin3BcPSwhKpX57U2kdbKzmWjA01yjeTa2Npadnuz92oZXGMkBTmOk70SZzKW6Ad7YKPjw+Ki4tRVVWlsa2wsBCenp5mN0B0MbG/H2wtpQ0PWys5JgzwaxexTB2PfTNOLFPHY9/aXyxTx2PfjBPL1PHYN+PEMnU89s04sUwdz5z75mJvhSXjpK12XjI2FC4GrPhrjXiTBvnj1Qnhjb6etlZyvDoh3KiJv0mD/HFwwUi8+FBvDOnqgT4+zhjS1QOpD/XGwX+ObLEkIxERGV+HTTQOGjQICoUChw4dUiuvrKzEsWPHMHCg/pdumANTHtCY88Ea+2acWKaOx761v1imjse+GSeWqeOxb8aJZep47JtxYpk6njn3DTB9Mq414pk68edib4U5UcH4KOk+7H4mGh8l3YfZUcFwsTevyxCJiMxdh710evLkyVi+fDnefvttREdHq8rXrVuHiooKTJ06tRVb1zYoDyBMcRmDKWOZOh77xr61tXjmGsvU8dg39q2txWPf2Le2Fs+c+6aMF9enMz49WoC9py+jtLIGzrZWiO3dCRP6+xk9QWbqeMrE35yoYKPul4iIzJtMCF2+D868zJs3D6tWrUJ8fDxGjx6N3NxcpKenY+jQofj+++8hl+u+4HP//v2IjIzU6au/27qbFTX49GgB9py6hOtllXB3tMWoPl1a5IBGGcsUB0+mjtcR+maKMVI/Ht+39heLY6R9xWutvvHzpv3EMnU8ziXtM545zyXUvlVXV+P69etwd3fv0LfNosZxjJAU5jxO9MlxdehEY11dHd5++238+9//Rn5+Pjw9PTF58mQsWbIEjo763dTbHBONSub8n4eMg2OEmsMxQlJwnFBzOEZICo4Tag7HCDWHY4SkMOdxok+Oq8NeOg0AFhYWSElJQUpKSms3hYiIiIiIiIiIqF3rsF8GQ0RERERERERERMbDRCMREREREREREREZrENfOt0SysvLAQAnTpxo5ZYYX01NDUpLS+Hs7AwrK95ImzRxjFBzOEZICo4Tag7HCEnBcULN4Rih5nCMkBTmPE6UuS1lrksKJhqN7MKFCwCAJ598spVbQkREREREREREZBhlrkuKDv2t0y2hqKgIu3btQteuXeHg4NDazTGqEydO4Mknn8TatWsRFhbW2s2hNohjhJrDMUJScJxQczhGSAqOE2oOxwg1h2OEpDDncVJeXo4LFy7goYcego+Pj6TncEWjkfn4+CApKam1m9GiwsLCJH+tOXVMHCPUHI4RkoLjhJrDMUJScJxQczhGqDkcIyQFx8kd/DIYIiIiIiIiIiIiMhgTjURERERERERERGQwJhqJiIiIiIiIiIjIYEw0kmR+fn5IS0uDn59fazeF2iiOEWoOxwhJwXFCzeEYISk4Tqg5HCPUHI4RkoLjRB2/dZqIiIiIiIiIiIgMxhWNREREREREREREZDAmGomIiIiIiIiIiMhgTDQSERERERERERGRwZhoJCIiIiIiIiIiIoMx0UhEREREREREREQGY6KRiIiIiIiIiIiIDMZEIxERERERERERERmMiUZSkclkWn8cHR016v7yyy8YP3483Nzc4ODggOjoaHz//fet0GoylUWLFjU6RmQyGaysrCTVff3111uxF2RMK1asQGJiIrp27QqZTIagoKAm6x88eBAjR46Ek5MTnJ2d8cADD+DYsWNa6xYVFeGxxx6Dl5cX7OzsMHDgQHzyySfG7wS1KKljpLKyEuvWrcO4ceMQFBQEOzs7dO3aFY8++ihyc3M16ufn5zc6x4SGhrZwr8iYdJlHZs6c2ej7/umnn2rUr6qqQmpqKoKDg2FjY4Nu3brhpZdeQk1NTQv2iIxN6hhpal5Q/mzZskVSfc4j7cvZs2eRmpqK++67D15eXnByckJERASWLVuG8vJyjfq6nMfcvHkT8+bNg6+vL2xtbdGnTx+8++67EEK0dLfIyKSOEyEEPvzwQzzyyCPo3r077O3tERAQgLFjx+LgwYNa963LeTS1XbrMJbqe7yoUCrz11lu45557YGtrC39/f6SkpGido8yBZWs3gNqW6OhoJCUlqZXVTyABwK+//orIyEhYWlri73//O1xcXLBu3TrExcXh66+/xsiRI03ZZDKRhIQEdO/eXaP8+PHjeO211/Dwww9rbHvrrbfg6empVjZgwIAWayOZ1oIFC+Du7o7+/fujpKSkyboHDhzAsGHD4OvriyVLlgAAVq1ahejoaGRlZSEsLExV9/r164iKisKVK1eQnJwMPz8/bN26FZMmTcLGjRsxa9asluwWGZHUMZKfn4+kpCRERUVhzpw58PHxwYULF/Duu+9ix44d+OabbzB8+HCN58XHxyMhIUGtzNXV1ci9oJakyzyitHnzZo2ywYMHa5RNnjwZX375JWbPno0hQ4Zg//79ePHFF3H+/Hm8//77BracTEXqGPHy8tI6NgDg6aefxu3btxEXF6exjfNI+7dx40asXr0aY8eOxdSpU2FlZYXMzEy88MIL2L59Ow4cOAA7OzsAup3HVFdXIzY2FtnZ2Zg3bx5CQkLw9ddf469//SsuX76MRYsWtVKPSR9Sx0lVVRWmT5+OiIgIPPLIIwgODsalS5ewZs0aDBkyBJs2bcK0adM09i/lPJraNl3mEiWp57vz589Heno64uPjkZKSgtzcXKSnpyM7Oxt79+6FXG5mawAF0V0AxIwZM5qtl5iYKORyucjOzlaV3bp1SwQEBIiePXsKhULRco2kNicpKUkAELt27VKVpaWlCQAiLy+v9RpGLe7XX39V/d6nTx8RGBjYaN1BgwYJJycnUVBQoCorKCgQTk5OIjY2Vq3u888/LwCInTt3qspqa2vFoEGDhLu7u7h165bxOkEtSuoYKS4uVvtMUTp16pSwtrYWAwYMUCvPy8sTAERaWpoRW0utQZd5ZMaMGULqoevu3bsFAJGcnKxWnpycLACIn376Sa/2kunpMka0ycrKEgDExIkT1co5j5iPw4cPi5KSEo3yhQsXCgBi5cqVqjJdzmNWr14tAIj09HS1/SYkJAgrKyuRn59v/M5Qi5E6TmpqasQPP/ygUe+PP/4QHh4ewtvbW9TV1altk3oeTW2bLnOJLue7J0+eFDKZTCQkJKiVp6enCwBiy5YtBre9rTGztCkZQ3V1NcrKyrRuKy8vx86dOzFs2DBERESoyh0dHfH444/j7NmzOHz4sIlaSq2tvLwc27Ztg5+fHx544AGtdUpLS1FbW2vilpEpdO3aVVK98+fP4/Dhw0hMTISvr6+q3NfXF4mJidi7dy/++OMPVfnWrVvRrVs3tVWyFhYWmDdvHq5fv46MjAzjdYJalNQx4uHhofaZotS7d2+Ehobi5MmTjT63srISFRUV+jaRWpnUMVKfEAKlpaVQKBSN1tm6dSsA4Nlnn1UrVz7+8MMPdY5LrUOfMVLf+vXrAQCPP/54o3U4j7RvAwcOhIuLi0b55MmTAUD1GaLreczWrVthb2+PJ554Qm2/zz77LGpqavDxxx+3QG+opUgdJ5aWloiJidGo16lTJ8TExODKlSu4cuWK1hhNnUdT2yd1jDTU3PnuRx99BCGExjHJE088AXt7e7M8JmGikdR8+umnsLe3h5OTE7y9vTFv3jzcvHlTtf348eOoqqrCkCFDNJ573333AQATjR3IJ598gtLSUsycORMWFhYa28PDw+Hi4gJbW1tERkbi66+/boVWUmtTzgmNzRtCCBw5cgQAcOnSJRQWFqrmk4Z16++PzJ9CocClS5fQqVMnrdvfeOMN2Nvbw8HBAf7+/khNTUVVVZWJW0mm5uLiAhcXF9jZ2SE2NlbrPbMOHz4MX19f+Pv7q5X7+/vDx8eH80gHUVZWhu3btyMwMBCxsbFa63AeMV8FBQUAoPoM0eU8RqFQ4OjRo+jXrx9sbW3V6g4ePBgymYzziJloOE6aq2ttba319grNnUdT+9XUGJFyvnv48GHI5XKN27zY2toiIiLCLOcS3qORVAYPHozExER0794dpaWlyMjIwKpVq7Bv3z5kZWXB0dERRUVFAKC2KklJWVZYWGjSdlPr2bBhA2QyGWbPnq1W7urqiqSkJERGRsLNzQ2//PIL3n77bYwZMwYbN27EzJkzW6fB1Cp0mTc4x1B9a9aswaVLl/Diiy+qlcvlcowYMQLjx49HYGAgrl69iu3bt2Pp0qXYv38/vvnmG61//KD2rXPnzpg/fz4GDBgABwcH5OTk4O2330Z0dDQyMjLU7q1WVFSE3r17a92Pr6+v6qSBzNvHH3+MsrIyPPfccxr3v+I8Yt7q6uqwdOlSWFpaYsqUKQB0O8a4ceMGbt++rbWujY0NPD09eTxiBrSNk8ZkZGTg0KFDmD59utbkc3Pn0dQ+NTZGdDnfLSoqgqenJ2xsbDT27+vri6ysLFRXV8Pa2toUXTIJJhpJpeGKgMceewzh4eFYuHAh3nnnHSxcuFB1WYm2/yTKCZeXnnQMv/zyC3788Ufcf//9CA4OVtvWcFk4AMyePRuhoaGYP38+Jk6cyA/cDkSXeYNzDCllZWUhOTkZffv2xYIFC9S2BQQE4LvvvlMrmzNnDpKSkrBu3Tps27YNU6dONWVzyQRefvlltcfjx4/HlClTEBERgblz5+LcuXOqbRUVFVrnEeDOXMJ5pGNYv3495HK51i8R4zxi3p599lns378fy5cvR69evQAY73hEWZ/zSPunbZxoc+7cOUyfPh2+vr544403NLZLOY+m9qmxMaLL+W5zxyTKOuaUaOSl09Sk559/HtbW1ti9ezcAwN7eHgC0XlJSWVmpVofM24YNGwA0fc+j+jw8PPCXv/wFJSUlyMrKasmmURujy7zBOYYA4MiRIxgzZgx8fHywe/dujZUDjVEeyCs/s8j89ejRA5MmTcL58+dx9uxZVbm9vX2jl79WVlZyHukATp8+jQMHDiA2NhYBAQGSn8d5pP178cUXsWrVKiQlJeGf//ynqtxYxyPK+pxH2rfGxklDeXl5uP/++yGTyfD111/Dy8tL0v4bnkdT+yN1jCg1dr7b3DGJso45YaKRmmRlZQUfHx8UFxcDAHx8fABov3RRWabtEgMyL7W1tdi0aRM8PDwQHx8v+XlBQUEAoBpP1DHoMm9wjqGjR48iNjYWLi4uyMzM1On99vf3h4WFBeeYDkbbZ4uPj0+jlzUWFhZyHukAdP2DqBLnkfZt0aJFeOmllzBr1iysWbNGbZsuxxhubm6ws7PTWreqqgrFxcWcR9qxpsZJffn5+Rg+fDjKysqwZ88ehIWFSY7R8Dya2hepY6Shxo5JiouLtSYbCwsL4enpaVarGQEmGqkZlZWVKCgoUN34NCwsDDY2Nti/f79G3QMHDgC4821NZN6++uorXL58GdOmTWt0Gbg2ysvapNxsmczHoEGDAKDReUMmk2HAgAEAgC5dusDX11c1nzSsC3COMWdHjx7FyJEj4eTkhMzMTAQGBur0/AsXLqCuro5zTAej7bNl0KBBKCwsxMWLF9XqXrx4EUVFRZxHzFx1dTU2b94MLy8vjBs3Tqfnch5pvxYtWoTFixdjxowZWL9+PWQymdp2Xc5j5HI5+vfvj+zsbI3kwKFDhyCE4DzSTjU3TpTy8/MxbNgw3Lx5E3v27EG/fv10itPwPJraD6ljRJvGjkkUCgUOHTqkVreyshLHjh0zz7lEEAkhiouLtZY/99xzAoB45ZVXVGUTJ04UcrlcHDt2TFV269YtERAQIHr06CEUCkWLt5da15gxYwQAcfz4cY1tNTU1oqSkRKP8999/F+7u7sLDw0NUVFSYoplkQn369BGBgYGNbh84cKBwcnIShYWFqrLCwkLh5OQk7r//frW6ynln586dqrLa2loxaNAg4erqKkpLS43efmp5zY2Ro0ePCnd3d+Hv7y9+/fXXJvel7TOrrq5OTJ48WQAQH3/8saHNpVbQ1BgpKysTt2/f1ig/evSosLa2FiEhIWrlu3btEgBEcnKyWnlycrIAIP73v/8Zrd1kOs3NI0qffPKJ1ve/Ps4j5mXx4sUCgJg+fbqoq6trtJ4u5zGrVq0SAER6erraPhISEoSlpaXIy8szej+oZUkdJ/n5+SIoKEi4uLiIQ4cONblPXc6jqe2TMkZ0Pd89fvy4kMlkIiEhQa1+enq6ACA2b95s3E60ATIhhGiNBCe1LfPnz8eBAwcwfPhwBAQEoKysDBkZGcjMzMS9996LzMxM2NnZAQDOnz+PwYMHw8rKCvPnz4ezszPWrVuHEydOYPfu3YiLi2vl3lBLKioqQkBAAAYMGKBx42MAKCkpQXBwMMaPH4+QkBDVt3CtX78eZWVl+Oijj5CYmNgKLSdj27x5M3777TcAwMqVK1FdXY2UlBQAQGBgIKZPn66qm5WVheHDh8PPzw/z5s1TPefy5cv46aef0LdvX1Xda9euYcCAAbh27RqSk5Ph6+uLjz76CD/88APWr1+POXPmmLCXZAipY+S3337DgAEDcP36daSlpaFbt24a+4qPj4eDgwMAICEhAaWlpYiMjIS/vz+Ki4vx2Wef4ciRIxg3bhx27Nih8Q2z1DZJHSPHjh3Dgw8+iPHjx6NHjx6qb53euHEj5HI5vv32W0RFRant++GHH8auXbswZ84cDBkyBPv378eGDRswbdo0bN682bQdJb3p8lmj9OCDD+Kbb77B6dOnERISonW/nEfMx+rVq/H0008jICAAS5cu1XjfOnXqhNjYWAC6ncdUV1cjMjISOTk5eOaZZxASEoKMjAx8/vnneOGFF7B06VKT9pMMI3Wc3Lp1C3379kVeXh7mzZuHwYMHa+wrNjZWtWJNl/NoatukjhF9znfnzZuHVatWIT4+HqNHj0Zubi7S09MxdOhQfP/99+b3edPamU5qG7744gsxatQo4ePjI2xsbIS9vb3o27evWLZsmdYVBKdPnxZjx44VLi4uws7OTgwdOlTs2bOnFVpOprZs2TIBQPz73//Wur2yslLMmTNHhIaGCldXV2FpaSk6d+4sJkyYIA4ePGji1lJLiomJEQC0/sTExGjUz8rKEiNGjBAODg7C0dFRjBo1Shw5ckTrvgsKCsS0adOEh4eHsLGxEf369RPbtm1r4R6RsUkdI5mZmY3WU/7UXzmyfv16ERMTIzp16iSsrKyEo6OjuPfee8Xq1aubXKFAbY/UMXLp0iUxbdo00atXL+Hk5CQsLS2Fv7+/eOyxx0Rubq7Wfd++fVssXLhQBAYGCmtraxEcHCyWLFkiqqurTdQ7MgZdP2t+//13IZfLRWRkZJP75TxiPmbMmNHk50fDcaLLecyNGzfEU089Jbp06aJaPb1y5UpewdUOSR0neXl5zR6TZGZmqvar63k0tV1Sx4g+57u1tbXi9ddfFz179hTW1tbCx8dHzJ8/X9y6dcuEPTQdrmgkIiIiIiIiIiIig5nZ+kwiIiIiIiIiIiJqDUw0EhERERERERERkcGYaCQiIiIiIiIiIiKDMdFIREREREREREREBmOikYiIiIiIiIiIiAzGRCMREREREREREREZjIlGIiIiIiIiIiIiMhgTjURERERERERERGQwJhqJiIiIiIiIiIjIYEw0EhERERERERERkcGYaCQiIiIiIiIiIiKDMdFIRERE1IQffvgBMpkMMpkMTz/9tNY6V65cgbW1NWQyGYYNG2baBlKbl5+fj0WLFuHYsWOt3RQiIiKiFsVEIxEREZEEtra22Lp1K6qqqjS2bd68GUIIWFpatkLLqK3Lz8/H4sWLmWgkIiIis8dEIxEREZEE8fHxuHHjBr788kuNbe+99x5Gjx4NGxubVmgZSXHr1i29ttGfbt++jdra2tZuBhEREbVhTDQSERERSdC/f3+Eh4fjvffeUys/dOgQTp06hVmzZjX63J9//hnx8fHw9PSEjY0NevXqhWXLlmkkbQ4dOoSZM2eiZ8+esLe3h5OTE4YOHYrPP/9cY58zZ86ETCbDzZs3MXfuXHh7e8PW1hZDhw7FwYMHJfertLQUCxcuREhICGxtbeHh4YGoqChs27ZNrd7x48cRHx8PDw8P2Nraonfv3nj11VdRV1dnULuEEFi3bh3uvfdeODo6wtHREWFhYUhNTVXVWbRoEWQyGfLz8zWeHxQUpHG5ukwmw8yZM/Hdd98hKioKjo6OePjhh9XqZ2dnIy4uDi4uLggPD1c999y5c5g+fTq6dOkCa2trBAUF4fnnn0d5eble/Xz//fcxfPhwAMCsWbNUl+E3d4m9cv/aKPtX36ZNmzB48GC4urrCwcEBXbt2xdSpU3H16lW1err27+rVq5g9ezY6deoEBwcHFBQU6BSPiIiIOhZe30NEREQk0ezZs5GcnIzCwkL4+voCADZu3Ahvb2889NBDWp+ze/duJCQkoHv37khJSYG7uzv279+P1NRUHDt2DJ988omq7ueff44zZ85g0qRJCAwMxLVr1/DBBx8gISEBW7ZswZQpUzT2HxcXBy8vL6SmpuLatWt48803MWbMGOTl5cHJyanJ/pSUlCAqKgqnTp3CxIkTMXfuXNTV1SE7Oxu7du3CI488AuBOojQmJgZWVlZ46qmn0LlzZ3z11Vf4xz/+gZycHGzZskXvdk2fPh1btmzBvffei4ULF8LV1RVnzpzBp59+iiVLljT/pjTi559/xmeffYYnnngCM2bMUNv2+++/Y8SIEUhMTMSECRNQVlYGADhy5AhGjBgBV1dXPPnkk/D19UVOTg7S09Px008/Yd++fbCystKpn//3f/+HBQsWYPny5UhKSkJ0dDQAoFOnTnr3raHNmzdjxowZiI6OxpIlS2BnZ4eLFy8iIyMDV65cgZeXl979i42NRefOnfHiiy+ivLwcjo6OkuMRERFRBySIiIiIqFGZmZkCgHjttddEcXGxsLa2FsuWLRNCCFFRUSFcXFxESkqKEEIIBwcHERMTo3ru7du3RadOnUR0dLSoqalR2++bb74pAIjMzExVWVlZmUb88vJy0bNnTxESEqJWPmPGDAFAzJ07V618+/btAoBYs2ZNs32bO3euACDWrl2rsa2urk71e2RkpLCwsBA5OTmqMoVCIRITEwUAsXfvXr3a9fHHHwsAYtq0aWrxGsZPS0sTAEReXp5GOwMDA9VecyGEACAAiD179mitD0CsW7dOY1t4eLjo1auXKC0tVSvfsWOHACDee+89vfqpHEP1n98c5f61ASBmzJihehwfHy+cnJw0xlhD+vRv6tSpGvuRGo+IiIg6Hl46TURERCSRh4cHxo4di/fffx8AsGPHDty8eROzZ8/WWn/Pnj24fPkyZs2ahZKSEhQXF6t+Ro8eDQD49ttvVfUdHBxUv1dUVODatWuoqKjAiBEjkJubi9LSUo0Y8+fPV3s8YsQIAHcukW2KQqHAtm3bEBISgqSkJI3tcvmdw8QrV64gKysLY8eOVbvEWCaTYeHChQCg9dJuKe1SroR8/fXXVfEaxtdX3759MXLkSK3b3N3dNS51P3HiBI4fP44pU6agqqpK7b2KioqCg4OD2nulpO/rb0wuLi6oqKjA7t27IYTQWkff/j333HN6xSMiIqKOiYlGIiIiIh3MmjUL586dw48//oiNGzdi8ODB6N27t9a6ubm5AO5ccu3l5aX2c8899wAALl++rKp/5coVJCUlqe6H5+npCS8vL6xZswbAnUudG+ratavaYw8PDwDAtWvXmuxHcXExbty4gYiIiCbr5eXlAQD69OmjsS0kJARyuRwXLlzQq13nzp1Dly5djHoZsVLPnj0b3datWzdYWFiolSnfq7S0NI33ytvbG+Xl5WrvlZK+r78xLViwAIGBgRg/fjy8vLwwYcIErF+/Xu1LbvTtn7bXUUo8IiIi6ph4j0YiIiIiHcTFxcHX1xeLFy9GZmYm3n333UbrKld7vfbaa40m9Hx8fFR1R40ahdzcXPztb3/DwIED4eLiAgsLC7z33nvYunUrFAqFxvMbJswaxm4txmxXY1+KAqDRb0G2t7dv9DnatinblZKSggceeEDr89zc3DTKWur1b6zP2vrbo0cPnD59Gt999x2+++477Nu3D0888QTS0tLw3//+F926ddO7f9peKynxiIiIqGNiopGIiIhIBxYWFnjsscewYsUK2NnZ4dFHH220bo8ePQDcuSS6sct4lY4fP46cnBykpqZi8eLFatvWr19veMMb8PT0hJubG3JycpqsFxwcDAA4deqUxrYzZ85AoVBorOqTqmfPnvjyyy9x+fLlJlc1uru7AwCuX7+OoKAgVXllZSUuXbqE7t276xW/PuV7ZWFh0ex7paumEqWNqd9n5e8AtK4eBQAbGxuMHj1adUl+RkYGxowZgzfffBOrV682ev+ai0dEREQdEy+dJiIiItLRX/7yF6SlpWHNmjVwdnZutF5cXBy8vb3x8ssv4/r16xrbb9++rbrcVLkyruFKuJMnT2q9B6Kh5HI5Hn30UZw+fRobNmzQ2K5sh7e3NyIjI/HVV1/h5MmTattXrFgBAIiPj9erDVOnTgUA/P3vf9dYrVn/dVBevrt37161Om+99ZbWVZ766NevH0JDQ7FmzRqtybza2lqt76EUjo6OAKDT8xvr8xtvvKFRt7i4WKOsf//+ajGN2T8p8YiIiKhj4opGIiIiIh0FBARg0aJFzdZzcHDApk2bMH78ePTq1QuzZ89G9+7dUVJSgjNnzmDHjh34/PPPMWzYMISEhKBPnz549dVXUVFRgV69euHs2bNYu3YtwsLCcOTIEaP346WXXsL333+Pxx9/HN9++y2ioqIghEB2djZqa2uxefNmAMA777yDmJgYREdH46mnnkLnzp2xa9cu/Oc//8GUKVNw//336xU/MTERkydPxqZNm3Du3DmMHTsWbm5uOHv2LP7zn/+oEpsjR45Er169kJqaimvXriE4OBg//vgjDhw4AE9PT6O8FjKZDJs3b8aIESMQHh6O2bNno0+fPqioqMD58+exY8cOrFixAjNnztR5371794aTkxP+9a9/wd7eHq6urvD29lZ9cYw2jz76KBYsWICkpCScOXMG7u7u+Oabb7Qm+UaNGgVXV1dER0fD398fJSUleP/99yGTyTB9+nSj909KPCIiIuqYmGgkIiIiakFxcXE4fPgwXn75ZXz44Ye4evUq3Nzc0K1bNyQnJ6u+ydnCwgK7d+/Gc889hw8++ADl5eUIDQ3FBx98gJycnBZJNLq5uWH//v1Yvny5Kunp5OSE3r17Y968eap6AwcORFZWFtLS0vCvf/0L5eXl6Nq1K1555RWkpKQY1IatW7ciOjoaGzZswJIlS2BhYYHg4GAkJiaq6lhYWGDnzp145plnsHLlSlhbW2PUqFHYt28fhg4dalD8+iIiIpCdnY0VK1Zg586dWLNmDZycnBAUFISZM2fqnVC1s7PDtm3b8MILL+DZZ59FVVUVYmJimkw0Ojs7IyMjA8nJyVi+fDkcHR2RkJCADz/8UONeinPnzsX27duxdu1aXL9+HR4eHujXrx9WrlyJ4cOHG71/UuMRERFRxyMTrX2ncCIiIiIiIiIiImr3eI9GIiIiIiIiIiIiMhgTjURERERERERERGQwJhqJiIiIiIiIiIjIYEw0EhERERERERERkcGYaCQiIiIiIiIiIiKDMdFIREREREREREREBmOikYiIiIiIiIiIiAzGRCMREREREREREREZjIlGIiIiIiIiIiIiMhgTjURERERERERERGQwJhqJiIiIiIiIiIjIYEw0EhERERERERERkcGYaCQiIiIiIiIiIiKDMdFIREREREREREREBmOikYiIiIiIiIiIiAz2/wFUCSrOlS9zJAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABRoAAAS8CAYAAADjFzZsAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjUsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvWftoOwAAAAlwSFlzAAAT/gAAE/4BB5Q5hAABAABJREFUeJzs3XdYFFfbBvB7F5ZdelUQAVFRsWABe1SwR429a+xGjcYWEzX57BpLfBNN7BprjCZGY4vRxK6JXexdsWBDBWkisCzn+4PshHUX2KWX+3ddXglnzsw+szM7c+aZmXNkQggBIiIiIiIiIiIioiyQ53UAREREREREREREVPAx0UhERERERERERERZxkQjERERERERERERZRkTjURERERERERERJRlTDQSERERERERERFRljHRSERERERERERERFnGRCMRERERERERERFlGRONRERERERERERElGVMNBIREREREREREVGWMdFIREREREREREREWcZEIxEREREREREREWUZE41ERERERERERESUZUw0EhERkQ5vb2/IZDKdf1ZWVvD19cXo0aPx+PHjvA6RihjtfkhFT3BwML7++mt069YNpUuXlvaFq1ev5nVoREREZIBMCCHyOggiIiLKP7y9vfHw4UO0bNkSbm5uAIDnz5/j1KlTiIqKgpOTE44cOQI/P788jpSKCm2Skc3WoqdDhw7YuXOnXvmVK1dQpUqVPIiIiIiI0mOe1wEQERFR/jRx4kQEBQVJf4eFhaF169YIDg7GkCFDcPLkybwLjoiKhHr16sHPzw8BAQGoWbMmGjRogIcPH+Z1WERERJQGJhqJiIjIKK6urvj2228RFBSEU6dO4enTp3B3d8/rsIioEJswYUJeh0BEREQmYB+NREREZDR/f3/p/1M/VZScnIyNGzeiSZMmcHJyglKpRJkyZTB69GiEhYXpLWfdunWQyWTo378/Xrx4gWHDhsHLywsKhQJjxozJMI67d+9i6NChqFChAqytrWFnZ4eyZcuie/fuOHjwoF797I5v3LhxkMlkmDx5cpoxzps3DzKZDMOGDdObtmfPHrRp0wbFixeHhYUFPD09MXDgQISEhOjVPXLkCGQyGYKCghAbG4sJEybAx8cHSqUSHTp0yPC70tq5cydatGghrX/p0qUxbNgwvafDdu/eDZlMhoYNG6a5rNOnT0Mmk8HX11dv2tWrV9G/f394eXlBqVTC2dkZbdq0wZEjRwwuS9vnnhACy5YtQ0BAAGxsbODg4JDhOu3fvx/Dhw9H1apV4eTkBJVKhTJlyhhcLyEEKlSoAJlMhnPnzqW5zOrVq0Mmk+Gff/6Rykzd3/KLFy9eYOHChWjRogW8vb2hUqng6OiIRo0aYcOGDQbnSb2/vXnzBp9//jlKly4NlUoFb29vjB8/HjExMXrzTZs2DTKZDNOmTUNISAh69uyJ4sWLQ6VSoVq1ali+fDlffSciIioCmGgkIiIio0VHR0v/r1QqAQBqtRqdOnVCnz59cPbsWVSrVg0ffPABZDIZvv/+ewQEBBhMoAHAy5cvUatWLfz222+oVasW2rZtm2GC6fLly6hRowZWrlwJc3NztGrVCs2bN4ezszO2b9+OX3/9Vad+TsTXr18/AMDGjRvTTJ78+OOPACDV1Ro+fDg++OADHDhwAOXLl0f79u1hZ2eHtWvXwt/fH2fOnDG4vLdv3yIwMBDLly9HpUqV0K5dO6kPzYx8/vnn6NChAw4dOoTq1aujU6dOUCgUWLFiBapXr47Tp09LdVu1aoXixYvjn3/+wf379w0uT5ukenfdNm7cCH9/f6xfvx5OTk5o164dfH198eeff6JJkyZYvnx5mjGOGDECo0aNgr29Pdq2bYvKlStnuF4ff/wx1q5dCwsLCzRu3BgtWrSARqPBihUr4O/vj1u3bkl1ZTIZhg8fDgBpxnHy5ElcunQJfn5+eO+99wCYvr/lJ3/99RfGjh2LW7duwcfHBx07doSfnx9OnDiBfv36YcSIEWnOm5iYKG2zqlWrok2bNoiOjsb8+fMRGBiI2NhYg/OFhISgZs2a+Pvvv9GkSRMEBgbixo0b+PjjjzF06NCcWlUiIiLKLwQRERFRKqVKlRIAxOHDh/WmLV26VAAQSqVSxMXFCSGE+PzzzwUA0axZM/Hs2TOprkajEV9++aUAIBo2bKiznLVr1woAAoBo3bq1iI2NNTq+/v37CwBi7ty5etPCw8PF+fPndcpyKr7q1asLAOLIkSN6086dOycAiHLlyumUL1myRAAQ1atXF3fu3NGZtmzZMgFAlClTRqjVaqn88OHDUiwBAQHi5cuX6Xw7+nbv3i0ACHt7e3H69Gmd9dd+N15eXiI+Pl6aNmbMGAFATJs2TW95CQkJwtnZWcjlcvHo0SOp/MKFC0KhUAh7e3tx4MABnXlOnjwpHBwchEKhEDdv3tSZpl03R0dHERwcbHAdtHXetWPHDhEZGalTlpSUJKZMmSIAiJYtW+pMi4yMFNbW1sLa2lpERUXpLa9Pnz4CgFi6dKlUZur+lp9cv35dnDlzRq/87t27wsvLSwAQJ0+e1JmWen+rWLGizm8mPDxc1KpVSwAQY8eO1Zlv6tSp0nzdu3fX2Z8uXboknJycBACxc+fOLK2T9vh05cqVLC2HiIiIcgYTjURERKTDUKLx+fPnYsWKFcLW1lYAEB9//LEQQohXr14JlUolHB0dxatXr/SWpdFoRLVq1QQAcenSJalcm8izsLAQDx8+NCm+1q1bCwDiwoULGdbNyfi+/fZbAUAMHDhQb9ro0aMFADFz5kypLCkpSbi5uQm5XK6XZNRq27atXjImdeLn3aSQMRo3biwAiFmzZulNU6vVomzZsgKA+PHHH6Xy4OBgAUCULVtWb57t27cLAKJp06Y65V27dhUAxJo1awzG8c033xhMUGnXbc6cOWmuQ1qJxvSULFlSyOVyER0drVM+dOhQAUAsWrRIpzw8PFyoVCphY2OjM48p+1tBsnLlSgFAfPbZZzrlqfe3PXv26M136tQpAUDY2NhINxuE+C/RaGVlZTAZPnfuXAFANGnSJEtxM9FIRESUv/HVaSIiIjKocePGUv95bm5uGDp0KGJiYtCpUyd8++23AFL6c4uPj0eTJk3g7Oystwy5XI4GDRoAAE6dOqU3vUaNGvDy8jIprpo1awJIeQX54MGDSExMTLNuTsbXu3dvmJubY+vWrXj79q1UnpSUhM2bN0Mmk6FPnz5S+cWLF/H8+XPUqFEDPj4+BpfZqFGjNGNxdXVF3bp101xXQ5KSknDixAkA+q85A4C5uTn69u0LADh69KhUXqNGDfj5+eHevXs6fRUChl+bTk5Oxp9//gkzMzN06tTJYCzprRsAk/qbTO3hw4dYunQpxowZg0GDBqF///7o378/1Go1kpOTcffuXZ362teFV6xYoVO+du1axMfHo3fv3rC1tZXKTdnf8iO1Wo29e/di6tSpGDZsGAYMGID+/ftj69atAIDbt28bnM/R0RGtW7fWK69Tpw58fHwQGxuL4OBgvektWrSAi4uLXvmHH34IADhx4gSSkpKyskpERESUj3HUaSIiIjKoZcuWcHNzg0wmg0qlgpeXF1q0aIGAgACpjrZvw23btkEmk6W7vJcvX+qVlSpVSq9s7ty5uHnzpl75unXrAADjx4/HmTNnsG/fPjRr1gxKpRIBAQFo0qQJ+vbti3LlyuVofFrFixfH+++/j99//x07duxAz549AQD79u3DixcvEBQUpDO/Npbz589neyxpCQ8PR0JCAiwsLFCyZEmDdcqUKQMAePLkiU55v3798Nlnn2HDhg1Sf4URERHYs2cPbGxsdBKK4eHhUv+dGfWxaWjdgMyt36RJkzB37lxoNJo066TuVxQA/Pz80KhRIxw7dgx///03GjRoACGElHj8+OOPdeqbsr+l57PPPsOrV69MXEPDGjRogMGDB2dY7+bNm2jfvn2ayURA//vRSm97eHt74+7du3j8+LHBaYa4u7vDwsIC8fHxCA8Ph6ura4a/dSIiIip4mGgkIiIigyZOnIigoKB062gTPJUqVUKtWrXSrWtocA9LS0u9sn379uk8XaelTT5YW1tj7969OHfuHPbs2YOjR4/i1KlTOHHiBObMmYNly5bho48+yrH4Uuvbty9+//13bNiwQUo0pjUIjDYWLy8vNG7cON3l1qlTx+RYslvv3r0xYcIEbNmyBd9//z2USiV++eUXJCYmomfPnrC2tpbqatfNwsJC+h7SYuhpN8D09du6dSu++uor2NnZYeHChWjcuDFKlCghDVJUv359nDx50uBgPSNGjMCxY8ewfPlyNGjQAAcPHsSdO3dQr149VKtWTaeuKftbRvG+OxJ2VhiTaOzSpQtu376NDh06YMKECahQoQLs7OxgZmaGv/76Cy1btszTkaAz+q0TERFRwcNEIxEREWWap6cnAMDf3z/bkgNHjhwxql7NmjWl11rj4+OxcuVKjBkzBqNGjUK3bt1gb2+fI/Gl1q5dOzg6OmL//v14/vw5LC0tsWvXLlhbW6NLly46dbWxeHl55VoixdnZGUqlEgkJCXj8+LEUQ2raJy3ffeLRzc0NLVq0wN69e7Fr1y507do1zdGmXVxcoFKpoFarsWLFCinZl5O0r/5+9dVXGDBggN70d1+ZTq1Tp05wd3fH1q1bsXDhQixbtgyA/tOMqRmzv6XnwYMHGa1Strp58yauXbsGV1dXbN26FWZmZjrT0/t+AKSbFNWui6GnZNOa7+nTp0hMTIRSqZS6MTD2t05EREQFB/toJCIiokxr2rQpFAoF9u3bh9jY2DyLQ6VSYdSoUfDx8UF8fLz0qmhOx6dUKtG9e3doNBr89NNP2LJlC+Lj49GxY0fY2Njo1K1duzacnJxw5swZhIaGZnsshpibm6N+/foA/utbMTWNRiM9gRkYGKg3XZtQ3LBhA+7cuYNTp07By8tL70lXc3NzNGvWDBqNBjt27MjelUhDREQEABhMnh48eDDNV7SBlHiHDBmChIQEfPXVV9i1axecnZ3RtWtXoz47rf0tP9F+PyVKlNBLMgLAzz//nO78r1+/xr59+/TKz549i7t378La2hr+/v560//66y+Eh4frlW/atAlAypOm5uZ81oGIiKiwYqKRiIiIMs3NzQ0ff/wxXr16hY4dO0pPx6UWGRmJFStWZNsAEEuXLsWdO3f0yq9cuYKHDx9CLpfDw8Mj1+LTDqayYcOGNF+bBgCFQoFJkyYhMTER7du3x8WLF/XqxMXFYdOmTQgLC8tULIaMHTsWADB//nycO3dOKk9OTsakSZNw9+5deHl5GUyytW/fHvb29ti3bx+++eYbAECfPn0M9jE5ZcoUmJubY/jw4QaTjRqNBocPH05zMBhT+fr6AgBWrVoFtVotlT948CDdJxO1hg4dCoVCgYULFyIpKQn9+/eHSqXSq2fK/paflCtXDnK5HFevXsXx48elciEEZs+erVOWls8++0xnX4yMjMSoUaMAAIMGDYKVlZXePG/evMGoUaN0Bs25evUq5s2bBwAYOXJkpteJiIiI8j/eTiQiIqIsmT9/Ph4/fozffvsNvr6+qFGjBry9vZGcnIyQkBBcvnwZSUlJ6NevX7Y8ybRy5UqMGDECPj4+qFKlCqysrPDkyRP8888/SEpKwueff44SJUrkWnz16tVD+fLlcfnyZQCAh4cHmjRpYrDu2LFjERISgsWLF8Pf3x/Vq1dHmTJlYGZmhocPH+LixYtISEjAjRs34Orqmrkv6B1t27bFuHHj8M0336Bu3boIDAyEq6srzp8/j9u3b8PBwQG//PKLwdedVSoVunXrhlWrVkmDpWgTq++qVasW1q1bh0GDBqFjx44oW7YsfH19YWdnh7CwMFy4cAGvX7/GsmXLTB4925BRo0Zh/fr12LNnD8qVK4fatWsjOjoaR48eRe3atVGsWDFpxG1D3Nzc0KlTJ/zyyy+QyWQYNmyYwXqm7m/5RbFixTBs2DAsXboUjRs3RlBQEIoVK4bz588jJCQEn332Gf73v/+lOX/dunWh0WhQrlw5NGnSBObm5jh8+DAiIiJQrVo1zJo1y+B8ffr0we+//w4fHx/Ur18fkZGROHz4MBITEzFw4EB07NjRpPXYs2cPZs6cKf397NkzACl9iGr79fT398fSpUtNWi4RERHlDD7RSERERFliYWGBbdu24bfffkPLli3x8OFDbN++HUeOHEFSUhIGDx6Mffv2GXxaLDNmzZqFIUOGwNraGsePH8e2bdvw4MEDvP/++/jjjz/w9ddf53p8qZNvH374IeTytJtYixYtwqFDh9ClSxe8ePECu3fvxv79+xETE4MePXrgt99+Q9myZTMdiyH/+9//sH37djRu3BjBwcHYunUr4uPjMWTIEFy4cCHdxF/qpzPr1q2L8uXLp1m3d+/euHLlCoYPHw4zMzMcOnQIu3btwqNHj9CgQQOsXLkS3bp1y5Z18vHxwfnz59GlSxeo1Wrs3r0bDx48wIQJE/DXX39BoVBkuIzmzZsDAJo1awYfHx+DdUzd3/KTRYsWYcmSJahcuTJOnjyJ/fv3o3z58jh+/DjatGmT7rxKpRKHDh3C4MGDceHCBezevRvW1tYYN24cjh07BltbW4PzlSlTBmfOnEHdunVx8OBBHDlyBBUqVMDixYuxatUqk9fh5cuXOH36tPRP+6Tk5cuXpbLr16+bvFwiIiLKGTKRl0PNERERERHlkebNm+PAgQP47bffTH7SrrA6cuQIGjdujMDAQJMGa5k2bRqmT5+OqVOnYtq0aTkWHxEREeVvfKKRiIiIiIqcY8eO4cCBAyhdujTatWuX1+EQERERFQrso5GIiIiIiozBgwcjJiYGe/bsAQDMnTvX4KjMRERERGQ6JhqJiIiIqMhYvXo1zMzM4O3tjXHjxmVbn5FERERExD4aiYiIiIiIiIiIKBuwj0YiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgkIiIiIiIiIiKiLGOikYiIiIiIiIiIiLKMiUYiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgkIiIiIiIiIiKiLGOikYiIiIiIiIiIiLKMiUYiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgkIiIiIiIiIiKiLGOikYiIiIiIiIiIiLKMiUYiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgkIiIiIiIiIiKiLGOikYiIiIiIiIiIiLKMiUYiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgkIiIiIiIiIiKiLGOikYiIiIiIiIiIiLKMiUYiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgkIiIiIiIiIiKiLGOikYiIiIiIiIiIiLKMiUYiIiIiIiIiIiLKMiYaiYiIiIiIiIiIKMuYaCQiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy5hoJCIiIiIiIiIioixjopGIiIiIiIiIiIiyjIlGIiIiIiIiIiIiyjImGomIiIiIiIiIiCjLmGgsAk6ePInevXvD29sbSqUStra2KFOmDJo3b47p06fj6tWreR1ikdG/f3/IZDKsW7cuS+X5QX6OLbVXr17BwcEBbdq0MXne3FzHXr16wdraGk+ePMnxzyIiIjIG25AFi0wmg0wmM3m+adOmQSaTYdq0adkfVC4pDOsAAKtWrYJMJsOvv/4qldWtWxcymQzr1683OM/Ro0elbb969WqDdf755x/IZDIUL14cQogsxbhy5UrIZDLs2LEjS8shosKLicZCbv78+XjvvfewadMmKBQKtGzZEm3btkXJkiVx4sQJTJs2Ld8nigqKBw8eQCaTwdvbO69DybLCtC5TpkxBdHQ0vvrqq7wOJV3Tpk1DQkICvvzyy7wOhYqwgnIDgYhyHtuQhUdmE5D5SWFYh4zExMRg8uTJqFGjBrp06SKVBwYGAgCOHTtmcL6jR49K/59RnUaNGmX5exwwYADKlCmDzz//HImJiVlaFlFmrVu3DjKZDP3798/rUMgA87wOgHLOxYsXMWHCBJibm+Onn35C165ddaa/ffsWe/bsQUJCQh5FWPTMmTMHEydORIkSJXKkfm7Kz7Fp3b17FytXrsQHH3yA6tWr53U46Spfvjy6d++OH3/8EePGjUPVqlXzOiQiIiqi2IYsmG7cuJGp+T755BP06NEDLi4u2RxR7ikM6/C///0PYWFhWLp0qU4yMDAwEF9//bVOQjG1o0ePwsrKCh4eHunW0S4rqxQKBSZOnIghQ4Zg5cqV+OSTT7K8TCIqXPhEYyG2detWCCHQtWtXvQYiAFhaWqJLly7o3bt3HkRXNJUoUQK+vr6wt7fPkfq5KT/HprV06VJoNBoMHDgwr0MxSv/+/SGEwJIlS/I6FCIiKsLYhiyYfH194evra/J8Li4u8PX1LdBJuoK+Dmq1GitWrICLiwvatm2rM61BgwYwMzPDvXv39LrYUavVOHnyJOrWrYsmTZrg4cOHePjwoU6dpKQknDhxAkD2JBoBoHv37rC0tMTixYuzZXlEVLgw0ViIvXjxAgBQvHjxTM3/8OFDjBgxAj4+PlCpVHBwcEDjxo3x22+/Gazv7e0NmUyGBw8eYMuWLWjQoAHs7e0hk8kQHh4OpVIJa2trxMTEGJw/ISEBjo6OMDMz0zuJvnz5EhMnTkTlypVhZWUFW1tb1K1bFz/88IPBfkaCgoIgk8lw5MgRHDhwAC1atICTkxNkMhkuXryY4bqn93qGodeKp02bhtKlS0vfm3b+d+uZ+lqiofraPmjS+xcUFCTVj4mJwYoVK9CuXTuULVsWlpaWsLOzQ+3atfHdd98hKSlJ5zOzY10SExOxcOFC1KxZE7a2trCyskLVqlUxc+ZMxMbG6tVP/eh7VFQURo8eDU9PTyiVSpQtWxbTp0/XizMj8fHxWLduHZycnAz2z3jkyBHpu4qNjcWECRPg4+MDpVKJDh066NW/efMmOnfuDBcXF6hUKvj7++OXX35J8/NfvHiBcePGoXz58tLvp1GjRtiwYUOafeM0bdoU7u7u+Omnn9L8nbxr3LhxkMlkmDx5cpp15s2bB5lMhmHDhkllb9++xaJFi1CrVi0UK1YMKpUK7u7uaNSoEWbPnm3UZxtrz549aNeuHdzc3GBhYQF3d3c0btwY33//vV7d3N53jI0t9THFkNTHv7TK3z0uRkZGGr0fJicnY+PGjWjSpAmcnJygVCpRpkwZjB49GmFhYdnyvaTu/2nAgAE6v31jjlkZvcKSVv9ZGo0GGzZsQIMGDVCiRAkolUq4ubmhTp06+L//+z/Ex8frLSs7z0+RkZEAgGfPnuHzzz9H5cqVYWdnBxsbG5QqVQrt27fH1q1bM1x/osKEbcjMtSErVqwImUyG0NBQnfLdu3dLx9Pjx4/rTLtx4wZkMhnq1asnlanVavz444/o3r07ypcvDxsbG9jY2KBatWqYMWMG3rx5Y/Dz322/ao/L705/t15ax+fU5U+fPsWAAQPg5uYGlUqFSpUqpZtkevbsGQYPHowSJUpApVKhYsWKmDdvHjQaTZrnTEOycx0ePnyIDz/8EK6urrC2tkbdunXx119/SXV37dqFBg0awM7ODo6OjujRoweePn2aZmxXr15F//794eXlBaVSCWdnZ7Rp0ybNtkJ6tm/fjrCwMPTo0QMKhUJnmp2dHWrUqAFA/9Xos2fP4u3bt2jUqBEaNmxosE5wcDBiY2Ph5OQEPz8/vc/esmUL6tSpAysrKzg7O6Nt27YIDg5O97xuZ2eH9u3b49atWzh06JBR66j9HWjjNOT06dOQyWR6CfOdO3eiefPm8PDwgFKpRPHixVG9enV8+umnePnypVGfb4wrV65g4MCBKF26NFQqFZydnREQEIDJkycjPDxcr/7OnTulY4RSqUTp0qUxbNgwvWQvoHsNmZycjIULF6Jy5cpQqVRwdXXFwIEDpWNvVmLLqL9SY8YGCA4ORocOHVC8eHHI5XKpP07t704IgWXLliEgIAA2NjZwcHDQWdY///yDrl27wt3dHRYWFnBzc0O3bt0MHkMz870EBQVhwIABAID169frHBOMeZU6o27CUrfP33X06FG0b99e6rvY2dkZlStXxscff4x79+7p1Y+NjcXs2bPh7+8vXdtUr14d//vf/wx2PWDMdsjN67hME1RozZw5UwAQHh4e4unTpybNu3//fmFraysAiAoVKohOnTqJwMBAoVKpBADxxRdf6M1TqlQpAUB8/PHHAoCoV6+e6NmzpwgICBCRkZGiY8eOAoBYs2aNwc/csmWLACBatGihU37x4kXh5uYmAIhSpUqJ9u3bi+bNm0vx9erVS29ZgYGBAoAYOnSokMlkonr16qJnz56iQYMG4tKlSxmuPwCR1s/j/v37Uixa27dvF507dxYAhLW1tejXr5/0b9y4cVK9fv36CQBi7dq1Oss0pXz79u06y0/9r3z58gKAaNKkiVT/+PHjAoBwc3MTgYGBokePHqJJkybStvzggw9EcnJytq1LXFycaNiwoQAgbG1tRbt27UTnzp2Fs7OzACD8/PzEy5cvdeZZu3atACDat28vKlasKFxdXUWXLl1Es2bNhFKpFADERx99ZHB7pOWvv/4SAES7du0MTj98+LAAIGrXri38/f2FnZ2daNu2rejSpYsYOnSozjqOHDlSWFtbi4oVK4ru3buL2rVrS/vITz/9pLfsW7duCXd3d+n3161bN/H+++9L69KrVy+d7zy1nj17CgBi+/btRq3npUuXBADh7e2d5jIrV64sAIgTJ04IIYTQaDQiKChIABAODg6iTZs2omfPniIoKEgUL15cKJVKoz47I8nJyWLw4MECgJDL5aJu3bqiZ8+eomnTpsLV1VXvN5ab+46psWmPKYcPHza4rtrj3/379w2Wp3VcNGY/TExMFO3btxcAhI2NjQgKChKdOnUSZcqUEQBEyZIlxb1797L8vfTr10+ULVtWABDvvfeezm//+PHjaW7ndz+zX79+BqdPnTpVABBTp07VKe/Tp48AIKysrESLFi2k7eDp6SkAiGfPnunUz4nz09OnT6XtXrp0adGhQwfRtWtXUa9ePWFlZSVatmyZ4foTFSZsQ2auDTl8+HABQKxbt06nfPTo0VK7Ydq0aTrTFi1aJACIL7/8UioLDQ0VAISTk5N47733RPfu3UXz5s2Fvb29ACACAgJEXFyc3ue/2349fvy41JbRHp9T/9NK6/isLR8wYIBwc3MT3t7eonv37iIwMFDI5XIBQHz11Vd6cYSGhkrHcHd3d6kdpFKpROfOndM8ZxqSXevQr18/4eLiInx8fET37t1FrVq1BABhbm4ujhw5Ir777jthZmYmgoKCROfOnUWJEiUEAFGxYkURHx+vF9ePP/4oFAqFACCqVasmunTpIurXry/MzMyETCYTy5Yty3DdUuvVq5cAIH777TeD08eNGyftl6nNnj1bABAHDx6U9ptBgwbp1Pn6668FANGhQwe95c6aNUtqC2mvE3x8fIRSqRTDhg1L97y+YsUKAUCMHj3aqHVUq9WiePHiQiaTiZCQEIN1tL+h2bNnS2WTJ08WAIRCoRCNGzcWPXv2FC1bthQ+Pj4CgDh58qRRn5+RNWvWSNu0QoUKolu3bqJNmzaiXLlyBtuAn332mQAgzMzMROPGjUWPHj2kug4ODuLUqVM69VNfQ/bq1UtYWVmJ1q1bi/bt2wsXFxcBQFSpUsXg/mZKbGn9FrQyuu4cNGiQsLCwEOXLlxc9evQQzZo1E7///rsQ4r9jzMcffyzMzc2l9a5fv760nLlz5wqZTCbkcrmoXbu26Nq1qwgICBAAhIWFhdi1a1eWv5c5c+aI9957TwAQZcuW1TkmrFq1Kq1NbPAzDdG2zwMDA3XKV69eLf1e6tevL3r06CFat24tKlWqJACIzZs369R/9OiRqFChgnQt3rp1a9GmTRvp2iYoKEgkJCSYtB1y6zouq5hoLMQePHggrK2tpQu4rl27iu+++078/fff4u3bt2nO9+TJE+Hg4CAUCoXej+XGjRtS4+DgwYM607TlCoVC/Pnnn3rL3bFjh/SDMuSDDz4QAMTGjRulsjdv3ghvb28BQHz77bdCo9FI0x4/fiz8/f0FALF69WqdZWkbiYYOosZ4t6GWWloHpowOWEJkT6IxLSdPnhQqlUqoVCqdE25oaKg4dOiQXhLq+fPn0vf37nbOyrpoG0LVqlUTYWFhUnlUVJRo3LixACC6deumM482QQFAdOzYUWf/PHXqlNRoM6ZBqvXll1/qNVRS055AtA32dxNYqdcRgJg3b57OtPnz50tJiXfVrFlTapilPnncvHlTSkAuXbrUYFzfffedSY02IYSoXr26ACCOHDmiN+3cuXMCgChXrpxUduTIEWm9Y2NjdeonJSXp/bYz63//+58AIDw9PUVwcLDe57zb0MjNfcfU2LKaaEzruGjMfvj5558LAKJZs2Y6STeNRiPt5w0bNsyW78WUY867MpNofPDggQAgvLy8xIsXL/Tm+eeff8SbN2+kv3Pq/DRt2jSp4fyumJgYKUlPVFSwDZm5NuTWrVsFANG3b1+dcj8/P+Hh4SEcHBz0jtfaJOqBAweksujoaLF7926hVqt16kZGRorWrVsLAGLOnDl6n59W+zW9dq0QGSfpAIhPPvlEJCUlSdN+/fVXAaTcAHu3LdG2bVsBQHTu3Flnf7l165aUwDM20Zid6zBu3Did/UB7Di1fvrxwcHDQOda/fv1a+Pr6CkA/cXzhwgWhUCiEvb29znYTIqU9rv0N3Lx50+j1K1mypACQZmJ/165dAoDw9fXVKW/ZsqVQKBRS4tnb21v4+Pjo1GnTpo0AIBYsWKBTfv78eSGXy4VSqdT5TWo0GjFq1Cjpe0vrvK692V2tWjWj13PMmDEC0E+4CyFEQkKCcHZ2FnK5XDx69EgIIcTbt2+FSqUSNjY24s6dO3rzXLx4UafNmFnatpGFhYXBhwjOnj0rQkNDpb93794tAAh7e3tx+vRpqVyj0UjtNi8vL53kmPb6Stsu166jEEKEhYWJ0qVLCwBi/fr1WYotq4lGAGL69OkGH2DQTnd0dNRrPwshxO+//y6t+/nz53Wm7dq1S5ibmwt7e3sRHh6e5e8lo3ZnejKbaNSeUwwlt+/cuaOTQE9OThZ16tSRjj2p94XXr1+Lli1bCgBi8uTJOsvJaDvk1nVcVjHRWMgdO3ZMekIl9T8LCwvRtm1bgxdP2oPjlClTDC5z27Zt0sVratpG4rt32rQSExOFi4uLkMlk4uHDhzrTXrx4IczNzYWtra3OReWSJUsMNti0zp8/LwCIGjVq6JRrG4mZfQqloCUaQ0JCpDuEv/76a7p1U9M+9delS5dsWZe4uDjpwuTvv//Wm+fOnTvCzMxMyOVynX1Ae6KwtbU1mGzQNpDebeilR9sQT+vJwNQJnrTuhGrXsW7dunrTEhMThaOjowAgHjx4IJUfPXpUAClPIURHR+vNp13XsmXLGvxM7TZ598SWnm+//VYAEAMHDtSbpn2KYubMmVKZ9skPU5KZpkpMTJTu1h09ejTD+rm575gamxBZTzSmdVzMaD989eqVUKlUwtHRUbx69UpvukajEdWqVRMAdJ60yexvKrcTjWfOnBFAypOXxsip85P2CQpjnyQmKgrYhjS9DRkeHi5kMpnw9PTUiU8mk4n+/fuL9u3bC4VCIcWp0WiEk5OTUCqV6SZwU7t9+7YAIGrWrKk3LacSjaVKlTL4lJX2jYnUNzrv378vZDKZUCqVek+kCyHE0qVL8yTRWLp0ab0nh16/fi0t9//+7//0lrlw4UIBQPTv31+nvGvXrgJI+wnbb775RgAQY8eONWrdXrx4ISWt0vL69WvpKVJtYi0pKUnY2tqKevXqSfW0bwloE5YajUY4ODgIAHqJoQEDBgjA8E22+Ph46eZ4Wuf1xMREAaQ83ZU6CZ2e4ODgNNvB27dvFwBE06ZNpTLtd2NKMjMz2rVrJyV2jKG9AT5r1iy9aWq1Wjp2/vjjj1J56oTa3r179ebTPsTw7v5mamxZTTRWrFhRJyGfmjZ+Qzc6hBDSk8KHDh0yOH3kyJECgPjuu++kssx+L3mRaLSyshIODg5GfcaePXukZRhK2j59+lRYWFgIZ2dnnekZbYfcuI7LDuyjsZBr2LAhbt68iT/++ANjxoxB/fr1YWlpicTEROzevRsNGjTAihUrdObZu3cvABjs/BsAGjVqBAA4deqUwemG+rcDUkYo69mzJ4QQ+PHHH3Wmbd68GUlJSejatSusrKyMjqVGjRqwsbHBpUuXDPbjlVYshUlkZCTatGmDFy9eYM6cOejSpYteHSEEjh49ilmzZmH48OEYMGAA+vfvj+XLlwMAbt++nS2xnD9/Hm/evEHZsmXx3nvv6U338fFBo0aNkJycrNdHEQAEBASgWLFieuUVKlQAgHT7yXmXti8PZ2fndOu5urqibt266dZ5//339coUCoXUl2XquLT94nTs2BG2trZ683344YdQKBQGO/ROHW96fbS8q3fv3jA3N8fWrVvx9u1bqTwpKQmbN2+GTCZDnz59pPIaNWrAzMwMa9aswfLly036LGOdO3cO4eHh0jbPSG7uO6bGlh0yOhaltR8eOXIE8fHxaNKkicF9WS6Xo0GDBgAMH5Oz8zeVE3x9fWFjY4M9e/Zg3rx5ev2avSunzk81a9YEAHzxxRfYtWsX4uLijAmfqFBjG9JwLOlxcnJCtWrVEBoaijt37gAADh8+DCEEmjRpgiZNmkCtVkvnsYsXLyIiIgL16tWDSqXSW97Zs2fx9ddfY8SIEVLbbdasWQCyr+1mjMaNG0OpVOqVGzqXHD9+HEIINGrUCG5ubnrz9OrVK+cCTUdQUBAsLCx0yhwcHKRza4sWLfTmKVu2LADd9UtOTsaff/4JMzMzdOrUyeBnZbSfv8uYNquDgwOqVasG4L+2ZnBwMGJiYnTaMtr/144yfenSJURGRurMr6WtY2hQJ6VSmeZvR0uhUMDW1hbJyckG+y80pEaNGvDz88O9e/fwzz//6EzbsGEDAKBfv35SWbFixeDl5YVLly5h/PjxObLfazQaHDhwAAAwaNCgDOunHlwndaxa5ubm6Nu3LwAYHAVcoVCgWbNmeuWGfk+mxpYd2rVrB7k8/TSRoePjq1evcPbsWbi4uBjs2xBI/7dhyveSV2rWrInIyEj0798fly5dSrPffeC/c1CXLl0Mjv1QokQJlCtXDuHh4dL5IrW0tkNuXMdlByYaiwBzc3O0atUKCxYswD///IOIiAjs2LEDFSpUQHJyMkaNGqVzcRcSEgIA8PPzMzjQiPaiNa2Od0uVKpVmLNqD8buNRO2JRXtQfjeWtm3bGoxFLpcjNjY2zRNcerEUBmq1Gp07d8aNGzcwePBgTJgwQa/O8+fPUa9ePQQFBWHy5MlYtmwZ1q1bh/Xr10udskdHR2dLPNrEmTYBZ0iZMmV06qbm6elpcB5twi4hIcHoWLQDPBhK9qVmzD5iSlwZfQfm5ubw8vLSqZuanZ0dgP/iN0bx4sXx/vvvIzo6WuokGAD27duHFy9eIDAwUGc9fXx88N1330GtVuPjjz+Gq6srypUrh4EDB2LPnj3pnjSN9ejRIwD/NQ4ykpv7jqmxZYeM9rO0pmuPgdu2bUtz8CftKOWGjsnZ+ZvKCba2tli3bh1sbGwwceJEeHl5wcvLC7169cIvv/yiN2BNTp2f+vXrh759++LmzZto37497O3tUbNmTXz22WdGDSBGVFixDWm6Jk2aAAAOHjyo819tojGtaanFxsbigw8+QO3atTFhwgQsXbpUartp1ze72m7GyEw7KK3vz97eHvb29tkcYcY8PDwMltvY2KQ5XTst9fqFh4cjOjoaGo0GDg4OBvetWrVqAUh7P3+XsW1W7YjR2uSV9r+pE43agVberdOwYUO9pIV2W6U1IEZa5allpt2q/S1r92UAiIiIwJ49e2BjY6OXwN24cSPc3d0xf/58VKhQAW5ubujUqRN++OGHbLkx+OrVK8TFxcHa2holS5bMsH54eDgSEhJgYWGRZv302qxubm4wNzfXKzf0ezI1tuxgzLHPUJ379+8DSIlZLpcb/G1ok9eGfhumfC95ZdmyZahQoQLWr1+P6tWrw9nZGa1bt8Z3332H169f69TVnoNGjhyZZhv+2rVrAAx/H2lth9y4jssO+luSCj2VSoX27dujVq1aKFeuHOLi4rBv3z589NFHAFLunAApdxzfHfXMGJaWlmlOCwgIQOXKlXHt2jWcPn0aderUwY0bN3D+/Hl4e3vrPV2kjaVdu3ZwdHRM93MN3WlNL5bMSk5OzvZlZtawYcNw6NAhNGvWDMuWLTNYZ/DgwTh9+jQaNmyI6dOno2rVqrC3t4e5uTlu376NChUq5JsDUkZ3z0yhHf0so4a4MftIdsaVkaioKADQG70tI3379sXvv/+ODRs2oGfPngD+uxgzdLd1xIgR6Ny5M37//XccPHgQx48fx9q1a7F27Vo0bdoU+/btM3iyN5ahO3c5yZRtlBOxZXRcyGg/S2u69hhYqVIl6cIlLZUrV9Yry819NyNpfUedO3dG06ZNsWfPHuzfvx/Hjx/H5s2bsXnzZvj5+eH48ePSRWlOnZ/kcjnWr1+PCRMm4Pfff8fhw4dx4sQJnD9/Ht988w0mT56MGTNmmPx5RIUN25AZa9KkCb799lscOnRIaqdVqFABJUuWRMmSJeHq6iolGLWj9b6baJw4cSL27NmDypUrY968eahZsyacnJygUCiQmJhoMN6clJlzSXrn2rw4N2X0mcbGpN2vLCwspPZWWlxcXIxaprFt1sDAQCxcuFB6ovHYsWM6bzYAKTdRixcvrlNHO29OyEy7tXfv3pgwYQK2bNmC77//HkqlEr/88gsSExPRs2dPWFtb69Rv2LAh7ty5gz///BN//vknjh8/ju3bt2P79u2YMWMGjh8/nqWHS9hm1WXMsc9QHe1vw8nJCW3btk13/ndHFQcKRpu1UqVKuHLlCg4ePIh9+/bh+PHj+PPPP7F3717MmDEDf/31FwICAgD89300adIkzZs1WoaeZk5vO+T0dVx2YKKxCHN3d4evry+Cg4N1suienp64e/cuZsyYIb0ykJ369u2LCRMmYMOGDahTp47Oneh3D6aenp64desWRo0ahaZNm2Z7LGlRKBRQq9WIjY2V7mZqZfRqX26ZM2cO1qxZg8qVK2Pr1q0GDyZv3rzB3r17YWZmht27d+vdQb579262xqS906a9g2OIdlpO35VzdXUFkHKHNDdl9B0kJSVJT9QZ+g608RYvXtykz9VeSO3fvx/Pnz+HpaUldu3aBWtra4Ov0wMpdw4HDx6MwYMHAwBOnz6Nnj174uDBg1i9ejWGDh1qUgypaZ/aNPYVl9zcd0yNDYD0ulVsbKzetKSkJDx79ixLMaVF2zDx9/fHunXrcuQzskt63xGQ/rHTwcEBvXv3ll7fun79Ovr164dz585h7ty5mDNnDoCcPz9VqlQJlSpVwvjx45GUlIStW7dKryr26tXLYMOYqChiGzJtjRo1grm5OY4cOYJHjx7h7t27+Pjjj6XpjRs3xpYtW/DixQv8/fffsLGxQe3atXWWsXXrVgDAzz//jCpVquhMy+62W3Zzd3cH8N/bA++Kjo7We/KnIHFxcYFKpYJarcaKFSuyJelrbJu1UaNGkMlkuHLlCl69eoXjx4+jWrVq0lOFWg0bNsS2bdvw4sWLdBONJUuWREhICB4+fGiwbfXgwYN049FeK8nlcqOTqkBK+7NFixbYu3cvdu3aha5duxp8bTo1KysrdOzYER07dgQAPHz4EMOGDcO+ffswceJEbN682ejPf5ezszOsrKzw5s0bPH36VNqH06uvVCqRkJCAx48fG0wiZVeb1dTYgKy1x7JC+z1YWVkV6jarQqHA+++/L3Wt9eLFC4wfPx7r16/HJ598gpMnTwL47/vo1atXjrz2npPXcdkh/6SNKdtl9JSaRqORHnFO/bqA9kejbeRktw8//BByuRy//PIL4uPj8dNPPwHQf+UlN2JJi/YgfuvWLb1pf/31l8F5tAesd1/1ywlbtmzB//3f/8HV1RV79uxJ8xWUqKgoJCcnw9bW1mCdtE7KmV2XgIAAWFtbIyQkRK/fFQC4d+8ejh8/DrlcLr3akVOqV68OICVhkZu0T1Ts2LEDMTExetN/+uknqNVqlC1b1mDjQxtvjRo1TPpcpVKJ7t27Q6PR4KeffsKWLVsQHx+Pjh076iXL01KnTh3pZHX58mWTPv9dAQEBcHZ2xp07d/D3338bVT+39h1TYwPSPyYcPnw4x373TZs2hUKhwL59+9JsDGWnrBzH0vuOEhMTceTIEaOXValSJYwdOxaA7r6Ym+cEc3Nz9OjRA40aNYIQAleuXMnxzyTKL9iGzDxbW1vUrFkTL1++xMKFCwHoPrHYpEkTJCcnY+7cuYiNjUWDBg30nv7UJpwMJTAyk1DRLj832qjap+uOHj2KsLAwvemZTQjl5jqkx9zcHM2aNYNGo9HpriYrXFxc4OHhgaioqHRvXDo5OcHPzw9CCCxZsgSRkZEG+5rWtpOWLVuG8PBw2NnZGWxXaufdtGmT3rTExMQMfzvaNmvVqlVNfhot9evTd+7cwalTp+Dl5ZVm337vKlWqFCZPngwg621WMzMz6WbEmjVrMqxvbm6O+vXrA9B9/VtLo9FIbxVl9UlSU2MD0m+PhYeHIzg4OEsxpaVkyZKoUqUKHj9+jNOnT+fIZ6SWlTari4sLFAoFwsPD8erVK73paV3vG1K8eHHMnj0bQN61WYHsvY7LDkw0FmKTJk3Cp59+ihs3buhNi4mJwUcffYTXr1/DxsYGrVq1kqZ99tlnsLW1xbRp07B69WrpsV8tIQTOnj2L/fv3Zyoud3d3NGvWDOHh4fj8888RGhqK9957z+Cd7yFDhsDDwwMrVqzA3LlzDfbNcP36damvwezSuHFjAMBXX32lc/D666+/sGDBAoPzFCtWDBYWFggLC8vRO7WnTp1Cv379oFKpsGvXrnRfFXB1dYWDgwMiIyP1GnYbN26UGujvyuy6WFpaSndPPvnkE52nHGJiYjB06FAkJSWhS5cu0lNlOUXbUDG2I+7s0qhRIwQEBCAiIgKjRo2CWq2Wpt25cwf/93//BwAYN26cwfm18Rrb0EpNe6G1YcOGdF+bPnToEPbu3at3Yk5MTJR+16m3z5MnT+Dr6wtfX1+Dfc0YolAoMHHiRAApr8i8e8LTaDTYvXu39Hdu7jumxgb8d0xYunSpTqfLd+/exciRI7MUT3rc3Nzw8ccf49WrV+jYsaPBJz4jIyOxYsWKbLn40ia/DZ03MlKrVi1YW1vj6tWr2LZtm1SemJiIMWPGGHwy4sKFC1JSPDUhBP744w8AuvtiTp2fNmzYgAsXLuiVP378GJcuXdKLg6iwYxsya7SJxWXLlkEmk0nnEABS0kDb5c27r00D/71WuHTpUp3yAwcO4JtvvjE5nqwc201VpkwZtG7dGvHx8Rg5cqTO96592jUzcnMdMjJlyhSYm5tj+PDhBpONGo0Ghw8fNqkNqk1IaZ+Gyqjed999BwDpJhq1dRo0aAAzMzO9eiNGjIBcLsfq1at1bgYmJydj4sSJGbb5stJm1faHvG/fPmmf7tOnj96TyQ8fPsTq1asN3rz//fffAeifn5s2bQpfX19s377d6Hi+/PJLmJmZYdasWdiyZYve9PPnz+Px48fS39qbofPnz8e5c+ek8uTkZEyaNAl3796Fl5dXhgPq5ERsQUFBkMlk2Lt3r07CLyYmBoMHD87R/l21v++ePXsaHAhHO5jYzZs3s/xZWTkmWFhYSINPvntM2rBhg8EbInFxcViwYIHBxKShfbFjx46oUaMG9u3bh7Fjxxr83h88eICNGzeaFLup13F5JtfHuaZcM3r0aGmoeG9vb9G2bVvRq1cv0aRJE2FnZycACKVSKbZu3ao37/79+4WDg4MAIDw8PETLli1Fr169RMuWLYWrq6sAICZMmKAzT6lSpQQAcf/+/Qxj++mnn6TYAIiVK1emWffixYvCw8NDABDFihUTTZs2Fb179xZt2rQRXl5eAoDo3r27zjyBgYECgDh8+LBR39W7bt68KaytrQUA4ePjI7p06SJq1qwpZDKZmDhxogAgSpUqpTdfx44dpWm9evUSgwYN0vmetMPVr127Vmc+U8qbNGkiAAhfX1/Rr18/g//mzJkj1f/666+l7/m9994TPXv2FNWqVRMAcmRd4uLiRMOGDQUAYWdnJ9q3by+6dOkiXFxcBABRpUoV8fLlS5151q5dKwCIfv36GdweU6dOFQDE1KlTDU435O3bt8LR0VE4OjqKhIQEvemHDx8WAERgYGCay0hrHbXS2s9u3bol3N3dBQDh6ekpunfvLlq1aiWUSqUAIHr27CmSk5P1lqfRaESJEiWEtbW1iI6ONnpdUytfvry0vT08PIRGo9Grs2DBAgFAODg4iKZNm4pevXqJdu3aiWLFigkAonz58uL169dS/fv370vLNOb3rZWcnCx9h3K5XNSvX1/07NlTNGvWTDqOpJab+46pscXHx4sqVaoIAMLFxUW0b99eBAUFCUtLS9GzZ880j38ZHReN2Q8TEhJEp06dBAChUChE7dq1Rbdu3USXLl2Ev7+/MDc3FwDE27dvs/y9XLhwQcjlciGXy0WLFi3EwIEDxaBBg8Q///yTZnypzZo1S/pOAwMDRYcOHYSHh4dwdXUVAwYM0PvM7du3CwDC2tpaNGrUSPTs2VN07NhReHp6CgDC1dVVhISE6HxGTpyf2rdvL/1eP/jgA9G7d2/RvHlzoVKpBADRrVs3o9afqLBgGzLzbUghhDhw4IAUX/Xq1fWma9cXgDh37pze9F9++UWaXqNGDdGzZ09Rr149nbabocu4tMrHjh0rfQfdu3cXgwYNEoMGDZKmp3VOyKj9lVY76eHDh6JkyZICgChZsqTo1q2baN26tVCpVKJjx47Sd//kyRODyzUkp9YhvX0vvXP0xo0bpXZd2bJlRZs2bUTPnj1FkyZNhKOjowAgli1bZvT6abf5iBEj0q23detWnf3/xYsXenU0Go30OwUg5s2bl+bypk+fLp23g4KCRM+ePUW5cuWEUqkUQ4cOTbct0a1bNwFAHDx40Oj1TO2jjz7SWZdbt27p1blw4YJ0vKlbt67o0aOH6NKli9TetbGxEadPn9aZR7tN02q/p2XFihXCzMxMus7q3r27+OCDD0S5cuUMHhPGjRsnAAgzMzPRpEkT0bNnTykuBwcHcfLkSZ362va0oesuIdLf30yNbfDgwdL31rx5c9GmTRtRrFgx4evrK7V5jL0eTS2tY0xq8+bNE3K5XAAQlSpVEh06dBA9evQQDRs2FDY2NgKA2Lt3b5a/l/j4eOHm5iYAiICAANG3b18xaNAgsWbNmnTj0zpy5IjUhvbz8xNdunQRfn5+wtzcXHz22Wd6n/n69Wtpe/v7+4tu3bqJ7t27i+rVqwsAwtzcXOzcuVPnMx4+fCgqVaokAAh7e3vRqFEj6bpLu+3q1KmjM09G28HU67i8wkRjIfbq1SuxadMmMWDAAFG9enXh6uoqzM3Nha2trahWrZoYM2aMuHv3bprzP3nyRIwfP174+fkJa2trYWlpKUqXLi2aN28uFi5cqNc4MKWRGBcXJ50AVSqViIyMTLd+RESEmDlzpqhZs6awtbUVSqVSeHl5iUaNGonZs2frrUd2NBLPnz8vWrZsKWxtbYWVlZWoV6+e2LVrV7oHw1evXolBgwYJDw8P6cCVul52JBq165bev3cPxD///LOoVauWsLW1Ffb29iIoKEjs2bMnR9ZFiJTEyLfffiv8/f2FtbW1UKlUonLlymL69OkiJiZGr35OJBqF+K9Rum3bNr1pOZloFEKIsLAwMXbsWOHj4yMsLCyEra2taNCggVi3bp3BJKMQQvz5558CgBgyZIgxq2eQNtGjvRgx5M6dO2LKlCkiKChIeHh4CKVSKYoVKyZq1qwp5s+fL6KionTqZzbRqPXbb7+Jli1bCmdnZ6FQKIS7u7to0qSJWLx4sV7d3N53TIktLCxMDBgwQBQvXlxYWFiIChUqiPnz5wuNRpOjicbUsX7wwQfC1dVVKBQK4eLiIqpWrSqGDRsm9u3bp1M3K9/Lr7/+KurUqSM1Bk1trC9evFhUrFhRWFhYiGLFiokPP/xQhIaGGvzMZ8+eidmzZ4uWLVuKUqVKCZVKJRwdHUW1atXE5MmTRVhYmMHPyO7z09GjR8WoUaNEzZo1pe3r4eEhmjZtKjZv3iySkpKMXn+iwoBtyKy1Id++fSsloT799FO96QMHDhQAhKOjo8EbgkKkJCsbNmwoHBwchI2NjahTp47YsGGDECLti/20yuPi4sSnn34qSpcuLRQKhV697E40CpGyDwwcOFC4uroKpVIpypcvL2bNmiXi4+OFhYWFkMvlOjfIMpJT65DZRKMQQty+fVsMHz5clC9fXlhaWgpra2vh4+Mj2rZtK1auXCnCw8ONXr/ExETh6uoqnJ2dDd4g13rx4oWQyWQCgKhYsWKa9d5//33pOzp16lS6n71582ZRq1YtYWlpKRwcHESrVq3E2bNn021LREVFCZVKJSpUqGD0Or7r77//lmKsW7euwTrR0dHi22+/Fe3atRNlypQR1tbWws7OTlSqVEmMGTPG4HbLbKJRCCGCg4NF7969RcmSJYVCoRDOzs4iICBATJ061eD23L59u2jWrJlwcHAQCoVCeHl5iSFDhhiMKyuJRlNjU6vVYvr06aJMmTJS+3b48OHi9evXJl+PpmZMolGIlOvofv36CW9vb6FUKoWdnZ2oUKGC6Nq1q9i4caOIjY3Nlu/l4sWLok2bNsLJyUlKbqbV9jXkwIEDokGDBsLKykrY2tqKpk2bir///tvgZ6rVarF06VLRrVs3Ub58eWFrayusra1FhQoVxMCBA8WVK1cMfkZcXJxYuHCheO+996T9xN3dXdStW1dMmjRJXLp0Sad+RtvB1Ou4vCITIp8MN0tElM3u3r0LX19fvP/++9Ij7flZr1698PPPP+PixYuoWrVqXodDRERElK3++ecfNGjQAJUrV8bVq1fzOpx8ZerUqZgxYwZ+/fXXNAfyy03r1q3DgAED0K9fP73BPVauXImhQ4di0aJF+OSTT/ImQCLKt9hHIxEVWj4+PhgyZAj++OOPHOv4OLvcvn0bW7ZsQZ8+fZhkJCIiogIrKSnJYL+3t27dwpAhQwCkPbpwUfbZZ5/B1dUVX331VYYDMuUltVqNefPmSe1sIqJ3MdFIRIXajBkzYGdnJ41Ml19NmzYNSqVSGrWMiIiIqCCKj4+Hv78/SpcujVatWqF79+6oW7cuqlSpguvXr6NRo0YYM2ZMXoeZ79ja2mLmzJm4ePFiro+Wboq1a9ciJCQE8+fPl0b+JSJKja9OExERERERUbZISkrC5MmTcfDgQdy/fx+RkZGwsrJCxYoV0aNHDwwfPpwJqgIgvVeniYjSw0QjERERERERERERZRlfnSYiIiIiIiIiIqIsY6KRiIiIiIiIiIiIsoyJRiIiIiIiIiIiIsoyJhqJiIiIiIiIiIgoy8zzOoDC5unTp/j9999RpkwZWFtb53U4REREVEi8efMGISEh+OCDD+Du7p7X4VA+wvYnERER5YTMtD+ZaMxmv//+O4YOHZrXYRAREVEhtWLFCgwZMiSvw6B8hO1PIiIiykmmtD8LbKJxzpw5CA4Oxvnz53H//n2UKlUKDx48MHk5GzZswIIFC3Dz5k3Y2dmhbdu2mDNnDooVK5apuMqUKQMgZSP4+fllahlFlVqtRnR0NOzs7KBQKPI6HMoAt1fBw21WsHB7FTw5vc2uXLmCoUOHSm0NIi22PzOHx9mCh9usYOH2Kni4zQqW3NhemWl/FthE45dffgknJyf4+/sjMjIyU8tYsGABPv30UwQGBuK7777D48eP8e233+LkyZM4c+ZMpl490c7j5+eHevXqZSquoioxMRERERFwcnKChYVFXodDGeD2Kni4zQoWbq+CJ7e2GV+NpXex/Zk5PM4WPNxmBQu3V8HDbVaw5Ob2MqX9WWATjffu3ZMyqlWqVEFsbKxJ87969QqTJk1CrVq1cPDgQZiZmQEAatWqhXbt2uG7777Dl19+me1xExERERERERERFUYFdtTprL42tGPHDsTFxWHkyJFSkhEA2rZtizJlymDjxo1ZDZGIiIiIiIiIiKjIKLBPNGbV2bNnAcDg6yV169bF5s2bERsbCxsbmzSXERoaisePH+uUXblyBUDKu/KJiYnZGHHhp1arkZSUBLVandehkBG4vQoebrOChdur4MnpbcZ9gYiIiIjyuyKbaHz69CkAoGTJknrTSpYsCSEEnj59ivLly6e5jNWrV2P69OkGp0VHRyMiIiJ7gi0i1Go1YmNjIYRgx7MFALdXwZMb2yw6Pgl7rofjeEgkYhM0sFGaoVEZB7Su5Aw7VZE95WQKf2MFT05vs+jo6GxfJhEREREVLFFxavx6PhT7rz3H6zfxcLRWoUWVEuji7wF7q7y/biiyV31xcXEAAKVSqTdNpVLp1EnLoEGD0LJlS50y7Yg8dnZ2cHJyyqZoiwa1Wg2ZTAZHR0deVBcA3F4FT05vs63BTzD995tISErWKQ9+HItlJ55i6ge+6OKvf3OHDONvrODJ6W1mZ2eX7cskIiIiooJjy9lQTNl5FfGpr7levsXpB68xf99NzGhfBd1qeeZdgCjCiUYrKysAQEJCAiwtLXWmxcfH69RJi6enJzw9DW9AhULBUZoywdzcnN9dAcLtVfDk1DbbcjYUX+64nub0hKRkfLnjOszNzPP8xFeQpLe9hBCIiopCTEwMEhISIITIgwgpteTkZKjVarx58wZyuXHdYMtkMtjY2MDZ2TnD5CQTzpRVarUa4eHh0pO3RZ32NxsVFWX0bzavyWQyKJVK2Nrawt7eHjKZLK9DIiKiXLLlbCjGb7uc5vT4pGRpel5ecxWMM2oOcHd3BwA8efJEb9qTJ08gk8mkOkRElLaoODWm7LxqVN0pu64iKo79zGWVtnuPZ8+eITY2FhqNJq9DIqQkABQKhUkX/klJSXj9+jVCQ0OZ+KEcJYRAaGgoXr9+jaSkpLwOJ1/IzG82r2k0GsTGxuLZs2d4+vQpjxtEREVEQbrmKrJPNNaqVQsrV67EyZMn4ePjozPt1KlTqFChQroDwRARUYqtwY91H91PR7w6GduCH2Ngg9I5HFXhFhUVhejoaCiVSpQoUQIqlapAXSgXVsnJydBoNDAzMzP66ajk5GQ8efIEsbGxeP36NbtdoRzz+vVrJCQkwMbGBiVLliwwT/DlpMz8ZvOaEALx8fF49uwZoqOjYWNjA3t7+7wOi4iIclhBuuYqGGfULHr06BFu3rypM1pj+/btYWlpicWLF+s8CbJ7926EhISgd+/eeREqEVGBs//6cxPrh+VQJEVHTEwMAKBEiRKwtLRkkrEAk8vlcHV1BfDfdiXKCdr9y9XVtcAk1UifTCaDpaUlSpQoAYCDRBERFRUF6ZqrwD7R+OOPP+Lhw4cAgJcvXyIxMRGzZs0CAJQqVQp9+vSR6vbt2xdHjx7F/fv34e3tDQAoVqwYZs6cic8++wzNmjVDz5498eTJE3zzzTfw9fXFmDFjcnuViIgKpJh4017Bexmb0p8gk2OZl5CQALlcLg1eRgWb9tVNvs5KOUk7WBH7+iwcVCoV5HI5EhIS8joUIiLKBaZec0XH89Vpk61evRpHjx7VKZs8eTIAIDAwUCfRmJZx48bB2dkZCxYswKhRo2BnZ4du3bph7ty5fG2aiMhItirTTiV3X8SiwbzDaFTeBQ18iuE9H2c4WHFAIVMIISCXy5msLSRkMhnkcjmSk417HYYoM3jcKFxkMhlkMhn7aCQiKiJMveayU+XdjcUCm2g8cuRIttTt378/+vfvn+V4iIiKqqa+xXEqJMKkeZ5EvsXmM6HYfCYUMhlQ1cMBDX1c0LCcC2p4OcLCPOPX+qLi1Pj1fCgO3AhDTHwSbFXmaF7JDV38PWBvxSd2qGBh8odyA/ezwoXbk4ioaIhLTILcxGN+80quORRNxgpsopGIiPLem4QkHL390uj6CjMZGvsWx5n7EYj8dyQ0IYBLoZG4FBqJxYfvwtrCDHXLOKNhORc0LF8MZVys9S6mtpwNxZSdV/U6RD4VEoH5+25iRvsq6FbLM+srSERERERElEf2Xw/DtF3X8CTyrdHzqBRydA7wyMGo0sdEIxERZcqLmHgMWncOV55EGT3PVx380K2WJzTJAlefROHvu69w7PZLBD96DbUm5fWvN4kaHLz5AgdvvgAAuNur0LBcMTQs74L3yrpg//UwjN92Oc3PiE9KlqYz2UhERERERAVNaEQcpu++hgM3XkhlKnO5USNPz2hXBfaWfHWaiIgKkLsvYtBvzVnpzpqrnRI9anlixdEQgyc/lUKOGe3+e8rQTC5DNU8HVPN0wIjGPniTkITT98Nx7PYrHL/zEvdevpHmfRoVj1/OheKXc6EAAGNfGpiy6ypaVnbja9RERERERFQgJCYlY9XxECw6dAfx6v+uq9pVc8ekNhVx5NZLg292AfrXXHmFiUYiIjLJ6ZBwDPnxPKLeprz6XMHVFmsH1IK7gyUGvlcGW4Mf48D1METHq2GnUqB5JVd0zqDfRGulOZr4uqKJb0pfIk8j3+LvO69w7M5L/HP3FV7H/TdqmrHd3serk7Et+DEGNiid6XUtitj3pelu3bqFVatWITg4GMHBwYiKisLUqVMxbdq0vA6NKFfwuGEaHjOIiMiQE/deYfKOqzoPXZRxscbMDlXwno8LgJQ3tlpWdsPW4MfYf+0ZImLj4WSjQovKJTK85sotTDQSEZHRdl16is+2XEKiJuUOWv2yzlj2YYD0aL69lQKDGpTGoCwm99wdLNGtlie61fJEcrLAtafROHbnJVYcvYfo+CSjl7P/ehgTjSZg35eZc/LkSXz77bcoW7Ys/P39cfjw4bwOiSjX8LhhutTHjICAABw6dCivQyIiojz0IiYes/fcwI6LT6UypbkcI5v44KNGZaA0N9Opr73m6lO7JCIiIuDk5AQLC4vcDjtNTDQSEVGGhBBYeSwEc/belMo61SiJuZ2rGjVCdFbI5TL4edjDz8Mef1x5hmtPo42eNzpenXElApCSLGDfl5nTrl07REREwM7ODmfOnEG9evXyOiSiXMHjRuZojxkODg44d+4catWqldchERFRHtAkC/x0+iHm/3kLMakepmhcoRimt6sCL2erPIwu83L26pCIiAo8TbLAlJ3XdJKMI5v44Jtu1XI8yfguW5Vp98fsVHn/6kBBEBWnxpSdV42qO2XXVUTF5W4CNyYmBpMmTUKdOnXg4uICpVIJHx8fTJw4EXFxcVK9I0eOQCaTYd26dVi0aBHKly8PlUqF8uXLY9GiRXrLDQoKgre3N0JCQtC+fXvY29vDzs4OHTt2REhIiNHxOTk5wcHBITtWlajAyM/HDVOOGRYWFjxmEBFRrrsUGokOS/7BlJ3XpCSju70KK/oEYE3/WgU2yQjwiUYiIkpHXGISRm2+II12ZiaXYVaHKuhZ2ytP4mleyQ2nQiKMri+TAW8TNbC0MMu4chG2NfixUSPYAXnT9+WTJ0/www8/oHPnzujVqxfMzc1x9OhRfP3117hw4QL+/PNPnfqLFi3C8+fPMXToUNja2mLz5s0YNWoUIiIiMHXqVJ26b968QVBQEOrUqYM5c+bgzp07WLp0KU6dOoULFy7Azc0t19aTqCDJz8cNU48ZS5Ys4TGDiIhyRVScGvP/uomfTj+C+LfzeXO5DIMalsaoJuVgrSz4abqCvwZERJQjXsYkYPD6s7j0OAoAYGVhhiW9/dG4QvE8i6mLvwfm77tp9MXtiXvhaPXdMczpVBX1yjrncHT5Q+8fTuHJ67cmzfM8Kt6k+l/vu4kNJx+YNA8AlHS0xE+D65o8X5kyZRAaGgqF4r8nVEeMGIHJkydj1qxZOHPmDGrXri1Nu337Nm7cuAEPDw+pboMGDTBr1iwMGjRIKgeAV69eYfTo0Vi4cKFU1qhRI3Tq1AnTpk3D8uXLTY6XqKDJr8cNHjOIiKigyGhgNCEEtl94gtl/3MCr2ERpvtreTpjZoQoquNnmYfTZi4lGIiLSc+9lLPqvPYPQiJQLz2K2SqztXwtVStrnaVz2VgrMaF8l3T7BtFTmcsQnJeNBeBx6rjqFXnW8MLGVb6F/nfrJ67d4EB6XccUs0H6vuSV159ZJSUmIiYmBRqNBs2bNMGvWLJw+fVonadC7d2+dxICFhQXGjh2LXr16Yffu3fj44491lj9x4kSdvzt27IgKFSpgx44dTBpQkVDYjhumHjN69erFYwYREWVaRgOjjWjsg7/vvsLp+/+9meVsbYEvW1dEJ/+SkMlkuR1yjmKikYiIdJx7EIHBG84h8t/+tHyK22DdgFrwcMwf/YRoBxQwdDIHAJVCjhntqqBR+WKYtOMqDtwIAwBsOv0Ih268wFcdq6BpRddcjTk3lXS0NHme51HxRj8lCqQkcd3sVSZ/TmZi01q6dCmWL1+Oa9euITlZN9bXr1/r/F2xYkW9+StVqgQAev2oOTg4GHzVsWLFitixYwfevHkDa2trPH/+XGe6hYUFnJycMrUulL/dvn0bGzduxF9//YV79+4hPj4eZcuWRdeuXTFmzBhYW1tLdadNm4bp06cbXM78+fPx2Wef6ZQlJyfju+++w4oVK/DgwQMUK1YM3bp1w4wZM3SWm9vy63GDxwwiIsrvjBkY7Zv9t6W/ZTKgV20vfN6yAhys8s9I0dmJiUYiIpL8ceUZxvxyEYn/XjzWKe2ElX1qwt4qfz0F2K2WJ1pWdsPW4Mc4cD0M0fFq2KkUaF7JFZ3/fT0BAFb1DcCeK88wdec1hL9JxPPoeAxafw7tqrljattKcLZR5vGaZL/MvGa4+u/7mPn7daPrj3/fN1f7aPz2228xbtw4tGjRAqNGjYK7uzssLCzw5MkT9O/fXy+JkBNKlCih83dgYCCOHDmS459LuW/NmjVYsmQJ2rVrh969e0OhUODw4cOYNGkStmzZglOnTsHSUjcBtmDBAri4uOiUBQQE6C177Nix+P7779GxY0eMGzcON27cwPfff48LFy7gwIEDkMvzZpzGwnbc4DGDiIhygykDowFAxRK2mNOpKqp7OuRcUPkAE41ERAQhBFb/fR9f/XFD6pS4XTV3zO9aFUrz/DmQir2VAoMalMagdC5cZTIZPqjqjvfKumDG79ex/cITAMCuS09x/M5LTGtXGe2quRe61xVMZUrflyqFHJ0DPDKsl51+/PFHeHt7Y+/evTqJmH379hmsf+PGDb2y69dTEiJlypTRKY+MjMTz58/1nlC6ceMGihcvLj1ltn//fp3pjo6Opq8IFQhdunTBF198AXv7/7qKGDZsGMqVK4evvvoKq1evxieffKIzT4cOHeDt7Z3ucq9du4ZFixahU6dO2LZtm1ReunRpjBo1Cj///DN69eqVreuSk/LzcYPHDCIiyg2mDIwGAJ39PQp9khEA8ua2KRER5RuaZIHpu69j1p7/kozDAstiYffq+TbJaCpHawss6F4da/vXgvu/r+69jlNj9M8XMWj9OTyNNG0QhMJG2/elMWa0qwJ7y9x9wtXMzAwymQxCu4Mipd+1uXPnGqz/008/4fHjx9LfiYmJWLBgAczMzPDBBx/o1X93Odu3b8etW7fQoUMHqaxZs2Y6/ww9rUaFQ82aNXWSjFrdu3cHAFy9avjJhejoaCQlJaW53M2bN0MIgTFjxuiUf/TRR7CyssLGjRszH3QeyM/HDVOPGZs2beIxg4iITLb/+vOMK6Vy8MaLHIokf+ETjURERdjbRA3G/HIBf15L6cdQLgOmt6+CPnVL5XFkOaOxb3H8ObYRvt53Cz+eeggAOHTzBVosOIaJrXzRq7YX5PKi+XSjsX1fauvlJu0TZq1atUKnTp0QHR2NTZs26Ywom1r58uVRp04dDBs2DLa2tti0aRPOnj2LyZMnw9NTN34XFxf89ttvePr0KYKCgnDnzh0sXboUrq6umDZtmlHxRUVFYdGiRRBC4MmTlKdmjx07hlmzZgEA2rVrh6pVq2b+C6B8QZuIcnXV7+O1atWqiImJgZmZGWrXro3JkyejVatWOnXOnj0LuVyuMwgJAKhUKlSvXh1nz541Ko7Q0FCdpBgAXLlyBQCgVquRmJhoaDYkJydDJpNl62vDXQJKIlkkY+qu60hI47gxrW2llHq58LqyVufOnfHll1/i/fffR8eOHRETE4PNmzdLxwwhBJKTk6VEpPaYMXToUNja2mLz5s04e/YsJk2ahJIldWPXHjOePHkiHTOWLVsGV1dXTJkyxaj1jIqKwuLFiwEAT58+BZByzJg5cyYAoG3btkYdM4QQEEKkuc0LI7VajaSkJKjV6rwOhYzA7VXwcJuZJvqtad9T1NvEbD1m58b2ysyymWgkIirkouLU+PV8KPZfe47Xb+LhaK1Ciyol0KRCMXz66yVceBQJALBUmGFxrxqFeqAUALBVKTCzQxW0reaOidsuI+TVG8QmJGHSjqvYdekp5nWuitIueTcoQ14ytu/L3Pb555+nvN6/ejVGjx4NNzc3dO/eHQMGDJAGbEht5MiRiI6OxqJFi/Do0SN4eXlh4cKFGD16tF5da2trHDp0CGPHjsXEiRMhhMD777+Pb775Rq+PtbS8fv0akydP1ik7fPgwDh8+DADw8PBgorGA02g0mDlzJszNzXVeb3ZwcMCQIUNQv359ODo64tatW1i4cCHatGmDNWvWoH///lLdp0+fwsXFBUqlft+wJUuWxIkTJ5CYmKgzYrIhq1evTnMAmujoaERERBicplaroVAooNFojFhj43Wu4Y5mvsXw24WnOHTzBaLjk2CnMkfTisXRsbo77C2z/zMzMnbsWGg0Gqxbtw5jx46Fm5sbunTpgn79+qFatWpITk6GRqORkoIff/wxYmJisHTpUumY8c0332DkyJE6sQshYG1tjT///BOfffYZvvjiCwgh0KJFC3z99dcoXry4Uev66tUrTJkyRacs9THD3d0dlStXznA5Qgio1eo0t3lhpFarERsbCyFEmjebKP/g9ip4uM1MozITGVdKxdIM2XrMzo3tFR0dbfI8TDQSERViW86G6j+h9vItTj94jVm/A9pTo4uNBVb3q4VqRaDPEK3apZ3wx+iG+O7gHaw8FgJNssCZ+xF4f+ExjG1eHoMblIa5WUoPI9pk7YEbYYiJT4KtyhzNK7mhSx4m33KKMX1f5jYzMzN88cUX+OKLL/SmpX41MrVRo0Zh1KhRRi2/TJky2LlzZ6bj8/b2lp6Q0mg0MDMzy7NBPShnjBkzBidPnsTs2bNRoUIFnfJ3DRw4EFWqVMHYsWPRpUsX2NjYAADi4uIMJhmBlKcatXUySjQOGjQILVu21Cm7cuUKhg4dCjs7uzRHNo6KioJMJoOZWfZ3ieFkY4bBDctgcMMyGVfOBWZmZvjyyy/x5Zdf6k1LnQjU/k7lcjlGjx5t8GZEatr+fMuVK5elY0bZsmWzJfkqk8mgUCiK1GjWarUaMpkMjo6OTIIUANxeBQ+3mfFexyUiLu0eUwx63889W4/ZubG97OzsTJ6HiUYiokJqy9lQjN92Oc3pqZOM24e/B08nq9wJLB9RKcww4X1ftPErgfFbL+P6s2gkJCVj7t6b+P3yU3zduRquPoky+DrxqZAIzN93EzPa583rxESUOyZPnozFixdjyJAhBpPd73J2dsawYcMwbdo0nDhxAi1atAAAWFlZ4cULw30zxcfHS3Uy4unpqdcFgJZCoUgzUZk6qUYpUg8EZsr3kl++Q5lMBplMlmFyurAxNzdPd1+n/IXbq+DhNsvY4ZsvMH7bZbyMSTB6HpVCjm61S8HCInsTgjm9vTKTwGSikYioEIqKU2PKTsMDFrwrNj4JdqqifceySkl77PzkPaw8FoLvDt5BYlIyrj6JxgeLjiM5nTci4pOSpWQuk41Ehc+0adMwa9YsDBgwAMuXLzd6Pu0I1K9evZLK3N3dcf36dSQkJOg92fjkyRO4uLjwoo6IiCgfi01Iwqzfr+Pns6FSmYOlOSLfZvxoY14MqJhX8sftOCIiylZbgx8bHNDDkPikZGwLfpxxxUJOYSbHiMY++GNUQ9Qs5QgA6SYZU5uy6yqi4thpNlFhMm3aNEyfPh39+vXDDz/8oPP0W0bu3LkDQHfgmFq1aiE5ORlnzpzRqRsfH4+LFy+iZs2a2RM4ERERZbtTIeF4f+ExnSRjZ38PHJvQBF93rgqVueH0mkohx9edqxaphxL4RCMRUSG0//pzE+uHYWA+6pMvL/kUt8GWofUwfFMw9l017nuMV6cka/kd5q2goKA0+2w05MiRIzkXDBVoM2bMwPTp09GnTx+sWbPG4KuySUlJePPmDezt7XXKQ0NDsWzZMjg7O6N+/fpSeffu3TF79mwsXLgQDRs2lMpXrVqFuLg49O7dO+dWiAwKCgpCYmKi0f1W8phBRFT0xKs1+N+ft7D6n/vQNjOdrS0wu5MfWlZ2A5B/B1TMK0w0EhEVQjHxpvVMHB3Pp/FSk8tliIxLNGkeJmuJCoclS5Zg6tSp8PLyQrNmzbBp0yad6a6urmjevDliY2NRunRpdOjQARUrVpRGnf7hhx8QGxuLzZs3w9LSUprPz88PI0aMwOLFi9GpUye0bt0aN27cwPfff4/AwECd0ayJiIgo711+HIlPt1zC3RexUlnLyq74qqMfXGx0u0HJjwMq5hUmGomICiFblWmH96LeR6MhTNZSbhJCmPRqLuWcs2fPAgAePXqEfv366U0PDAxE8+bNYWlpic6dO+P06dPYsWMHYmNj4eLigmbNmmH8+PGoXbu23rwLFy6Et7c3Vq5ciT179sDFxQUjR47EjBkzcmWAEVOe+KX8j8cNIqKcodYkY/Ghu1h8+C40//alZKsyx/R2ldGxRkkeezPARCMRUSFUrrgNToVEGF2/eSXXjCsVMfk5WSuTyaDRaHiRWUgIIZCcnJypUf0o+61btw7r1q3LsJ5SqcQPP/xg0rLNzMwwbtw4jBs3LpPRZR6PG4WLEAJCiHwzAjYRUWFxJywGn265hCtPoqSyBj4u+LpLVbg7WKYzJ2kx0UhEVMhsPPUQP51+ZHR9lUKOzgEeORhRwdS8kptJydqmFYvnYDS6lEolYmNjER8fr/NqJhVMarUaQgiYm7NZRjlHoVBArVZDrVZzdOtCID4+HsnJybCyssrrUIiICoXkZIE1/9zH13/eQuK/g2qqFHJ82boiPqxTCnI5b9IZi7fAiIgKiSRNMqbuvIpJO64aPVoyAMxoVwX2lnyS6l1d/D3SHD3OkN8vP8Wj8LgcjOg/tra2AIBnz57h7du3fB2yAEtOTkZYWBiA/7YrUU7Q7l9hYWFITk7O42gos4QQePv2LZ49ewYAsLOzy+OIiIgKvtCIOPRcdQqz9tyQkow1vBzwx6iG6FvPm0lGE/HWORFRIRAVp8aITcH4++4rAIBMBnzRyhf2lgpM3XkN8Un6F5UqhRwz2lVBt1qeuR1ugWBvpcCM9lUwfttlo+pfDI3C+98dw5QPKqF7Lc8cfTXR3t4eb968QXR0NB48eAC5XA6ZTMbXIfOY9lVGY7eF9pVpIQSUSiUcHR1zIUoqqhwdHREZGYnY2Fjcvn1bOm4UZab+ZvOaNl5totjOzo6JRiKiLBBCYMu5UMzYfR1vEjUAAIWZDGOalcfQRmVgbsZn8zKDiUYiogIu5GUsBq8/h5BXbwAA1hZm+L5nDTStmNLv4vuVS2Br8GPsv/YMEbHxcLJRoUXlEujs7wF7Kz7JmB5tEnbKzqtpJmuHB/lg39XnuP4sGnGJGkz87QoO3AjDnE5VUcxWqTdPdpDJZHB3d4eNjQ2io6ORkJDApxrzASEE1Go1FAqFUUkLmUwGc3Nz2NjYwNnZuUAkOqjgkslk8PT0RHh4OGJjY3nMgOm/2bwmk8kgl8thZWUlJRkLQtxERHklKk6NX8+H4sCNMMTEJ8FWZY7mldzQxd8DCUkp7fZDN19I9X3dbPFtt+qo5M6bOFnBRCMRUQH2951XGP7TeUT/O0Kyh6MlfuhXE75u/50c7a0UGNSgNPrULomIiAg4OTmxfy4TdKvliZaV3bA1+DEOXA9DdLwadioFmldylZK1wwLLYuGB21h+9B6SBXDgxgtcWHgMszv5oWVltxyJSyaTwd7eHvb29jmyfDJdYmIif2OUrykUCri55cwxqSDib5aIqPDacjbU4MMCp0IiMHfvDZibyfH236cY5TJgaGBZjGlWDkpzs7wIt1BhopGIqID68eQDTNt9HZp/O2Ss7e2EZR/6w9kmZ56iK8q0ydpBDUobnG5hLsf4933RxLc4Pt1yCY8i4hD+JhFDfzyPrgEemNK2EmxzcVRqIiIiIqKiasvZ0HS7P1JrBNSalCSjt7MVvulWDQGlnHIrvEKPL5wTERUwak0yJu+4isk7r0lJxq4BHtg4uA6TjHmsprcT/hjdED1r/9fv5a/nH6PVd8dxOiQ8DyMjIiIiIir8ouLUmLLzqlF1zeQybB5Sl0nGbMZEIxFRARIVp0b/tWfw46mHAFIGffm/1hXxdZeqsDBhhGTKOTZKc8zpVBU/9K0JF5uUV/Eev36LHqtOYc7eG0hI0uRxhEREREREhdPW4McG+1Y3RJMssPfK8xyOqOjhVSkRUQFx72UsOiz9B//cTXkyzkZpjjX9auGjRmXYGXw+1KySK/4c0wgtKqUMyiMEsOJoCNov/gc3nkXncXRERERERIXP/uumJQ73Xw/LoUiKLiYaiYgKgON3XqLDkn9w/9+RpT2dLPHb8Ppo7Fs8jyOj9DjbKLGiTwDmd6kKG2VKt8g3n8eg/eJ/sOLoPenVdyIiIiIiyrqYfwfJNFZ0vDqHIim6mGgkIsrHhBBYf+IB+q89K500a5d2ws4RDVDe1TaPoyNjyGQydK3pib2jG6K2d0r/L4maZMzZexM9V55CaERcHkdIRERERFQ42KpMG/PYjgM2ZjsmGomI8im1JhmTdlzF1F3/DfrSvaYnNg6qAydrizyOjkzl6WSFzUPq4otWvrAwSzn9nnkQgVbfHcev50IhRMo2jopT44fjIeiz5hz6/nQdfdacw+q/7yMqjndbiYiIiIjS09CnmEn1m//bzRFlH9NSvURElCsi4xIx/KdgnLiX0h+jXAb8X5tKGPieN/tjLMDM5DIMDSyLRuWLYewvF3HzeQxiE5Lw+dbL2H89DHXLOOHrfbd0O7B++RanH7zG/H03MaN9FXSr5Zn2BxARERERFVHhsQnYdemp0fVVCjk6B3jkYERFExONRET5zN0XsRi8/iwehKe8UmurNMf3vWqgcQX2x1hYVCxhh52fvIdv99/GymMhEAL463oY/kqnM+r4pGSM33YZAJhsJCIiIiJKJSw6Hr1/OI27L2KNnmdGuyqwt+Sr09mNiUYiojwQFafGr+dDceBGGGLik2CrMkfzSm5wt1dh/LbLUn+MXk5WWN2vJsqxP8ZCR2luhi9aVUSTCsUx9peLeBoVb9R8U3ZdRcvKbrC3YqOIiIiIiOjx6zj0/uE0Hv77oEbZYtboUcsL3/z1zptC/1Ip5JjRjm8K5RQmGomIctmWs6GYsvOq3knvVEiEzt91Sjth+YcBcGR/jIVanTLO+LBuKXz95y2j6serk7Et+DEGNiidw5EREREREeVv91+9Qe9Vp6Sb9hVL2OHHQbXhYqNEt5qe2Br8GAeuhyE6Xg07lQLNK7mis78Hb9rnICYaiYhy0ZazodLrr+mpXdoRPw6qAwtzjtlVFBy789Kk+vuvhzHRSERERERF2q3nMej9w2m8ik0AAFT3dMD6AbWlJKK9lQKDGpTGILabcxUTjUREuSQqTo0pO68aVffy4yi8TdQw0VhEaF+VN1Z0PEegJiIiIqKi68rjKPRdcxqv41LaxbVLO2FN/1qwUTLNldd4BUtElEu2Bj822EeIIdrXY6losFWZ1iBSa5KhSRY5FA0RERERUf517kEEeq06JSUZG5ZzwfoBtZlkzCeYaCQiyiX7rz83sX7aIxBT4dK8kptJ9W+HxaLJN0ew8dRDxKs1ORQVEREREVH+8s/dV+iz+gxiElLeCGpeyRU/9KsJSwuzPI6MtJhoJCLKJXw9ltLSxd8DKhNfk38YHodJO66iwbxDWHL4LqLecn8hIiIiosLr0M0wDFh3Fm//vdHerpo7lvb2h9KcScb8pMAmGpOTk7FgwQL4+vpCpVLB09MT48aNw5s3b4yaPzY2FrNnz4afnx9sbW3h4uKC+vXrY926dRCCr6MRUfazVJh2ArRTcSS0osLeSoEZ7asYVXdUUx+0reYOuSzl71exiZj/5y3Un3MQX+25juf/jrhHRERERFRY7Ln8DEM2nEfiv11Rda/piQXdq0NhVmDTWoVWgX2BfezYsfj+++/RsWNHjBs3Djdu3MD333+PCxcu4MCBA5DL097ZkpOT0apVK5w4cQL9+vXDyJEjERcXh82bN2PAgAG4ceMG5s2bl4trQ0SF3eXHkbgTFmvSPM0rueZQNJQfdavlCQCYsvOqwb48VQo5ZrSrItX7vEUFrDoegi3nQpGQlIw3iRqsOn4f6048QIfqJTE0sAx8itvm6joQEREREWW3becf4/Otl6Dtorx/fW9M+aAS5No775SvFMhE47Vr17Bo0SJ06tQJ27Ztk8pLly6NUaNG4eeff0avXr3SnP/06dP4+++/MWbMGCxYsEAqHz58OHx9fbFixQomGoko22w5G4pJO69Kd9+MoVLI0TnAIwejovyoWy1PtKzshq3Bj7H/2jNExMbDyUaFFpVLoLO/B+yt/nvK1cvZCjM7VMHoZuWw7p8H2HDyAaLjk6DWCPx6/jF+Pf8YLSq5YlhQWfh7OebhWhERERERZc6Ppx5i8o6r0t/Dg8ri85YVIJMxyZhfFchE4+bNmyGEwJgxY3TKP/roI0ycOBEbN25MN9EYHR0NAHB3d9cpt7CwgIuLCxISErI9ZiIqehKSNJi++zo2nX4klVV0s8WN5zEZzjujXRXYW/LV6aLI3kqBQQ1Ko0/tkoiIiICTkxMsLCzSrO9io8RnLStgWFBZ/HzmEX44fh/Po1Nen/7rehj+uh6G2qWd8HFgWQRVKKbTKIuKU+PX86E4cCMMMfFJsFWZo3klN3R5J6lJRERERJTbVh0LwVd/3JD+/rxlBYxo7JOHEZExCmSi8ezZs5DL5ahdu7ZOuUqlQvXq1XH27Nl0569duzYcHBzw9ddfw9vbG3Xq1EFcXBzWr1+P8+fPY/ny5UbFERoaisePH+uUXblyBQCgVquRmJhowlqRWq1GUlIS1GoOaFAQcHul73lUPEb+chmXHkcBAGQyYGRQGQwPLIPfLj7F9N9vIiGN12OntPFFh2qu2X4M4TYrWEzdXhYyoG8dD/QIcMfvV55j1d8PcO9lSr/FZ+5H4Mz9CFRwtcHgBt5oXcUVOy89M7gfngqJwNf7bmLqB77o4l8y29erMMvp3xh/u0RERFQUCCHw3cE7WHjgjlQ2+YNKGNSgdB5GRcYqkInGp0+fwsXFBUqlUm9ayZIlceLECSQmJqb5BIijoyN27dqFwYMHo1u3blK5ra0ttm3bhg4dOhgVx+rVqzF9+nSD06KjoxEREWHUciiFWq1GbGwshBBQKPgkTX7H7ZW286ExmLQ3BK/jUkaZtlWaYfr7pVG/tD0iI1+jibclag72wx/Xw3E8JAoxCUmwVZqjUVl7tKroDDuVeY4cP7jNCpasbK+gUio08qqAv0Oi8OO557jyLCXheCssFp9vu4qZe24gOl6T5vwJScn4csd1vHnzBm0ru2RpPYqSnP6Nad/IICIiIiqshBCYu/cmVhwLAZDywMZXHfzQq45XHkdGxiqQica4uDiDSUYg5alGbZ30XjWzsbFBlSpV0K5dO9SvXx8RERFYsmQJevXqhZ07d6J58+YZxjFo0CC0bNlSp+zKlSsYOnQo7Ozs4OTkZMJakVqthkwmg6OjI5MgBQC3lz4hBNadfISv/7oDzb89FVdwtcGSntXg5WSlU9cJwHD34hiei/FxmxUs2bG9Ojg7o0OtMjj38DVWHn+AI7dfAUC6ScbUvjkSig41S/M1fiPl9G/Mzs4u25dJRERElF8kJwtM230NG04+BACYyWX4X9eq6FiDfdcXJAUy0WhlZYUXL14YnBYfHy/VScuVK1dQv359LFiwAMOGDZPKe/bsiSpVquCjjz7CvXv3YGZmlm4cnp6e8PT0NDhNoVCkm+gkw8zNzfndFSDcXv+JS0zC+G2X8fvlZ1JZ++rumNupKiwt0j+W5CZus4Ilu7ZX/XKuqF/OFbeex+DzXy/h8pMoo+aLVydj95UXGMjXVIyWk78x3iAgIiKiwkqTLDBh22VsPZ/SPZ3CTIZFPWvg/Sol8jgyMlWBTDS6u7vj+vXrSEhI0Huy8cmTJ3BxcUm3gb9gwQLEx8eja9euOuVWVlZo06YNFi9ejAcPHqBs2bI5Ej8RFS73X73BsB/P41ZYyiAv5nIZ/q9NRfSv783R0ChfqeBmCyulaYnv/dfDmGgkIiIiomxhaDDCJr7Fce7Ba/x1PQwAoDSXY3mfADSuUDyPo6XMKJCJxlq1auGvv/7CmTNn0LBhQ6k8Pj4eFy9eRKNGjdKd/8mTJwAAjUb/1bGkpCSd/xIRpefA9TCM/eUiYhJSjhkuNkos7e2P2qXZdQLlTzHxpp3fouM5AAkRERERZd2Ws6GYsvMq4g0MRqhlZWGG1f1qoV5Z59wOj7KJPK8DyIzu3btDJpNh4cKFOuWrVq1CXFwcevfuLZXdu3cPN2/e1KlXqVIlAMC6det0yiMjI7Fz5044OjrCx4dDphNR2jTJAt/+dQuDN5yTkoz+Xg7YM6oBk4yUr9mqTLvH+DZRA7VGf4R0IiIiIiJjbTkbivHbLuslGd814D1vJhkLuAKZaPTz88OIESPw22+/oVOnTvjhhx8wbtw4fPrppwgMDESvXr2kuk2bNkXFihV15h8zZgycnJwwceJE9OnTB8uXL8fs2bNRo0YNPHv2DLNmzcqwf0YiKroi4xIxaP1ZfH/orlTWp24p/DykHlztVHkYGVHGmldyM6l+yKs3aP7tUey+9BTJ/w5yRFSY3b59G1OmTEHdunVRrFgx2Nraonr16vjqq6/w5s0bvfq3bt1Chw4d4OjoCGtrazRs2BCHDh0yuOyoqCiMHDkSJUuWhEqlQuXKlbFs2TIIwd8WEREVXlFxakzZedWouqv/vo+oOL5RU5AVyFenAWDhwoXw9vbGypUrsWfPHri4uGDkyJGYMWMG5PL086elSpXCmTNnMGPGDBw8eBA///wzLC0tUb16dXzzzTfo1KlTLq0FERU0159GY+jGcwiNeAsgpf+Qrzr6oUsAR0KjgqGLvwfm77uZ4d3k1B6Ex2Hk5gtYcewexrf0RcNyLux/lAqtNWvWYMmSJWjXrh169+4NhUKBw4cPY9KkSdiyZQtOnToFS0tLAClvztSvXx/m5uYYP3487O3tsWrVKrRs2RJ79+5Fs2bNpOUmJiaiefPmuHDhAkaOHImKFSti7969GD58OMLCwjBt2rQ8WmMiIqKctTX4sdFtz3h1MrYFP2Yf4QVYgU00mpmZYdy4cRg3bly69R48eGCwvGzZsli/fn0OREZEhdX2C4/xxW9XEK9OOUl6OFpi+YcBqFLSPo8jIzKevZUCM9pXwfhtlzOs+1mL8rjxLAZ7rqSMpn71STT6rjmDemWcMf79Cqjh5ZjT4RLlui5duuCLL76Avf1/x/Zhw4ahXLly+Oqrr7B69Wp88sknAIAvvvgCkZGROH/+PKpXrw4A6Nu3LypXrowRI0bg5s2bUlL+hx9+wNmzZ/H9999j5MiRAICPPvoInTt3xuzZszFgwACUKlUqd1eWiIgoF+y//tzE+hyMsCArkK9OExFlt6g4NX44HoIeK0+izffH0WPlSemxfbUmGdN2XcPYXy5JScaG5Vyw+5MGTDJSgdStlie+7lwVKnPDzQCVQo6vO1fFJ03KYUlvf+wc8R4a+LhI00+GhKPj0hMY9uN53H0Rk1thE+WKmjVr6iQZtbp37w4AuHo15dWvN2/eYNeuXQgKCpKSjABgY2ODwYMH4/bt2zh79qxUvmnTJlhZWeGjjz7SWe6YMWOgVqvxyy+/5MDaEBER5T0ORli0FNgnGomIskt6o599ve8mStir8CA8Tiof0bgsPm1eAWZyvjpKBVe3Wp5oWdkNW4Mf48D1METHq2GnUqB5JVd09veAvZVCqlvN0wEbB9fB33de4es/b+Ly4ygAwL5rz/HX9efoEuCBMc3Kw93BMq9WhyjHPX78GADg6uoKALh8+TISEhJQr149vbp169YFAJw9exa1a9dGcnIygoOD4e/vD5VKty/f2rVrQyaT6SQl0xMaGirFonXlyhUAgFqtRmJiomkrVoSp1WokJSVBreYFbUHBbVawcHsVPDm1zWwsTBsDw1ZpxvOZEXLjN5aZZTPRSERFmnb0s7QkJCVLSUYbpTm+6VYNLSubNpgGUX5lb6XAoAalMcjIV1MalHPBez7vYe/V5/jfn7cQ8uoNkgWw5dxj7Lj4FP3qlcLwIB84WlvkcOREuUuj0WDmzJkwNzeXBh18+vQpAKBkyZJ69bVlT548AQC8fv0ab9++NVhXqVTCxcVFqpuR1atXY/r06QanRUdHIyIiwqjlUMrFU2xsLIQQUCgUGc9AeY7brGDh9ip4cmqb1fOyxukHr02qz/NZxnLjNxYdHW3yPEw0ElGRZcroZzIAGwfXRnVP9klHRZtMJkNrvxJoUckVv55/jIUHbiMsOgGJSclYdfw+fj4TiiGNymBgg9KwVv7XzIiKU+PX86E4cCMMMfFJsFWZo3klN3R55+lJovSo1WocPnwYR44cwbVr1/DixQvIZDIUK1YMVapUQWBgIBo3bpztje0xY8bg5MmTmD17NipUqAAAiItLuQmlVCr16mufWtTWSa+utr62TkYGDRqEli1b6pRduXIFQ4cOhZ2dHZycnIxaDqXsTzKZDI6OjkyCFBDcZgULt1fBk1PbrHMtK3x37DGEEXVVCjl61/eBnSX3mYzkxm/Mzs7O5HmYaCSiIsuU0c8EgOCHkUw0Ev3L3EyOnrW90LFGSaw/8QBLj9xD1Fs1YhKS8M3+21h/8iFGNfVBj1pe2HHhSZrdE8zfdxMz2ldBt1qeebQmVBCEhYXh22+/xbp16/Dq1SsIIWBubg4nJycIIXDu3Dns3r0bc+fOhYuLCwYMGICxY8dKrzlnxeTJk7F48WIMGTIEX3zxhVRuZWUFAEhISNCbJz4+XqdOenW19bV1MuLp6QlPT8O/F4VCAQsLPlFsCnNzc35vBQy3WcHC7VXwZPc2E0Lgm4PXjEoyAsCMdlXgYm+dLZ9dFOT0bywzCUwOBkNERVZmRj8jIl0qhRmGBpbFsfGNMTyoLFSKlKbFq9gETNl5DXXnHMT4bZfTTOrHJyVj/LbL2HI2NDfDpgJk5syZKFeuHJYtW4ZWrVph06ZNePDgARITE/H8+XOEhYUhMTER9+/fx6ZNm9CyZUssWbIE5cqVw6xZs7L02dOmTcOsWbMwYMAALF++XGeau7s7ABh85Vlbpn1V2tHREZaWlgbrJiQk4NWrVwZfqyYiIiro1p14gB0XU7obsbYwgzKDwQh587ng4xONRFRkcfQzouxjb6nA+Pd90b++N74/dAc/nwlFUrJAxBvjOvKesusqWlZ242vUpGf58uX46quvMGjQoHSf+itVqhRKlSqF7t27Iy4uDqtWrcK8efMwadKkTH3utGnTMH36dPTr1w8//PADZDLdAcD8/PygVCpx8uRJvXlPnToFIGUEawCQy+Xw9/fHhQsXkJCQoPMK9ZkzZyCEkOoSEREVFqdDwjFrzw0AgJlchlX9aqJyCXujBiOkgotPNBJRkWWrMu1ei52KJz6ijBS3U2FWBz8c+DQQld2N79MlXp2MbcGPM65IRc69e/cwcuRIo18tBlJeVR49ejRCQkIy9ZkzZszA9OnT0adPH6xZswZyuX6T2cbGBm3btsWRI0dw6dIlqTw2NhY//PADypUrh9q1a0vlPXv2RFxcHFauXKmznIULF8Lc3Bzdu3fPVKxERET50fOoeIzYFAxNcspL01+08kX9si7SYISbh9TFnlENsXlIXQxsUJpJxkKETzQSUZHVvJIbToUYP5pZ80pZ7+uLqKjwdrE2OZm//3oYBho5AjYVHdqBVXJr3iVLlmDq1Knw8vJCs2bNsGnTJp3prq6uaN68OQBgzpw5OHjwIFq0aIGxY8fCzs4Oq1atwpMnT7Bnzx6dpyA/+ugjrF27Fp9++ikePHiAihUr4o8//sD27dsxadIkeHt7Z3o9iYiI8pOEJA2GbTyPV7Epb7a0reaOQWzjFRlMNBJRkZScLPDktXEjfAIpfYZ0DvDIwYiICh92T0C5JSkpCTt37kRERATatm0LNze3TC/r7NmzAIBHjx6hX79+etMDAwOlRKOPjw/++ecfTJw4EXPnzkViYiL8/f2xb98+NGvWTGc+CwsLHDhwAJMmTcLmzZsRHh6OsmXLYtGiRRgxYkSm4yUiIspvpu++jouhkQAAXzdbzOvsp9cFCRVeTDQSUZETr9Zg3K+XsOfyM6PnmdGuCuwt+Tg/kSlMfaLxaeRbHLn1Ao3KFYNczsYoGTZ+/HgcPnxYSggKIdCsWTMcP34cQgh8+eWXOHXqFMqWLZup5a9btw7r1q0zun7FihWxc+dOo+o6ODhg8eLFWLx4caZiIyIiyu9+OfsIm04/AgDYqcyxok8ArCyYeipK2EcjERUp4bEJ6LXqlJRktDCXo3cdL6g4+hlRtmteybSnyl7HqdF/7VkE/e8Ilh+9Z/RAMlS07Nu3Dw0bNpT+3r17N44dO4bPP/9ces157ty5eRUeERFRkXUxNBKTd1wDAMhkwHc9aqCUs3UeR0W5jWllIioy7r2MxYC1Z/EoIuWVaSdrC6zqWxMBpRwxvqUvRz8jymZd/D0wf99NxCclZ1hXBkD8+/+PIuIwd+9NfLv/Ntr4lcCHdb3g7+XIV24IABAaGopy5cpJf+/evRulS5eWkovXrl3DTz/9lFfhERERFUmvYhPw8cbzSNSktPvGNiuPxr7F8zgqygtMNBJRkXA6JBxDfjyPqLcpfcCVKWaNtf1rSXfYtKOfsZNiouxjb6XAjPZVMH7b5Qzrzu3sB29na2w8/Qj7rj6DWiOQmJSM7ReeYPuFJ/B1s8WHdUuhQ42SsFGy+VKUJSYmwtz8v33g8OHDOv0hlilTBs+eGd81BhEREWVNkiYZn2wKxrOoeABAs4qu+KSxTx5HRXmFLXUiKvR2XHiC8VsvS3fX6pR2woo+AXCwssjjyIgKP223A1N2XjX4ZKNKIceMdlWkenXKOONlTCVsOReKTacf4UnkWwDAzecxmLTjKub8cQMd/Uviw7ql4Otml+bnRsWp8ev5UBy4EYaY+CTYqszRvJIbuvAp5QLP09MTJ0+exEcffYRr164hJCQEM2bMkKa/ePECNjY2eRghERFR0TJ3702cCokAAJRxsca33auxv+0ijIlGIiq0hBD4/uBdLDhwWyrrVKMk5nT2g9LcLA8jIypautXyRMvKbkZ3T1DMVokRjX0wLLAsjt5+gY2nHuHwrRcQAniTqMHGU4+w8dQj1CzliA/rlkIrPzed3/SWs6EGE5unQiIwf99NzGhfhf2uFmA9evTAzJkz8eLFC1y7dg12dnZo3bq1NP3ChQuZHgiGiIiITLPz4hP88Pd9AICVhRlW9AmAnYo3dYsyJhqJqFBKTErGF79dwbbgx1LZmGblMLppOfbzRpQHMtM9gZlchia+rmji64rQiDhsPvMIW86F4lVsyiAx5x6+xrmHrzHjdwt0remB3rVL4VRIeLqvascnJUvTmWwsmL744guEhoZix44dsLe3x4YNG+Dg4AAAiIqKwq5duzB27Ni8DZKIiKgIuPEsGhNStbv+17Uayrna5mFElB8w0UhEhU5UnBpDN56THt9XmMkwt1NVdA7wyOPIiCizPJ2sMP59X4xpVh77rj3HxlMPceZ+ym884k0iVhwNwYqjITD2LZ0pu66iZWU3vkZdACmVSqxevRqrV6/Wm2Zra4tnz57BysoqDyIjIiIqOqLi1Bj643nEq1PeIBkWWBat/UrkcVSUHzDRSESFyqPwOAxYdwb3Xr4BANipzLGiT03UK+ucx5ERUXawMJejXTV3tKvmjlvPY/DT6Yf4LfgJYhOSAADJIoMF/CtenYxtwY8xkANAFSpyuRz29vZ5HQYREVGhpkkWGP3LBTyKiAMANPBxwWctyudxVJRfMNFIRIVG8KPX+Gj9OYS/SXmt0tPJEmv714ZPcQ4KQFQYVXCzxYz2VTDhfV/svPgUs/ZcR1yixuj5918PY6KxANiwYUOm5uvbt282R0JEREQA8N2B2zhy6yUAoKSDJRb1rAFzM3keR0X5BRONRFQo7L3yDGN+uYiEfwd/qOHlgFV9a8LFRpnHkRFRTrNWmqNXHS/8dPohrj2NNnq+6Hh1DkZF2aV///6QyWQQ4r/HVVP3tastf7f/XSYaiYiIst9f157j+0N3AQBKczlW9AmAo7VFHkdF+QkTjURUoAkhsOp4CObsvQntNWhrPzd82606VAqOLE1UlNiqTGvWxCVqEPVWDXtL9tOYnx0+fFjnb7VajQkTJiA8PBzDhg1DpUqVAADXrl3DihUr4OLignnz5uVFqERERIXavZex+HTLJenv2R39UKUkuywhXUw0ElGBlaRJxpRd17Dp9COpbGhgGUxo6Qu5sSNCEFGh0bySmzQIlDHuv3qDWl8dQMvKbuga4IH3fFxgxmNHvhMYGKjz95QpUxAfH48rV67A1va/kS3btWuHESNGoG7dujh+/DiaNm2a26ESEREVWrEJSRj643mpX+x+9UpxsE0yiC/RE1GBFBOvxqD156Qko5lchtkd/fBFq4pMMhIVUV38PaAyN61pk5iUjN2XnqLvmjNoMO8Q5v95EyEvY3MoQsoO69atw4ABA3SSjFp2dnYYMGAA1q5dmweRERERFU5CCHz+6yXcfZHSRqpZyhH/16ZSHkdF+RWfaCSifCsqTo1fz4fiwI0wxMQnwVZljuaV3PCejzPG/HwRN5/HAABslOZY0tsfgeWL5XHERJSX7K0UmNG+CsZvu5xh3YmtfJGYlIyt5x9LIyY+i4rHksP3sOTwPdQs5YiuNT3Q2q8EbFV8tTo/efnyJTSatAf90Wg0ePHiRS5GREREVLgtPxqCvVefAwCK2yqxtLc/LEy8uUtFBxONRJQvbTkbiik7r+L/2bvvsKau/w/g7wQCYQ8RUMCBG5wouEVbEat1DwRX1arf1mqtdmj7E0dta20dddW666p1tVq11lFHrYviwoEbBdyiTAMBzu8PmtSYMAKEEHi/nsen5Zxz7/3cnOTm5HPvPVfx78NdVF69LbKSgxyr3vJHvUr2JRkeEZVS/f29AEDn8QMA5DIpZnSvr273XoeaiIhJwJbIOOyJuq9+avU/d57hnzvPMG3nZbxR3x19m3qihXcFnVdMq06K7L/0AM9SFXCykaNT/Uro6+cJB2smKYtb3bp1sXz5cowaNQpOTk4adQkJCVi+fDnq1atnpOiIiIjKlr+uP8Y3f0QDAGRmEnw/yA+u9nIjR0WlGRONRFTqbI6ILdAVSZUd5fjl3dZw4xcdEb2kv78Xgn3dsfVMHA5cfogkhRL2chmCfNzQ55Xkn1QqQXPvCmjuXQHTu/tiT9R9bImMw+nbOSc1XiizsP1sPLafjYenkxX6+Hmib1NPeDlbA8jlpMjjFzgV8wzf7I3GjB7/JTWpeEybNg29e/dGnTp1MHz4cNSpUwcAEB0djdWrVyMhIQFbt241cpRERESmLzYhDWN/Oovsfx+6Gd7NF02rOhs3KCr1mGgkolIlMU2J8B0XC9Q2ITUDcnM+WZqItDlYyzCiTXWMaFO9wMvYWJqjXzMv9GvmhTtPU7EtMg7bzsQj/vkLAEDcsxf47uB1fHfwOlp4O6OKszU2/xOX6/oUmdnqkyZMNhafHj16YOvWrXj//fcxe/ZsjTpPT0/8/PPP6Nmzp3GCIyIiKiMUyiz8b30knqcpAQB9m3piUPMqRo6KTAETjURUqmw9E6fzdkddFMpsbDsTh+F6JBKIiAqiagUbTOhUB+M71saJW0+xNTIOv1+8D4Uy5/h08lZCgZ9wHb7zIoJ93XkbdTHq1asXevTogcjISNy6dQsA4O3tjaZNm0Iq5ZxRRERE+nh1GhhHGzkUymxcupcEAGjg4YCZPetDIuFDNyl/TDQSUamy//IDPds/ZKKRiAxGKpWgdU0XtK7pguk9fLH7wn1sjYxD5J1nBV4HT4oYhlQqhb+/P/z9/Y0dChERkcnKbRoYFRsLMywd3BRyGe8ko4LhKV8iKlWSFZl6tU9SKA0UCRGRJnu5DKEBVbDtnVZo5OWg17L7Lz80UFTlW1paGmJjY3H37l2tf0RERJQ31dz4ed1RlpqRhb+vPynBqMjU8YpGIipV7OT6HZbs5bwVkYhKXmaW0Ks9T4oUn+zsbMyePRsLFy7Egwe5XwWflZVVglERERGZFn3mxuc0MKQPJhqJqNRQKLPwIkO/H4ZBPm4GioaIKHc8KWI8kyZNwrfffgtfX1/06dMHFSpUMHZIREREJodz45OhMNFIRKVCbEIa3tkQiYvxSQVeRi6Tok9TTwNGRUSkW5CPe4EfBpPTnidFisv69evRuXNn7Nmzx9ihEBERmSzOjU+Gwjkaicjo/rr+GN0WHVMnGa0tCjbR8Izu9eFgxauEiKjk9fXzhNy8YMMonhQpXs+ePUOPHj2MHQYREZFJ49z4ZChMNBKR0QghsPjQDQxddRrP03K+uOp72GPfB+0wu0/DXH/Ey2VSzO7TEP39vUoyXCIiNQdrGWb0qF+gtjwpUrwaNGiA+/fvGzsMIiIik8ZpYMhQeOs0ERlFskKJiZvPY99LT2Lt19QTn/esD7nMDP39rRHs646tZ+Jw4PJDJCmUsJfLEOTjhj5+npyImIiMTnWyI3zHRZ1zHMllUszoXp8nRYrZ1KlTMWLECIwYMQJeXnxtiYiICoPTwJChMNFIRCXu+sNkjF4XiVtPUgEAMjMJpnX3RVhAFUgkEnU7B2sZRrSpjhGcC4SISqn+/l7qkyL7L91HQooCzrZydPKtxJMiBhIZGYmqVavCx8cHvXr1QvXq1WFmpjnlhkQiwZQpU4wUIRERUenX188T3+yNLtADYTgNDOmDiUYiKlG7L9zHR1vPI+3fp0u728vx/SA/NKniZOTIiIgKR3VSZHCABxISEuDs7AwLCwtjh1VmTZs2Tf3/69ev19mGiUYiIqK8OVjLMKJtdSw+dDPftpwGhvTBRCMRlYjMrGzM/uMqlh29pS5r4e2MRWF+cLG1NGJkRERkSm7fvm3sEIiIiEyeEAKnb+d96zSngaHCYKKRiAzuSUo6xm48ixO3nqrLRratjk8614W5GZ9JRUREBVe1alVjh0BERGTy9l9+iIiYZwByHsjZq7EH9l9+wGlgqMiYaCQigzp79xne3XAG9xMVAABrCzPM7tsQbzasbOTIiIjI1D19+lR9hWP16tVRoUIFI0dERERU+mVmZWPW3mj13+Fv+iKgujMGN/fkNDBUZLyUiIgMQgiBjafuIuSHk+oko7eLDX4d05pJRiIiKpLz588jMDAQrq6uaN68OZo3bw5XV1e0b98eFy5cKPL6v/rqK/Tr1w/e3t6QSCSoVq1arm3feustSCQSnf+2bt2q1T49PR3h4eGoXr06LC0tUaNGDcycORNKpbLIcRMRERXEz//E4tbjnAdzBvm4IaC6s5EjorKEVzQSUbFTKLMQvuMiNv8Tpy4L8nHDnP6NYC/npfdERFR4Fy9eRJs2baBQKNCjRw/4+voCAC5duoTffvsNbdu2xfHjx9XlhfHpp5/C2dkZfn5+eP78eYGWWbdunVZZQECAVllISAh27NiB4cOHo2XLljhx4gSmTJmCGzduYM2aNYWOmYiIqCBS0zMxb/91AIBUAnzSuY6RI6KyholGIipWcc/S8M76M4iKTwQASCTAh53q4J3AGpBKJUaOjoiITF14eDhkMhn+/vtvNGzYUKPu4sWLaNeuHcLDw7Ft27ZCb+PmzZvw9vYGANSvXx8pKSn5LjNo0KB82+zZswc7duzAhAkTMGfOHADA22+/DUdHR8ydOxejRo1Cq1atCh03ERFRfpb/dQtPUtIBACH+VVDT1c7IEVFZw1uniUgviWlKrPjrFgav+gdDNlzG4FX/YOWx20hMU+LY9SfotvCYOsnoaC3Dj8MCMKZDTSYZiYioWBw9ehRjxozRSjICOUnBd999F0eOHCnSNlRJRn0IIZCUlITs7Oxc22zcuBEAMH78eI1y1d/r16/Xe7tEREQF9Tg5HcuO3gIAWMnM8EHHWkaOiMoik72iMTs7G9999x1++OEHxMTEoGLFiujfvz9mzJgBGxubAq0jISEBX375JX799VfExcXBzs4O9evXx4wZM9C2bVsD7wGR6dkcEYvwHRehyHzpR9TjFzgV8wxf7bmCrGwB8W+xb2V7LB3UFF7O1kaJlYiIyqbU1FS4u7vnWl+pUiWkpqaWYEQ5HBwckJycDAsLC7Rr1w4zZ85E8+bNNdpERETAw8MDXl5eGuVeXl6oXLkyIiIi8t1ObGws4uLiNMqioqIAAEqlEhkZGUXck/JDqVQiMzOT82OaEPaZaWF/lT7z9kUjLSMLADC8dVU4yqUa3xvsM9NSEv1VmHWbbKLxgw8+wIIFC9CrVy9MnDgRV65cwYIFC3D27FkcOHAAUmneF2veuXMH7du3R0pKCkaMGIHatWsjMTERFy5cQHx8fAntBZHp2BwRi4+35T7Bfma2UP9/36aemNmzPuQys5IIjYiIyhFvb2/s2rULY8aM0Vm/a9euQl2RWFju7u744IMP0LRpU9jY2OD8+fOYP38+2rZtiz179qBjx47qtvfu3YOPj4/O9Xh4eGglEHVZuXIlpk+frrMuKSkJCQkJhduRckipVCIlJQVCCMhknEPaFLDPTAv7q3S5k6DAz//Ooe9kbY7ePvZa3xnsM9NSEv2VlJSk9zImmWi8dOkSFi5ciN69e2vMv1O9enWMGzcOmzZtQlhYWJ7rGDRoEDIzM3HhwgVUqlTJ0CETmbTENCXCd1wsUFuZmQT/17Uek4xERGQQQ4YMweTJkxEWFobPPvsMdevWBQBcuXIFX331Ffbt24dZs2aVWDyvbqtnz54ICwtD48aN8c477+D69evqurS0NFhaWupcj1wuR1paWr7bGzFiBIKDgzXKoqKiMHr0aNjb28PZmU8OLSilUgmJRAInJyf+oDYR7DPTwv4qXab8cR5Z/14b8v5rNeHlXlGrDfvMtJREf9nb2+u9jEkmGn/66ScIIbTmtxk5ciQmTZqE9evX55loPHr0KI4dO4YFCxagUqVKUCqVUCqVsLbmLZ5Eumw9E6d5u3QelFkC28/EY3ib6gaOioiIyqMPP/wQZ86cwaZNm/Dzzz+r72LJzs6GEAL9+/fHxIkTjRpjrVq10L9/f6xZswbXrl1D7dq1AQDW1tZIT0/XuYxCoSjQWNTLy0vr1msVmUwGCwuLwgdeDpmbm/N1MzHsM9PC/iod/olJwP4rjwAA3i42GNiyOmRmuu8CZZ+ZFkP3V2ESmCaZaIyIiIBUKkVAQIBGuVwuR+PGjfOd32bPnj0AgCpVqqBbt274/fffkZWVhVq1aiE8PLxATw0EOEdOceN8EKXXvov39Wt/6T4GBXgYKBoqLH7GTAv7y/QYus/4XshhZmaGn3/+GW+//TZ+/fVX3L59G0DOLdU9e/bUuFXZmKpVqwYAePLkiTrRWLly5Vyn6ImPj4eHB787iYioeAkh8OWeK+q/P+5cN9ckI1FxKJFEY1JSEg4cOIBbt3KebuTt7Y2goCDY2RXuMer37t2Di4uLzltPPDw8cPz4cWRkZOSa0b169SqAnCsga9WqhR9//BEZGRmYM2cOBg8eDKVSiWHDhuUbB+fIKV6cD6L0epaq0Kt9QoqC7/9SiJ8x08L+Mj2G7rPCzJFTlgUFBSEoKMjYYeRKdcu0m5ubuszf3x8bNmxAbGysxlWJsbGxuHfvHrp3717icRIRUdn2x6UHOHP3OQCgaVUnBPu65b0AUREZPNG4YsUKTJw4UT3wBgCJRAJbW1vMnTsXI0aM0Hud+c1vo2qTW6IxOTkZAGBnZ4dDhw6p2/Xs2RPe3t749NNPMXTo0HwfKMM5cooX54MovZxs5MDjFwVu72wr5/u/FOJnzLSwv0yPofusMHPklEUJCQmIi4tDw4YNddZfuHABXl5ecHJyMngsqampMDMzU48/Vc6ePYstW7agXr16qFGjhro8NDQUGzZswPz58zFnzhx1+fz58wEAAwcONHjMRERUfiizsvH13qvqvye/URcSicSIEVF5YNBE486dOzFq1Ch4e3vj888/h6+vL4D/HuYyatQouLq6olu3bnqt19raGo8ePdJZp1Ao1G1yY2VlBSBnsPdyMtLJyQndu3fH2rVrcfXqVdSrVy/PODhHTvHjfBClk6+HA07FPCtw+06+ldiHpRQ/Y6aF/WV6DNlnTDjn+Pjjj3HmzBmcOXNGZ/2wYcPg7++PpUuXFnob69atw507dwAAjx8/RkZGBmbOnAkAqFq1KgYPHgwg56rFN954Az179kStWrXUT51etWoVzMzMsGzZMo31du3aFW+++Sbmzp2LxMREtGzZEidOnMDKlSsxaNAgtGnTptAxExERvWpTRCxuP0kFAAT7uqFZNV4MQoZn0ETj7NmzUa9ePZw6dQq2trbq8tdffx3Dhg1DixYt8PXXX+udaKxcuTIuX76M9PR0rSsb4+Pj4eLikucA39PTEwDg7u6uVad6AvWzZwVPqhCVZTvOxWPdyTsFbi+XSdGnqacBIyIiovLs0KFDec6n3b17d6xbt65I21i5ciWOHDmiUTZlyhQAQGBgoDrR6O7ujo4dO+LQoUPYsGEDXrx4gUqVKiEkJASTJ09WPxH7ZVu2bMHMmTOxfv16rFu3Dh4eHpgxYwYmTZpUpJiJiIhelpKeie8OXAMAmEkl+Liz9ncSkSEYNNF4/vx5hIeHayQZVezs7DB06FB8/vnneq/X398f+/btw+nTp9G2bVt1uUKhwLlz59CuXbs8lw8ICMDSpUu1HuQCQF3m6uqqd1xEZUl2tsDc/dew6NANvZab0b0+HKx41Q0RERnGvXv3UKVKlVzrPT09ce/evSJt4/DhwwVq5+7urndSUy6XY+bMmeorJImIiAxh2dFbeJKS84Da0AAv1KionZchMgSDPmpINSdjbgo7N0BISAgkEol6PhuV5cuXIy0tTWN+m5s3byI6OlqjXc+ePWFnZ4f169cjJSVFXX7//n38+uuvqF27NmrWrFmo2IjKgtT0TLyzIVIjyfheh5qY1bsB5Oa6DxtymRSz+zREf3/d0wkQEREVBxsbG/VtzbrcuXMn17m8iYiIyoNHSQosP5rzMF5rCzO8/3ptI0dE5YlBr2hs1KgR1qxZg3fffRc2NjYadSkpKVizZg0aNWqk93obNGiAMWPGYNGiRejduze6dOmCK1euYMGCBQgMDERYWJi67euvv447d+5oJD2dnJzw7bffYvTo0WjRogWGDx+OjIwMfP/998jIyMDChQsLv9NEJi7++Qu8/eM/uHI/5+mmFuZSfNO3IXo09gAAvFG/EraeicP+S/eRkKKAs60cnXwroY+fJxyseSUjEREZVvPmzfHjjz/io48+gp2dnUZdcnIy1q5di4CAACNFR0REZHzzDlzHC2UWAGB0uxqoaMcTcFRyDJpo/Oijj9C7d2/4+flh3Lhx8PHxAfDfw2Bu3LiB7du3F2rd8+fPR7Vq1bBs2TLs3r0bLi4uGDt2LGbMmJHv06IBYNSoUXBxccHs2bMxZcoUSKVStGzZEhs3bkTr1q0LFRORqYu88wyj10XiSUo6AKCinSWWDW6KJlX+e3Kng7UMI9pUx+AADyQkJMDZ2ZkPqiAiohLz4YcfomPHjmjVqhWmTp2Kxo0bAwDOnTuH6dOnIy4uDitWrDBukEREREZy41Eyfo64CyDn99zbbasbOSIqbwyaaOzZsycWLVqETz75BGPHjlXfKi2EgI2NDRYtWoQePXoUat1mZmaYOHEiJk6cmGe7mJiYXOt69+6N3r17F2r7RGXN9jNxmLQtChlZ2QCA+h72WD6kGSo5WBk5MiIiov906NABS5Yswfvvv4+QkBCNOplMhkWLFqFjx45Gio6IiMi4Zv1+Fdn/3tA5vmMt2FgaNO1DpMXg77h3330XYWFh2L9/P27fvg0A8Pb2RlBQEBwcHAy9eSLKR3a2wOw/rmLpkZvqsi4N3PFtv0awtuCXEhERlT6jR4/Gm2++ic2bN+PGjZz5hGvXro2+ffvCw8PDyNEREREZx+nbCThw5SEAwLuiDUKacf58KnklkkVwdHREv379SmJTRKSHlPRMjN90Tv1lBADjXq+F8a/XglRauIc1ERERlQQPDw988MEHxg6DiIioVBBC4Ms9V9R/T+pcF+ZmBn3+L5FOvFyJqJyKe5aGt3/8B9EPkgEAluZSfNuvEbo1qmzkyIiIiPKXmpqKEydO4OHDh+jYsSPc3NyMHRIREZHR/H7xAc7FPgcA+FdzQpAPvxfJOAye3t60aRNat24NV1dXmJmZaf0zN2euk6ik/ROTgB6L/lYnGd3sLbHlfy2ZZCQiIpPw/fffw8PDA506dcKQIUNw6dIlAMCjR48gl8uxfPlyI0dIRERUcjIyszF7b7T678ld6qmfkUFU0gya5fvmm28wadIkVKhQAS1atECFChUMuTkiKoAt/8Ti01+ioMzKmSG4oacDlg1uBncHuZEjIyIiyt+2bdswZswY9OjRA926dcPbb7+trnN1dUXnzp3x66+/YuTIkUaMkoiIqOT8dPouYp6mAciZb9+vipORI6LyzKCJxsWLF6N58+Y4ePAgrKz45FoiY8rKFvh6bzSWHb2lLnuzYSV807cRrCzMjBgZERFRwX3zzTfo0KEDfvnlFzx9+lQj0QgAzZo14xWNRERUbiQrlPju4HUAgLlUgo+C6xo5IirvDHrr9IMHDzBo0CAmGYmMLFmhxKi1/2gkGT/oWBsLQ5swyUhERCYlKioKvXr1yrW+UqVKePToUQlGREREZDw/HLmFhNQMAMDA5lVQ3cXGyBFReWfQKxpr1qyJ58+fG3ITRAQgMU2JLZGxOHDlIZIVmbCTmyPIxx19/TyRpFDi7R//wdWHOfMxymVSzOnXGF0bVjJy1ERERPozMzNDdnZ2rvX37t2DjQ1/ZBERUdn3IFGBFcdyLiaxsTDD2NdrGTkiIgMnGidOnIiZM2di3LhxsLW1NeSmiMqtzRGxCN9xEYpMzR9dJ28l4OvfoyEzkyA1IwsA4G4vx/IhzdDA08EYoRIRERVZo0aN8Mcff2DcuHFaddnZ2diyZQv8/f2NEBkREVHJmrf/GhTKnN+B/wusARdbSyNHRFTMica1a9dq/G1mZgZXV1fUrVsXw4cPR/Xq1WFmpn2b5pAhQ4ozDKJyY3NELD7ediHX+oysbPybY0QjTwcsH9IMrvZ86AsREZmu9957D6GhoZgyZYp6DJmdnY2rV6/i008/xaVLl/D1118bOUoiIiLDuvYwGVsiYwEArnaWGNG2upEjIspRrInGt956CxKJBEIIrbqZM2fqXEYikTDRSFQIiWlKhO+4WKC2ZhIJljHJSEREZUBISAiioqLwxRdf4KuvvgIAdO7cGUIICCEwbdo0vPHGG0aOkoiIyLC+/j0a2f+mXiYE1Ya1hUFvWCUqsGJ9Jx46dEj9/2lpaXj06BHu37+Pli1bFudmiAjA1jNxWrdL5yZLCOy+cB/D2/AsFxERmb6ZM2eid+/e2LBhA6KjoyGEQK1atTB48GA0a9bM2OEREREZ1ImbT3EwOufBZ7VcbdG3qaeRIyL6T7EmGgMDA9X/n52dDSsrK3z33Xca5URUPPZffqBn+4dMNBIRUZnh5+cHPz8/Y4dBRERUorKzBb76/Yr670lv1IW5mdSIERFpMti7USqVwsvLC0lJSYbaBFG5lqzI1Kt9kkJpoEiIiIiMLzIyEvv374dCoTB2KERERAazO+o+LsQlAgCaV3fGa3VdjRwRkSaDpr2HDh2KdevWIT093ZCbISqX7OT6XZBsL5cZKBIiIqKS8+2336Jbt24aZWFhYQgICEDnzp3RoEEDPHz40EjRERERGU56ZhZm/xGt/ntyl3qQSCRGjIhIm0ETja1atYK5uTkaN26MhQsXYu/evTh69KjWPyLSX1A9N/3a++jXnoiIqDTatGkTqlSpov77zz//xKZNmzBgwAB88cUXuH//PmbPnm3ECImIiAxjw8m7iE14AQDo2rASGns5GjcgIh0M+liioKAg9f+///77Wpl2IQQkEgmysrIMGQZRmZOVLXDjcUqB28tlUvThBMFERFQGxMTE4K233lL//euvv6JSpUpYv349JBIJnjx5gp07d2LOnDnGC5KIiKiYJSmUWPjndQCAzEyCj4PrGDkiIt0MmmhcvXq1IVdPVC6lZWRi3E9nceDKowIvM6N7fThY8dZpIiIyfampqbCyslL//eeff6Jjx47qE9o+Pj74/vvvjRUeERFRsUhMU2JLZCwOXHmIZEUmnqVl4Flazrz7A5tXRdUKNkaOkEg3gyYahw4dasjVE5U7j5IVGLHmH0TF50z+ayUzQ4i/FzadvgtFZrZWe7lMihnd66O/v1dJh0pERGQQHh4eiIqKAgDcuXMHly9fxoQJE9T1z549g6WlpbHCIyIiKrLNEbEI33FR5288AKjibKWznKg0MGiikYiKz7WHyRi2OgLxz3Pm5KhoZ4lVQ/3RwNMBH3Ssja1n4nDg8kMkKZSwl8sQ5OOGPn6ecLDmlYxERFR2dOvWDUuWLEFmZiZOnToFS0tLdO3aVV1/8eJFVKtWzXgBEhERFcHmiFh8vO1Cnm1m7LoCW0sZLyihUomJRiIT8PeNJ/jf+kgkKzIBALXdbLF6WAA8HHPOZDlYyzCiTXWMaFPdmGESEREZXHh4OC5cuIAlS5bA0tIS8+fPh5tbzgPPXrx4gV9++QUjRowwcpRERET6S0xTInzHxQK1Dd95EcG+7rywhEodJhqJSrkt/8Ri8vYoZGYLAECbmi5YMsgP9nJ+oRARUfnj5OSEgwcPIikpCVZWVpDJNL8Pjxw5Ai8vXuFBRESmZ+uZuFxvl36VQpmNbWfiMJwXm1ApIzV2AESkmxACc/ddxUdbL6iTjP2aemL1MH8mGYmIqNyzt7fXSjJaWVmhUaNGcHZ2NlJUREREhbf/8gM92z80UCREhcdEI1EplJ6ZhQmbz2PBnzfUZR92qo3ZfRtCZsaPLRERlR/Xrl0r9LJXr14txkiIiIgMSzVVVkElKZQGioSo8JixICplEtOUGLLyNH45Gw8AsDCTYn5IY7z3Wi1IJBIjR0dERFSyfH19MXz4cFy8WLA5qwDg7NmzGDx4MOrXr2/AyIiIiIqXnVy/2e14pxuVRpyjkagUiU1Iw1urT+Pm41QAgIOVDD8MbooW3hWMHBkREZFx7Ny5Ex9++CEaNWqEhg0bomvXrvD390eNGjXg7OwMIQQSEhJw/fp1nDx5Env27MGVK1fg4+ODXbt2GTt8IiKiAgvyccfJWwl6tHczYDREhcNEI1EpcS72Od7+MQJPUjIAAF7OVlgzLAA1KtoaOTIiIiLjeeONN9CpUyds3rwZS5YswZdffqnzCn8hcuYzbt++PaZOnYo+ffpAKuXNO0REZDr6+nnim73RBXogjFwmRZ+mniUQFZF+mGgkKgX2XnyA8T+fhUKZ84XS2MsRK4Y2g4utpZEjIyIiMj4zMzOEhoYiNDQUDx8+xJEjR3D58mU8fvwYEokEFStWRP369REYGAgXFxdjh0tERFQoDtYyhHfzwae/5D9dyIzu9eFgxVunqfRhopHIiIQQWHnsNr7YcwX/XoiBzr7umBfSGFYWZsYNjoiIqBRyc3ND//79DbqNr776CmfOnEFkZCRu376NqlWrIiYmJtf2p06dwmeffYZTp05BIpGgVatWmDVrFho3bqzV9t69e5g0aRJ+//13pKSkwNfXF5988gn69etnuB0iIiKTkS3yrpfLpJjRvT76+3uVTEBEemKikchIsrIFZvx2CT+euKMuG9m2Oia/UQ9SKR/6QkREZCyffvopnJ2d4efnh+fPn+fZ9uTJk2jfvj08PDwwY8YMAMCiRYvQtm1bHD9+HA0aNFC3TUhIQJs2bfDo0SNMmDABnp6e2LhxI/r3749Vq1Zh2LBhhtwtIiIq5RTKLCw4eB0AIJUA/wusgbN3nyNJoYS9XIYgHzf08fOEgzWvZKTSi4lGIiNIy8jEuJ/O4sCVRwByvkSmdffFkJbVjBsYERER4ebNm/D29gYA1K9fHykpKbm2HTduHCwsLHD06FF4eHgAAPr374969eph4sSJ2Ldvn7rtrFmzcPv2bezcuRPdunUDAIwYMQItW7bEhx9+iH79+sHWlnMzExGVV2tPxOBRcjoAoH8zL3zcua6RIyLSHxONRAaSmKbElshYHLjyEMmKTNjJzRHk447AWi74YPN5RMUnAgCsZGZYFNYEr9fjE8OIiIhKA1WSMT83btxAREQEhg8frk4yAoCHhwf69euH1atX48GDB3B3dwcAbNy4ETVq1FAnGYGc+SfHjh2LIUOGYM+ePQa/LZyIiEqnZIUSSw7fBABYmEkx7vVaRo6IqHCYaCQygM0RsQjfcVHraWEnbyXg85f+drWzxKq3/FHfw6FkAyQiIqIii4iIAAC0bNlSq65FixZYtWoVIiMj0bVrV9y/fx/x8fEYOHCgzraq9eWXaIyNjUVcXJxGWVRUFABAqVQiIyOjUPtSHimVSmRmZkKpVBo7FCog9plpYX/p54fDN/E8Lee1CgvwhIu1WYkf09lnpqUk+qsw62aikaiYbY6IxcfbLuTbzt1ejm3vtoKHo1UJREVERETF7d69ewCgcTWjiqosPj5e77Z5WblyJaZPn66zLikpCQkJCQWInICcH08pKSkQQkAm43xnpoB9ZlrYXwX3/EUmVv0dAwCwkknRv4GjUY7n7DPTUhL9lZSUpPcyTDQSFaPENCXCd1wsUNvnLzJga8GPIBERkalKS0sDAFhaWmrVyeVyjTb6tM3LiBEjEBwcrFEWFRWF0aNHw97eHs7OznrsQfmmVCohkUjg5OTEH9Qmgn1mWthfBbds7zWkKXPuhhvWqipqehpnWi32mWkpif6yt7fXexlmOYiK0dYzcVq3S+dGoczGtjNxGN6muoGjIiIiIkOwtrYGAKSnp2vVKRQKjTb6tM2Ll5cXvLy8dNbJZDJYWFgUIHJSMTc35+tmYthnpoX9lb/7iS+w/nQsAMDBSobR7WvBwsJ4ST72mWkxdH8VJoHJRCNRMdp/+YGe7R8y0UhERKSHGTNm6L2MRCLBlClTij2WypUrA9B9y7OqTHVbtD5tiYio/Fhw8AYy/r1Y5X+BNeBgxSsJybQx0UhUjJIVmXq1T1Jwkl0iIiJ9TJs2DRKJBAAghNCoy6vcEIlGf39/AMCJEyfw9ttva9SdPHkSEokETZs2BQBUqlQJHh4eOHnypNZ6VGXNmjUr9hiJiKj0inmSis3/5FzNWNHOEkNbVTVyRERFJzV2AERliZ1cv9y9vZxnq4iIiPQRFRWFxo0bo1mzZti4cSPOnTuHc+fOYcOGDWjatCmaNGmCixcv4vbt2+p/t27dMkgsNWvWRLNmzbBlyxb1w16AnAe/bNmyBa+99hrc3d3V5aGhobh58yZ+++03dVlWVhYWLlwIR0dHdOnSxSBxEhFR6TTvwDVkZeecHBv7Wk1Ycw5/KgP4LiYqJlnZAuZS/XL3QT7GmeSXiIjIVP3www+wtLTE0aNHYW7+31C2YcOG6Nu3L9q1a4elS5diwYIFhd7GunXrcOfOHQDA48ePkZGRgZkzZwIAqlatisGDB6vbfvfdd+jQoQPatm2LsWPHAgAWLlyI7OxszJkzR2O9kyZNwpYtWxAWFoYJEybAw8MDP/30EyIiIrBixQrY2dkVOmYiIjItV+4nYef5nJNUnk5WGOBfxcgRERUPJhqJisHztAy8v+kcjt14UuBl5DIp+jT1NGBUREREZc/mzZvx6aefaiQZVWQyGQYMGIBZs2YVKdG4cuVKHDlyRKNMdet1YGCgRqKxVatWOHz4MP7v//4P//d//weJRIJWrVphy5YtaNSokcY6KlSogL///huTJk3C4sWLkZKSAh8fH2zatAkhISGFjpeIiEzPnH3XoJrpY3zH2rAw5w2nVDYw0UhURJfvJWH0+n8Qm/ACAGAulSAzW+SzFDCje31O9EtERKSnpKQkJCYm5lr//PnzPOsL4vDhw3q1b9myJQ4ePFigth4eHli3bl0hoiIiorLizN1nOHDlIQCgpqstejXhw8Co7GDKnKgIdpyLR+/v/1YnGT2drPDrmNaY3ach5LmckZLLpJjdpyH6+3uVZKhERERlQpMmTbBo0SLcvHlTq+7GjRtYvHgx/Pz8jBAZERFRwXz7x1X1/08Mqg0zqcSI0RAVL17RSFQIyqxsfLnnClb/HaMua1vLBQsGNIGTjQXqezgg2NcdW8/E4cDlh0hSKGEvlyHIxw19/DzhYM0rGYmIiArj66+/RlBQEHx9fdGzZ0/UqVMHABAdHY0dO3ZAIpFg1qxZRo6SiIhIt79vPMHxm08BAA08HNC5vns+SxCZFiYaifT0ODkdYzaewenbCeqyMR1qYEJQHY0zUQ7WMoxoUx0j2lQ3RphERERlUps2bXD48GF88MEH2Lx5s0ZdixYtMHfuXLRo0cJI0REREeVOCIHZL13N+FFwHUgkvJqRyhaTvXU6Ozsb8+bNQ926dSGXy+Hl5YWJEyciNTVV73WlpaXB29sbEokE7733ngGipbLizN1neHPhX+oko42FGZYOaoqPguvycnciIqIS0rx5cxw/fhwPHz7EiRMncOLECTx48ADHjx9nkpGIiEqt/Zcf4nzscwBA8+rOaFvLxbgBERmAyV7R+MEHH2DBggXo1asXJk6ciCtXrmDBggU4e/YsDhw4AKm04DnU8PBwPH782IDRUlmw8dRdTNt5CRlZ2QAA74o2WDa4KWq62hk5MiIiorItISEBzs7OWuUVK1ZExYoVjRARERGRfrKyBebsu6b+m1czUlllkonGS5cuYeHChejduze2bdumLq9evTrGjRuHTZs2ISwsrEDrOnPmDObPn4/Zs2dj4sSJhgqZTJhCmYVpOy9hU0SsuqyTjxvm9G8EOznnWiQiIjK0ihUromHDhggMDESHDh0QGBgIR0dHY4dFRERUYL+dv4erD5MBAK/VdUWzaton0IjKApO8dfqnn36CEALjx4/XKB85ciSsra2xfv36Aq0nKysLI0eOROfOndG7d28DREqm7t7zFwj54YQ6ySiR5Jx5WjqoKZOMREREJSQoKAg3btzAggUL0Lt3b7i4uMDPzw8TJ07Eb7/9hsTERGOHSERElCtlVjbm7v/vasaJnWobMRoiwzLJKxojIiIglUoREBCgUS6Xy9G4cWNEREQUaD3z5s1DdHS0xlWR+oiNjUVcXJxGWVRUFABAqVQiIyOjUOstr5RKJTIzM6FUKo0dCgDg5K0EjN9yAQmpOfE4WJljbt8GaFvLBZmZpSNGYypt/UX5Y5+ZFvaX6TF0n5Xn98LevXuRlZWFiIgIHD58GIcOHcLx48dx7tw5zJ8/H1KpFI0bN0b79u3RoUMHtG3bFnZ2nNqEiIhKh83/xOJuQhoA4M2GleBb2cHIEREZjkkmGu/duwcXFxdYWlpq1Xl4eOD48ePIyMiAhYVFruu4ffs2pk6divDwcFSrVg0xMTF6x7Fy5UpMnz5dZ11SUhISEhJ01pFuSqUSKSkpEEJAJjPe1YJCCPx09hEW/xWHLJFTVsvFCl93q4HKDlL2679KS39RwbHPTAv7y/QYus+SkpKKfZ2mxMzMDC1atECLFi0wadIkZGVl4fTp0zh8+DAOHz6M48eP48yZM5g7dy7Mzc2Rnp5u7JCJiIigUGZhwcHrAAAzqQQTgng1I5VtJploTEtL05lkBHKualS1ySvR+L///Q/e3t6YMGFCoeMYMWIEgoODNcqioqIwevRo2Nvb65y0nHKnVCohkUjg5ORktB/VaRlZ+GzHJeyOeqgu697QHZ9394GVhZlRYiqtSkN/kX7YZ6aF/WV6DN1n9vb2xb5OU2ZmZoaWLVuiZcuWeP/993Ho0CF88803OHr0KDIzM40dHhEREQBg3Yk7eJiUc/Krr58nvCvaGjkiIsMyyUSjtbU1Hj16pLNOoVCo2+Rm/fr12L9/P44ePVqkHwJeXl7w8vLSWSeTyfJMdJJu5ubmBn3tEtOU2BIZiwNXHiJZkQk7uTmCfNzR188Tz9IyMHpdpHqCXnOpBP/XtR6GtqrGp4HlwtD9RcWPfWZa2F+mx5B9xoTzf168eIG///5bfRv1P//8g8zMTDg7O6Nnz54IDAw0dohERERIViix5PANAICFmRTjOtYyckREhmeSicbKlSvj8uXLSE9P17qyMT4+Hi4uLrkO8NPT0zFhwgR06dIF7u7uuHHjhno5AEhMTMSNGzfg4uLCpxmWMZsjYhG+4yIUmdka5SdvJWDW71dgJpGo61xsLbE4rAmae1cwRqhERET0EoVCgePHj6sTixEREcjIyICrqyvatWuHsLAwBAYGon79+sYOlYiISG3lsdt4lpYzx/LAFlXg4Whl5IiIDM8kE43+/v7Yt28fTp8+jbZt26rLFQoFzp07h3bt2uW67IsXL/D48WPs3r0bu3fv1qpfv3491q9fj2+++QYffvihQeKnkrc5IhYfb7uQa70yS0CJnAkZm1RxxPcDm8LdQV5S4REREVEenJyckJGRAXd3d7Rr1w4DBw5E+/btUbduXWOHRkREpFNCagZW/HUbAGBtYYZ329c0ckREJcMkE40hISH48ssvMX/+fI1E4/Lly5GWloaBAweqy27evAmlUqkeiNrY2GDLli1a63z8+DHeffdddO7cGSNGjEDDhg0NvyNUIhLTlAjfcbFAbc2kEvwwuClc7ZhkJCIiKi3S09Nhbm6OJk2awM/PD35+fqhdm5PpExFR6fX94RtISc+ZM3h46+qoaKf7ORNEZY1JJhobNGiAMWPGYNGiRejduze6dOmCK1euYMGCBQgMDERYWJi67euvv447d+5AiJyr1WQyGfr27au1TtVTp2vUqKGznkzX1jNxWrdL5yYrW2DX+fsY3qa6gaMiIiKigjpx4gQOHTqEw4cPY8aMGUhLS4OtrS1atWqFwMBABAYGwt/fH+bmJjm0JSKiMuZ+4gv8eOIOAMBebo6R7byNHBFRyZEaO4DCmj9/Pr799ltcunQJY8aMwaZNmzB27Fjs2rULUqnJ7hYZwP7LD/Rs/zD/RkRERFRimjdvjkmTJmHv3r14/vw5jh07hkmTJkEIgS+++AKtW7eGo6MjgoKCMHPmTPz111/GDpmIiMqxhX/eQMa/F7v8r30NOFjxgW5UfpjsaV8zMzNMnDgREydOzLOd6krF/FSrVk191SOVLcmKTL3aJymUBoqEiIiIisrMzAwtW7ZEy5YtMXnyZGRlZSEiIgKHDx/Grl27MHXqVEgkEmRm6vf9T0REVBxinqRic0QsAKCinSXealXNuAERlTCTTTQSFZSdXL+3ub2cZ5uIiIhMwYsXL3Ds2DH106gjIyN54piIiIxq/oFryMzO+S4a+1pNWFsw7ULlC9/xVOY18HDAyVsJBW4f5ONmwGiIiIiosBQKBf7++291YvGff/6BUqmEEAJyuRxt2rRBhw4d0KFDB2OHSkRE5VD0gyTsOH8PAODpZIUB/lWMHBFRyWOikcq0HefisfZETIHby2VS9GnqabiAiIiISG/h4eE4fPgwIiIikJGRASEELCws0Lx5c3VisWXLlrCwsDB2qEREVI7N2XcNqgvrx3esDQtzPj+Cyh8mGqlMyszKxqzfo7Hi2G29lpvRvT4n6iUiIiplZs6cCXNzc/j7+6sTi61bt4ZcLjd2aERERACAs3efqR8sWtPVFr2aeBg5IiLjYKKRypynKel4b+NZnLj1VF32bvsaqOJsjWk7L0Hx79O/XiaXSTGje3309/cqyVCJiIioAH7//Xe0adMGNjY2xg6FiIhIp2/3XVX//8Sg2jCTSowYDZHxMNFIZUpUXCJGr/sH9xIVAABrCzPM6dcIbzSoBAB4o34lbD0ThwOXHyJJoYS9XIYgHzf08fOEgzWvZCQiIiqNgoODjR0CERFRrv6+8QR/38i50KWBhwM613c3ckRExsNEI5UZWyPj8OkvUcj494rF6i42+GFwU9R2s1O3cbCWYUSb6hjRprqxwiQiIiIiIqIyQgiBb/7472rGD4PrQCLh1YxUfjHRSCZPmZWNmbsu48cTd9Rlr9d1xdyQxpxvkYiIiIiIiAzmwJVHOBf7HAAQUN0Z7Wq5GDcgIiNjopFM2uPkdIzZcAanYxLUZeNer4Xxr9eClHNiEBERERERkYFkZwt8+9LVjB/xakYiJhrJdJ29+wzvrD+DB0k58zHaWppjXkhjBPm4GTkyIiIiIiIiKut+u3APVx8mAwA61KkI/2rORo6IyPiYaCSTtOn0XYTvuISMrJz5GGtUtMGyIc1Qo6KtkSMjIiIiIiKisigxTYktkbE4cOUhkl5k4ubjFHXdxE51jBgZUenBRCOZlPTMLEz/7TI2nrqrLuvk44Y5/RvBTs75GImIiIiIiKj4bY6IRfiOi1D8+/DRl0klwOV7Sajv4WCEyIhKFyYayWQ8TFLgnfWROHP3OQBAIgEmBtXGu+1rcj5GIiIiIiIiMojNEbH4eNuFXOuzBdT1/f29SiosolKJiUYyCf/EJOCdDWfwODkdAGAnN8eCAU3Qoa6rkSMjIiIiIiKisioxTYnwHRcL1DZ850UE+7rDwZp321H5JTV2AER5EUJg3ck7GLDspDrJWMfNDr+914ZJRiIiIiIiIjKorWfidN4urYtCmY1tZ+IMHBFR6cZEIxldYpoSK/66hcGr/sGQDZcxeNU/WHnsNh4mKfDJtguY8utFZGYLAEDXBpWw/d1WqOZiY+SoiYiIiHJIJBKd/2xttR9Sd/XqVfTs2RNOTk6wsbFB27Zt8eeffxohaiIiKoj9lx/o2f6hgSIhMg28dZqMSueEuo9f4FTMM8zcdRni3yKpBPi4c12MbucNiYTzMRIREVHp0rZtW4waNUqjTCbTvHXu5s2baNWqFczNzfHxxx/DwcEBy5cvR3BwMH7//Xd07NixJEMmIqICSFZk6tU+SaE0UCREpoGJRjKa/CbUVSUZrSzMsGxwU7StVbFkAiMiIiLSk7e3NwYNGpRnm8mTJ+P58+eIjIxE48aNAQBDhgyBr68vxowZg+joaJ5QJSIqZezk+qVN7OWcn5HKN946TUahz4S62dkCDT0cDRsQERERURFlZGQgJSVFZ11qaip27tyJ9u3bq5OMAGBra4u3334b165dQ0RERAlFSkREBRXk465nezcDRUJkGnhFIxmFPhPqpmfmTKg7vE11A0dFREREVDhbt27F+vXrkZWVhYoVKyIkJAQzZ86Eg4MDAODChQtIT09Hy5YttZZt0aIFACAiIgIBAQF5bic2NhZxcZoPGoiKigIAKJVKZGRkFMfulAtKpRKZmZlQKnmbo6lgn5mWstJf3Ru4YvbeaKQX4PerXCZF9wauJnssLit9Vl6URH8VZt1MNJJRFGZCXSYaiYiIqDQKCAhAv379ULNmTSQlJWHPnj1YtGgRjhw5guPHj8PW1hb37t0DAHh4eGgtryqLj4/Pd1srV67E9OnTddYlJSUhISGhCHtSviiVSqSkpEAIoTWfJpVO7DPTUpb6q2d9F/x87lG+7Sa290Lmi2QkvCiBoAygLPVZeVAS/ZWUlKT3Mkw0klFwQl0iIiIqK06dOqXx95AhQ9CwYUN89tln+O677/DZZ58hLS0NAGBpaam1vFwuBwB1m7yMGDECwcHBGmVRUVEYPXo07O3t4ezsXNjdKHeUSiUkEgmcnJz4g9pEsM9MS1npr8ysbETGR+fZRi6TIrxrXfT10z6ZZErKSp+VFyXRX/b29novw0QjGQUn1CUiIqKy7KOPPsL06dOxe/dufPbZZ7C2tgYApKena7VVKBQAoG6TFy8vL3h5eemsk8lksLCwKELU5Y+5uTlfNxPDPjMtZaG/Np+8gxuPUwEAbWu5oH0dVxy4/BBJCiXs5TIE+bihj58nHKzLxm/WstBn5Ymh+6swCUwmGqnEKbOykZUt8m/4Ek6oS0RERKZEJpOhcuXKePLkCQCgcuXKAHTfHq0q03VbNRERGU+yQol5+68BAMykEkzt5oOarnYYwWm9iHLFp05TiXqWmoEhK08jIuZZgZeRy6To09TTgFERERERFS+FQoG4uDi4ueWcLG3QoAEsLS1x4sQJrbYnT54EADRr1qxEYyQiorx9f/gmnqbmPNglLKAKarraGTkiotKPiUYqMdEPktB98TGcuPUUAGBhJinQcjO614eDVdm4DJ2IiIjKlqdPn+osnzJlCjIzM9GtWzcAgK2tLbp164bDhw/j/Pnz6nYpKSlYsWIFatWqle8Tp4mIqOTEP3+BlcduAwDsLM0xvmMtI0dEZBp46zSViL0XH2DC5nNIy8gCAFStYI3lQ5rh3N3nCN9xEYrMbK1l5DIpZnSvj/7+uuchIiIiIjK2mTNn4uTJk+jQoQOqVKmClJQU7NmzB4cOHULz5s0xduxYdduvvvoKBw8eRKdOnfDBBx/A3t4ey5cvR3x8PHbv3g2JpGAnYYmIyPC+2RuN9H9/p77boSYq2Go/zIuItDHRSAaVnS2w8M8bmHfgmrqsTU0XLAprAkdrC9R2s0Owrzu2nonD/kv3kZCigLOtHJ18K5WpCXWJiIiobGrfvj0uX76MH3/8EU+fPoWZmRlq1aqFL774AhMmTFA/URoAatasib///huTJk3CrFmzkJGRAT8/P+zduxcdO3Y04l4QEdHLzsU+x6/n7gEAPBytMKx1NeMGRGRCmGgkg0lNz8SHW87j94sP1GXDW1fHp13qwtzsv7v2HaxlGNGmOgYHeCAhIQHOzs58whURERGZhB49eqBHjx4Fbl+vXj3s2LHDgBEREVFRCCHwxe7L6r8/7lwHcpmZESMiMi1MNJJBxCakYeTafxD9IBkAYGEmxRe96qNfM94GTURERERERKXTH5ceqB9e2tjLEd0bVTZyRESmhYlGKnYnbj7Fuxsi8SxNCQCoaGeJpYOaomlVJyNHRkRERERERKRbRmY2Zv0erf57ypv1OH8ukZ6YaKRiI4TA+pN3MP23y8jMFgCARp4O+GFwM7g7yPNZmoiIiIiIiMh41p28g5inaQCALg3c0bSqs5EjIjI9TDRSscjIzMbUnZfw0+m76rJeTTzwVe8GnM+CiIiIiIiISrXnaRlYcPA6AEBmJsEnnesaOSIi08REIxXZk5R0vLv+DE7HJAAApBJg0ht1MbKtNy8zJyIiIiIiolJvwcEbSHyRM/3X0JbVULWCjZEjIjJNTDRSkVyMT8TodZGIf/4CAGAnN8fC0CZoX8fVyJERERERERER5S/mSSrWnYwBADhayzD2tVrGDYjIhDHRSIX22/l7+GjreSiU2QAA74o2WD6kGWpUtDVyZEREREREREQFM+v3aCizcp4z8P7rteBgLTNyRESmi4lG0lt2tsDc/dew6NANdVn7OhWxILQJ7OU8IBMREREREZFpOH07AXsvPQAAVHexwcDmVY0cEZFpY6KRtCSmKbElMhYHrjxEsiITdnJzBPm4o6+fJ6RS4IOfz+HAlUfq9qMDvfFxcF2YSTkfIxEREREREZmG7GyBL3ZfVv896Y26sDCXGjEiItPHRCNp2BwRi/AdF6HIzNYoP3krAV/vjYajlQyPktMBAJbmUnzdpyF6NvEwRqhEREREREREhbbz/D2cj0sEAARUd0YnHzcjR0Rk+phoJLXNEbH4eNuFXOszMrPVSUZ3ezmWDWmKhp6OJRQdERERERERUfFQKLMwe2+0+u8pXX0gkfAuPaKiYqKRAOTcLh2+42KB2kokwPq3A1DT1c7AUREREREREREVv5XHbuNeogIA0LuJBxp4Ohg5IqKygZMPEABg65k4rdulcyMEcPTaEwNHRERERERERFT8nqSk4/vDNwHkTAn2YXAdI0dEVHYw0UgAgP2XH+jZ/qGBIiEiIiIiIiIynHn7ryElPRMAMLKtNyo7Whk5IqKyg4lGAgAkKzL1ap+kUBooEiIiIiIiIiLDuPYwGT+dvgsAcLG1xP/a1zByRERlCxONBACwk+s3Xae9XGagSIiIiIiIiIgM48s9V5Atcv5/YqfasLXkoyuIihMTjQQA6FjPTa/2QT76tSciIiIiIiIypr+uP8bhq48BAHXc7NC/mZeRIyIqe0w20ZidnY158+ahbt26kMvl8PLywsSJE5GamprvsteuXUN4eDhatGiBihUrws7ODo0bN8YXX3xRoOXLmiSFEoevPipwe7lMij5NPQ0YEREREREREVHxycoW+GL3FfXfn3atBzOpxIgREZVNJpto/OCDDzBhwgT4+Phg4cKF6NevHxYsWIBu3bohOzvvpyevWrUK8+bNQ40aNRAeHo5vvvkGderUwf/93/+hVatWePHiRQnthfHdepyCnov/xrEbTwu8zIzu9eFgxVuniYiIiIiIyDRsjYxF9INkAEC72hURWLuikSMiKptMcjKCS5cuYeHChejduze2bdumLq9evTrGjRuHTZs2ISwsLNfl+/bti8mTJ8PBwUFd9r///Q+1atXCF198gZUrV+K9994z6D6UBkeuPcZ7G8+oHwRT2UGOvs08sezILSgytZO1cpkUM7rXR39/Xl5OREREREREpiE1PRPf7rsGAJBKgM+61DNyRERll0le0fjTTz9BCIHx48drlI8cORLW1tZYv359nss3a9ZMI8moEhISAgC4ePFiscVaGgkhsOKvWxi2+rQ6ydisqhN2vNcGE4Lq4NSnHTHlTR+09K4A38r2aOldAeFv+uDU5I5MMhIREREREZFJ+eHITTxOTgcAhPhXQR13OyNHRFR2meQVjREREZBKpQgICNAol8vlaNy4MSIiIgq13ri4OACAm1vBHnQSGxurXkYlKioKAKBUKpGRkVGoOAwpXZmFKb9dwa/n7qvL+jX1wNSudWFhLkFGRgaszIHBAR4YHODxytLCoPukVCqRmZkJpVJpsG1Q8WF/mR72mWlhf5keQ/cZ3wtERET6u5/4Asv+ugUAsLEww4Sg2kaOiKhsM8lE47179+Di4gJLS0utOg8PDxw/fhwZGRmwsLAo8DqzsrLw+eefw9zcPM/brl+2cuVKTJ8+XWddUlISEhISCrz9kvA4JQOTdt3CpQc5D7wxkwDjA73Qt1FFpCQ9N25wyPkBlZKSAiEEZDLOAVnasb9MD/vMtLC/TI+h+ywpKanY10lERFTWffvHNSiUOVODvdO+BiraaecRiKj4mGSiMS0tTWeSEci5qlHVRp9E4/jx43HixAl8+eWXqFOnToGWGTFiBIKDgzXKoqKiMHr0aNjb28PZ2bnA2ze0C/GJePfna3j07+XijlYyfBfSEC29S0+MSqUSEokETk5O/FFtAthfpod9ZlrYX6bH0H1mb29f7OskIiIqyy7GJ2L72Zy7ECs5yDGijbeRIyIq+0wy0WhtbY1Hjx7prFMoFOo2BTVlyhQsWrQIo0aNwuTJkwu8nJeXF7y8dM9ZKJPJ9Ep0GtIvZ+PwybYoZPz7gJc6bnZYPqQZqlQo+GtUUszNzUvVa0d5Y3+ZHvaZaWF/mR5D9hkTzkRERAUnhMDM3ZchRM7fHwXXgZWFmXGDIioHTDLRWLlyZVy+fBnp6elaVzbGx8fDxcWlwAP8adOmYebMmRg2bBiWLl1qiHCNJitb4Ou90Vh29Ja6rJOPG+aGNIatpUl2PREREREREVG+Dlx5hJO3cqYza+DhgJ6NX30GAREZgkk+ddrf3x/Z2dk4ffq0RrlCocC5c+fQrFmzAq1n2rRpmD59OoYOHYoVK1ZAIpEYIlyjSHyhxPA1ERpJxnGv1cTSQU2ZZCQiIiIiIqIyS5mVja/2XFH//X9d60EqLTu/94lKM5NMNIaEhEAikWD+/Pka5cuXL0daWhoGDhyoLrt58yaio6O11jFjxgxMnz4dgwcPxqpVqyCVmuRLodPNxynotfhvHLn2GABgJTPD4jA/TOhUhwdXIiIiIiIiKtM2nrqLW09yHoLayccNzb0rGDkiovLDJC9ta9CgAcaMGYNFixahd+/e6NKlC65cuYIFCxYgMDBQ46nRr7/+Ou7cuQOhmpgBwOLFizF16lRUqVIFHTt2xMaNGzXW7+bmhqCgoBLbn+J06OojjPvpLJIVmQAAD0crLBvSFL6VHYwcGREREREREZFhJb5QYv6BawAAc6kEk96oa+SIiMoXk0w0AsD8+fNRrVo1LFu2DLt374aLiwvGjh2LGTNm5Ht1YkREBADg7t27GDp0qFZ9YGCgySUahRBY/tctzPo9Gtn/5lQDqjljySA/uNjqfkI3ERERERERUVmy+NANPEtTAgAGtagK74q2Ro6IqHwx2USjmZkZJk6ciIkTJ+bZLiYmRqtszZo1WLNmjWECM5DENCW2RMbiwJWHSFZkwk5ujiAfd/T184SlTIrJ26Pwy9l4dfvQgCqY3t0XFuZl55ZwIiIiIio5eY0/HayL9ynoxtjW/ksP8CxVAScbOTrVr2Ty+1XS22OfcVv5bcsY/WVhJsWFuEQAgL3cHO+/XqtYt0dE+TPZRGN5sjkiFuE7LkKRma1RfvJWAmbvjUZFO0vEPXsBADCTSjCtmw8Gtahaph5uQ0RERFQWZGdn47vvvsMPP/yAmJgYVKxYEf3798eMGTNgY2Nj7PDU8hp/frM3GjN61Ed/f6+ysa3HL3Aq5plJ71dJb8/o2yoDfVautlXC/aXSrnZFONlYFMu2iKjgmGgs5TZHxOLjbRdyrU/PzFYnGZ2sZVg80A+tariUVHhEREREpIcPPvgACxYsQK9evTBx4kT1PONnz57FgQMHSsUDCvMbfyoys9X1RU0YcFtF31ZJb4/b4rZMYVsAsOvCfbSrFVusCX0iyp/xRzKUq8Q0JcJ3XCxQWwmADW83Z5KRiIiIqJS6dOkSFi5ciN69e2P79u0YOXIk5s6di7lz5+LQoUPYtGmTsUPUa/wZvvMiEv+dB43bMs62Snp73Ba3Vd62RUT6Y6KxFNt6Ji7Xy8BfJZBz6TsRERERlU4//fQThBAYP368RvnIkSNhbW2N9evXGyewl+gz/lQos7HtTBy3ZcRtlfT2uC3VtmIhhND5Lzs7939Z2QJbImP12tbmyFgos7KhzMpGRqbmv/TMLK1/CuV//zZF3NVrWxtP30VKeiaSFUokK5RI+vdf4ot//6Xl/HueloHnaRl4lvrfv7UnY/Ta1uLD13Eh7jnO3H2GiJgEnLj5FMeuP8Hhq49w8MpD/HHpAfZE3cfO8/fwy9k4bPknFptO38X6k3fw8bbzJfoZIyL9SIQQwthBlCUnTpxAq1atcPz4cbRs2bJI6xqw7IReycOW3hXw06gWRdqmMWVkZCAhIQHOzs6wsOBcGqUd+8v0sM9MC/vL9Bi6z4pzjEHGERwcjAMHDiAtLQ2WlpYada1bt8a1a9fw+PHjPNcRGxuLuDjNH81RUVEYPXo0jhw5ghYtijYWHLzqH5yKeVbg9hIA5maFmxc8M0tAnx8iZXlbZtLCz62ela3f9lCE7WVl6//TMbdN5bcm/kql4tKiuhPWDmtm7DBMglKpxLNnz+Dk5ASZrPgfWEXFqyT66+TJkwgMDNRr/Mk5GkuxZEWmXu2TFLwknIiIiKi0unfvHlxcXLSSjADg4eGB48ePIyMjI89E9cqVKzF9+nSddUlJSUhIKNodLs9SFXq1FwCUWSWTESrL28osRAKvKAqTMCysEt41Ii0JKYoiHxvLC6VSiZSUFAghmGg0ASXRX0lJSXovw0RjKWYn16977OU8EBARERGVVrquZFSRy+XqNnklGkeMGIHg4GCNMtUVjfb29nB2di5SjE42cuDxiwK3t5ebw7eyfaG2deleEpL0OLFe0tuqX8htXdRzWw5yc9T3KNy2ACAqXv/tNfBwKOS2EpGoz7aszNGwkNu6EJ+IxBfFty1JHhdxno/Tb1uOVjI09spjW3ksezY2Ec9fFPwCESdrGfyqOGquP5cNSF7Z8j93nuGZHvMTOtvI0Ly687/r0tyWat3//a3Z4O8bT/E0NaPA26rsIEevxpVgJpXATCqFuVQCM6kE5maSf8skMH/pn5lUqi6bd/AGrj5MKfh+2cqLfGwsL5RKJSQSCa9oNBEl0V/29vp/PzHRWIoF+bjrdet0kI+bAaMhIiIioqKwtrbGo0ePdNYpFAp1m7x4eXnBy0v3E1RlMlmRb9vvVL+SXrdOj+9YG8PbVC/UtlYeu43Pd10u99t6vwjbKunt6b2t18vmtsa9XqvEtjX2tZLb1nsdSm5bb7f1LvS24pMy9NpWJ99KnIZGD+bm5sXyfUIlw9D9VZgEJh8GU4r19fOE3LxgXSSXSdGnqaeBIyIiIiKiwqpcuTKePHmC9PR0rbr4+Hi4uLgY/YddSY4/ua3iGcOX1X3jtrit0rAtItIfE42lmIO1DDN61C9Q2xnd68PBipc2ExEREZVW/v7+yM7OxunTpzXKFQoFzp07h2bNjP+wgpIcf3JbxTOGL6v7xm1xW6VhW0SkPyYaS7n+/l6Y3adhrmds5DIpZvdpiP7+um+hISIiIqLSISQkBBKJBPPnz9coX758OdLS0jBw4EDjBPaKkhx/clvFM4Yvq/vGbXFbpWFbRKQfiRCCzwErRidOnECrVq30evR3QSSmKbH1TBwOXH6IJIUS9nIZgnzc0MfPEw7WZeMMTUZGBhISEuDs7Gz024Yof+wv08M+My3sL9Nj6D4z1BiDStbYsWOxaNEi9OrVC126dMGVK1ewYMECtG7dGn/++SekUv2vAygL409jbGv/pftISFHA2VaOTr6VTH6/Snp77DNuK79tlbX+Kg84/jQtJdFfhRljMNFYzPgjoPB4UDMt7C/Twz4zLewv08NEIxVEVlYW5s+fj2XLliEmJgYuLi4ICQnBjBkzYGtrW6h18r1RODzOmh72mWlhf5ke9plpKa2JRj51moiIiIiohJiZmWHixImYOHGisUMhIiIiKnaco5GIiIiIiIiIiIiKjIlGIiIiIiIiIiIiKjImGomIiIiIiIiIiKjIOEdjMUtNTQUAREVFGTkS06NUKpGUlAR7e3vIZHxCWGnH/jI97DPTwv4yPYbuM9XYQjXWIFLh+LNweJw1Pewz08L+Mj3sM9NSEv1VmPEnE43F7NatWwCA0aNHGzkSIiIiKotUYw0iFY4/iYiIyJD0GX9KhBDCgLGUO/fu3cOuXbvg7e0NGxsbY4djUqKiojB69Gj88MMPaNCggbHDoXywv0wP+8y0sL9Mj6H7LDU1Fbdu3cKbb76JypUrF/v6yXRx/Fk4PM6aHvaZaWF/mR72mWkpif4qzPiTVzQWs8qVK2PUqFHGDsOkNWjQAC1btjR2GFRA7C/Twz4zLewv08M+o5LG8WfR8DNrethnpoX9ZXrYZ6altPUXHwZDRERERERERERERcZEIxERERERERERERUZE41ERERERERERERUZEw0Uqnh6emJqVOnwtPT09ihUAGwv0wP+8y0sL9MD/uMyLTwM2t62Gemhf1lethnpqW09hefOk1ERERERERERERFxisaiYiIiIiIiIiIqMiYaCQiIiIiIiIiIqIiY6KRiIiIiIiIiIiIioyJRiIiIiIiIiIiIioyJhqJiIiIiIiIiIioyJhoJCIiIiIiIiIioiJjopFKxLVr1xAeHo4WLVqgYsWKsLOzQ+PGjfHFF18gNTVVq/3Vq1fRs2dPODk5wcbGBm3btsWff/5phMhJJS0tDd7e3pBIJHjvvfe06tlnpUNCQgI+/PBD1KxZE3K5HBUrVkSHDh3w119/abQ7deoUOnbsCDs7O9jb26Nz5844d+6ccYIup1JSUvDll1+iQYMGsLOzg4uLC1q1aoU1a9ZACKHRlv1Vsr766iv069dPfcyrVq1anu316Z979+5hyJAhqFixIqysrNCsWTNs2bKl+HeCqJzj2NP0cexpGjj2NC0cf5ZOZW3sKRGvvpuIDGDSpElYvHgxunfvjhYtWkAmk+HQoUPYvHkzGjZsiJMnT8LKygoAcPPmTQQEBMDc3Bzjx4+Hg4MDli9fjosXL+L3339Hx44djbw35dOHH36IH374ASkpKRgzZgwWLVqkrmOflQ537txB+/btkZKSghEjRqB27dpITEzEhQsXEBwcjAEDBgAATp48ifbt28PDw0M9cF+0aBEePXqE48ePo0GDBsbcjXIhOzsbgYGBOH78OIYOHYoWLVogLS0NP/30E06fPo2PP/4YX3/9NQD2lzFIJBI4OzvDz88PkZGRsLe3R0xMjM62+vRPQkICmjVrhkePHmHChAnw9PTExo0bceTIEaxatQrDhg0rid0jKhc49jR9HHuWfhx7mhaOP0uvMjf2FEQlICIiQjx//lyr/LPPPhMAxMKFC9Vl/fr1E1KpVJw9e1ZdlpycLKpUqSJq164tsrOzSyJkeklkZKQwMzMTc+bMEQDEmDFjNOrZZ6VDmzZthKenp7h3716e7fz9/YWdnZ2Ii4tTl8XFxQk7OzsRFBRk6DBJCHH8+HEBQIwfP16jPD09XVSvXl04ODioy9hfJe/mzZvq//f19RVVq1bNta0+/fPRRx8JAGLnzp3qsszMTOHv7y+cnZ1FcnJy8e0EUTnHsadp49jTNHDsaVo4/iy9ytrYk7dOU4lo1qwZHBwctMpDQkIAABcvXgQApKamYufOnWjfvj0aN26sbmdra4u3334b165dQ0RERInETDmysrIwcuRIdO7cGb1799aqZ5+VDkePHsWxY8fw8ccfo1KlSlAqlUhLS9Nqd+PGDURERKBfv37w8PBQl3t4eKBfv344cOAAHjx4UJKhl0tJSUkAgMqVK2uUW1hYwMXFBTY2NgDYX8bi7e1doHb69s/GjRtRo0YNdOvWTV1mZmaGsWPHIiEhAXv27Cm+nSAq5zj2NF0ce5oGjj1ND8efpVdZG3sy0UhGFRcXBwBwc3MDAFy4cAHp6elo2bKlVtsWLVoAAAcOJWzevHmIjo7WuF3lZeyz0kH1JVGlShV069YNVlZWsLGxQe3atbF+/Xp1O1Vf5NZfQghERkaWTNDlWEBAABwdHTF79mxs2bIFd+/eRXR0NCZPnozIyEhMmzYNAPurtNOnf+7fv4/4+Hj1cfHVti+vj4gMh2PP0o9jT9PAsafp4fjT9JnK2NPcIGslKoCsrCx8/vnnMDc3R1hYGICciUoBaGTnVVRl8fHxJRdkOXf79m1MnToV4eHhqFatms55IthnpcPVq1cBACNHjkStWrXw448/IiMjA3PmzMHgwYOhVCoxbNgw9lcp4eTkhJ07d+Ltt99G//791eV2dnbYtm0bevbsCYCfr9JOn/5hXxIZH8eepR/HnqaDY0/Tw/Gn6TOVsScTjWQ048ePx4kTJ/Dll1+iTp06AKC+3N7S0lKrvVwu12hDhve///0P3t7emDBhQq5t2GelQ3JyMoCcgcKhQ4dgYWEBAOjZsye8vb3x6aefYujQoeyvUsTW1hb169dH9+7d0apVKyQkJGDx4sUICwvDjh07EBQUxP4q5fTpH/YlkfFx7Fn6cexpOjj2NE0cf5o2Uxl7MtFIRjFlyhQsWrQIo0aNwuTJk9Xl1tbWAID09HStZRQKhUYbMqz169dj//79OHr0KGQyWa7t2Gelg+rJmaGhoeqBHpBz5rJ79+5Yu3Ytrl69yv4qJaKiotCqVSvMmzcP//vf/9TloaGhqF+/PkaOHImbN2+yv0o5ffqHfUlkXBx7ln4ce5oWjj1ND8efps9Uxp6co5FK3LRp0zBz5kwMGzYMS5cu1ahTTUyr6xJeVZmuS3+peKWnp2PChAno0qUL3N3dcePGDdy4cQN37twBACQmJuLGjRt4/vw5+6yU8PT0BAC4u7tr1VWqVAkA8OzZM/ZXKTFv3jwoFAr069dPo9za2hpdu3bFnTt3EBMTw/4q5fTpH/YlkfFw7Fn6cexpejj2ND0cf5o+Uxl7MtFIJWratGmYPn06hg4dihUrVkAikWjUN2jQAJaWljhx4oTWsidPngSQ8xRBMqwXL17g8ePH2L17N2rVqqX+1759ewA5Z5xr1aqFFStWsM9KiYCAAAD/TXL/MlWZq6sr/P39ASDX/pJIJGjatKkBIyXgvy/3rKwsrbrMzEz1f9lfpZs+/VOpUiV4eHioj4uvtgV4rCQyBI49TQPHnqaHY0/Tw/Gn6TOZsacgKiHTp08XAMTgwYNFVlZWru369u0rpFKpOHfunLosOTlZVKlSRdSqVUtkZ2eXRLjlWkZGhtiyZYvWvyVLlggAonPnzmLLli3i6tWrQgj2WWmQkJAg7OzshIeHh0hOTlaX37t3T9jY2IjatWury5o1aybs7OxEfHy8uiw+Pl7Y2dmJ119/vUTjLq/Gjx8vAIivv/5ao/zZs2eiUqVKwsnJSWRmZgoh2F/G5uvrK6pWrZprvT798+GHHwoAYufOneqyzMxM4e/vLxwdHUVSUlKxx09UnnHsaTo49jQ9HHuaHo4/TUNZGHtKhBDCMClMov8sXrwY7733HqpUqYLPP/8cUqnmxbRubm4ICgoCANy4cQMBAQGQyWT44IMPYG9vj+XLlyMqKgq7d+9GcHCwMXaBAMTExKB69eoYM2YMFi1apC5nn5UOy5Ytw+jRo+Hr64vhw4cjIyMD33//Pe7fv49du3ahU6dOAIDjx4+jQ4cO8PT0xNixYwEACxcuxMOHD/H333+jUaNGxtyNcuHOnTvw8/PDs2fPMHDgQLRu3RoJCQlYvnw5YmJisHjxYrz77rsA2F/GsG7dOvXtegsXLkRGRgYmTpwIAKhatSoGDx6sbqtP/zx9+hRNmzbF06dPMWHCBHh4eOCnn37C4cOHsWLFCowYMaIE95KobOPYs2zg2LN049jTtHD8WXqVubGnQdKXRK8YOnSoAJDrv8DAQI32ly9fFt27dxcODg7CyspKtG7dWuzfv984wZPa7du3BQAxZswYrTr2Wemwbds20bx5c2FtbS1sbW1FUFCQOHbsmFa748ePi9dee03Y2NgIW1tb0alTJxEZGWmEiMuvGzduiCFDhggPDw9hbm4u7OzsRNu2bcW2bdu02rK/SlZgYGCBv6+E0K9/4uLixKBBg0SFChWEpaWlaNKkidi0aZOB94io/OHYs2zg2LP049jTtHD8WTqVtbEnr2gkIiIiIiIiIiKiIuPDYIiIiIiIiIiIiKjImGgkIiIiIiIiIiKiImOikYiIiIiIiIiIiIqMiUYiIiIiIiIiIiIqMiYaiYiIiIiIiIiIqMiYaCQiIiIiIiIiIqIiY6KRiIiIiIiIiIiIioyJRiIiIiIiIiIiIioyJhqJiIiIiIiIiIioyJhoJCIiIiIiIiIioiJjopGIiIiIiIiIiIiKjIlGonLi8OHDkEgkkEgkeO+993S2efToESwsLCCRSNC+ffuSDZBKvZiYGEybNg3nzp0zdihERERkAjj+pKLi+JPI9DDRSFTOyOVybNy4Eenp6Vp169atgxAC5ubmRoiMSruYmBhMnz6dAz0iIiLSC8efVFgcfxKZHiYaicqZXr164dmzZ9ixY4dW3erVq9GlSxdYWloaITIqiOTk5ELV0X9evHiBzMxMY4dBRERUbnD8ado4/iw6jj+pPGGikaic8fPzQ8OGDbF69WqN8tOnT+PSpUsYNmxYrsv+888/6NWrF1xcXGBpaYk6dergiy++0PrSPH36NN566y3Url0b1tbWsLOzQ+vWrfHLL79orfOtt96CRCJBYmIi3nnnHbi6ukIul6N169Y4depUgfcrKSkJn332GerVqwe5XI4KFSqgTZs22LRpk0a7CxcuoFevXqhQoQLkcjl8fHwwe/ZsZGVlFSkuIQSWL1+O5s2bw9bWFra2tmjQoAHCw8PVbaZNmwaJRIKYmBit5atVq6Z1u5BEIsFbb72FgwcPok2bNrC1tUW3bt002p89exbBwcFwcHBAw4YN1ctev34dgwcPRqVKlWBhYYFq1arho48+QmpqaqH2c82aNejQoQMAYNiwYerboPK7xUm1fl1U+/eytWvXIiAgAI6OjrCxsYG3tzcGDhyIx48fa7TTd/8eP36M4cOHw83NDTY2NoiLi9Nre0RERFR4HH9y/FmY/eT4k8g08fp0onJo+PDhmDBhAuLj4+Hh4QEAWLVqFVxdXfHmm2/qXGb37t3o3bs3atasiYkTJ8LZ2RknTpxAeHg4zp07hy1btqjb/vLLL4iOjkb//v1RtWpVPH36FD/++CN69+6NDRs2ICwsTGv9wcHBqFixIsLDw/H06VPMnTsXXbt2xe3bt2FnZ5fn/jx//hxt2rTBpUuX0LdvX7zzzjvIysrC2bNnsWvXLgwYMABAzkA1MDAQMpkMY8aMgbu7O3777Td88sknOH/+PDZs2FDouAYPHowNGzagefPm+Oyzz+Do6Ijo6Ghs3boVM2bMyL9TcvHPP/9g27ZtGDlyJIYOHapRd/fuXbz22mvo168f+vTpg5SUFABAZGQkXnvtNTg6OmL06NHw8PDA+fPnsWDBAvz99984cuQIZDKZXvvZrl07fPrpp/jyyy8xatQotG3bFgDg5uZW6H171bp16zB06FC0bdsWM2bMgJWVFWJjY7Fnzx48evQIFStWLPT+BQUFwd3dHVOmTEFqaipsbW0LvD0iIiIqOo4/Of7k+JPjTyonBBGVC4cOHRIAxDfffCOePHkiLCwsxBdffCGEECItLU04ODiIiRMnCiGEsLGxEYGBgeplX7x4Idzc3ETbtm2FUqnUWO/cuXMFAHHo0CF1WUpKitb2U1NTRe3atUW9evU0yocOHSoAiHfeeUejfPPmzQKAWLp0ab779s477wgA4ocfftCqy8rKUv9/q1athJmZmTh//ry6LDs7W/Tr108AEAcOHChUXD///LMAIAYNGqSxvVe3P3XqVAFA3L59WyvOqlWrarzmQggBQAAQ+/fv19kegFi+fLlWXcOGDUWdOnVEUlKSRvn27dsFALF69epC7afqPfTy8vlRrV8XAGLo0KHqv3v16iXs7Oy03mOvKsz+DRw4UGs9Bd0eERERFQ7Hnxx/cvypieNPKg946zRROVShQgV0794da9asAQBs374diYmJGD58uM72+/fvx8OHDzFs2DA8f/4cT548Uf/r0qULAGDfvn3q9jY2Nur/T0tLw9OnT5GWlobXXnsNV65cQVJSktY2PvjgA42/X3vtNQA5tyjkJTs7G5s2bUK9evUwatQorXqpNOcw9+jRIxw/fhzdu3fXuMVDIpHgs88+AwCdt9YUJC7Vmehvv/1Wvb1Xt19YjRo1QseOHXXWOTs7a91qFBUVhQsXLiAsLAzp6ekafdWmTRvY2Nho9JVKYV//4uTg4IC0tDTs3r0bQgidbQq7fx9++GGhtkdERETFg+NPjj9fxfEnx59UNjHRSFRODRs2DNevX8exY8ewatUqBAQEwMfHR2fbK1euAMi55aVixYoa/+rWrQsAePjwobr9o0ePMGrUKPV8JC4uLqhYsSKWLl0KIOdWk1d5e3tr/F2hQgUAwNOnT/PcjydPnuDZs2do3Lhxnu1u374NAPD19dWqq1evHqRSKW7dulWouK5fv45KlSoV620cKrVr1861rkaNGjAzM9MoU/XV1KlTtfrK1dUVqampGn2lUtjXvzh9+umnqFq1Knr27ImKFSuiT58+WLFihcYk44XdP12vY0G2R0RERMWH48//cPzJ8SfHn1RWcY5GonIqODgYHh4emD59Og4dOoTvv/8+17aqs23ffPNNrgOqypUrq9t26tQJV65cwfvvv49mzZrBwcEBZmZmWL16NTZu3Ijs7Gyt5V8dsLy6bWMpzrhym5QaQK5PobO2ts51GV11qrgmTpyIzp0761zOyclJq8xQr39u+6xrf2vVqoXLly/j4MGDOHjwII4cOYKRI0di6tSpOHr0KGrUqFHo/dP1WhVke0RERFR8OP4sGI4/Of4kMmVMNBKVU2ZmZhgyZAi++uorWFlZITQ0NNe2tWrVApBzS0put1GoXLhwAefPn0d4eDimT5+uUbdixYqiB/4KFxcXODk54fz583m2q169OgDg0qVLWnXR0dHIzs7WOqtaULVr18aOHTvw8OHDPM8qOzs7AwASEhJQrVo1dblCocD9+/dRs2bNQm3/Zaq+MjMzy7ev9JXXQDU3L++z6v8B6Dx7DwCWlpbo0qWL+paoPXv2oGvXrpg7dy4WL15c7PuX3/aIiIio+HD8+R+OPwuG408i08Nbp4nKsf/973+YOnUqli5dCnt7+1zbBQcHw9XVFbNmzUJCQoJW/YsXL9SX+6vOTL56JvLixYs656ApKqlUitDQUFy+fBkrV67UqlfF4erqilatWuG3337DxYsXNeq/+uorAECvXr0KFcPAgQMBAB9//LHW2fKXXwfV7RMHDhzQaDNv3jydZ9kLo0mTJqhfvz6WLl2qczCVmZmpsw8LwtbWFgD0Wj63fZ4zZ45W2ydPnmiV+fn5aWyzOPevINsjIiKi4sXxJ8ef+uD4k8j08IpGonKsSpUqmDZtWr7tbGxssHbtWvTs2RN16tTB8OHDUbNmTTx//hzR0dHYvn07fvnlF7Rv3x716tWDr68vZs+ejbS0NNSpUwfXrl3DDz/8gAYNGiAyMrLY92PmzJn4888/8fbbb2Pfvn1o06YNhBA4e/YsMjMzsW7dOgDAd999h8DAQLRt2xZjxoyBu7s7du3ahT/++ANhYWF4/fXXC7X9fv36ISQkBGvXrsX169fRvXt3ODk54dq1a/jjjz/UA8uOHTuiTp06CA8Px9OnT1G9enUcO3YMJ0+ehIuLS7G8FhKJBOvWrcNrr72Ghg0bYvjw4fD19UVaWhpu3LiB7du346uvvsJbb72l97p9fHxgZ2eHJUuWwNraGo6OjnB1dVVP3K1LaGgoPv30U4waNQrR0dFwdnbG3r17dQ6yOnXqBEdHR7Rt2xZeXl54/vw51qxZA4lEgsGDBxf7/hVke0RERFS8OP7k+FMfHH8SmaCSebg1ERnboUOHBADxzTff5NvWxsZGBAYGapVHRUWJgQMHisqVKwuZTCZcXV1Fy5YtxYwZM8TTp0/V7WJiYkTfvn2Fi4uLsLKyEv7+/mL79u1i6tSpAoC4ffu2uu3QoUNFbociAGLo0KEF2r9nz56Jjz76SNSoUUPIZDLh7Ows2rRpI37++WeNdufOnRM9evQQTk5OwsLCQtStW1d8/fXXIjMzU6OdvnFlZWWJRYsWiSZNmggrKytha2srGjRoIKZNm6bR7urVqyI4OFhYWVkJBwcH0a9fPxEXFyeqVq2q9Zrntf+62r8sJiZGjB49WlStWlX9evj5+YlJkyaJu3fvFno/d+/eLZo0aSIsLS0FgDxjUDl58qRo1aqVsLS0FBUqVBAjR44Uz54901r/smXLRMeOHYWbm5uQyWTC3d1dvPHGG+LPP/80yP7psz0iIiLSH8efOTj+5PizMNsjMlUSIfhMdSIiIiIiIiIiIioaztFIRERERERERERERcZEIxERERERERERERUZE41ERERERERERERUZEw0EhERERERERERUZEx0UhERERERERERERFxkQjERERERERERERFRkTjURERERERERERFRkTDQSERERERERERFRkTHRSEREREREREREREXGRCMREREREREREREVGRONREREREREREREVGRMNBIREREREREREVGRMdFIRERERERERERERcZEIxERERERERERERUZE41ERERERERERERUZEw0mqgTJ05g4MCBqFatGiwtLWFnZwdvb28EBQVh+vTpuHjxorFDpGIybdo0SCQSTJs2zdihlAufffYZJBIJIiIijB2KThkZGahWrRr8/PyQnZ1t7HCIiKgU43ix+K1ZswYSiQRvvfWWsUMpcYcPH4ZEIkH79u2NHYrBpaeno0aNGmjYsKHGeCsmJgYSiQTVqlUzXnD5aN++PSQSCQ4fPlxs6yzO/eZYlqjsY6LRBH3zzTdo3bo1Nm7cCJlMhuDgYHTr1g0eHh44fvw4pk2bhjVr1hg7TKJCk0gkkEgkJb7du3fvYu7cuejZsyf8/f1LfPsFYWFhgSlTpuDs2bP48ccfjR0OlWPVqlWDRCJBTEyMsUMhIh04XiwcHttMX3GMI7/77jvcunULn3/+OaRS/mQuThzLUmnB473hmBs7ANLPuXPn8Mknn8Dc3BwbNmxAv379NOpfvHiB3bt3Iz093UgRUnF77733MGDAALi4uBg7lDJvypQpUCgUmDJlirFDydPQoUMxY8YMfPbZZxg4cCAsLCyMHRIREZUiHC8SFV5iYiK++OILNGzYED169DB2OGUSx7JEZRtPz5iYrVu3QgiBfv36aQ0aAcDKygp9+/bFwIEDjRAdGYKLiwvq1q3LRKOBPX78GJs2bUKjRo3g5+dn7HDyZG5ujkGDBuH+/fvYtm2bscMhIqJShuNFosL78ccfkZSUhGHDhhk7lDKLY1miso2JRhPz6NEjAICrq2uhlr9z5w7GjBmDmjVrQi6Xw9HRER06dMD27dt1tn/5cuLNmzejTZs2cHBwgEQiwdOnT2FpaQkbGxskJyfrXD49PR1OTk4wMzNDfHy8Rt3jx48xadIk+Pr6wtraGnZ2dmjRogVWrFgBIYTWul6eb+TAgQPo1KkTnJ2dIZFIcO7cuXz3/f79+/joo4/g6+sLe3t72NraomrVqujRowe2bt2qc5ndu3eja9eucHV1hYWFBby8vDB8+HDcunVLq+3L89akpKTgk08+Qc2aNWFpaYmePXti4cKFkEgkGDx4cK4x/vzzz5BIJOjcubO6LL85Gv/++2+EhITA09MTlpaWcHNzQ6tWrTBr1iy8ePFCZ/t+/fqhcuXKsLCwgLu7O/r371+g11Cf/QUApVKJdevWISQkBLVr14atrS1sbW3RqFEjzJgxA6mpqRrrVM17pKK69SW3W2CKa18AYPXq1cjIyMi1f15+/x05cgQdO3aEg4MDnJyc0LNnT1y/fh0AkJ2djTlz5sDX1xdWVlbw8PDAJ598goyMjDzXqUtel/MPGTIEAPD9998XeB+bNm0KiUSCgwcP5trmjTfegEQiwaZNm9RlhfnsFEZGRgYWL16Mtm3bwsnJCXK5HNWrV0efPn2wZ88erfaPHj3CxIkTUbt2bfXxrF27dli7dq3OY8hbb70FiUSCNWvWIDo6Gn369IGLiwvkcjn8/Pzw888/F0tsed2yldscRy+XK5VKfPnll+r3UOPGjQFoHgtu3ryJQYMGoVKlSjAzM8P8+fPV60pJScGXX34JPz8/2NnZwdraGo0bN8a3336r832o7+ui+uzfuXMHAFC9enWNz2lBbj95eZu65PbZeP78OWbOnIlGjRrByckJVlZW8PLyQqdOnbBs2TKd69LnOFGQfgByrhYLCwtDzZo1YWVlBScnJ9SuXRtvvfUWzpw5k+/+Exkax4v6jxcLc2xLTEzE+++/Dy8vL1haWqJGjRqYPn06MjMztdq+fNw7c+YMevbsCVdXV0ilUvz666/qdhcuXMDAgQPh4eEBCwsLuLm5oVevXvj77791xl2Y7xyVffv2oX379rC1tYWjoyM6duyII0eOFGguxvT0dEydOlU99vP09MT48eO1xnaA5vfXrVu3EBoaCldXV8jlcjRq1AhLly7V2Zf53db46r7rO47MzdKlS2FmZoawsLACLwMA27Ztw1tvvQUfHx84ODjAysoKdevWxYcffognT57oXOblffzll1/QqlUr2NrawtXVFUOGDMHDhw8B5FyFPGXKFPVn0tvbG7Nnz9b5ur3s4MGDeO211+Dg4AA7Ozt06NABf/75Z67tz5w5gzfffBOOjo6wtbVFixYtsGXLlmLfb4BjWYBjWY5ly/BYVpBJ+fzzzwUA4enpKe7du6fXsvv37xd2dnYCgKhTp47o3bu3CAwMFHK5XAAQkydP1lqmatWqAoB45513BADRsmVLERoaKpo2bSqeP38uevXqJQCIVatW6dzm5s2bBQDRqVMnjfJz584Jd3d3AUBUrVpV9OjRQwQFBanjCwsL01pXYGCgACBGjx4tJBKJaNy4sQgNDRVt2rQR58+fz3Pf7927J9zc3AQAUb16ddGzZ0/Rr18/0bJlS2FtbS2Cg4O1llHts4WFhWjdurXo27ev8PHxEQCEg4ODOHXqlEb7Q4cOCQAiICBA+Pn5CXt7e9GtWzfRt29fMXr0aPH48WMhk8mEjY2NSE5O1hlnly5dBACxceNGddnUqVMFADF16lSt9jNmzBAABADRuHFjMWDAABEcHCyqVKkiAIjbt29rtJ81a5aQSCRCKpWKgIAA0a9fP9G0aVP1fu7cuTPP11Gf/RVCiNjYWAFAODs7i9atW4uQkBARFBQkHBwcBADRtGlTkZaWpl7nX3/9JYYOHarep6FDh2r8M9S+CCFEq1atBABx5swZnfWq99/48eOFmZmZaNmypejXr5/w9vYWAIS7u7t49OiR6NOnj7C1tRXdunUTXbt2FTY2NgKAGDZsWK7rPHTokM5tqj5/r/ajSqVKlYREIhFPnz4t0D5+9913AoAYMmSIzvr79+8LMzMz4eDgIF68eCGEKNxnpzCePn0q/P39BQBhbW0tgoKCxIABA0Tr1q2FjY2NCAwM1Gh/9epVUblyZfXxsH///qJz587C0tJSfQzJzs7WWEb13ho7dqywsbER9erVEyEhISIgIED9ntuwYUORY1OtS5fbt2+rj3u6yr28vETXrl2FXC4XwcHBon///qJnz55CiP+OBaGhocLR0VF4eXmJ/v37i65du4offvhBCCHE3bt3RZ06ddTvyS5duoiuXbuKChUqCACiffv2Ij09vUivy5UrV8TQoUPV7+0+ffpofE4fP36caz+/us3Vq1frrNf12UhJSRF169ZV71v37t1FSEiIaNOmjXB0dBR16tTRWo++x4mC9MMff/whzM3N1cew/v37i+7du4vGjRsLqVQqvvrqq3z3n8jQOF7Uf7xY0GPb6tWrBQDRo0cPUa9ePeHm5ib69u0rOnbsqP4OGjlypNb6Vce9ESNGCAsLC1G7dm0xYMAA0bFjR7Fr1y4hhBDbtm0TFhYWAoBo1KiRCA0NFS1atBAAhFQqFUuWLNFab2G+c1T7IZFIBADRvHlzERoaqj6OjR8/XgDQ+n5Tjf1atmwpAgMDhaOjo+jRo4fo0qWLuk9e7UMh/vv+Gjx4sHBychKenp4iJCREdOrUSchkslxfs/zGQa/uuz7jyNxcu3ZNABANGzbUWZ/Xa2pmZibs7OxE8+bNRb9+/cQbb7whXF1dBQBRrVo18ejRo1z3ceLEicLMzEx06NBB9OnTRz3G8fHxEUlJSaJly5aiQoUKonfv3qJjx47q12369Ola61R9BsaOHSukUqn6vaT6XpdIJGLdunVayx04cED9Hq5fv74YMGCA+v33/vvvF+t+q3Asy7Esx7JlcyzLRKOJiYmJUX8grK2tRb9+/cR3330njh07pj6Y6hIfHy8cHR2FTCYTP/30k0bdlStX1F9yBw8e1KhTlctkMvHHH39orffXX39Vf+B1efPNNwUAsX79enVZamqqqFatmgAg5s6dK7KystR1cXFxws/PTwAQK1eu1FiX6sOa1wc6N9OmTVMPgF+VnJwsjh8/rlG2ePFidfLu+vXrGnXff/+9ACC8vb2FUqlUl6sGX6oPrK4DVM+ePQUAsWbNGq26Bw8eCHNzc2Fvb6+RfMst0bh161YBQDg6OooDBw5o1GVnZ4s///xTPH/+XF22a9cuAUBUqVJFREZGarTfuXOnMDc3Fw4ODgX+oi/I/iYlJYnffvtN43USQojnz5+rk6q6DmR5fbkZYl9SU1OFTCYT1tbWIjMzU2cb1ftPKpWKX375RV2uUChEhw4dBADh6+sr6tWrJ+7fv6+uv3DhgpDJZEIikWgNlIuaaFT9cHs5nryokt22trYiJSVFq/7bb78VAMTbb7+tLtP3s1NYqmNFhw4dtAakSUlJWu/xZs2aqX9EvDzYiI6OVg/aXv1B9vKPj6+//lqj7ptvvlEPQIsaW1EGZ6pBua4+Vx0LVH2UkZGhUZ+dnS2aN2+u/sGiUCjUdc+ePRPBwcECgJgyZUqxvC75vT/zUpjB2Zo1awQA8eabb2odUxQKhThy5IhGWWGOEwXph/bt2wsAYtOmTVp18fHx4tKlS/nsPZHhcbxYuPHiy/uS27FNlWgEIHr16qXxep48eVKYmZnp/M5/+Vg7ffp0rQTCvXv31Mm6pUuXatRt375dmJmZCXNzc61kaWG+c+7evSusra2FRCIRP//8s0bdggUL1OvMLdGoSjYmJCSo627cuKE+kfzq8fjl76+QkBCN76fz588LZ2dnAUDs2LFDYzl9E40FeU3ys2zZMgFAjBo1Smd9XonGzZs3a4zhhRDixYsXYsSIEQKA+kT8y1T7aG1trTGmev78ufoCB19fXxEYGCiSkpLU9Xv37hUAdI7pXv4MzJ8/X6Nu3bp1AoCwsbER8fHx6vLU1FRRqVIlAUB88cUXWvsllUqLdb9VOJblWPZlHMuWnbEsE40m6OjRo6JGjRrqN5Dqn4WFhejWrZvOg+VHH30kAIjw8HCd69y2bZt6wPQy1Ycvty+IjIwM4eLiIiQSibhz545G3aNHj4S5ubmws7MTqamp6nJVEi+3M1GRkZECgGjSpIlGuerDWpizTu+++26Bv8QyMzOFu7u7kEqlWklGlW7dumkNiF4efJ04cULnctu3bxcAxGuvvaZVN2/ePAHknOl+WW6JxoYNGwoA4scff8x3n4QQ6rNYf/75p876sWPHCgDiu+++K9D6CrK/eVGdMW7WrJlWXX4DxOLel9OnTwsg5+qB3KjefwMHDtSqU/2AAiD279+vVZ9bgrmoicZPP/1U53sjL927dxcAxNq1a7XqGjVqJACIv/76S12mz2ensM6cOSOAnCtfnz17lm/7I0eOqNu/POhWUf0IrFGjhka5akDQokULrWUyMjKEk5OTACBiYmIKHZsQRR+cvfrjXkV1LKhQoYLOq6J3796t/mH46g9YIXJ+xFpYWIgKFSpo1BfmdRGi5Adns2fPFgDEvHnzCrSNwhwnCtIPqh9+BX0/EBkLx4uFu0qpoIlGOzs7nVdqde3aVed3vuq4V69ePY2kqcr06dMFANGxY0ed2335isiXFeY7R5V46d69u87lVD/0c0s0SqVSnT9Ex4wZIwCIadOmaZSrvr+sra11npieNWuWzvGxMRKNqnFPbt81eSUac5OWlibMzc2Fi4uLVp1qHz/77DOtuvnz56tf7+joaK36xo0bCwDi8OHDGuWqz0BAQIDOeDp37iwAiBkzZqjLfvzxRwHkJDV1jSF69+5drPutwrEsx7Iv41hWkymPZTlHowlq27YtoqOjsWfPHowfPx6tWrWClZUVMjIy8Ntvv6FNmzb44YcfNJb5/fffAUDnhOAA0K5dOwDAyZMnddar5tx7lUwmQ2hoKIQQWLdunUbdTz/9hMzMTPTr1w/W1tYFjqVJkyawtbXF+fPnoVAoChxLXpo1awYAmDx5Mnbu3Im0tLRc2547dw4PHjxAkyZNULNmTZ1t8nq93Nzc0KJFC53Lde3aFRUqVMDhw4cRGxurUbd27VoAOU9hy8/9+/dx4cIFWFtbIzQ0NN/2T548QUREBFxcXHKdbye/90Bu8tpflYiICMyePRtjxozBsGHD8NZbb2HmzJkAgGvXrum1PUPsi2ouqwoVKuTbtlOnTlplNWrUAJDzeejQoUOu9ffu3StQPAWlilcVf0Go3l+q95tKVFQUzp8/jxo1aqBNmzbqcn0+O4W1d+9eAEDv3r3h6OiYb74fNnMAAQAASURBVPujR48CAHr16gU7Ozut+kGDBkEmk+HmzZtac30B0JgDVUUmk6F69eoANPtJ39iKQ35PuOzYsSNsbW21ylXH1r59++qcV6dSpUqoVasWnj59qp5T9GX6vC7GoHovzp49Gxs3bkRiYmKubYvjOJFbP6jiGDRoEE6cOIGsrKyC7gJRieJ4UXcsxaVp06aoWLGiVnmdOnUA5H7M7N69O6RS7Z9gqu+23MaBw4cPBwAcOXKkUPHq2lZISIjO+vzGllWqVIGPj49WeX773qlTJ50PNxw0aBAA4Pjx4zrntyxJ+owJdbly5Qrmz5+PsWPHYvjw4XjrrbfwzjvvwMLCAk+ePMGzZ890LpfX+LJq1arq11ZXfW6vd25zTKpeb9X7APjvfRUaGqpzDJHXHPNA4febY1mOZV/Gsex/TH0sa17sa6QSYW5ujjfeeANvvPEGAEChUOCPP/7AJ598gqtXr2LcuHHo0qULvLy8AED98JIGDRrkud7Hjx/rLK9atWquywwdOhQLFy7EunXr8Nlnn6nLVQd/1US/KqpYunXrlmcsAPD06VN4eHgUOJa8Yjx8+DDWrl2LHj16wNzcHI0aNUL79u0xaNAgjYlRVfFFRkbmO3G0rtcrr/gsLCwQGhqKRYsWYf369Zg8eTIA4NKlSzh79iyqV6+u8cWYm7t37wLImbhWJpPl2/727dsAcg5Yuga3L8vtPZCbvPY3JSUFAwYMwO7du3Ntk5SUpNf2DLEvz58/BwCdX/Sv8vT01CpTfVG6u7vDzMws1/r09PQCxVNQ9vb2AP6LvyDefPNNODs7488//0R8fLz68/Xjjz8C0B5I6vPZKSzV+1nXIFoX1YBLNWh4lbm5OapUqaIenL16DFEdF1+l6v+X+0nf2IrK1dUVVlZWebbJ7TOnOnaNHTsWY8eOzXMdjx8/Ru3atTXK9HldjKFDhw6YPHkyZs+ejYEDB0IqlaJevXoIDAxESEiIerAFFP04kVc/zJo1C9HR0di9ezd2794NW1tbBAQEoGPHjhg6dCgqV65chL0kKl4cLxpOYY+ZucWV33ebt7e3RruiUK0jt1jye+0Ku++5PZRG9YADhUKBp0+fws3NLc/tG5I+Y8KXZWZmYvTo0Vi1alWe7ZKSkuDk5KRVntf4Ulfdy/X6vt6q8ri4OHWZ6j2R3zKvKup+cyzLsezLOJYtO2NZJhrLCLlcjh49esDf3x+1atVCWloa9u7di5EjRwKAOksdFhZWoMTUq/I6WDRt2hS+vr64dOkSTp06hebNm+PKlSuIjIxEtWrVND4wL8fSvXt3nV84L7O0tNQrltxIpVL8+OOP+OSTT7Br1y4cOnQIx48fR2RkJObMmYMpU6ZgxowZGvFVqVJF59VpL2vevLne8Q0ZMgSLFi3CunXr1InGlwfZBXkqnj5PzgP+2ydnZ+d8B+x169bVa9157e+kSZOwe/du+Pr64uuvv0azZs3g7OwMmUyGjIwMnf2bH0Psi+rsXkGSnnkd6PP7EtBXdnZ2nvWqs2D6nJ20sLDAgAEDsGTJEqxfvx6ffPIJsrKysHHjRkgkEq0fevp8dgpL3/dzUenTT8UdW359WpDjW25tVJ+N1157LdeBloquKzWK+/1bFLm9Tl9++SVGjRqF3377DX/++SeOHTuGJUuWYMmSJRgyZIj6R0ZRjxN59UOlSpVw4sQJHDt2DL///juOHj2Kv/76C3/++Sc+//xzbNmyBV27di3orhKVKI4Xi09hj5mGjutl+X3n5PYdl9++lYbvi/z2rbD0GRO+bP78+Vi1ahU8PDwwb948tGzZEq6urrCwsACQk0y9f/9+rk+JLsnxZXEq6n5zLFs4HMtyLPuy0jiWZaKxjKlcuTLq1q2LM2fOaGS2vby8cOPGDcyYMUN9mX1xGjJkCD755BOsXbsWzZs3zzNx5uXlpT6L/vrrrxd7LHnx8fGBj48PPv74Y2RmZmLr1q3q23jDwsJQt25d9UGtSpUquT6uvij8/f1Rr149XLlyBREREWjatCk2bNig84sxN6oYb9++DaVSme+PAVV7a2trg+xTbrZu3QoA2LRpE+rXr69Rd+PGjUKt0xD7ojpznpCQUCzrKyjVICwlJUWrLjMzE/fv389zeVW8rq6uem136NChWLJkCdatW4dPPvkEBw4cwP3799GuXbtcz6wW5LNTWFWqVAFQ8NvoVWd1VWc9X5WZmak+e/vqGWBDxwbk3KKhVCqRkpKidVvIq1MmFCfVZyMsLAwjRoww2HaKQ17vfSDv16latWrqM91CCOzfvx8DBgzA2rVrERYWhuDgYIMf86RSKdq1a6dOjCQlJeGrr77CrFmzMHLkSKPfmkOUH44XSx8PDw9ER0fj1q1baN26tVa96jvv1e+1wnznVK5cGVevXsXdu3fRqlUrrfqYmJhC7kXe7ty5o7P83r176hPQLycP8vquMNT3aWHHhKox79KlS/Hmm29q1KWmpuLBgwfFE6Aecnu9Vf378ntJ9f/5LfOqou43x7Icy76MY9myM5YtPSlfKpDczgapZGVlqS+zffkye9V8Baovg+I2aNAgSKVS/Pzzz1AoFNiwYQMA7dtgSiKWgjI3N8eAAQPQrl07CCEQFRUFAAgICICzszNOnz5tsAPpy3OLHDx4EPHx8WjdurX6tpj8VKpUCQ0aNEBaWhp+/vnnfNt7eHigfv36iIuLw6lTp4oUuz5UgwddZ6R++umnXJdTJU51zdNjiH3x8fGBhYUFrl+/XqJzA6kuS7969apW3aFDh/KN5fLlywBy5qnSR0BAAOrWrYtLly4hMjIy19vWcpPbZ6ewVPMSbd++Pc+5SlRUX4i//vorkpOTteo3bNgApVKJGjVqFHlwpm9sQN79um/fviLFk5eSPraqBliF+czk9RpFR0erB9f5kUgk6NSpE/r27QsAuHDhAoCSP+bZ29vjyy+/hIWFBe7fv6/3FBRExY3jxcIryrGtKFTfba/OO6eyevVqAEBgYKBGeWG+c9q2bQsAuY4hN23aVICI9bdv3z48ffpUq3zjxo0AgFatWsHc/L/rYAr7fZrXODI/qttoVWOsgsprzLtp06Z8P5OGkNtYW/V6v3wVser/c4tV9Vl9VVH3m2NZjmVfxrFs2RnLMtFoYv7v//4PEyZMwJUrV7TqkpOTMXLkSDx79gy2trbq+XgA4MMPP4SdnR2mTZuGlStXak34KYRAREQE9u/fX6i4KleujI4dO+Lp06f46KOPEBsbi9atW+s8Gz5q1Ch4enrihx9+wKxZs3TOlXD58mVs3769ULHosnbtWpw9e1arPC4uDufPnwfw39kemUyG//u//0NGRgZ69OiBc+fOaS2XlpaGjRs34uHDh4WKRzXQ3rRpk3pOk4I8BOZlU6ZMAQCMGzcOhw4d0qo/fPiwxpeJ6paA0NBQnROJqyaHj46O1iuOvKjODC5ZskSj/MCBA5gzZ06uy6m+UHW9z4Hi3xdra2v4+/sjLS1NfXAvCapb85csWaIxCfaNGzfynZcEAE6dOqU+G6Uv1UBsyZIl+PXXX2FlZaVzwn19PjsA8Msvv6Bu3bp6XX3i5+eHrl274unTp+jbty+ePHmiUZ+cnIyDBw+q/27Xrh2aNm2KhIQEjBs3DkqlUl13/fp19dxfEydOLHAMxRUb8F+/fvHFFxoDl3379mHevHlFjik3vXr1QpMmTbB371588MEHOm/7iomJwfr164tle/l9TvOieo3WrVuHmzdvqssfPnyIESNG6Lzd5JdffsGxY8e0frQkJibi2LFjADTfi4Y65s2ZM0djXiuV/fv3IyMjA/b29iU22TpRbjheLLyiHNuKYuTIkbC1tcWBAwewfPlyjbqdO3di/fr1MDc3x7hx4zTqCvOdM2LECFhZWWHHjh3Ytm2bRt3333+PEydOFMcuaUlNTcW4ceOQkZGhLrt48SK+/vprANAa+6j27dtvv0Vqaqq6PDIyUj0O1qUofah66IK+D0dUjXm///57je+pc+fOqadKKmknT57EokWLNMp++ukn7NmzB9bW1uoHDAE5D99wd3dHVFQUZs+erbHM9u3bc/2cFXW/OZblWPZlHMuWobGswZ5nTQbx/vvvqx9XXq1aNdGtWzcRFhYmXnvtNWFvby8ACEtLS7F161atZffv3y8cHR0FAOHp6SmCg4NFWFiYCA4OFm5ubgKA+OSTTzSW0eeR7xs2bFDHBkAsW7Ys17bnzp0Tnp6eAoCoWLGieP3118XAgQNF165dRZUqVQQAERISorGMrkfEF1SPHj0EAOHl5SXefPNNMXDgQBEUFCTkcrkAIPr376+1zHvvvScACIlEIpo0aSL69Okj+vfvL5o3by4sLS0FAHHlyhV1+0OHDgkAIjAwsEAxBQUFqV8rKysrkZiYqLPd1KlTBQAxdepUrbopU6ao19GkSRMRGhoqOnfurH4NX+23r7/+WkilUgFA+Pj4iJ49e4oBAwaItm3bCltbWwFA/P777wWKvyD7+/PPP2vF17JlSwFATJo0SV33qg8++ED93ggJCREjRowQI0aMMNi+qNYHQHzzzTc66/N6/92+fVsAEFWrVtW5bG59qFAoRP369QUA4eLiInr06CHat28vrKysRGhoaJ6fv8uXLwsAom3btgXex5fFxsaqXz8AIiwsTGc7fT87q1evzvO1yM3jx4+Fn5+fACCsra1FcHCwGDBggGjTpo2wsbHRep9dvXpVVK5cWR1bSEiIeOONN9SfzdDQUJGdna2xzNChQwUAsXr1ap0x5NbH+sYWHR0tbGxsBABRs2ZN0bdvX9GsWTMhkUjU7/tXX5/83kNC5H0sULlz547w8fERAISDg4No166dCAsLE927dxe1atUSAETz5s2L5XX57rvvBABhZ2cn+vTpo/6cPnnyJNf4VLKzs9XHQDs7O9G1a1fRqVMndcytWrXS2qbq+8/V1VV07txZDBw4UHTp0kX93de6dWuRkZGhsR19jxMF6QcHBwchkUiEr6+v6NOnjwgNDRUtWrQQEolEABCLFy/Od/+JDI3jxcKNF4XI/9im+p4bOnSozuVzO1bnd6wVQoht27YJCwsL9bgpLCxMfTyUSCRiyZIlWssU5jtHCCFWrFihPm61aNFChIaGiiZNmgipVCrGjh0rAIigoCCNZfIb++X22qhek8GDBwsnJyf193ZwcLB6f4cPH661vsePH4tKlSoJAMLDw0P07t1btGrVSpibm4vJkycXaRyZl3r16gmpVCoePHigVZfb98Tff/8tZDKZACDq1KkjQkJCRIcOHYSZmVmeY7q8Pjv5vd65vadUn4H33ntPSCQS0bhxYxEaGiqaN2+ufi+tWbNGa3379u1Tj6MaNGigMW4fN25cse63EBzLciyrG8eyZWMsy0SjiXny5InYuHGjGDZsmGjcuLFwc3MT5ubmws7OTjRq1EiMHz9e3LhxI9fl4+PjxccffywaNGggbGxshJWVlahevboICgoS8+fPF/Hx8Rrt9Rk4pqWlqT8kcrlcPH/+PM/2CQkJ4vPPPxfNmjUTdnZ2wtLSUlSp8v/s3Xlc1NX+x/HXAAPDLrihuOcubrikpqXl0nI1c6sstaSb3bpqtniz1NKsvO3dsl9ds8zKyqXUsiytbDExwg3EpTQTxB0BAQcG+P7+QCa5oLLPwvv5ePjQOd8z8/18OSNz5vM9SxPjyiuvNJ5++uli11GRjuP3339vTJkyxejevbtRr149w9vb22jUqJFxzTXXGB9++KGRm5tb4vO+/fZbY/To0UZ4eLjh7e1thISEGO3btzcmTJhgfPLJJ0V+EZQ10fj+++/bPxhvueWWC9a71C/k7777zrjpppuM+vXrG2az2ahXr57Rp08f49lnnzXOnj1brH5sbKwxYcIEo1mzZoaPj48RFBRktGnTxhg9erTx/vvvGxkZGaWKv7TXu2HDBqNfv35GrVq1jICAAOPyyy83lixZYhiGccEOYlZWlvHAAw8YzZs3t3deSqpXWddiGIZx/Phxw9vb2+jYsWOJx6si0WgYhnHs2DHjzjvvtL8v27RpYzz33HNGXl7eRf//FXawly5dWupr/F8DBw60/2zXrVtXYp2y/t8pb+fMMAzj7NmzxksvvWT07NnTCAwMNCwWi9GsWTNj9OjRJSaNjx07ZkybNs1o2bKl4e3tbQQGBhp9+/Y1Fi9eXKxjZhjl74SUJ7bY2FhjyJAhRmBgoOHn52f07t3bWLNmzQXfK5XVOTOMgv8/L7/8snHFFVcYtWrVMsxms9GwYUOjV69exsyZM40dO3ZUys8lLy/PePLJJ422bdvaO8Wl/bwwDMPIyMgw7r//fvvv12bNmhmPPvqocfbs2RLPuW3bNmP69OlG7969jQYNGhje3t5GWFiYccUVVxhvvvmmYbVaSzxPWX5PlKYd3nvvPWP8+PFG+/btjVq1ahm+vr7GZZddZtx8883Gpk2bSnXtIlVN/cXyJxov9butKhONhlGQXL311luNsLAww2w2229E/vjjjxd8Tlk/cwp9+eWXRr9+/Qw/Pz8jKCjIGDBggLFhwwbjvffesyc6zlfRROPjjz9u/Pbbb8bo0aONOnXqGD4+PkbHjh2N1157zcjLyyvxNX///Xdj1KhRRkhIiGGxWIwuXboYb7/9tmEYFe9HXkhh8uGFF14oduxiP9PY2Fjj2muvNerWrWv4+fkZnTp1Ml566aWL9umqMtH43XffGV999ZVx1VVXGYGBgfaE0tdff33Ba4+JibEnPvz9/Y0ePXoYS5curfTrNgz1ZQ1DfdkLUV+2KFfsy5oMwwELRoiIOKEJEyawZMkSYmJi6N69u6PDuaDc3FxatGhBbm4uBw8etK8vIiIiIlJRf//733nrrbd47rnneOihhyr8ek888QRz5szh8ccf54knnqh4gFUsLS2NJk2a0KRJkwqv3SclU19WxL1pjUYRkXPmzp2LxWLhySefdHQoF/Xuu++SmJjIU089pY6ZiIiIlNnBgwdLXOx/yZIlvP3223h7e3Prrbc6IDLHCw4O5rHHHiM+Pp5PP/3U0eG4JfVlRdybEo0iIuc0bdqUBx54gDVr1hATE+PocEqUk5PDk08+SdeuXcu8gZCIiIgIwOeff06DBg3o0aMHo0aNYtiwYbRq1YoJEyZgGAavvPJKhXe7dWVTp06lRYsWzJ49u8RNHaT81JcVcX9ejg5ARMSZPPXUUzz11FOODuOCvL29OXjwoKPDEBERERd25ZVXctttt7Fp0yb27t2L1WqlTp063HTTTdx///3l2gXYnfj4+BTZSVYqj/qyIu5PazSKiIiIiIiIiIhIhWnqtIiIiIiIiIiIiFSYEo0iIiIiIiIiIiJSYUo0ioiIiIiIiIiISIUp0SgiIiIiIiIiIiIVpl2nK1lycjKff/45LVq0wN/f39HhiIiIiJvIzMzkwIED/O1vf6Nhw4aODkeciPqfIiIiUhXK0/9UorGSff7550yaNMnRYYiIiIibevPNN7n77rsdHYY4EfU/RUREpCqVpf+pRGMla9GiBVDQCB07dnRwNK7FZrORnp5OUFAQZrPZ0eHIJai9XI/azLWovVxPVbdZXFwckyZNsvc1RAqp/1k++j3retRmrkXt5XrUZq6lOtqrPP1PJRorWeF0lY4dO9K7d28HR+NacnJySElJITQ0FG9vb0eHI5eg9nI9ajPXovZyPdXVZpoaK/9L/c/y0e9Z16M2cy1qL9ejNnMt1dleZel/ajMYERERERERERERqTAlGkVERERERERERKTClGgUERERERERERGRCnP6ROMzzzzD6NGjadGiBSaTiWbNml20/pYtWxg4cCCBgYEEBQVx7bXXsn379hLrJicnM378eOrWrYuvry/du3dn+fLllX8RIiIiIiIiIiIibs7pN4N59NFHCQ0NJTIyktTU1IvWjY6Opn///oSHhzN37lwAXnvtNfr168fPP/9cZBe+lJQU+vbty/Hjx3nggQdo1KgRS5cuZcyYMbz99tvceeedVXlZIiIi4ibSsmwsj01k/a6jnM60EuJvYXBEA0ZFNiLYTzs2ioiIuIvCz/wNu49xxppLoMWLQe3D9Jkvch6nTzTu37/fvo12REQEGRkZF6w7ZcoUvL29+eGHHwgPDwdgzJgxtGvXjgcffJCvv/7aXnf+/Pn88ccfrFmzhqFDhwIQFRVF7969eeihhxg9ejQBAQFVdl2GYZCWlsaZM2fIzs7GMIwqO5eryM/Px2azkZaWhoeH0w+2xWQy4ePjQ2BgIMHBwZhMJkeHJCIi1WxZTCKzV8djzc3/q/DEWbYcPM1z6/Yw98YIxvRo7LgARc5js9k4deoUGRkZ6nvien1PUP9TxJFK/MwHog+kVMlnfnUmNavzpqkjrsvdEsPOfpPb6RONhUnGS/n999+JiYlh4sSJ9iQjQHh4OKNHj+add97h6NGjhIWFAbB06VIuu+wye5IRwNPTk8mTJzN+/Hi++OILxowZU7kXc45hGCQnJ5Oeng6Ah4eHy3RuqpLJZMJsNrtMhykvL4+MjAwyMjLIzMykYcOGLhO7iIhU3LKYRKav3HnB49bcfPtxJRvF0QzDIDExkezsbEwmE56eno4OyeFcre8J6n+KOEp1f+ZXZ1KzOm+aOvy6quhcUH1JTVe4ye30icbSiomJAaB3797FjvXq1Yu3336b2NhYbrjhBo4cOcLhw4e57bbbSqxb+HqXSjQmJiaSlJRUpCwuLg4ouGOck5NT4vPS09NJS0vDx8eHsLAwLBaLOggUdIDz8vLw9PR0iZ+HYRhYrVaOHj1qb8+goCBHh1VtbDYbubm52Gw2R4cipaQ2cy1qL+eWdtbGrNXxpao7e008A1qHEuxbsU6m3gtSEadPnyY7O5uAgADCw8N1k5uCEY2FfU9X+XkU9j+PHDlCeno6AQEBBAcHOzosEbeWlmVjdhk+84d0CKtQYqk6k5o6l2slhl3lJrfbJBqTk5MBioxmLFRYdvjw4TLXvZhFixYxZ86cEo+lp6eTkpJS4rHU1FQMw6BevXp4e3uTn59fYr2apjDRCLhEohHA29ubevXqcejQIU6ePElubq6jQ6o2NpvNPvXKbHb88Gy5NLWZa1F7ObePth4jO7d0n99WWz5Lf/6dm7vWr9A5C2dCiJTHmTNnAKhfv77LJNWkOJPJhK+vLw0aNODgwYOkp6cr0ShSxVZsTSqWQLoQqy2fWaviGRxRH39vL3y9Pf/628cTP28v/Lw9MXuW/Hu4OpOaOpdrJYar+7oqwm0SjVlZWQD4+PgUO2axWIrUKUvdi4mKimLIkCFFyuLi4pg0aRJBQUGEhoaW+LzCLwp+fn4uk1CrDoVrBbnKiMZCfn5+9jvhF2pzd2Sz2TCZTISEhCgJ4iLUZq5F7eXcNh86UMb6mfzjmop9RtSkUfNS+Qp/p+j3iXuwWCx4eHiQnZ3t6FBE3N7ancllqr9mZzJrLvEcb0+Pc0lIz3NJyIIE5KmMnDIlNR9esYPLW9TGBJhMnPvbZP83JtN5x0zn1YGffjtZpnP965Od9GwWSr5hYBiQZxh//Tu/4N/5BuSf+3feuWP5+QY7D6eW+br6taqDt5dHwR9Pz/P+XfC3j5cH5nP/Pr/8o5hDZTrXyq1JTOzbvFT1/1dVJ//y8w1s+fnk5Ru8v+XParuuinKbRKOfnx9AiR+2Vqu1SJ2y1L2Yxo0b07hxyRlps9mMt7d3iccK18XR2jhF5efnn/ulaHK5O+0eHh6YTKYLtrm78vLyuuh7XZyP2sy1qL2cV0ZOXpnqn8nOq3A7KkEkFWEYhr2/Iq6vsM+sTX1EqkZiShZf7TrKF3FH2HootdJfPycvn5yz+aSdrdiyKF8nHOPrhGOVFNXFrYs/yrr4o9Vyruq8rme/2sPSXw7hcV4y1sP0198e5zKzHueStAVlBQ+OpVvLlPwb/PL3BPuayc03yMs3yM0zyD2XSMzNN8jL+yuxmJtfkKgtr/UJx5RorKiGDRsCJU95LiwrnBZdlroipaFOu4hIzRJoKVsXKsiiJKE4nvor7kXtKVK5/jiZyZfxR/gy7ihxh9PK/Tqt6wdwV78WZGXnkmXLIys7j6ycPLJycsnMyeNsTi6Z2XnnjuUWOZZTyqSVVB6rLZ/fj2dUy7mOpWdzLL16RqKnWx23trfbJBp79OgBwObNm7nrrruKHIuOjsZkMtGtWzcAGjRoQHh4ONHR0cVep7Cse/fuVRyxiIiIuKpB7cOIPlDyWswl16/Y+owiIiJSuQzD4LfjGXwZd5Qv44+w5+iZYnVMJmgc4sehlEsvrVbolh5NGNO9fGvx3fzmZrb8Ufr+RbsGgTxyXTsMw8AAMMCgYCScYUDhgLjC48a5SoYBL27Yx2/HSp9gaxsWyIzr2+FZOLrPZMLTo/i/C0f8eXiA57nR1w8t3872xNInb9s1COTBQW2w5eWTk5dPdm4+OYV/8kr493llP/12kpSskjfmLYmPlwd1AnzsP6PC6eD5BkXK8vP/+hkW1rHa8ijLoEMvDxP1An3w9DTh5eGBl0fBz83L04SnhwfmizzeciCFU5mlvy5H3uR2m0Rjy5Yt6d69O8uXL+fJJ5+0j1pMTk5m+fLlXH311YSFhdnr33rrrTz//PN89tlnDB06FIC8vDxeffVVatWqxfXXX++Q6xARERHnN6JrOE+tTSC/FL1Li9mDkd0aVX1QIiIiNUxalo3lsYls2H2MM9ZcAi1eDGofxqjIRiWuhWcYBruS01kXf5Qv4o9w4ERmsTqeHiZ6t6jNtRFhDO5QHx9PTy5/ekOppshW9DN/cIewMiUaR3drzFWt65brXMlpVp78PKHU9cd0L/+5hnYOL1OicXS3xgws503aRT/9Uabr+te1bcs9xfiW/24u043nHs1C+fDuXuU6V1mvy5E3uZ0+0fjee+/x559/AnDixAlycnKYN28eAE2bNmXcuHH2uq+88goDBgygX79+TJ48GYBXX32V/Px8XnjhhSKv+8gjj7B8+XLGjh3LAw88QHh4OB9++CExMTG89dZbBAYGVtMVioiIiKtZ+suhUiUZAeYOiyDYV1OnRUREKtOymERmr44vlgCMPpDCc+v2MPfGCMb0aIxhGGxPTGVd/FG+jD9a4uhEs6eJvi3rcF1EAwa1r0+If9F1lefeGHHRnYXt9Sr4mT8qshHPrdtTLUlNnavi56rOGS7VeV0V5fSJxkWLFvH9998XKZs1axYAV111VZFEY58+fdi4cSMzZ85k5syZmEwm+vTpw/Lly+ncuXOR16hduzabNm3ikUceYcGCBWRkZNC+fXs++ugjbr755qq/sCpS1js6Anv37mXhwoVs3bqVrVu3kpaWxuOPP84TTzzh6NBERMQJ/XowhRfX7wMKRj14mkzk5BXv9FnMHswdVvAlR8Sdqf9ZNup7ilTcspjEiyb+rLn5TF+5k9U7DvPHiUyS06zF6vh4eXBV67pc1zGMq9vWv2iCsPCzvKTEJlTeZ36wn7nakpo6l2slhqvzuirK6RONGzduLFP93r17880335Sqbnh4OO+99145onJOpb2jI0Vt3ryZF198kcsuu4xu3brx7bffOjokERFxUqlZOUz9aDt554YzPj60PTd2DmfF1iTW7zpCSoaV0AALgzs0YKSSLFIDqP9Zdup7ilRMWpaN2avjS1V30++nijz28/ZkQJt6XNcxjAFt6uHvU/qUyJgejRnSIYwVW5PYkHCMdKuNIIuZQe3rV+pnfnUlNXUu10oMQ/X+DCvC6RONUjqlvaMDOPxN52yGDRtGSkoKtWrV4tdff7VvLCQiInI+wzCYvmInh1PPAjCkQ33G9WqKyWQiqm9zxvUMJyUlhdDQULy9vS/xaiKuT/3P8lHfU6RiVmxNKtUIskI+nh5c1zGM6zo24KrWdbGYPct97mA/M1F9mxNVzjX9Squ6kpr/e66qvmnqqOtyl8Rw4fmqq73KS4lGN1CWOzqz18QzpENYtb75zpw5w7///W/Wr1/P/v37OXPmDI0bN2bUqFHMnj0bPz8/oGD06jXXXMOiRYvIzMzk1Vdf5dChQzRp0oTJkyfb190s1L9/fw4ePMi3337LtGnT2LhxI4ZhcM011/DCCy/QokWLUsUXGhpa6dcsIiLu573oP/k64RgA4bV8eXZkZ0wmk4OjEnEMZ+5/qu8p4t7WJxwtU/0uTWrx8i1dqyiaqlNdSc3zz1UdN00dcV3ulBiG6m2v8lCi0Q2U5Y6O1ZbPyq1J5d5VqTwOHz7MW2+9xciRIxk7dixeXl58//33PPvss2zbto2vvvqqSP0FCxZw9OhRJk2aRGBgIB9++CFTpkwhJSWFxx9/vEjdzMxM+vfvz+WXX84zzzzDb7/9xuuvv050dDTbtm0rstO4iIhIee1KTmPe57uBgnUZ/3NrF6e4YyziKM7c/1TfU8S9nbHmlql+RnbZ6ouUR3UmUJ2dEo1O5ra3ojl8+myZnnO0hIVtL+bZdXtYsvlgmZ4THuLLB3eVbxv2Fi1akJiYiNn81xey++67j1mzZjFv3jx++eUXevbsaT+2b98+du/eTaNGjex1+/bty7x584iKirKXA5w8eZKpU6fy8ssv28uuvPJKRowYwRNPPMEbb7xRrphFREQKZWbnMnnpNvuGLw8Mak23phqRJO7D3fqf6nuKuLdAS9nSGEEW3RgUqU5KNDqZw6fPcvBUVpWew5qbX+XnON/5Q3hzc3M5c+YMeXl5DBw4kHnz5rFly5Yinb2xY8cW6dB5e3szbdo0xo4dy2effcY//vGPIq//yCOPFHl800030aZNG1atWqXOnoiIVNis1fEcOJkJQN+WdfjHVZc5OCKRyuVu/U/1PUXcl2EY1PIr2xTRQe3rV1E0IlISJRqdTHiIb5mfczTNWqbFcC1eHoQFW8p0jvLEdb7XX3+dN954g127dpGfXzTW06dPF3ncrl27Ys9v3749AAcOHChSXqtWrRKnqLRr145Vq1aRmZmJv78/R48WXcfD29tb6+OIiMglrYxN4pOthwGoE+DNizd3xsND6zKKe3HH/qf6niLuJzs3j9mrdrEuvvRrNFrMHozs1ujSFUWk0ijR6GTKMz1k0U9/8OTnCaWuP/3attW6RuOLL77Igw8+yODBg5kyZQoNGzbE29ubw4cPc8cddxTr/FWFBg0aFHl81VVXsXHjxio/r4iIuK79JzKYdd5mFy/d3IV6gWVLlIi4Anfrf6rvKeJ+jqdbuef9WLYeSgXABBileN7cYREE+2rqtEh1UqLRDYyKbMRz6/aU6q6yI+7ovPfeezRr1owvv/wSDw8Pe/m6detKrL979+5iZQkJBR3Z/93NLzU1laNHjxa7s7x7927q1auHv78/AOvXry9yPCQkpOwXIiIiNYbVlsfkpdvIyskD4B/9L6Nfq7oOjkrEeThz/1N9TxH3sj0xlUnv/cqx9GwAgixevDo2kmNpVmavji/x95DF7MHcYRGM6dG4usMVqfGUaHQDwX5m5t4YwfSVOy9Z1xF3dDw9PTGZTBjGX/eccnNzmT9/fon1ly5dyqxZs+xr5eTk5PDSSy/h6enJ3/72t2L158+fX2RB7k8//ZS9e/dy991328sGDhxYSVcjIiI1wTNf7CbhSDoAkU1q8cCg1g6OSMS5OHP/U31PEfexIjaJRz+NI+dcMrFVvQAWju9OszoFSf0hHcJYsTWJDQnHSLfaCLKYGdS+PiMjGxHsp5GMIo6gRKObKLxT44x3dEaNGsWMGTO47rrrGDFiBOnp6SxdurTIToDna926NZdffjn33HMPgYGBLF26lJiYGGbNmkXjxkXjr1OnDp988gnJycn079+f3377jddff5369evzxBNPlCq+tLQ0Xn31VQCSk5MB+OGHH5g3bx4Aw4YNo1OnTuW8ehERcTXr4o/y7uY/gYJRE/+5tStmT49LPEuk5nHW/qf6niKuLzcvn6e+2M07mw7aywa1r89LN3chwOevNEawn5movs2JqsalwUTk4pRodCNjejR2yjs6Dz/8MIZhsGjRIqZOnUpYWBg333wzd955p32h7fPdd999ZGRk8Oqrr3Lo0CGaNGnCyy+/zNSpU4vV9ff359tvv2XatGk88sgjGIbBtddeywsvvFBsbZwLOX36NLNmzSpS9t133/Hdd98B0KhRI3X2RERqiKTTWUxfscP++NlRnWgU4ufAiEScmzP2P9X3FHFtKZk5/HPpVn7ef8peNvWaVky9ppU2ZBNxAUo0uhlnvKPj6enJjBkzmDFjRrFj509pOd+UKVOYMmVKqV6/RYsWrF69utzxNWvW7IJxiIhIzWHLy2fqR9tJt+YCMK5XU66NKF3iQKQmc7b+p/qeIq5r95F0/r7kV5JOnwXA39uTF8Z04dqI4ru9i4hzUqJRREREBHh5wz5i/zwNQLsGQTx2QzsHRyQiIlJzrN15hIeW7+CsrWAjtqa1/Vg4vjut6wc6ODIRKQslGkVERKTG++m3k7y+cT8Aft6evDa2Kxazp4OjEhERcX/5+QYvrN/Lgu/228v6tarDq7d2pZaftwMjE5HyUKJRREREarQTZ7K5/+PtFM5knHtjBJfVDXBsUCIiIjVAutXG/R9t59s9x+1ld1/ZgulD2uCljdhEXJISjeI0+vfvT05ODp6epRtBsnHjxqoNSERE3F5+vsEDy7ZzMiMbgBFdwxnVrZGDoxKR6qC+p4hj7T+Rwd+X/MqBE5kA+Hh58O+RnRjeNdzBkYlIRSjRKCIiIjXWmz8c4MffTgLQvI4/c4dHODgiERER9/fdnuNM+XAbZ7ILNmBrEGzhv+O607FRsIMjE5GKUqJRpBIYhoHJZHJ0GCIiUgaxf57m+a/3AuDt6cGrt3YlwEddI3Ff2unYvaj/Kc4qLcvG8thE1u86yulMKyH+FgZHNGBUZCOCfL14feN+nv96r33Jkh7NQnj9tm7UDfRxbOAiUim06IEDmEwm8vPz1dlzE4ZhqKMnIuJi0rJsTPlwG3n5BZ/Fj17flohwjaKQ8ktJSeGhhx6iZcuWWCwW6taty4ABA/jxxx+L1NuyZQsDBw4kMDCQoKAgrr32WrZv317l8an/6V7U/xRntSwmkcuf3sC8tbvZcvA0+06cZcvB0zz5eQI9n97AjQs28dxXfyUZb+/VhA/u6qUko4gb0W17B/Dx8SEjIwOr1Yqvr6+jw5EKslqt5Ofn4+fn5+hQRESkFAzD4F8rd3I49SwAg9rXZ0KfZo4NSlzan3/+Sf/+/cnIyCAqKorWrVuTlpbGzp07OXz4sL1edHQ0/fv3Jzw8nLlz5wLw2muv0a9fP37++Wc6duxYZTGazWZsNhs2mw1vb+3i6urU/xRntCwmkekrd17weHZuPjuT0gAwe5qYe2MEt/ZsUl3hiUg1UaLRAQIDA8nIyODIkSM0aNAAi8Wiu5EuyDAMrFYrR44cASAoKMjBEYmISGm8H/0n63YdBaBhsIXnRnXS57BUyO23305ubi47d+6kQYMGF6w3ZcoUvL29+eGHHwgPL9jsYMyYMbRr144HH3yQr7/+uspiDAwMJCsri2PHjhEeHo6HhyY2uSL1P8VZpWXZmL06vtT1F47vTv829aowIhFxFCUaHSA4OJjMzEzS09M5ePAgHh4emEymGv8l5/wpIM7+syiMNT8/Hyjo5KmjJyLi/BKS03ly7W4APD1M/OfWrtTy0+guKb8ffviBn376if/85z80aNDAPmrwf0ea/f7778TExDBx4kR7khEgPDyc0aNH884773D06FHCwsKqJM6QkBBSU1PJyMhg37599v5nTeZKfU9Q/1Oc24qtSVhz80td/8CJTPq3qcKARMRhlGh0AJPJRMOGDQkICCA9PZ3s7Gytl0NB58lms2E2m52+s2cymfDw8MDPz8/eyXP2mEVEarrM7Fz++eFWcs59EXpgUGu6Nwt1cFTi6r744gsAmjRpwtChQ/nyyy/Jy8ujVatWzJ49m9tvvx2AmJgYAHr37l3sNXr16sXbb79NbGwsN9xww0XPl5iYSFJSUpGyuLg4AGw2Gzk5ORd8bv369UlNTSUzM9OetKrJXKnvWchkMuHr60tAQACBgYHYbDZHh1StbDYbubm5Ne66XcHX8UfKVn/XEW7vGX7pilKt9H/MtVRHe5XntZVodBCTyURwcDDBwVp4vlBOTg4pKSmEhoZq7SAREal0j6/ZxYETmQBc0bI291x1mYMjEnewd2/BzuV///vfadWqFe+++y45OTm88MILjBs3DpvNxp133klycjJAkdGMhQrLzl/P8UIWLVrEnDlzSjyWnp5OSkrKRZ/v6empUXDn2Gw2MjIy8Pf3x2w2OzqcMsnNzeX06dOODqPaFbaZYRgu12bu7nSmtUz1UzKsl/x9JdVP/8dcS3W0V3p6epmfo0SjiIiIuJ20LBvLYxPZsPsYZ6y5ZOfm8fvxgiRjnQBvXrq5C54erjGCSZzbmTNngII1EL/77jv7zdLhw4fTokULHn30USZMmEBWVhZQsCng/7JYLAD2OhcTFRXFkCFDipTFxcUxadIkgoKCCA3VKN3SstlsmEwmQkJC9IXaRajNnFeIvwVOnC11/dAAi35fOSH9H3Mt1dFe5bk5qUSjiIiIuJVlMYnMXh1/wbWibuwSTr1ASzVHJe7K19cXgFtvvbXIjIyQkBCGDRvGkiVL2Lt3r33Nxuzs7GKvYbUWjAQqzQ7CjRs3pnHjxiUeM5vNmhVSRl5eXvq5uRi1mXMa2L4+Ww6WfpTt4A4N1IZOSv/HXEtVt1d5Epjabk5ERETcxrKYRKav3HnRBekX/fQHy2ISqzEqcWeNGjUCKHETl8IdqE+fPk3Dhg2BkqdHF5aVNK1aRMTZHU+38mX80VLXt5g9GNmtURVGJCKOpESjiIiIuIW0LBuzV8eXqu7sNfGkZWmhc6m4nj17AhTboOX8snr16tGjRw8ANm/eXKxedHQ0JpOJbt26VWGkIiKVb8uBU9zw6k9sPZRa6ufMHRZBsK+m5Yq4KyUaRURExC2s2Jp00ZGM57Pa8lm5tXhiSKSshg8fTmBgIO+//z4ZGRn28iNHjrBq1Spat25Ny5YtadmyJd27d2f58uX2jWEAkpOTWb58OVdffXWJoyJFRJyRYRj894f9jH1rCyfOFCwJcVldfx4c1BqLV8lpBovZg2dHdmJMj5KXfxAR96A1GkVERMQtrE8o/bStgvrHmNi3eRVFIzVFSEgIzz//PJMmTaJXr15MnDiRnJwc/u///o+cnBxeffVVe91XXnmFAQMG0K9fPyZPngzAq6++Sn5+Pi+88IKjLkFEpEzSrTYeWraDrxOO2cv+1qkB80d2IsDHi/G9m7FiaxLrdx0hJcNKaICFwR0aMDKyEcF+Gsko4u6UaBQRERG3cMaaW6b66VZNnZbKcffdd1OnTh2effZZZs2ahYeHB71792bp0qVcccUV9np9+vRh48aNzJw5k5kzZ2IymejTpw/Lly+nc+fODrwCEZHSSUhO594PYjl4KgsAs6eJx65vx4Q+zTCZTAAE+5mJ6tuccT3DSUlJITQ0VBuLiNQgSjSKiIiIWwi0lK1bE2TRqAqpPCNGjGDEiBGXrNe7d2+++eabaohIRKRyLf81kZmr4sk+t0xJg2ALC26LJLJJiIMjExFnokSjiIiIuIVB7cOIPpBShvr1qzAaERER92C15THns118+Euivaxvyzq8cksXagf4ODAyEXFGSjSKiIiIW7isrn+p61rMHozs1qgKoxEREXF9iSlZ/OODWOIPp9vLplzdkqkDW+PpYXJgZCLirJRoFBEREZd3/IyV6St2lrr+3GERBPtq6rSIiMiFfLP7GNM+3k76uTWQa/mZeenmLgxoU8/BkYmIM1OiUURERFyaLS+ff36wjeNnsgHoFB7MvmNnsJ5bQ+p8FrMHc4dFMKZH4+oOU0RExCXk5Ru8uH4vC77bby/r1CiYBWMjaRzq58DIRMQVKNEoIiIiLm3+l3v45WDB2owt6wWw9O5e5OUZrNiaxIaEY6RbbQRZzAxqX5+RkY0I9tNIRhERkZKczMhmyofb+Hn/KXvZbZc3YfbQ9vh4eTowMhFxFUo0ioiIiMv6bEcyi376AwB/b0/euL0bAT4F3Zuovs2J6tvckeGJiIi4jF8PpnDf0q0cSy+YIWAxe/D0TR0ZEak1jUWk9JRoFBEREZe079gZ/rXyr3UZnx/dmZb1AhwYkYiIiHNKy7KxPDaRDbuPccaaS6DFi0HtwxgV2YggXy8W/fQH87/cQ26+AUDzOv783+2RtA0LcnDkIuJqlGgUERERl5NutXHPe7Fk5eQBMOmqFlzXsYGDoxIREXE+y2ISmb06vtjaxdEHUnh23R5a1w8g7rxdpa+LCOPZUZ0ItGipEREpOyUaRURExKUYhsFDy3Zw4GQmAL1b1ObhwW0cHJWIiIjzWRaTyPTzRv//r+zcfHuS0dPDxIzr2hLVtzkmk6m6QhQRN6NEo4iIiLiUN74/wNcJxwBoEGzh1bFd8fL0cHBUIiIiziUty8bs1fGlrv/WhO4MaFOvCiMSkZpAvXIRERFxGZt+P8lzX+0BwOxp4vXbIqkT4OPgqERERJzPiq1JxaZLX8wfJzKrMBoRqSmUaBQRERGXcDj1LJM/3Ma5dep5fGgHujYJcWxQIiIiTmp9wtEy1j9WRZGISE2iRKOIiIg4vezcPO59P5aUzBwARkY24rbLmzg4KhEREed1xppbpvrpVlsVRSIiNYkSjSIiIuL0nliTwI6kNADaNwjiqZsitFC9iIjIRQRayrYlQ5B2mRaRSqBEo4iIiDi1ZTGJfPjLIQCCfc28cXs3LGZPB0clIiLi3Mq6scug9vWrKBIRqUmUaBQRERGnFX84jZnndsw0meDlW7rQpLafg6MSERFxbsmpZ1m9I7nU9S1mD0Z2a1SFEYlITVG2sdQiIiIi1eR0Zg73vB9LzrkdM++/pnWZR2eIiIjUNJv3n+KfS7dy6ty6xqUxd1gEwb6aOi0iFacRjSIiIuJ08vINpn68naTTZwEY0KYuk69u6eCoREREnJdhGLyz6Q9uX7TFnmRs3yCIR65ti8Wr5K/+FrMHz47sxJgejaszVBFxYxrRKCIiIk7nlQ37+GHfCQCahPrx8s1d8fDQ5i8iIiIlsdryePSTOD7ZdthedmOXhswf0Qlfb09u7dmEFVuT2JBwjHSrjSCLmUHt6zMyshHBfhrJKCKVR4lGERERcSrf7D7Gf779HQAfLw/+7/ZIfQkSERG5gMOpZ5n03q/EH04HwNPDxIzr2hLVtzkmU8FNumA/M1F9mxPVt7kjQxWRGkCJRhEREXEaB09mcv/H2+2Pn76pIx0aBjsuIBERESf28/6T/HPpNlLOTZUO8TOzYGwkfVrWcXBkIlJTKdEoIiIiTuFsTh73vB/LGWsuAON6NdUOmCIiIiUwDIO3Nx3k6S92k5dvANChYRBvjutGoxA/B0cnIjWZEo0iIiLicIZh8Oincew5egaArk1qMetv7R0clYiIiPM5m5PHo5/G8el56zHe1DWcZ0Z0xGL2dGBkIiJKNIqIiIgTeC/6T/sXpjoB3rx+WyTeF9ghU0REpKZKOp3FpPdi2ZX813qMj13fjjuvaGZfj1FExJGUaBQRERGHiv0zhbmfJQAFX5hevTWSBsG+Do5KRETEufz8+0nuW7qV01k2AEL9vVkwNpLel9V2cGQiIn9RolFEREQc5vgZK/d+sJXcc+tL/evaNvrCJCIich7DMFj00x88/cVuzn1cEhEexJvjuhNeSzfmRMS5KNEoIiIiVS4ty8by2EQ27D7GGWsugRYvrm5bj3XxRzmWng3A9R3D+Hu/Fg6OVERExHmczcnjkU92snp7sr1sRGQ4T9+k9RhFxDm53eJHx44d45577qFx48Z4e3vTpEkTpk6dSmpqarG6e/fuZfjw4YSEhODv70+/fv349ttvqz9oERERN7YsJpHLn97AvLW7iT6Qwq7kdKIPpPD0F3vYeigVgMvq+vPsqM5aX0pEROScxJQsRv7fz/Yko6eHiceHtueF0Z2VZBQRp+VWIxqPHz/O5ZdfTnJyMpMmTSIiIoL4+Hj+7//+jx9++IFNmzbh5+cHwP79++nTpw9eXl5Mnz6d4OBgFi5cyJAhQ/jyyy8ZOHCgg69GRETE9S2LSWT6yp2XrDe8azgBPm7VLREREbmokkb7D2ofxqjIRsQdTmPyh3+tx1jb35sFt0XSq4WWFxER5+ZWPfqnn36aP//8k6VLl3Lrrbfay/v06cPYsWN58cUXmTlzJgAzZswgNTWV2NhYunTpAsD48ePp0KED9913H3v27NGoChERkQpIy7Ixe3V8qeou+O53xvdqRrCfuYqjEql8F+oz+vv7k5GRUaRs7969/Otf/+L7778nJyeHyMhI5syZw9VXX10doYqIk1gWk8js1fFYc/OLlEcfSOGZL3aTl29wbjlGOjUK5o3bu9FQ6zGKiAtwq0Tjd999h6+vL7fcckuR8ptvvpmJEyfyzjvvMHPmTDIzM1mzZg39+/e3JxkBAgICuOuuu5g9ezYxMTH07Nmzmq9ARETEfazYmlTsC9SFWG35rNyaxMS+zas4KqlJbDYb3333HRs3bmTXrl0cP34ck8lE3bp1iYiI4KqrrmLAgAGYzRVPcPfr14+77767SNn/vq5m1IgIXHq0f+EGaQAjIxvx1E0RmiotIi7DrRKN2dnZWCyWYneVPTw88PX15cCBA5w8eZLffvuN7OxsevfuXew1evXqBVCqRGNiYiJJSUlFyuLi4oCCjm1OTk5FLqfGsdls5ObmYrPZHB2KlILay/WozVyLO7TX1/FHylZ/1xFu7xleRdFUvapuM1d+L1S3Y8eO8eKLL7J48WJOnjyJYRh4eXkRGhqKYRj8+uuvfPbZZ8yfP586depw5513Mm3aNOrXr1/uc7Zo0YLbb7/9onU0o0ZEyjLa3+xpYtbf2inJKCIuxa0SjR06dGDv3r1s3769yEjF7du3c/r0aQAOHTpEcnLBYrrh4cW/zBSWHT58+JLnW7RoEXPmzCnxWHp6OikpKWW9hBrNZrORkZGBYRiVMrJAqpbay/WozVyLO7TX6UxrmeqnZFhd+rOzqtssPT290l/THT355JM899xzAIwYMYLrrruO3r1706RJkyL1/vzzT6Kjo1m7di0LFizg9ddfZ/r06fZldsojJyeHnJwcAgICih3TjBoRgbKN9rflGXyy9bBG+4uIS3GrROP999/PqlWrGDNmDC+//DIRERHs2rWL+++/H7PZjM1mIysri6ysLAB8fHyKvYbFYgGw17mYqKgohgwZUqQsLi6OSZMmERQURGhoaCVcVc1hs9kwmUyEhIS47JfqmkTt5XrUZq7FHdorxN8CJ86Wun5ogMWlPzurus2CgoIq/TXd0RtvvMFTTz1FVFSUfRPAkjRt2pSmTZty8803k5WVxcKFC/n3v/9d7kTjihUreP/998nLy6Nu3brcfPPNzJs3j+DgYAB27typGTVOxh1Gjtc07tBmNWm0vzu0V02jNnMt1dFe5Xltt0o09uvXj48++ogpU6Zwww03AODp6cldd91Fhw4d+PTTTwkKCrJ3OrOzs4u9htVaMPriYh3TQo0bN6Zx48YlHjObzXh7e5f3UmosLy8v/exciNrL9ajNXIurt9fgiAZsOXi69PU7NHDZay1UlW3mqgnn6rZ//377jePS8vPzY+rUqUyaNKlc5+zZsyejR4+mZcuWpKen88UXX/Daa6/x/fff8/PPPxMQEKAZNU7IHUaO1zTu0GY1abS/O7RXTaM2cy3V0V7lmVHjVolGgNGjRzNixAji4uI4c+YMbdq0oV69evTs2RMvLy9atmxJZmYmUHJnrrCspE6giIiIlN6oyEY8t25PqaaIWcwejOzWqBqiEndX1iRjZTx3y5YtRR6PHz+eTp068dhjj/HKK6/w2GOPaUaNE3KHkeM1jTu0WU0a7e8O7VXTqM1cS3W0V3lm1LhdohEKRjGev/bN0aNH2bZtG1dddRV+fn507NgRHx8fNm/eXOy50dHRAHTv3r26whUREXFLwX5m7ul/GS9v+O2SdecOiyDYVx1aqR65ubmsXr2alJQUhg4dSlhYWKWf4+GHH2bOnDmsXbuWxx57TDNqnJSrjxyviVy9zZrVCahRo/1dvb1qIrWZa6nq9ipPAtOjCuJwKvn5+UyZMoW8vDwee+wxoGDR7aFDh7Jx40Z27Nhhr5uRkcFbb71Fq1attBC3iIhIBVlteayLP3rROhazB8+O7MSYHiUnTkQqavr06fTo0cP+2DAMBg4cyJgxY5g0aRIdO3Zk//79lX5es9lMw4YNOXnyJAANGzYENKNGpKbKzzd4cf0+Pv41sdTP0Wh/EXFFbjWiMSMjg549e3LTTTfRvHlz0tLS+PDDD4mNjeWpp55iwIAB9rrPPPMM33zzDYMHD2batGkEBQWxcOFCDh8+zNq1azGZTA68EhEREdf34vp97Dl6BoDuTWtxbUQDvtl9nHSrjSCLmUHt6zMyshHBfhrJKFVn3bp1DBw40P74s88+44cffmD69Ol06dKFyZMnM3/+fBYuXFip57VarSQlJdk3etGMGpGaKy3Lxv0fb+O7vSfK9DyN9hcRV+RWiUZvb286d+7M0qVLOXLkCH5+fvTo0YN169YVW8umZcuWbNq0iUceeYT58+eTk5NDZGRksc6oiIiIlN3m/adY+OMBAAJ9vHj5lq40CvHjrn4tHByZ1DSJiYm0atXK/vizzz6jefPmzJ8/H4Bdu3bxwQcflPv1T506Re3atYuVz5o1i9zcXIYOHQr8NaPmk08+YceOHXTu3BnQjBoRd7fnaDqT3ovlz1Pn1mn18uCpmzqSn28we3V8iesYW8wezB0WodH+IuKS3C7R+OGHH5a6frt27Vi9enUVRiQiIlLzpFttPLR8B4ZR8HjOjR1oFHLptedEqkJOTg5eXn91eb/77rsiN5VbtGjBkSNHyv368+bNIzo6mgEDBtCkSRMyMjL44osv+O6777j88suZPHmyva5m1IjULGt2JPOvFTs5a8sDILyWL2+O60ZEeDAAQzqEsWJrEhsSjmm0v4i4DbdKNIqIiIjjPbF6F4dTC3bUvL5jGDd11bpz4jiNGzdm8+bN/P3vf2fXrl0cOHCAuXPn2o8fP36cgICAcr9+//79SUhI4N133+XUqVN4enrSqlUrnnrqKR544IEiO1lrRo1IzZCbl8+/1+1h4Y9/2Mv6tqzDf27tSqj/Xxs2BPuZierbnKi+zR0RpohIlVCiUURERCrN2p1H+GRbwcYW9QJ9eGp4R43SEoe65ZZbePLJJzl+/Di7du0iKCiI66+/3n5827ZtXHbZZeV+/RtvvJEbb7yx1PU1o0bEvZ3KyOafS7ex+cApe9k9V13Gw0Pa4Omhz0MRcX9KNIqIiEilOJZu5bFVcfbHz43uTMh5IzdEHGHGjBkkJiayatUqgoODWbJkCbVq1QIgLS2NNWvWMG3aNMcGKSJuYUdiKv94P5bkNCsAft6evDC6M9d1bODgyEREqo8SjSIiIlJhhmHw8IqdpGbZABjfuylXta7r4KhEwMfHh0WLFrFo0aJixwIDA+0bCIqIVMSymERmro4n59zmLi3q+PPmuG60qh/o4MhERKqXEo0iIiJSYe9H/8kP+04ABV+uZlzXzsERSU12xRVXMGLECG688UZatmx5wXoeHh4EBwdXY2Qi4m6yc/OY81kCS7ccspcNbFefF2/uTJBFG7qISM3j4egARERExLXtP5HBU1/sBsDTw8RLN3fB19vTwVFJTRYSEsLMmTNp06YNHTt2ZPbs2WzdutXRYYmImzmaZuWW/0bbk4wmEzw4qDX/HddNSUYRqbGUaBQREZFys+XlM+3j7VhtBVPFplzdis6Nazk2KKnxPv/8c06cOMGHH35Ix44d+c9//kOPHj1o2rQp999/Pxs3biQ/P9/RYYqIC/vljxT+9upPbDuUCkCQxYu3J/Rg8jWt8NCmLyJSgynRKCIiIuX26re/szMpDYAujWtx34Dy794rUpkCAgIYM2YMS5cu5cSJE3z++edce+21fPzxx1x99dXUq1ePO++8kzVr1mC1Wh0droi4CMMweGfTH4xdGM3JjGwA2oYFsuaffRnQtp6DoxMRcbwKJRqPHz/Of//7X8aOHUvnzp1p0KABDRs2pHPnztx2220sXLiQ48ePV1asIiIi4kS2HjrNgu9+B8DX7MlLN3fBy1P3MMX5mM1mrrvuOt58802Sk5P58ccfueOOO/jxxx8ZPnw4derUYeTIkURHRzs6VBFxYmdz8nhw2Q7mfJZAbr4BwNDODfnk3j40q+Pv4OhERJxDuTaD2blzJ0899RSrV68mJycHHx8fGjVqRNOmTTEMg5SUFFauXMmHH37I5MmTGT58OI899hgdO3as7PhFRETEAbJycnng4+3knfuiNfNv7WiuL1niAkwmE1dccQVXXHEFzz//PDt37mTVqlWsWrWK9evX06tXL0eHKCIOlJZlY3lsIht2H+OMNZdAixeD2ofRu0UoDy3fScKRdKBgTeIZ17Ulqm9zTCZNlRYRKVTmROPEiRNZsmQJzZo145FHHuG6664jMjISs7noYrc5OTls27aNtWvX8sEHHxAZGcmECRN46623Ki14ERERcYx5a3dz8FQWAAPa1GVszyYOjkikfDp16kSnTp2YPXs2NpvN0eGIiAMti0lk9up4rLlF13CNPpBS5HFtf29eHduVPpfVqc7wRERcQpkTjTt27ODTTz9l6NChF63n7e3N5ZdfzuWXX87cuXNZvXo1c+bMKXegIiIi4hy+3XPMvsNmqL83/x7VSaM5xGUlJibyxx9/cOWVVxa7cS4iNceymESmr9x5yXqNQnxZNqk3DWv5VkNUIiKup8wLKcXGxl4yyViSG2+8ka1bt5b5eSIiIuI8TmVkM31FnP3x0zd1pF6gxYERiVTMkiVLGDBggKPDEBEHSsuyMXt1fKnqnszIxt+7XCuQiYjUCFqxXURERErFMAxmfBJn32VzdLdGXBsR5uCoREREKmbF1qRi06UvxGrLZ+XWpCqOSETEdVX4VkxeXh7Z2dn4+fnZy1JTU1m0aBEpKSnccsst2gRGRETEDayITeLrhGNAwdSx2UPbOzgikZItWbKk1HW3bdtWhZGIiCtYn3C0jPWPMbFv8yqKRkTEtVU40Thp0iSio6OJjy8Yam6z2ejbty8JCQkAvPjii2zevJkuXbpU9FQiIiLiIIkpWcz5rOCz3WSCF8d0IdCi9ezEOd1xxx2YTCYMwyhVfa0xKlKznbHmlql+ulUbR4mIXEiFE40//fQTI0aMsD9esWIFCQkJLFiwgK5du3LLLbcwf/58Pvroo4qeSkRERBwgL9/ggWXbycgu+CI26crL6Nk81MFRiVyYv78/Xbp04f77779k3ZUrV/Lxxx9XfVAi4rQCLWX7WhykG20iIhdU4UTjkSNHaN78r2Hja9eupUOHDvzjH/8A4O677+bNN9+s6GlERETEQf77wwFiDp4GoF2DIB4Y1NrBEYlcXOfOnUlNTWXkyJGXrLtnz55qiEhEnFV2bh6Z2Xlles6g9vWrKBoREddX4c1gDMMgL++vX8wbN24ssnNfgwYNOH78eEVPIyIiIg6wKzmNF9fvBcDby4OXb+6Ct5f2khPnFhkZyZ49ezh79myp6pd2irWIuJeUzBxuf2sLcYfTSv0ci9mDkd0aVWFUIiKurcIjGps3b85XX33FPffcw6ZNmzhy5EiRRGNycjLBwcEVPY2IiIhUM6stj2kfb8eWV5CEmT6kDW3CAh0clciljRs3jtq1a5ORkYGvr+8l6/bt27eaIhMRZ3HgRAZ3Lo7hz1NZAPh6e3I259IjG+cOiyDYV1OnRUQupMKJxjvvvJMHHniAiIgIDh8+TL169RgyZIj9+JYtW2jbtm1FTyMiIiLV7Lmv9rLvWAYAvVvUZuIV2mFTXEOPHj3o0aNHqeo2adKEJk2aVHFEIuJMog+cYtJ7saSdLdjUpXkdf96+owcxf6Qwe3U81tz8Ys+xmD2YOyyCMT0aV3e4IiIupcKJxqlTp3LmzBlWrVpF165defrpp/Hz8wPg1KlTREdH89BDD1U4UBEREak+m34/yaKf/gAKFsl/fkxnPDy0M6+IiLi2lbFJPPLJTvto/Z7NQ3nz9m6E+HvTvI4/QzqEsWJrEhsSjpFutRFkMTOofX1GRjYi2E8jGUVELqXCiUaTycSsWbOYNWtWsWO1a9fW+owiIiIuJu2sjYeW77A/fvLGCMJrXXz6qYiIiDMzDIMX1+/j1W9/t5eNiAznmREd8fHytJcF+5mJ6tucqL4axS8iUh7lWs29cePGTJ48mW+++abIRjAiIiLi+h5fHc+RNCsAf+vUgBu7NHRwRCKl169fP3744YcyP+/bb7/VWo0ibspqy2PKR9uLJBkfHNSaF0Z3LpJkFBGRiivXiMYbb7yRVatWsWDBAkJCQrj++usZMWIEQ4YMsU+bFhEREeeWlmVjeWwiG3Yf44w1l0CLFw2DfVm1PRmA+kE+zBsegcmkKdPiOho2bEj//v3p2rUrEyZM4LrrrqNVq1Yl1k1ISOCLL77gvffeIz4+nptvvrmaoxWRqnYqI5u/L/mVrYdSAfD28uC5UZ24sUu4YwMTEXFT5Uo0vvbaa7z22mv88ssvfPrpp6xatYoPPvgAX19fBg4cyE033cTQoUOpXbt2ZccrIiIilWBZTOIFF7wv9PzoztTy867GqEQq7uOPP2bKlCnMnTuXadOmMW3aNGrVqkXz5s0JDQ3FMAxSUlLYv38/Z86cwWQyMWTIEN5880169erl6PBFpBL9fvwMdy6OITHlLACh/t78d1w3ujcLdXBkIiLuq0JrNPbs2ZOePXvyzDPPsGfPHnvSMSoqCg8PD/r27ctNN93E8OHDtZufiIiIk1gWk8j0lTsvWe9IqrUaohGpfFdccQVfffUV+/fvZ/ny5fzwww8kJCSwe/duTCYTdevWpV+/fvTv35+RI0fSrFkzR4csIpXs599PMun9WM5YcwFoUdefd+7oQdPa/g6OTETEvZVrjcaStG3blhkzZrBlyxYOHTrESy+9hKenJw899BDNmzcnMjKSdevWVdbpREREpBzSsmzMXh1fqrqz18STlmWr4ohEqs5ll13GI488whdffMHBgwfJzMwkIyODP/74g88++4wHH3xQSUYRN7QsJpHxb/9iTzL2blGbT/9xhZKMIiLVoNISjecLDw/nn//8Jxs2bODYsWO88847NGvWjPj40n2xERERkaqxYmvSRadLn89qy2fl1qQqjkhERKRy5Ocb/HvdHqav3EluvgHA6G6NeHdiT4L9zA6OTkSkZqjQ1OnSCAkJYfz48YwfP76qTyUiIiKXsD7haBnrH2Ni3+ZVFI2IiEjlsNryeHDZDtbGHbGXPTykDff2v0ybmomIVKMqGdF4vri4OJYsWVLVpxEREZFSKJxGVlrpVk2dFhER53biTDa3/DfanmT08fJgwdhI7hvQUklGEZFqVuWJxjVr1nDnnXdW9WlERESkFAItZZvMEGTRVDORssjKyqJFixaYTCb++c9/Fju+d+9ehg8fTkhICP7+/vTr149vv/3WAZGKuId9x84wfMEmtiemAlAnwJsP7+7FDZ0aODYwEZEaqsqnTouIiIjzGNQ+jOgDKWWoX78KoxFxP7Nnz+bEiRMlHtu/fz99+vTBy8uL6dOnExwczMKFCxkyZAhffvklAwcOrOZoRVxDWpaN5bGJrN91lNOZVkL8LQyOaEB4LQsPL9/JmeyC0fot6wXwzh09aBzq5+CIRURqrnIlGufOnVvqut9//315TiEiIiJVYFRkI/795W5y8oxL1rWYPRjZrVE1RCXiHrZu3crLL7/Ms88+y4MPPljs+IwZM0hNTSU2NpYuXboAMH78eDp06MB9993Hnj17NM1T5H8si0lk9ur4ohuZnTjLloOni9Tr27IOC26LJNhXI/FFRBypXInGJ554ApPJhGFc+ksKoA6TiIiIkzidlYOnpwfk5V2y7txhEfrCJlJKeXl5/P3vf+faa69lxIgRxRKNmZmZrFmzhv79+9uTjAABAQHcddddzJ49m5iYGHr27FnNkYs4r2UxiUxfufOS9Xo2D+GdO3tg9qzylcFEROQSypVoDA4Opnv37syfP/+SdRctWsSbb75ZntOIiIhIJUrLsjHx3RjO5hQkGT1MkF/CPUOL2YO5wyIY06NxNUcoUrUyMjJITU0lPz+/2LEmTZpU6LVfeukl9uzZw8qVK0s8vnPnTrKzs+ndu3exY7169QIoVaIxMTGRpKSkImVxcXEA2Gw2cnJyyhN+jWSz2cjNzcVm06ZXzijtrI1Zq+NLVXdnUhqpGWd1c8zJ6P+Y61GbuZbqaK/yvHa5Eo2RkZEcOnSIbt26XbLuunXrynMKERERqUS2vHzuXRrLgROZAHRvGsLrt0fy2Y4jbEg4RrrVRpDFzKD29RkZ2YhgP31ZE/fx0UcfMW/ePHbv3n3BOnmlGOV7IX/88QePP/44s2fPplmzZhw8eLBYneTkZADCw8OLHSssO3z48CXPtWjRIubMmVPisfT0dFJSSr8Ga01ns9nIyMjAMAzMZv3OczYfbT1Gdm7xmwIlsdryWfrz79zcVesKOxP9H3M9ajPXUh3tlZ6eXubnlCvR2LVrV77//nvS09MJCgq6aF3DMEo9xVpEREQqn2EYzF69i02/nwKgcagvb47rRu0AH6L6Nieqb3MHRyhSdVatWsXYsWNp3bo1kyZN4o033mDs2LHk5uayatUqOnXqxA033FChc9xzzz20aNGCBx544IJ1srKyAPDx8Sl2zGKxFKlzMVFRUQwZMqRIWVxcHJMmTSIoKIjQ0NCyhF6j2Ww2TCYTISEh+kLthDYfOlDG+pn84xq9/52J/o+5HrWZa6mO9rpUzq8k5Uo03n333XTs2LHEaSf/a8qUKYwbN648pxEREZFKsOinP/jwl0MABPp4sWhCD2oHFE92iLij559/nnbt2hEbG0tGRgZvvPEGEydO5OqrryY+Pp4rrriCxx57rNyv//7777N+/Xp++OGHi3by/fwKdsHNzs4udsxqtRapczGNGzemceOSlzUwm814e3uXJmw5x8vLSz83J5WRU7ZRxmey89SOTkj/x1yP2sy1VHV7lSeBWa5EY+vWrWndunWp6gYFBZUrAyoiIiIVtyHhGE99UTBd1NPDxGu3RdK6fqCDoxKpPjt37mTmzJlYLBb7iMHCadIRERHcfffdPPPMM9x4441lfu3s7GweeOABrr/+esLCwvj999+Bv6ZAp6Wl8fvvv1OnTh0aNmxY5Nj5CstKmlYtUlP5mj3LVD/IotFXIiLOQNtyiYiIuKmE5HSmfLSNwhVMnhjanqta13VsUCLVLC8vj9q1awPg6+sLFCQAC7Vp04b4+NJtOPG/zp49y4kTJ1i7di2tWrWy/+nfvz9QMNqxVatWvPXWW3Ts2BEfHx82b95c7HWio6MB6N69e7niEHE3sX+eZt+xM2V6zqD2Wp9RRMQZlHlEY25uLl5e5RoIWaHnioiISOkdP2PlrndjyDo39eyOPs0Y17uZY4MScYBGjRrx559/AgWJxnr16hEbG8uoUaMA2Lt3L/7+/uV6bX9/f5YvX16s/MSJE9x7771ce+21REVF0alTJwICAhg6dCiffPIJO3bsoHPnzkDBTthvvfUWrVq1uuSO0yLuzjAM3t50kGe+2E1ufunX+beYPRjZrVEVRiYiIqVV5qxfmzZtePzxx7ntttvw9CzdcPbc3FyWLFnCvHnzOHCgbIv6ioiISNlYbXn8fUksyWkF675d1bouM29o5+CoRByjT58+bNiwgblz5wIwbNgwXn75ZXx9fcnPz2fBggUMHTq0XK9tNpvtCcvzFe46fdlllxU5/swzz/DNN98wePBgpk2bRlBQEAsXLuTw4cOsXbsWk8lUrjhE3EG61ca/Vuzky/ij9rIODYPYlXzpHU/nDosg2FdTp0VEnEGZE42jRo1i0qRJTJ8+nbFjx3LdddfRo0cPatWqVaReSkoK0dHRfPHFF3z88cdkZmYyderUyopbRERESpCfb/Dgsh3sSEwFoHX9AF4d2xUvT62WIjXTvffey6effsrZs2fx9fXlqaee4pdffuGJJ54AoEOHDjz//PPVEkvLli3ZtGkTjzzyCPPnzycnJ4fIyEjWrVvHwIEDqyUGEWeUkJzOvR/EcvBUwTqqXh4mHrmuLVF9m7P81yRmr47Hmlt8I1KL2YO5wyIY06PkDZJERKT6lTnR+O9//5t77rmH+fPns3DhQl555RUAQkJCCA0NxTAMUlJSSE1NBSAgIIDbb7+d6dOn07Rp00oNXkRERIp6ecM+1sYdAaC2vzeLJvTQAvlSo/Xo0YMePXrYH9etW5ft27ezc+dOPD09adeuHR4elZuIb9asGYZR8rTPdu3asXr16ko9n4grWxaTyKzV8WSfSySGBVl4bWxXujcLBWBMj8YM6RDGiq1JrN91hJQMK6EBFgZ3aMDIyEYE++kzTkTEmZRrwcTmzZvz5ptv8vzzz7N27Vp++OEHEhISOHHiBCaTiU6dOhEREUH//v259tpry73ujYiIiJTeqm2H+c+3Bbveent58N/x3Wgc6ufgqEScU6dOnRwdgkiNdjYnj1mr41kRm2Qv69eqDi/f3IXaAT5F6gb7mYnq25xxPcNJSUkhNDQUb2/v6g5ZRERKoUI7swQGBnLLLbdwyy23VFY8IiIiUg6/Hkxh+oqd9sfPjepEt6ahDoxIRESkZAdOZHDvB1vZc7RgZ2mTCaZe04rJV7fC00NrlYqIuDJtAS0iIuLiElOymPReLDl5BdPOplzTihu7hDs4KhHH8PDwKPOmKiaTidzc3CqKSETO9/nOZP61YieZOXkAhPp788otXejXqq6DIxMRkcqgRKOIiIgLS7famLg4hlOZOQD8rVMDpg1s5eCoRBxn/PjxxRKNsbGxxMfH06ZNG9q1K9iBPSEhgX379hEREUG3bt0cEapIjZKTm8/TX+xm8c8H7WXdmobw2tiuNAj2dVxgIiJSqZRoFBERcVG5efn8c+k2fjueAUDnxrV4fnTnMo/mEnEnixcvLvJ4/fr1rFixglWrVjFs2LAix1atWsW4ceN48cUXqzFCkZon6XQW9y3dxo7EVHvZXX2b86/r2mL2rNzNmERExLH0W11ERMRFPfl5Aj/sOwFAeC1fFo7vhsXs6eCoRJzLrFmzmDRpUrEkI8Dw4cO5++67mTlzpgMiE6kZvtt7nL+9+pM9yRjo48Ubt0cy82/tlWQUEXFD+s0uIiLigt79+SDvbv4TAH9vT96a0J16gRYHRyXifHbu3Mlll112weMtW7YkLi6uGiMSqRly8/J57qs93PlODKlZNgDaNwjis8l9uTaigYOjExGRqqKp0yIiIi5m497jzPlsFwAeJnh1bFfaNQhycFQizikkJISvv/6af/zjHyUeX7duHcHBwdUclYjrS8uysTw2kQ27j3HGmkugxYtB7cMYFdmI7Lw8pn64nc0HTtnr39qzMY8P7aCR9yIibk6JRhERERey9+gZ/rl0G/lGwePHbmjP1W3rOzYoESc2duxYXnjhBaKionjooYdo3bo1APv27eO5557j888/54EHHnBwlCKuZVlMIrNXx2PNzS9SHn0ghX9/uRtvsycZ1oKd3C1mD54a3pGR3Ro5IlQREalmFU40/vDDD6Wqd+WVV1b0VCIiIjXayYxsot6NISO74Mvb2MubMPGKZo4NSsTJzZs3j99//5133nmHxYsX4+FRsHJQfn4+hmEwdOhQ5s2b5+AoRVzHsphEpq/cecHjOXkGOXkFn1Mt6vrzf7d1o01YYHWFJyIiDlbhRGP//v1LtbtlXl5eRU8lIiJSY1lteUx6L5ak02cBuKJlbeYM66AdpkUuwcfHh08//ZSvv/6a1atXc+DAAQBatGjBjTfeyODBgx0coYjrSMuyMXt1fKnqepjgvajLCa/lW8VRiYiIM6lwovGdd94pVpabm8v+/ftZvHgxzZo1Y9KkSRU9jYiISI1QuObV+l1HOZ1pJcTfwuAOYcT+eZrYP08DBSNEXh/bTbt1ipTB4MGDlVQUqaAVW5OKTZe+kHwDvoo/ysS+zas4KhERcSYVTjROmDDhgscefvhhIiMjK3oKERGRGqHENa9OnGXLwdP2hyF+Zt65owfBfmYHRCji2rKysvjzz4Ld2ps2bYqfn5+DIxJxLesTjpax/jElGkVEapgqHQoREhLCXXfdxbPPPluVpxEREXF5hWteXWqkyM3dG9O0tn81RSXiHhISErj++uupVasWERERREREUKtWLa6//np27drl6PBEXMaZcxu8lFa61VZFkYiIiLOq8jlXISEh9rVwqkNGRgZPP/00HTt2JDAwkDp16tCnTx8WL16MYRhF6m7ZsoWBAwcSGBhIUFAQ1157Ldu3b6+2WEVERKBsa14t3nyQtCx9cRMprW3bttG7d2+++uorrr76aqZOncrUqVMZMGAAX3/9NX369FH/T6SUAi1lmxAXZNHoexGRmqbCU6cvxmq18t577xEWFlaVp7HLz8/nuuuu4+eff2bChAlMnjyZrKwsPvzwQ+688052797Nv//9bwCio6Pp378/4eHhzJ07F4DXXnuNfv368fPPP9OxY8dqiVlERKQsa15Zbfms3JqkqWgipfTwww/j4eFBTExMsSV9tm7dytVXX83DDz/M+vXrHRShiOvoGB5M9IGUUtcf1L5+FUYjIiLOqMKJxokTJ5ZYnpKSwubNmzlx4gTPPfdcRU9TKlu2bOGnn37i/vvv56WXXrKX33vvvbRt25Y333zTnmicMmUK3t7e/PDDD4SHhwMwZswY2rVrx4MPPsjXX39dLTGLiIhozSuRqhMdHc20adNKXDc8MjKS++67j1deecUBkYm4ljU7klmy+WCp61vMHozs1qjqAhIREadU4UTj4sWLSywPDQ2ldevWvPTSS4wdO7aipymV9PR0ABo2bFik3Nvbmzp16pCdnQ3A77//TkxMDBMnTrQnGQHCw8MZPXo077zzDkePHq22kZgiIlKzac0rkapjsVgu2qdr2LAhvr6+1RiRiGvJyzd47qu9vPH9/jI9b+6wCIJ9NXVaRKSmqXCiMT+/dFO9qkPPnj2pVasWzz77LM2aNePyyy8nKyuLd999l9jYWN544w0AYmJiAOjdu3ex1+jVqxdvv/02sbGx3HDDDRc9X2JiIklJSUXK4uLiALDZbOTk5FTGZdUYNpuN3NxcbDZ9gXYFai/XozZzXgHenmWqH+jjqc8YJ1TV/8f0f7d8rr/+etasWcN9991X4vE1a9Zw3XXXVXNUIq4h7ayNqR9tY+PeE/aye/tfRpNQP55Ys6vEZT8sZg/mDotgTI/G1RmqiIg4iSpdo7G6hYSEsGbNGu666y7GjBljLw8MDGTlypUMHz4cgOTkZIAioxkLFZYdPnz4kudbtGgRc+bMKfFYeno6KSmlX79ECr5AZWRkYBgGZrPufjo7tZfrUZs5r95N/Nly8HSZ6uszxvlU9f+xwpkbUjYvvvgi1157LaNHj2b69Om0bdsWgN27d/Pss8+SkpLC0qVLHRyliPP5/XgGf1/yK3+czAQKEojPjerM0M4Fs8eui2jAiq1JbEg4RrrVRpDFzKD29RkZ2YhgP/UzRERqKrdKNAIEBAQQERHBsGHD6NOnDykpKSxYsICxY8eyevVqBg0aRFZWFgA+Pj7Fnm+xWADsdS4mKiqKIUOGFCmLi4tj0qRJBAUFERoaWglXVHPYbDZMJhMhISFKgrgAtZfrUZs5r9uuCOT/fk4muxQbwljMHtzWpyVBmo7mdKr6/1hQUFClv6Y78vDwwGQyFSkzDIOtW7fyySefFCsHqF+/Prm5ZVvCQMSdfbP7GPd/tJ0z2QX/L8Jr+fLmuG5EhAfb6wT7mYnq25worRksIiLnqZRE49KlS1mwYAG//fYbp06dKnbcZDJVS+ctLi6OPn368NJLL3HPPffYy2+99VYiIiL4+9//zv79+/Hz8wOwr9l4PqvVCmCvczGNGzemceOSpwSYzWa8vb3Lcxk1mpeXl352LkTt5XrUZs6prrc39w64jJfW/3bJunOHRVAn2L8aopLyqMr/Y7pBUDrjx48vlmgUkdIxDIPXN+7n+a/3ci4PT8/mofzfbZHUDig+SENEROR/VTjROG/ePB5//HHq169Pnz59CAkJqYy4yuWll17CarUyevToIuV+fn7ccMMNvPbaaxw8eNC+WUxJ06MLy0qaVi0iIlIVcvPy+Wb38YvW0ZpXIqVzoY0KReTisnJyeXjFTtbuPGIvG9+7KbP+1h6zp4cDIxMREVdS4UTj66+/Tv/+/Vm3bp3D77QXJgnz8vKKHSscUZmbm0uPHj0A2Lx5M3fddVeRetHR0ZhMJrp161bF0YqIiBR466c/2JmUBkDnRsEM7dyQDQlHScmwEhpgYXCHBlrzSkREqkxiShZ3vxfL7iMFa8GaPU3MvTGCW3s2cXBkIiLiaiqcaExPT2fMmDEOTzICtG/fnq+//prFixczffp0e3lqaiqrV68mJCSEli1b4unpSffu3Vm+fDlPPvmkfYRjcnIyy5cv5+qrryYsLMxRlyEiIjXI/hMZvLh+HwDeXh68MKYLLesFMP7yRqSkpBAaGqqp7iKVICsri4MHD3Lq1Cn72oznu/LKKx0QlYjjbd5/ins/iOV0VsHO9nUCfHjj9ki6N9N68yIiUnYVTjR27dqVxMTEyoilwu6//36WLFnCI488QlxcHFdccQUpKSksXLiQI0eOsGDBAjw9PQF45ZVXGDBgAP369WPy5MkAvPrqq+Tn5/PCCy848jJERKSGyMs3mL5iJznnNoGZNrA1LesFODgqEfeSmZnJtGnTWLJkCTabrdhxwzAwmUwlzogRcWeGYbBk85/M/TyBvPyC5HunRsG8Oa4bDYJ9HRydiIi4qkpZo3HkyJGMHDmSrl27VkZM5da0aVN++eUX5s6dyzfffMNHH32Er68vXbp04YUXXmDEiBH2un369GHjxo3MnDmTmTNnYjKZ6NOnD8uXL6dz584OvAoREakplmw+SOyfpwHoGB7M3/tp506RynbPPffwwQcfcNNNN9GvXz+Hricu4iyyc/OYvWoXH//614CRm7qG88yIjljMng6MTEREXF2FE41XXXUVixYtolevXvTq1YtmzZrZRw0WMplMLFq0qKKnKpXLLruMd999t1R1e/fuzTfffFPFEYmIiBR36FQWz67bCxSshfXc6E54abF9kUq3evVqoqKiWLhwoaNDEXEKx9Ot3PN+LFsPpQLgYYJHr29HVN/m2rFdREQqrMKJxi1btjBhwgRsNhs//vgjP/74Y7E61ZloFBERcXaGYfCvlTs5ayuYqnnfgJa0DQtycFQi7slsNts3AhSp6bYnpjLpvV85lp4NQLCvmdfGdqVfq7oOjkxERNxFhYdOTJ06FW9vb1avXk1KSgr5+fnF/mjNGxERkb98+Esimw+cAqBtWCD39m/p4IhE3NfVV1/Nli1bquS19+7dy2233Ua7du0IDg7Gz8+Ptm3b8sADD3DkyJES6w8fPpyQkBD8/f3p168f3377bZXEJjVTWpaNt348wC3/3cwN//mRW/67mUU//UFalo2VsUmMeXOzPcnYql4Aq++7QklGERGpVBUe0bhz506eeOIJhg4dWhnxiIiIuLXk1LM8/cVuADw9TDw3qjPeXpoyLVJVXnjhBa688kpeeeUV7r33Xsxmc6W9dlJSEkeOHOGmm26iUaNGeHl5ERcXx3//+18++ugjtm/fTr169QDYv38/ffr0wcvLi+nTpxMcHMzChQsZMmQIX375JQMHDqy0uKRmWhaTyOzV8VjPbTBWKPpACk9/sdu+4QvA4Pb1efHmLgT4VPjroIiISBEV/mSpV68e3t7elRGLiIiIWzMMgxmfxJGRnQvA3Ve2oGOjYAdHJeLemjRpwtNPP8348eN5+OGHadCgQYnrie/fv7/Mr33NNddwzTXXFCu/8sorGTNmDIsXL2b69OkAzJgxg9TUVGJjY+nSpQsA48ePp0OHDtx3333s2bNH6+NJuS2LSWT6yp0XPH5+knHqNa2Yek0rPDz0fhMRkcpX4SEUEydO5P333yc3N7cy4hEREXFbK7ce5vt9JwBoUdefqde0cnBEIu5v8eLFjBs3DrPZTPv27WnRogVNmzYt8qdJkyaVes6mTZsCcPp0wa7ymZmZrFmzhv79+9uTjAABAQHcdddd7Nu3j5iYmEqNQWqOtCwbs1fHl6qu2dPExCuaK8koIiJVpsIjGvv27cvnn39Or169uPfee2nevHmxu8RQcGdXRESkpjqebmXuZ7sAMJnguVGdsJiLf16KSOV66qmn6NKlC1999RV16tSpknNYrVYyMjKwWq0kJCTwr3/9C4Drr78eKFhqKDs7m969exd7bq9evQCIiYmhZ8+elzxXYmIiSUlJRcri4uIAsNls5OTkVOhaahKbzUZubi42m83RoVTIx7/8WWy69IXY8gyWxfzJhN6Vm1yvLu7SZjWF2sv1qM1cS3W0V3leu8KJxvPXk7nrrruKTfkwDAOTyaQNYUREpMYyDIPHVsWTbi0Y/X9nn+Z0axrq4KhEaobDhw8zbdq0KksyArz11ltMnjzZ/rhZs2a8//779OvXD4Dk5GQAwsPDiz23sOzw4cOlOteiRYuYM2dOicfS09NJSUkpU+w1mc1mIyMjA8MwKnXtzuq2Lj65bPXjkhnaJqCKoqla7tJmNYXay/WozVxLdbRXenp6mZ9T4UTjO++8U9GXEBERcWuf7zzC+oRjADSt7cfDQ9o4OCKRmqNNmzZVnnwbPnw4bdu2JSMjg23btrFmzRpOnjxpP56VlQWAj49PsedaLJYidS4lKiqKIUOGFCmLi4tj0qRJBAUFERqqmxilZbPZMJlMhISEuPQXamte2aZBn83DZd8n7tJmNYXay/WozVxLdbRXUFBQmZ9T4UTjhAkTKvoSIiIibutURjaPr9llfzx/RCd8vTVlWqS6PProo0ydOpU77riDRo0aVck5GjVqZH/t4cOHM3LkSHr06EFWVhYzZszAz88PgOzs7GLPtVqtAPY6l9K4cWMaN25c4jGz2axNGsvIy8vL5X9uQb5l+3IZ7Ovt0tfrDm1Wk6i9XI/azLVUdXuVJ4FZ4USjiIiIXNgTnyWQklmwZtrtvZrQ+7LaDo5IpGbZvXs34eHhtGvXjptuuqnE9cRNJhOzZs2qtHN26tSJrl278vrrrzNjxgwaNmwIlDw9urCspGnVIqVRP9BSpvqD2tevokhERESUaBQREakyX+06ymc7zq3NVsuXR65r5+CIRGqeJ554wv7v999/v8Q6lZ1oBDh79qx9ynbHjh3x8fFh8+bNxepFR0cD0L1790o9v7i/nNx8nvw8gdU7Sr9Go8XswchuVTOyV0REBJRoFBERqRJpWTZmroq3P356REcCfPSxK1Ld/vjjjyp77aNHjxIWFlas/LvvviM+Pp7+/fsDEBAQwNChQ/nkk0/YsWMHnTt3BiAjI4O33nqLVq1alWrHaZFCR9Os/OODWLYdSi3T8+YOiyC4jFOtRUREykLfeERERKrAk2sTOHGmYD220d0acVXrug6OSKRmatq0aZW99j/+8Q+OHDnC1VdfTdOmTbFarcTGxvLRRx8RGBjICy+8YK/7zDPP8M033zB48GCmTZtGUFAQCxcu5PDhw6xduxaTqWwbekjNFX3gFP9cupWTGQXLcgRavHhpTBdSMnOYvToea25+sedYzB7MHRbBmB4lr+8pIiJSWZRoFBERqWQb9x5nRWwSAPUCfZh5Q3sHRyQiVeHWW29lyZIlvPfee5w4cQKTyUTTpk2ZNGkSDz/8ME2aNLHXbdmyJZs2beKRRx5h/vz55OTkEBkZybp16xg4cKADr0JchWEYLPrpD575cg95+QYAbeoH8ua4bjSr4w/AkA5hrNiaxIaEY6RbbQRZzAxqX5+RkY0I9tNIRhERqXpKNIqIiFSiM1Ybj34SZ3/81E0d9eVOxMFyc3NZtWoVW7Zs4fTp0+TnFx3xZTKZWLRoUZlfd8yYMYwZM6bU9du1a8fq1avLfB6RzOxcpq/cydqdR+xlN3ZpyDMjOuLn/ddXumA/M1F9mxPVt7kjwhQREVGiUUREpDLN/3IPyWlWAIZ1bqjdPUUcLCUlhQEDBhAfH49hGJhMJgyjYDRY4b/Lm2gUqQ77T2Rwz3ux/HY8AwAvDxOP3dCOO/o005R7ERFxOh6ODkBERMRd/Lz/JB9sOQRAbX9vnhjWwcERicjMmTPZs2cPb731Fvv378cwDL766it2797NrbfeSo8ePTh16pSjwxQp0Ve7jnLja5vsSca6gT58eHcv7ryiuZKMIiLilJRoFBERqQRZObk8svKvKdNzbuxAqL+3AyMSEYC1a9cyfvx47rzzToKCggDw9PSkTZs2vP/++/j6+jJjxgwHRylSVF6+wbPr9jDpvVgysnMB6N40hLWT+9KjWaiDoxMREbkwJRpFREQqwXNf7eVQShYAQzrU54aODRwckYgAHD16lB49egDg5VWwapDVarUfHz58OGvWrHFIbCIlScnM4Y53fuH1jfvtZXf0acaHd/eiXpDFgZGJiIhcmtZoFBERqaBfD6aw+OeDAAT7mnlyeISmtIk4idDQUDIzMwEIDAzEbDaTmJhoP242mzl9+rSjwhMpYmdSKv94fyuHU88CYDF7MH9EJ4Z3DXdwZCIiIqWjEY0iIiIVYLXlMX3FTs7tLcHjQ9tTL1AjTkScRevWrUlISADAw8ODrl27snjxYrKzs8nKymLJkiW0aNHCwVGKwMcxhxj1xmZ7krFpbT8+vfcKJRlFRMSlKNEoIiJSAS9v+I0DJwtGSw1oU5eb9IVQxKkMHjyYFStWkJ2dDcADDzzAli1bCA0NpV69evz6669MmzbNwVFKTWa15THjk538a2UcObn5AFzTth5r/tmXdg2CHBydiIhI2WjqtIiISDntSEzlvz8UrKEV6OPF0yM6asq0iJN59NFHeeihh/Dx8QFgzJgxeHl58f777+Pp6cmoUaO4+eabHRyl1FSHU8/yj/dj2ZmUBoDJBNMGtuafA1ri4aHPExERcT1KNIqIiJRDTm4+01fsJP/clOlHb2hHg2BfxwYlIsWYTCZ7krHQiBEjGDFihIMikpokLcvG8thENuw+xhlrLoEWLwa1D2NUZCPik9OY/OE2UjJzgII1fl++pQsD2tRzcNQiIiLlp0SjiIhIOSz47nf2HjsDwBUta3NLj8YOjkhERJzJsphEZq+Ox3puOnSh6AMpPPPFbvLyDc7dq6J9gyDeuL0bTWr7VX+gIiIilUiJRhERkUv43xEpnh4m4g8XTHPzNXsyf0QnTZkWcRJLliwp1/PGjx9fyZFITbYsJpHpK3de8Hhu4XB4YGRkI566KQKL2bM6QhMREalSSjSKiIhcxIVGpBQa1L4ejUM1AkXEWdxxxx2YTCYMw7h05XNMJpMSjVJp0rJszF4dX6q6Zk8Ts/7WTklGERFxG0o0ioiIXMClRqQArNlxhL4tExmjqdMiTuG7775zdAhSw63YmnTBm1P/y5Zn8MnWw0zs27yKoxIREakeSjSKiIiUoCwjUmaviWdIhzCC/cxVHJWIXMpVV13l6BCkhlufcLSM9Y8p0SgiIm7Dw9EBiIiIOKOyjEix2vJZuTWpiiMSERFXcMaaW6b66VZbFUUiIiJS/ZRoFBERKUF5RqSIiIgEWso2aSzIotHwIiLiPpRoFBERKYFGpIiISFkZhlHmxOGg9vWrKBoREZHqp0SjiIhICTQiRUREyiIzO5fJH27j6zKMcLeYPRjZrVEVRiUiIlK9lGgUEREpwaD2YWWsrxEpIiI11e/HMxi+YBOf7zwCgMlUuufNHRZBsK9uVImIiPtQolFERKQEfVvWLnVdjUgREam5vow7wo2v/cRvxzMAqBvow8d39+bZkZ2weJX8dcti9uDZkZ0Y06NxdYYqIiJS5co2L0xERKQGyMzOZdrHO0pdXyNSRERqnty8fJ79ai///eGAvaxHsxAWjI2kXpCFns1DGdIhjBVbk9iQcIx0q40gi5lB7eszMrIRwX763BAREfejRKOIiMh58vINJn+4jYQj6QA0CLaQkplDdm5+sboWswdzh0VoRIqISA1z/IyVyUu3seWPFHtZVN/mPHJdW8yef41iDPYzE9W3OVF9mzsiTBERkWqnRKOIiMh5nvw8gW/3HAegfpAPn9zbBz+zl0akiIgIAL8eTOHeD7Zy/Ew2AH7enjw7qhN/69TQwZGJiIg4nhKNIiIi5yze9AeLfz4IFHxxXDShBw2CfQE0IkVEpIYzDIN3Nh3k6S92k5tvAHBZXX/euL0breoHOjg6ERER56BEo4iICPDN7mPM/TwBAA8TvHprVyLCgx0clYiIOIPM7Fwe+SSOz3Yk28uu7xjGs6M6E+Cjr1QiIiKF9KkoIiI1XvzhNCZ/uI1zA1SY9bf2XNOuvmODEhERp7D/RAb3vBdr31Xa08PEjOvaEtW3OSaTycHRiYiIOBclGkVEpEY7mmYl6t0YsnLyAJjQuyl3XqEp0iIiAuvij/DQ8p1kZOcCUCfAhwVju3J5i9oOjkxERMQ5KdEoIiI1VmZ2LhMXx3AsvWBB/6vb1mPW39o7OCoREXG03Lx8nvtqL2/+cMBe1r1pCAtui6R+kMWBkYmIiDg3JRpFRKRGyss3mPLhNhKOpAPQrkEQ/7m1K16eHg6OTEREHOnEmWwmf7iV6AMp9rI7r2jGo9e3w6zPCBERkYvSJ6WIiNRIT36ewDd7jgNQP8iHt+/orgX9RaTM9u3bx+zZs+nVqxd169YlMDCQLl268NRTT5GZmVms/t69exk+fDghISH4+/vTr18/vv32WwdEXnOlZdl468cDjHv7V8Z/kMC4t39l0U9/kJZlI/bPFP726o/2JKOftyf/ubUrjw/toCSjiIhIKegblYiI1DiLN/3B4p8PAgVfIhdN6EGDYF/HBiUiLuntt99mwYIFDBs2jNtuuw2z2cx3333HzJkzWbZsGdHR0fj6Fvx+2b9/P3369MHLy4vp06cTHBzMwoULGTJkCF9++SUDBw508NW4v2UxicxeHY81N/+vwhNn2XLwNM98sZt8w7BvDNairj9v3N6N1vUDHROsiIiIC1KiUUREapRv9xxj7ucJAHiY4D+3dCUiPNjBUYmIqxo1ahQzZswgOPiv3yP33HMPrVq14qmnnmLRokX885//BGDGjBmkpqYSGxtLly5dABg/fjwdOnTgvvvuY8+ePdrFuAoti0lk+sqdFzyeW5hhBK7tEMZzozsRaDFXR2giIiJuQ+P/RUSkxtiVnMY/l26zj1aZeUN7Brav79igRMSlde/evUiSsdDNN98MQHx8PACZmZmsWbOG/v3725OMAAEBAdx1113s27ePmJiYaom5JkrLsjF7dXyp6np5mJg/sqOSjCIiIuWgRKOIiNQIR9OsRC3+laycPADG927KnVc0c2xQIuK2kpKSAKhfv+Bmxs6dO8nOzqZ3797F6vbq1QtAicYqtGJrUtHp0heRm2/wydbDVRyRiIiIe9LUaRERcXuZ2blEvRvD0XQrAAPa1GX239priqKIVIm8vDyefPJJvLy8GDt2LADJyckAhIeHF6tfWHb48KWTW4mJifYkZqG4uDgAbDYbOTk5FYrdXX0df6Rs9Xcd4faexdtKHMtms5Gbm4vNZnN0KFIKai/XozZzLdXRXuV5bSUaRUTEreXlG0z9aBu7ktMBaNcgiFfHRuKl3UNFpIrcf//9bN68maeffpo2bdoAkJWVBYCPj0+x+haLpUidi1m0aBFz5swp8Vh6ejopKSnlDdutnc60lql+SoZVP0snZLPZyMjIwDAMzGZNbXd2ai/XozZzLdXRXunp6WV+jhKNIiLi1uatTWDD7uMA1Av04e07uhPgo48/Eakas2bN4rXXXuPuu+9mxowZ9nI/Pz8AsrOziz3HarUWqXMxUVFRDBkypEhZXFwckyZNIigoiNDQ0IqE77ZC/C1w4myp64cGWPSzdEI2mw2TyURISIiSIC5A7eV61GaupTraKygoqMzP0TctERFxW+/+fJB3Nh0EwNfsydt39KBBsK9jgxIRt/XEE08wb9487rzzTt54440ixxo2bAiUPD26sKykadX/q3HjxjRu3LjEY2azGW9v77KGXSM0qe3PloOnS11/cIcG+lk6KS8vL73XXYjay/WozVxLVbdXeRKYSjSKiIhb+nbPMeZ8tgsAkwn+c2tXIsKL7wwrIlIZnnjiCebMmcOECRN46623iq0B27FjR3x8fNi8eXOx50ZHRwMFO1hL5crLN3hp/T6WxyZduvI5FrMHI7s1qsKoRERE3JcWqBIREbeTkJzO5KXbyDcKHs+8oT2D2td3bFAi4rbmzp3LnDlzGDduHG+//TYeHsW72AEBAQwdOpSNGzeyY8cOe3lGRgZvvfUWrVq1omfPntUZtttLO2vjrndjeO2738v0vLnDIgj21ZRBERGR8tCIRhERcStH06xMXBxDZk4eAON6NWXiFc0cG5SIuK0FCxbw+OOP06RJEwYOHMjSpUuLHK9fvz6DBg0C4JlnnuGbb75h8ODBTJs2jaCgIBYuXMjhw4dZu3ZtsVGQUn77jp3h7iW/cvDUuU14vDyYP7IjtlyD2avjsebmF3uOxezB3GERjOlR8tR0ERERuTQlGkVExCWlZdlYHpvIht3HOGPNJdDixVWt67J6ezJH0ws2Vujfpi6PD22vL+8iUmViYmIAOHToEBMmTCh2/KqrrrInGlu2bMmmTZt45JFHmD9/Pjk5OURGRrJu3ToGDhxYrXG7s3XxR3hw2Q77DafwWr68Oa6bffmMIR3CWLE1ifW7jpCSYSU0wMLgDg0YGdmIYD+NZBQREakIJRpFRMTlLItJLHFESvSBFPu/24YF8trYSLw8tUqIiFSdxYsXs3jx4lLXb9euHatXr666gGqwwvUYz58q3btFbV4b25XaAT72smA/M1F9mzOuZzgpKSmEhoZq0wMREZFKokSjiIi4lGUxiUxfufOS9UZ0DSfARx9zIiI1QdpZG/d/tI3v9p6wl0X1bc6M69rqhpOIiEg1cqtP3SeeeAKTyXTBP/+7LffevXsZPnw4ISEh+Pv7069fP7799lsHRS8iIpeSlmVj9ur4UtV9ccM+0rJsVRyRiIg42r5jZ7jxtZ/sSUYfLw9eurkzs/7WXklGERGRauZWQz1GjBhBy5Yti5Xv3LmT5557jqFDh9rL9u/fT58+ffDy8mL69OkEBwezcOFChgwZwpdffql1ckREnNCKrUklLuBfEqstn5Vbk5jYt3kVRyUiIo7yZdwRHly+g6wLrMcoIiIi1cutEo2dOnWiU6dOxconTZoEQFRUlL1sxowZpKamEhsbS5cuXQAYP348HTp04L777mPPnj3aPEBExMmsTzhaxvrHlGgUEXFDefkGL67fy4Lv9tvLSlqPUURERKqX288lyMzM5KOPPqJRo0Zce+219rI1a9bQv39/e5IRICAggLvuuot9+/bZdxAUERHnccaaW6b66VZNnRYRcTdpZ21EvRtTJMkY1bc570X1VJJRRETEwdxqRGNJli9fTnp6OlOmTMHT0xMomEqdnZ1N7969i9Xv1asXADExMfTs2fOir52YmEhSUlKRsri4OABsNhs5OTmVcQk1hs1mIzc3F5tNiQFXoPZyPe7QZgHenmWqH+jj6bK/i92hvWqaqm4zvRdECtZjvHvJrxw8lQUUrMc4f2RHburayMGRiYiICNSAROOiRYswmUxMnDjRXpacnAxAeHh4sfqFZYcPHy7Va8+ZM6fEY+np6aSkpJQn5BrLZrORkZGBYRjFNu4R56P2cj3u0Ga9m/iz5eDpMtV31d/F7tBeNU1Vt1l6enqlv6aIK9F6jCIiIs7PrRONe/fu5aeffuKaa66hefO/1ujKyjp3B9Sn+NQKi8VSpM7FREVFMWTIkCJlcXFxTJo0iaCgIEJDQysSfo1js9kwmUyEhIToS7ULUHu5Hndos0GdzLz8Q9KlKwIWswe39WlJkK9rXqs7tFdNU9VtFhQUVOmvKeIKtB6jiIiI63DrROOiRYsAuOuuu4qU+/n5AZCdnV3sOVartUidi2ncuDGNGzcu8ZjZbMbb27tM8Qp4eXnpZ+dC1F6ux5Xb7GRGNlM+jit1/bnDIqgT7F+FEVU9V26vmqoq20wJZ3FnaVk2lscmsmH3Mc5Ycwm0eDGofRiD29dn1up4Nu49Ya8b1bc5M65ri5en2y83LyIi4nLcNtGYm5vLkiVLqF27NjfddFORYw0bNgRKnh5dWFbStGoREXGM1Kwcbn9rC/tPZALQINhCSmYO2bn5xepazB7MHRbBmB4l3wgSERHnsiwmkdmr47H+z+/06AMpzPs8AePcY63HKCIi4vzcNtH42WefcezYMaZOnVpsinTHjh3x8fFh8+bNxZ4XHR0NQPfu3aslThERubgzVhsT3v6FPUfPANCqXgAf3d0LLw8PVmxNYkPCMdKtNoIsZga1r8/IyEYE+2nkl4iIK1gWk8j0lTsveLwwyVjL18z7d12u9RhFREScnNsmGgunTUdFRRU7FhAQwNChQ/nkk0/YsWMHnTt3BiAjI4O33nqLVq1aXXLHaRERqXpZOblMXBzDjqQ0AJrV9uODuy63r8kV1bc5UX2bX+wlRETESaVl2Zi9Or5Uda22PBqHXHppIxEREXEst1zYJDk5mXXr1tGzZ086duxYYp1nnnmG4OBgBg8ezPz583n99dfp168fhw8f5tVXX8VkMlVz1CIicj6rLY+7l8QSc26X6fBavnzw917UC7I4ODIREakMK7YmFZsufSHW3HxWbi3dZmAiIiLiOG6ZaFy8eDF5eXnFNoE5X8uWLdm0aRO9evVi/vz5PPTQQ/j7+7Nu3bpiO0mLiEj1suXl88+lW/np95MA1Av04YO7Lie8lq+DIxMRkcqyPuFoGesfq6JIREREpLK45dTpRx99lEcfffSS9dq1a8fq1aurISIRESmtvHyD+z/ezobdxwEI9ffmg7sup1kd195BWkREijpjzS1T/XSrrYoiERERkcriliMaRUTENeXnG0xfsZO1O48AEGTxYsnEnrSqH+jgyEREpLL5+5RtzEOQRRt9iYiIODslGkVExCkYhsGs1fH2Nbj8vT1ZPLGndhgVEXFDiSlZHErJLNNzBrWvX0XRiIiISGVxy6nTIiLiWgzD4OkvdvPBlkMAWMweLLqjB5FNQhwcmYiIVLbv9hzn/o+3k3a29FOhLWYPRnZrVIVRiYiISGVQolFERBzupQ2/sfDHPwDw9vTgzXHd6dWitoOjEhGRypSXb/DKhn3859vf7WXhtXw5nHr2ks+dOyyCYF9NnRYREXF2mjotIiIO9cb3+/nPN78B4Olh4rWxXbmqdV0HRyUiIpXpdGYOd7zzS5Ek4609m/DNg1fx7MhOWLxK/lpiMXvw7MhOjOnRuLpCFRERkQrQiEYREXGYd38+yPwv9wBgMsFLN3dhcIcwB0clIiKVaUdiKvd+sNU+ctHHy4Mnh0cwpntB8nBMj8YM6RDGiq1JbEg4RrrVRpDFzKD29RkZ2YhgP41kFBERcRVKNIqIiEMsi0nk8TW77I//PbITwzo3dGBEIiJSmQzD4MNfEnlizS5y8vIBaBzqy//d1q3YRl/Bfmai+jYnqm9zR4QqIiIilUSJRhFxWmlZNpbHJrJh9zHOWHMJtHgxqH0YozS6weWt3n6Yf32y0/547o0d7CNbRETE9Z3NyWPmqnhWbk2yl13dth4vjemiz3ARERE3pkSjSBVRkqxilsUkMnt1PNbc/CLl0QdSeG7dHubeGOHS6zXV5PfHV7uO8sCyHRhGweNHrmvL+N7NHBqTiIhUnj9PZXLP+1vZfSQdKFga48FBrbm3f0s8PEwOjk5ERESqkhKNIlXA3ZNkVW1ZTCLTV+684HFrbr79uCv+HGvy++P7fSeYvHQbefkFWcYp17Tinqsuc3BUIiJSWTYkHGPasu2cseYCEOJn5j+3dqVfK23yJSIiUhMo0egiavLop8pUHT9HRyTJ3On9kZZlY/bq+FLVnb0mniEdwirlGqvrZ+jI98f6XUc5nWklxN/C4IgG1f7+iD5wiruX/Gpfp+vuK1swbWCraju/iIhUnbx8gxfX72XBd/vtZZ0b1+L12yIJr+XrwMhERESkOinR6ALcffRTdSVBquPn6Igkmbu9P1ZsTSp2LRditeWzcmsSEyu4cHx1/Qyd5v1x4ixbDp6u1vfH1kOniVocQ/a5OMb1asqM69piMmkKnYiIqzuVkc3Uj7bz0+8n7WW392rCrL+1x8fL04GRiYiISHVTotHJ1cgppFWQBKmqn6MtL5/0szZSz9pIzbKx/NfEMiXJVsQmEtWvRanP97/c7f1hGAZrth8u03Pmf7mHtXFHCAu20DDYQliwLw2CLef++FI30AfPi6wHVdU/Q8MwOGvL43SWjcWb/ijT+2PpL39yz1WXlTsZ5yyjazuGB/PhL4fIzMkDYFS3RswZ1kFJRhERN7Dt0Gnu/WArR9KsAFjMHjx9U0dGRDZycGQiIiLiCEo0OjFNIa2cJEhZfo6zVsdTy99Mfr5BatZfCcS0szbSzuYUlNkf28jIzi13XADz1u7m7U0HqRfkQ/1AC/WDfKgXZKF+kIWwoL8eB1m8iiVlHPX+qEyGYbD/RCabD5wi+sApthw4xcmMnDK9Rk5ePrF/nr7gcU8PE/UDfQgLttCgli8Ngs79HWwhwMeLWWX4GV7Trh4GkJqVw+lz74XTWTnnPc7hdGZhmY3UswXlOaVMLv6vf6/by4vr9xHs600tPzMhfmZq+XlTy9dMiH9BWS1f77/K/cyEnPs725bvHKMnKRgZWuiGTg3498hO2gxARMTFGYbB+9F/MvfzBGx5BevuNqvtx//d3o12DYIcHJ2IiIg4ihKNTkxTSAsUJkECLV6cteUV/Mm58N9ZtjyshY9tefx6MKXUP8fs3HzuXhJbkUsrEwM4nHqWw6lnL1rPYvag/rkEZP0gC/UDffjzVFa1vz+gYlPdDcPgwMlMog+cYvP+U0QfSOFkRnaF4rGYPYCCayxJXr5BcpqV5DQrHEot93mstny6zdtQ7ueXly3P4GRGdpl/Tl4eJnLPbbhyKVZbPot//oNJV12GxVy+KW6XunFQ6IrLal90hKmIiDiPC918vr5jGM+u28un2/6ahTCofX2eH92ZYF/nuqkpIiIi1UuJRie2PuFomeo/8+VuVm8/THiIL+G1fGlYq+DvwsfBvuaLTlWs6hGGuXn5pGTlcCojhw+2/FmmJFnkvPX2XWodycvDRC0/M8G+BX8KR5cFnytbte0wB09llfr1gixe1An04Xh69kVHR1pt+fx5Kos/y/Da/+uzncnc1qtJhdZKKutUd8Mw+ONkJtEHUog+N2rx+JkLJ8waBFuoG+DDzsNppY5p+pC23HlFM9LP5pKcdpajaVb730fSrBxJO1vwd6qVs7a8cl13WXl7eRSMMvT9a5RhiL+Z7/edIDnVWurXqe3vTZuwwHMjaQtGR5b2GkqbZCz00obfeGnDb3h7eVDL12wfLRnsZ7Y/DvY1E3zuPV/rvOsDSj0ydO7nCdzQsaHTja4VESmvZ555hq1btxIbG8sff/xB06ZNOXjw4AXrb9myhccee4wtW7ZgMpno06cP8+fPp0uXLtUWc2lc7ObzvM8TKPyU8TDBw0PaMunKFhqtLiIiIko0OrMz1rJNy7XlGexISmNHUslJGn9vz4Lk43mJyEbn/h1gKdsU0iEdwgiweJGalUNKZg4nM3I4lZlt/3dKZjanMgqSiqcyszmVWTCVtLyqM8lYP8iH+we2Lkgknksi1vLzJtjXjL+350WTtYEWM09+nlDqc90/sLV9lGFGdi7H060cS8/mWLr13J9sjp2x2suPplvLPQ1326FU2sxcR50AH8JrFaxf2LCWLw1rWc797UvDYAt1AnxK/KJQ2kT0yYxsQvy97YnFY+kXTiyGBVnofVlterUIpXeLOjQO9SX9bC6XP72hVIloi9mDkd0aYTKZCpK9fuYLTtcyDIP0s7kcST/LkdSCJORL6/dxogwjBQN8vBjcvj7BhcnDc++NwunKIf4FZb7mkt8ni376o0zvj/sGtCw2CtVqyyPt7HnTs8+bxl3w74LHm34/SVZO2ROrObn5HD+TfdGEcEVU5uhaERFn8OijjxIaGkpkZCSpqakXrRsdHU3//v0JDw9n7ty5ALz22mv069ePn3/+mY4dO1ZDxJd2qc/8wl6Zv7cnC8d3p0/LOtUTmIiIiDg9JRqdWKClbM3j5+2Jp8nEmQuMjMvMyeO34xn8djyjQnFZbfn0nv8NVlse1ZX/8/P2pGfzUPy8PbGYPfE1e+LnXfC3xdsTP7MnvueO+Xl74Wv2xNfbA1+zF49+Gsf2xNRSn6tFnQBu7dmkXHGOimzEc+v2lClJVijAx4uAugG0qBtwwecYhkHaWRvH0rO5/6Nt7D56pswxFk7DvVBC2uxposG5DVXCa/nSoJaFED9v/r1uT6le/9mv9l7wWP0gH3q3qE2vc3+a1vYrlpAL9jMz98aIUk3DnTssotRTtM5PRrYNK0hGrtlxuEyJxo7hwbx4c5dS1/9fFXl//FVe8D6vH2S56PNv+e/mImsjXkq9QB+6NqllX4O08O+qGAW6PuGYEo0i4jb2799PixYFG7tFRESQkXHhftaUKVPw9vbmhx9+IDw8HIAxY8bQrl07HnzwQb7++utqifliyrK8TW6+QYeGwVUckYiIiLgSJRqd2KD2YWVKFDw0uA0T+zYn3Wrj8OmzHD59luS0gr+TUs+SnFrw78oYqVTakVLeXh7U8femdoAPtQO8CfX3pk6AD+vij3IopfTTgDs3qsXiO3uWK9ahnRuWKdE4qH39cp0Hqi5JVshkMp3b9MObUd0bl2l0XLemtQiymDmSZuVw6tkLjpi15RkcSskqU/tcSN3AvxKLvS+rTbMSEoslKZx+XdKULShIws0dVvH1Qsv6f6wi7w2o+vfH+cp6bfdcdVmJyT+rLa/IzuqpWTn2zZAKN7xZsz2Z9DKMwE63ln90s4iIsylMMl7K77//TkxMDBMnTrQnGQHCw8MZPXo077zzDkePHiUsLKyqQi2VsqwRnp2rUeoiIiJSlBKNTqy8o5+CLGaCGlx4Cml2bh5H06wFychzG5Es/vlgmaY2W7w86NE8lNrnkogFCURvQv0LEop1/H0IDfC+4FTj+kGWMiXJKpLgqYxRZGVRXUmysl7X23f0LJK4OmO12ZOOR1KtJJ9LRiennSU51crRNCs5eeWbpt2ijj8LJ3SnRR3/UiUWSzKmR2OGdAhjxdYkNiQcI91qI8hiZlD7+oyspB3Qq/u9Ac77/rjQtRWOoKx3kRGUvx/PKFNSM8ii9RlFpOaJiYkBoHfv3sWO9erVi7fffpvY2FhuuOGGi75OYmIiSUlJRcri4uIAsNls5OTkVCjOr+OPlK3+riPc3jP80hWdkM1mIzc3F5tNN8BchdrMtai9XI/azLVUR3uV57WVaHRiVTX6ycfLk6a1/Wla299eVrCeXukTBV2bhPBe1OWlrv+/qjPBU52jyApVR5KsotcVaDETaDHTun5gic/Jzzc4mZlNcqqVyUu3knj64jtjn8/X25PLLjIFvLSC/cxE9W1OVBWNlHDEewNc4/1RFtU9MlRExBUlJycDFBnNWKiw7PDhw8WO/a9FixYxZ86cEo+lp6eTklL638clOZ1Z+k3LAFIyrBU+p6PYbDYyMjIwDAOzWTfBXIHazLWovVyP2sy1VEd7paenl/k5SjQ6OU0hrZwET3X9HM9X1UkyqNrr8vAwUS/QQr1AC+EhvmVKNLrSiDVHvDfA9d8f53PEyFAREVeTlVWwJImPj0+xYxaLpUidi4mKimLIkCFFyuLi4pg0aRJBQUGEhoZWKM4QfwucKP1nfmiApcLndBSbzYbJZCIkJERfqF2E2sy1qL1cj9rMtVRHewUFlTxT9mKUaHQBmkJaOQme6vg5OkJ1XJe7j1hz1/cGFL229buOkJJhJTTAwuAODVxy9KSIiKvy8/MDIDu7+FrZVqu1SJ2Lady4MY0bl9w3MpvNeHt7VyBKGBzRgC0HT5e+focGFT6nI3l5eVXKz02qj9rMtai9XI/azLVUdXuVJ4GpRKOLqAlTSKsqCXK+6hhF5ghVfV01YcSau7434K9rG9cznJSUFEJDQyv9g8hRI0NFRFxFw4YNgZKnRxeWlTSturrVhM98ERERqTpKNIqdo6eQVmUSRCpGI9akNNx5ZKiISEX16NEDgM2bN3PXXXcVORYdHY3JZKJbt26OCK0IfeaLiIhIRSjRKEUoUSAXohFrUhruPDJURKQiWrZsSffu3Vm+fDlPPvmkfYRjcnIyy5cv5+qrryYsLMzBURbQZ76IiIiUlxKNUowSBXIh1T3VXURExNm99957/PnnnwCcOHGCnJwc5s2bB0DTpk0ZN26cve4rr7zCgAED6NevH5MnTwbg1VdfJT8/nxdeeKH6g78I3XwWERGR8lCiUUTKRFPdRURE/rJo0SK+//77ImWzZs0C4KqrriqSaOzTpw8bN25k5syZzJw5E5PJRJ8+fVi+fDmdO3eu1rhLQzefRUREpKyUaBQRERERKaeNGzeWqX7v3r355ptvqiYYEREREQfzcHQAIiIiIiIiIiIi4vqUaBQREREREREREZEK09TpSpaZmQlAXFycgyNxPTabjfT0dIKCgjCbtcC4s1N7uR61mWtRe7meqm6zwr5FYV9DpJD6n+Wj37OuR23mWtRerkdt5lqqo73K0/9UorGSHThwAIBJkyY5OBIRERFxR4V9DZFC6n+KyP+zd99hUVxtG8DvBZbeRUCpIhbEimBX0Nh7r1HsXWPUGDX2mGj0jcn7aoyxx5rEFo01FuwlBHvBBqigghRFQGCB8/3ht6vrLnXBZeH+XZdXwjlnZp7ZszM7++yZOURERSk/158SIYQowlhKnadPn2L//v3w8PCAmZmZtsPRKTdu3MCoUaPwyy+/oEaNGtoOh3LB/tI97DPdwv7SPUXdZ8nJyQgLC0PHjh1Rvnz5Ql8/6S5efxYMz7O6h32mW9hfuod9pls+Rn8V5PqTIxoLWfny5TFy5Ehth6HTatSogYYNG2o7DMoj9pfuYZ/pFvaX7mGf0cfG60/N8JjVPewz3cL+0j3sM91S3PqLk8EQERERERERERGRxphoJCIiIiIiIiIiIo0x0UhEREREREREREQaY6KRig1nZ2fMnTsXzs7O2g6F8oD9pXvYZ7qF/aV72GdEuoXHrO5hn+kW9pfuYZ/pluLaX5x1moiIiIiIiIiIiDTGEY1ERERERERERESkMSYaiYiIiIiIiIiISGNMNBIREREREREREZHGmGgkIiIiIiIiIiIijTHRSERERERERERERBpjopGIiIiIiIiIiIg0xkQjfRT37t3DnDlz0KBBA5QtWxYWFhaoXbs2vvnmGyQnJ6u0v3v3Lrp27QobGxuYmZmhadOmOHHihBYiJ7mUlBR4eHhAIpFg/PjxKvXss+IhPj4eU6dOhaenJ4yNjVG2bFk0b94cZ86cUWp36dIltGzZEhYWFrC0tETbtm1x9epV7QRdSiUlJeHbb79FjRo1YGFhATs7OzRq1AgbN26EEEKpLfvr41q0aBF69eqlOOe5u7vn2D4//fP06VMMGjQIZcuWhYmJCXx9fbFjx47C3wmiUo7XnrqP1566gdeeuoXXn8VTSbv2lIgP301ERWD69On46aef0LlzZzRo0ABSqRRBQUH4448/ULNmTVy8eBEmJiYAgIcPH6JevXowMDDApEmTYGVlhTVr1uDmzZs4dOgQWrZsqeW9KZ2mTp2KX375BUlJSRg3bhxWrFihqGOfFQ+PHj1CQEAAkpKSMGzYMFSuXBmvXr3C9evX0aZNG/Tt2xcAcPHiRQQEBMDJyUlx4b5ixQrExMTg/PnzqFGjhjZ3o1TIysqCv78/zp8/j8DAQDRo0AApKSnYvn07/vnnH0ybNg3fffcdAPaXNkgkEtja2sLHxwchISGwtLRERESE2rb56Z/4+Hj4+voiJiYGkydPhrOzM7Zt24ZTp05h/fr1GDJkyMfYPaJSgdeeuo/XnsUfrz11C68/i68Sd+0piD6C4OBg8fLlS5Xyr776SgAQy5cvV5T16tVL6OnpiStXrijKXr9+LVxdXUXlypVFVlbWxwiZ3hMSEiL09fXF999/LwCIcePGKdWzz4qHJk2aCGdnZ/H06dMc2/n5+QkLCwsRGRmpKIuMjBQWFhaiVatWRR0mCSHOnz8vAIhJkyYplaelpYkKFSoIKysrRRn76+N7+PCh4v+9vb2Fm5tbtm3z0z9ffPGFACD27dunKMvIyBB+fn7C1tZWvH79uvB2gqiU47WnbuO1p27gtadu4fVn8VXSrj156zR9FL6+vrCyslIp79OnDwDg5s2bAIDk5GTs27cPAQEBqF27tqKdubk5hg8fjnv37iE4OPijxExvZWZmYsSIEWjbti26d++uUs8+Kx5Onz6Ns2fPYtq0aShXrhxkMhlSUlJU2j148ADBwcHo1asXnJycFOVOTk7o1asXjh07hufPn3/M0EulxMREAED58uWVyg0NDWFnZwczMzMA7C9t8fDwyFO7/PbPtm3bULFiRXTq1ElRpq+vjwkTJiA+Ph4HDx4svJ0gKuV47am7eO2pG3jtqXt4/Vl8lbRrTyYaSasiIyMBAA4ODgCA69evIy0tDQ0bNlRp26BBAwDghcNH9sMPPyA0NFTpdpX3sc+KB/mHhKurKzp16gQTExOYmZmhcuXK2LJli6KdvC+y6y8hBEJCQj5O0KVYvXr1YG1tjSVLlmDHjh14/PgxQkNDMWPGDISEhGDevHkA2F/FXX7659mzZ4iKilKcFz9s+/76iKjo8Nqz+OO1p27gtafu4fWn7tOVa0+DIlkrUR5kZmbi66+/hoGBAfr37w/g7YNKAShl5+XkZVFRUR8vyFIuPDwcc+fOxZw5c+Du7q72ORHss+Lh7t27AIARI0agUqVK+PXXX5Geno7vv/8eAwcOhEwmw5AhQ9hfxYSNjQ327duH4cOHo3fv3opyCwsL7Nq1C127dgXA46u4y0//sC+JtI/XnsUfrz11B689dQ+vP3Wfrlx7MtFIWjNp0iRcuHAB3377LapUqQIAiuH2RkZGKu2NjY2V2lDRGz16NDw8PDB58uRs27DPiofXr18DeHuhEBQUBENDQwBA165d4eHhgZkzZyIwMJD9VYyYm5ujevXq6Ny5Mxo1aoT4+Hj89NNP6N+/P/bu3YtWrVqxv4q5/PQP+5JI+3jtWfzx2lN38NpTN/H6U7fpyrUnE42kFbNnz8aKFSswcuRIzJgxQ1FuamoKAEhLS1NZJjU1VakNFa0tW7bg6NGjOH36NKRSabbt2GfFg3zmzH79+iku9IC3v1x27twZmzZtwt27d9lfxcSNGzfQqFEj/PDDDxg9erSivF+/fqhevTpGjBiBhw8fsr+Kufz0D/uSSLt47Vn88dpTt/DaU/fw+lP36cq1J5/RSB/dvHnzsHDhQgwZMgSrVq1SqpM/mFbdEF55mbqhv1S40tLSMHnyZLRv3x6Ojo548OABHjx4gEePHgEAXr16hQcPHuDly5fss2LC2dkZAODo6KhSV65cOQBAQkIC+6uY+OGHH5CamopevXoplZuamqJDhw549OgRIiIi2F/FXH76h31JpD289iz+eO2pe3jtqXt4/an7dOXak4lG+qjmzZuH+fPnIzAwEGvXroVEIlGqr1GjBoyMjHDhwgWVZS9evAjg7SyCVLTevHmDFy9e4MCBA6hUqZLiX0BAAIC3vzhXqlQJa9euZZ8VE/Xq1QPw7iH375OX2dvbw8/PDwCy7S+JRIK6desWYaQEvPtwz8zMVKnLyMhQ/Jf9Vbzlp3/KlSsHJycnxXnxw7YAz5VERYHXnrqB1566h9eeuofXn7pPZ649BdFHMn/+fAFADBw4UGRmZmbbrmfPnkJPT09cvXpVUfb69Wvh6uoqKlWqJLKysj5GuKVaenq62LFjh8q/lStXCgCibdu2YseOHeLu3btCCPZZcRAfHy8sLCyEk5OTeP36taL86dOnwszMTFSuXFlR5uvrKywsLERUVJSiLCoqSlhYWIhPPvnko8ZdWk2aNEkAEN99951SeUJCgihXrpywsbERGRkZQgj2l7Z5e3sLNze3bOvz0z9Tp04VAMS+ffsUZRkZGcLPz09YW1uLxMTEQo+fqDTjtafu4LWn7uG1p+7h9aduKAnXnhIhhCiaFCbROz/99BPGjx8PV1dXfP3119DTUx5M6+DggFatWgEAHjx4gHr16kEqleLzzz+HpaUl1qxZgxs3buDAgQNo06aNNnaBAERERKBChQoYN24cVqxYoShnnxUPq1evxqhRo+Dt7Y2hQ4ciPT0dP//8M549e4b9+/ejdevWAIDz58+jefPmcHZ2xoQJEwAAy5cvR3R0NM6dO4datWppczdKhUePHsHHxwcJCQkYMGAAGjdujPj4eKxZswYRERH46aefMHbsWADsL23YvHmz4na95cuXIz09HVOmTAEAuLm5YeDAgYq2+emfuLg41K1bF3FxcZg8eTKcnJywfft2nDx5EmvXrsWwYcM+4l4SlWy89iwZeO1ZvPHaU7fw+rP4KnHXnkWSviT6QGBgoACQ7T9/f3+l9rdv3xadO3cWVlZWwsTERDRu3FgcPXpUO8GTQnh4uAAgxo0bp1LHPisedu3aJerXry9MTU2Fubm5aNWqlTh79qxKu/Pnz4sWLVoIMzMzYW5uLlq3bi1CQkK0EHHp9eDBAzFo0CDh5OQkDAwMhIWFhWjatKnYtWuXSlv218fl7++f588rIfLXP5GRkeLTTz8VZcqUEUZGRqJOnTrit99+K+I9Iip9eO1ZMvDas/jjtadu4fVn8VTSrj05opGIiIiIiIiIiIg0xslgiIiIiIiIiIiISGNMNBIREREREREREZHGmGgkIiIiIiIiIiIijTHRSERERERERERERBpjopGIiIiIiIiIiIg0xkQjERERERERERERaYyJRiIiIiIiIiIiItIYE41ERERERERERESkMSYaiYiIiIiIiIiISGNMNBIREREREREREZHGmGgkIiIiIiIiIiIijTHRSERERERERERERBpjopGolDh58iQkEgkkEgnGjx+vtk1MTAwMDQ0hkUgQEBDwcQOkYi8iIgLz5s3D1atXtR0KERER6QBef5KmeP1JpHuYaCQqZYyNjbFt2zakpaWp1G3evBlCCBgYGGghMiruIiIiMH/+fF7oERERUb7w+pMKitefRLqHiUaiUqZbt25ISEjA3r17Veo2bNiA9u3bw8jISAuRUV68fv26QHX0zps3b5CRkaHtMIiIiEoNXn/qNl5/ao7Xn1SaMNFIVMr4+PigZs2a2LBhg1L5P//8g1u3bmHIkCHZLvvvv/+iW7dusLOzg5GREapUqYJvvvlG5UPzn3/+weDBg1G5cmWYmprCwsICjRs3xp49e1TWOXjwYEgkErx69QpjxoyBvb09jI2N0bhxY1y6dCnP+5WYmIivvvoKXl5eMDY2RpkyZdCkSRP89ttvSu2uX7+Obt26oUyZMjA2Nka1atWwZMkSZGZmahSXEAJr1qxB/fr1YW5uDnNzc9SoUQNz5sxRtJk3bx4kEgkiIiJUlnd3d1e5XUgikWDw4ME4fvw4mjRpAnNzc3Tq1Emp/ZUrV9CmTRtYWVmhZs2aimXv37+PgQMHoly5cjA0NIS7uzu++OILJCcnF2g/N27ciObNmwMAhgwZorgNKrdbnOTrV0e+f+/btGkT6tWrB2tra5iZmcHDwwMDBgzAixcvlNrld/9evHiBoUOHwsHBAWZmZoiMjMzX9oiIiKjgeP3J68+C7CevP4l0E8enE5VCQ4cOxeTJkxEVFQUnJycAwPr162Fvb4+OHTuqXebAgQPo3r07PD09MWXKFNja2uLChQuYM2cOrl69ih07dija7tmzB6Ghoejduzfc3NwQFxeHX3/9Fd27d8fWrVvRv39/lfW3adMGZcuWxZw5cxAXF4dly5ahQ4cOCA8Ph4WFRY778/LlSzRp0gS3bt1Cz549MWbMGGRmZuLKlSvYv38/+vbtC+Dthaq/vz+kUinGjRsHR0dH/PXXX/jyyy9x7do1bN26tcBxDRw4EFu3bkX9+vXx1VdfwdraGqGhodi5cycWLFiQe6dk499//8WuXbswYsQIBAYGKtU9fvwYLVq0QK9evdCjRw8kJSUBAEJCQtCiRQtYW1tj1KhRcHJywrVr1/C///0P586dw6lTpyCVSvO1n82aNcPMmTPx7bffYuTIkWjatCkAwMHBocD79qHNmzcjMDAQTZs2xYIFC2BiYoInT57g4MGDiImJQdmyZQu8f61atYKjoyNmz56N5ORkmJub53l7REREpDlef/L6k9efvP6kUkIQUakQFBQkAIilS5eK2NhYYWhoKL755hshhBApKSnCyspKTJkyRQghhJmZmfD391cs++bNG+Hg4CCaNm0qZDKZ0nqXLVsmAIigoCBFWVJSksr2k5OTReXKlYWXl5dSeWBgoAAgxowZo1T+xx9/CABi1apVue7bmDFjBADxyy+/qNRlZmYq/r9Ro0ZCX19fXLt2TVGWlZUlevXqJQCIY8eOFSiu33//XQAQn376qdL2Ptz+3LlzBQARHh6uEqebm5vSay6EEAAEAHH06FG17QGINWvWqNTVrFlTVKlSRSQmJiqV7969WwAQGzZsKNB+yt9D7y+fG/n61QEgAgMDFX9369ZNWFhYqLzHPlSQ/RswYIDKevK6PSIiIioYXn/y+pPXn8p4/UmlAW+dJiqFypQpg86dO2Pjxo0AgN27d+PVq1cYOnSo2vZHjx5FdHQ0hgwZgpcvXyI2Nlbxr3379gCAv//+W9HezMxM8f8pKSmIi4tDSkoKWrRogTt37iAxMVFlG59//rnS3y1atADw9haFnGRlZeG3336Dl5cXRo4cqVKvp/f2NBcTE4Pz58+jc+fOSrd4SCQSfPXVVwCg9taavMQl/yX6P//5j2J7H26/oGrVqoWWLVuqrbO1tVW51ejGjRu4fv06+vfvj7S0NKW+atKkCczMzJT6Sq6gr39hsrKyQkpKCg4cOAAhhNo2Bd2/qVOnFmh7REREVDh4/cnrzw/x+pPXn1QyMdFIVEoNGTIE9+/fx9mzZ7F+/XrUq1cP1apVU9v2zp07AN7e8lK2bFmlf1WrVgUAREdHK9rHxMRg5MiRiueR2NnZoWzZsli1ahWAt7eafMjDw0Pp7zJlygAA4uLictyP2NhYJCQkoHbt2jm2Cw8PBwB4e3ur1Hl5eUFPTw9hYWEFiuv+/fsoV65cod7GIVe5cuVs6ypWrAh9fX2lMnlfzZ07V6Wv7O3tkZycrNRXcgV9/QvTzJkz4ebmhq5du6Js2bLo0aMH1q5dq/SQ8YLun7rXMS/bIyIiosLD6893eP3J609ef1JJxWc0EpVSbdq0gZOTE+bPn4+goCD8/PPP2baV/9q2dOnSbC+oypcvr2jbunVr3LlzB5999hl8fX1hZWUFfX19bNiwAdu2bUNWVpbK8h9esHy4bW0pzLiyeyg1gGxnoTM1Nc12GXV18rimTJmCtm3bql3OxsZGpayoXv/s9lnd/laqVAm3b9/G8ePHcfz4cZw6dQojRozA3Llzcfr0aVSsWLHA+6futcrL9oiIiKjw8Pozb3j9yetPIl3GRCNRKaWvr49BgwZh0aJFMDExQb9+/bJtW6lSJQBvb0nJ7jYKuevXr+PatWuYM2cO5s+fr1S3du1azQP/gJ2dHWxsbHDt2rUc21WoUAEAcOvWLZW60NBQZGVlqfyqmleVK1fG3r17ER0dneOvyra2tgCA+Ph4uLu7K8pTU1Px7NkzeHp6Fmj775P3lb6+fq59lV85Xahm5/19lv8/ALW/3gOAkZER2rdvr7gl6uDBg+jQoQOWLVuGn376qdD3L7ftERERUeHh9ec7vP7MG15/Euke3jpNVIqNHj0ac+fOxapVq2BpaZltuzZt2sDe3h6LFy9GfHy8Sv2bN28Uw/3lv0x++EvkzZs31T6DRlN6enro168fbt++jXXr1qnUy+Owt7dHo0aN8Ndff+HmzZtK9YsWLQIAdOvWrUAxDBgwAAAwbdo0lV/L338d5LdPHDt2TKnNDz/8oPZX9oKoU6cOqlevjlWrVqm9mMrIyFDbh3lhbm4OAPlaPrt9/v7771XaxsbGqpT5+PgobbMw9y8v2yMiIqLCxetPXn/mB68/iXQPRzQSlWKurq6YN29eru3MzMywadMmdO3aFVWqVMHQoUPh6emJly9fIjQ0FLt378aePXsQEBAALy8veHt7Y8mSJUhJSUGVKlVw7949/PLLL6hRowZCQkIKfT8WLlyIEydOYPjw4fj777/RpEkTCCFw5coVZGRkYPPmzQCA//73v/D390fTpk0xbtw4ODo6Yv/+/Thy5Aj69++PTz75pEDb79WrF/r06YNNmzbh/v376Ny5M2xsbHDv3j0cOXJEcWHZsmVLVKlSBXPmzEFcXBwqVKiAs2fP4uLFi7CzsyuU10IikWDz5s1o0aIFatasiaFDh8Lb2xspKSl48OABdu/ejUWLFmHw4MH5Xne1atVgYWGBlStXwtTUFNbW1rC3t1c8uFudfv36YebMmRg5ciRCQ0Nha2uLw4cPq73Iat26NaytrdG0aVO4uLjg5cuX2LhxIyQSCQYOHFjo+5eX7REREVHh4vUnrz/zg9efRDro40xuTUTaFhQUJACIpUuX5trWzMxM+Pv7q5TfuHFDDBgwQJQvX15IpVJhb28vGjZsKBYsWCDi4uIU7SIiIkTPnj2FnZ2dMDExEX5+fmL37t1i7ty5AoAIDw9XtA0MDBTZnYoAiMDAwDztX0JCgvjiiy9ExYoVhVQqFba2tqJJkybi999/V2p39epV0aVLF2FjYyMMDQ1F1apVxXfffScyMjKU2uU3rszMTLFixQpRp04dYWJiIszNzUWNGjXEvHnzlNrdvXtXtGnTRpiYmAgrKyvRq1cvERkZKdzc3FRe85z2X13790VERIhRo0YJNzc3xevh4+Mjpk+fLh4/flzg/Txw4ICoU6eOMDIyEgByjEHu4sWLolGjRsLIyEiUKVNGjBgxQiQkJKisf/Xq1aJly5bCwcFBSKVS4ejoKNq1aydOnDhRJPuXn+0RERFR/vH68y1ef/L6syDbI9JVEiE4pzoRERERERERERFphs9oJCIiIiIiIiIiIo0x0UhEREREREREREQaY6KRiIiIiIiIiIiINMZEIxEREREREREREWmMiUYiIiIiIiIiIiLSGBONREREREREREREpDEmGomIiIiIiIiIiEhjTDQSERERERERERGRxphoJCIiIiIiIiIiIo0x0UhEREREREREREQaY6KRiIiIiIiIiIiINMZEIxEREREREREREWmMiUYiIiIiIiIiIiLSGBONREREREREREREpDEmGomIiIiIiIiIiEhjTDQSEVGBXLhwAQMGDIC7uzuMjIxgYWEBDw8PtGrVCvPnz8fNmze1HWKx4+7uDolEgoiICG2HUmINGDAAxsbGePLkibZDUZBIJJBIJPlebt68eZBIJJg3b17hB0V5ps1+uHPnDvT19TFp0qSPvm0iIiKigmCikYiI8m3p0qVo3Lgxtm3bBqlUijZt2qBTp05wcnLC+fPnMW/ePGzcuFHbYZZogwcPhkQi4ev8nkuXLmH79u0YM2YMXFxctB1OrgqagKTSw8vLC/3798fKlStx7949bYdDpVRERAQkEgnc3d21HQoREekAA20HQEREuuXq1av48ssvYWBggK1bt6JXr15K9W/evMGBAweQlpampQiptJo2bRoMDAwwffp0bYei5M6dOwVabvz48ejbty/s7OwKOSLKD233w+zZs7FlyxbMnDkTO3fu1EoMRERERHnFRCMREeXLzp07IYRAr169VJKMAGBiYoKePXtqITIqza5fv47Tp0+jS5cucHBw0HY4SqpWrVqg5ezs7Ip1kjEgIACnTp2CEELboRQpbfdD5cqV0ahRI/z555+IjIyEs7Oz1mIhIiIiyg1vnSYionyJiYkBANjb2xdo+UePHmHcuHHw9PSEsbExrK2t0bx5c+zevVtt+/efa/jHH3+gSZMmsLKygkQiQVxcHIyMjGBmZobXr1+rXT4tLQ02NjbQ19dHVFSUUt2LFy8wffp0eHt7w9TUFBYWFmjQoAHWrl2rNnkSEBAAiUSCkydP4tixY2jdujVsbW0hkUhw9erVAr0ewNtbfqdMmYK6devC3t4eRkZGcHFxwaeffqr2WZcSiQS//vorAGDIkCGKW3DV3UqtyT5euHABbdu2hbW1NUxNTdGkSRMcP3482/14/fo1Fi1aBD8/P1hZWcHU1BSenp4YNGgQzp8/DwB4/PgxDAwMYGdnl+2o15iYGBgZGcHa2hrJycl5eg1XrVoFABg4cKBKnZeXFyQSicpzG//66y/F63bmzBmlujt37kAikaBhw4aKMplMhs2bN6NPnz6oXLkyzM3NYW5ujlq1amHBggXZxvrhLdIbN25U+vv9/nu/PLtnA75f/vTpUwwZMgSOjo4wNjZGtWrVsGLFimxfp2fPnmH48OEoV64cjI2N4eXlhe+++w6ZmZlF/gzRZ8+e4YsvvoC3tzcsLS1hbm4ONzc3dOnSJduRegcOHECHDh1gb28PQ0NDuLi4YOjQoQgLC1Npe/LkSUgkEgQEBCApKQlffvklPD09YWRkhK5du2L58uWQSCRq3yNyv//+OyQSCdq2basoy+0ZjefOnUOfPn3g7OwMIyMjODg4oFGjRli8eDHevHmjtn2vXr1Qvnx5GBoawtHREb17987xHDJo0CBkZmZi9erV2bZ5nybnxqtXr6J///7w9PSEiYkJbGxsULlyZQwePBiXL1/O0/bzIiYmBjNnzkTNmjVhbm4OCwsLVK1aFaNHj1Z73rt+/ToGDBgAJycnGBoawsHBAd26dcO5c+fUrv/99/PBgwfRtGlTWFhYwNLSEm3bts1xX/Ia2/vvOXXkx/rgwYOzLY+JicHo0aPh6uoKqVSqeB5nXj9vNPlMzcvrMm/ePFSoUEGxrffPVXm9lTq3c0t2j5F48OABRo0ahSpVqsDMzAyWlpaoWLEi+vTpo/azKCsrC1u2bEGLFi1ga2sLIyMjeHh44LPPPkN0dLRK+7z0AwDs3bsXrVq1Uhzj9vb2qF27NiZPnowXL17k6TUgIipVBBERUT58/fXXAoBwdnYWT58+zdeyR48eFRYWFgKAqFKliujevbvw9/cXxsbGAoCYMWOGyjJubm4CgBgzZowAIBo2bCj69esn6tatK16+fCm6desmAIj169er3eYff/whAIjWrVsrlV+9elU4OjoKAMLNzU106dJFtGrVShFf//79Vdbl7+8vAIhRo0YJiUQiateuLfr16yeaNGkirl27luv+y/clPDxcqfyTTz4RBgYGolatWqJz586iW7duonLlygKAMDExEadOnVJqHxgYKCpWrCgAiMaNG4vAwEDFvzNnzhTKPk6dOlUYGBiIunXrij59+ojq1asLAMLAwEAlHiGECAsLE56engKAsLKyEh06dBC9e/cW9evXF4aGhiIwMFDRtmvXrgKA2Lx5s9rX6dtvvxUAxIQJE3J9TeWcnJyERCIRcXFxKnVjx44VAMTGjRuVyj/77DMBQAAQ8+bNU6pbvny5ACBmzpypKHvy5IkAIGxtbUXjxo1Fnz59RKtWrYSVlZUAIOrWrStSUlJUti/fhtyZM2dEYGCgovz9/nv/dZo7d64AIObOnau0Pnn5kCFDhKOjo3B3dxd9+vQR/v7+Qk9PTwAQ33zzjUocT548ES4uLgKAKF++vOjdu7do27atMDY2Fj169Mj2/Zkd+XslL54+fSocHBwEAFGhQgXRtWtX0atXL9GwYUNhamoq2rRpo7KM/Jg3NDQUjRs3Fj179hTVqlVTvMcuXbqk1D4oKEgAEPXq1RM+Pj7C0tJSdOrUSfTs2VOMGjVKvHjxQkilUmFmZiZev36tNs727dsLAGLbtm2Ksuz6QQghFixYoOjH2rVri759+4o2bdoIV1dXta/l4sWLhUQiEXp6eqJevXqiV69eom7duor93Ldvn9q47t69KwCIWrVq5fxCv6cg58YjR44IAwMDxfu5d+/eonPnzqJ27dpCT09PLFq0KM/bz8m///4r7O3tBQBhb28vunTpInr27Cl8fHyEnp6eymu9a9cuYWhoqHgN+vXrJxo0aCAACD09PbFy5UqVbcjfz9OnTxd6enqiSZMmolevXopzp5mZmbh7965Gscnfc/7+/mr3c8OGDYpjXF15+/bthaurqyhbtqzo3r276Natm2L9efm80eQzNa+vy549e0SPHj0Ude+fq6ZMmaJ2v7PbZnbnlg/PkUIIce3aNWFubi4AiGrVqokePXqI7t27Cz8/PyGVSsWoUaOU2qenp4suXboIAMLc3FwEBASI7t27Cw8PDwFAODk5iYcPH+a7H2bPni0ACKlUKpo3by769esn2rRpo/i8u3DhQp5eAyKi0oSJRiIiypeIiAhhZmYmAAhTU1PRq1cv8d///lecPXtWvHnzJtvloqKihLW1tZBKpWL79u1KdXfu3FF8ETl+/LhSnbxcKpWKI0eOqKz3zz//FABEQECA2u127NhRABBbtmxRlCUnJwt3d3cBQCxbtkxkZmYq6iIjI4WPj48AINatW6e0LvkXPwBiw4YN2e5rdrL7snXo0CERHR2t0n7NmjUCgKhatarIyspSqpMnqrKLQ9N9lEgkSv2UlZUlxo8fLwCI5s2bKy2TmZkpatWqJQCIfv36icTERKX6Fy9eKCVAjx49qkiSfigzM1MR961bt9Tu24fu3bsnAIjKlSurrd+5c6cAIAYNGqRUXqNGDeHs7Cysra1F06ZNlerkSZpjx44pyhITE8Vff/0lZDKZUtuXL18qElTqEjHqvkTnVC6XW6IRgBg/frzIyMhQ1O3YsUPxRTspKUlpuU6dOgkAokePHkrH6t27d0W5cuUU6yyKROO8efMUPxh86PXr1+L8+fNKZT/99JMieXf//n2lup9//lkAEB4eHkp9IU/6yJNkL168UNmWPMn9YdJZCCGeP38uDAwMhKWlpVLCOLt+kL+vrK2tld4nQrw9Xk6cOCFevnypKNu/f78AIFxdXUVISIhS+3379gkDAwNhZWWlNlkuhBC2trbZJtPVKci5MSAgQAAQv/32m0r7qKioPB+TOUlMTBTly5cXAMTkyZNFWlqaUv3jx4/Fv//+q/j76dOnimTaqlWrlNru3r1b6OvrCwMDA5Ufe+TnW2NjY3Hy5ElFeXp6uuJ9MGTIEI1i0zTRKE9yfXisCpH7542mn6n5eV3Cw8MVP1gVREESjYMHDxYAxOLFi1Xax8XFqRxDX3zxhQAgWrZsKZ49e6Yoz8zMFDNnzhQAVM7zufXDmzdvhLGxsTA3N1c5Dwnx9sc8dZ/dRESlHRONRESUb6dPn1aMfnj/n6GhoejUqZNK0kCId18C5syZo3adu3btEgBEt27dlMrlX1A+HL0gl56eLuzs7IREIhGPHj1SqouJiREGBgbCwsJCJCcnK8rlSYwPE09yISEhAoCoU6eOUrn8i5+60Vd5kd8RY0II0ahRIwFA3Lx5U6k8t0SjpvvYp08flWVevHih6Of09HRF+e7duxUjat4vz0nVqlUFAHHjxg2l8gMHDuT4xV0d+cisLl26qK2Pi4sTEolEuLi4KMpiYmKERCIRgwcPFl26dBFSqVTxHsnMzBS2trbCyMgox+T5++TJTl9fX5W6oko0urm5idTUVJXlvL29BQClJEJ4eLiQSCTCyMhI6Uu43MqVK4s00SgfVbpnz55c22ZkZAhHR0ehp6en9su9EO+Spnv37lWUvZ9ozG6Ukfy92qJFC5W6H374QQAQw4YNUyrPrh9q1qwpAIhff/01130SQgg/Pz8BQJw4cUJt/YQJEwQA8d///ldtvfxcEBQUlKftFeTcKB8xmpCQkKdtFMSyZcuy7QN15s+fr0ggqSM/F37Yb/Lz7ZdffqmyTHBwsAAg3N3dNYpN00SjoaGhSt/I5fZ5o+lnan5eF20kGuU/3ly5ciXX9cfGxgpjY2NhY2MjYmNjVerf/zHs/YR0bv0QExMjgPyNJCYiIiH4jEYiIsq3pk2bIjQ0FAcPHsSkSZPQqFEjmJiYID09HX/99ReaNGmCX375RWmZQ4cOAYDaCWQAoFmzZgCAixcvqq3v2rWr2nKpVIp+/fpBCIHNmzcr1W3fvh0ZGRno1asXTE1N8xxLnTp1YG5ujmvXriE1NTXPsWgiJiYG69atw5QpUzB8+HAMHjwYgwcPxvPnzwEA9+7dy9f6NN3Hdu3aqZTZ2dnB1tYW6enpiI2NVZQfPnwYwNvnI0ql0jzFN3bsWADvnq0o9/PPPwMARo8enaf1AO+eG1qmTBm19ba2tqhVqxaePHmC+/fvAwCCgoIghECLFi3QokULyGQyxXMar169ivj4eDRs2BDGxsYq6wsODsaSJUswbtw4DBkyBIMHD8bChQsB5L+fNNG8eXMYGRmplFepUgUA8PTpU0XZmTNnIIRAs2bN4OjoqLJM//79s93O2rVrFe/H9/+FhoYCgNq6qVOnKq3D19cXADBjxgzs27cPKSkp2W7v6tWreP78OerUqQNPT0+1bXI6Xzg4OKBBgwZql+vQoQPKlCmDkydPqjyzc9OmTQCAwMDAbGOTe/bsGa5fvw5TU1P069cv1/axsbEIDg6GnZ1dts/zy+0cKH9/y9/vuSnIuVHeT59++ikuXLiAzMzMPG0rP+Tni6FDh+ap/enTpwFk3y/y9Zw6dUptvbpzmbpjpCCxaapOnTpwdXXNsU12nzeafqbm53XRBvl7cezYsTh+/DjS09OzbXvy5EmkpqaiRYsWaj8H9PT00KRJEwDqX4/s+qFs2bJwdXXFtWvXMG3atI96fici0mWcdZqIiArEwMAA7dq1U3xZSU1NxZEjR/Dll1/i7t27mDhxItq3bw8XFxcAUEzeUKNGjRzXm92D1d3c3LJdJjAwEMuXL8fmzZvx1VdfKcrliYNBgwYptZfH0qlTpxxjAd5OquDk5JTnWApi5cqVmDJlitqEn1xiYmK+1qnpPsr77UMWFhaIj49Xmsjl8ePHAN59Sc2LwMBAzJw5E1u2bMF3330HMzMzPH78GAcPHoS9vT26d++e53W9fPlSEVt2WrRogatXr+L48eOoVKmSYiKBFi1aICEhAQBw/PhxtGnTRqnufUlJSejbty8OHDiQ7Xby20+ayKmPACj1kXyyj+zeu1ZWVrCyssKrV69U6s6ePauYfEgddXVubm74z3/+o/g7MDAQJ0+exKZNm9ClSxcYGBigVq1aCAgIwKefforatWsr2srfuyEhIWoniHifuvNFTsenoaEh+vXrhxUrVmDLli2YMWMGAODWrVu4cuUKKlSooEhI5ET+nq9QoUKekuvh4eEA3iYc9fRy/p0/u3OgpaUlgHfv97zI77lx8eLFCA0NxYEDB3DgwAGYm5ujXr16aNmyJQIDA1G+fPk8bzs7+T1fyN+78glJPuTh4aHU7kPqjhP5MfJh8qog5zJN5OWzJLs2mn6m5ud10YZp06bhn3/+weHDh9GyZUsYGRmhbt26aNGiBQYNGoRKlSop2spfi127dhX6OWPLli3o27cvli5diqVLlyome2rfvj369++vlKgnIqK3mGgkIqJCYWxsjC5dusDPzw+VKlVCSkoKDh8+jBEjRgCAYmRM//798zzq7X0mJibZ1tWtWxfe3t64desWLl26hPr16+POnTsICQmBu7u7YmSHnDyWzp07w8bGJsftqhsxllMs+RUcHIzx48fDwMAAy5YtQ8eOHeHs7KzYRv/+/bF9+3a1M0TnRNN9zC0Z8r7cvtipY2lpiYEDB+Lnn3/G9u3bMXz4cKxevRpZWVkYNmwYDA0N87wua2trADkn+Vq0aIFly5bhxIkTGD16NE6cOIEqVarAyckJTk5OcHBwUCQYT5w4oVjmfdOnT8eBAwfg7e2N7777Dr6+vrC1tYVUKkV6erra17Eo5aeP5HLqq+zWt3HjRpXZzIG3s+KeOnUqT+9NPT09/Prrr/jyyy+xf/9+BAUF4fz58wgJCcH333+P2bNnY8GCBQDevXddXV3RvHnzHNdbv359lbLcjs9BgwZhxYoV2Lx5syLR+H7iLS/v5/y+5+X7ZGtrm2vyv2rVqmrL5Ulg+fs9L/J7bixXrhwuXLiAs2fP4tChQzh9+jTOnDmDEydO4Ouvv8aOHTvQoUOHPG9fnYKcLzRR1OeynGRlZeVYn5fPkuzaaPqZWpDzR1HI7jUyMzPDoUOH8O+//+LAgQM4deoULl68iPPnz2PRokX4+eefVa4vqlWrBj8/vxy35+3trVKWUz80bdoU9+/fx5EjR3DkyBGcOXMGe/bswZ49e7BgwQKcOXOm0H98JCLSdUw0EhFRoSpfvjyqVq2Ky5cvK40ccHFxwYMHD7BgwQJUrFix0Lc7aNAgfPnll9i0aRPq16+fY+LAxcVFMeryk08+KfRY8mPXrl0QQmDixIn4/PPPVeofPHhQoPV+zH2U33KW39vKxo0bh59//hmrVq1CYGAg1q1bBz09PYwcOTJf63FwcAAAxMfHZ9umWbNmMDAwwMmTJ/H48WM8ePAAY8aMUdQ3b94cf/zxB2JiYnD27FnFSK737dy5EwDw22+/oXr16kp1Be2nj0U+Ek0+YutDiYmJipGdRalatWqoVq0apk2bhoyMDOzcuVNx63n//v1RtWpVxUgrV1dXtQlOTfn5+cHLywt37txBcHAw6tati61bt0IikaiM8MuOPMbw8HDIZLJcEz3y9qampgXeJ/n7297ePl/L5efcCLxNQDVr1kyRhExMTMSiRYuwePFijBgxQuPbal1dXXHnzh3cu3dPcXtsTpycnBAaGoqwsDA0btxYpV4+mu3DUdkfIzb5DyJJSUlq6z+8Pb8wFfVnamHK6XXK7TXy9fVV9EVqaipWr16NSZMmYeLEiejduzesrKwUx5ePj0+RnDNMTU3RrVs3dOvWDQDw6NEjjB49GocPH8b06dOxffv2Qt8mEZEuKx4/ZRERkc7IbfRSZmam4jZBZ2dnRXnbtm0BvEvWFLZPP/0Uenp6+P3335GamoqtW7cCUL018GPEkh/y5IG629hCQ0Nx5coVtcvJv7hlZGSorf+Y+9i6dWsAwObNmyGTyfK8nLe3NwICAhASEoKvvvoKz58/R7t27eDu7p6v7ctvu719+3a2bSwsLODr64sXL17gxx9/BKA8YrFFixbIysrC4sWLkZSUhCZNmqgkj3Lqq4J80ZSvP7s+LEzy24FPnTqF6OholXptfFE2MDBA37590axZMwghcOPGDQBAvXr1YGtri3/++afIEjXy5/1t2rQJx48fR1RUFBo3bqy4DTc35cqVQ40aNZCSkoLff/891/ZOTk6oXr06IiMjcenSpXzHK4RAaGgo9PT0UKtWrXwtm59zozqWlpb49ttvYWhoiGfPnmV7K25eyc8X69evz1N7ecJTniD90IYNGwAA/v7+GsVVkNjkCfywsDC1576///5b45iy8zHP8bl93uRG/jrdvXtXpS4/r5GxsTEmTpwIT09PpKamKn7c+uSTTyCVSnH48OFsk76Fyc3NDbNnzwYAXL9+vci3R0Ska5hoJCKifJk1axYmT56MO3fuqNS9fv0aI0aMQEJCAszNzZUeNj916lRYWFhg3rx5WLduncokA0IIBAcH4+jRowWKq3z58mjZsiXi4uLwxRdf4MmTJ2jcuLHakR4jR46Es7MzfvnlFyxevFjpWXZyt2/fxu7duwsUS37Ib5PctGmT0hek2NhYDBkyJNsvdvLRO+r6Afi4+9ilSxfUrFkToaGhGDp0qMoXvdjYWJw9e1btsuPHjwcALF26FED+JoGR8/T0hLOzM+7fv5/jqEZ5YvHnn3+GRCJRui1XPupTPhnNh7dNA+/6auXKlUrlx44dw/fff5/vuHPrw8Lk4eGB9u3bIzU1FRMmTFB6P8hHRRWlTZs2qU2aR0ZG4tq1awDejYyVSqWYNWsW0tPT0aVLF1y9elVluZSUFGzbtk1t0jQv5Mm33377TZFUysskMO+TJxomTpyIoKAglfqTJ08qPfNS/hr369dP7cQl8sm05JPsvO/evXuIj49HzZo1c30Uwofyc278/vvvERkZqVJ+9OhRpKenw9LSUunW7RkzZqBq1aqKW9DzYvjw4ShXrhyOHz+OL7/8UuV5gE+ePEFISIji7xEjRsDc3BzHjh3DmjVrlNru27cPW7ZsgYGBASZOnJjnGAorNnd3d7i7uyMhIQH/+9//FOVCCHzzzTc4f/68xjFlp6g/U99XtmxZGBoaIjo6ukAjn+Xn2v/85z9ITk5WlIeEhCiOow+tXLlSMXnX+27cuIFHjx5BT09P8WOmo6MjxowZg9jYWHTr1k0xyvV9L1++xC+//JKvZOmjR4+wbt06vH79WqVu//79AJDrZD5ERKWSVua6JiIinfXZZ58JAAKAcHd3F506dRL9+/cXLVq0EJaWlgKAMDIyEjt37lRZ9ujRo8La2loAEM7OzqJNmzaif//+ok2bNsLBwUEAEF9++aXSMm5ubgKACA8PzzW2rVu3KmIDIFavXp1t26tXrwpnZ2cBQJQtW1Z88sknYsCAAaJDhw7C1dVVABB9+vRRWsbf318AEEFBQXl6rT6kbl/i4+MVcdjb24vu3buLTp06CQsLC1GlShXRtWtXAUBs2LBBaV1XrlwRenp6Qk9PT7Ru3VoMHTpUDBs2TJw7d65I9zG7/njw4IGoUKGCACCsra1Fx44dRZ8+fUT9+vWFoaGhCAwMVLs+mUymiNHNzU1kZmbm9eVUMmbMGAFA7NixI9s2x44dU7w3ateune2+ARD//vuvSv3vv/+uqK9Tp47o16+faNiwoQAgpk+frqj7UHbln3/+uaJv+vTpI4YNGyaGDRumqJ87d64AIObOnau0XHblcoGBgWrfM48ePRJOTk4CgHBychK9e/cW7du3F8bGxqJbt26K90RUVJTa9X5I/l7Jiy5duggAwsXFRXTs2FEMGDBAtGrVShgbGwsAonfv3irLjB8/XgAQEolE1KlTR/To0UP07t1b1K9fXxgZGQkA4s6dO4r2QUFBAoDw9/fPU0ytWrVS9I2JiYl49eqV2nY5vd6zZ89WeU+0bdtW8Vp+eJx89913Qk9PTwAQ1apVE127dhV9+/YVTZs2Febm5gKAOHTokMp2Vq5cKQCI2bNn52nfPpTXc6OVlZWQSCTC29tb9OjRQ/Tr1080aNBASCQSAUD89NNPSu3l77Xsju/sXLp0SdjZ2QkAwsHBQXTr1k307NlT+Pj4CD09PZXXeteuXcLQ0FDxOvfv3180atRI8f5YuXKlyjZy++zI7rjMb2xbtmxRrKt+/fqiR48ewtPTU5iZmYkJEyaofX02bNiQ6+uWl8+bovhMze516datm+I83b9/fzFs2DCVdWfnxYsXoly5copzT/fu3UWjRo2EgYGBmDFjhtpt1qpVSwAQnp6eomvXrqJ///7C399fGBgYCADiiy++UGqflpYmunfvLgAIqVQq6tWrJ3r37q3oO/lyb968USyTWz9cuXJFcU3ToEED0bdvX9GzZ09RuXJlAUCYm5uLS5cu5ek1ICIqTZhoJCKifImNjRXbtm0TQ4YMEbVr1xYODg7CwMBAWFhYiFq1aolJkyaJBw8eZLt8VFSUmDZtmqhRo4YwMzMTJiYmokKFCqJVq1bixx9/VEly5CfRmJKSokh2Ghsbi5cvX+bYPj4+Xnz99dfC19dXWFhYCCMjI+Hq6iqaNWsmvv32W5X9KIpEoxBCPHv2TAwdOlS4ubkJIyMj4e7uLiZNmiQSEhKyTRoJIcSOHTtE/fr1FQkKde0Kex9z6o+XL1+KefPmiZo1awpTU1NhamoqPD09RWBgoLhw4UK2r8unn34qAIhvvvkm2za5uXbtmgAgOnXqlG2bN2/eKBJUkydPVqkfOnSoACBsbGyyTXgeO3ZMNG3aVFhbWwtzc3NRv359sWnTJiFE9l/QsytPSUkRkydPFhUqVBBSqVSlXWEnGoV4e/wNHTpUODg4CCMjI1G5cmWxcOFCkZqaKgwNDYWenp7SF/Gc5CfReOrUKTFx4kTh6+sr7O3thaGhoXB2dhaffPKJ2L59u8jIyFC73IkTJ0SvXr2Ek5OTMDQ0FDY2NqJatWoiMDBQ7N69W6Snpyva5jfR+H6CqG/fvtm2y+31DgoKEt26dRMODg5CKpUKe3t70ahRI7FkyRK1r2VISIgIDAwU7u7uwsjISFhaWooqVaqIXr16iS1btoikpCSVZRo2bCj09fXF48eP87RvH8rruXHz5s1i0KBBolq1asLa2lqYmJiIihUrij59+ij9iCFX0ESjEEI8ffpUTJkyRVSpUkUYGxsLCwsLUbVqVTF27Fhx69YtlfZXr14V/fr1E46OjkIqlQo7OzvRpUsXcebMGbXrL2hCrSCx/f7778LHx0cYGRkJa2tr0aVLF3Hr1q1sE1mFlWgUovA/U7N7XWJjY8WwYcOEs7OzImnn5uaWY2zve/DggejZs6ewsbERxsbGonbt2mL9+vXZbvOvv/4SI0eOFLVq1RJlypQRRkZGws3NTXTs2FEcPHgw2+3s3r1bdOzYUXE82tnZiZo1a4rRo0eLw4cPK7XNrR8SExPFsmXLROfOnYWHh4cwMzMTlpaWolq1amLSpEl5ui4hIiqNJELkcxpLIiIiokKSnJwMJycnvHnzBo8fP1ZM7FIQ/v7+OH/+PB4/foxy5coVYpQl37lz59CkSRN4e3vj5s2b2g6H3nPv3j1UqVIFPXr0KBbPlSUiIiLKCZ/RSERERFqzbNkyvHr1Cn379tUoyQgAS5YsQWZmJhYvXlxI0ZUsGRkZap+TePfuXcVM3/l9TiEVva+//hpSqRTffvuttkMhIiIiyhVHNBIREdFHdffuXSxduhSRkZH4+++/YWJigps3b6JChQoar3vAgAHYtWsX7t+/r3Z26NIsKSkJFhYWcHd3R9WqVWFpaYlHjx4hJCQEGRkZaNasGY4dO6Yy2zZpz507d1C9enVMmDBBMVs6ERERUXHGRCMRERF9VCdPnkTz5s1hbGyMGjVqYMmSJQgICNB2WCVeRkYGZs+ejePHjyM8PBwvX76EqakpvLy80LdvX4wdOxaGhobaDpOIiIiIdBgTjURERERERERERKQxPqORiIiIiIiIiIiINMZEIxEREREREREREWmMiUYiIiIiIiIiIiLSGBONREREREREREREpDEDbQdQ0jx9+hT79++Hh4cHzMzMtB0OERERERERERFRviUnJyMsLAwdO3ZE+fLl87QME42FbP/+/Rg1apS2wyAiIiIiIiIiItLYL7/8gpEjR+apLRONhczDwwPA206oUaOGlqMhyj+ZTIbExERYWlpCKpVqOxwi0gCPZ6KSg8czUcnCY5qo5CjJx/ONGzcwatQoRa4rL5hoLGTy26Vr1KiBhg0bajkaovxLT09HfHw8bG1tYWhoqO1wiEgDPJ6JSg4ez0QlC49popKjNBzP+Xk0ICeDISIiIiIiIiIiIo0x0UhEREREREREREQaY6KRiIiIiIiIiIiINMZnNBIREREREREREeXDqxQZdoQ8wdFbz5GQnAobM2O0rl4OPX2cYWVasiaFyQ8mGomIiIiIiIiIiPLoj+AnmLP3JlIzst4VvniDSxEJWHo4FAu6VEdvPxftBahFTDRqiRACCQkJeP36NWQyGYQQ2g6J8kkikUAqlcLCwgI2NjaQSCTaDomIiIiIiIiIitAfwU8wbdf1bOtTM7IU9aUx2ahzz2hMSUmBh4cHJBIJxo8fr1J/9+5ddO3aFTY2NjAzM0PTpk1x4sQJtet69eoVJkyYACcnJxgbG8Pb2xs///xzkSf9ZDIZwsPDER0djZSUFGRkZDDRqGOEEMjIyEBKSgqio6MRHh4OmUym7bCIiIiIiIiIqIi8SpFhzt6beWo7Z99NvEopfXkCnRvROGfOHLx48UJt3cOHD9GoUSMYGBhg2rRpsLKywpo1a9CmTRscOnQILVu2VLRNT09Hq1atcOXKFUyYMAFeXl44dOgQxo4di+joaMybN6/I9iEuLg5paWkwNzeHg4MDpFIpR8PpICEEZDIZoqOjkZSUhLi4ODg6Omo7LCIiIiIiIiIqAjsvRyrfLp2DVFkWdl2OxNAmFYo4quJFp0Y0Xr58GT/++CPmz5+vtn7GjBl4+fIljhw5ghkzZmDs2LE4c+YMypcvj3HjximNGly7di2Cg4OxbNkyLFu2DCNGjMDu3bvRvXt3fPvtt3j06FGR7UdSUhIkEgmcnJxgaGjIJKOOkkgkMDQ0hJOTEyQSCZKSkrQdEhEREREREREVkaO3n+ezfXQRRVJ86UyiMTMzEyNGjEDbtm3RvXt3lfrk5GTs27cPAQEBqF27tqLc3Nwcw4cPx7179xAcHKwo37ZtG0xNTTFixAil9UyaNAkymQy///57ke2LEAL6+vrQ09OZl59yoKenBz09Pd7+TkRERERERFSCxSWl56t9YipvnS62fvjhB4SGhmLXrl1q669fv460tDQ0bNhQpa5BgwYAgODgYNSrVw9ZWVm4fPkyfHx8YGxsrNS2Xr16kEgkSknJ7Dx58gSRkZFKZTdu3ADw9jmM6enq34BZWVmQSCTIysrbcFvSDVlZWdn2uS6RyWTIyMjgMyeJSgAez0QlB49nopKFxzSRbrny+CXWnX+E+zH5u5PRwkhfp/MEBTlH6USiMTw8HHPnzsWcOXPg7u6OiIgIlTZPnz4FADg5OanUycuioqIAAAkJCXjz5o3atkZGRrCzs1O0zcm6deuyvY07MTER8fHxautkMhmkUikyMzNz3QbpBvnzGrPrc10ik8mQlJQEIQSkUqm2wyEiDfB4Jio5eDwTlSw8pomKvywhcDbsFbaEPMf1p8kFWkdDVzOdzhMkJibmexmdSDSOHj0aHh4emDx5crZtUlJSALxNFH5IPmpR3iantvL28jY5GTZsGNq0aaNUduPGDYwaNQqWlpawtbVVu9yrV68gkUigr6+f6zZIN0gkEkil0mz7XJfIZDJIJBLY2NjwoodIx/F4Jio5eDwTlSw8pomKrzRZJvZce4YN5x4hPE45N+Rqa4KnL1ORkZX7o9OMpXoY0MgTlia6e4xbWlrme5lin2jcsmULjh49itOnT+d4AjY1NQUApKWlqdSlpqYqtcmprby9vE1OXFxc4OLiorZOKpXC0NBQbZ382Yx8RmPJIZFIFJPDlAQGBgY5voeJSHfweCYqOXg8E5UsPKaJipeE5HRsvvgImy5EIPaDZzHWc7fFyGYeaFHVHjtDIjFt1/Vc17egc3XYWZkVVbgfRUF+CCnWica0tDRMnjwZ7du3h6OjIx48eADg3S3Qr169woMHD2BnZ4fy5csr1b1PXia/VdrGxgYmJiZq26alpSE2Nhb+/v5Fsk9ERERERERERFQ8PI5LwbqzYfjj30i8kb17xJ2eBGhb3REjmnqgjquNory339sBZ3P23kRqhurcG8ZSPSzoXF3RrrQp1onGN2/e4MWLFzhw4AAOHDigUr9lyxZs2bIFS5cuxejRo2FkZIQLFy6otLt48SIAwNfXF8DbkYQ+Pj64cuUK0tLSlG6h/ueffyCEULTVNa9SZNgR8gTH7kTjdWoGLIwN0KqaI3r6OMPKVHeH6xalu3fvYs2aNbh8+TIuX76MV69eYe7cuZg3b562QyMiIiIiIiKiInDtyUusPh2GQzef4f07oY2leujt64JhTSrArYz6EYm9/VzQxtsROy9H4uitZ4hPSoWtuTFae5dDj1KefynWiUYzMzPs2LFDpfzFixcYO3Ys2rZti2HDhqFmzZowNzdHp06dsHv3bly7dg21atUCACQlJWHt2rWoVKkS6tWrp1hHv379cO7cOaxevRoTJkxQlP/4448wMDBAnz59in4HC9kfwU/UZtQvhsVj6eFQLOhSejPqOblw4QKWLVuGihUrom7dujhx4oS2QyIiIiIiIiKiQpaVJRB0Nwa/nA7DP+HKk7SUMTPEoIbuGNjQDbZmuT/SwMpUimFNKmBgPSfEx8fD1taWj0JAMU80SqVS9OzZU6VcPut0xYoVleoXLVqE48ePo3Xr1vj8889haWmJNWvWICoqCgcOHIBEIlG0HTFiBDZs2IDJkycjIiICXl5eOHjwIPbs2YNZs2bB3d29qHevUP0R/CTHZwSkZmQp6plsVNa5c2fEx8fD2toa//77L/z8/LQdEhEREREREREVkrSMTOy98hSrz4ThQUySUl0FOzMMb1oBPXycYSzlpL2aKlGzkXh6euLcuXNo0KABFi9ejKlTp8LMzAyHDx9WmR3a0NAQx44dw6hRo7B9+3aMGzcOoaGhWL58ORYsWKClPSiYVykyzNl7M09t5+y7iVcpsiKOSNnr168xa9Ys1K9fH3Z2djAyMoKnpyemT5+uNLv3yZMnIZFIsHHjRixfvhyVK1eGsbExKleujOXLl6usNyAgAO7u7ggLC0OXLl1gZWUFS0tLdOvWDWFhYXmOz9bWFtbW1oWxq0RERERERERUTLxKkeGnoAdo8l0Qpu26rpRkrOtmg18G1sWxyf4YUN+NScZCUqxHNGbH3d0dQqifStzLywt79+7N03qsra2xYsUKrFixojDD++h2Xo5U+wBSdVJlWdh1ORJDm1Qo4qjeiYqKwtq1a9GjRw/0798fBgYGOHXqFJYsWYIrV67gyJEjSu2XL1+O58+fY9SoUbCwsMD27dsxceJExMfHY+7cuUptk5OTERAQgPr162PRokW4f/8+Vq5ciYsXL+LKlStwdHT8aPtJRERERERERNoXmZCCdWfD8XvwE6Skv5vgRSIBWldzwMhmHqjrZqvFCEsunUw0lmQD1l5EVMKbfC3z/FVqvtovORyKTRci8rWMk40Jtg5vkK9l5Dw8PPDkyROladHHjRuH2bNnY+HChfjnn3+Unp9579493LlzB87Ozoq2TZo0wcKFCzFs2DBFOQDExsbis88+w48//qgoa9asGbp374558+Zh1apVBYqZiIiIiIiIiHTLzahX+OV0GA7eeIbM92Z4MTLQQ8+6zhjWpAI8ypprMcKSj4nGYiYq4Q0i4lJyb6iB1IysIt/G+95/GGpGRgZev36NzMxMtGzZEgsXLsSlS5eUEo0DBgxQSiYaGhri888/R//+/fHXX39hzJgxSuufPn260t/dunVDlSpV8OeffzLRSERERERERFSCCSFw6t4LrD4dhvMP45TqbEylGNjQHYMausHO3EhLEZYuTDQWM042Jvle5vmr1DzfOg0AxgZ6cLQyztc2ChLX+1auXIlVq1bh1q1byMpSjjUhIUHpby8vL5Xlq1WrBgAqz160trZWe3u0l5cX/vzzTyQnJ8PMzAzPnz9Xqjc0NIStLYdJExEREREREemi9Iws7Lv2FGtOh+Fu9GulOldbU4xoWgE967rAxJDPXvyYmGgsZgpye/K6s+H4ev/tPLef1rbqR31G47JlyzBlyhS0bt0aEydORPny5WFoaIioqCgMHjxYJfFYFMqVK6f0t7+/P06ePFnk2yUiIiIiIiKiwpOYKsO2S4+x4Vw4ohPTlOpquVhjVDMPtPF2hL6eREsRlm5MNJYAPX2csfRwaJ5GNRpL9dCjrnOu7QrT5s2b4e7ujkOHDkFP791E54cPH1bb/s6dOyplt2+/TaR6eHgolb98+RLPnz9XGdV4584d2Nvbw8zMDABw9OhRpXobG5v87wgRERERERERacXTl2+w4Vw4tv/zBElpGUp1Lb3eTvDi524DiYQJRm1iorEEsDKVYkGX6pi263qubRd0rg4rE2mu7QqTvr4+JBKJ0kzhGRkZWLx4sdr2W7duxaxZsxTPaUxPT8cPP/wAfX19dOzYUaX94sWLlSaD2bNnD+7evYuRI0cqylq2bFlIe0NEREREREREH8vtp4lYcyYMf117ioz3Jngx1NdDdx8nDG/qAU97TvBSXDDRWEL09nMBAMzZe1PtyEZjqR4WdK6uaPcx9ezZEzNmzEC7du3QvXt3JCYmYtu2bUqzUL+vcuXKqF+/PkaPHg0LCwts27YNwcHBmD17NlxclOO3s7PD7t278fTpUwQEBOD+/ftYuXIlHBwcMG/evDzF9+rVKyxfvhwA8PTpUwDA6dOnsXDhQgBA586dUbNmzQLuPRERERERERHlhxACZx/EYvXpMJy5H6tUZ2UixcAGbhjUyA32Fvmbf4KKHhONJUhvPxe08XbEzsuROHY7GompMlgaS9GqmgN6+DjDyvTjjmSU++KLLyCEwLp16/DZZ5/B0dERffr0wZAhQxSTvLxvwoQJSExMxPLly/H48WO4urrixx9/xGeffabS1szMDCdOnMDnn3+O6dOnQwiBtm3b4vvvv1d5LmN2EhISMHv2bKWyoKAgBAUFAQCcnZ2ZaCQiIiIiIiIqYrLMLBy4/gyrT4fh9rNEpTpnGxMMa1IBvX1dYGbEdFZxxZ4pYaxMpRjWpAKGfcTJXnKjr6+PGTNmYMaMGSp1799O/b6JEydi4sSJeVq/h4cH9u7dW+D43N3ds42DiIiIiIiIiIrW61QZfg9+gvVnw/H0VapSXQ0nK4xs5oF21R1hoK+XzRqouGCikYiIiIiIiIiIPrrnr1Kx4Xw4tl16jNepyhO8NK9SFiObVUQDD1tO8KJDmGgkIiIiIiIiIqKP5u7z11h9Ogz7rkVBlvnuDkOpvgRdazthRDMPVHaw0GKEVFBMNBIRERERERERUYG9SpFhR8gTHLsTjdepGbAwNkCrao7o+d58EUIIXAiLw+rTYTh594XS8hbGBhhQ3w1DGrvDwZITvOgyJhqp2AgICMjXsxJPnjxZdMEQERERERERUa7+CH6COXtvIjUjS6n8Ylg8lh4OxdxO1WBmLMXq0w9xM0p5gpfyVsYY2qQC+tZzhTkneCkR2ItEhUAIwWdGEBERERERUanyR/ATTNt1Pdv61IwszNhzU6W8WjlLjPL3QPsa5SDlBC8lChONWiCRSJCZmcnkVAkhhIAQAnp6PDkSERERERFR6fAqRYY5e1WTiDlpVrksRjXzQKOKZZgPKaGYaNQCIyMjJCUlITU1FSYmJtoOhzSUmpqKrKwsmJqaajsUIiIiIiIioo9i5+VIldulczKqmQdmtPcqwoioOOAQLC2wsHg7c9KzZ8/w5s2bfD2XkIoPIQTevHmDZ8+eAQAsLS21HBERERERERHRx3H09vN8tb8e+aqIIqHihCMatcDKygrJyclITExEREQE9PT0IJFIOGxYh8hvl87KevvrjaWlJRONREREREREVCpkZglEJbzJ1zKJqbIiioaKEyYatUAikaB8+fIwNzdHYmIi0tLSOKpRx0gkEujp6cHU1FSRZGSimIiIiIiIiEqylPQM7AyJxNoz4XiSz0SjpbG0iKKi4oSJRi2RSCSwsrKClZWVtkMhIiIiIiIiIspWbFIaNp2PwKaLj/AypWAjE1tVcyjkqKg4YqKRiIiIiIiIiIhUhL1Iwpoz4dh1ORLp7038oq8nQetqDjh+JwbpmblPCGMs1UOPus5FGSoVE0w0EhERERERERGRwr8R8fjldBiO3YnG+096MzPUR996rhjapAKcrE3wR/ATTNt1Pdf1LehcHVYmvHW6NGCikYiIiIiIiIiolMvMEjh6OxqrTz/E5ccvlersLYwwuLE7BtRzg5Xpu4Rhbz8XAMCcvTeRmqE6stFYqocFnasr2lHJx0QjEREREREREVEplSrLxM6QSKw7G47w2GSlukr25hjRzANdapeHkYG+2uV7+7mgjbcjdl6OxLHb0UhMlcHSWIpW1RzQw8dZKTFJJR8TjUREREREREREpUx8cjo2XYjApguPEJ+crlTXwMMWo5pVhH/lstDTk+S6LitTKYY1qYBhTSoUVbikI5hoJCIiIiIiIiIqJSJik7H2bBh2hkQiVfbudmc9CdC+RjmMbOaBms7W2guQdBoTjUREREREREREJdyVxwlYfToMh289V5rgxUSqjz5+LhjWpAJcbE21FyCVCEw0EhERERERERGVQFlZAsdDY7D69EMERyQo1dmZG2JwI3d82sAN1qaGWoqQShomGomIiIiIiIiISpBUWSb2XInCmjNhCHuhPMGLR1kzjGzqga51nGAsVT/BC1FBMdFIRERERERERFQCJCSnY8vFR/j1QgRik5QneKnnbosRzTzwSVX7PE3wQlQQTDQSEREREREREemwJ/EpWHc2HL8HP8EbWaaiXCIB2no7YmQzD9RxtdFihFRaMNFIRERERERERKSDrke+xC+nw3DoxjNkvTfBi7FUD73qvp3gxd3OTHsBUqnDRCMRERERERERkY7IyhI4eS8Gv5wKw6XweKU6WzNDBDZ0x8CGbrA14wQv9PEx0UhEREREREREVMylZWRi75WnWHMmDPdjkpTq3MuYYnhTD/Ss68wJXkirmGgkIiIiIiIiIiqmXqXIsPWfR9h4LgIxr9OU6nxcrTGyWUW0quYAfU7wQsWARolGmUyGoKAgnDx5Erdu3UJMTAwkEgnKli2L6tWrw9/fH82bN4dUKi2seImIiIiIiIiISrzIhBSsPxuB34MfIzldeYKXVl4OGNnMA77utlqMkEhVgRKN0dHRWLZsGTZu3IjY2FgIIWBgYABbW1sIIfDvv//ir7/+wuLFi2FnZ4chQ4bg888/h4ODQ2HHT0RERERERERUYtyMeoXVp8Nw4MYzZL43w4uhgR56+DhjeNMKqFjWXIsREmUv34nGr7/+GkuXLgUAdO/eHe3atUPDhg3h6uqq1O7Ro0e4ePEiDhw4gJ9++gkrV67EtGnTMGvWrMKJnIiIiIiIiIioBBBC4NS9F1hzJgznHsQp1VmbSjGogRsGNXKHnbmRliIkypt8JxpXrVqFb775BsOGDYOpqWm27dzc3ODm5oY+ffogJSUFa9aswXfffcdEIxERERERERERgPSMLOy79hRrTofhbvRrpTpXW1MMb1oBPes6w9SQU2yQbsj3O/Xhw4cwNjbO1zKmpqb47LPPMGrUqPxujoiIiIiIiIhIZ7xKkWFHyBMcuxON16kZsDA2QKtqjujp4wwr07dzWCSmyrD90mNsOBeB54mpSsvXcrbCyGYV0ba6Iyd4IZ2T70RjfpOMhbUsEREREREREVFx9kfwE8zZexOpGVlK5RfD4rH0cCgmt6qMF0lp2P7PEySlZSi1+aSqPUY280C9CraQSJhgJN1UJGNvMzIysHfvXsTHx6NTp05wdHQsis0QERERERERERULfwQ/wbRd17OtT83IwreHQpXKDPX10K2OE0Y0qwBPe4uiDpGoyGmcaJw2bRqCgoIQHBwM4O0DTFu2bIkzZ85ACIGZM2fi4sWLqFixosbBEhEREREREREVN69SZJiz92ae21sY6WNgQ3cMbuQOe0ve/Uklh56mKzh8+DCaNm2q+Puvv/7C6dOn8cUXX2Dbtm0AgMWLF2u6GSIiIiIiIiKiYmnn5UiV26VzMq55JUxrW5VJRipxNB7R+OTJE1SqVEnx919//YUKFSookou3bt3C1q1bNd0MEREREREREVGxdPT283y1P3XvBUYH8M5PKnk0HtGYnp4OA4N3+cqgoCC0bNlS8beHhweePXum6WaIiIiIiIiIiIql+OT0fLVPTJUVUSRE2qVxotHFxQUXLlwA8Hb0YlhYGPz9/RX1MTExMDc313QzRERERERERETFSmKqDIsPheJ+TFK+lrM0lhZRRETapXGisW/fvvj111/RsWNHdOzYEZaWlmjfvr2i/sqVKxpNBHP37l0MGDAAXl5esLKygqmpKapWrYrJkyerHSl59+5ddO3aFTY2NjAzM0PTpk1x4sQJtet+9eoVJkyYACcnJxgbG8Pb2xs///wzhBAFjpeIiIiIiIiISrb0jCxsOBcO/yVBWHXqIfKbRmhVzaFoAiPSMo2f0Thjxgw8efIEf/75J6ysrLBp0yZYW1sDeJvI27dvHz7//PMCrz8yMhLPnj1Dt27d4OzsDAMDA9y4cQOrV6/Gb7/9hqtXr8Le3h4A8PDhQzRq1AgGBgaYNm0arKyssGbNGrRp0waHDh1SuqU7PT0drVq1wpUrVzBhwgR4eXnh0KFDGDt2LKKjozFv3jxNXhYiIiIiIiIiKmGEEDh88zm+OxyKiLgURbm5oT5SM7KQkZV7xtFYqocedZ2LMkwirdE40WhkZIR169Zh3bp1KnUWFhZ49uwZTE1NC7z+Tz75BJ988olKebNmzdC7d29s3LgR06ZNA/A26fny5UuEhISgdu3aAIBBgwbB29sb48aNQ2hoKCQSCQBg7dq1CA4Oxv/+9z9MmDABADBixAj06NED3377LYYMGQI3N7cCx01EREREREREJUfIowR8e/AOQh4lKMoM9CT4tIEbJn5SCcduR2Paruu5rmdB5+qwMuGt01QyaXzrdI4r19ODlZUVpNLCP4DkScCEhLcHeHJyMvbt24eAgABFkhEAzM3NMXz4cNy7dw/BwcGK8m3btsHU1BQjRoxQWu+kSZMgk8nw+++/F3rMRERERERERKRbImKTMXZrCHr8fF4pydi+hiOOTfbHvM7esDUzRG8/FyzpURPGBupTLcZSPSzpURO9/Vw+VuhEH12+RzQeP35c7QjDvDh27JjS7cv5kZqaiqSkJKSmpuL27dv48ssvAUDxPMjr168jLS0NDRs2VFm2QYMGAIDg4GDUq1cPWVlZuHz5Mnx8fGBsbKzUtl69epBIJEpJyew8efIEkZGRSmU3btwAAMhkMqSn52/WKaLiQCaTISMjAzIZZ0Ej0nU8nolKDh7PRCULj2ndkJCSjpUnw7Et+Alkme9uia7jYoUv21SGj6s1ACh99+9aywHNK9tiz5WnOHH3BRJTM2BpbIBPqtqja+1ysDKRMldQwpTk47kg+5TvRGPbtm3RtGlTTJ48Ge3atYO+vn6uQe3fvx8//vgjLly4UOADau3atYpbnAHA3d0dW7ZsQdOmTQEAT58+BQA4OTmpLCsvi4qKAvB2FOSbN2/UtjUyMoKdnZ2ibU7WrVuH+fPnq61LTExEfHx8rusgKm5kMhmSkpIghCiS0chE9PHweCYqOXg8E5UsPKaLt7SMLPxxNQa//vMcSemZinJnKyOMbeKE5p7WkEiycvzO37mqBTpXtVAqy3zzGvFviixs0pKSfDwnJibme5l8JxqvXLmCyZMno3PnzihbtixatmyJevXqoWLFirC1tYUQAvHx8bh//z4uXryI48eP4+XLl2jdujWuXr2a7wDlunbtiqpVqyIpKQlXrlzBvn37EBsbq6hPSXn7EFYjIyOVZeWjFuVtcmorby9vk5Nhw4ahTZs2SmU3btzAqFGjYGlpCVtb2zzsGVHxIpPJIJFIYGNjU+JOkkSlDY9nopKDxzNRycJjunjKyhLYf+M5lh17gKevUhXl1qZSjA/wQF9fZxhmc1s0lV4l+Xi2tLTM9zL5TjRWr14df//9Ny5cuICVK1di79692L59u2KSFTkhBCwtLdG9e3eMGTMGfn5++Q7ufc7OznB2fjsrU9euXdGjRw/4+fkhJSUFM2bMUEw4k5aWprJsaurbE4S8TU5t5e3zMoGNi4sLXFzUP1tBKpXC0NAw13UQFUcGBgZ8DxOVEDyeiUoOHs9EJQuP6eLl/MNYLDoYihtRrxRlhgZ6GNLYHWMDPDl5C+WopB7PBUmcFnjW6YYNG6Jhw4bIzMxESEgIbt++jRcvXkAikaBs2bKoXr066tSpAz29osn216xZE3Xq1MHKlSsxY8YMlC9fHgDU3vIsL5PfKm1jYwMTExO1bdPS0hAbGwt/f/8iiZuIiIiIiIiIiof70a+x+FAojofGKJV3q+OEKa0rw9km90FIRPROgRONcvr6+qhXrx7q1atXGPHky5s3bxTPRKhRowaMjIxw4cIFlXYXL14EAPj6+gJ4Oxu2j48Prly5grS0NKVbqP/55x8IIRRtiYiIiIiIiKhkiXmdih+O3sfvwY+R9W6eFzT0KIOZ7b1Qw9lKe8ER6bBi/3CB58+fqy0PCgrCzZs3FTNKm5ubo1OnTjh58iSuXbumaJeUlIS1a9eiUqVKSsnQfv36ISUlBatXr1Za748//ggDAwP06dOnCPaGiIiIiIiIiLQlJT0D/z12HwFLT2L7P++SjJ725lg/2BfbRtRnkpFIAxqPaCxqY8aMwbNnz9CiRQu4ubkhNTUVISEh+O2332BhYYHvv/9e0XbRokU4fvw4Wrdujc8//xyWlpZYs2YNoqKicODAAaXnSI4YMQIbNmzA5MmTERERAS8vLxw8eBB79uzBrFmz4O7uroW9JSIiIiIiIqLClpklsDPkCb7/+x5iXr+br8HO3AiTW1VGb19nGOgX+7FYRMVesU809uvXD5s2bcLmzZsVz4B0c3PDqFGj8MUXX8DV1VXR1tPTE+fOncP06dOxePFipKenw8fHB4cPH0bLli2V1mtoaIhjx45h1qxZ2L59O+Li4lCxYkUsX74c48aN+9i7SURERERERESFTAiBk/deYPHBUNyNfq0oN5HqY2QzD4xs5gEzo2KfGiHSGcX+aOrduzd69+6d5/ZeXl7Yu3dvntpaW1tjxYoVWLFiRUHDIyIiIiIiIqJi6NbTV1h0MBRnH8QqyvQkQG9fF3zeqjIcLI21GB1RyVTsE41ERERERERERHn19OUb/Ofvu9hzJQrivYleAqqUxYx2XqjiaKG94IhKOCYaiYiIiIiIiEjnvU6V4eeTD7HubDjSMrIU5dXKWeKrDl5o7GmnxeiISgeNE40LFy7EsGHDUK5cucKIh4iIiIiIiIgoz2SZWdj+z2P8eOw+4pPTFeXlrIwxtXUVdKvjBD09SQ5rIKLCovGUSnPmzIGrqys6deqEP//8E5mZmYURFxERERERERFRtoQQOHzzOdr8cBpz9t5SJBktjAwwrW0VBE0NQI+6zkwyEn1EGo9ovHTpEtatW4fffvsNBw8ehL29PQIDAzF06FBUrly5MGIkIiIiIiIiIlK48jgB3x68g+CIBEWZgZ4EA+q7YuInlVDG3EiL0RGVXhqPaPTz88OqVavw7NkzbNiwAZUrV8aSJUvg5eWFZs2aYfPmzXjz5k1hxEpEREREREREpdjjuBSM23YZ3VaeV0oytvF2wN+fN8P8LtWZZCTSIo0TjXImJiYYNGgQTp06hbt372LatGl4+PAhBg8ejHLlymHs2LG4evVqYW2OiIiIiIiIiEqJlynp+Hr/bXyy7CQOXH+mKK/tYo0doxvil4G+8ChrrsUIiQgoxETj+ypUqIC6devCy8sLQggkJSVhzZo1qFu3Ljp06IBnz57lvhIiIiIiIiIiKtVSZZlYffohmi0Jwrqz4ZBlCgCAq60pfurvgz1jG8HP3VbLURKRnMbPaHzfrVu3sG7dOmzZsgVxcXEoV64cZs2aheHDh8PQ0BArV67Ef/7zHwwdOhSHDh0qzE0TERERERERUQmRlSXw1/WnWHrkLiIT3j2OzcpEiomfVMKnDVxhZKCvxQiJSB2NE41JSUnYvn071q1bh+DgYOjp6aFt27YYOXIkOnToAD29d4MmFyxYAHNzc8yfP1/TzRIRERERERFRCXQxLA7fHryD65GvFGWG+noY3Ngd4wI8YWUq1WJ0RJQTjRONDg4OSE1NhbOzM+bMmYNhw4bB2dk52/Zubm6cHIaIiIiIiIiIlDyIScLiQ6E4didaqbxL7fKY2roKXGxNtRQZEeWVxonGVq1aYcSIEWjXrp3S6MXs9OnTB3369NF0s0RERERERERUzL1KkWFHyBMcuxON16kZsDA2QKtqjujp46wYmfjidRr+e/wetv/zBJlZQrFs/Qq2+KqDF2o6W2speiLKL40TjX/++WchhEFEREREREREJckfwU8wZ+9NpGZkKZVfDIvH0sOhmNWxGhKS07Hq1EMkp2cq6iuWNcOMdl74xMseEonkY4dNRBrQONF4/PhxHDt2DIsWLVJbP2PGDLRu3RrNmzfXdFNEREREREREpAP+CH6CabuuZ1ufmpGFWX/eVCqzMzfEpJaV0dfPBQb6ud8xSUTFj8aJxu+++w5WVlbZ1oeHh+O7775jopGIiIiIiIioFHiVIsOcvTdzb/j/jAwkGNmsIkb5V4S5kcZpCiLSIo1/Irh27RoaNGiQbX39+vVx7do1TTdDRERERERERDpg5+VIldulczI2wBNTWldhkpGoBNA40fjq1SuYmZllW29iYoKEhARNN0NEREREREREOuDo7ef5an8xLL6IIiGij03jRKOTkxNCQkKyrQ8JCYGjo6OmmyEiIiIiIiIiHfA6NSNf7RNTZUUUCRF9bBonGjt06IBff/0Vx44dU6k7fvw4fv31V7Rv317TzRARERERERGRDsjKEvlqb2ksLaJIiOhj0/gBCF999RV27dqFNm3aoF27dqhduzYA4OrVqzh06BAcHR0xe/ZsTTdDRERERERERMXYo7hkfL3/Du48f52v5VpVcyiiiIjoY9M40ejg4IDz589jzJgxOHToEA4ePAgAkEgkaNeuHVasWIFy5cppHCgRERERERERFT/JaRn4KegB1p4JR3pm3ieBAQBjqR561HUuosiI6GMrlCmd3NzccPDgQSQkJODBgwcAAE9PT9jY2BTG6omIiIiIiIiomBFC4M+rUVh8KBTRiWmKcg87M/hXKYsN5yJyXceCztVhZcJbp4lKikKdO97GxgZ+fn6FuUoiIiIiIiIiKmauR77EvH23cPnxS0WZuZEBPvukEgIbucPQQA9ejpaYs/cmUjNURzkaS/WwoHN19PZz+YhRE1FRK7REY0pKCiIiIhAXFwchVB/82qxZs8LaFBERERERERFpwYvXaVh6JBQ7QiLx/lf/3r7O+KJNVZS1MHpX5ueCNt6O2Hk5EsduRyMxVQZLYylaVXNADx9nWJlyJCNRSaNxojElJQWTJ0/Ghg0bkJGhOoW9EAISiQSZmZmaboqIiIiIiIiItCA9IwubLkTgv8fu43Xau+/+dVytMa+TN2q5WKtdzspUimFNKmBYkwofKVIi0iaNE42fffYZ1q1bh/bt26NFixYoU6ZMYcRFRERERERERMXAybsxWLD/NsJeJCvK7C2MML1dVXSt7QQ9PYkWoyOi4kTjROOePXvQr18/bN26tTDiISIiIiIiIqJiICI2GV/vv43joTGKMkN9PQxrWgHjmnvC3KhQp30gohJA47NCamoqAgICCiEUIiIiIiIiItK2pLQMLD9xH+vPhkOW+e5BjC29HDCrgxfc7cy0GB0RFWcaJxp9fX1x//79woiFiIiIiIiIiLQkK0tgz5UoLD4cihev0xTlFcuaYU4nb/hXLqvF6IhIF2icaFy8eDE6deqE3r17w9fXtzBiIiIiIiIiIqKP6NqTl5i77xauPnmpKLMwMsBnLSshsJE7pPp62guOiHSGxonG1atXw9nZGQ0aNEDDhg3h4eEBfX19pTYSiQTr1q3TdFNEREREREREVIhiXqdiyeG72BkSqSiTSIA+vi6Y2qYK7MyNtBgdEekajRONGzduVPz/uXPncO7cOZU2TDQSERERERERFR/pGVnYeD4c/zv+AElpGYryum42mNfJGzWcrbQYHRHpKo0TjVlZWYURBxERERERERF9BEGhMfh6/22ExSYryhwsjTCzvRc61yoPiUSixeiISJdxLnoiIiIiIiKiUiDsRRK+3n8bQXdfKMoMDfQwomkFjA3whJkRUwREpJlCO4skJyfjwoULiI6ORsuWLeHg4FBYqyYiIiIiIiKiAnqdKsOKEw+w/lw4ZJlCUd66mgNmdagG1zKmWoyOiEqSQkk0/vzzz5gxYwYSExMhkUhw9OhRODg4ICYmBq6urli+fDlGjBhRGJsiIiIiIiIiojzIyhLYdTkS3x2+i9ikNEV5JXtzzO3kjSaV7LQYHRGVRBrPT79r1y6MGzcOzZs3x9q1ayHEu19H7O3t0bZtW/z555+aboaIiIiIiIiI8ujK4wR0+/k8vth5XZFktDA2wJyO1XDws6ZMMhJRkdB4ROPSpUvRvHlz7NmzB3FxcRg+fLhSva+vL9asWaPpZoiIiIiIiIgoFzGJqVh8OBS7L0cpyiQSoK+fK6a2rowy5kZajI6ISjqNE403btzAd999l219uXLlEBMTo+lmiIiIiIiIiCgbaRmZWH82AitO3Edyeqai3M/dBnM7eaO6k5UWoyOi0kLjRKO+vj6ysrKyrX/69CnMzMw03QwRERERERERfUAIgROhMfh6/21ExKUoystZGWNGey90qlkOEolEixESUWmicaKxVq1aOHLkCCZOnKhSl5WVhR07dsDPz0/TzRARERERERHRex7EJOHr/bdx6t4LRZmhgR5GN/PA6ICKMDUslPlfiYjyTOPJYMaPH49Dhw5h9uzZiI+PB/A2wXj37l306tULt27dUpuEJCIiIiIiIqL8S0yVYeH+22j742mlJGNbb0ccn+yPya2rMMlIRFqh8ZmnT58+uHHjBr755hssWrQIANC2bVsIISCEwLx589CuXTuNAyUiIiIiIiIqzbKyBHaGRGLJkVDEJqUryis7mGNeJ2808uRM0kSkXYXyE8fChQvRvXt3bN26FaGhoRBCoFKlShg4cCB8fX0LYxNEREREREREpVbIowTM/+sWrke+UpRZmUgxuVVlDKjvCgN9jW9YJCLSWKGNpfbx8YGPj09hrY6IiIiIiIio1ItOTMXiQ6HYcyVKUaYnAfrXd8XkVlVga2aoxeiIiJRp/JOHh4cH9u3bl239/v374eHhoelmiIiIiIiIiEqNVFn3W+uOAABDvUlEQVQmfgp6gOb/OamUZKxXwRb7JzTFwq41mGQkomJH4xGNERERSEpKyrY+OTkZjx490nQzRERERERERCWeEALH7sTg6/238Tg+RVFe3soYMzt4oUONcpBIJFqMkIgoe0X+EIfo6GiYmpoWePl79+5hzpw5aNCgAcqWLQsLCwvUrl0b33zzDZKTk1Xa3717F127doWNjQ3MzMzQtGlTnDhxQu26X716hQkTJsDJyQnGxsbw9vbGzz//DCFEgeMlIiIiIiIiUudVigxrz4Rh4Pp/MWjrbQxc/y/WnQ3HqxQZAOBBzGsMWv8PRmz6V5FkNDLQw2efVMLxKQHoWLM8k4xEVKwVaETj6dOncfLkScXfu3fvxoMHD1TaxcfH47fffkPt2rULGh/Wr1+Pn376CZ07d8aAAQMglUoRFBSEWbNm4Y8//sDFixdhYmICAHj48CEaNWoEAwMDTJs2DVZWVlizZg3atGmDQ4cOoWXLlor1pqeno1WrVrhy5QomTJgALy8vHDp0CGPHjkV0dDTmzZtX4JiJiIiIiIiI3vdH8BPM2XsTqRlZ7wpfvMGliAQsORwKP3dbXAyLQ0bWu4EvHWqUw4z2VeFsU/DBO0REH1OBEo1BQUGYP38+AEAikWD37t3YvXu32raenp744YcfChxgz549MWPGDFhZWSnKRo8ejUqVKuGbb77BunXrMH78eADAjBkz8PLlS4SEhCiSm4MGDYK3tzfGjRuH0NBQxa8/a9euRXBwMP73v/9hwoQJAIARI0agR48e+PbbbzFkyBC4ubkVOG4iIiIiIiIi4G2Scdqu69nWp2Vk4eyDWMXfVR0tMLeTNxpWLPMxwiMiKjQFunV60qRJCA8PR1hYGIQQ+PHHHxEeHq70LyIiArGxsbh37x58fX0LHKCvr69SklGuT58+AICbN28CePssyH379iEgIEBpBKW5uTmGDx+Oe/fuITg4WFG+bds2mJqaYsSIESr7JpPJ8Pvvvxc4ZiIiIiIiIiLg7e3Sc/bezHP7me2qYv+EJkwyEpFOKtCIRisrK0XyLygoCNWqVUPZsmULNbDcREZGAgAcHBwAANevX0daWhoaNmyo0rZBgwYAgODgYNSrVw9ZWVm4fPkyfHx8YGxsrNS2Xr16kEgkSknJ7Dx58kQRh9yNGzcAADKZDOnp6fnfMSItk8lkyMjIgEwm03YoRKQhHs9EJQePZyLd9fs/j5Rvl86FBAJZmRlIzyzCoIio0JTkz+iC7JPGs077+/truop8y8zMxNdffw0DAwP0798fAPD06VMAgJOTk0p7eVlUVBQAICEhAW/evFHb1sjICHZ2doq2OVm3bp3iFvIPJSYmIj4+Pm87RFSMyGQyJCUlQQgBqVSq7XCISAM8nolKDh7PRLrr8M2n+Wt/4yk6VTEvomiIqLCV5M/oxMTEfC+jcaIRADIyMvDnn3/i0qVLSEhIQFaW8q81EokE69atK4xNAXh7e/OFCxfw7bffokqVKgCAlJT/n5HLyEilvXzUorxNTm3l7eVtcjJs2DC0adNGqezGjRsYNWoULC0tYWtrm8c9Iio+ZDIZJBIJbGxsStxJkqi04fFMVHLweCbSXamZ+Zsl+k0m+F2SSIeU5M9oS0vLfC+jcaIxPj4ezZs3x82bNyGEgEQigRBvZ8mS/39hJhpnz56NFStWYOTIkZgxY4ai3NT07SxcaWlpKsukpqYqtcmprby9vE1OXFxc4OLiorZOKpXC0NAw13UQFUcGBgZ8DxOVEDyeiUoOHs9EusnEUD9f7a1MDHmcE+mYkvoZXZDEaYEmg3nfrFmzEBoairVr1+Lhw4cQQuDIkSO4c+cO+vXrBz8/P8TFxWm6GQDAvHnzsHDhQgwZMgSrVq1SqitfvjwAqL3lWV4mv1XaxsYGJiYmatumpaUhNjZW7W3VRERERERERHl19n4sQp+9ztcyrao5FFE0RERFT+NE44EDBzBo0CAMGTJEMaRSX18fVapUwZYtW2BiYqI08rCg5s2bh/nz5yMwMBBr166FRKI8/LxGjRowMjLChQsXVJa9ePEiAChmv9bT04OPjw+uXLmiMqrxn3/+gRBCo5myiYiIiIiIqPTKzBJY9vddDFx/Ccn5mNXFWKqHHnWdizAyIqKipXGi8fnz5/Dz8wPwdqgo8O5WZQDo2rUr9u3bp9E2FixYgPnz52PgwIFYv3499PRUwzY3N0enTp1w8uRJXLt2TVGelJSEtWvXolKlSqhXr56ivF+/fkhJScHq1auV1vPjjz/CwMAAffr00ShmIiIiIiIiKn2iE1PRf81F/O/EA/z/U8VQx9U6T8su6FwdViYl6xlvRFS6aPyMRltbWyQnJwMALCwsIJVK8eTJE0W9VCpFQkJCgdf/008/Ye7cuXB1dUXLli2xbds2pXoHBwe0atUKALBo0SIcP34crVu3xueffw5LS0usWbMGUVFROHDggNIoyBEjRmDDhg2YPHkyIiIi4OXlhYMHD2LPnj2YNWsW3N3dCxwzERERERERlT6n773A579fRVxyOoC3IxQXdK6OXr7O2PFvJObsvYnUjCyV5eTtevupnwOAiEhXaJxorFy5Mm7fvg3g7S3JderUwcaNGzF48GBkZmZi06ZN8PDwKPD6g4ODAQCPHz9GYGCgSr2/v78i0ejp6Ylz585h+vTpWLx4MdLT0+Hj44PDhw+jZcuWSssZGhri2LFjmDVrFrZv3464uDhUrFgRy5cvx7hx4wocLxEREREREZUuGZlZ+PHYffx08t0oRk97c6wc4IPKDhYAgN5+Lmjj7YidlyNx9NYzxCelwtbcGK29y6GHjzOsTDmSkYh0n8aJxtatW+M///kPVqxYASMjI0yePBl9+/aFra0tJBIJ3rx5o3J7cn5s3LgRGzduzHN7Ly8v7N27N09tra2tsWLFCqxYsaKA0REREREREVFp9vxVKiZuv4J/IuIVZT18nPF1V2+YGip/5bYylWJYkwoYWM8J8fHxsLW1LXGz1BJR6aZxonHmzJmYOnUqjIyMAAC9e/eGgYEBtmzZAn19ffTs2ZPPOyQiIiIiIqIS5+TdGEz+4xri//9WaROpPhZ08UYvX94CTUSlk8aJRolEokgyynXv3h3du3fXdNVERERERERExU5GZha+P3oPP598qCir9P+3Slf6/1uliYhKI40TjURERERERESlxbNXbzBx+xUER7yb9LRXXWfM76J6qzQRUWmT77Pgpk2bCrShQYMGFWg5IiIiIiIiouIgKDQGk/+4ioQUGYC3t0p/0606uvs4azkyIqLiId+JxsGDB0MikUDIp9LKA4lEwkQjERERERER6SRZZhb+8/dd/HIqTFFWxcECPw2oA0973ipNRCSX70RjUFBQUcRBREREREREVOw8ffkGE7ZfQcijd7dK9/VzwdxO3jAx1NdiZERExU++E43+/v5FEQcRERERERFRsXL8TjSm7LiGl/9/q7SpoT6+7VYDXes4aTkyIqLiiU+qJSIiIiIiInqPLDMLS4/cxerT726VrupogZ8G+KBiWXMtRkZEVLwx0UhERERERET0/yITUjBh+xVcefxSUdavnivmdqoGYylvlSYiygkTjUREREREREQAjt6OxtQd1/Dqzdtbpc0M9fFt9xroUpu3ShMR5QUTjURERERERFSqpWdkYcnhUKw9G64o8ypniZ/614EHb5UmIsozJhqJiIiIiIio1HoSn4Lx26/g2pOXirIB9V0xuyNvlSYiyi+NEo2ZmZmIioqCubk5bG1tCysmIiIiIiIioiJ35NZzfLHjGhJTMwAA5kYGWNS9BjrVKq/lyIiIdJOeJgvLZDJ4eHhg3bp1hRUPERERERERUZFKz8jC/L9uYdTmEEWS0bu8JfZPaMIkIxGRBjQa0WhsbAw7OzuYmZkVVjxEREREREREReZJfArGb7uMa5GvFGUDG7jhqw5evFWaiEhDGo1oBID27dtj//79hRELERERERERUZE5fPMZ2v/vjCLJaGFkgJ/6++DrrtWZZCQiKgQaJxqXLFmCZ8+eITAwEDdu3EBqamphxEVERERERERUKNIyMjFv3y2M3nIZr///VunqTpbYP7EJOtQsp+XoiIhKDo1nnba3t4dEIsG1a9ewZcsWtW0kEgkyMjI03RQRERERERFRvjyOS8G4bZdxI+rdrdKDG7ljRvuqMDLgKEYiosKkcaJx0KBBkEgkhRELERERERERUaE5eOMZvtx5Ha/T3g58sTA2wJIeNdGuBkcxEhEVBY0TjRs3biyEMIiIiIiIiIgKR6osE98evINNFx4pymo6W2FFPx+4ljHVYmRERCWbxolGIiIiIiIiouIiIjYZ47Zdxq2niYqyIY3dMb0db5UmIipqGk8GAwCZmZnYtGkTPv30U7Rq1QpXrlwBACQkJGDTpk2IiooqjM0QERERERERZWv/9afouPysIsloaWyAVZ/WxdxO3kwyEhF9BBqPaExJSUHr1q1x/vx5mJmZISUlBQkJCQAAS0tLTJ8+HUOHDsXChQs1DpaIiIiIiIjoQ6myTCw8cBtbLj5WlNVyscaKfnXgYstbpYmIPhaNRzTOmzcP//77L/bs2YOwsDAIIRR1+vr66N69O44cOaLpZoiIiIiIiIhUhMcmo/vK80pJxmFNKmDHqIZMMhIRfWQaJxp37NiBkSNHokuXLtDTU12dp6cnIiIiNN0MERERERERkZJ9156i4//O4Pazd7dKrx5YF7M7VoOhQaE8KYyIiPJB41unnz59ilq1amVbb2pqitevX2u6GSIiIiIiIiIAb2+Vnv/XbWz/590oxtou1ljRvw6cbTiKkYhIWzRONJYpUybHyV5u3bqF8uXLa7oZIiIiIiIiIjx8kYRxWy8j9Pm7AS0jmlbAF22qchQjEZGWaXwW/uSTT7BhwwakpKSo1IWHh2P9+vVo27atppshIiIiIiKiUu7PK1HotPysIslobSrF2kG++KoDb5UmIioONB7ROHfuXPj6+sLPzw/9+vWDRCLB4cOHcfToUaxatQpGRkaYMWNGYcRKREREREREpVCqLBPz9t3Cb8FPFGU+rtZY3t8HTtYmWoyMiIjep3Gi0dPTE8ePH8fQoUMxZ84cAMB//vMfAED16tWxefNmuLi4aLoZIiIiIiIiKoUexCRh/DblW6VH+XtgausqkOpzFCMRUXGicaIRAOrWrYtr167h5s2buHPnDoQQqFSpEurUqVMYqyciIiIiIqJSaM+VSHy15yZS0jMBADamUnzfuxZaVHXQcmRERKSOxonGzMxM6OvrA3g7grF69eoaB0VEREREREQl26sUGXaEPMGxO9F4nZoBC2MDtKrmiJ4+zjA00MPcfTfxx7+Riva+bjb4X786KM9bpYmIii2NE43ly5fHgAEDMGjQINSuXbsQQiIiIiIiIqKS7I/gJ5iz9yZSM7KUyi+GxeO7w6GwMZUiOjFNUT4moCImt6rMW6WJiIo5jc/SHh4e+PHHH1G3bl3UqlULy5YtQ3R0dGHERkRERERERCXMH8FPMG3XdZUko1x6RpYiyWhrZogNQ/zwZduqTDISEekAjc/UFy5cwL179zBz5ky8fv0aU6dOhYuLCzp27IgdO3YgPT29MOIkIiIiIiIiHfcqRYY5e2/mqa2eBPhtRAM0r2JfxFEREVFhKZSfhDw9PfH1118jLCwMQUFBGDhwIM6ePYs+ffrA0dERo0ePLozNEBERERERkQ7beTky25GMH8oSwNkHsUUcERERFaZCH3vu7++PdevW4fnz51izZg2ysrKwZs2awt4MERERERER6Zijt5/nsz0fy0VEpEs0ngxGnRMnTmDTpk3YvXs3kpKSUKZMmaLYDBEREREREemQ16kZ+WqfmCorokiIiKgoFFqiMTQ0FJs2bcLWrVsRGRkJAwMDtGvXDoGBgejYsWNhbYaIiIiIiIh0lIVx/r6CWhpLiygSIiIqChonGlesWIFNmzYhJCQEQgj4+PhgypQp6N+/P+zs7AojRiIiIiIiItJxz169wYvXaflaplU1hyKKhoiIioLGicaJEyfC0dERU6ZMQWBgILy9vQsjLiIiIiIiIioBhBDYGRKJBftv5+vWaWOpHnrUdS7CyIiIqLBpnGg8ePAgWrduDT29Qp9XhoiIiIiIiHRYdGIqZuy+gROhMYoyO3NDxCal57rsgs7VYWXCW6eJiHSJRtnBpKQkjBs3DsuXLy+seIiIiIiIiEjHCSGw+3IkWi07pUgySiTAiKYVcPbLFljSoyaMDdR/HTWW6mFJj5ro7efyMUMmIqJCoNGIRnNzc8TFxcHMzKyw4iEiIiIiIiIdFvM6FTN338SxO9GKsgp2ZljasyZ83W0BAL39XNDG2xE7L0fi2O1oJKbKYGksRatqDujh4wwrU45kJCLSRRrfOt2gQQP8+++/GD58eGHEQ0RERERERDpICIF9155i7r5beJkiA/B2FOOQRhXwRZsqMDHUV2pvZSrFsCYVMKxJBW2ES0RERUDjROPixYvRokUL1K9fH4MHD4ZEIimMuIiIiIiIiEhHxCalYdaemzh867mizNXWFEt71kR9jzJajIyIiD4mjRONkydPho2NDYYPH45p06ahYsWKMDU1VWojkUhw/PhxTTdFRERERERExcz+608xZ+8txCe/m+AlsKEbvmxXFaaGGn/lJCIiHaLxVNFhYWHIysqCq6srzM3NER0djfDwcKV/YWFhBV7/okWL0KtXL3h4eEAikcDd3T3H9pcuXULLli1hYWEBS0tLtG3bFlevXlXb9unTpxg0aBDKli0LExMT+Pr6YseOHQWOlYiIiIiIqLSIS0rDuK2XMX7bFUWS0dnGBNtG1Mf8LtWZZCQiKoU0PvNHREQUQhjZmzlzJmxtbeHj44OXL1/m2PbixYsICAiAk5MTFixYAABYsWIFmjZtivPnz6NGjRqKtvHx8WjSpAliYmIwefJkODs7Y9u2bejduzfWr1+PIUOGFOVuERERERER6axDN55h1p83EffeKMZPG7hiRjsvmBkxwUhEVFoV+0+Ahw8fwsPDAwBQvXp1JCUlZdt24sSJMDQ0xOnTp+Hk5AQA6N27N7y8vDBlyhT8/fffiraLFy9GeHg49u3bh06dOgEAhg0bhoYNG2Lq1Kno1asXzM3Ni3DPiIiIiIiIdEtCcjrm7ruFfdeeKsqcrE3wXY+aaFLJTouRERFRcaDxrdNyERERWLt2Lb755hvFKMf09HQ8fvwY6enpOS+cA3mSMTcPHjxAcHAwevXqpUgyAoCTkxN69eqFY8eO4fnzdw8m3rZtGypWrKhIMgKAvr4+JkyYgPj4eBw8eLDAMRMREREREZU0f996jlY/nFZKMvar54rDk5oyyUhERAAKaUTjl19+iWXLliEzMxMSiQQNGzaEu7s7UlNTUa1aNSxcuBCTJk0qjE1lKzg4GADQsGFDlboGDRpg/fr1CAkJQYcOHfDs2TNERUVhwIABatvK19e7d+8ct/nkyRNERkYqld24cQMAIJPJNEqwEmmLTCZDRkYGZDKZtkMhIg3xeCYqOXg8kza9TJFh4aG72HftmaLM0dII33SphqaV7AAIfvfJJx7TRCVHST6eC7JPGicaf/nlFyxduhQTJ05Ex44d0bp1a0WdpaUlOnfujL/++qvIE41Pn779Ve390Yxy8rKoqKh8t83JunXrMH/+fLV1iYmJiI+Pz0PkRMWLTCZDUlIShBCQSqXaDoeINMDjmajk4PFM2nI27CUWH3+M2OR3XzY7eZfBZ81cYG6kx+88BcRjmqjkKMnHc2JiYr6X0TjRuHLlSnTr1g0//vgj4uLiVOpr1qyJFStWaLqZXKWkpAAAjIyMVOqMjY2V2uSnbU6GDRuGNm3aKJXduHEDo0aNgqWlJWxtbfOxB0TFg0wmg0QigY2NTYk7SRKVNjyeiUoOHs/0sSW+keGbQ3ex5+q7UYz2FkZY2MULAZXLajGykoHHNFHJUZKPZ0tLy3wvo3Gi8d69exgzZky29WXLlkVsbKymm8mVqakpACAtLU2lLjU1ValNftrmxMXFBS4uLmrrpFIpDA0N8xA5UfFjYGDA9zBRCcHjmajk4PFMH0vQ3RjM2HUDzxNTFWU9fJwxp2M1WJmWrC/R2sRjmqjkKKnHc0ESpxonGo2NjZGcnJxt/aNHj2Btba3pZnJVvnx5AOpveZaXyW+Lzk9bIiIiIiKi0iAxVYZv9t/B7/8+UZSVtTDCom410LKagxYjIyIiXaHxrNP16tXDnj171NalpqZi8+bNaNy4saabyZWfnx8A4MKFCyp1Fy9ehEQiQd26dQEA5cqVg5OTEy5evKi2LQD4+voWYbRERERERETFx5n7L9D2h9NKScautcvj6OfNmGQkIqI80zjR+MUXX+DChQsYOHAgrl+/DgB4/vw5jhw5goCAAERGRmLq1KkaB5obT09P+Pr6YseOHYrJXvB/7d15fE3X+sfx70lknkdDYp4qMRc1pcFFWkrRhqJqaFFV95rqKq2pLR11QMulrblutfqj5bZF0SpKVYkhiIoaWlNMSSQy7N8fmlNHBhmdJOfzfr3ykqy99t7Pc06W7DxZey/dXPhl5cqVateuncqVK2du7927t44dO6Yvv/zS3JaWlqZZs2bJ29tbnTp1KvKYAQAAAMCa4pNT9fyqKPX7cKfOXLl5q7S/u6Pm9btX7zzWSN6upes2QABA0SrwrdPt27fXBx98oH/9619avny5JKlfv36SJEdHR82fP18tWrTI9/GXLFmiEydOSJLOnz+vGzdu6OWXX5YkVa5c2XwuSXr33XfVtm1bhYWFacSIEZKkWbNmKT09XW+99ZbFccePH6+VK1eqT58+Gj16tIKCgvTJJ59o165dWrBggTw8PPIdMwAAAAAUdz/GXNC4z/bp9OXr5rYuDSpoatdQ+bpRYAQA5F2BC42SNGTIEHXt2lUrV65UdHS0DMNQzZo11bNnzwI/6/DDDz/Uli1bLNpefPFFSVJ4eLhFobFly5bavHmzXnjhBb3wwgsymUxq2bKlVq5cqQYNGlgcw8/PTz/++KPGjx+vOXPmKD4+XiEhIVqxYoV69epVoJgBAAAAoLhKSE7Vq/+L1pIdJ8xtvm6OerlbXXWqV96KkQEASrpCKTRKUrly5cyzCAvT5s2b89S/RYsW2rhxY676BgUFacmSJfmICgAAAABKnh2/XdRzn+3Vybi/ZzF2qldO0x6uK393JytGBgAoDQqt0JghNTVVO3fu1OnTpxUSEqLQ0NDCPgUAAAAAIA8Sb6Tq9a8Pa+G2WHObj6uDXupWVw/Vr2C9wAAApUq+Co2bN2/WqlWr9MILLygwMNDcfvz4cXXr1k379+83t/Xv318fffRRwSMFAAAAAOTZzuNxeu6zvTpxMdHcFhFaVi93q6cAD2YxAgAKT75WnV64cKG++eYbiyKjJA0YMEBRUVFq2bKlRo0apZCQEC1atEiLFi0qlGABAAAAALlz/UaaXvrqoHr9Z7u5yOjl4qB3H2uouY/fS5ERAFDo8jWjcefOnerYsaNFW3R0tH744Qfdf//95ucqvvTSS2rUqJEWL16s/v37FzhYAAAAAMCd7T4Rp7Er9+n4hQRzW/s6gZrevZ4CPZ2tGBkAoDTLV6Hxzz//VM2aNS3aNm/eLJPJpKeeesrc5uLioj59+mjWrFkFixIAAAAAcEdJKWmauf6I5v/wmwzjZpuncxlN7hKqHo2DZDKZrBsgAKBUy1ehMTk5WS4uLhZtu3btkiSFh4dbtFesWFFXrlzJZ3gAAAAAgNzY8/sljV25V8fO/z2LsW3tAM3oUV/lvJjFCAAoevkqNFaqVEkHDhywaNu6dasCAwNVsWJFi/bExER5e3vnO0AAAAAAQPaSU9P0zoajmrflmNL/msXo4VRGL3YJUeS9wcxiBADcNflaDCYsLEyLFy82ry79xRdf6OjRo3rwwQcz9Y2KilJQUFDBogQAAAAAZLLv1GU99N5WfbD57yLj/bUC9M2o+9WzSUWKjACAuypfMxqff/55LVu2TA0aNJCfn58uXrwoR0dHjRkzxqJfWlqa1qxZo0ceeaRQggUAAAAA3JzFOGtjjD7Yckxpf1UY3Z3K6IXOddSrKQVGAIB15GtGY9WqVbVlyxZ16tRJfn5+evDBB7V582aFhoZa9Nu0aZP8/Pz08MMPF0qwAAAAAGDr9p++oodn/6jZm2LMRcZWNfz09cgwPdasEkVGAIDV5GtGoyQ1adJEX375ZY592rdvr6ioqPyeAgAAAADwlxup6Zq9KUbvb4pR6l8FRldHe03oVEd976PACACwvnwXGgEAAAAAheNKYopW7j6pDYfO6lpSqjycy6hDSDk92jhYXq4OOnjmqsas3KtDf1w179Oimp9ef7S+Kvq6WjFyAAD+RqERAAAAAKzo010nNWn1fiWlplu07/gtTq9/Ha3wWgH6LvqceRaji4O9nu90jx6/r7Ls7JjFCAAoPig0AgAAAICVfLrrpMZ9vi/b7cmp6fr24Fnz182q+OqNyPqq7Od2N8IDACBPKDQCAAAAgBVcSUzRpNX7c91/XERtPR1enVmMAIBiK1+rTgMAAAAACuazX05lul06J84O9hQZAQDFGoVGAAAAALCC9Qf/zGP/s3fuBACAFVFoBAAAAAAruJaUmqf+V5NSiigSAAAKB4VGAAAAALCC9L9Wkc4tT2eHIooEAIDCwWIwAAAAAHAXHf7zmqavO6RDf17L034dQsoWUUQAABQOCo0AAAAAcBecu5akt9cf0X93nVQeJzPK2cFOj9wbXDSBAQBQSCg0AgAAAEARun4jTfN/+E1ztxxT4o00c/s95TzUqoa/Ptx6/I7HmNa1rrxcuHUaAFC8UWgEAAAAgCKQlm5o1S+n9Oa3h3X2arK5PcDDSWM71tKj91aUvZ1Jtct6aNLq/UpKTc90DGcHO03rWlc9m1a8m6EDAJAvFBoBAAAAoJD9GHNBr6w9pIN/XDW3uTjYa8j91TTk/mpyc/r7V7GeTSsqIrScPvvllDYcPKurSSnydHZQh5CyeqRxsLxcmckIACgZKDQCAAAAQCGJOXdN09dF67voc+Y2k0mKvDdYYzrWVllP5yz383J10JOtq+rJ1lXvVqgAABQ6Co0AAAAAUEDnryXrnQ1HtGLXSaXdstJL6xr+mtCpjkIqeFoxOgAA7g4KjQAAAACQT0kpafpw63F9sPmY4pNTze01A901oXMdtakVIJPJZMUIAQC4eyg0AgAAAEAepacb+r9fT+vNbw7rzJUkc7u/u6NGd6itnk2CVcbezooRAgBw91FoBAAAAIA82H7sol5Zd1D7T/+90Iuzg50Gh1XT0PDqcnfi1ywAgG3iJyAAAAAA5ELMuXi9+r9obTh01txmMkk9GgVrbEQtlfdysWJ0AABYH4VGAAAAAMjBxfhkvbvxqJb99LvFQi8tqvlpYuc6qhvkZcXoAAAoPig0AgAAAEAWklLS9PGPsXp/U4yu3bLQS/UAN03oVEft7glkoRcAAG5BoREAAAAAbpGebujLfWf0+teHdfrydXO7n5ujRnaopd5NK7LQCwAAWaDQCAAAAAB/2Xk8Tq+sPai9p66Y25zK2OnJ1lU1rE11eTg7WDE6AACKNwqNAAAAAGze8QsJevV/h/TNgbMW7d0bBWlsRG0FebPQCwAAd0KhEQAAAIDNupRwQ+9uPKqlO04o9ZaFXppV9dULneuofrC39YIDAKCEodAIAAAAwOYkp6Zp0bZYzfouRteS/l7opZq/m8Y/eI86hJRloRcAAPKIQiMAAAAAm2EYhtZG/aHXvo7Wybi/F3rxcXXQyPa11Oe+SnJgoRcAAPKFQiMAAAAAm7D7RJxeXntIe36/bG5ztLfTwNZV9EybGvJyYaEXAAAKgkIjAAAAgFLtxMUEvfZ1tNZF/WnR3rVBBT0XUVsVfV2tFBkAAKULhUYAAAAApdLlxBua9V2MFm+PVUra3wu9NKnso4md66hRJR8rRgcAQOlDoREAAABAqXIjNV2Lt99c6OXK9RRzexU/V41/8B5FhJZjoRcAAIoAhUYAAAAApYJhGPp6/5969etonbiYaG73dnXQP9vV1OPNK8uxDAu9AABQVCg0AgAAACjx9vx+Sa+sPaSfT1wytznYmzSgZRU927amvFxZ6AUAgKJGoREAAABAiXUyLlGvfR2tr/b9YdHeuX55/TviHlXyY6EXAADuFgqNAAAAAIqNK4kpWrn7pDYcOqtrSanycC6jDiHl9GjjYItZiVeup2jOphgt/DFWN9LSze2NK3lrYucQ3VuZhV4AALjbKDTijnJ7sVea2HLO6w/8qUsJSfJxc1bHuuVtImdbfJ/J2TZyZjzbxvtMzraRs62M5093ndSk1fuVlJpu0b7jtzi98XW0pj1cV90bB2nZjhN6d+NRXUr8e6GXir4uGv9AHXWqx0IvAABYi8kwDMPaQVhLenq63n33Xc2bN0+xsbEKCAhQz549NW3aNLm5ueXrmNu3b1fLli21bds2tWjRopAjvvuyu9iTJOcydpr2cF31bFrRCpEVHXK2RM6lBzlbIufSg5wtkXPpYWs5f7rrpMZ9vu+O/fzdHXUh/ob5a0/nMvrnP2qqX4vKcipjX5QhAoXmxo0biouLk6+vrxwdHa0dDoACKM3jOT81Lpue0Thq1Ci999576t69u8aMGaNDhw7pvffe0549e7RhwwbZ2dn2inR3uthLSk03by8tF7nknBk5k3NJRc6ZkTM5l1TknFlpy/lKYoomrd6fq74ZRUYHe5P6Na+iEe1qyMetdP1iBwBASWWzlbQDBw5o1qxZ6tGjh1atWqXBgwdr5syZmjlzpjZt2qQVK1ZYO0SrysvF3qQ1+3XllttWSipyzhk5l1zknDNyLrnIOWfkXHLZYs6f/XIqy5mb2alTzkPrR4VrUpcQiowAABQjNjuj8ZNPPpFhGBo5cqRF++DBgzV+/HgtXbpUffr0sU5wxUBeLvaSUtL17PJf1KCid9EGVcR+PXmZnHNgqzkPX767xOe8l5xzlJSSrmeW71aDYO+iDaqI5Sfn+jaW87Bl+cvZUCE/ZaYAh9t36kqecn562W7VC/LKOZwCPEWnoA/gyc3u+0/nLechS35WSAXPrM+Xz3hzeo1yOmR2u+X0PWUYUvQfV/OU8xMf/aQagR4yjJtH/vtfKf2vz2XcPK+5zZC5j2Qo3bDcz3ycW/bL8Xi37Cfjr+Pdtp/MfYxMxzpz5Xqu8s3g7eqoKv75e9QRAAAoOjb7jMaIiAht2LBBiYmJcnJystjWqlUrHTlyROfPn8/xGCdPntSpU6cs2qKiojR06FBt2bJFzZs3L/S475Z+H/2sn2IvWTsMAAAAIJOQ8h76v2El91obSElJ0aVLl+Tj4yMHh9K3sBNgS0rzeN6xY4fCw8N5RmNunDlzRv7+/pmKjJIUFBSkbdu26caNGzk+yPPDDz/U1KlTs9x29epVxcXFFVq8d9ulhCRrhwAAAAArMUkymTL+Nf39+V8b7Uwm8+c3202yM93y9W37mP7qbzJlHPfmqtAmk2Rnki7Epyg5LffzH1zsVaKvtYGUlBTFx8fLMIxSV5gAbE1pHs9Xr17N8z42W2jMaiZjBmdnZ3OfnAqNTz75pCIiIizaMmY0enp6ytfXt/ACvst83Jyl87m/haVuBU+91LVOEUZU9F5cc1D7z1zLdX9bzLleBU+99HDJzvmF1eR8JzdzDinCiIrezZxz/0OxXpCnXi7hOU/8v7zn/EopyDkqDznXD/LUK93yl3NGUaSwmPJ5uPFfHFDU6bzl/Gr30PydrHBT/uuQeT/ov1ft17485Nwg2FOv9aib7Zlyeu1zii+/75kpmx1zOtzolVH69dSVXJ+jcSUvzXmsoTlG0y2FQHNRL1PbbcVAi0JgEbz5d7Bw2wlN//pIrvs/UK9Cib7WBlJSUmQymUrlDCjA1pTm8ezpmfXjaHJis4VGV1dXnTt3LsttSUlJ5j45qVixoipWzHqVPwcHhxK9rHnHuuXzdOt0j8bBalTFvwgjKnrdG1fU/jMHc93fFnPu3jhYDSuTc0mTv5z9ijCiote9cXDecm4UrAaVbC/n+iU8526NgxWVh5y7NQpWvYolPOdGwYo6nbecQ4JLdjHm4UbB2peHnB9uGKx7KvgUYURFr0vDoDwVGh+qH6Tyvu5FGFHR69WsimZuiMnVsymdHezUs1llOTqWrl/mYHvKlClT4n9vBHBTaR3P+Smc2uyq0xUqVNCFCxeUnJycadvp06fl7+9f6r5B8uLRxsFyLpO7bw9nBzs9cm9wEUdU9Mg5Z+RccpFzzsi55CLnnJFzyWWLOXu5Omjaw3Vz1Xda17rycqHICABAcWSzhcamTZsqPT1dO3futGhPSkrSr7/+qiZNmlgpsuLBFi/2yDln5FxykXPOyLnkIueckXPJZYs5S1LPphX1+iP1sy2yOjvY6fVH6qtn06zvKAIAANZns7dO9+rVS9OnT9c777yjsLAwc/v8+fOVmJiovn37WjG64iHjIm7S6v1Z3sbi7GCnaV3rlqqLPXImZ4mcSwtyJmeJnEsLcraNnKWbeUeEltNnv5zShoNndTUpRZ7ODuoQUlaPNA6Wl2vpKKoCAFBamQzDyP3ybqXMiBEjNHv2bHXv3l2dOnXSoUOH9N5776lVq1b67rvvZGeX9wmf27dvV8uWLfO09HdxdyUxxeYu9mw55/UH/lBcfJJ83Z3VMbS8TeRsi+8zOdtGzoxn23ifydk2cral8QzYghs3biguLk6+vr42/cguoDQozeM5PzUumy40pqWl6Z133tF//vMfxcbGyt/fX7169dK0adPk7p6/B2qXxkIjbEtp/k8SsDWMZ6D0YDwDpQtjGig9SvN4zk+Ny2ZvnZYke3t7jRkzRmPGjLF2KAAAAAAAAECJZrOLwQAAAAAAAAAoPBQaAQAAAAAAABSYTd86XRQSEhIkSVFRUVaOBMiflJQUXb16VZ6ennJw4CHzQEnGeAZKD8YzULowpoHSozSP54zaVkatKzcoNBay3377TZI0dOhQK0cCAAAAAAAAFExGrSs3bHrV6aJw5swZffXVV6pWrZrc3NysHQ6QZ1FRURo6dKjmzZunevXqWTscAAXAeAZKD8YzULowpoHSozSP54SEBP3222966KGHVKFChVztw4zGQlahQgUNGTLE2mEABVavXr1cL18PoHhjPAOlB+MZKF0Y00DpwXi+icVgAAAAAAAAABQYhUYAAAAAAAAABUahEQAAAAAAAECBUWgEYCE4OFiTJ09WcHCwtUMBUECMZ6D0YDwDpQtjGig9GM+WWHUaAAAAAAAAQIExoxEAAAAAAABAgVFoBAAAAAAAAFBgFBoBAAAAAAAAFBiFRgAAAAAAAAAFRqERAAAAAAAAQIFRaAQAAAAAAABQYBQaAQAAAAAAABQYhUbAhhw5ckSTJk1S8+bNFRAQIA8PDzVs2FCvvPKKEhISMvU/fPiwunXrJh8fH7m5uSksLEzfffedFSIHkBuJiYmqVq2aTCaTnn322UzbGdNA8RYXF6exY8eqRo0acnZ2VkBAgNq2basffvjBot9PP/2k9u3by8PDQ56ennrggQf066+/WidoAFmKj4/X9OnTVa9ePXl4eMjf318tW7bUwoULZRiGRV/GNFA8zJgxQ5GRkebr6SpVquTYPy9j98yZM3riiScUEBAgFxcXNWnSRCtXriz8JIoBk3H7/3IASq3x48drzpw56tq1q5o3by4HBwdt2rRJn376qerXr68dO3bIxcVFknTs2DE1a9ZMZcqU0ciRI+Xl5aX58+dr//79+t///qf27dtbORsAtxs7dqzmzZun+Ph4DR8+XLNnzzZvY0wDxduJEyfUpk0bxcfH68knn1StWrV05coV7du3TxEREXrsscckSTt27FCbNm0UFBRk/oPC7Nmzde7cOW3btk316tWzZhoAJKWnpys8PFzbtm1T//791bx5cyUmJuqTTz7Rzp07NW7cOL322muSGNNAcWIymeTr66vGjRtr9+7d8vT0VGxsbJZ98zJ24+Li1KRJE507d06jR49WcHCwli9fri1btuijjz7SwIED70Z6d48BwGbs2rXLuHz5cqb2iRMnGpKMWbNmmdsiIyMNOzs7Y8+ePea2a9euGZUqVTJq1aplpKen342QAeTS7t27DXt7e+Ott94yJBnDhw+32M6YBoq31q1bG8HBwcaZM2dy7Ne0aVPDw8PDOHXqlLnt1KlThoeHh9GhQ4eiDhNALmzbts2QZIwcOdKiPTk52ahatarh5eVlbmNMA8XHsWPHzJ+HhoYalStXzrZvXsbuc889Z0gy1qxZY25LTU01mjZtavj6+hrXrl0rvCSKAW6dBmxIkyZN5OXllam9V69ekqT9+/dLkhISErRmzRq1adNGDRs2NPdzd3fXU089pSNHjmjXrl13JWYAd5aWlqbBgwfrgQceUI8ePTJtZ0wDxdv333+vrVu3aty4cSpfvrxSUlKUmJiYqV9MTIx27dqlyMhIBQUFmduDgoIUGRmpDRs26M8//7yboQPIwtWrVyVJFSpUsGh3dHSUv7+/3NzcJDGmgeKmWrVqueqX17G7fPlyVa9eXV26dDG32dvba8SIEYqLi9O6desKL4ligEIjAJ06dUqSVLZsWUnSvn37lJycrBYtWmTq27x5c0miKAEUI2+//baio6MtbpW+FWMaKN4yfsGoVKmSunTpIhcXF7m5ualWrVpaunSpuV/GOM1uLBuGod27d9+doAFkq1mzZvL29tbrr7+ulStX6vfff1d0dLSef/557d69W1OmTJHEmAZKqryM3T/++EOnT582X3Pf3vfW45UWZawdAADrSktL00svvaQyZcqoT58+km4+qFaSxV9nMmS0nT59+u4FCSBbx48f1+TJkzVp0iRVqVIly+fIMKaB4u3w4cOSpMGDB6tmzZpatGiRbty4obfeekv9+vVTSkqKBg4cyFgGSggfHx+tWbNGTz31lHr27Glu9/Dw0Oeff65u3bpJ4uczUFLlZeza4jin0AjYuJEjR2r79u2aPn26ateuLUnm27WcnJwy9Xd2drboA8C6nn76aVWrVk2jR4/Otg9jGijerl27JulmEWLTpk1ydHSUJHXr1k3VqlXThAkT1L9/f8YyUIK4u7urbt266tq1q1q2bKm4uDjNmTNHffr00erVq9WhQwfGNFBC5WXs2uI4p9AI2LAXX3xRs2fP1pAhQ/T888+b211dXSVJycnJmfZJSkqy6APAepYuXar169fr+++/l4ODQ7b9GNNA8ebi4iJJ6t27t7nIKN2cFdW1a1ctXrxYhw8fZiwDJURUVJRatmypt99+W08//bS5vXfv3qpbt64GDx6sY8eOMaaBEiovY9cWxznPaARs1JQpU/Tyyy9r4MCBmjt3rsW2jAdXZzWFO6Mtq6nfAO6e5ORkjR49Wp06dVK5cuUUExOjmJgYnThxQpJ05coVxcTE6PLly4xpoJgLDg6WJJUrVy7TtvLly0uSLl26xFgGSoi3335bSUlJioyMtGh3dXVV586ddeLECcXGxjKmgRIqL2PXFsc5hUbABk2ZMkVTp05V//79tWDBAplMJovt9erVk5OTk7Zv355p3x07dki6uYI1AOu5fv26zp8/r7Vr16pmzZrmjzZt2ki6OduxZs2aWrBgAWMaKOaaNWsm6e/F2W6V0RYYGKimTZtKUrZj2WQy6d577y3CSAHkRkbxIC0tLdO21NRU87+MaaBkysvYLV++vIKCgszX3Lf3lUrfdbjJMAzD2kEAuHumTZumyZMnq1+/flq4cKHs7LL+e0NkZKRWrVqlX375RQ0aNJAkxcfHKzQ0VE5OTjp8+HCmAiWAuyclJUWrV6/O1H7+/Hk988wzeuCBB/Tkk0+qfv36qlWrFmMaKMYuXbqkypUry9PTU9HR0XJ3d5d0c6XKmjVrKigoyLxgTNOmTXX48GFFR0ebZ0mcOXNG99xzj5o1a6YNGzZYLQ8AN40aNUrvvPOOXnvtNY0bN87cfvnyZYWEhCgpKUnnz5+Xvb09YxoopurWrav4+PgsF1qU8vbz+LnnntObb76pNWvWqEuXLpJu/iGiRYsWOnr0qH7//Xd5eHgUeU53C4VGwIbMmTNHzz77rCpVqqSXXnopU5GxbNmy6tChgyQpJiZGzZo1k4ODg0aNGiVPT0/Nnz9fUVFRWrt2rSIiIqyRAoA7iI2NVdWqVTV8+HDNnj3b3M6YBoq3//znPxo6dKhCQ0M1aNAg3bhxQx988IH++OMPffXVV+rYsaMkadu2bWrbtq2Cg4M1YsQISdKsWbN09uxZ/fjjj+Y/JACwnhMnTqhx48a6dOmS+vbtq1atWikuLk7z589XbGys5syZo2eeeUYSYxooTpYsWWJ+DNGsWbN048YNjRkzRpJUuXJl9evXz9w3L2P34sWLuvfee3Xx4kWNHj1aQUFB+uSTT7R582YtWLBATz755F3M8i4wANiM/v37G5Ky/QgPD7fof/DgQaNr166Gl5eX4eLiYrRq1cpYv369dYIHkCvHjx83JBnDhw/PtI0xDRRvn3/+uXHfffcZrq6uhru7u9GhQwdj69atmfpt27bNaNeuneHm5ma4u7sbHTt2NHbv3m2FiAFkJyYmxnjiiSeMoKAgo0yZMoaHh4cRFhZmfP7555n6MqaB4iE8PDzXvysbRt7G7qlTp4zHH3/c8PPzM5ycnIxGjRoZK1asKOKMrIMZjQAAAAAAAAAKjMVgAAAAAAAAABQYhUYAAAAAAAAABUahEQAAAAAAAECBUWgEAAAAAAAAUGAUGgEAAAAAAAAUGIVGAAAAAAAAAAVGoREAAAAAAABAgVFoBAAAAAAAAFBgFBoBAAAAAAAAFBiFRgAAAAAAAAAFRqERAAAAAAAAQIFRaAQAAMjB5s2bZTKZZDKZ9Oyzz2bZ59y5c3J0dJTJZFKbNm3uboAo9mJjYzVlyhT9+uuv1g4FAACgSFFoBAAAyAVnZ2ctX75cycnJmbYtWbJEhmGoTJkyVogMxV1sbKymTp1KoREAAJR6FBoBAAByoXv37rp06ZJWr16dadvHH3+sTp06ycnJyQqRITeuXbuWr2342/Xr15WammrtMAAAQDFGoREAACAXGjdurPr16+vjjz+2aN+5c6cOHDiggQMHZrvvzz//rO7du8vf319OTk6qXbu2XnnllUxFm507d2rAgAGqVauWXF1d5eHhoVatWumLL77IdMwBAwbIZDLpypUrGjZsmAIDA+Xs7KxWrVrpp59+ynVeV69e1cSJE1WnTh05OzvLz89PrVu31ooVKyz67du3T927d5efn5+cnZ0VEhKi119/XWlpaQWKyzAMzZ8/X/fdd5/c3d3l7u6uevXqadKkSeY+U6ZMkclkUmxsbKb9q1Spkul2dZPJpAEDBmjjxo1q3bq13N3d1aVLF4v+e/bsUUREhLy8vFS/fn3zvkePHlW/fv1Uvnx5OTo6qkqVKnruueeUkJCQrzwXLlyotm3bSpIGDhxovg3/TrfYZxw/Kxn53Wrx4sVq1qyZvL295ebmpmrVqqlv3746f/68Rb+85nf+/HkNGjRIZcuWlZubm06dOpWn8wEAANvC/T0AAAC5NGjQII0ePVqnT59WUFCQJOmjjz5SYGCgHnrooSz3Wbt2rXr06KEaNWpozJgx8vX11fbt2zVp0iT9+uuvWrlypbnvF198oejoaPXs2VOVK1fWxYsXtWjRIvXo0UPLli1Tnz59Mh0/IiJCAQEBmjRpki5evKiZM2eqc+fOOn78uDw8PHLM5/Lly2rdurUOHDigRx99VMOGDVNaWpr27Nmjr776So899pikm4XS8PBwOTg4aPjw4SpXrpy+/PJL/fvf/9bevXu1bNmyfMfVr18/LVu2TPfdd58mTpwob29vRUdH67PPPtO0adPu/KZk4+eff9bnn3+uwYMHq3///hbbfv/9d7Vr106RkZF65JFHFB8fL0navXu32rVrJ29vbw0dOlRBQUHau3ev3nvvPf3444/asmWLHBwc8pTn/fffrwkTJmj69OkaMmSIwsLCJElly5bNd263W7Jkifr376+wsDBNmzZNLi4uOnnypNatW6dz584pICAg3/l16NBB5cqV04svvqiEhAS5u7vn+nwAAMAGGQAAAMjWpk2bDEnGG2+8YVy4cMFwdHQ0XnnlFcMwDCMxMdHw8vIyxowZYxiGYbi5uRnh4eHmfa9fv26ULVvWCAsLM1JSUiyOO3PmTEOSsWnTJnNbfHx8pvMnJCQYtWrVMurUqWPR3r9/f0OSMWzYMIv2Tz/91JBkzJ079465DRs2zJBkzJs3L9O2tLQ08+ctW7Y07O3tjb1795rb0tPTjcjISEOSsWHDhnzF9d///teQZDz++OMW57v9/JMnTzYkGcePH88UZ+XKlS1ec8MwDEmGJGP9+vVZ9pdkzJ8/P9O2+vXrG7Vr1zauXr1q0b5q1SpDkvHxxx/nK8+M76Fb97+TjONnRZLRv39/89fdu3c3PDw8Mn2P3S4/+fXt2zfTcXJ7PgAAYHu4dRoAACCX/Pz81LVrVy1cuFCStGrVKl25ckWDBg3Ksv/69et19uxZDRw4UJcvX9aFCxfMH506dZIkffvtt+b+bm5u5s8TExN18eJFJSYmql27djp06JCuXr2a6RyjRo2y+Lpdu3aSbt4im5P09HStWLFCderU0ZAhQzJtt7O7eZl47tw5bdu2TV27drW4xdhkMmnixImSlOWt3bmJK2Mm5Jtvvmk+3+3nz68GDRqoffv2WW7z9fXNdKt7VFSU9u3bpz59+ig5OdnivWrdurXc3Nws3qsM+X39C5OXl5cSExO1du1aGYaRZZ/85jd27Nh8nQ8AANgmCo0AAAB5MHDgQB09elRbt27VRx99pGbNmikkJCTLvocOHZJ085brgIAAi4977rlHknT27Flz/3PnzmnIkCHm5+H5+/srICBAc+fOlXTzVufbVatWzeJrPz8/SdLFixdzzOPChQu6dOmSGjZsmGO/48ePS5JCQ0MzbatTp47s7Oz022+/5Suuo0ePqnz58oV6G3GGWrVqZbutevXqsre3t2jLeK8mT56c6b0KDAxUQkKCxXuVIb+vf2GaMGGCKleurG7duikgIECPPPKIFixYYLHITX7zy+p1zM35AACAbeIZjQAAAHkQERGhoKAgTZ06VZs2bdIHH3yQbd+M2V5vvPFGtgW9ChUqmPt27NhRhw4d0r/+9S81adJEXl5esre318cff6zly5crPT090/63F8xuP7e1FGZc2S2KIinbVZBdXV2z3SerbRlxjRkzRg888ECW+/n4+GRqK6rXP7ucs8q3Zs2aOnjwoDZu3KiNGzdqy5YtGjx4sCZPnqzvv/9e1atXz3d+Wb1WuTkfAACwTRQaAQAA8sDe3l5PPPGEZsyYIRcXF/Xu3TvbvjVr1pR085bo7G7jzbBv3z7t3btXkyZN0tSpUy22LViwoOCB38bf318+Pj7au3dvjv2qVq0qSTpw4ECmbdHR0UpPT880qy+3atWqpdWrV+vs2bM5zmr09fWVJMXFxalKlSrm9qSkJP3xxx+qUaNGvs5/q4z3yt7e/o7vVV7lVCjNzq05Z3wuKcvZo5Lk5OSkTp06mW/JX7dunTp37qyZM2dqzpw5hZ7fnc4HAABsE7dOAwAA5NHTTz+tyZMna+7cufL09My2X0REhAIDA/Xqq68qLi4u0/br16+bbzfNmBl3+0y4/fv3Z/kMxIKys7NT7969dfDgQX344YeZtmfEERgYqJYtW+rLL7/U/v37LbbPmDFDktS9e/d8xdC3b19J0rhx4zLN1rz1dci4fXfDhg0Wfd5+++0sZ3nmR6NGjVS3bl3NnTs3y2Jeampqlu9hbri7u0tSnvbPLue33norU98LFy5kamvcuLHFOQszv9ycDwAA2CZmNAIAAORRpUqVNGXKlDv2c3Nz0+LFi9WtWzfVrl1bgwYNUo0aNXT58mVFR0dr1apV+uKLL9SmTRvVqVNHoaGhev3115WYmKjatWvryJEjmjdvnurVq6fdu3cXeh4vv/yyvvvuOz311FP69ttv1bp1axmGoT179ig1NVVLliyRJL377rsKDw9XWFiYhg8frnLlyumrr77SN998oz59+ugf//hHvs4fGRmpXr16afHixTp69Ki6du0qHx8fHTlyRN988425sNm+fXvVrl1bkyZN0sWLF1W1alVt3bpVO3bskL+/f6G8FiaTSUuWLFG7du1Uv359DRo0SKGhoUpMTFRMTIxWrVqlGTNmaMCAAXk+dkhIiDw8PPT+++/L1dVV3t7eCgwMNC8ck5XevXtrwoQJGjJkiKKjo+Xr66uvv/46yyJfx44d5e3trbCwMFWsWFGXL1/WwoULZTKZ1K9fv0LPLzfnAwAAtolCIwAAQBGKiIjQrl279Oqrr2rp0qU6f/68fHx8VL16dY0ePdq8krO9vb3Wrl2rsWPHatGiRUpISFDdunW1aNEi7d27t0gKjT4+Ptq+fbumT59uLnp6eHgoJCREI0aMMPdr0qSJtm3bpsmTJ+v9999XQkKCqlWrptdee01jxowpUAzLly9XWFiYPvzwQ02bNk329vaqWrWqIiMjzX3s7e21Zs0a/fOf/9SsWbPk6Oiojh07asuWLWrVqlWBzn+rhg0bas+ePZoxY4bWrFmjuXPnysPDQ1WqVNGAAQPyXVB1cXHRihUr9MILL2jkyJFKTk5WeHh4joVGT09PrVu3TqNHj9b06dPl7u6uHj16aOnSpZmepThs2DB9+umnmjdvnuLi4uTn56dGjRpp1qxZatu2baHnl9vzAQAA22MyrP2kcAAAAAAAAAAlHs9oBAAAAAAAAFBgFBoBAAAAAAAAFBiFRgAAAAAAAAAFRqERAAAAAAAAQIFRaAQAAAAAAABQYBQaAQAAAAAAABQYhUYAAAAAAAAABUahEQAAAAAAAECBUWgEAAAAAAAAUGAUGgEAAAAAAAAUGIVGAAAAAAAAAAVGoREAAAAAAABAgVFoBAAAAAAAAFBgFBoBAAAAAAAAFBiFRgAAAAAAAAAF9v+HVx/B3BV7DwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] diff --git a/asyncflow_queue_limit/asyncflow_mmc_split.ipynb b/asyncflow_queue_limit/asyncflow_mmc_split.ipynb index b042a1b..a13d813 100644 --- a/asyncflow_queue_limit/asyncflow_mmc_split.ipynb +++ b/asyncflow_queue_limit/asyncflow_mmc_split.ipynb @@ -20,33 +20,33 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "id": "b8a94d93", "metadata": {}, "outputs": [], "source": [ "import sys, importlib\n", "\n", - "# 1) Svuota tutto ciò che inizia con 'asyncflow' da sys.modules\n", + "\n", "for m in list(sys.modules):\n", " if m.startswith(\"asyncflow\"):\n", " del sys.modules[m]\n", "\n", - "# 2) Re-importa SOLO le facciate pubbliche (niente import profondi)\n", + "\n", "from asyncflow import AsyncFlow, SimulationRunner\n", "from asyncflow.analysis import MMc, ResultsAnalyzer\n", "from asyncflow.components import (\n", - " Client, Server, Edge, Endpoint, LoadBalancer\n", + " Client, Server, Edge, Endpoint, LoadBalancer, ArrivalsGenerator\n", ")\n", "from asyncflow.settings import SimulationSettings\n", - "from asyncflow.workload import RqsGenerator\n", + "\n", "import simpy\n", "\n" ] }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "id": "d1b7ad7d", "metadata": {}, "outputs": [ @@ -64,10 +64,10 @@ "\n", "# Public AsyncFlow API\n", "from asyncflow import AsyncFlow, SimulationRunner, Sweep\n", - "from asyncflow.components import Client, Server, Edge, Endpoint, LoadBalancer\n", + "from asyncflow.components import Client, Server, Edge, Endpoint, LoadBalancer, ArrivalsGenerator\n", "from asyncflow.settings import SimulationSettings\n", - "from asyncflow.workload import RqsGenerator\n", - "from asyncflow.analysis import MM1, ResultsAnalyzer, SweepAnalyzer, MMc\n", + "from asyncflow.analysis import ResultsAnalyzer, SweepAnalyzer, MMc\n", + "from asyncflow.enums import Distribution\n", "\n", "print(\"Imports OK.\")" ] @@ -128,17 +128,16 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "id": "ba93587a", "metadata": {}, "outputs": [], "source": [ "def build_payload():\n", - " generator = RqsGenerator(\n", + " generator = ArrivalsGenerator(\n", " id=\"rqs-1\",\n", - " avg_active_users={\"mean\": 120},\n", - " avg_request_per_minute_per_user={\"mean\": 20},\n", - " user_sampling_window=60,\n", + " lambda_rps=30,\n", + " model=Distribution.POISSON\n", " )\n", "\n", " client = Client(id=\"client-1\")\n", @@ -189,7 +188,7 @@ "\n", " payload = (\n", " AsyncFlow()\n", - " .add_generator(generator)\n", + " .add_arrivals_generator(generator)\n", " .add_client(client)\n", " .add_servers(srv1, srv2)\n", " .add_load_balancer(lb)\n", diff --git a/examples/builder_input/event_injection/lb_two_servers.py b/examples/builder_input/event_injection/lb_two_servers.py deleted file mode 100644 index fa1e82e..0000000 --- a/examples/builder_input/event_injection/lb_two_servers.py +++ /dev/null @@ -1,240 +0,0 @@ -""" -AsyncFlow builder example — LB + 2 servers (medium load) with events. - -Topology - generator → client → LB → srv-1 - └→ srv-2 - srv-1 → client - srv-2 → client - -Workload - ~40 rps (120 users × 20 req/min ÷ 60). - -Events - - Edge spike on client→LB (+15 ms) @ [100s, 160s] - - srv-1 outage @ [180s, 240s] - - Edge spike on LB→srv-2 (+20 ms) @ [300s, 360s] - - srv-2 outage @ [360s, 420s] - - Edge spike on gen→client (+10 ms) @ [480s, 540s] - -Outputs - PNGs saved under `lb_two_servers_events_plots/` next to this script: - - dashboard (latency + throughput) - - per-server plots: ready queue, I/O queue, RAM -""" - -from __future__ import annotations - -from pathlib import Path - -import matplotlib.pyplot as plt -import simpy - -# Public builder API -from asyncflow import AsyncFlow -from asyncflow.components import Client, Server, Edge, Endpoint, LoadBalancer -from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator - -# Runner + Analyzer -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer -from asyncflow.runner.simulation import SimulationRunner - - -def build_and_run() -> ResultsAnalyzer: - """Build the scenario via the builder and run the simulation.""" - # ── Workload (generator) ─────────────────────────────────────────────── - generator = RqsGenerator( - id="rqs-1", - avg_active_users={"mean": 120}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, - ) - - # ── Client ──────────────────────────────────────────────────────────── - client = Client(id="client-1") - - # ── Servers (identical endpoint: CPU 2ms → RAM 128MB → IO 12ms) ─────── - endpoint = Endpoint( - endpoint_name="/api", - steps=[ - {"kind": "initial_parsing", "step_operation": {"cpu_time": 0.002}}, - {"kind": "ram", "step_operation": {"necessary_ram": 128}}, - {"kind": "io_wait", "step_operation": {"io_waiting_time": 0.012}}, - ], - ) - srv1 = Server( - id="srv-1", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - srv2 = Server( - id="srv-2", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - - # ── Load Balancer ───────────────────────────────────────────────────── - lb = LoadBalancer( - id="lb-1", - algorithms="round_robin", - server_covered=["srv-1", "srv-2"], - ) - - # ── Edges (exponential latency) ─────────────────────────────────────── - e_gen_client = Edge( - id="gen-client", - source="rqs-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - e_client_lb = Edge( - id="client-lb", - source="client-1", - target="lb-1", - latency={"mean": 0.002, "distribution": "exponential"}, - ) - e_lb_srv1 = Edge( - id="lb-srv1", - source="lb-1", - target="srv-1", - latency={"mean": 0.002, "distribution": "exponential"}, - ) - e_lb_srv2 = Edge( - id="lb-srv2", - source="lb-1", - target="srv-2", - latency={"mean": 0.002, "distribution": "exponential"}, - ) - e_srv1_client = Edge( - id="srv1-client", - source="srv-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - e_srv2_client = Edge( - id="srv2-client", - source="srv-2", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - - # ── Simulation settings ─────────────────────────────────────────────── - settings = SimulationSettings( - total_simulation_time=600, - sample_period_s=0.05, - enabled_sample_metrics=[ - "ready_queue_len", - "event_loop_io_sleep", - "ram_in_use", - "edge_concurrent_connection", - ], - enabled_event_metrics=["rqs_clock"], - ) - - # ── Assemble payload + events via builder ───────────────────────────── - payload = ( - AsyncFlow() - .add_generator(generator) - .add_client(client) - .add_servers(srv1, srv2) - .add_load_balancer(lb) - .add_edges( - e_gen_client, - e_client_lb, - e_lb_srv1, - e_lb_srv2, - e_srv1_client, - e_srv2_client, - ) - .add_simulation_settings(settings) - # Events - .add_network_spike( - event_id="ev-spike-1", - edge_id="client-lb", - t_start=100.0, - t_end=160.0, - spike_s=0.015, # +15 ms - ) - .add_server_outage( - event_id="ev-srv1-down", - server_id="srv-1", - t_start=180.0, - t_end=240.0, - ) - .add_network_spike( - event_id="ev-spike-2", - edge_id="lb-srv2", - t_start=300.0, - t_end=360.0, - spike_s=0.020, # +20 ms - ) - .add_server_outage( - event_id="ev-srv2-down", - server_id="srv-2", - t_start=360.0, - t_end=420.0, - ) - .add_network_spike( - event_id="ev-spike-3", - edge_id="gen-client", - t_start=480.0, - t_end=540.0, - spike_s=0.010, # +10 ms - ) - .build_payload() - ) - - # ── Run ─────────────────────────────────────────────────────────────── - env = simpy.Environment() - runner = SimulationRunner(env=env, simulation_input=payload) - results: ResultsAnalyzer = runner.run() - return results - - -def main() -> None: - res = build_and_run() - print(res.format_latency_stats()) - - # Output directory next to this script - script_dir = Path(__file__).parent - out_dir = script_dir / "lb_two_servers_events_plots" - out_dir.mkdir(parents=True, exist_ok=True) - - # Dashboard (latency + throughput) - fig, axes = plt.subplots(1, 2, figsize=(14, 5)) - res.plot_base_dashboard(axes[0], axes[1]) - fig.tight_layout() - dash_path = out_dir / "lb_two_servers_events_dashboard.png" - fig.savefig(dash_path) - print(f"Saved: {dash_path}") - - # Per-server plots - for sid in res.list_server_ids(): - # Ready queue - f1, a1 = plt.subplots(figsize=(10, 5)) - res.plot_single_server_ready_queue(a1, sid) - f1.tight_layout() - p1 = out_dir / f"lb_two_servers_events_ready_queue_{sid}.png" - f1.savefig(p1) - print(f"Saved: {p1}") - - # I/O queue - f2, a2 = plt.subplots(figsize=(10, 5)) - res.plot_single_server_io_queue(a2, sid) - f2.tight_layout() - p2 = out_dir / f"lb_two_servers_events_io_queue_{sid}.png" - f2.savefig(p2) - print(f"Saved: {p2}") - - # RAM usage - f3, a3 = plt.subplots(figsize=(10, 5)) - res.plot_single_server_ram(a3, sid) - f3.tight_layout() - p3 = out_dir / f"lb_two_servers_events_ram_{sid}.png" - f3.savefig(p3) - print(f"Saved: {p3}") - - -if __name__ == "__main__": - main() diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_dashboard.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_dashboard.png deleted file mode 100644 index 84bfe66..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_dashboard.png and /dev/null differ diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_io_queue_srv-1.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_io_queue_srv-1.png deleted file mode 100644 index c3481bf..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_io_queue_srv-1.png and /dev/null differ diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_io_queue_srv-2.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_io_queue_srv-2.png deleted file mode 100644 index 0d70a54..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_io_queue_srv-2.png and /dev/null differ diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ram_srv-1.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ram_srv-1.png deleted file mode 100644 index 76fc8e6..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ram_srv-1.png and /dev/null differ diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ram_srv-2.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ram_srv-2.png deleted file mode 100644 index 4b6d526..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ram_srv-2.png and /dev/null differ diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ready_queue_srv-1.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ready_queue_srv-1.png deleted file mode 100644 index c8f8081..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ready_queue_srv-1.png and /dev/null differ diff --git a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ready_queue_srv-2.png b/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ready_queue_srv-2.png deleted file mode 100644 index a5ac8e2..0000000 Binary files a/examples/builder_input/event_injection/lb_two_servers_events_plots/lb_two_servers_events_ready_queue_srv-2.png and /dev/null differ diff --git a/examples/builder_input/event_injection/single_server.py b/examples/builder_input/event_injection/single_server.py deleted file mode 100644 index dadae75..0000000 --- a/examples/builder_input/event_injection/single_server.py +++ /dev/null @@ -1,187 +0,0 @@ -#!/usr/bin/env python3 -""" -AsyncFlow builder example — build, run, and visualize a single-server async system -with event injections (latency spike on edge + server outage). - -Topology (single server) - generator ──edge──> client ──edge──> server ──edge──> client - -Load model - ~100 active users, 20 requests/min each (Poisson-like aggregate). - -Server model - 1 CPU core, 2 GB RAM - Endpoint pipeline: CPU(1 ms) → RAM(100 MB) → I/O wait (100 ms) - Semantics: - - CPU step blocks the event loop - - RAM step holds a working set until request completion - - I/O step is non-blocking (event-loop friendly) - -Network model - Each edge has exponential latency with mean 3 ms. - -Events - - ev-spike-1: deterministic latency spike (+20 ms) on client→server edge, - active from t=120s to t=240s - - ev-outage-1: server outage for srv-1 from t=300s to t=360s - -Outputs - - Prints latency statistics to stdout - - Saves PNGs in `single_server_plot/` next to this script: - * dashboard (latency + throughput) - * per-server plots (ready queue, I/O queue, RAM) -""" - -from __future__ import annotations - -from pathlib import Path -import simpy -import matplotlib.pyplot as plt - -# Public AsyncFlow API (builder) -from asyncflow import AsyncFlow -from asyncflow.components import Client, Server, Edge, Endpoint -from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator - -# Runner + Analyzer -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def build_and_run() -> ResultsAnalyzer: - """Build the scenario via the Pythonic builder and run the simulation.""" - # Workload (generator) - generator = RqsGenerator( - id="rqs-1", - avg_active_users={"mean": 100}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, - ) - - # Client - client = Client(id="client-1") - - # Server + endpoint (CPU → RAM → I/O) - endpoint = Endpoint( - endpoint_name="ep-1", - probability=1.0, - steps=[ - {"kind": "initial_parsing", "step_operation": {"cpu_time": 0.001}}, # 1 ms - {"kind": "ram", "step_operation": {"necessary_ram": 100}}, # 100 MB - {"kind": "io_wait", "step_operation": {"io_waiting_time": 0.100}}, # 100 ms - ], - ) - server = Server( - id="srv-1", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - - # Network edges (3 ms mean, exponential) - e_gen_client = Edge( - id="gen-client", - source="rqs-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - e_client_srv = Edge( - id="client-srv", - source="client-1", - target="srv-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - e_srv_client = Edge( - id="srv-client", - source="srv-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - - # Simulation settings - settings = SimulationSettings( - total_simulation_time=500, - sample_period_s=0.05, - enabled_sample_metrics=[ - "ready_queue_len", - "event_loop_io_sleep", - "ram_in_use", - "edge_concurrent_connection", - ], - enabled_event_metrics=["rqs_clock"], - ) - - # Assemble payload with events - payload = ( - AsyncFlow() - .add_generator(generator) - .add_client(client) - .add_servers(server) - .add_edges(e_gen_client, e_client_srv, e_srv_client) - .add_simulation_settings(settings) - # Events - .add_network_spike( - event_id="ev-spike-1", - edge_id="client-srv", - t_start=120.0, - t_end=240.0, - spike_s=0.020, # 20 ms spike - ) - ).build_payload() - - # Run - env = simpy.Environment() - runner = SimulationRunner(env=env, simulation_input=payload) - results: ResultsAnalyzer = runner.run() - return results - - -def main() -> None: - # Build & run - res = build_and_run() - - # Print concise latency summary - print(res.format_latency_stats()) - - # Prepare output dir - script_dir = Path(__file__).parent - out_dir = script_dir / "single_server_plot" - out_dir.mkdir(parents=True, exist_ok=True) - - # Dashboard (latency + throughput) - fig, axes = plt.subplots(1, 2, figsize=(14, 5)) - res.plot_base_dashboard(axes[0], axes[1]) - fig.tight_layout() - dash_path = out_dir / "event_inj_single_server_dashboard.png" - fig.savefig(dash_path) - print(f"Saved: {dash_path}") - - # Per-server plots - for sid in res.list_server_ids(): - # Ready queue - f1, a1 = plt.subplots(figsize=(10, 5)) - res.plot_single_server_ready_queue(a1, sid) - f1.tight_layout() - p1 = out_dir / f"event_inj_single_server_ready_queue_{sid}.png" - f1.savefig(p1) - print(f"Saved: {p1}") - - # I/O queue - f2, a2 = plt.subplots(figsize=(10, 5)) - res.plot_single_server_io_queue(a2, sid) - f2.tight_layout() - p2 = out_dir / f"event_inj_single_server_io_queue_{sid}.png" - f2.savefig(p2) - print(f"Saved: {p2}") - - # RAM usage - f3, a3 = plt.subplots(figsize=(10, 5)) - res.plot_single_server_ram(a3, sid) - f3.tight_layout() - p3 = out_dir / f"event_inj_single_server_ram_{sid}.png" - f3.savefig(p3) - print(f"Saved: {p3}") - - -if __name__ == "__main__": - main() diff --git a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_dashboard.png b/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_dashboard.png deleted file mode 100644 index 1a81453..0000000 Binary files a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_dashboard.png and /dev/null differ diff --git a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_io_queue_srv-1.png b/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_io_queue_srv-1.png deleted file mode 100644 index ed08233..0000000 Binary files a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_io_queue_srv-1.png and /dev/null differ diff --git a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_ram_srv-1.png b/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_ram_srv-1.png deleted file mode 100644 index 476bd79..0000000 Binary files a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_ram_srv-1.png and /dev/null differ diff --git a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_ready_queue_srv-1.png b/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_ready_queue_srv-1.png deleted file mode 100644 index a6fcf29..0000000 Binary files a/examples/builder_input/event_injection/single_server_plot/event_inj_single_server_ready_queue_srv-1.png and /dev/null differ diff --git a/examples/builder_input/load_balancer/lb_dashboard.png b/examples/builder_input/load_balancer/lb_dashboard.png deleted file mode 100644 index dd6cc80..0000000 Binary files a/examples/builder_input/load_balancer/lb_dashboard.png and /dev/null differ diff --git a/examples/builder_input/load_balancer/lb_server_srv-1_metrics.png b/examples/builder_input/load_balancer/lb_server_srv-1_metrics.png deleted file mode 100644 index d7f57e6..0000000 Binary files a/examples/builder_input/load_balancer/lb_server_srv-1_metrics.png and /dev/null differ diff --git a/examples/builder_input/load_balancer/lb_server_srv-2_metrics.png b/examples/builder_input/load_balancer/lb_server_srv-2_metrics.png deleted file mode 100644 index f055ff4..0000000 Binary files a/examples/builder_input/load_balancer/lb_server_srv-2_metrics.png and /dev/null differ diff --git a/examples/builder_input/load_balancer/two_servers.py b/examples/builder_input/load_balancer/two_servers.py deleted file mode 100644 index eebced4..0000000 --- a/examples/builder_input/load_balancer/two_servers.py +++ /dev/null @@ -1,200 +0,0 @@ -""" -Didactic example: AsyncFlow with a Load Balancer and two **identical** servers. - -Goal ----- -Show a realistic, symmetric backend behind a load balancer, and export plots -that match the public `ResultsAnalyzer` API (no YAML needed). - -Topology --------- - generator ──edge──> client ──edge──> LB ──edge──> srv-1 - └──edge──> srv-2 - srv-1 ──edge──> client - srv-2 ──edge──> client - -Load model ----------- -~120 active users, 20 requests/min each (Poisson-like aggregate by default). - -Server model (both srv-1 and srv-2) ------------------------------------ -• 1 CPU cores, 2 GB RAM -• Endpoint pipeline: CPU(2 ms) → RAM(128 MB) → I/O wait (15 ms) - - CPU step blocks the event loop - - RAM step holds a working set until the request completes - - I/O step is non-blocking (event-loop friendly) - -Network model -------------- -Every edge uses an exponential latency with mean 3 ms. - -Outputs -------- -• Prints latency statistics to stdout -• Saves, in the same folder as this script: - - `lb_dashboard.png` (Latency histogram + Throughput) - - `lb_server__metrics.png` for each server (Ready / I/O / RAM) -""" - -from __future__ import annotations - -from pathlib import Path - -import simpy -import matplotlib.pyplot as plt - -# Public AsyncFlow API (builder-style) -from asyncflow import AsyncFlow -from asyncflow.components import Client, Server, Edge, Endpoint, LoadBalancer -from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator - -# Runner + Analyzer -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def main() -> None: - # ── 1) Build the scenario programmatically (no YAML) ──────────────────── - # Workload (traffic generator) - generator = RqsGenerator( - id="rqs-1", - avg_active_users={"mean": 120}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, - ) - - # Client - client = Client(id="client-1") - - # Two identical servers: CPU(2ms) → RAM(128MB) → IO(15ms) - endpoint = Endpoint( - endpoint_name="/api", - probability=1.0, - steps=[ - {"kind": "initial_parsing", "step_operation": {"cpu_time": 0.002}}, - {"kind": "ram", "step_operation": {"necessary_ram": 128}}, - {"kind": "io_wait", "step_operation": {"io_waiting_time": 0.015}}, - ], - ) - - srv1 = Server( - id="srv-1", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - srv2 = Server( - id="srv-2", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - - # Load balancer (round-robin) - lb = LoadBalancer( - id="lb-1", - algorithms="round_robin", - server_covered={"srv-1", "srv-2"}, - ) - - # Network edges (3 ms mean, exponential) - edges = [ - Edge( - id="gen-client", - source="rqs-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ), - Edge( - id="client-lb", - source="client-1", - target="lb-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ), - Edge( - id="lb-srv1", - source="lb-1", - target="srv-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ), - Edge( - id="lb-srv2", - source="lb-1", - target="srv-2", - latency={"mean": 0.003, "distribution": "exponential"}, - ), - Edge( - id="srv1-client", - source="srv-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ), - Edge( - id="srv2-client", - source="srv-2", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ), - ] - - # Simulation settings - settings = SimulationSettings( - total_simulation_time=600, - sample_period_s=0.05, - enabled_sample_metrics=[ - "ready_queue_len", - "event_loop_io_sleep", - "ram_in_use", - "edge_concurrent_connection", - ], - enabled_event_metrics=["rqs_clock"], - ) - - # Assemble the payload with the builder - payload = ( - AsyncFlow() - .add_generator(generator) - .add_client(client) - .add_servers(srv1, srv2) - .add_load_balancer(lb) - .add_edges(*edges) - .add_simulation_settings(settings) - ).build_payload() - - # ── 2) Run the simulation ─────────────────────────────────────────────── - env = simpy.Environment() - runner = SimulationRunner(env=env, simulation_input=payload) - results: ResultsAnalyzer = runner.run() - - # ── 3) Print a concise latency summary ────────────────────────────────── - print(results.format_latency_stats()) - - # ── 4) Save plots (same directory as this script) ─────────────────────── - out_dir = Path(__file__).parent - - # 4a) Dashboard: latency + throughput (single figure) - fig_dash, axes = plt.subplots( - 1, 2, figsize=(14, 5), dpi=160, constrained_layout=True - ) - results.plot_latency_distribution(axes[0]) - results.plot_throughput(axes[1]) - dash_path = out_dir / "lb_dashboard.png" - fig_dash.savefig(dash_path, bbox_inches="tight") - print(f"🖼️ Dashboard saved to: {dash_path}") - - # 4b) Per-server figures: Ready | I/O | RAM (one row per server) - for sid in results.list_server_ids(): - fig_srv, axs = plt.subplots( - 1, 3, figsize=(18, 4.2), dpi=160, constrained_layout=True - ) - results.plot_single_server_ready_queue(axs[0], sid) - results.plot_single_server_io_queue(axs[1], sid) - results.plot_single_server_ram(axs[2], sid) - fig_srv.suptitle(f"Server metrics — {sid}", fontsize=16) - srv_path = out_dir / f"lb_server_{sid}_metrics.png" - fig_srv.savefig(srv_path, bbox_inches="tight") - print(f"🖼️ Per-server plots saved to: {srv_path}") - - -if __name__ == "__main__": - main() diff --git a/examples/builder_input/single_server/builder_service_plots.png b/examples/builder_input/single_server/builder_service_plots.png deleted file mode 100644 index 8a0f270..0000000 Binary files a/examples/builder_input/single_server/builder_service_plots.png and /dev/null differ diff --git a/examples/builder_input/single_server/single_server.py b/examples/builder_input/single_server/single_server.py deleted file mode 100644 index f405748..0000000 --- a/examples/builder_input/single_server/single_server.py +++ /dev/null @@ -1,161 +0,0 @@ -""" -AsyncFlow builder example — build, run, and visualize a single-server async system. - -Topology (single server) - generator ──edge──> client ──edge──> server ──edge──> client - -Load model - ~100 active users, 20 requests/min each (Poisson-like aggregate). - -Server model - 1 CPU core, 2 GB RAM - Endpoint pipeline: CPU(1 ms) → RAM(100 MB) → I/O wait (100 ms) - Semantics: - - CPU step blocks the event loop - - RAM step holds a working set until request completion - - I/O step is non-blocking (event-loop friendly) - -Network model - Each edge has exponential latency with mean 3 ms. - -Outputs - - Prints latency statistics to stdout - - Saves a 2×2 PNG in the same directory as this script: - [0,0] Latency histogram (with mean/P50/P95/P99) - [0,1] Throughput (with mean/P95/max overlays) - [1,0] Ready queue for the first server - [1,1] RAM usage for the first server -""" - -from __future__ import annotations - -from pathlib import Path -import simpy -import matplotlib.pyplot as plt - -# Public AsyncFlow API (builder) -from asyncflow import AsyncFlow -from asyncflow.components import Client, Server, Edge, Endpoint -from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator - -# Runner + Analyzer -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def build_and_run() -> ResultsAnalyzer: - """Build the scenario via the Pythonic builder and run the simulation.""" - # Workload (generator) - generator = RqsGenerator( - id="rqs-1", - avg_active_users={"mean": 100}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, - ) - - # Client - client = Client(id="client-1") - - # Server + endpoint (CPU → RAM → I/O) - endpoint = Endpoint( - endpoint_name="/api", - probability=1.0, - steps=[ - {"kind": "initial_parsing", "step_operation": {"cpu_time": 0.001}}, # 1 ms - {"kind": "ram", "step_operation": {"necessary_ram": 100}}, # 100 MB - {"kind": "io_wait", "step_operation": {"io_waiting_time": 0.100}}, # 100 ms - ], - ) - server = Server( - id="app-1", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - - # Network edges (3 ms mean, exponential) - e_gen_client = Edge( - id="gen-client", - source="rqs-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - e_client_app = Edge( - id="client-app", - source="client-1", - target="app-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - e_app_client = Edge( - id="app-client", - source="app-1", - target="client-1", - latency={"mean": 0.003, "distribution": "exponential"}, - ) - - # Simulation settings - settings = SimulationSettings( - total_simulation_time=300, - sample_period_s=0.05, - enabled_sample_metrics=[ - "ready_queue_len", - "event_loop_io_sleep", - "ram_in_use", - "edge_concurrent_connection", - ], - enabled_event_metrics=["rqs_clock"], - ) - - # Assemble payload with the builder - payload = ( - AsyncFlow() - .add_generator(generator) - .add_client(client) - .add_servers(server) - .add_edges(e_gen_client, e_client_app, e_app_client) - .add_simulation_settings(settings) - ).build_payload() - - # Run - env = simpy.Environment() - runner = SimulationRunner(env=env, simulation_input=payload) - results: ResultsAnalyzer = runner.run() - return results - - -def main() -> None: - # Build & run - res = build_and_run() - - # Print concise latency summary - print(res.format_latency_stats()) - - # Prepare figure in the same folder as this script - script_dir = Path(__file__).parent - out_path = script_dir / "builder_service_plots.png" - - # 2×2: Latency | Throughput | Ready (first server) | RAM (first server) - fig, axes = plt.subplots(2, 2, figsize=(12, 8), dpi=160) - - # Top row - res.plot_latency_distribution(axes[0, 0]) - res.plot_throughput(axes[0, 1]) - - # Bottom row — first server, if present - sids = res.list_server_ids() - if sids: - sid = sids[0] - res.plot_single_server_ready_queue(axes[1, 0], sid) - res.plot_single_server_ram(axes[1, 1], sid) - else: - for ax in (axes[1, 0], axes[1, 1]): - ax.text(0.5, 0.5, "No servers", ha="center", va="center") - ax.axis("off") - - fig.tight_layout() - fig.savefig(out_path) - print(f"Plots saved to: {out_path}") - - -if __name__ == "__main__": - main() diff --git a/examples/yaml_input/data/event_inj_lb.yml b/examples/yaml_input/data/event_inj_lb.yml deleted file mode 100644 index 5d97bc8..0000000 --- a/examples/yaml_input/data/event_inj_lb.yml +++ /dev/null @@ -1,102 +0,0 @@ -# AsyncFlow SimulationPayload — LB + 2 servers (medium load) with events -# -# Topology: -# generator → client → LB → srv-1 -# └→ srv-2 -# srv-1 → client -# srv-2 → client -# -# Workload targets ~40 rps (120 users × 20 req/min ÷ 60). - -rqs_input: - id: rqs-1 - avg_active_users: { mean: 120 } - avg_request_per_minute_per_user: { mean: 20 } - user_sampling_window: 60 - -topology_graph: - nodes: - client: { id: client-1 } - - load_balancer: - id: lb-1 - algorithms: round_robin - server_covered: [srv-1, srv-2] - - servers: - - id: srv-1 - server_resources: { cpu_cores: 1, ram_mb: 2048 } - endpoints: - - endpoint_name: /api - steps: - - kind: initial_parsing - step_operation: { cpu_time: 0.002 } # 2 ms CPU - - kind: ram - step_operation: { necessary_ram: 128 } # 128 MB - - kind: io_wait - step_operation: { io_waiting_time: 0.012 } # 12 ms I/O wait - - - id: srv-2 - server_resources: { cpu_cores: 1, ram_mb: 2048 } - endpoints: - - endpoint_name: /api - steps: - - kind: initial_parsing - step_operation: { cpu_time: 0.002 } - - kind: ram - step_operation: { necessary_ram: 128 } - - kind: io_wait - step_operation: { io_waiting_time: 0.012 } - - edges: - - { id: gen-client, source: rqs-1, target: client-1, latency: { mean: 0.003, distribution: exponential } } - - { id: client-lb, source: client-1, target: lb-1, latency: { mean: 0.002, distribution: exponential } } - - { id: lb-srv1, source: lb-1, target: srv-1, latency: { mean: 0.002, distribution: exponential } } - - { id: lb-srv2, source: lb-1, target: srv-2, latency: { mean: 0.002, distribution: exponential } } - - { id: srv1-client, source: srv-1, target: client-1, latency: { mean: 0.003, distribution: exponential } } - - { id: srv2-client, source: srv-2, target: client-1, latency: { mean: 0.003, distribution: exponential } } - -sim_settings: - total_simulation_time: 600 - sample_period_s: 0.05 - enabled_sample_metrics: - - ready_queue_len - - event_loop_io_sleep - - ram_in_use - - edge_concurrent_connection - enabled_event_metrics: - - rqs_clock - -# Events: -# - Edge spikes (added latency in seconds) that stress different paths at different times. -# - Server outages that never overlap (so at least one server stays up). -events: - # Edge spike: client → LB gets +15 ms from t=100s to t=160s - - event_id: ev-spike-1 - target_id: client-lb - start: { kind: network_spike_start, t_start: 100.0, spike_s: 0.015 } - end: { kind: network_spike_end, t_end: 160.0 } - - # Server outage: srv-1 down from t=180s to t=240s - - event_id: ev-srv1-down - target_id: srv-1 - start: { kind: server_down, t_start: 180.0 } - end: { kind: server_up, t_end: 240.0 } - - # Edge spike focused on srv-2 leg (LB → srv-2) from t=300s to t=360s (+20 ms) - - event_id: ev-spike-2 - target_id: lb-srv2 - start: { kind: network_spike_start, t_start: 300.0, spike_s: 0.020 } - end: { kind: network_spike_end, t_end: 360.0 } - - # Server outage: srv-2 down from t=360s to t=420s (starts right after the spike ends) - - event_id: ev-srv2-down - target_id: srv-2 - start: { kind: server_down, t_start: 360.0 } - end: { kind: server_up, t_end: 420.0 } - - # Late spike on generator → client from t=480s to t=540s (+10 ms) - - event_id: ev-spike-3 - target_id: gen-client - start: { kind: network_spike_start, t_start: 480.0, spike_s: 0.010 } - end: { kind: network_spike_end, t_end: 540.0 } diff --git a/examples/yaml_input/data/event_inj_single_server.yml b/examples/yaml_input/data/event_inj_single_server.yml deleted file mode 100644 index 9e7d2ec..0000000 --- a/examples/yaml_input/data/event_inj_single_server.yml +++ /dev/null @@ -1,77 +0,0 @@ -# ─────────────────────────────────────────────────────────────── -# AsyncFlow scenario: generator ➜ client ➜ server ➜ client -# with event injection (edge spike + server outage) -# ─────────────────────────────────────────────────────────────── - -# 1) Traffic generator (light load) -rqs_input: - id: rqs-1 - avg_active_users: { mean: 100 } - avg_request_per_minute_per_user: { mean: 20 } - user_sampling_window: 60 - -# 2) Topology -topology_graph: - nodes: - client: { id: client-1 } - servers: - - id: srv-1 - server_resources: { cpu_cores: 1, ram_mb: 2048 } - endpoints: - - endpoint_name: ep-1 - probability: 1.0 - steps: - # CPU-bound parse (~1ms) - - kind: initial_parsing - step_operation: { cpu_time: 0.001 } - # Hold 100 MB while processing - - kind: ram - step_operation: { necessary_ram: 100 } - # Non-blocking I/O wait (~100ms) - - kind: io_wait - step_operation: { io_waiting_time: 0.1 } - - edges: - - id: gen-to-client - source: rqs-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - - - id: client-to-server - source: client-1 - target: srv-1 - latency: { mean: 0.003, distribution: exponential } - - - id: server-to-client - source: srv-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - -# 3) Simulation settings -sim_settings: - total_simulation_time: 500 - sample_period_s: 0.05 - enabled_sample_metrics: - - ready_queue_len - - event_loop_io_sleep - - ram_in_use - - edge_concurrent_connection - enabled_event_metrics: - - rqs_clock - -# 4) Events (validated by Pydantic) -# - ev-spike-1: deterministic latency spike (+20ms) on the client→server edge -# from t=120s to t=240s -# - ev-outage-1: server outage for srv-1 from t=300s to t=360s -events: - - event_id: ev-spike-1 - target_id: client-to-server - start: - kind: network_spike_start - t_start: 120.0 - spike_s: 2.00 - end: - kind: network_spike_end - t_end: 240.0 - - \ No newline at end of file diff --git a/examples/yaml_input/data/heavy_inj_single_server.yml b/examples/yaml_input/data/heavy_inj_single_server.yml deleted file mode 100644 index 839cf33..0000000 --- a/examples/yaml_input/data/heavy_inj_single_server.yml +++ /dev/null @@ -1,78 +0,0 @@ -# ─────────────────────────────────────────────────────────────── -# AsyncFlow scenario (HEAVY): generator ➜ client ➜ server ➜ client -# Edge-latency spike + heavier workload to provoke queue growth. -# ─────────────────────────────────────────────────────────────── - -# 1) Traffic generator (heavier load) -rqs_input: - id: rqs-1 - # More concurrent users and higher per-user rate drive the system harder. - avg_active_users: { mean: 300 } - avg_request_per_minute_per_user: { mean: 30 } - user_sampling_window: 60 - -# 2) Topology -topology_graph: - nodes: - client: { id: client-1 } - servers: - - id: srv-1 - # Keep just 1 CPU core so the server becomes a bottleneck. - server_resources: { cpu_cores: 1, ram_mb: 8000 } - endpoints: - - endpoint_name: ep-1 - probability: 1.0 - steps: - # Heavier CPU (~5 ms) to increase service time - - kind: initial_parsing - step_operation: { cpu_time: 0.005 } - # Larger working set to keep RAM busy - - kind: ram - step_operation: { necessary_ram: 200 } - # Longer I/O wait (~200 ms) to create a noticeable I/O queue - - kind: io_wait - step_operation: { io_waiting_time: 0.2 } - - edges: - - id: gen-to-client - source: rqs-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - - - id: client-to-server - source: client-1 - target: srv-1 - latency: { mean: 0.003, distribution: exponential } - - - id: server-to-client - source: srv-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - -# 3) Simulation settings -sim_settings: - # Longer horizon so we clearly see pre-/during-/post-spike behavior. - total_simulation_time: 600 - sample_period_s: 0.05 - enabled_sample_metrics: - - ready_queue_len - - event_loop_io_sleep - - ram_in_use - - edge_concurrent_connection - enabled_event_metrics: - - rqs_clock - -# 4) Events (validated by Pydantic) -# Large deterministic edge spike (+3.0 s) during [180, 300] s on the -# client→server edge. With the heavier workload, this should help -# exacerbate queue growth/oscillations around the spike window. -events: - - event_id: ev-spike-heavy - target_id: client-to-server - start: - kind: network_spike_start - t_start: 180.0 - spike_s: 3.0 - end: - kind: network_spike_end - t_end: 300.0 diff --git a/examples/yaml_input/data/single_server.yml b/examples/yaml_input/data/single_server.yml deleted file mode 100644 index 844b1ad..0000000 --- a/examples/yaml_input/data/single_server.yml +++ /dev/null @@ -1,56 +0,0 @@ -# ─────────────────────────────────────────────────────────────── -# AsyncFlow scenario: generator ➜ client ➜ server ➜ client -# ─────────────────────────────────────────────────────────────── - -# 1. Traffic generator (light load) -rqs_input: - id: rqs-1 - avg_active_users: { mean: 100 } - avg_request_per_minute_per_user: { mean: 20 } - user_sampling_window: 60 - -# 2. Topology -topology_graph: - nodes: - client: { id: client-1 } - servers: - - id: srv-1 - server_resources: { cpu_cores: 1, ram_mb: 2048 } - endpoints: - - endpoint_name: ep-1 - probability: 1.0 - steps: - - kind: initial_parsing - step_operation: { cpu_time: 0.001 } - - kind: ram - step_operation: { necessary_ram: 100} - - kind: io_wait - step_operation: { io_waiting_time: 0.1 } - - edges: - - id: gen-to-client - source: rqs-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - - - id: client-to-server - source: client-1 - target: srv-1 - latency: { mean: 0.003, distribution: exponential } - - - id: server-to-client - source: srv-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - -# 3. Simulation settings -sim_settings: - total_simulation_time: 500 - sample_period_s: 0.05 - enabled_sample_metrics: - - ready_queue_len - - event_loop_io_sleep - - ram_in_use - - edge_concurrent_connection - enabled_event_metrics: - - rqs_clock diff --git a/examples/yaml_input/data/two_servers_lb.yml b/examples/yaml_input/data/two_servers_lb.yml deleted file mode 100644 index 6adf5cb..0000000 --- a/examples/yaml_input/data/two_servers_lb.yml +++ /dev/null @@ -1,71 +0,0 @@ -# AsyncFlow SimulationPayload — Load Balancer + 2 identical app servers -# -# Topology: -# generator → client → LB → srv-1 -# └→ srv-2 -# srv-1 → client -# srv-2 → client -# -# Each server runs: CPU(2 ms) → RAM(128 MB) → IO wait(12 ms) -# All network links use exponential latency with small means (2–3 ms). -# - - -rqs_input: - id: rqs-1 - avg_active_users: { mean: 400 } - avg_request_per_minute_per_user: { mean: 20 } - user_sampling_window: 60 - -topology_graph: - nodes: - client: { id: client-1 } - - load_balancer: - id: lb-1 - algorithms: round_robin - server_covered: [srv-1, srv-2] - - servers: - - id: srv-1 - server_resources: { cpu_cores: 1, ram_mb: 2048 } - endpoints: - - endpoint_name: /api - steps: - - kind: initial_parsing - step_operation: { cpu_time: 0.002 } # 2 ms CPU (blocks event loop) - - kind: ram - step_operation: { necessary_ram: 128 } # 128 MB working set - - kind: io_wait - step_operation: { io_waiting_time: 0.012 } # 12 ms non-blocking I/O - - - id: srv-2 - server_resources: { cpu_cores: 1, ram_mb: 2048 } - endpoints: - - endpoint_name: /api - steps: - - kind: initial_parsing - step_operation: { cpu_time: 0.002 } - - kind: ram - step_operation: { necessary_ram: 128 } - - kind: io_wait - step_operation: { io_waiting_time: 0.012 } - - edges: - - { id: gen-client, source: rqs-1, target: client-1, latency: { mean: 0.003, distribution: exponential } } - - { id: client-lb, source: client-1, target: lb-1, latency: { mean: 0.002, distribution: exponential } } - - { id: lb-srv1, source: lb-1, target: srv-1, latency: { mean: 0.002, distribution: exponential } } - - { id: lb-srv2, source: lb-1, target: srv-2, latency: { mean: 0.002, distribution: exponential } } - - { id: srv1-client, source: srv-1, target: client-1, latency: { mean: 0.003, distribution: exponential } } - - { id: srv2-client, source: srv-2, target: client-1, latency: { mean: 0.003, distribution: exponential } } - -sim_settings: - total_simulation_time: 600 - sample_period_s: 0.05 - enabled_sample_metrics: - - ready_queue_len - - event_loop_io_sleep - - ram_in_use - - edge_concurrent_connection - enabled_event_metrics: - - rqs_clock diff --git a/examples/yaml_input/event_injections/heavy_single_server.py b/examples/yaml_input/event_injections/heavy_single_server.py deleted file mode 100644 index 5ac9b16..0000000 --- a/examples/yaml_input/event_injections/heavy_single_server.py +++ /dev/null @@ -1,82 +0,0 @@ -""" -Run the *heavy* YAML scenario with event injections and export charts. - -Scenario file: - data/heavy_event_inj_single_server.yml - -Outputs (saved under a folder next to this script): - examples/yaml_input/event_injections/heavy_single_server_plot/ - - heavy_event_inj_single_server_dashboard.png - - heavy_event_inj_single_server_ready_queue_.png - - heavy_event_inj_single_server_io_queue_.png - - heavy_event_inj_single_server_ram_.png -""" - -from __future__ import annotations - -from pathlib import Path - -import matplotlib.pyplot as plt -import simpy - -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer -from asyncflow.runner.simulation import SimulationRunner - - -def main() -> None: - """Defines paths, runs the simulation, and generates all outputs.""" - # --- 1. Define File Paths --- - script_dir = Path(__file__).parent - yaml_path = script_dir.parent / "data" / "heavy_inj_single_server.yml" - output_base_name = "heavy_inj_single_server" - - if not yaml_path.exists(): - msg = f"YAML configuration file not found: {yaml_path}" - raise FileNotFoundError(msg) - - # Create/ensure the output directory (overwrite files if present). - out_dir = script_dir / "heavy_single_server_plot" - out_dir.mkdir(parents=True, exist_ok=True) - - # --- 2. Run the Simulation --- - env = simpy.Environment() - runner = SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) - results: ResultsAnalyzer = runner.run() - - # --- 3. Dashboard (latency + throughput) --- - fig, axes = plt.subplots(1, 2, figsize=(14, 5)) - results.plot_base_dashboard(axes[0], axes[1]) - fig.tight_layout() - dash_path = out_dir / f"{output_base_name}_dashboard.png" - fig.savefig(dash_path) - print(f"Saved: {dash_path}") - - # --- 4. Per-server plots --- - for sid in results.list_server_ids(): - # Ready queue - f1, a1 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ready_queue(a1, sid) - f1.tight_layout() - p1 = out_dir / f"{output_base_name}_ready_queue_{sid}.png" - f1.savefig(p1) - print(f"Saved: {p1}") - - # I/O queue - f2, a2 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_io_queue(a2, sid) - f2.tight_layout() - p2 = out_dir / f"{output_base_name}_io_queue_{sid}.png" - f2.savefig(p2) - print(f"Saved: {p2}") - - # RAM usage - f3, a3 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ram(a3, sid) - f3.tight_layout() - p3 = out_dir / f"{output_base_name}_ram_{sid}.png" - f3.savefig(p3) - print(f"Saved: {p3}") - - -if __name__ == "__main__": - main() diff --git a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_dashboard.png b/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_dashboard.png deleted file mode 100644 index 4662ae0..0000000 Binary files a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_dashboard.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_io_queue_srv-1.png b/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_io_queue_srv-1.png deleted file mode 100644 index 941a8db..0000000 Binary files a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_io_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_ram_srv-1.png b/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_ram_srv-1.png deleted file mode 100644 index 1efba07..0000000 Binary files a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_ram_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_ready_queue_srv-1.png b/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_ready_queue_srv-1.png deleted file mode 100644 index 23f09f3..0000000 Binary files a/examples/yaml_input/event_injections/heavy_single_server_plot/heavy_inj_single_server_ready_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers.py b/examples/yaml_input/event_injections/lb_two_servers.py deleted file mode 100644 index 700f42d..0000000 --- a/examples/yaml_input/event_injections/lb_two_servers.py +++ /dev/null @@ -1,78 +0,0 @@ -""" -Run the YAML scenario with LB + 2 servers and export charts. - -Scenario file: - data/lb_two_servers_events.yml - -Outputs (saved in subfolder next to this script): - - dashboard PNG (latency + throughput) - - per-server PNGs: ready queue, I/O queue, RAM -""" - -from __future__ import annotations - -from pathlib import Path -import matplotlib.pyplot as plt -import simpy - -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer -from asyncflow.runner.simulation import SimulationRunner - - -def main() -> None: - """Defines paths, runs the simulation, and generates all outputs.""" - # --- 1. Define paths --- - script_dir = Path(__file__).parent - yaml_path = script_dir.parent / "data" / "event_inj_lb.yml" - - out_dir = script_dir / "lb_two_servers_plots" - out_dir.mkdir(exist_ok=True) # create if missing - - output_base_name = "lb_two_servers_events" - - if not yaml_path.exists(): - msg = f"YAML configuration file not found: {yaml_path}" - raise FileNotFoundError(msg) - - # --- 2. Run the simulation --- - env = simpy.Environment() - runner = SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) - results: ResultsAnalyzer = runner.run() - - # --- 3. Dashboard (latency + throughput) --- - fig, axes = plt.subplots(1, 2, figsize=(14, 5)) - results.plot_base_dashboard(axes[0], axes[1]) - fig.tight_layout() - dash_path = out_dir / f"{output_base_name}_dashboard.png" - fig.savefig(dash_path) - print(f"Saved: {dash_path}") - - # --- 4. Per-server plots --- - for sid in results.list_server_ids(): - # Ready queue - f1, a1 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ready_queue(a1, sid) - f1.tight_layout() - p1 = out_dir / f"{output_base_name}_ready_queue_{sid}.png" - f1.savefig(p1) - print(f"Saved: {p1}") - - # I/O queue - f2, a2 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_io_queue(a2, sid) - f2.tight_layout() - p2 = out_dir / f"{output_base_name}_io_queue_{sid}.png" - f2.savefig(p2) - print(f"Saved: {p2}") - - # RAM usage - f3, a3 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ram(a3, sid) - f3.tight_layout() - p3 = out_dir / f"{output_base_name}_ram_{sid}.png" - f3.savefig(p3) - print(f"Saved: {p3}") - - -if __name__ == "__main__": - main() diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_dashboard.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_dashboard.png deleted file mode 100644 index f23ee2a..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_dashboard.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_io_queue_srv-1.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_io_queue_srv-1.png deleted file mode 100644 index 7565139..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_io_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_io_queue_srv-2.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_io_queue_srv-2.png deleted file mode 100644 index 3531413..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_io_queue_srv-2.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ram_srv-1.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ram_srv-1.png deleted file mode 100644 index b0ccfbc..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ram_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ram_srv-2.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ram_srv-2.png deleted file mode 100644 index c0a9ddc..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ram_srv-2.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ready_queue_srv-1.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ready_queue_srv-1.png deleted file mode 100644 index 7cdbbcf..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ready_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ready_queue_srv-2.png b/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ready_queue_srv-2.png deleted file mode 100644 index 8b732ab..0000000 Binary files a/examples/yaml_input/event_injections/lb_two_servers_plots/lb_two_servers_events_ready_queue_srv-2.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/single_server.py b/examples/yaml_input/event_injections/single_server.py deleted file mode 100644 index 3f5b182..0000000 --- a/examples/yaml_input/event_injections/single_server.py +++ /dev/null @@ -1,82 +0,0 @@ -""" -Run the YAML scenario with event injections and export charts. - -Scenario file: - data/event_inj_single_server.yml - -Outputs (saved under a folder next to this script): - examples/yaml_input/event_injections/single_server_plot/ - - event_inj_single_server_dashboard.png - - event_inj_single_server_ready_queue_.png - - event_inj_single_server_io_queue_.png - - event_inj_single_server_ram_.png -""" - -from __future__ import annotations - -from pathlib import Path - -import matplotlib.pyplot as plt -import simpy - -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer -from asyncflow.runner.simulation import SimulationRunner - - -def main() -> None: - """Defines paths, runs the simulation, and generates all outputs.""" - # --- 1. Define File Paths --- - script_dir = Path(__file__).parent # same folder as this file - yaml_path = script_dir.parent / "data" / "event_inj_single_server.yml" - output_base_name = "event_inj_single_server" # prefix for output files - - if not yaml_path.exists(): - msg = f"YAML configuration file not found: {yaml_path}" - raise FileNotFoundError(msg) - - # Create/ensure the output directory: - out_dir = script_dir / "single_server_plot" - out_dir.mkdir(parents=True, exist_ok=True) - - # --- 2. Run the Simulation --- - env = simpy.Environment() - runner = SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) - results: ResultsAnalyzer = runner.run() - - # --- 3. Dashboard (latency + throughput) --- - fig, axes = plt.subplots(1, 2, figsize=(14, 5)) - results.plot_base_dashboard(axes[0], axes[1]) - fig.tight_layout() - dash_path = out_dir / f"{output_base_name}_dashboard.png" - fig.savefig(dash_path) - print(f"Saved: {dash_path}") - - # --- 4. Per-server plots --- - for sid in results.list_server_ids(): - # Ready queue - f1, a1 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ready_queue(a1, sid) - f1.tight_layout() - p1 = out_dir / f"{output_base_name}_ready_queue_{sid}.png" - f1.savefig(p1) - print(f"Saved: {p1}") - - # I/O queue - f2, a2 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_io_queue(a2, sid) - f2.tight_layout() - p2 = out_dir / f"{output_base_name}_io_queue_{sid}.png" - f2.savefig(p2) - print(f"Saved: {p2}") - - # RAM usage - f3, a3 = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ram(a3, sid) - f3.tight_layout() - p3 = out_dir / f"{output_base_name}_ram_{sid}.png" - f3.savefig(p3) - print(f"Saved: {p3}") - - -if __name__ == "__main__": - main() diff --git a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_dashboard.png b/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_dashboard.png deleted file mode 100644 index c98a6a7..0000000 Binary files a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_dashboard.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_io_queue_srv-1.png b/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_io_queue_srv-1.png deleted file mode 100644 index 3a68e5e..0000000 Binary files a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_io_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_ram_srv-1.png b/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_ram_srv-1.png deleted file mode 100644 index 404a2d9..0000000 Binary files a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_ram_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_ready_queue_srv-1.png b/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_ready_queue_srv-1.png deleted file mode 100644 index 0ec5bbd..0000000 Binary files a/examples/yaml_input/event_injections/single_server_plot/event_inj_single_server_ready_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/load_balancer/two_servers.py b/examples/yaml_input/load_balancer/two_servers.py deleted file mode 100644 index 622d277..0000000 --- a/examples/yaml_input/load_balancer/two_servers.py +++ /dev/null @@ -1,73 +0,0 @@ -#!/usr/bin/env python3 -""" -Walkthrough: run a Load-Balanced (2 servers) AsyncFlow scenario from YAML. - -What this script does ---------------------- -1) Loads the SimulationPayload from a YAML file (round-robin LB, 2 identical servers). -2) Runs the simulation via `SimulationRunner`. -3) Prints a concise latency summary to stdout. -4) Saves plots **in the same folder as this script**: - • `lb_dashboard.png` (Latency histogram + Throughput) - • One figure per server with 3 panels: Ready Queue, I/O Queue, RAM usage. - -How to use ----------- -- Put this script and `two_servers_lb.yml` in the same directory. -- Run: `python run_lb_from_yaml.py` -""" - -from __future__ import annotations - -from pathlib import Path -import simpy -import matplotlib.pyplot as plt - -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def main() -> None: - # Paths (same directory as this script) - script_dir = Path(__file__).parent - out_dir = script_dir / "two_servers_plot" - out_dir.mkdir(parents=True, exist_ok=True) - - yaml_path = script_dir.parent / "data" / "two_servers_lb.yml" - if not yaml_path.exists(): - raise FileNotFoundError(f"YAML configuration not found: {yaml_path}") - - # Run the simulation - print(f"🚀 Loading and running simulation from: {yaml_path}") - env = simpy.Environment() - runner = SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) - results: ResultsAnalyzer = runner.run() - print("✅ Simulation finished!") - - # Print concise latency summary - print(results.format_latency_stats()) - - # ---- Plots: dashboard (latency + throughput) ---- - fig_dash, axes_dash = plt.subplots(1, 2, figsize=(14, 5), dpi=160) - results.plot_latency_distribution(axes_dash[0]) - results.plot_throughput(axes_dash[1]) - fig_dash.tight_layout() - out_dashboard = out_dir / "lb_dashboard.png" - fig_dash.savefig(out_dashboard, bbox_inches="tight") - print(f"🖼️ Dashboard saved to: {out_dashboard}") - - # ---- Per-server metrics: one figure per server (Ready | I/O | RAM) ---- - for sid in results.list_server_ids(): - fig_row, axes = plt.subplots(1, 3, figsize=(16, 3.8), dpi=160) - results.plot_single_server_ready_queue(axes[0], sid) - results.plot_single_server_io_queue(axes[1], sid) - results.plot_single_server_ram(axes[2], sid) - fig_row.suptitle(f"Server metrics — {sid}", y=1.04, fontsize=14) - fig_row.tight_layout() - out_path = out_dir / f"lb_server_{sid}_metrics.png" - fig_row.savefig(out_path, bbox_inches="tight") - print(f"🖼️ Server metrics for '{sid}' saved to: {out_path}") - - -if __name__ == "__main__": - main() diff --git a/examples/yaml_input/load_balancer/two_servers_plot/lb_dashboard.png b/examples/yaml_input/load_balancer/two_servers_plot/lb_dashboard.png deleted file mode 100644 index 95c9a14..0000000 Binary files a/examples/yaml_input/load_balancer/two_servers_plot/lb_dashboard.png and /dev/null differ diff --git a/examples/yaml_input/load_balancer/two_servers_plot/lb_server_srv-1_metrics.png b/examples/yaml_input/load_balancer/two_servers_plot/lb_server_srv-1_metrics.png deleted file mode 100644 index 76ef6c5..0000000 Binary files a/examples/yaml_input/load_balancer/two_servers_plot/lb_server_srv-1_metrics.png and /dev/null differ diff --git a/examples/yaml_input/load_balancer/two_servers_plot/lb_server_srv-2_metrics.png b/examples/yaml_input/load_balancer/two_servers_plot/lb_server_srv-2_metrics.png deleted file mode 100644 index fac7f78..0000000 Binary files a/examples/yaml_input/load_balancer/two_servers_plot/lb_server_srv-2_metrics.png and /dev/null differ diff --git a/examples/yaml_input/single_server/single_server.py b/examples/yaml_input/single_server/single_server.py deleted file mode 100644 index 8e03779..0000000 --- a/examples/yaml_input/single_server/single_server.py +++ /dev/null @@ -1,111 +0,0 @@ -""" -AsyncFlow — YAML single-server example: run and export charts. - -System (single server) - generator → client → server → client - -Load - ~100 active users, ~20 requests/min each (stochastic aggregate). - -Server - 1 CPU core, 2 GB RAM, endpoint "ep-1": - CPU(1 ms) → RAM(100 MB) → I/O wait (100 ms) - Semantics: - - CPU step blocks the event loop - - RAM step holds a working set until the request leaves the server - - I/O step is non-blocking (event-loop friendly) - -Network - Each edge has exponential latency with mean 3 ms. - -Simulation settings - Duration: 500 s - Sampling period: 50 ms - -What this script does - 1) Loads the YAML scenario and runs the simulation. - 2) Prints latency statistics to stdout. - 3) Saves charts next to this script: - - Dashboard PNG: latency histogram (mean/P50/P95/P99) - and throughput (mean/P95/max) side-by-side. - - Per-server PNGs: Ready queue, I/O queue, and RAM usage for each server. -""" - - -from __future__ import annotations - -import logging -from pathlib import Path - -# SimPy environment is required by SimulationRunner.from_yaml -import simpy - -# matplotlib is needed to create figures for plotting -import matplotlib.pyplot as plt - -# The only imports a user needs to run a simulation -from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer -from asyncflow.runner.simulation import SimulationRunner - -# --- Basic Logging Setup --- -logging.basicConfig(level=logging.INFO, format="%(levelname)s: %(message)s") - - -def main() -> None: - """Defines paths, runs the simulation, and generates all outputs.""" - # --- 1. Define File Paths --- - script_dir = Path(__file__).parent # same folder as this script - out_dir = script_dir / "single_server_plot" # outputs will go here - out_dir.mkdir(parents=True, exist_ok=True) # create if not exists - - yaml_path = script_dir.parent / "data" / "single_server.yml" - output_base_name = "single_server_results" # prefix for output files - - if not yaml_path.exists(): - raise FileNotFoundError(f"YAML configuration file not found: {yaml_path}") - - # --- 2. Run the Simulation --- - print(f"🚀 Loading and running simulation from: {yaml_path}") - env = simpy.Environment() # Create the SimPy environment - runner = SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) # pass env - results: ResultsAnalyzer = runner.run() - print("✅ Simulation finished!") - - # Plot 1: The main dashboard (Latency Distribution + Throughput) - fig_base, axes_base = plt.subplots(1, 2, figsize=(14, 5)) - results.plot_base_dashboard(axes_base[0], axes_base[1]) - fig_base.tight_layout() - base_plot_path = out_dir / f"{output_base_name}_dashboard.png" - fig_base.savefig(base_plot_path) - print(f"🖼️ Base dashboard saved to: {base_plot_path}") - - # Plot 2: Individual plots for each server's metrics - server_ids = results.list_server_ids() - for sid in server_ids: - # Ready queue (separate) - fig_rdy, ax_rdy = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ready_queue(ax_rdy, sid) - fig_rdy.tight_layout() - rdy_path = out_dir / f"{output_base_name}_ready_queue_{sid}.png" - fig_rdy.savefig(rdy_path) - print(f"🖼️ Ready queue for '{sid}' saved to: {rdy_path}") - - # I/O queue (separate) - fig_io, ax_io = plt.subplots(figsize=(10, 5)) - results.plot_single_server_io_queue(ax_io, sid) - fig_io.tight_layout() - io_path = out_dir / f"{output_base_name}_io_queue_{sid}.png" - fig_io.savefig(io_path) - print(f"🖼️ I/O queue for '{sid}' saved to: {io_path}") - - # RAM (separate) - fig_r, ax_r = plt.subplots(figsize=(10, 5)) - results.plot_single_server_ram(ax_r, sid) - fig_r.tight_layout() - r_path = out_dir / f"{output_base_name}_ram_{sid}.png" - fig_r.savefig(r_path) - print(f"🖼️ RAM plot for '{sid}' saved to: {r_path}") - - -if __name__ == "__main__": - main() diff --git a/examples/yaml_input/single_server/single_server_plot/single_server_results_dashboard.png b/examples/yaml_input/single_server/single_server_plot/single_server_results_dashboard.png deleted file mode 100644 index b54350d..0000000 Binary files a/examples/yaml_input/single_server/single_server_plot/single_server_results_dashboard.png and /dev/null differ diff --git a/examples/yaml_input/single_server/single_server_plot/single_server_results_io_queue_srv-1.png b/examples/yaml_input/single_server/single_server_plot/single_server_results_io_queue_srv-1.png deleted file mode 100644 index c13b68e..0000000 Binary files a/examples/yaml_input/single_server/single_server_plot/single_server_results_io_queue_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/single_server/single_server_plot/single_server_results_ram_srv-1.png b/examples/yaml_input/single_server/single_server_plot/single_server_results_ram_srv-1.png deleted file mode 100644 index 511c132..0000000 Binary files a/examples/yaml_input/single_server/single_server_plot/single_server_results_ram_srv-1.png and /dev/null differ diff --git a/examples/yaml_input/single_server/single_server_plot/single_server_results_ready_queue_srv-1.png b/examples/yaml_input/single_server/single_server_plot/single_server_results_ready_queue_srv-1.png deleted file mode 100644 index 4eaf2bd..0000000 Binary files a/examples/yaml_input/single_server/single_server_plot/single_server_results_ready_queue_srv-1.png and /dev/null differ diff --git a/src/asyncflow/analysis/__init__.py b/src/asyncflow/analysis/__init__.py index 5a47802..3d895eb 100644 --- a/src/asyncflow/analysis/__init__.py +++ b/src/asyncflow/analysis/__init__.py @@ -2,7 +2,6 @@ from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer from asyncflow.metrics.sweep_analyzer import SweepAnalyzer -from asyncflow.queue_theory_analysis.mm1 import MM1 from asyncflow.queue_theory_analysis.mmc import MMc -__all__ = ["MM1", "MMc", "ResultsAnalyzer", "SweepAnalyzer"] +__all__ = ["MMc", "ResultsAnalyzer", "SweepAnalyzer"] diff --git a/src/asyncflow/builder/asyncflow_builder.py b/src/asyncflow/builder/asyncflow_builder.py index ef33e7b..dae2429 100644 --- a/src/asyncflow/builder/asyncflow_builder.py +++ b/src/asyncflow/builder/asyncflow_builder.py @@ -4,7 +4,8 @@ from typing import Self -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.events.injection import End, EventInjection, Start from asyncflow.schemas.payload import SimulationPayload from asyncflow.schemas.settings.simulation import SimulationSettings @@ -16,7 +17,6 @@ Server, TopologyNodes, ) -from asyncflow.schemas.workload.rqs_generator import RqsGenerator class AsyncFlow: @@ -24,7 +24,7 @@ class AsyncFlow: def __init__(self) -> None: """Instance attributes necessary to define the simulation payload""" - self._generator: RqsGenerator | None = None + self._arrivals: ArrivalsGenerator | None = None self._client: Client | None = None self._servers: list[Server] | None = None self._edges: list[Edge] | None = None @@ -32,12 +32,15 @@ def __init__(self) -> None: self._load_balancer: LoadBalancer | None = None self._events: list[EventInjection] = [] - def add_generator(self, rqs_generator: RqsGenerator) -> Self: + def add_arrivals_generator( + self, + arrivals: ArrivalsGenerator, + ) -> Self: """Method to instantiate the generator""" - if not isinstance(rqs_generator, RqsGenerator): - msg = "You must add a RqsGenerator instance" + if not isinstance(arrivals, ArrivalsGenerator): + msg = "You must add a ArrivalsGenerator instance" raise TypeError(msg) - self._generator = rqs_generator + self._arrivals = arrivals return self def add_client(self, client: Client) -> Self: @@ -142,7 +145,7 @@ def add_server_outage( def build_payload(self) -> SimulationPayload: """Method to build the payload for the simulation""" - if self._generator is None: + if self._arrivals is None: msg = "The generator input must be instantiated before the simulation" raise ValueError(msg) if self._client is None: @@ -170,7 +173,7 @@ def build_payload(self) -> SimulationPayload: ) return SimulationPayload.model_validate({ - "rqs_input": self._generator, + "arrivals": self._arrivals, "topology_graph": graph, "sim_settings": self._sim_settings, "events": self._events or None, diff --git a/src/asyncflow/components/__init__.py b/src/asyncflow/components/__init__.py index 9ba1da3..0c3f5ca 100644 --- a/src/asyncflow/components/__init__.py +++ b/src/asyncflow/components/__init__.py @@ -1,6 +1,7 @@ """Public components: re-exports Pydantic schemas (topology).""" from __future__ import annotations +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.events.injection import EventInjection from asyncflow.schemas.topology.edges import Edge from asyncflow.schemas.topology.endpoint import Endpoint @@ -12,6 +13,7 @@ ) __all__ = [ + "ArrivalsGenerator", "Client", "Edge", "Endpoint", diff --git a/src/asyncflow/config/constants.py b/src/asyncflow/config/constants.py index 2e78581..025cdee 100644 --- a/src/asyncflow/config/constants.py +++ b/src/asyncflow/config/constants.py @@ -7,111 +7,13 @@ JSON / YAML payloads can be strictly validated with Pydantic. Front-end and simulation engine share a single source of truth. Ruff, mypy and IDEs can leverage the strong typing provided by Enum classes. - -IMPORTANT: Changing any enum value is a breaking-change for every -stored configuration file. Add new members whenever possible instead of -renaming existing ones. """ -from enum import Enum, IntEnum, StrEnum - -# ====================================================================== -# CONSTANTS FOR THE REQUEST-GENERATOR COMPONENT -# ====================================================================== - - -class TimeDefaults(IntEnum): - """ - Default time-related constants (expressed in seconds). - - These values are used when the user omits an explicit parameter. They also - serve as lower / upper bounds for validation for the requests generator. - """ - - MIN_TO_SEC = 60 # 1 minute → 60 s - USER_SAMPLING_WINDOW = 60 # every 60 seconds sample the number of active user - SIMULATION_TIME = 3_600 # run 1 h if user gives no value - MIN_SIMULATION_TIME = 5 # 5 seconds give a broad spectrum - MIN_USER_SAMPLING_WINDOW = 1 # 1 s minimum - MAX_USER_SAMPLING_WINDOW = 120 # 2 min maximum - - -class Distribution(StrEnum): - """ - Probability distributions accepted by app.schemas.RVConfig. - - The string value is exactly the identifier that must appear in JSON - payloads. The simulation engine will map each name to the corresponding - random sampler (e.g.numpy.random.poisson). - """ - - POISSON = "poisson" - NORMAL = "normal" - LOG_NORMAL = "log_normal" - EXPONENTIAL = "exponential" - UNIFORM = "uniform" - -# ====================================================================== -# CONSTANTS FOR ENDPOINT STEP DEFINITION (REQUEST-HANDLER) -# ====================================================================== - -class EndpointStepIO(StrEnum): - """ - I/O-bound operation categories that can occur inside an endpoint step. - - TASK_SPAWN - Spawns an additional ``asyncio.Task`` and returns immediately. - - LLM - Performs a remote Large-Language-Model inference call. - - WAIT - Passive, *non-blocking* wait for I/O completion; no new task spawned. - - DB - Round-trip to a relational / NoSQL database. - - CACHE - Access to a local or distributed cache layer. - """ - - TASK_SPAWN = "io_task_spawn" - LLM = "io_llm" - WAIT = "io_wait" - DB = "io_db" - CACHE = "io_cache" - +from __future__ import annotations -class EndpointStepCPU(StrEnum): - """ - CPU-bound operation categories inside an endpoint step. +from typing import Final # needed for type-hinted module constants - Use these when the coroutine keeps the Python interpreter busy - (GIL-bound or compute-heavy code) rather than waiting for I/O. - """ - - INITIAL_PARSING = "initial_parsing" - CPU_BOUND_OPERATION = "cpu_bound_operation" - - -class EndpointStepRAM(StrEnum): - """ - Memory-related operations inside a step. - - Currently limited to a single category, but kept as an Enum so that future - resource types (e.g. GPU memory) can be added without schema changes. - """ - - RAM = "ram" - - -class StepOperation(StrEnum): - """ - Keys used inside the metrics dictionary of a step. - - CPU_TIME - Service time (seconds) during which the coroutine occupies - the CPU / GIL. - NECESSARY_RAM - Peak memory (MB) required by the step. - """ - - CPU_TIME = "cpu_time" - IO_WAITING_TIME = "io_waiting_time" - NECESSARY_RAM = "necessary_ram" +from asyncflow.config.enums import VariabilityLevel # ====================================================================== # CONSTANTS FOR THE RESOURCES OF A SERVER @@ -126,159 +28,38 @@ class NodesResourcesDefaults: MINIMUM_RAM_MB = 256 DB_CONNECTION_POOL = None + # ====================================================================== # CONSTANTS FOR NETWORK PARAMETERS # ====================================================================== class NetworkParameters: - """parameters for the network""" - - MIN_DROPOUT_RATE = 0.0 - DROPOUT_RATE = 0.01 - MAX_DROPOUT_RATE = 1.0 - -# ====================================================================== -# NAME FOR LOAD BALANCER ALGORITHMS -# ====================================================================== + """Parameters for the network.""" -class LbAlgorithmsName(StrEnum): - """definition of the available algortithms for the Load Balancer""" - - ROUND_ROBIN = "round_robin" - LEAST_CONNECTIONS = "least_connection" - RANDOM = "random" + MIN_DROPOUT_RATE = 0.0 + DROPOUT_RATE = 0.01 + MAX_DROPOUT_RATE = 1.0 # ====================================================================== -# CONSTANTS FOR THE MACRO-TOPOLOGY GRAPH +# CONSTANTS FOR ARRIVAL VARIABILITY PRESETS (shared across samplers) # ====================================================================== -class SystemNodes(StrEnum): - """ - High-level node categories of the system topology graph. - - Each member represents a *macro-component* that may have its own SimPy - resources (CPU cores, DB pool, etc.). - """ - - GENERATOR = "generator" - SERVER = "server" - CLIENT = "client" - LOAD_BALANCER = "load_balancer" - -class SystemEdges(StrEnum): - """ - Edge categories connecting different class SystemNodes. +SCV_PRESETS: Final[dict[VariabilityLevel, float]] = { + VariabilityLevel.LOW: 0.25, + VariabilityLevel.MEDIUM: 1.0, + VariabilityLevel.HIGH: 4.0, +} - Currently only network links are modeled; new types (IPC queue, message - bus, stream) can be added without impacting existing payloads. - """ - - NETWORK_CONNECTION = "network_connection" - -# ====================================================================== -# CONSTANTS FOR THE EVENT TO INJECT IN THE SIMULATION -# ====================================================================== - -class EventDescription(StrEnum): - """Description for the events you may inject during the simulation""" - - SERVER_UP = "server_up" - SERVER_DOWN = "server_down" - NETWORK_SPIKE_START = "network_spike_start" - NETWORK_SPIKE_END = "network_spike_end" - - -# ====================================================================== -# CONSTANTS FOR SAMPLED METRICS -# ====================================================================== - -class SampledMetricName(StrEnum): - """ - Define the metrics sampled every fixed amount of - time to create a time series - """ - - # Mandatory metrics to collect - READY_QUEUE_LEN = "ready_queue_len" #length of the event loop ready q - EVENT_LOOP_IO_SLEEP = "event_loop_io_sleep" - RAM_IN_USE = "ram_in_use" - EDGE_CONCURRENT_CONNECTION = "edge_concurrent_connection" - - -class SamplePeriods(float, Enum): - """ - Defining the value of the sample periods for the metrics for which - we have to extract a time series - """ - - STANDARD_TIME = 0.01 # 10 MILLISECONDS - MINIMUM_TIME = 0.001 # 1 MILLISECOND - MAXIMUM_TIME = 0.5 # 500 MILLISECONDS # ====================================================================== -# CONSTANTS FOR EVENT METRICS +# DERIVED SAMPLER TUNING CONSTANTS # ====================================================================== +class Tuning: + """class of constants to tune behaviour of arrivals sampler""" -class EventMetricName(StrEnum): - """ - Define the metrics triggered by event with no - time series - """ - - # Mandatory - RQS_CLOCK = "rqs_clock" # useful to collect starting and finishing time of rqs - RQS_SERVER_CLOCK = "rqs_server_clock" #useful for latency and throughput of the server - SERVICE_TIME = "service_time" - IO_TIME = "io_time" - WAITING_TIME = "waiting_time" - - - # Not mandatory now not implemented - LLM_COST = "llm_cost" - - -# ====================================================================== -# CONSTANTS FOR AGGREGATED METRICS -# ====================================================================== - -class AggregatedMetricName(StrEnum): - """aggregated metrics to calculate at the end of simulation""" - - LATENCY_STATS = "latency_stats" - THROUGHPUT = "throughput_rps" - SERVER_THROUGHPUT = "server_throughput" - SERVER_LATENCY_STATS = "server_latency_stats" - SERVICE_TIME_STATS = "service_time_stats" - IO_TIME_STATS = "io_time_stats" - WAITING_TIME_STATS = "waiting_time_stats" - UTILIZATION = "utilization" - - # now not implemented - LLM_STATS = "llm_stats" - -# ====================================================================== -# CONSTANTS FOR SERVER RUNTIME -# ====================================================================== - -class ServerResourceName(StrEnum): - """Keys for each server resource type, used when building the container map.""" - - CPU = "CPU" - RAM = "RAM" - -# ====================================================================== -# CONSTANTS FOR LATENCY STATS -# ====================================================================== - -class LatencyKey(StrEnum): - """Keys for the collection of the latency stats""" - - TOTAL_REQUESTS = "total_requests" - MEAN = "mean" - MEDIAN = "median" - STD_DEV = "std_dev" - P95 = "p95" - P99 = "p99" - MIN = "min" - MAX = "max" + PARETO_ALPHA_EPS: Final[float] = 1e-6 # ensure finite variance: alpha > 2 + WEIBULL_K_LOW: Final[float] = 2.10 # matches SCV≈0.25 + WEIBULL_K_MED: Final[float] = 1.0 # SCV=1 (exponential) + WEIBULL_K_HIGH: Final[float] = 0.543 # matches SCV≈4 + UNIFORM_REL_HALF_WIDTH: Final[float] = 0.5 # c2 = w^2 / 3 ≈ 0.0833 diff --git a/src/asyncflow/config/enums.py b/src/asyncflow/config/enums.py new file mode 100644 index 0000000..494780c --- /dev/null +++ b/src/asyncflow/config/enums.py @@ -0,0 +1,271 @@ +""" +Application-wide Enums. + +This module groups all the static enumerations used by the AsyncFlow backend +so that: + + JSON / YAML payloads can be strictly validated with Pydantic. + Front-end and simulation engine share a single source of truth. + Ruff, mypy and IDEs can leverage the strong typing provided by Enum classes. + +IMPORTANT: Changing any enum value is a breaking-change for every +stored configuration file. Add new members whenever possible instead of +renaming existing ones. +""" + +from enum import Enum, IntEnum, StrEnum + +# ====================================================================== +# CONSTANTS FOR THE REQUEST-GENERATOR COMPONENT +# ====================================================================== + + +class TimeDefaults(IntEnum): + """ + Default time-related constants (expressed in seconds). + + These values are used when the user omits an explicit parameter. They also + serve as lower / upper bounds for validation for the requests generator. + """ + + MIN_TO_SEC = 60 # 1 minute → 60 s + USER_SAMPLING_WINDOW = 60 # every 60 seconds sample the number of active user + SIMULATION_TIME = 3_600 # run 1 h if user gives no value + MIN_SIMULATION_TIME = 5 # 5 seconds give a broad spectrum + MIN_USER_SAMPLING_WINDOW = 1 # 1 s minimum + MAX_USER_SAMPLING_WINDOW = 120 # 2 min maximum + + +class Distribution(StrEnum): + """ + Probability distributions accepted by app.schemas.RVConfig. + + The string value is exactly the identifier that must appear in JSON + payloads. The simulation engine will map each name to the corresponding + random sampler (e.g.numpy.random.poisson). + """ + + POISSON = "poisson" + LOG_NORMAL = "log_normal" + EXPONENTIAL = "exponential" + UNIFORM = "uniform" + EMPIRICAL = "empirical" + WEIBULL = "weibull" + PARETO = "pareto" + ERLANG = "erlang" + DETERMINISTIC = "deterministic" + +class VariabilityLevel(StrEnum): + """Wrapper to define three level of fluctuations""" + + LOW = "low" + MEDIUM = "medium" + HIGH = "high" + +# ====================================================================== +# CONSTANTS FOR ENDPOINT STEP DEFINITION (REQUEST-HANDLER) +# ====================================================================== + +class EndpointStepIO(StrEnum): + """ + I/O-bound operation categories that can occur inside an endpoint step. + - TASK_SPAWN + Spawns an additional ``asyncio.Task`` and returns immediately. + - LLM + Performs a remote Large-Language-Model inference call. + - WAIT + Passive, *non-blocking* wait for I/O completion; no new task spawned. + - DB + Round-trip to a relational / NoSQL database. + - CACHE + Access to a local or distributed cache layer. + """ + + TASK_SPAWN = "io_task_spawn" + LLM = "io_llm" + WAIT = "io_wait" + DB = "io_db" + CACHE = "io_cache" + + +class EndpointStepCPU(StrEnum): + """ + CPU-bound operation categories inside an endpoint step. + + Use these when the coroutine keeps the Python interpreter busy + (GIL-bound or compute-heavy code) rather than waiting for I/O. + """ + + INITIAL_PARSING = "initial_parsing" + CPU_BOUND_OPERATION = "cpu_bound_operation" + + +class EndpointStepRAM(StrEnum): + """ + Memory-related operations inside a step. + + Currently limited to a single category, but kept as an Enum so that future + resource types (e.g. GPU memory) can be added without schema changes. + """ + + RAM = "ram" + + +class StepOperation(StrEnum): + """ + Keys used inside the metrics dictionary of a step. + + CPU_TIME - Service time (seconds) during which the coroutine occupies + the CPU / GIL. + NECESSARY_RAM - Peak memory (MB) required by the step. + """ + + CPU_TIME = "cpu_time" + IO_WAITING_TIME = "io_waiting_time" + NECESSARY_RAM = "necessary_ram" + +# ====================================================================== +# NAME FOR LOAD BALANCER ALGORITHMS +# ====================================================================== + +class LbAlgorithmsName(StrEnum): + """definition of the available algortithms for the Load Balancer""" + + ROUND_ROBIN = "round_robin" + LEAST_CONNECTIONS = "least_connection" + RANDOM = "random" + + +# ====================================================================== +# CONSTANTS FOR THE MACRO-TOPOLOGY GRAPH +# ====================================================================== + +class SystemNodes(StrEnum): + """ + High-level node categories of the system topology graph. + + Each member represents a *macro-component* that may have its own SimPy + resources (CPU cores, DB pool, etc.). + """ + + GENERATOR = "generator" + SERVER = "server" + CLIENT = "client" + LOAD_BALANCER = "load_balancer" + +class SystemEdges(StrEnum): + """ + Edge categories connecting different class SystemNodes. + + Currently only network links are modeled; new types (IPC queue, message + bus, stream) can be added without impacting existing payloads. + """ + + NETWORK_CONNECTION = "network_connection" + +# ====================================================================== +# CONSTANTS FOR THE EVENT TO INJECT IN THE SIMULATION +# ====================================================================== + +class EventDescription(StrEnum): + """Description for the events you may inject during the simulation""" + + SERVER_UP = "server_up" + SERVER_DOWN = "server_down" + NETWORK_SPIKE_START = "network_spike_start" + NETWORK_SPIKE_END = "network_spike_end" + + +# ====================================================================== +# CONSTANTS FOR SAMPLED METRICS +# ====================================================================== + +class SampledMetricName(StrEnum): + """ + Define the metrics sampled every fixed amount of + time to create a time series + """ + + # Mandatory metrics to collect + READY_QUEUE_LEN = "ready_queue_len" #length of the event loop ready q + EVENT_LOOP_IO_SLEEP = "event_loop_io_sleep" + RAM_IN_USE = "ram_in_use" + EDGE_CONCURRENT_CONNECTION = "edge_concurrent_connection" + + +class SamplePeriods(float, Enum): + """ + Defining the value of the sample periods for the metrics for which + we have to extract a time series + """ + + STANDARD_TIME = 0.01 # 10 MILLISECONDS + MINIMUM_TIME = 0.001 # 1 MILLISECOND + MAXIMUM_TIME = 0.5 # 500 MILLISECONDS + +# ====================================================================== +# CONSTANTS FOR EVENT METRICS +# ====================================================================== + +class EventMetricName(StrEnum): + """ + Define the metrics triggered by event with no + time series + """ + + # Mandatory + RQS_CLOCK = "rqs_clock" # useful to collect starting and finishing time of rqs + RQS_SERVER_CLOCK = "rqs_server_clock" #useful for latency and throughput of the server + SERVICE_TIME = "service_time" + IO_TIME = "io_time" + WAITING_TIME = "waiting_time" + + + # Not mandatory now not implemented + LLM_COST = "llm_cost" + + +# ====================================================================== +# CONSTANTS FOR AGGREGATED METRICS +# ====================================================================== + +class AggregatedMetricName(StrEnum): + """aggregated metrics to calculate at the end of simulation""" + + LATENCY_STATS = "latency_stats" + THROUGHPUT = "throughput_rps" + SERVER_THROUGHPUT = "server_throughput" + SERVER_LATENCY_STATS = "server_latency_stats" + SERVICE_TIME_STATS = "service_time_stats" + IO_TIME_STATS = "io_time_stats" + WAITING_TIME_STATS = "waiting_time_stats" + UTILIZATION = "utilization" + + # now not implemented + LLM_STATS = "llm_stats" + +# ====================================================================== +# CONSTANTS FOR SERVER RUNTIME +# ====================================================================== + +class ServerResourceName(StrEnum): + """Keys for each server resource type, used when building the container map.""" + + CPU = "CPU" + RAM = "RAM" + +# ====================================================================== +# CONSTANTS FOR LATENCY STATS +# ====================================================================== + +class LatencyKey(StrEnum): + """Keys for the collection of the latency stats""" + + TOTAL_REQUESTS = "total_requests" + MEAN = "mean" + MEDIAN = "median" + STD_DEV = "std_dev" + P95 = "p95" + P99 = "p99" + MIN = "min" + MAX = "max" diff --git a/src/asyncflow/enums/__init__.py b/src/asyncflow/enums/__init__.py index a07a18f..86283b0 100644 --- a/src/asyncflow/enums/__init__.py +++ b/src/asyncflow/enums/__init__.py @@ -1,6 +1,6 @@ """Public enums used in scenario definitions.""" -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( Distribution, EndpointStepCPU, EndpointStepIO, diff --git a/src/asyncflow/metrics/collector.py b/src/asyncflow/metrics/collector.py index 38c2f0d..ac613d1 100644 --- a/src/asyncflow/metrics/collector.py +++ b/src/asyncflow/metrics/collector.py @@ -4,7 +4,7 @@ import simpy -from asyncflow.config.constants import SampledMetricName +from asyncflow.config.enums import SampledMetricName from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.actors.server import ServerRuntime from asyncflow.schemas.settings.simulation import SimulationSettings diff --git a/src/asyncflow/metrics/edge.py b/src/asyncflow/metrics/edge.py index f9626dd..b060d2e 100644 --- a/src/asyncflow/metrics/edge.py +++ b/src/asyncflow/metrics/edge.py @@ -2,7 +2,7 @@ from collections.abc import Iterable -from asyncflow.config.constants import SampledMetricName +from asyncflow.config.enums import SampledMetricName # Initialize one time outside the function all possible metrics # related to the edges, the idea of this structure is to diff --git a/src/asyncflow/metrics/server.py b/src/asyncflow/metrics/server.py index 516680f..016d464 100644 --- a/src/asyncflow/metrics/server.py +++ b/src/asyncflow/metrics/server.py @@ -5,7 +5,7 @@ from collections.abc import Iterable from dataclasses import dataclass -from asyncflow.config.constants import SampledMetricName +from asyncflow.config.enums import SampledMetricName # Initialize one time outside the function all possible metrics # related to the servers, the idea of this structure is to diff --git a/src/asyncflow/metrics/simulation_analyzer.py b/src/asyncflow/metrics/simulation_analyzer.py index 9b82dc6..9542dcf 100644 --- a/src/asyncflow/metrics/simulation_analyzer.py +++ b/src/asyncflow/metrics/simulation_analyzer.py @@ -7,7 +7,7 @@ import numpy as np -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( EventMetricName, LatencyKey, SampledMetricName, diff --git a/src/asyncflow/metrics/sweep_analyzer.py b/src/asyncflow/metrics/sweep_analyzer.py index 6d50dd3..491e72b 100644 --- a/src/asyncflow/metrics/sweep_analyzer.py +++ b/src/asyncflow/metrics/sweep_analyzer.py @@ -1,5 +1,5 @@ """ -SweepAnalyzer — build plots from a sweep over *mean concurrent users*. +SweepAnalyzer — build plots from a sweep over *mean rps*. Global ------ @@ -22,7 +22,7 @@ import matplotlib.pyplot as plt -from asyncflow.config.constants import LatencyKey +from asyncflow.config.enums import LatencyKey if TYPE_CHECKING: # pragma: no cover from collections.abc import Iterable @@ -70,7 +70,7 @@ class ServerPoint: class SweepAnalyzer: """ - Build plots from a sweep over *mean concurrent users*. + Build plots from a sweep over *mean rps*. Input ----- @@ -246,39 +246,39 @@ def _collect_servers(self) -> None: # ────────────────────────────────────────────────────────────────── def plot_global_throughput(self, ax: Axes) -> None: - """Plot mean throughput (RPS) vs. mean concurrent users.""" + """Plot mean throughput (RPS) vs. mean rps.""" self._ensure_global_collected() pts = self._global_points xs = [p.users for p in pts] ys = [p.lambda_rps for p in pts] ax.plot(xs, ys, marker="o") - ax.set_title("Throughput (mean RPS) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Throughput (mean RPS) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("RPS") ax.grid(visible=True, alpha=0.3) def plot_global_latency(self, ax: Axes) -> None: - """Plot mean system time (W) vs. mean concurrent users.""" + """Plot mean system time (W) vs. mean rps.""" self._ensure_global_collected() pts = self._global_points xs = [p.users for p in pts] ys = [p.W for p in pts] ax.plot(xs, ys, marker="o") - ax.set_title("Mean system time (W) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Mean system time (W) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("W (seconds)") ax.grid(visible=True, alpha=0.3) def plot_global_latency_percentiles(self, ax: Axes) -> None: - """Plot P50, P95, P99 latency vs. mean concurrent users.""" + """Plot P50, P95, P99 latency vs. mean rps.""" self._ensure_global_collected() pts = self._global_points xs = [p.users for p in pts] ax.plot(xs, [p.p50 for p in pts], marker="o", label="P50") ax.plot(xs, [p.p95 for p in pts], marker="o", label="P95") ax.plot(xs, [p.p99 for p in pts], marker="o", label="P99") - ax.set_title("Latency percentiles vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Latency percentiles vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("Latency (seconds)") ax.legend() ax.grid(visible=True, alpha=0.3) @@ -344,8 +344,8 @@ def plot_server_utilization_overlay( xs = [p.users for p in pts] ys = [p.rho for p in pts] ax.plot(xs, ys, marker="o", label=sid) - ax.set_title("Server utilization (rho) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Server utilization (rho) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("rho") if ids: ax.legend() @@ -366,8 +366,8 @@ def plot_server_waiting_time_overlay( xs = [p.users for p in pts] ys = [p.Wq for p in pts] ax.plot(xs, ys, marker="o", label=sid) - ax.set_title("Server waiting time (Wq) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Server waiting time (Wq) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("Wq (seconds)") if ids: ax.legend() @@ -388,8 +388,8 @@ def plot_server_service_rate_overlay( xs = [p.users for p in pts] ys = [p.mu_rps for p in pts] ax.plot(xs, ys, marker="o", label=sid) - ax.set_title("Server service rate (mu) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Server service rate (mu) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("mu (1/s)") if ids: ax.legend() @@ -410,8 +410,8 @@ def plot_server_throughput_overlay( xs = [p.users for p in pts] ys = [p.lambda_rps for p in pts] ax.plot(xs, ys, marker="o", label=sid) - ax.set_title("Server throughput (lambda) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Server throughput (lambda) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("lambda (1/s)") if ids: ax.legend() @@ -428,8 +428,8 @@ def plot_server_latency_overlay( xs = [p.users for p in pts] ys = [p.server_latency_mean_s for p in pts] ax.plot(xs, ys, marker="o", label=sid) - ax.set_title("Server latency (waiting+service) vs. concurrent users") - ax.set_xlabel("Mean concurrent users") + ax.set_title("Server latency (waiting+service) vs. mean Lambda_rps") + ax.set_xlabel("mean rps") ax.set_ylabel("Server latency (s)") if ids: ax.legend() diff --git a/src/asyncflow/queue_theory_analysis/mm1.py b/src/asyncflow/queue_theory_analysis/mm1.py deleted file mode 100644 index f993904..0000000 --- a/src/asyncflow/queue_theory_analysis/mm1.py +++ /dev/null @@ -1,420 +0,0 @@ -""" -Check if asyncflow under the hypothesis of a mm1 queue -reproduce the theory. -""" - -from __future__ import annotations - -import sys -from typing import TYPE_CHECKING, TextIO, TypedDict, cast - -from asyncflow.config.constants import ( - Distribution, - EndpointStepCPU, - LatencyKey, - StepOperation, -) -from asyncflow.queue_theory_analysis.base import QueueTheoryBase -from asyncflow.schemas.common.random_variables import RVConfig - -if TYPE_CHECKING: - from collections.abc import Callable - - from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - from asyncflow.schemas.payload import SimulationPayload - - -class MM1Results(TypedDict): - """Closed-form KPIs for an M/M/1 queue.""" - - lambda_rate: float # arrival rate (1/s) - mu_rate: float # service rate (1/s) - rho: float # utilization - L: float # mean items in system - Lq: float # mean items in queue - W: float # mean time in system (s) - Wq: float # mean waiting time (s) - - -class KPIRow(TypedDict): - """One formatted row for theory vs observed comparison.""" - - symbol: str - name: str - theory: float | str - observed: float | str - abs_diff: float | str - rel_diff_pct: float | str # percentage (e.g., "3.2" means +3.2%) - - -class MM1(QueueTheoryBase): - """Analyzer for the M/M/1 queue with strict model checks.""" - - # Upper bound for "negligible" deterministic network latency - MAX_EDGE_LATENCY_S: float = 1e-3 # 1 ms - - # ────────────────────────────────────────────────────────────────── - # Compatibility checks split into helpers to keep cyclomatic low - # ────────────────────────────────────────────────────────────────── - def _check_topology(self, payload: SimulationPayload) -> list[str]: - errs: list[str] = [] - nodes = payload.topology_graph.nodes - if len(nodes.servers) != 1: - errs.append("requires exactly one server (no parallel servers).") - if nodes.load_balancer is not None: - errs.append("load balancer must be absent (fan-out not allowed).") - return errs - - def _check_generator(self, payload: SimulationPayload) -> list[str]: - errs: list[str] = [] - gen = payload.rqs_input - if gen.avg_active_users.distribution != Distribution.POISSON: - errs.append("avg_active_users must be Poisson.") - if gen.avg_request_per_minute_per_user.distribution != Distribution.POISSON: - errs.append("avg_request_per_minute_per_user must be Poisson.") - if gen.avg_active_users.mean <= 0: - errs.append("avg_active_users.mean must be > 0.") - if gen.avg_request_per_minute_per_user.mean <= 0: - errs.append("avg_request_per_minute_per_user.mean must be > 0.") - return errs - - def _check_edges(self, payload: SimulationPayload) -> list[str]: - errs: list[str] = [] - for edge in payload.topology_graph.edges: - latency = edge.latency - if isinstance(latency, RVConfig): - errs.append( - f"edge '{edge.id}' latency must be deterministic (<=1ms), " - "not a random variable.", - ) - continue - if float(latency) > self.MAX_EDGE_LATENCY_S: - errs.append( - f"edge '{edge.id}' deterministic latency must be <= 1 ms.", - ) - return errs - - def _check_server_model(self, payload: SimulationPayload) -> list[str]: - errs: list[str] = [] - srv = payload.topology_graph.nodes.servers[0] - if len(srv.endpoints) != 1: - errs.append("server must expose exactly one endpoint.") - return errs - - steps = srv.endpoints[0].steps - if len(steps) != 1: - errs.append("endpoint must contain exactly one step.") - return errs - - step = steps[0] - if not isinstance(step.kind, EndpointStepCPU): - errs.append("the single step must be CPU-bound.") - return errs - - _, op_data = next(iter(step.step_operation.items())) - - # Must be exponential RV (not deterministic) - if not isinstance(op_data, RVConfig): - errs.append("service time must be an exponential RVConfig.") - return errs - if op_data.distribution != Distribution.EXPONENTIAL: - errs.append("service time distribution must be exponential.") - if op_data.mean <= 0: - errs.append("service time mean must be > 0.") - return errs - - # ------------- Compatibility (public) -------------------------------- - def explain_incompatibilities( - self, payload: SimulationPayload, - ) -> list[str]: - """Collect and return all MM1 assumption violations.""" - errors: list[str] = [] - errors.extend(self._check_topology(payload)) - errors.extend(self._check_generator(payload)) - errors.extend(self._check_edges(payload)) - # Only check server model if we do have servers - if payload.topology_graph.nodes.servers: - errors.extend(self._check_server_model(payload)) - return errors - - # ────────────────────────────────────────────────────────────────── - # Closed forms - # ────────────────────────────────────────────────────────────────── - def _arrival_rate_lambda(self, payload: SimulationPayload) -> float: - """λ = users_mean * rpm_per_user / 60.""" - gen = payload.rqs_input - users = float(gen.avg_active_users.mean) - rpm = float(gen.avg_request_per_minute_per_user.mean) - return users * rpm / 60.0 - - def _service_rate_mu(self, payload: SimulationPayload) -> float: - """μ = 1 / E[S] from the single CPU exponential step.""" - srv = payload.topology_graph.nodes.servers[0] - step = srv.endpoints[0].steps[0] - op_key, op_val = next(iter(step.step_operation.items())) - assert op_key is StepOperation.CPU_TIME - rv = cast("RVConfig", op_val) - assert rv.distribution is Distribution.EXPONENTIAL - return 1.0 / float(rv.mean) - - def _theoretical_kpis(self, payload: SimulationPayload) -> MM1Results: - """Closed-form KPIs. For rho>=1 returns +inf for divergent metrics.""" - self.validate_or_raise(payload) - - lam = self._arrival_rate_lambda(payload) - mu = self._service_rate_mu(payload) - rho = lam / mu - - if rho >= 1.0: - inf = float("inf") - return MM1Results( - lambda_rate=lam, - mu_rate=mu, - rho=rho, - L=inf, - Lq=inf, - W=inf, - Wq=inf, - ) - - l_sys = rho / (1.0 - rho) - lq = (rho * rho) / (1.0 - rho) - w_sys = 1.0 / (mu - lam) - wq = rho / (mu - lam) - - return MM1Results( - lambda_rate=lam, - mu_rate=mu, - rho=rho, - L=l_sys, - Lq=lq, - W=w_sys, - Wq=wq, - ) - - def evaluate(self, payload: SimulationPayload) -> MM1Results: - """Public entry-point: return closed-form KPIs for this payload.""" - return self._theoretical_kpis(payload) - - - # ────────────────────────────────────────────────────────────────── - # Observed KPIs from a run (no private members) - # ────────────────────────────────────────────────────────────────── - def _observed_kpis(self, ra: ResultsAnalyzer) -> MM1Results: - """ - Empirical KPIs from the analyzer: - - lambda_hat: average throughput across windows - - mu_hat: 1 / mean(service_time) - - W_hat: mean end-to-end latency (client) - - Wq_hat: mean waiting_time (server arrays) - - L_hat: lambda_hat * W_hat (Little's law) - - Lq_hat: lambda_hat * Wq_hat - """ - ra.process_all_metrics() - - # λ̂ via throughput series (mean of window RPS) - ts, rps = ra.get_throughput_series() - lambda_hat = (sum(rps) / len(rps)) if rps else 0.0 - - # Ŵ from latency stats - lat_stats = ra.get_latency_stats() - w_hat = float(lat_stats.get(LatencyKey.MEAN, 0.0)) - - # Per-server arrays (first server if present) - server_ids = ra.list_server_ids() - arrays_map = ra.get_server_event_arrays() - arrays = arrays_map.get(server_ids[0]) if server_ids else None - - # mean service time and wait - if arrays and arrays["service_time"]: - s_vals = arrays["service_time"] - s_mean = float(sum(s_vals)) / float(len(s_vals)) - else: - s_mean = 0.0 - mu_hat = (1.0 / s_mean) if s_mean > 0.0 else float("inf") - - if arrays and arrays["waiting_time"]: - wq_vals = arrays["waiting_time"] - wq_hat = float(sum(wq_vals)) / float(len(wq_vals)) - else: - wq_hat = 0.0 - - l_hat = lambda_hat * w_hat - lq_hat = lambda_hat * wq_hat - rho_hat = ( - lambda_hat / mu_hat if mu_hat not in (0.0, float("inf")) else 0.0 - ) - - return MM1Results( - lambda_rate=lambda_hat, - mu_rate=mu_hat, - rho=rho_hat, - L=l_hat, - Lq=lq_hat, - W=w_hat, - Wq=wq_hat, - ) - - # ────────────────────────────────────────────────────────────────── - # Comparison table - # ────────────────────────────────────────────────────────────────── - @staticmethod - def _safe_delta(theory: float, obs: float) -> tuple[str, str, str]: - """Return (theory_str, abs_diff_str, rel_diff_str) with inf-safe logic.""" - def fmt(x: float) -> str: - return "∞" if x == float("inf") else f"{x:.6f}" - - th_s = fmt(theory) - if theory == float("inf"): - return th_s, "—", "—" - - abs_d = obs - theory - rel = (abs_d / theory * 100.0) if theory != 0.0 else float("inf") - rel_s = "∞" if rel == float("inf") else f"{rel:.2f}" - return th_s, f"{abs_d:.6f}", rel_s - - def compare_against_run( - self, - payload: SimulationPayload, - ra: ResultsAnalyzer, - ) -> list[KPIRow]: - """ - Build a table with theory vs observed and absolute/relative deltas. - - Returns - ------- - list[KPIRow] - Rows in a stable order suitable for printing or DataFrame usage. - - """ - self.validate_or_raise(payload) - - th = self._theoretical_kpis(payload) - ob = self._observed_kpis(ra) - - rows: list[KPIRow] = [] - - def add(symbol: str, name: str, getter: Callable[[MM1Results], float]) -> None: - th_v = float(getter(th)) - ob_v = float(getter(ob)) - th_s, abs_s, rel_s = self._safe_delta(th_v, ob_v) - rows.append( - KPIRow( - symbol=symbol, - name=name, - theory=th_s, - observed=f"{ob_v:.6f}", - abs_diff=abs_s, - rel_diff_pct=rel_s, - ), - ) - - add("λ", "Arrival rate (1/s)", lambda m: m["lambda_rate"]) - add("μ", "Service rate (1/s)", lambda m: m["mu_rate"]) - add("rho", "Utilization", lambda m: m["rho"]) - add("L", "Mean items in system", lambda m: m["L"]) - add("Lq", "Mean items in queue", lambda m: m["Lq"]) - add("W", "Mean time in system (s)", lambda m: m["W"]) - add("Wq", "Mean waiting time (s)", lambda m: m["Wq"]) - - return rows - - # ────────────────────────────────────────────────────────────────── - # Pretty printing - # ────────────────────────────────────────────────────────────────── - - @staticmethod - def _format_rows_table(rows: list[KPIRow]) -> str: - """ - Return a compact ASCII table for `compare_against_run(...)` rows. - - The layout is stable, with right-aligned numeric columns and widths - computed from the data for nice alignment in plain-text consoles. - """ - # Extract as strings (observed/theory already formatted in rows). - data: list[tuple[str, str, str, str, str, str]] = [ - ( - r["symbol"], - r["name"], - str(r["theory"]), - str(r["observed"]), - str(r["abs_diff"]), - str(r["rel_diff_pct"]), - ) - for r in rows - ] - - headers = ("sym", "metric", "theory", "observed", "abs", "rel%") - - # Compute column widths. - w_sym = max(len(headers[0]), *(len(d[0]) for d in data)) - w_met = max(len(headers[1]), *(len(d[1]) for d in data)) - w_th = max(len(headers[2]), *(len(d[2]) for d in data)) - w_ob = max(len(headers[3]), *(len(d[3]) for d in data)) - w_abs = max(len(headers[4]), *(len(d[4]) for d in data)) - w_rel = max(len(headers[5]), *(len(d[5]) for d in data)) - - # Title and separators sized to the header length. - header_line = ( - f"{headers[0]:<{w_sym}} {headers[1]:<{w_met}} " - f"{headers[2]:>{w_th}} {headers[3]:>{w_ob}} " - f"{headers[4]:>{w_abs}} {headers[5]:>{w_rel}}" - ) - sep = "-" * len(header_line) - title = "MM1 - Theory vs Observed" - top = "=" * max(len(title), len(header_line)) - - lines: list[str] = [ - top, - title, - sep, - header_line, - sep, - ] - - for sym, met, th, ob, ad, rd in data: - lines.append( - f"{sym:<{w_sym}} {met:<{w_met}} " - f"{th:>{w_th}} {ob:>{w_ob}} {ad:>{w_abs}} {rd:>{w_rel}}", - ) - - lines.append(top) - return "\n".join(lines) - - def compare_and_format( - self, - payload: SimulationPayload, - ra: ResultsAnalyzer, - ) -> str: - """ - Convenience: run `compare_against_run()` and return a formatted table. - - Use this when you want a ready-to-print string for logs/CLI output. - """ - rows = self.compare_against_run(payload, ra) - return self._format_rows_table(rows) - - def print_comparison( - self, - payload: SimulationPayload, - ra: ResultsAnalyzer, - *, - file: TextIO | None = None, - ) -> None: - """ - Print a pretty 'theory vs observed' table to the given stream. - - Parameters - ---------- - payload : SimulationPayload - The validated simulation payload. - ra : ResultsAnalyzer - Results analyzer with processed metrics. - file : TextIO | None - Output stream (defaults to stdout). - - """ - out = self.compare_and_format(payload, ra) - stream: TextIO = sys.stdout if file is None else file - print(out, file=stream) - diff --git a/src/asyncflow/queue_theory_analysis/mmc.py b/src/asyncflow/queue_theory_analysis/mmc.py index e7564e3..9bc525a 100644 --- a/src/asyncflow/queue_theory_analysis/mmc.py +++ b/src/asyncflow/queue_theory_analysis/mmc.py @@ -9,7 +9,7 @@ from typing import TYPE_CHECKING, Literal, TextIO, TypedDict, cast from weakref import WeakSet -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( Distribution, EndpointStepCPU, LatencyKey, @@ -130,21 +130,17 @@ def _check_topology(self, payload: SimulationPayload) -> list[str]: elif lb is None: errs.append("for c>1 a load balancer is required.") elif lb.algorithms != LbAlgorithmsName.RANDOM: - errs.append("only round_robin is supported for the split M/M/c model.") + errs.append("only random is supported for the split M/M/c model.") return errs def _check_generator(self, payload: SimulationPayload) -> list[str]: errs: list[str] = [] - gen = payload.rqs_input - if gen.avg_active_users.distribution != Distribution.POISSON: - errs.append("avg_active_users must be Poisson.") - if gen.avg_request_per_minute_per_user.distribution != Distribution.POISSON: - errs.append("avg_request_per_minute_per_user must be Poisson.") - if gen.avg_active_users.mean <= 0: - errs.append("avg_active_users.mean must be > 0.") - if gen.avg_request_per_minute_per_user.mean <= 0: - errs.append("avg_request_per_minute_per_user.mean must be > 0.") + arrivals = payload.arrivals + if arrivals.model not in {Distribution.POISSON, Distribution.EXPONENTIAL}: + errs.append("arrivals.model must be 'poisson' or 'exponential'.") + + errs.append("avg_active_users must be Poisson or exponential.") return errs def _check_edges(self, payload: SimulationPayload) -> list[str]: @@ -229,10 +225,7 @@ def explain_incompatibilities( def _arrival_rate_lambda_rate(self, payload: SimulationPayload) -> float: """λ = users_mean * rpm_per_user / 60.""" - gen = payload.rqs_input - users_mean = float(gen.avg_active_users.mean) - rpm_per_user = float(gen.avg_request_per_minute_per_user.mean) - return users_mean * rpm_per_user / 60.0 + return payload.arrivals.lambda_rps def _service_rate_mu_rate(self, payload: SimulationPayload) -> float: diff --git a/src/asyncflow/resources/server_containers.py b/src/asyncflow/resources/server_containers.py index e92f3e5..d3302df 100644 --- a/src/asyncflow/resources/server_containers.py +++ b/src/asyncflow/resources/server_containers.py @@ -11,7 +11,7 @@ import simpy -from asyncflow.config.constants import ServerResourceName +from asyncflow.config.enums import ServerResourceName from asyncflow.schemas.topology.nodes import NodesResources # ============================================================== diff --git a/src/asyncflow/runner/simulation.py b/src/asyncflow/runner/simulation.py index 8669266..3fb449a 100644 --- a/src/asyncflow/runner/simulation.py +++ b/src/asyncflow/runner/simulation.py @@ -15,10 +15,10 @@ from asyncflow.metrics.collector import SampledMetricCollector from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer from asyncflow.resources.registry import ResourcesRuntime +from asyncflow.runtime.actors.arrivals_generator import ArrivalsGeneratorRuntime from asyncflow.runtime.actors.client import ClientRuntime from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.actors.load_balancer import LoadBalancerRuntime -from asyncflow.runtime.actors.rqs_generator import RqsGeneratorRuntime from asyncflow.runtime.actors.server import ServerRuntime from asyncflow.runtime.events.injection import EventInjectionRuntime from asyncflow.schemas.payload import SimulationPayload @@ -26,6 +26,7 @@ if TYPE_CHECKING: from collections.abc import Iterable + from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.events.injection import EventInjection from asyncflow.schemas.topology.edges import Edge from asyncflow.schemas.topology.nodes import ( @@ -33,7 +34,6 @@ LoadBalancer, Server, ) - from asyncflow.schemas.workload.rqs_generator import RqsGenerator # --- PROTOCOL DEFINITION --- # This is the contract that all runtime actors must follow. @@ -70,7 +70,7 @@ def __init__( self.servers: list[Server] = simulation_input.topology_graph.nodes.servers self.client: Client = simulation_input.topology_graph.nodes.client self.events: list[EventInjection] | None = None - self.rqs_generator: RqsGenerator = simulation_input.rqs_input + self.arrivals: ArrivalsGenerator = simulation_input.arrivals self.lb: LoadBalancer | None = None self.simulation_settings = simulation_input.sim_settings self.edges: list[Edge] = simulation_input.topology_graph.edges @@ -79,7 +79,7 @@ def __init__( # Object needed to start the simulation self._servers_runtime: dict[str, ServerRuntime] = {} self._client_runtime: dict[str, ClientRuntime] = {} - self._rqs_runtime: dict[str, RqsGeneratorRuntime] = {} + self._arrivals_runtime: dict[str, ArrivalsGeneratorRuntime] = {} # right now we allow max one LB per simulation so we don't need a dict self._lb_runtime: LoadBalancerRuntime | None = None self._edges_runtime: dict[tuple[str, str], EdgeRuntime] = {} @@ -130,10 +130,10 @@ def _build_rqs_generator(self) -> None: In the future we might add CDN so we will need multiple generators , one for each client """ - self._rqs_runtime[self.rqs_generator.id] = RqsGeneratorRuntime( + self._arrivals_runtime[self.arrivals.id] = ArrivalsGeneratorRuntime( env = self.env, out_edge=None, - rqs_generator_data=self.rqs_generator, + arrivals=self.arrivals, sim_settings=self.simulation_settings, rng=self.rng, ) @@ -206,7 +206,7 @@ def _build_edges(self) -> None: all_nodes: dict[str, object] = { **self._servers_runtime, **self._client_runtime, - **self._rqs_runtime, + **self._arrivals_runtime, } if self._lb_runtime is not None: @@ -242,7 +242,7 @@ def _build_edges(self) -> None: if isinstance(source_object, ( ServerRuntime, ClientRuntime, - RqsGeneratorRuntime, + ArrivalsGeneratorRuntime, )): source_object.out_edge = self._edges_runtime[( edge.source, @@ -311,7 +311,7 @@ def _start_all_processes(self) -> None: # ------------------------------------------------------------------ runtimes = chain( - self._rqs_runtime.values(), + self._arrivals_runtime.values(), self._client_runtime.values(), self._servers_runtime.values(), ([] if self._lb_runtime is None else [self._lb_runtime]), @@ -357,12 +357,12 @@ def run(self) -> ResultsAnalyzer: # 3 ATTACH EVENTS TO THE COMPONENTS self._build_events() - # 3. START ALL COROUTINES + # 4. START ALL COROUTINES self._start_events() self._start_all_processes() self._start_metric_collector() - # 4. ADVANCE THE SIMULATION + # 5. ADVANCE THE SIMULATION self.env.run(until=self.simulation_settings.total_simulation_time) return ResultsAnalyzer( diff --git a/src/asyncflow/runner/sweep.py b/src/asyncflow/runner/sweep.py index ed87819..899db14 100644 --- a/src/asyncflow/runner/sweep.py +++ b/src/asyncflow/runner/sweep.py @@ -63,67 +63,78 @@ def _default_env_factory() -> simpy.Environment: # Method to iterate over the users # --------------------------------------------------- - def sweep_on_user( - self, - # we pass a validated payload from yaml or from - # the pythonic builder - payload: SimulationPayload, - user_lower_bound: int, - user_upper_bound: int, - step: int, - ) -> list[tuple[int, ResultsAnalyzer]]: + def sweep_on_lambda( + self, + *, + payload: SimulationPayload, + lambda_lower_bound: float, + lambda_upper_bound: float, + step: float, +) -> list[tuple[float, ResultsAnalyzer]]: """ - Function to prepare a list of results analzyer - with all the data necessary to evaluate how the - topology react on a given scenario by varying the - average concurrent users + Sweep the arrival rate (`lambda_rps`, requests/second) over a range and run a + simulation for each value. + + Parameters + ---------- + payload + A fully validated `SimulationPayload` used as the base configuration. + It will be deep-copied and patched with each `lambda_rps` value. + lambda_lower_bound + Inclusive lower bound for `lambda_rps` (> 0). + lambda_upper_bound + Inclusive upper bound for `lambda_rps` (>= lower bound, > 0). + step + Positive increment for the sweep grid. + + Returns + ------- + list[tuple[float, ResultsAnalyzer]] + A list of pairs `(lambda_rps, analyzer)` for each grid point. + + Notes + ----- + - Uses `model_copy(deep=True)` (Pydantic v2) to avoid mutating the input payload + - Builds the sweep grid robustly against floating-point accumulation errors. + """ - # Error handling to have a coherent interval - if step <= 0: - msg = "step must be > 0" + # --- Validate inputs early for clear error messages --- + if step <= 0.0: + msg="step must be > 0" raise ValueError(msg) - - if user_lower_bound <= 0 or user_upper_bound <= 0: - msg = "The lower and upper bound must be strictly bigger than 0" + if lambda_lower_bound <= 0.0 or lambda_upper_bound <= 0.0: + msg="The lower and upper bound must be strictly bigger than 0" raise ValueError(msg) - - if user_upper_bound < user_lower_bound: - msg = "user_upper_bound must be >= user_lower_bound" + if lambda_upper_bound < lambda_lower_bound: + msg="lambda_upper_bound must be >= lambda_lower_bound" raise ValueError(msg) - # definition of the grid - users_grid: list[int] = list( - range(user_lower_bound, user_upper_bound + 1, step)) - self._last_users_grid = users_grid.copy() + # --- Build a numerically robust grid of lambda values --- + eps = step * 1e-9 # tiny slack to counter FP accumulation on the final step + lam = float(lambda_lower_bound) + lambda_grid: list[float] = [] + while lam <= lambda_upper_bound + eps: + lambda_grid.append(float(lam)) + lam += step - # last grid used - self._last_users_grid = users_grid[:] + # Keep the last grid if your class wants to expose it later (optional). + self._last_lambda_grid = lambda_grid[:] - results: list[tuple[int, ResultsAnalyzer]] = [] + results: list[tuple[float, ResultsAnalyzer]] = [] - # Iteration to populate the list - for users in users_grid: - # 1) payload override - payload = payload.model_copy(deep=True) - payload.rqs_input.avg_active_users = ( - payload.rqs_input.avg_active_users.model_copy( - update={"mean": users}, - ) -) + for lam in lambda_grid: + # 1) Clone the payload and override the arrival rate + pl = payload.model_copy(deep=True) + pl.arrivals = pl.arrivals.model_copy(update={"lambda_rps": lam}) - # 2) instantiation of the new object for the simulation run + # 2) Instantiate and run the simulation runner = self.simulation_cls( env=self._default_env_factory(), - simulation_input=payload, + simulation_input=pl, ) - analyzer = runner.run() - # 3) Accumulation of the analyzer - results.append((users, analyzer)) + # 3) Accumulate the result + results.append((lam, analyzer)) return results - - - - diff --git a/src/asyncflow/runtime/actors/rqs_generator.py b/src/asyncflow/runtime/actors/arrivals_generator.py similarity index 59% rename from src/asyncflow/runtime/actors/rqs_generator.py rename to src/asyncflow/runtime/actors/arrivals_generator.py index 1b67213..dd243ca 100644 --- a/src/asyncflow/runtime/actors/rqs_generator.py +++ b/src/asyncflow/runtime/actors/arrivals_generator.py @@ -9,10 +9,9 @@ import numpy as np -from asyncflow.config.constants import Distribution, SystemNodes +from asyncflow.config.enums import SystemNodes from asyncflow.runtime.rqs_state import RequestState -from asyncflow.samplers.gaussian_poisson import gaussian_poisson_sampling -from asyncflow.samplers.poisson_poisson import poisson_poisson_sampling +from asyncflow.samplers.arrivals import general_interarrivals if TYPE_CHECKING: @@ -21,11 +20,10 @@ import simpy from asyncflow.runtime.actors.edge import EdgeRuntime + from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.settings.simulation import SimulationSettings - from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -class RqsGeneratorRuntime: +class ArrivalsGeneratorRuntime: """ A “node” that produces request contexts at stochastic inter-arrival times and immediately pushes them down the pipeline via an EdgeRuntime. @@ -36,22 +34,22 @@ def __init__( *, env: simpy.Environment, out_edge: EdgeRuntime | None, - rqs_generator_data: RqsGenerator, + arrivals: ArrivalsGenerator, sim_settings: SimulationSettings, rng: np.random.Generator | None = None, ) -> None: """ - Definition of the instance attributes for the RqsGeneratorRuntime + Definition of the instance attributes for the ArrivalsGeneratorRuntime Args: env (simpy.Environment): environment for the simulation out_edge (EdgeRuntime): edge connecting this node with the next one - rqs_generator_data (RqsGenerator): data do define the sampler + arrivals (ArrivalsGenerator): data do define the sampler sim_settings (SimulationSettings): settings to start the simulation rng (np.random.Generator | None, optional): random variable generator. """ - self.rqs_generator_data = rqs_generator_data + self.arrivals = arrivals self.sim_settings = sim_settings self.rng = rng or np.random.default_rng() self.out_edge = out_edge @@ -64,41 +62,15 @@ def _next_id(self) -> int: return self.id_counter - def _requests_generator(self) -> Generator[float, None, None]: - """ - Return an iterator of inter-arrival gaps (seconds) according to the model - chosen in *input_data*. - - Notes - ----- - * If ``avg_active_users.distribution`` is ``"gaussian"`` or ``"normal"``, - the Gaussian-Poisson sampler is used. - * Otherwise the default Poisson-Poisson sampler is returned. - - """ - dist = self.rqs_generator_data.avg_active_users.distribution - - if dist == Distribution.NORMAL: - #Gaussian-Poisson model - return gaussian_poisson_sampling( - input_data=self.rqs_generator_data, - sim_settings=self.sim_settings, - rng=self.rng, - - ) - - # Poisson + Poisson - return poisson_poisson_sampling( - input_data=self.rqs_generator_data, - sim_settings=self.sim_settings, - rng=self.rng, - ) - def _event_arrival(self) -> Generator[simpy.Event, None, None]: """Simulating the process of event generation""" assert self.out_edge is not None - time_gaps = self._requests_generator() + time_gaps = general_interarrivals( + simulation_time_s=self.sim_settings.total_simulation_time, + rng=self.rng, + arrivals=self.arrivals, + ) for gap in time_gaps: yield self.env.timeout(gap) @@ -110,7 +82,7 @@ def _event_arrival(self) -> Generator[simpy.Event, None, None]: ) state.record_hop( SystemNodes.GENERATOR, - self.rqs_generator_data.id, + self.arrivals.id, self.env.now, ) # transport is a method of the edge runtime diff --git a/src/asyncflow/runtime/actors/client.py b/src/asyncflow/runtime/actors/client.py index 6c752f1..71848c8 100644 --- a/src/asyncflow/runtime/actors/client.py +++ b/src/asyncflow/runtime/actors/client.py @@ -5,7 +5,7 @@ import simpy -from asyncflow.config.constants import SystemNodes +from asyncflow.config.enums import SystemNodes from asyncflow.metrics.client import RqsClock from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.schemas.topology.nodes import Client diff --git a/src/asyncflow/runtime/actors/edge.py b/src/asyncflow/runtime/actors/edge.py index d741e53..dc5adf5 100644 --- a/src/asyncflow/runtime/actors/edge.py +++ b/src/asyncflow/runtime/actors/edge.py @@ -14,7 +14,7 @@ import numpy as np import simpy -from asyncflow.config.constants import SampledMetricName, SystemEdges +from asyncflow.config.enums import SampledMetricName, SystemEdges from asyncflow.metrics.edge import build_edge_metrics from asyncflow.runtime.rqs_state import RequestState from asyncflow.samplers.common_helpers import general_sampler diff --git a/src/asyncflow/runtime/actors/load_balancer.py b/src/asyncflow/runtime/actors/load_balancer.py index 343cd84..572f060 100644 --- a/src/asyncflow/runtime/actors/load_balancer.py +++ b/src/asyncflow/runtime/actors/load_balancer.py @@ -9,7 +9,7 @@ import simpy -from asyncflow.config.constants import SystemNodes +from asyncflow.config.enums import SystemNodes from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.actors.routing.lb_algorithms import LB_TABLE from asyncflow.schemas.topology.nodes import LoadBalancer diff --git a/src/asyncflow/runtime/actors/routing/lb_algorithms.py b/src/asyncflow/runtime/actors/routing/lb_algorithms.py index cfcaefe..c3186f4 100644 --- a/src/asyncflow/runtime/actors/routing/lb_algorithms.py +++ b/src/asyncflow/runtime/actors/routing/lb_algorithms.py @@ -3,7 +3,7 @@ from collections import OrderedDict from collections.abc import Callable -from asyncflow.config.constants import LbAlgorithmsName +from asyncflow.config.enums import LbAlgorithmsName from asyncflow.runtime.actors.edge import EdgeRuntime diff --git a/src/asyncflow/runtime/actors/server.py b/src/asyncflow/runtime/actors/server.py index 524cab3..83abab6 100644 --- a/src/asyncflow/runtime/actors/server.py +++ b/src/asyncflow/runtime/actors/server.py @@ -12,7 +12,7 @@ import simpy from pydantic import PositiveFloat, PositiveInt -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( EndpointStepCPU, EndpointStepIO, EndpointStepRAM, diff --git a/src/asyncflow/runtime/rqs_state.py b/src/asyncflow/runtime/rqs_state.py index 71b8389..cadc3ec 100644 --- a/src/asyncflow/runtime/rqs_state.py +++ b/src/asyncflow/runtime/rqs_state.py @@ -6,7 +6,7 @@ from typing import TYPE_CHECKING, NamedTuple if TYPE_CHECKING: - from asyncflow.config.constants import SystemEdges, SystemNodes + from asyncflow.config.enums import SystemEdges, SystemNodes class Hop(NamedTuple): diff --git a/src/asyncflow/samplers/arrivals.py b/src/asyncflow/samplers/arrivals.py new file mode 100644 index 0000000..7f6da61 --- /dev/null +++ b/src/asyncflow/samplers/arrivals.py @@ -0,0 +1,380 @@ +""" +Inter-arrival sampling helpers (infinite generators truncated at horizon). + +Each helper yields i.i.d. inter-arrival gaps (seconds) according to the +chosen family, stopping once the cumulative time would exceed +`simulation_time_s`. + +Signatures are uniform for easier factory wiring: +- lambda_rps: mean arrival rate (req/s), must be > 0 +- simulation_time_s: simulation horizon in seconds (int) +- variability: VariabilityLevel or None (ignored if not applicable) +- rng: numpy Generator for reproducibility + +These helpers are intended to be wired by an external public factory. +""" + +from __future__ import annotations + +from math import gamma, isfinite, log, sqrt +from typing import TYPE_CHECKING, Protocol + +from asyncflow.config.constants import SCV_PRESETS, Tuning +from asyncflow.config.enums import Distribution, VariabilityLevel + +if TYPE_CHECKING: + from collections.abc import Callable, Iterable + from collections.abc import Generator as FloatGen + + import numpy as np + + from asyncflow.schemas.arrivals.generator import ArrivalsGenerator + + + +# ---- Utilities ------------------------------------------------------------- + + +def _iid_to_horizon( + *, + draw_one: Callable[[], float], + simulation_time_s: int, +) -> FloatGen[float, None, None]: + """ + Yield i.i.d. gaps from `draw_one` until the horizon would be exceeded. + + The last draw is dropped if it would push the virtual clock past + `simulation_time_s`. + """ + now = 0.0 + while True: + delta = float(draw_one()) + if now + delta > float(simulation_time_s): + break + now += delta + yield delta + + +def _weibull_shape_for_level(level: VariabilityLevel) -> float: + """ + Map variability level to a Weibull shape k. + + Empirical mapping that matches SCV presets reasonably well: + LOW → k≈2.10, MEDIUM → k=1.0, HIGH → k≈0.543. + """ + if level is VariabilityLevel.LOW: + return Tuning.WEIBULL_K_LOW + if level is VariabilityLevel.MEDIUM: + return Tuning.WEIBULL_K_MED + return Tuning.WEIBULL_K_HIGH # HIGH + + +# ---- Samplers -------------------------------------------------------------- + + +def _build_empirical_from_timestamps( + *, + timestamps_s: Iterable[float], + origin_s: float = 0.0, + assume_sorted: bool = False, + clamp_min_s: float = 0.0, +) -> FloatGen[float, None, None]: + """ + Yield inter-arrival gaps from absolute timestamps, anchored at origin. + + Gaps strictly smaller than `clamp_min_s` are clamped to that threshold + to avoid zero-length hot loops and numerical noise. + """ + # Materialize and validate + timestamp_s: list[float] = [] + for i, v in enumerate(timestamps_s): + if not isfinite(v): + msg = f"non-finite value in timestamps at index {i}: {v!r}." + raise ValueError(msg) + timestamp_s.append(float(v)) + if not timestamp_s: + msg="empirical sequence is empty." + raise ValueError(msg) + + if not assume_sorted: + timestamp_s.sort() + + # Keep only timestamps at or after the origin + timestamp_s = [t for t in timestamp_s if t >= origin_s] + if not timestamp_s: + msg="no timestamps at or after origin; nothing to simulate." + raise ValueError(msg) + + # First gap from origin, then consecutive differences + first_gap = timestamp_s[0] - origin_s + yield first_gap if first_gap >= clamp_min_s else float(clamp_min_s) + + prev = timestamp_s[0] + for t in timestamp_s[1:]: + d = t - prev + yield d if d >= clamp_min_s else float(clamp_min_s) + prev = t + + + +def _exponential_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Exponential inter-arrivals with mean 1 / lambda_rps (SCV fixed to 1). + + `variability` is ignored. + """ + scale = 1.0 / lambda_rps + return _iid_to_horizon( + draw_one=lambda: rng.exponential(scale=scale), + simulation_time_s=simulation_time_s, + ) + + +def _poisson_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Alias for exponential inter-arrivals of a homogeneous Poisson process. + + `variability` is ignored. + """ + return _exponential_interarrivals( + lambda_rps=lambda_rps, + simulation_time_s=simulation_time_s, + rng=rng, + ) + + +def _deterministic_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Deterministic inter-arrivals with period 1 / lambda_rps (SCV = 0). + + `variability` is ignored. + """ + _ = rng # kept for signature uniformity + value = 1.0 / lambda_rps + return _iid_to_horizon( + draw_one=lambda: value, + simulation_time_s=simulation_time_s, + ) + + +def _lognormal_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + variability: VariabilityLevel, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """Lognormal inter-arrivals tuned by SCV presets.""" + assert variability is not None + + c2 = SCV_PRESETS[variability] + sigma = sqrt(log(1.0 + c2)) + mu = log(1.0 / lambda_rps) - 0.5 * sigma * sigma + return _iid_to_horizon( + draw_one=lambda: rng.lognormal(mean=mu, sigma=sigma), + simulation_time_s=simulation_time_s, + ) + + +def _weibull_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + variability: VariabilityLevel, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Weibull inter-arrivals tuned by SCV via the shape k. + + Scale is set so E[T] = 1 / lambda: + theta = (1 / lambda) / Gamma(1 + 1/k) + """ + assert variability is not None + + k = _weibull_shape_for_level(variability) + theta = (1.0 / lambda_rps) / gamma(1.0 + 1.0 / k) + return _iid_to_horizon( + draw_one=lambda: theta * rng.weibull(a=k), + simulation_time_s=simulation_time_s, + ) + + +def _pareto_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + variability: VariabilityLevel, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Pareto type-I inter-arrivals tuned by SCV (finite variance). + + With target c2: + alpha = 1 + sqrt(1 + 1 / c2) (forced > 2) + x_m = (alpha - 1) / (alpha * lambda) + """ + assert variability is not None + + c2 = SCV_PRESETS[variability] + alpha = 1.0 + sqrt(1.0 + 1.0 / c2) + alpha = max(alpha, 2.0 + Tuning.PARETO_ALPHA_EPS) + x_m = (alpha - 1.0) / (alpha * lambda_rps) + return _iid_to_horizon( + draw_one=lambda: x_m * (rng.pareto(a=alpha) + 1.0), + simulation_time_s=simulation_time_s, + ) + + +def _erlang_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + variability: VariabilityLevel, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Erlang (Gamma with integer k) inter-arrivals tuned by SCV. + + We pick k = round(1 / c2) clamped to [1, 10]. For k=1 it reduces to Exp. + Scale is theta = (1 / lambda) / k so that E[T] = 1 / lambda. + """ + assert variability is not None + + c2 = SCV_PRESETS[variability] + k_int = max(1, min(10, round(1.0 / c2))) + theta = (1.0 / lambda_rps) / float(k_int) + return _iid_to_horizon( + draw_one=lambda: rng.gamma(shape=k_int, scale=theta), + simulation_time_s=simulation_time_s, + ) + + +def _uniform_interarrivals( + *, + lambda_rps: float, + simulation_time_s: int, + rng: np.random.Generator, +) -> FloatGen[float, None, None]: + """ + Uniform[a, b] inter-arrivals with fixed relative half-width. + + `variability` is ignored. We use a symmetric band around 1/lambda: + mu = 1 / lambda, w = UNIFORM_REL_HALF_WIDTH + a = mu * (1 - w), b = mu * (1 + w). + This yields a low and bounded SCV (w^2 / 3). + """ + mu = 1.0 / lambda_rps + w = Tuning.UNIFORM_REL_HALF_WIDTH + a = mu * (1.0 - w) + b = mu * (1.0 + w) + return _iid_to_horizon( + draw_one=lambda: rng.uniform(low=a, high=b), + simulation_time_s=simulation_time_s, + ) + + +# ------------------------------------------------------------ +# Define a global function to pass the correct sampler using +# dispatch tables to avoid a lot of if else +# ------------------------------------------------------------ + +# ---- mypy compliance ---- + +class VarSampler(Protocol): + """Sampler protocol that REQUIRES a variability level.""" + + def __call__( + self, + *, + lambda_rps: float, + simulation_time_s: int, + variability: VariabilityLevel, + rng: np.random.Generator, + ) -> FloatGen[float, None, None]: + """Yield inter-arrival gaps for the given rate, horizon and RNG.""" + ... + + +class NoVarSampler(Protocol): + """Sampler protocol that IGNORES variability.""" + + def __call__( + self, + *, + lambda_rps: float, + simulation_time_s: int, + rng: np.random.Generator, + ) -> FloatGen[float, None, None]: + """Yield inter-arrival gaps for the given rate, horizon and RNG.""" + ... + + +VAR_DISTRIBUTION: dict[Distribution, VarSampler] = { + Distribution.LOG_NORMAL: _lognormal_interarrivals, + Distribution.WEIBULL: _weibull_interarrivals, + Distribution.PARETO: _pareto_interarrivals, + Distribution.ERLANG: _erlang_interarrivals, +} + +NO_VAR_DISTRIBUTION: dict[Distribution, NoVarSampler] = { + Distribution.EXPONENTIAL: _exponential_interarrivals, + Distribution.POISSON: _poisson_interarrivals, + Distribution.DETERMINISTIC: _deterministic_interarrivals, + Distribution.UNIFORM: _uniform_interarrivals, +} + +def general_interarrivals( + *, + simulation_time_s: int, + rng: np.random.Generator, + arrivals: ArrivalsGenerator, +) -> FloatGen[float, None, None]: + """ + General function to select the correct function based on the choice + of the user to generate interarrivals. + """ + model = arrivals.model + + if model is Distribution.EMPIRICAL: + if arrivals.empirical_data is None: + msg = "empirical_data is required when model=EMPIRICAL." + raise ValueError(msg) + return _build_empirical_from_timestamps( + timestamps_s=arrivals.empirical_data, + origin_s=0.0, + assume_sorted=False, + clamp_min_s=0.0, + ) + + if arrivals.variability is None: + sampler_no_var: NoVarSampler = NO_VAR_DISTRIBUTION[model] + return sampler_no_var( + lambda_rps=arrivals.lambda_rps, + simulation_time_s=simulation_time_s, + rng=rng, + ) + + sampler_var: VarSampler = VAR_DISTRIBUTION[model] + return sampler_var( + lambda_rps=arrivals.lambda_rps, + simulation_time_s=simulation_time_s, + variability=arrivals.variability, + rng=rng, + ) + + diff --git a/src/asyncflow/samplers/common_helpers.py b/src/asyncflow/samplers/common_helpers.py index 4f2f675..f276fb0 100644 --- a/src/asyncflow/samplers/common_helpers.py +++ b/src/asyncflow/samplers/common_helpers.py @@ -3,7 +3,7 @@ import numpy as np -from asyncflow.config.constants import Distribution +from asyncflow.config.enums import Distribution from asyncflow.schemas.common.random_variables import RVConfig @@ -74,11 +74,6 @@ def general_sampler(random_variable: RVConfig, rng: np.random.Generator) -> floa assert var is None return exponential_variable_generator(mean, rng) - # ── Distributions that *do* need a variance parameter ─────────── - case Distribution.NORMAL: - assert var is not None - return truncated_gaussian_generator(mean, var, rng) - case Distribution.LOG_NORMAL: assert var is not None return lognormal_variable_generator(mean, var, rng) diff --git a/src/asyncflow/samplers/gaussian_poisson.py b/src/asyncflow/samplers/gaussian_poisson.py deleted file mode 100644 index b96eca5..0000000 --- a/src/asyncflow/samplers/gaussian_poisson.py +++ /dev/null @@ -1,94 +0,0 @@ -""" -event sampler in the case of gaussian distribution -for concurrent user and poisson distribution for rqs per minute per user. -The rationale behind this choice is about considering scenario -with variance bigger or smaller w.r.t the one inherited from -the Poisson distribution -""" - -import math -from collections.abc import Generator - -import numpy as np - -from asyncflow.config.constants import TimeDefaults -from asyncflow.samplers.common_helpers import ( - truncated_gaussian_generator, - uniform_variable_generator, -) -from asyncflow.schemas.settings.simulation import SimulationSettings -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - - -def gaussian_poisson_sampling( - input_data: RqsGenerator, - sim_settings: SimulationSettings, - *, - rng: np.random.Generator, -) -> Generator[float, None, None]: - """ - Yield inter-arrival gaps (seconds) for the compound Gaussian-Poisson process. - - Algorithm - --------- - 1. Every *sampling_window_s* seconds, draw - U ~ Gaussian(mean_concurrent_user, variance). - 2. Compute the aggregate rate - Λ = U * (mean_req_per_minute_per_user / 60) [req/s]. - 3. While inside the current window, draw gaps - Δt ~ Exponential(Λ) using inverse-CDF. - 4. Stop once the virtual clock exceeds *total_simulation_time*. - """ - simulation_time = sim_settings.total_simulation_time - user_sampling_window = input_data.user_sampling_window - - # λ_u : mean concurrent users per window - mean_concurrent_user = float(input_data.avg_active_users.mean) - - # Let's be sure that the variance is not None (guaranteed from pydantic) - variance_concurrent_user = input_data.avg_active_users.variance - assert variance_concurrent_user is not None - variance_concurrent_user = float(variance_concurrent_user) - - # λ_r / 60 : mean req/s per user - mean_req_per_sec_per_user = ( - float( - input_data.avg_request_per_minute_per_user.mean) - / TimeDefaults.MIN_TO_SEC - ) - - now = 0.0 # virtual clock (s) - window_end = 0.0 # end of the current user window - lam = 0.0 # aggregate rate Λ (req/s) - - while now < simulation_time: - # (Re)sample U at the start of each window - if now >= window_end: - window_end = now + float(user_sampling_window) - users = truncated_gaussian_generator( - mean_concurrent_user, - variance_concurrent_user, - rng, - ) - lam = users * mean_req_per_sec_per_user - - # No users → fast-forward to next window - if lam <= 0.0: - now = window_end - continue - - # Exponential gap from a protected uniform value - u_raw = max(uniform_variable_generator(rng), 1e-15) - delta_t = -math.log(1.0 - u_raw) / lam - - # End simulation if the next event exceeds the horizon - if now + delta_t > simulation_time: - break - - # If the gap crosses the window boundary, jump to it - if now + delta_t >= window_end: - now = window_end - continue - - now += delta_t - yield delta_t diff --git a/src/asyncflow/samplers/poisson_poisson.py b/src/asyncflow/samplers/poisson_poisson.py deleted file mode 100644 index ea7a4fb..0000000 --- a/src/asyncflow/samplers/poisson_poisson.py +++ /dev/null @@ -1,82 +0,0 @@ -""" -event sampler in the case of poisson distribution -both for concurrent user and rqs per minute per user -""" - -import math -from collections.abc import Generator - -import numpy as np - -from asyncflow.config.constants import TimeDefaults -from asyncflow.samplers.common_helpers import ( - poisson_variable_generator, - uniform_variable_generator, -) -from asyncflow.schemas.settings.simulation import SimulationSettings -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - - -def poisson_poisson_sampling( - input_data: RqsGenerator, - sim_settings: SimulationSettings, - *, - rng: np.random.Generator, -) -> Generator[float, None, None]: - """ - Yield inter-arrival gaps (seconds) for the compound Poisson-Poisson process. - - Algorithm - --------- - 1. Every sampling_window_s seconds, draw - U ~ Poisson(mean_concurrent_user). - 2. Compute the aggregate rate - Λ = U * (mean_req_per_minute_per_user / 60) [req/s]. - 3. While inside the current window, draw gaps - Δt ~ Exponential(Λ) using inverse-CDF. - 4. Stop once the virtual clock exceeds *total_simulation_time*. - """ - simulation_time = sim_settings.total_simulation_time - user_sampling_window = input_data.user_sampling_window - - # λ_u : mean concurrent users per window - mean_concurrent_user = float(input_data.avg_active_users.mean) - - # λ_r / 60 : mean req/s per user - mean_req_per_sec_per_user = ( - float( - input_data.avg_request_per_minute_per_user.mean) - / TimeDefaults.MIN_TO_SEC - ) - - now = 0.0 # virtual clock (s) - window_end = 0.0 # end of the current user window - lam = 0.0 # aggregate rate Λ (req/s) - - while now < simulation_time: - # (Re)sample U at the start of each window - if now >= window_end: - window_end = now + float(user_sampling_window) - users = poisson_variable_generator(mean_concurrent_user, rng) - lam = users * mean_req_per_sec_per_user - - # No users → fast-forward to next window - if lam <= 0.0: - now = window_end - continue - - # Exponential gap from a protected uniform value - u_raw = max(uniform_variable_generator(rng), 1e-15) - delta_t = -math.log(1.0 - u_raw) / lam - - # End simulation if the next event exceeds the horizon - if now + delta_t > simulation_time: - break - - # If the gap crosses the window boundary, jump to it - if now + delta_t >= window_end: - now = window_end - continue - - now += delta_t - yield delta_t diff --git a/src/asyncflow/schemas/arrivals/generator.py b/src/asyncflow/schemas/arrivals/generator.py new file mode 100644 index 0000000..d6ec208 --- /dev/null +++ b/src/asyncflow/schemas/arrivals/generator.py @@ -0,0 +1,76 @@ +"""Define the schemas for the simulator""" + +from collections.abc import Iterable +from typing import Self + +from pydantic import BaseModel, PositiveFloat, model_validator + +from asyncflow.config.enums import Distribution, SystemNodes, VariabilityLevel + +FORBIDS_VARIABILITY = { + Distribution.EXPONENTIAL, + Distribution.DETERMINISTIC, + Distribution.EMPIRICAL, + Distribution.POISSON, + Distribution.UNIFORM, +} + +REQUIRES_VARIABILITY = { + Distribution.LOG_NORMAL, + Distribution.WEIBULL, + Distribution.PARETO, + Distribution.ERLANG, +} + +class ArrivalsGenerator(BaseModel): + """Define the expected variables for the simulation""" + + id: str + type: SystemNodes = SystemNodes.GENERATOR + lambda_rps: PositiveFloat + model: Distribution + variability: None | VariabilityLevel = None + empirical_data: Iterable[float] | None = None + + @model_validator(mode="after") + def _check_variability_semantics(self) -> Self: + """ + Validate the semantic consistency between model and variability. + + - For models where variability cannot be configured, variability must be None. + - For models that require a variability level to determine shape/dispersion, + variability must be provided. + """ + if self.model in FORBIDS_VARIABILITY and self.variability is not None: + msg = (f"variability is not allowed for model={self.model} " + "(intrinsic or non-configurable variability).") + raise ValueError(msg) + + if self.model in REQUIRES_VARIABILITY and self.variability is None: + msg = (f"variability is required for model={self.model} " + "(specify low|medium|high).") + raise ValueError(msg) + + return self + + + @model_validator(mode="after") + def _check_empirical_semantics(self) -> Self: + """ + Validate presence/absence of empirical_data based on the model. + + Rules + ----- + * If model is EMPIRICAL, empirical_data MUST be provided (not None). + * If model is not EMPIRICAL, empirical_data MUST be None. + """ + if self.model is Distribution.EMPIRICAL: + if self.empirical_data is None: + msg="empirical_data must be provided when model=EMPIRICAL." + raise ValueError(msg) + elif self.empirical_data is not None: + msg="empirical_data is only allowed when model=EMPIRICAL." + raise ValueError(msg) + + return self + diff --git a/src/asyncflow/schemas/common/random_variables.py b/src/asyncflow/schemas/common/random_variables.py index 464f7a6..e6e0dec 100644 --- a/src/asyncflow/schemas/common/random_variables.py +++ b/src/asyncflow/schemas/common/random_variables.py @@ -2,7 +2,7 @@ from pydantic import BaseModel, NonNegativeFloat, model_validator -from asyncflow.config.constants import Distribution +from asyncflow.config.enums import Distribution class RVConfig(BaseModel): @@ -16,7 +16,6 @@ class RVConfig(BaseModel): def default_variance(cls, model: "RVConfig") -> "RVConfig": # noqa: N805 """Set variance = mean when distribution require and variance is missing.""" needs_variance: set[Distribution] = { - Distribution.NORMAL, Distribution.LOG_NORMAL, } diff --git a/src/asyncflow/schemas/events/injection.py b/src/asyncflow/schemas/events/injection.py index 266f920..c6fc3fd 100644 --- a/src/asyncflow/schemas/events/injection.py +++ b/src/asyncflow/schemas/events/injection.py @@ -10,7 +10,7 @@ model_validator, ) -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription # Event input schema: # - Each event has its own identifier (event_id) and references the affected diff --git a/src/asyncflow/schemas/payload.py b/src/asyncflow/schemas/payload.py index cd5cf7d..053bc4c 100644 --- a/src/asyncflow/schemas/payload.py +++ b/src/asyncflow/schemas/payload.py @@ -2,17 +2,17 @@ from pydantic import BaseModel, field_validator, model_validator -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.events.injection import EventInjection from asyncflow.schemas.settings.simulation import SimulationSettings from asyncflow.schemas.topology.graph import TopologyGraph -from asyncflow.schemas.workload.rqs_generator import RqsGenerator class SimulationPayload(BaseModel): """Full input structure to perform a simulation""" - rqs_input: RqsGenerator + arrivals: ArrivalsGenerator topology_graph: TopologyGraph sim_settings: SimulationSettings events: list[EventInjection] | None = None diff --git a/src/asyncflow/schemas/settings/simulation.py b/src/asyncflow/schemas/settings/simulation.py index 4dbf5d4..964cc6e 100644 --- a/src/asyncflow/schemas/settings/simulation.py +++ b/src/asyncflow/schemas/settings/simulation.py @@ -2,7 +2,7 @@ from pydantic import BaseModel, Field -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( EventMetricName, SampledMetricName, SamplePeriods, diff --git a/src/asyncflow/schemas/topology/edges.py b/src/asyncflow/schemas/topology/edges.py index 3e5ccce..8dea31e 100644 --- a/src/asyncflow/schemas/topology/edges.py +++ b/src/asyncflow/schemas/topology/edges.py @@ -6,10 +6,8 @@ from pydantic import BaseModel, Field, PositiveFloat, field_validator, model_validator from pydantic_core.core_schema import ValidationInfo -from asyncflow.config.constants import ( - NetworkParameters, - SystemEdges, -) +from asyncflow.config.constants import NetworkParameters +from asyncflow.config.enums import SystemEdges from asyncflow.schemas.common.random_variables import RVConfig #------------------------------------------------------------- diff --git a/src/asyncflow/schemas/topology/endpoint.py b/src/asyncflow/schemas/topology/endpoint.py index 54ee0c7..05429c6 100644 --- a/src/asyncflow/schemas/topology/endpoint.py +++ b/src/asyncflow/schemas/topology/endpoint.py @@ -8,7 +8,7 @@ model_validator, ) -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( EndpointStepCPU, EndpointStepIO, EndpointStepRAM, diff --git a/src/asyncflow/schemas/topology/nodes.py b/src/asyncflow/schemas/topology/nodes.py index fee6876..75a4f66 100644 --- a/src/asyncflow/schemas/topology/nodes.py +++ b/src/asyncflow/schemas/topology/nodes.py @@ -15,9 +15,9 @@ model_validator, ) -from asyncflow.config.constants import ( +from asyncflow.config.constants import NodesResourcesDefaults +from asyncflow.config.enums import ( LbAlgorithmsName, - NodesResourcesDefaults, SystemNodes, ) from asyncflow.schemas.topology.endpoint import Endpoint diff --git a/src/asyncflow/schemas/workload/rqs_generator.py b/src/asyncflow/schemas/workload/rqs_generator.py deleted file mode 100644 index a6fbf3b..0000000 --- a/src/asyncflow/schemas/workload/rqs_generator.py +++ /dev/null @@ -1,59 +0,0 @@ -"""Define the schemas for the simulator""" - - -from pydantic import BaseModel, Field, field_validator - -from asyncflow.config.constants import Distribution, SystemNodes, TimeDefaults -from asyncflow.schemas.common.random_variables import RVConfig - - -class RqsGenerator(BaseModel): - """Define the expected variables for the simulation""" - - id: str - type: SystemNodes = SystemNodes.GENERATOR - avg_active_users: RVConfig - avg_request_per_minute_per_user: RVConfig - - user_sampling_window: int = Field( - default=TimeDefaults.USER_SAMPLING_WINDOW, - ge=TimeDefaults.MIN_USER_SAMPLING_WINDOW, - le=TimeDefaults.MAX_USER_SAMPLING_WINDOW, - description=( - "Sampling window in seconds " - f"({TimeDefaults.MIN_USER_SAMPLING_WINDOW}-" - f"{TimeDefaults.MAX_USER_SAMPLING_WINDOW})." - ), - ) - - @field_validator("avg_request_per_minute_per_user", mode="after") - def ensure_avg_request_is_poisson( - cls, # noqa: N805 - v: RVConfig, - ) -> RVConfig: - """ - Force the distribution for the rqs generator to be poisson - at the moment we have a joint sampler just for the poisson-poisson - and gaussian-poisson case - """ - if v.distribution != Distribution.POISSON: - msg = "At the moment the variable avg request must be Poisson" - raise ValueError(msg) - return v - - @field_validator("avg_active_users", mode="after") - def ensure_avg_user_is_poisson_or_gaussian( - cls, # noqa: N805 - v: RVConfig, - ) -> RVConfig: - """ - Force the distribution for the rqs generator to be poisson - at the moment we have a joint sampler just for the poisson-poisson - and gaussian-poisson case - """ - if v.distribution not in {Distribution.POISSON, Distribution.NORMAL}: - msg = "At the moment the variable active user must be Poisson or Gaussian" - raise ValueError(msg) - return v - - diff --git a/src/asyncflow/workload/__init__.py b/src/asyncflow/workload/__init__.py deleted file mode 100644 index c4b8735..0000000 --- a/src/asyncflow/workload/__init__.py +++ /dev/null @@ -1,7 +0,0 @@ -"""Public workload API.""" -from __future__ import annotations - -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -__all__ = ["RVConfig", "RqsGenerator"] diff --git a/tests/conftest.py b/tests/conftest.py index cc54097..4f1eb98 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -5,13 +5,14 @@ from numpy.random import Generator as NpGenerator from numpy.random import default_rng -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( Distribution, EventMetricName, SampledMetricName, SamplePeriods, TimeDefaults, ) +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.common.random_variables import RVConfig from asyncflow.schemas.payload import SimulationPayload from asyncflow.schemas.settings.simulation import SimulationSettings @@ -21,7 +22,6 @@ Client, TopologyNodes, ) -from asyncflow.schemas.workload.rqs_generator import RqsGenerator # ============================================================================ # STANDARD CONFIGURATION FOR INPUT VARIABLES @@ -90,16 +90,15 @@ def sim_settings( @pytest.fixture -def rqs_input() -> RqsGenerator: +def arrivals_gen() -> ArrivalsGenerator: """ One active user issuing two requests per minute—sufficient to exercise the entire request-generator pipeline with minimal overhead. """ - return RqsGenerator( + return ArrivalsGenerator( id="rqs-1", - avg_active_users=RVConfig(mean=1.0), - avg_request_per_minute_per_user=RVConfig(mean=2.0), - user_sampling_window=TimeDefaults.USER_SAMPLING_WINDOW, + lambda_rps=20, + model=Distribution.POISSON, ) @@ -135,11 +134,7 @@ def topology_minimal() -> TopologyGraph: @pytest.fixture -def payload_base( - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, - topology_minimal: TopologyGraph, -) -> SimulationPayload: +def payload_base() -> SimulationPayload: """ End-to-end payload used by integration tests and FastAPI endpoint tests. @@ -147,9 +142,9 @@ def payload_base( by the simulation engine. """ return SimulationPayload( - rqs_input=rqs_input, - topology_graph=topology_minimal, - sim_settings=sim_settings, + arrivals=arrivals_gen(), + topology_graph=topology_minimal(), + sim_settings=sim_settings(), ) diff --git a/tests/integration/conftest.py b/tests/integration/conftest.py index eb148a5..238a184 100644 --- a/tests/integration/conftest.py +++ b/tests/integration/conftest.py @@ -1,13 +1,41 @@ -"""Shared fixtures used by several integration-test groups.""" +"""Project-wide fixtures and factory-fixtures for integration tests. + +Design goals +------------ +- DRY: shared builders live here (arrivals, servers, edges, topologies, events). +- Flexible: factory fixtures let tests customize times/means without repetition. +- Safe: each test gets a fresh SimPy env; no state leakage between tests. +""" from __future__ import annotations -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Protocol import pytest import simpy +from asyncflow.config.enums import ( + Distribution, + EndpointStepCPU, + EventDescription, + StepOperation, +) from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator +from asyncflow.schemas.common.random_variables import RVConfig +from asyncflow.schemas.events.injection import EventInjection +from asyncflow.schemas.payload import SimulationPayload +from asyncflow.schemas.settings.simulation import SimulationSettings +from asyncflow.schemas.topology.edges import Edge +from asyncflow.schemas.topology.endpoint import Endpoint, Step +from asyncflow.schemas.topology.graph import TopologyGraph +from asyncflow.schemas.topology.nodes import ( + Client, + LoadBalancer, + NodesResources, + Server, + TopologyNodes, +) if TYPE_CHECKING: from collections.abc import Callable @@ -15,32 +43,299 @@ # --------------------------------------------------------------------------- # -# Environment # +# Core environment / runner helpers # # --------------------------------------------------------------------------- # + @pytest.fixture def env() -> simpy.Environment: - """A fresh SimPy environment per test.""" + """Fresh SimPy environment per test.""" return simpy.Environment() -# --------------------------------------------------------------------------- # -# Runner factory (load YAML scenarios) # -# --------------------------------------------------------------------------- # @pytest.fixture -def make_runner( +def sim_settings() -> SimulationSettings: + """Default short horizon; tests can override via model_copy().""" + return SimulationSettings(total_simulation_time=5) + + +@pytest.fixture +def make_runner_from_yaml( env: simpy.Environment, ) -> Callable[[str | Path], SimulationRunner]: + """Factory that loads a YAML scenario and returns a SimulationRunner.""" + + def _factory(yaml_path: str | Path) -> SimulationRunner: + return SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) + + return _factory + + +@pytest.fixture +def make_runner_from_payload( + env: simpy.Environment, +) -> Callable[[SimulationPayload], SimulationRunner]: + """Factory that wraps a validated payload into a SimulationRunner.""" + + def _factory(payload: SimulationPayload) -> SimulationRunner: + return SimulationRunner(env=env, simulation_input=payload) + + return _factory + + +# --------------------------------------------------------------------------- # +# Arrivals / servers / edges factories # +# --------------------------------------------------------------------------- # + +@pytest.fixture +def arrivals_factory() -> Callable[[str, float, Distribution], ArrivalsGenerator]: + """Build an ArrivalsGenerator with the chosen rate and model.""" + + def _make( + rid: str, + lambda_rps: float = 20.0, + model: Distribution = Distribution.POISSON, + ) -> ArrivalsGenerator: + return ArrivalsGenerator(id=rid, lambda_rps=lambda_rps, model=model) + + return _make + + +@pytest.fixture +def arrivals_poisson( + arrivals_factory: Callable[..., ArrivalsGenerator], + ) -> ArrivalsGenerator: + """Convenience: Poisson arrivals @ 20 rps.""" + return arrivals_factory("rqs-1", 20.0, Distribution.POISSON) + + +@pytest.fixture +def server_factory() -> Callable[[str, float | None], Server]: """ - Factory that loads a YAML scenario and instantiates a - :class:`SimulationRunner`. + Build a server. If `service_time_s` is None, the server has no steps. + Otherwise, a single CPU step with mean service time is created. + """ + + def _make(sid: str, service_time_s: float | None = 0.001) -> Server: + if service_time_s is None: + endpoints: list[Endpoint] = [] + else: + ep = Endpoint( + endpoint_name="get", + steps=[ + Step( + kind=EndpointStepCPU.CPU_BOUND_OPERATION, + step_operation={StepOperation.CPU_TIME: service_time_s}, + ), + ], + ) + endpoints = [ep] + return Server(id=sid, server_resources=NodesResources(), endpoints=endpoints) + + return _make + + +class EdgeFactory(Protocol): + """Callable that builds an `Edge` with a latency RV.""" - Usage inside a test:: + def __call__( + self, + eid: str, + src: str, + tgt: str, + mean: float, + dist: Distribution = ..., + ) -> Edge: + """Return an `Edge` from ids and latency parameters.""" - runner = make_runner("scenarios/minimal.yml") - results = runner.run() + +@pytest.fixture +def edge_factory() -> Callable[..., Edge]: + """ + Build an edge with a latency RV. Defaults to Poisson(mean=1ms) to keep + tests fast; pass another distribution/mean when needed. """ - def _factory(yaml_path: str | Path) -> SimulationRunner: - return SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) + def _make( + eid: str, + src: str, + tgt: str, + mean: float = 0.001, + dist: Distribution = Distribution.POISSON, + ) -> Edge: + return Edge( + id=eid, + source=src, + target=tgt, + latency=RVConfig(mean=mean, distribution=dist), + ) + + return _make + + +# --------------------------------------------------------------------------- # +# Topology builders # +# --------------------------------------------------------------------------- # + +class TwoServersBuilder(Protocol): + """Callable that returns a two-server `TopologyGraph`.""" + + def __call__( + self, *, service_time_s: float | None = ..., edge_mean: float = ..., + ) -> TopologyGraph: + """Build the graph with two servers and a load balancer.""" + + +class SingleServerBuilder(Protocol): + """Callable that returns a single-server `TopologyGraph`.""" + + def __call__( + self, *, service_time_s: float | None = ..., edge_mean: float = ..., + ) -> TopologyGraph: + """Build the graph with one server and a load balancer.""" + + +@pytest.fixture +def topology_two_servers( + server_factory: Callable[[str, float | None], Server], + edge_factory: Callable[..., Edge], +) -> Callable[..., TopologyGraph]: + """Factory for a two-server topology with a load balancer""" + def _make(*, service_time_s: float | None = 0.001, + edge_mean: float = 0.001) -> TopologyGraph: + client = Client(id="client-1") + lb = LoadBalancer(id="lb-1") + srv1 = server_factory("srv-1", service_time_s) + srv2 = server_factory("srv-2", service_time_s) + + edges = [ + edge_factory("gen-to-client", "rqs-1", "client-1", edge_mean), + edge_factory("client-to-lb", "client-1", "lb-1", edge_mean), + edge_factory("lb-to-srv1", "lb-1", "srv-1", edge_mean), + edge_factory("lb-to-srv2", "lb-1", "srv-2", edge_mean), + edge_factory("srv1-to-client", "srv-1", "client-1", edge_mean), + edge_factory("srv2-to-client", "srv-2", "client-1", edge_mean), + ] + nodes = TopologyNodes( + servers=[srv1, srv2], client=client, load_balancer=lb, + ) + return TopologyGraph(nodes=nodes, edges=edges) + return _make + + +@pytest.fixture +def topology_single_server( + server_factory: Callable[[str, float | None], Server], + edge_factory: Callable[..., Edge], +) -> Callable[..., TopologyGraph]: + """Factory for a single-server topology with a load balancer in front""" + def _make(*, service_time_s: float | None = 0.001, + edge_mean: float = 0.001) -> TopologyGraph: + client = Client(id="client-1") + lb = LoadBalancer(id="lb-1") + srv = server_factory("srv-1", service_time_s) + + edges = [ + edge_factory("gen-to-client", "rqs-1", "client-1", edge_mean), + edge_factory("client-to-lb", "client-1", "lb-1", edge_mean), + edge_factory("lb-to-srv1", "lb-1", "srv-1", edge_mean), + edge_factory("srv1-to-client", "srv-1", "client-1", edge_mean), + ] + nodes = TopologyNodes( + servers=[srv], client=client, load_balancer=lb, + ) + return TopologyGraph(nodes=nodes, edges=edges) + return _make + +# --------------------------------------------------------------------------- # +# Event factories # +# --------------------------------------------------------------------------- # + +@pytest.fixture +def spike_event_factory() -> Callable[[float, float, float, str], EventInjection]: + """Build a NETWORK_SPIKE event targeting an edge.""" + + def _make( + t_start: float, + t_end: float, + spike_s: float, + edge_id: str = "client-to-lb", + ) -> EventInjection: + return EventInjection( + event_id="spike", + target_id=edge_id, + start={ + "kind": EventDescription.NETWORK_SPIKE_START, + "t_start": t_start, + "spike_s": spike_s, + }, + end={"kind": EventDescription.NETWORK_SPIKE_END, "t_end": t_end}, + ) + + return _make + + +@pytest.fixture +def outage_event_factory() -> Callable[[float, float, str], EventInjection]: + """Build a SERVER_DOWN/UP interval targeting a server.""" + + def _make( + t_start: float, + t_end: float, + server_id: str = "srv-1", + ) -> EventInjection: + return EventInjection( + event_id="outage", + target_id=server_id, + start={"kind": EventDescription.SERVER_DOWN, "t_start": t_start}, + end={"kind": EventDescription.SERVER_UP, "t_end": t_end}, + ) + + return _make + + +# --------------------------------------------------------------------------- # +# Payload helpers # +# --------------------------------------------------------------------------- # + +@pytest.fixture +def make_payload() -> Callable[ + [ArrivalsGenerator, TopologyGraph, SimulationSettings, list[EventInjection] | None], + SimulationPayload, +]: + """Factory that assembles a validated :class:`SimulationPayload`.""" + + def _factory( + arrivals: ArrivalsGenerator, + topo: TopologyGraph, + sim: SimulationSettings, + events: list[EventInjection] | None = None, + ) -> SimulationPayload: + return SimulationPayload( + arrivals=arrivals, + topology_graph=topo, + sim_settings=sim, + events=events, + ) return _factory + + +@pytest.fixture +def payload_base( + arrivals_poisson: ArrivalsGenerator, + sim_settings: SimulationSettings, +) -> SimulationPayload: + """ + Minimal payload: generator + client node, no servers/LB, no edges. + + Useful for smoke tests that patch out edges and only exercise the + runner's boot/shutdown paths. + """ + nodes = TopologyNodes(servers=[], client=Client(id="client-1")) + topo = TopologyGraph(nodes=nodes, edges=[]) + return SimulationPayload( + arrivals=arrivals_poisson, + topology_graph=topo, + sim_settings=sim_settings, + events=None, + ) diff --git a/tests/integration/event_injection/lb_two_servers.py b/tests/integration/event_injection/lb_two_servers.py deleted file mode 100644 index 2a3e86a..0000000 --- a/tests/integration/event_injection/lb_two_servers.py +++ /dev/null @@ -1,113 +0,0 @@ -"""Integration test: LB with two servers and concurrent event injections. - -Topology: - - rqs-1 → client-1 → lb-1 → {srv-1, srv-2} - srv-* → client-1 - -Events: -- NETWORK_SPIKE on 'client-to-lb' in [0.20, 0.35]. -- SERVER_DOWN/UP on 'srv-1' in [0.40, 0.55]. - -Assertions: -- Simulation completes. -- Latency stats and throughput exist. -""" - -from __future__ import annotations - -from typing import TYPE_CHECKING - -import simpy - -from asyncflow.config.constants import Distribution, EventDescription, LatencyKey -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.events.injection import EventInjection -from asyncflow.schemas.payload import SimulationPayload -from asyncflow.schemas.settings.simulation import SimulationSettings -from asyncflow.schemas.topology.edges import Edge -from asyncflow.schemas.topology.graph import TopologyGraph -from asyncflow.schemas.topology.nodes import ( - Client, - LoadBalancer, - NodesResources, - Server, - TopologyNodes, -) -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -if TYPE_CHECKING: - from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def _server(sid: str) -> Server: - return Server(id=sid, server_resources=NodesResources(), endpoints=[]) - - -def _edge(eid: str, src: str, tgt: str, mean: float = 0.002) -> Edge: - return Edge( - id=eid, - source=src, - target=tgt, - latency=RVConfig(mean=mean, distribution=Distribution.POISSON), - ) - - -def test_lb_two_servers_with_events_end_to_end() -> None: - """Round-robin LB with events; check that KPIs are produced.""" - env = simpy.Environment() - rqs = RqsGenerator( - id="rqs-1", - avg_active_users=RVConfig(mean=1.0), - avg_request_per_minute_per_user=RVConfig(mean=2.0), - user_sampling_window=10.0, - ) - sim = SimulationSettings(total_simulation_time=0.8) - - client = Client(id="client-1") - lb = LoadBalancer(id="lb-1") - srv1 = _server("srv-1") - srv2 = _server("srv-2") - - edges = [ - _edge("gen-to-client", "rqs-1", "client-1"), - _edge("client-to-lb", "client-1", "lb-1"), - _edge("lb-to-srv1", "lb-1", "srv-1"), - _edge("lb-to-srv2", "lb-1", "srv-2"), - _edge("srv1-to-client", "srv-1", "client-1"), - _edge("srv2-to-client", "srv-2", "client-1"), - ] - nodes = TopologyNodes(servers=[srv1, srv2], client=client, load_balancer=lb) - topo = TopologyGraph(nodes=nodes, edges=edges) - - events = [ - EventInjection( - event_id="spike", - target_id="client-to-lb", - start={ - "kind": EventDescription.NETWORK_SPIKE_START, - "t_start": 0.20, - "spike_s": 0.02, - }, - end={"kind": EventDescription.NETWORK_SPIKE_END, "t_end": 0.35}, - ), - EventInjection( - event_id="outage-srv1", - target_id="srv-1", - start={"kind": EventDescription.SERVER_DOWN, "t_start": 0.40}, - end={"kind": EventDescription.SERVER_UP, "t_end": 0.55}, - ), - ] - - payload = SimulationPayload(rqs_input=rqs, topology_graph=topo, sim_settings=sim) - payload.events = events - - runner = SimulationRunner(env=env, simulation_input=payload) - results: ResultsAnalyzer = runner.run() - - stats = results.get_latency_stats() - assert stats - assert stats[LatencyKey.TOTAL_REQUESTS] > 0 - ts, rps = results.get_throughput_series() - assert len(ts) == len(rps) > 0 diff --git a/tests/integration/event_injection/single_server.py b/tests/integration/event_injection/single_server.py deleted file mode 100644 index c6fe33a..0000000 --- a/tests/integration/event_injection/single_server.py +++ /dev/null @@ -1,108 +0,0 @@ -"""Integration test: single server with edge spike and server outage. - -Topology: - - rqs-1 → client-1 → lb-1 → srv-1 - srv-1 → client-1 - -Events: -- NETWORK_SPIKE on 'client-to-lb' during a small window. -- SERVER_DOWN/UP on 'srv-1' during a small window. - -Assertions focus on end-to-end KPIs; the fine-grained event sequencing is -covered by unit tests in the event injection suite. -""" - -from __future__ import annotations - -from typing import TYPE_CHECKING - -import simpy - -from asyncflow.config.constants import Distribution, EventDescription, LatencyKey -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.events.injection import EventInjection -from asyncflow.schemas.payload import SimulationPayload -from asyncflow.schemas.settings.simulation import SimulationSettings -from asyncflow.schemas.topology.edges import Edge -from asyncflow.schemas.topology.graph import TopologyGraph -from asyncflow.schemas.topology.nodes import ( - Client, - LoadBalancer, - NodesResources, - Server, - TopologyNodes, -) -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -if TYPE_CHECKING: - from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def _server(sid: str) -> Server: - return Server(id=sid, server_resources=NodesResources(), endpoints=[]) - - -def _edge(eid: str, src: str, tgt: str, mean: float = 0.002) -> Edge: - return Edge( - id=eid, - source=src, - target=tgt, - latency=RVConfig(mean=mean, distribution=Distribution.POISSON), - ) - - -def test_single_server_with_spike_and_outage_end_to_end() -> None: - """Run with both edge spike and server outage; verify KPIs exist.""" - env = simpy.Environment() - rqs = RqsGenerator( - id="rqs-1", - avg_active_users=RVConfig(mean=1.0), - avg_request_per_minute_per_user=RVConfig(mean=2.0), - user_sampling_window=10.0, - ) - sim = SimulationSettings(total_simulation_time=1.0) - - client = Client(id="client-1") - lb = LoadBalancer(id="lb-1") - srv = _server("srv-1") - - edges = [ - _edge("gen-to-client", "rqs-1", "client-1"), - _edge("client-to-lb", "client-1", "lb-1"), - _edge("lb-to-srv1", "lb-1", "srv-1"), - _edge("srv1-to-client", "srv-1", "client-1"), - ] - nodes = TopologyNodes(servers=[srv], client=client, load_balancer=lb) - topo = TopologyGraph(nodes=nodes, edges=edges) - - # Events in a short (but disjoint) schedule to avoid cross-process ties - events = [ - EventInjection( - event_id="spike", - target_id="client-to-lb", - start={ - "kind": EventDescription.NETWORK_SPIKE_START, - "t_start": 0.2, - "spike_s": 0.01, - }, - end={"kind": EventDescription.NETWORK_SPIKE_END, "t_end": 0.4}, - ), - EventInjection( - event_id="outage", - target_id="srv-1", - start={"kind": EventDescription.SERVER_DOWN, "t_start": 0.5}, - end={"kind": EventDescription.SERVER_UP, "t_end": 0.7}, - ), - ] - - payload = SimulationPayload(rqs_input=rqs, topology_graph=topo, sim_settings=sim) - payload.events = events - - runner = SimulationRunner(env=env, simulation_input=payload) - results: ResultsAnalyzer = runner.run() - - stats = results.get_latency_stats() - assert stats - assert stats[LatencyKey.TOTAL_REQUESTS] > 0 diff --git a/tests/integration/event_injection/test_lb_two_servers.py b/tests/integration/event_injection/test_lb_two_servers.py new file mode 100644 index 0000000..ec82f82 --- /dev/null +++ b/tests/integration/event_injection/test_lb_two_servers.py @@ -0,0 +1,82 @@ +"""Integration test: LB with two servers and concurrent event injections. + +Topology: + rqs-1 → client-1 → lb-1 → {srv-1, srv-2} + srv-* → client-1 + +Events: +- NETWORK_SPIKE on 'client-to-lb' in [0.20, 0.35]. +- SERVER_DOWN/UP on 'srv-1' in [0.40, 0.55]. + +Assertions: +- Simulation completes. +- Latency stats and throughput exist. +""" + +from __future__ import annotations + +from typing import TYPE_CHECKING + +from asyncflow.config.enums import Distribution, EventDescription, LatencyKey +from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator +from asyncflow.schemas.events.injection import EventInjection +from asyncflow.schemas.settings.simulation import SimulationSettings + +if TYPE_CHECKING: + from collections.abc import Callable + + import simpy + + from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer + from asyncflow.schemas.payload import SimulationPayload + from asyncflow.schemas.topology.graph import TopologyGraph + + +def test_lb_two_servers_with_events_end_to_end( + env: simpy.Environment, + topology_two_servers: Callable[..., TopologyGraph], + make_payload: Callable[ + [ArrivalsGenerator, TopologyGraph, SimulationSettings, + list[EventInjection] | None], + SimulationPayload, + ], +) -> None: + """Round-robin LB with events; check that KPIs are produced.""" + arrivals = ArrivalsGenerator( + id="rqs-1", + lambda_rps=20.0, + model=Distribution.POISSON, + ) + topo = topology_two_servers(service_time_s=0.001, edge_mean=0.002) + sim = SimulationSettings(total_simulation_time=5) + + events = [ + EventInjection( + event_id="spike", + target_id="client-to-lb", + start={ + "kind": EventDescription.NETWORK_SPIKE_START, + "t_start": 0.20, + "spike_s": 0.02, + }, + end={"kind": EventDescription.NETWORK_SPIKE_END, "t_end": 0.35}, + ), + EventInjection( + event_id="outage-srv1", + target_id="srv-1", + start={"kind": EventDescription.SERVER_DOWN, "t_start": 0.40}, + end={"kind": EventDescription.SERVER_UP, "t_end": 0.55}, + ), + ] + + payload = make_payload(arrivals, topo, sim, events) + + runner = SimulationRunner(env=env, simulation_input=payload) + results: ResultsAnalyzer = runner.run() + + stats = results.get_latency_stats() + assert stats + assert stats[LatencyKey.TOTAL_REQUESTS] > 0 + ts, rps = results.get_throughput_series() + assert len(ts) == len(rps) > 0 diff --git a/tests/integration/event_injection/test_single_server.py b/tests/integration/event_injection/test_single_server.py new file mode 100644 index 0000000..f397d26 --- /dev/null +++ b/tests/integration/event_injection/test_single_server.py @@ -0,0 +1,74 @@ +"""Integration test: single server with edge spike and server outage. + +Topology: + rqs-1 → client-1 → lb-1 → srv-1 + srv-1 → client-1 + +Events: +- NETWORK_SPIKE on 'client-to-lb' during a small window. +- SERVER_DOWN/UP on 'srv-1' during a small window. + +Assertions focus on end-to-end KPIs; the fine-grained event sequencing is +covered by unit tests in the event injection suite. +""" + +from __future__ import annotations + +from typing import TYPE_CHECKING + +from asyncflow.config.enums import Distribution, EventDescription, LatencyKey +from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator +from asyncflow.schemas.events.injection import EventInjection +from asyncflow.schemas.settings.simulation import SimulationSettings + +if TYPE_CHECKING: + from collections.abc import Callable + + import simpy + + from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer + from asyncflow.schemas.payload import SimulationPayload + from asyncflow.schemas.topology.graph import TopologyGraph + + + +def test_single_server_with_spike( + env: simpy.Environment, + topology_single_server: Callable[..., TopologyGraph], + make_payload: Callable[ + [ArrivalsGenerator, TopologyGraph, SimulationSettings, + list[EventInjection] | None], + SimulationPayload, + ], +) -> None: + """Run with both edge spike and server outage; verify KPIs exist.""" + arrivals = ArrivalsGenerator( + id="rqs-1", + lambda_rps=20.0, + model=Distribution.POISSON, + ) + topo = topology_single_server(service_time_s=0.001, edge_mean=0.002) + sim = SimulationSettings(total_simulation_time=5) + + events = [ + EventInjection( + event_id="spike", + target_id="client-to-lb", + start={ + "kind": EventDescription.NETWORK_SPIKE_START, + "t_start": 0.2, + "spike_s": 0.01, + }, + end={"kind": EventDescription.NETWORK_SPIKE_END, "t_end": 0.4}, + ), + ] + + payload = make_payload(arrivals, topo, sim, events) + + runner = SimulationRunner(env=env, simulation_input=payload) + results: ResultsAnalyzer = runner.run() + + stats = results.get_latency_stats() + assert stats + assert stats[LatencyKey.TOTAL_REQUESTS] > 0 diff --git a/tests/integration/load_balancer/test_lb_basic.py b/tests/integration/load_balancer/test_lb_basic.py index cd21509..50062f8 100644 --- a/tests/integration/load_balancer/test_lb_basic.py +++ b/tests/integration/load_balancer/test_lb_basic.py @@ -15,100 +15,47 @@ from typing import TYPE_CHECKING -import simpy - -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( Distribution, - EndpointStepCPU, LatencyKey, SampledMetricName, - StepOperation, ) from asyncflow.runner.simulation import SimulationRunner -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.payload import SimulationPayload +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.settings.simulation import SimulationSettings -from asyncflow.schemas.topology.edges import Edge -from asyncflow.schemas.topology.endpoint import ( - Endpoint, - Step, -) -from asyncflow.schemas.topology.graph import TopologyGraph -from asyncflow.schemas.topology.nodes import ( - Client, - LoadBalancer, - NodesResources, - Server, - TopologyNodes, -) -from asyncflow.schemas.workload.rqs_generator import RqsGenerator if TYPE_CHECKING: - from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -def _server(server_id: str) -> Server: - """Minimal server with a single CPU-bound endpoint.""" - ep = Endpoint( - endpoint_name="get", - steps=[ - Step( - kind=EndpointStepCPU.CPU_BOUND_OPERATION, - step_operation={StepOperation.CPU_TIME: 0.001}, - ), - ], - ) - return Server( - id=server_id, - server_resources=NodesResources(), # defaults are fine - endpoints=[ep], - ) + from collections.abc import Callable + import simpy -def _edge(eid: str, src: str, tgt: str, mean: float = 0.001) -> Edge: - """Low-latency edge to keep tests fast/deterministic enough.""" - return Edge( - id=eid, - source=src, - target=tgt, - latency=RVConfig(mean=mean, distribution=Distribution.POISSON), - ) - - -def test_lb_two_servers_end_to_end_smoke() -> None: + from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer + from asyncflow.schemas.payload import SimulationPayload + from asyncflow.schemas.topology.graph import TopologyGraph + + +def test_lb_two_servers_end_to_end_smoke( + env: simpy.Environment, + topology_two_servers: Callable[..., TopologyGraph], + make_payload: Callable[ + [ArrivalsGenerator, TopologyGraph, SimulationSettings, None], + SimulationPayload, + ], +) -> None: """Run end-to-end with LB and two servers; check basic KPIs exist.""" - env = simpy.Environment() - - # Stronger workload to avoid empty stats due to randomness: - # ~5 active users generating ~60 rpm each → ~5 rps expected. - rqs = RqsGenerator( + arrivals = ArrivalsGenerator( id="rqs-1", - avg_active_users=RVConfig(mean=5.0), - avg_request_per_minute_per_user=RVConfig(mean=60.0), - user_sampling_window=5.0, + lambda_rps=20.0, + model=Distribution.POISSON, ) + # Horizon must be >= 5 (schema), use a bit more to accumulate samples. sim = SimulationSettings(total_simulation_time=8.0) # Topology: rqs→client→lb→srv{1,2} and back srv→client - client = Client(id="client-1") - lb = LoadBalancer(id="lb-1") - - srv1 = _server("srv-1") - srv2 = _server("srv-2") - - edges = [ - _edge("gen-to-client", "rqs-1", "client-1"), - _edge("client-to-lb", "client-1", "lb-1"), - _edge("lb-to-srv1", "lb-1", "srv-1"), - _edge("lb-to-srv2", "lb-1", "srv-2"), - _edge("srv1-to-client", "srv-1", "client-1"), - _edge("srv2-to-client", "srv-2", "client-1"), - ] - nodes = TopologyNodes(servers=[srv1, srv2], client=client, load_balancer=lb) - topo = TopologyGraph(nodes=nodes, edges=edges) - - payload = SimulationPayload(rqs_input=rqs, topology_graph=topo, sim_settings=sim) + topo = topology_two_servers(service_time_s=0.001, edge_mean=0.001) + + payload = make_payload(arrivals, topo, sim, None) runner = SimulationRunner(env=env, simulation_input=payload) results: ResultsAnalyzer = runner.run() diff --git a/tests/integration/minimal/conftest.py b/tests/integration/minimal/conftest.py deleted file mode 100644 index 3c1aebe..0000000 --- a/tests/integration/minimal/conftest.py +++ /dev/null @@ -1,75 +0,0 @@ -""" -Local fixtures for the *minimal* integration scenario. - -We **do not** add any Edge to the TopologyGraph because the core schema -forbids generator-origin edges. Instead we patch the single -`RqsGeneratorRuntime` after the `SimulationRunner` is built, giving it a -*no-op* EdgeRuntime so its internal assertion passes. -""" - -from __future__ import annotations - -from typing import TYPE_CHECKING - -import pytest -import simpy - -from asyncflow.config.constants import TimeDefaults -from asyncflow.runner.simulation import SimulationRunner -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -if TYPE_CHECKING: - from asyncflow.schemas.payload import SimulationPayload - - -# ────────────────────────────────────────────────────────────────────────────── -# 0-traffic generator (shadows the project-wide fixture) -# ────────────────────────────────────────────────────────────────────────────── -@pytest.fixture(scope="session") -def rqs_input() -> RqsGenerator: - """A generator that never emits any request.""" - return RqsGenerator( - id="rqs-zero", - avg_active_users=RVConfig(mean=0.0), - avg_request_per_minute_per_user=RVConfig(mean=0.0), - user_sampling_window=TimeDefaults.USER_SAMPLING_WINDOW, - ) - - -# ────────────────────────────────────────────────────────────────────────────── -# SimPy env - local to this directory -# ────────────────────────────────────────────────────────────────────────────── -@pytest.fixture -def env() -> simpy.Environment: - """Fresh environment per test module.""" - return simpy.Environment() - - -class _NoOpEdge: - """EdgeRuntime stand-in that simply discards every state.""" - - def transport(self, _state: object) -> None: # ANN001: _state annotated - return # swallow the request silently - - -# ────────────────────────────────────────────────────────────────────────────── -# Runner factory - assigns the dummy edge *after* building the runner -# ────────────────────────────────────────────────────────────────────────────── -@pytest.fixture -def runner( - env: simpy.Environment, - payload_base: SimulationPayload, -) -> SimulationRunner: - """Build a `SimulationRunner` and patch the generator's `out_edge`.""" - sim_runner = SimulationRunner(env=env, simulation_input=payload_base) - - def _patch_noop_edge(r: SimulationRunner) -> None: - - gen_rt = next(iter(r._rqs_runtime.values())) # noqa: SLF001 - gen_rt.out_edge = _NoOpEdge() # type: ignore[assignment] - - - sim_runner._patch_noop_edge = _patch_noop_edge # type: ignore[attr-defined] # noqa: SLF001 - - return sim_runner diff --git a/tests/integration/minimal/test_minimal.py b/tests/integration/minimal/test_minimal.py index 0688706..6c78651 100644 --- a/tests/integration/minimal/test_minimal.py +++ b/tests/integration/minimal/test_minimal.py @@ -7,7 +7,7 @@ generator ──Ø── client (Ø == no real EdgeRuntime) The request-generator cannot emit messages because its ``out_edge`` is -replaced by a no-op stub. The client is patched the same way so its own +replaced by a no-op stub. The client is patched the same way so its own forwarder never attempts a network send. """ @@ -16,45 +16,39 @@ from typing import TYPE_CHECKING import pytest -import simpy from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer from asyncflow.runner.simulation import SimulationRunner if TYPE_CHECKING: + import simpy + from asyncflow.schemas.payload import SimulationPayload # --------------------------------------------------------------------------- # # Helpers # # --------------------------------------------------------------------------- # - class _NoOpEdge: """Edge stub: swallows every transport call.""" - def transport(self) -> None: - # Nothing to do - we just black-hole the message. + def transport(self, *_: object, **__: object) -> None: + # Nothing to do — black-hole the message. return + # --------------------------------------------------------------------------- # -# Local fixtures # +# Local fixtures (use global env from shared conftest) # # --------------------------------------------------------------------------- # -@pytest.fixture -def env() -> simpy.Environment: - """Fresh SimPy environment for this test file.""" - return simpy.Environment() - - @pytest.fixture def runner( env: simpy.Environment, - payload_base: SimulationPayload, # comes from project-wide conftest + payload_base: SimulationPayload, # provided by project-wide conftest ) -> SimulationRunner: - """SimulationRunner already loaded with *minimal* payload.""" + """SimulationRunner already loaded with a *minimal* payload.""" return SimulationRunner(env=env, simulation_input=payload_base) - # --------------------------------------------------------------------------- # # Tests # # --------------------------------------------------------------------------- # @@ -66,35 +60,38 @@ def test_smoke_minimal_runs(runner: SimulationRunner) -> None: * execute its clock, * leave all metric collections empty. """ - # ── 1. Build generator + patch its edge ────────────────────────────── - runner._build_rqs_generator() # noqa: SLF001 - private builder ok in test - gen_rt = next(iter(runner._rqs_runtime.values())) # noqa: SLF001 + # ── 1) Build generator + patch its edge ────────────────────────────── + runner._build_rqs_generator() # noqa: SLF001 - private builder OK in tests + gen_rt = next(iter(runner._arrivals_runtime.values())) # noqa: SLF001 gen_rt.out_edge = _NoOpEdge() # type: ignore[assignment] - # ── 2. Build client + patch its edge ───────────────────────────────── + # ── 2) Build client + patch its edge ───────────────────────────────── runner._build_client() # noqa: SLF001 cli_rt = next(iter(runner._client_runtime.values())) # noqa: SLF001 cli_rt.out_edge = _NoOpEdge() # type: ignore[assignment] - # ── 3. Build remaining artefacts (no servers / no LB present) ─────── + # ── 3) Start processes (no servers / no LB present) ────────────────── runner._start_all_processes() # noqa: SLF001 - runner._start_metric_collector() # noqa: SLF001 + runner._start_metric_collector() # noqa: SLF001 - # ── 4. Run the clock ───────────────────────────────────────────────── + # ── 4) Run the clock ───────────────────────────────────────────────── runner.env.run(until=runner.simulation_settings.total_simulation_time) - # ── 5. Post-processing - everything must be empty ─────────────────── + # ── 5) Post-processing — everything must be empty ──────────────────── results: ResultsAnalyzer = ResultsAnalyzer( client=cli_rt, - servers=[], # none built - edges=[], # none built + servers=[], # none built + edges=[], # none built settings=runner.simulation_settings, ) # No latencies were produced assert results.get_latency_stats() == {} + # Throughput time-series must be entirely empty timestamps, rps = results.get_throughput_series() assert timestamps == [] + assert rps == [] + # No sampled metrics either assert results.get_sampled_metrics() == {} diff --git a/tests/integration/payload/data/invalid/missing_field.yml b/tests/integration/payload/data/invalid/missing_field.yml deleted file mode 100644 index c74102d..0000000 --- a/tests/integration/payload/data/invalid/missing_field.yml +++ /dev/null @@ -1,17 +0,0 @@ -rqs_input: - id: gen-1 - avg_active_users: { mean: 1 } - avg_request_per_minute_per_user: { mean: 10 } - -topology_graph: - nodes: - client: { id: cli } - servers: - - id: srv-1 - endpoints: - - endpoint_name: ep - steps: - - { kind: cpu_parse, step_operation: { cpu_time: 0.001 } } - - edges: [] -sim_settings: { total_simulation_time: 10 } diff --git a/tests/integration/payload/data/invalid/negative_latency.yml b/tests/integration/payload/data/invalid/negative_latency.yml deleted file mode 100644 index f69fb60..0000000 --- a/tests/integration/payload/data/invalid/negative_latency.yml +++ /dev/null @@ -1,15 +0,0 @@ -rqs_input: - id: gen-1 - avg_active_users: { mean: 1 } - avg_request_per_minute_per_user: { mean: 10 } - -topology_graph: - nodes: - client: { id: cli } - servers: [] - edges: - - id: bad-lat - source: gen-1 - target: cli - latency: { mean: -0.001 } -sim_settings: { total_simulation_time: 5 } diff --git a/tests/integration/payload/data/invalid/wrong_enum.yml b/tests/integration/payload/data/invalid/wrong_enum.yml deleted file mode 100644 index 58a1c50..0000000 --- a/tests/integration/payload/data/invalid/wrong_enum.yml +++ /dev/null @@ -1,13 +0,0 @@ -rqs_input: - id: gen-1 - avg_active_users: { mean: 1 } - avg_request_per_minute_per_user: - mean: 10 - distribution: gamma # not valid enum - -topology_graph: - nodes: - client: { id: cli } - servers: [] - edges: [] -sim_settings: { total_simulation_time: 5 } diff --git a/tests/integration/payload/test_payload_invalid.py b/tests/integration/payload/test_payload_invalid.py deleted file mode 100644 index 8cd5226..0000000 --- a/tests/integration/payload/test_payload_invalid.py +++ /dev/null @@ -1,19 +0,0 @@ -"""test to verify validation on invalid yml""" - -from pathlib import Path - -import pytest -import yaml -from pydantic import ValidationError - -from asyncflow.schemas.payload import SimulationPayload - -DATA_DIR = Path(__file__).parent / "data" / "invalid" -YMLS = sorted(DATA_DIR.glob("*.yml")) - -@pytest.mark.integration -@pytest.mark.parametrize("yaml_path", YMLS, ids=lambda p: p.stem) -def test_invalid_payloads_raise(yaml_path: Path) -> None : - raw = yaml.safe_load(yaml_path.read_text()) - with pytest.raises(ValidationError): - SimulationPayload.model_validate(raw) diff --git a/tests/integration/single_server/conftest.py b/tests/integration/single_server/conftest.py deleted file mode 100644 index 7ecf298..0000000 --- a/tests/integration/single_server/conftest.py +++ /dev/null @@ -1,47 +0,0 @@ -""" -Fixtures for the *single-server* integration scenario: - -generator ──edge──> server ──edge──> client - -The topology is stored as a YAML file (`tests/data/single_server.yml`) so -tests remain declarative and we avoid duplicating Pydantic wiring logic. -""" - -from __future__ import annotations - -from pathlib import Path -from typing import TYPE_CHECKING - -import pytest -import simpy - -if TYPE_CHECKING: # heavy imports only when type-checking - from asyncflow.runner.simulation import SimulationRunner - - -# --------------------------------------------------------------------------- # -# Shared SimPy environment (function-scope so every test starts fresh) # -# --------------------------------------------------------------------------- # -@pytest.fixture -def env() -> simpy.Environment: - """Return an empty ``simpy.Environment`` for each test.""" - return simpy.Environment() - - -# --------------------------------------------------------------------------- # -# Build a SimulationRunner from the YAML scenario # -# --------------------------------------------------------------------------- # -@pytest.fixture -def runner(env: simpy.Environment) -> SimulationRunner: - """ - Load *single_server.yml* through the public constructor - :pymeth:`SimulationRunner.from_yaml`. - """ - # import deferred to avoid ruff TC001 - from asyncflow.runner.simulation import SimulationRunner # noqa: PLC0415 - - yaml_path: Path = ( - Path(__file__).parent / "data" / "single_server.yml" - ) - - return SimulationRunner.from_yaml(env=env, yaml_path=yaml_path) diff --git a/tests/integration/single_server/data/single_server.yml b/tests/integration/single_server/data/single_server.yml deleted file mode 100644 index c6ec078..0000000 --- a/tests/integration/single_server/data/single_server.yml +++ /dev/null @@ -1,54 +0,0 @@ -# ─────────────────────────────────────────────────────────────── -# AsyncFlow scenario: generator ➜ client ➜ server ➜ client -# ─────────────────────────────────────────────────────────────── - -# 1. Traffic generator (light load) -rqs_input: - id: rqs-1 - avg_active_users: { mean: 5 } - avg_request_per_minute_per_user: { mean: 40 } - user_sampling_window: 60 - -# 2. Topology -topology_graph: - nodes: - client: { id: client-1 } - servers: - - id: srv-1 - server_resources: { cpu_cores: 2, ram_mb: 2048 } - endpoints: - - endpoint_name: ep-1 - probability: 1.0 - steps: - - kind: initial_parsing - step_operation: { cpu_time: 0.001 } - - kind: io_wait - step_operation: { io_waiting_time: 0.002 } - - edges: - - id: gen-to-client - source: rqs-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - - - id: client-to-server - source: client-1 - target: srv-1 - latency: { mean: 0.003, distribution: exponential } - - - id: server-to-client - source: srv-1 - target: client-1 - latency: { mean: 0.003, distribution: exponential } - -# 3. Simulation settings -sim_settings: - total_simulation_time: 50 - sample_period_s: 0.01 - enabled_sample_metrics: - - ready_queue_len - - event_loop_io_sleep - - ram_in_use - - edge_concurrent_connection - enabled_event_metrics: - - rqs_clock diff --git a/tests/integration/single_server/test_int_single_server.py b/tests/integration/single_server/test_int_single_server.py deleted file mode 100644 index 5498611..0000000 --- a/tests/integration/single_server/test_int_single_server.py +++ /dev/null @@ -1,63 +0,0 @@ -""" -End-to-end verification of a *functional* topology (1 generator, 1 server). - -Assertions cover: - -* non-zero latency stats, -* throughput series length > 0, -* presence of sampled metrics for both edge & server. -""" - -from __future__ import annotations - -from typing import TYPE_CHECKING - -import numpy as np -import pytest - -from asyncflow.config.constants import LatencyKey, SampledMetricName - -if TYPE_CHECKING: # only needed for type-checking - from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - from asyncflow.runner.simulation import SimulationRunner - - -# --------------------------------------------------------------------------- # -# Tests # -# --------------------------------------------------------------------------- # -@pytest.mark.integration -def test_single_server_happy_path(runner: SimulationRunner) -> None: - """Run the simulation and ensure that *something* was processed. - - Make the test deterministic and sufficiently loaded so at least one request - is generated and measured. - """ - # Deterministic RNG for the whole runner - runner.rng = np.random.default_rng(0) - - # Increase horizon and load to avoid zero-request realizations - runner.simulation_settings.total_simulation_time = 30 - runner.rqs_generator.avg_active_users.mean = 5.0 - runner.rqs_generator.avg_request_per_minute_per_user.mean = 30.0 - - results: ResultsAnalyzer = runner.run() - - # ── Latency stats must exist ─────────────────────────────────────────── - stats = results.get_latency_stats() - assert stats, "Expected non-empty latency statistics." - assert stats[LatencyKey.TOTAL_REQUESTS] > 0 - assert stats[LatencyKey.MEAN] > 0.0 - - # ── Throughput series must have at least one bucket > 0 ─────────────── - ts, rps = results.get_throughput_series() - assert len(ts) == len(rps) > 0 - assert any(val > 0 for val in rps) - - # ── Sampled metrics must include *one* server and *one* edge ─────────── - sampled = results.get_sampled_metrics() - - assert SampledMetricName.RAM_IN_USE in sampled - assert sampled[SampledMetricName.RAM_IN_USE], "Server RAM time-series missing." - - assert SampledMetricName.EDGE_CONCURRENT_CONNECTION in sampled - diff --git a/tests/system/test_sys_ev_inj_lb_two_servers.py b/tests/system/test_sys_ev_inj_lb_two_servers.py index 91ba0e0..746e268 100644 --- a/tests/system/test_sys_ev_inj_lb_two_servers.py +++ b/tests/system/test_sys_ev_inj_lb_two_servers.py @@ -32,10 +32,10 @@ from asyncflow import AsyncFlow from asyncflow.components import Client, Edge, Endpoint, LoadBalancer, Server -from asyncflow.config.constants import LatencyKey +from asyncflow.config.enums import Distribution, LatencyKey from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator if TYPE_CHECKING: from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer @@ -68,11 +68,10 @@ def _seed_all(seed: int = SEED) -> None: def _build_payload(*, with_events: bool) -> SimulationPayload: """Build payload for client + LB + two servers; optionally add events.""" # Workload: ~26.7 rps (80 users * 20 rpm / 60). - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 80}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, + lambda_rps=20, + model=Distribution.POISSON, ) client = Client(id="client-1") lb = LoadBalancer(id="lb-1", algorithm="round_robin") @@ -151,7 +150,7 @@ def _build_payload(*, with_events: bool) -> SimulationPayload: flow = ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_load_balancer(lb) .add_servers(srv1, srv2) diff --git a/tests/system/test_sys_ev_inj_single_server.py b/tests/system/test_sys_ev_inj_single_server.py index da5afb7..489e30b 100644 --- a/tests/system/test_sys_ev_inj_single_server.py +++ b/tests/system/test_sys_ev_inj_single_server.py @@ -35,10 +35,10 @@ from asyncflow import AsyncFlow from asyncflow.components import Client, Edge, Endpoint, Server -from asyncflow.config.constants import LatencyKey +from asyncflow.config.enums import Distribution, LatencyKey from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator if TYPE_CHECKING: from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer @@ -69,11 +69,10 @@ def _seed_all(seed: int = SEED) -> None: def _build_payload(*, with_spike: bool) -> SimulationPayload: """Build a single-server payload; optionally inject an edge spike.""" # Workload: ~26.7 rps (80 users * 20 rpm / 60). - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 80}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, + lambda_rps=20, + model=Distribution.POISSON, ) client = Client(id="client-1") @@ -128,7 +127,7 @@ def _build_payload(*, with_spike: bool) -> SimulationPayload: flow = ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_servers(srv) .add_edges(*edges) diff --git a/tests/system/test_sys_lb_two_servers.py b/tests/system/test_sys_lb_two_servers.py index 47bb0ee..3f24fb7 100644 --- a/tests/system/test_sys_lb_two_servers.py +++ b/tests/system/test_sys_lb_two_servers.py @@ -26,10 +26,10 @@ from asyncflow import AsyncFlow from asyncflow.components import Client, Edge, Endpoint, LoadBalancer, Server -from asyncflow.config.constants import LatencyKey +from asyncflow.config.enums import Distribution, LatencyKey from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator if TYPE_CHECKING: # Imported only for type checking (ruff: TC001) @@ -56,11 +56,10 @@ def _seed_all(seed: int = SEED) -> None: def _build_payload() -> SimulationPayload: - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 120}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, + lambda_rps=20, + model=Distribution.POISSON, ) client = Client(id="client-1") @@ -142,7 +141,7 @@ def _build_payload() -> SimulationPayload: flow = ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_load_balancer(lb) .add_servers(srv1, srv2) @@ -172,11 +171,11 @@ def test_system_lb_two_servers_balanced_and_sane() -> None: mean_lat = float(stats.get(LatencyKey.MEAN, 0.0)) assert 0.020 <= mean_lat <= 0.060 - # Throughput sanity vs nominal λ ≈ 40 rps + # Throughput sanity vs nominal λ ≈ 20 rps _, rps = res.get_throughput_series() assert rps, "No throughput series produced." rps_mean = float(np.mean(rps)) - lam = 120 * 20 / 60.0 + lam = 20 assert abs(rps_mean - lam) / lam <= REL_TOL # Load balance check: edge concurrency lb→srv1 vs lb→srv2 close diff --git a/tests/system/test_sys_single_server.py b/tests/system/test_sys_single_server.py index c8d2034..f3fc703 100644 --- a/tests/system/test_sys_single_server.py +++ b/tests/system/test_sys_single_server.py @@ -25,10 +25,10 @@ from asyncflow import AsyncFlow from asyncflow.components import Client, Edge, Endpoint, Server -from asyncflow.config.constants import LatencyKey +from asyncflow.config.enums import Distribution, LatencyKey from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator if TYPE_CHECKING: # Imported only for type checking (ruff: TC001) @@ -55,11 +55,10 @@ def _seed_all(seed: int = SEED) -> None: def _build_payload() -> SimulationPayload: # Workload: ~26.7 rps (80 users * 20 rpm / 60) - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 80}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, + lambda_rps=20, + model=Distribution.POISSON, ) client = Client(id="client-1") @@ -112,7 +111,7 @@ def _build_payload() -> SimulationPayload: flow = ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_servers(srv) .add_edges(*edges) @@ -140,7 +139,7 @@ def test_system_single_server_sane() -> None: _, rps = res.get_throughput_series() assert rps, "No throughput series produced." rps_mean = float(np.mean(rps)) - lam = 80 * 20 / 60.0 + lam = 20 assert abs(rps_mean - lam) / lam <= REL_TOL # Sampled metrics present for srv-1 diff --git a/tests/unit/helpers.py b/tests/unit/helpers.py index 2b7c0e2..6af5d5e 100644 --- a/tests/unit/helpers.py +++ b/tests/unit/helpers.py @@ -1,4 +1,4 @@ -from asyncflow.config.constants import EndpointStepCPU, StepOperation +from asyncflow.config.enums import EndpointStepCPU, StepOperation from asyncflow.schemas.topology.endpoint import Endpoint, Step diff --git a/tests/unit/metrics/test_simulation_analyzer.py b/tests/unit/metrics/test_simulation_analyzer.py index 4afc6a8..4d727eb 100644 --- a/tests/unit/metrics/test_simulation_analyzer.py +++ b/tests/unit/metrics/test_simulation_analyzer.py @@ -19,7 +19,7 @@ from matplotlib.figure import Figure from asyncflow.analysis import ResultsAnalyzer -from asyncflow.config.constants import EventMetricName +from asyncflow.config.enums import EventMetricName from asyncflow.enums import SampledMetricName from asyncflow.metrics.server import ServerClock diff --git a/tests/unit/metrics/test_sweep_analyzer.py b/tests/unit/metrics/test_sweep_analyzer.py index 2717f4c..c597351 100644 --- a/tests/unit/metrics/test_sweep_analyzer.py +++ b/tests/unit/metrics/test_sweep_analyzer.py @@ -8,7 +8,7 @@ import matplotlib.pyplot as plt import pytest -from asyncflow.config.constants import LatencyKey +from asyncflow.config.enums import LatencyKey from asyncflow.metrics.sweep_analyzer import SweepAnalyzer # Headless backend for CI diff --git a/tests/unit/public_api/test_import.py b/tests/unit/public_api/test_import.py index 0a2401f..8ddaec2 100644 --- a/tests/unit/public_api/test_import.py +++ b/tests/unit/public_api/test_import.py @@ -1,16 +1,24 @@ -"""Unit tests for the public components import surface. +"""Unit tests for the public import surface of the asyncflow package. -Verifies that: -- `asyncflow.components` exposes the expected `__all__`. -- All symbols in `__all__` are importable and are classes. +Checks: +- Each public module exposes the expected `__all__`. +- Symbols referenced in `__all__` are importable. +- Symbols are of the expected kind (class or Enum). """ from __future__ import annotations import importlib +from enum import Enum from typing import TYPE_CHECKING +# Root facade +from asyncflow import AsyncFlow, SimulationRunner, Sweep + +# Public subpackages +from asyncflow.analysis import MMc, ResultsAnalyzer, SweepAnalyzer from asyncflow.components import ( + ArrivalsGenerator, Client, Edge, Endpoint, @@ -19,14 +27,25 @@ NodesResources, Server, ) +from asyncflow.enums import ( + Distribution, + EndpointStepCPU, + EndpointStepIO, + EndpointStepRAM, + EventMetricName, + LbAlgorithmsName, + SampledMetricName, + StepOperation, +) from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator, RVConfig -if TYPE_CHECKING: +if TYPE_CHECKING: # pragma: no cover from collections.abc import Iterable - +# --------------------------------------------------------------------------- # +# Helpers # +# --------------------------------------------------------------------------- # def _assert_all_equals(module_name: str, expected: Iterable[str]) -> None: """Assert that a module's __all__ exactly matches `expected`.""" mod = importlib.import_module(module_name) @@ -38,46 +57,122 @@ def _assert_all_equals(module_name: str, expected: Iterable[str]) -> None: ) +# --------------------------------------------------------------------------- # +# Root facade # +# --------------------------------------------------------------------------- # +def test_root_public_symbols() -> None: + """`asyncflow` exposes the expected facade symbols.""" + _assert_all_equals( + "asyncflow", + ["AsyncFlow", "SimulationRunner", "Sweep"], + ) + + +def test_root_symbols_are_classes() -> None: + """Facade symbols are importable classes.""" + for cls, name in [ + (AsyncFlow, "AsyncFlow"), + (SimulationRunner, "SimulationRunner"), + (Sweep, "Sweep"), + ]: + assert isinstance(cls, type), f"{name} should be a class" + assert cls.__name__ == name + + +# --------------------------------------------------------------------------- # +# Enums +# --------------------------------------------------------------------------- # +def test_enums_public_symbols() -> None: + """`asyncflow.enums` exposes the expected enum types.""" + expected = [ + "Distribution", + "EndpointStepCPU", + "EndpointStepIO", + "EndpointStepRAM", + "EventMetricName", + "LbAlgorithmsName", + "SampledMetricName", + "StepOperation", + ] + _assert_all_equals("asyncflow.enums", expected) + + +def test_enums_symbols_are_enum_types() -> None: + """All public symbols in enums are Enum subclasses.""" + for enum_type, name in [ + (Distribution, "Distribution"), + (EndpointStepCPU, "EndpointStepCPU"), + (EndpointStepIO, "EndpointStepIO"), + (EndpointStepRAM, "EndpointStepRAM"), + (EventMetricName, "EventMetricName"), + (LbAlgorithmsName, "LbAlgorithmsName"), + (SampledMetricName, "SampledMetricName"), + (StepOperation, "StepOperation"), + ]: + assert isinstance(enum_type, type), f"{name} should be a type" + assert issubclass(enum_type, Enum), f"{name} should be an Enum" + assert enum_type.__name__ == name + + +# --------------------------------------------------------------------------- # +# Analysis # +# --------------------------------------------------------------------------- # +def test_analysis_public_symbols() -> None: + """`asyncflow.analysis` exposes the expected names.""" + _assert_all_equals( + "asyncflow.analysis", + ["MMc", "ResultsAnalyzer", "SweepAnalyzer"], + ) + + +def test_analysis_symbols_are_classes() -> None: + """All analysis symbols are classes.""" + for cls, name in [ + (MMc, "MMc"), + (ResultsAnalyzer, "ResultsAnalyzer"), + (SweepAnalyzer, "SweepAnalyzer"), + ]: + assert isinstance(cls, type), f"{name} should be a class" + assert cls.__name__ == name + + +# --------------------------------------------------------------------------- # +# Components # +# --------------------------------------------------------------------------- # def test_components_public_symbols() -> None: """`asyncflow.components` exposes the expected names.""" expected = [ + "ArrivalsGenerator", "Client", "Edge", "Endpoint", "EventInjection", "LoadBalancer", - "Server", "NodesResources", + "Server", ] _assert_all_equals("asyncflow.components", expected) def test_components_symbols_are_importable_classes() -> None: """All public symbols are importable and are classes.""" - # Basic type sanity (avoid heavy imports/instantiation) for cls, name in [ + (ArrivalsGenerator, "ArrivalsGenerator"), (Client, "Client"), (Edge, "Edge"), (Endpoint, "Endpoint"), (EventInjection, "EventInjection"), (LoadBalancer, "LoadBalancer"), - (Server, "Server"), (NodesResources, "NodesResources"), + (Server, "Server"), ]: - assert isinstance(cls, type), f"{name} should be a class type" - assert cls.__name__ == name - -def test_workload_public_symbols() -> None: - """`asyncflow.workload` exposes RVConfig and RqsGenerator.""" - _assert_all_equals("asyncflow.workload", ["RVConfig", "RqsGenerator"]) - - -def test_workload_symbols_are_importable_classes() -> None: - """Public symbols are importable and are classes.""" - for cls, name in [(RVConfig, "RVConfig"), (RqsGenerator, "RqsGenerator")]: assert isinstance(cls, type), f"{name} should be a class" assert cls.__name__ == name + +# --------------------------------------------------------------------------- # +# Settings # +# --------------------------------------------------------------------------- # def test_settings_public_symbols() -> None: """`asyncflow.settings` exposes SimulationSettings.""" _assert_all_equals("asyncflow.settings", ["SimulationSettings"]) @@ -85,5 +180,5 @@ def test_settings_public_symbols() -> None: def test_settings_symbol_is_importable_class() -> None: """Public symbol is importable and is a class.""" - assert isinstance(SimulationSettings, type), "SimulationSettings should be a class" + assert isinstance(SimulationSettings, type), "must be a class" assert SimulationSettings.__name__ == "SimulationSettings" diff --git a/tests/unit/pybuilder/test_input_builder.py b/tests/unit/pybuilder/test_input_builder.py index fa49fda..58e0d44 100644 --- a/tests/unit/pybuilder/test_input_builder.py +++ b/tests/unit/pybuilder/test_input_builder.py @@ -14,24 +14,23 @@ import pytest from asyncflow.builder.asyncflow_builder import AsyncFlow +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.payload import SimulationPayload from asyncflow.schemas.settings.simulation import SimulationSettings from asyncflow.schemas.topology.edges import Edge from asyncflow.schemas.topology.endpoint import Endpoint from asyncflow.schemas.topology.nodes import Client, Server -from asyncflow.schemas.workload.rqs_generator import RqsGenerator # --------------------------------------------------------------------------- # # Helpers: build minimal, valid components # # --------------------------------------------------------------------------- # -def make_generator() -> RqsGenerator: +def make_generator() -> ArrivalsGenerator: """Return a minimal valid request generator.""" - return RqsGenerator( + return ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 10}, - avg_request_per_minute_per_user={"mean": 30}, - user_sampling_window=60, + lambda_rps=10, + model="poisson", ) @@ -112,7 +111,7 @@ def test_builder_happy_path_returns_payload() -> None: settings = make_settings() payload = ( - flow.add_generator(generator) + flow.add_arrivals_generator(generator) .add_client(client) .add_servers(server) .add_edges(e1, e2, e3) @@ -134,7 +133,7 @@ def test_add_methods_return_self_for_chaining() -> None: """Every add_* method returns `self` to support fluent chaining.""" flow = AsyncFlow() ret = ( - flow.add_generator(make_generator()) + flow.add_arrivals_generator(make_generator()) .add_client(make_client()) .add_servers(make_server()) .add_edges(*make_edges()) @@ -145,7 +144,10 @@ def test_add_methods_return_self_for_chaining() -> None: def test_add_servers_accepts_multiple_and_keeps_order() -> None: """Adding multiple servers keeps insertion order.""" - flow = AsyncFlow().add_generator(make_generator()).add_client(make_client()) + flow = AsyncFlow() + (flow.add_arrivals_generator(make_generator()) + .add_client(make_client()) + ) s1 = make_server("srv-1") s2 = make_server("srv-2") s3 = make_server("srv-3") @@ -184,7 +186,7 @@ def test_build_without_generator_raises() -> None: def test_build_without_client_raises() -> None: """Building without a client fails with a clear error.""" flow = AsyncFlow() - flow.add_generator(make_generator()) + flow.add_arrivals_generator(make_generator()) flow.add_servers(make_server()) flow.add_edges(*make_edges()) flow.add_simulation_settings(make_settings()) @@ -199,7 +201,7 @@ def test_build_without_client_raises() -> None: def test_build_without_servers_raises() -> None: """Building without servers fails with a clear error.""" flow = AsyncFlow() - flow.add_generator(make_generator()) + flow.add_arrivals_generator(make_generator()) flow.add_client(make_client()) flow.add_edges(*make_edges()) flow.add_simulation_settings(make_settings()) @@ -214,7 +216,7 @@ def test_build_without_servers_raises() -> None: def test_build_without_edges_raises() -> None: """Building without edges fails with a clear error.""" flow = AsyncFlow() - flow.add_generator(make_generator()) + flow.add_arrivals_generator(make_generator()) flow.add_client(make_client()) flow.add_servers(make_server()) flow.add_simulation_settings(make_settings()) @@ -229,7 +231,7 @@ def test_build_without_edges_raises() -> None: def test_build_without_settings_raises() -> None: """Building without settings fails with a clear error.""" flow = AsyncFlow() - flow.add_generator(make_generator()) + flow.add_arrivals_generator(make_generator()) flow.add_client(make_client()) flow.add_servers(make_server()) flow.add_edges(*make_edges()) @@ -245,10 +247,10 @@ def test_build_without_settings_raises() -> None: # Negative cases: type enforcement in add_* methods # # --------------------------------------------------------------------------- # def test_add_generator_rejects_wrong_type() -> None: - """`add_generator` rejects non-RqsGenerator instances.""" + """`add_generator` rejects non-ArrivalsGenerator instances.""" flow = AsyncFlow() with pytest.raises(TypeError): - flow.add_generator("not-a-generator") # type: ignore[arg-type] + flow.add_arrivals_generator("not-a-generator") # type: ignore[arg-type] def test_add_client_rejects_wrong_type() -> None: diff --git a/tests/unit/queue_theory_analysis/test_mm1.py b/tests/unit/queue_theory_analysis/test_mm1.py deleted file mode 100644 index 0b69dc7..0000000 --- a/tests/unit/queue_theory_analysis/test_mm1.py +++ /dev/null @@ -1,239 +0,0 @@ -"""Unit tests for the MM1 queue-theory analyzer.""" - -from __future__ import annotations - -from typing import TYPE_CHECKING, cast - -import pytest - -from asyncflow.config.constants import LatencyKey -from asyncflow.queue_theory_analysis.mm1 import MM1 -from asyncflow.schemas.payload import SimulationPayload - -if TYPE_CHECKING: - from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - - -# --------------------------------------------------------------------------- -# Helpers -# --------------------------------------------------------------------------- -def _make_mm1_payload( - *, - users_mean: float = 30.0, - rpm_per_user: float = 2.0, - service_mean_s: float = 0.4, - edge_latency_s: float | None = 0.0005, - total_time_s: int = 10, -) -> SimulationPayload: - """Build a minimal payload compatible with MM1 assumptions.""" - step = { - "kind": "cpu_bound_operation", - "step_operation": { - "cpu_time": {"mean": service_mean_s, "distribution": "exponential"}, - }, - } - - payload_dict = { - "rqs_input": { - "id": "gen-1", - "avg_active_users": {"mean": users_mean, "distribution": "poisson"}, - "avg_request_per_minute_per_user": { - "mean": rpm_per_user, - "distribution": "poisson", - }, - "user_sampling_window": 10, - }, - "topology_graph": { - "nodes": { - "client": {"id": "client-1"}, - "servers": [ - { - "id": "srv-1", - "server_resources": {"cpu_cores": 1, "ram_mb": 1024}, - "endpoints": [{"endpoint_name": "echo", "steps": [step]}], - }, - ], - "load_balancer": None, - }, - "edges": [ - { - "id": "gen-cli", - "source": "gen-1", - "target": "client-1", - "latency": 0.0004 if edge_latency_s is None else edge_latency_s, - }, - { - "id": "gen-srv", - "source": "gen-1", - "target": "srv-1", - "latency": 0.0004 if edge_latency_s is None else edge_latency_s, - }, - { - "id": "srv-cli", - "source": "srv-1", - "target": "client-1", - "latency": 0.0004 if edge_latency_s is None else edge_latency_s, - }, - ], - }, - "sim_settings": {"total_simulation_time": total_time_s}, - "events": None, - } - - return SimulationPayload.model_validate(payload_dict) - - -class _FakeResultsAnalyzer: - """Minimal fake ResultsAnalyzer for compare_against_run().""" - - def __init__( - self, - *, - total_time_s: float, - n_completed: int, - latencies_s: list[float], - service_times_s: list[float], - waiting_times_s: list[float], - ) -> None: - self._total_time_s = float(total_time_s) - self._n_completed = int(n_completed) - self._latencies = latencies_s - self._service = service_times_s - self._waiting = waiting_times_s - - def process_all_metrics(self) -> None: - """No-op for the fake analyzer.""" - - def get_throughput_series( - self, - _window_s: float | None = None, - ) -> tuple[list[float], list[float]]: - """Return evenly spaced windows with constant RPS from totals.""" - # Build 1-second windows; constant RPS = n / T. - n = float(self._n_completed) - t = float(self._total_time_s) if self._total_time_s > 0 else 1.0 - rps = n / t - steps = int(t) - timestamps = [float(i + 1) for i in range(steps)] - values = [rps for _ in range(steps)] - return timestamps, values - - def get_latency_stats(self) -> dict[LatencyKey, float]: - """Return only the mean latency (keyed by LatencyKey.MEAN).""" - if not self._latencies: - return {} - mean = float(sum(self._latencies)) / float(len(self._latencies)) - return {LatencyKey.MEAN: mean} - - def list_server_ids(self) -> list[str]: - """Report exactly one server id.""" - return ["srv-1"] - - def get_server_event_arrays(self) -> dict[str, dict[str, list[float]]]: - """Expose arrays with service and waiting times.""" - return { - "srv-1": { - "latencies": [], - "service_time": list(self._service), - "io_time": [], - "waiting_time": list(self._waiting), - "finish_times": [], - }, - } - - -# --------------------------------------------------------------------------- -# Tests -# --------------------------------------------------------------------------- -def test_mm1_is_compatible_and_evaluate_closed_form() -> None: - """A valid MM1 payload should be compatible and produce correct KPIs.""" - # lambda = 30 * 2 / 60 = 1.0; mu = 1/0.4 = 2.5; rho = 0.4 - payload = _make_mm1_payload( - users_mean=30.0, - rpm_per_user=2.0, - service_mean_s=0.4, - total_time_s=10, - ) - mm1 = MM1() - - assert mm1.is_compatible(payload) is True - assert mm1.explain_incompatibilities(payload) == [] - - out = mm1.evaluate(payload) - assert out["lambda_rate"] == pytest.approx(1.0, rel=1e-9, abs=1e-9) - assert out["mu_rate"] == pytest.approx(2.5, rel=1e-9, abs=1e-9) - assert out["rho"] == pytest.approx(0.4, rel=1e-9, abs=1e-9) - # W = 1/(mu-lambda) = 2/3; Wq = rho/(mu-lambda) = 0.2666... - assert out["W"] == pytest.approx(2.0 / 3.0, rel=1e-9, abs=1e-9) - assert out["Wq"] == pytest.approx(0.2666666667, rel=1e-9, abs=1e-9) - # L = lambda*W; Lq = lambda*Wq - assert out["L"] == pytest.approx(1.0 * (2.0 / 3.0), rel=1e-9, abs=1e-9) - assert out["Lq"] == pytest.approx(1.0 * 0.2666666667, rel=1e-9, abs=1e-9) - - -def test_mm1_compare_against_run_produces_rows_with_small_deltas() -> None: - """compare_against_run() should produce rows with tiny diffs for ideal data.""" - payload = _make_mm1_payload( - users_mean=30.0, - rpm_per_user=2.0, - service_mean_s=0.4, - total_time_s=10, - ) - # Theory: lambda=1, mu=2.5, rho=0.4, W=2/3, Wq≈0.2667 - n = 10 - t = 10.0 - w = 2.0 / 3.0 - wq = 0.2666666667 - - ra = _FakeResultsAnalyzer( - total_time_s=t, - n_completed=n, - latencies_s=[w] * n, - service_times_s=[0.4] * n, - waiting_times_s=[wq] * n, - ) - - mm1 = MM1() - rows = mm1.compare_against_run(payload, cast("ResultsAnalyzer", ra)) - - assert len(rows) == 7 - by_sym = {r["symbol"]: r for r in rows} - - lam = by_sym["λ"] - mu = by_sym["μ"] - rho = by_sym["rho"] - w_row = by_sym["W"] - wq_row = by_sym["Wq"] - l_row = by_sym["L"] - lq_row = by_sym["Lq"] - - # Observed equals theory in our synthetic scenario - assert float(lam["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - assert float(mu["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - assert float(rho["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - assert float(w_row["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - assert float(wq_row["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - assert float(l_row["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - assert float(lq_row["abs_diff"]) == pytest.approx(0.0, abs=1e-6) - - -@pytest.mark.parametrize( - ("edge_latency_s", "msg"), - [ - (0.01, "deterministic latency must be < 1 ms"), - (None, ""), - ], -) -def test_mm1_validate_or_raise_incompatibilities( - edge_latency_s: float | None, - msg: str, -) -> None: - """Invalid payloads must raise with a readable message.""" - payload = _make_mm1_payload(edge_latency_s=edge_latency_s) - mm1 = MM1() - - if msg: - with pytest.raises(ValueError, match="Payload is not compatible"): - mm1.validate_or_raise(payload) - else: - mm1.validate_or_raise(payload) diff --git a/tests/unit/queue_theory_analysis/test_mmc.py b/tests/unit/queue_theory_analysis/test_mmc.py index 98dd22e..1b3dc10 100644 --- a/tests/unit/queue_theory_analysis/test_mmc.py +++ b/tests/unit/queue_theory_analysis/test_mmc.py @@ -16,17 +16,27 @@ # Public facades (end-user API) from asyncflow import AsyncFlow from asyncflow.analysis import MMc -from asyncflow.components import Client, Edge, Endpoint, LoadBalancer, Server -from asyncflow.config.constants import LatencyKey # used by get_latency_stats() +from asyncflow.components import ( + ArrivalsGenerator, + Client, + Edge, + Endpoint, + LoadBalancer, + Server, +) +from asyncflow.config.enums import LatencyKey # used by get_latency_stats() +from asyncflow.enums import Distribution +from asyncflow.schemas.payload import SimulationPayload +from asyncflow.schemas.topology.graph import TopologyGraph +from asyncflow.schemas.topology.nodes import NodesResources, TopologyNodes from asyncflow.settings import SimulationSettings -from asyncflow.workload import RqsGenerator if TYPE_CHECKING: # Types used only for static checking (mypy), not imported at runtime. from collections.abc import Iterable, Mapping from asyncflow.metrics.simulation_analyzer import ResultsAnalyzer - from asyncflow.schemas.payload import SimulationPayload + class _FakeResultsAnalyzer: @@ -97,11 +107,10 @@ def _build_payload_mmc_split( - deterministic tiny latencies (≤ 1 ms) - load balancer with algorithms="random" (matches current MMc check) """ - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": users_mean}, - avg_request_per_minute_per_user={"mean": rpm_per_user}, - user_sampling_window=60, + lambda_rps=20, + model="poisson", ) client = Client(id="client-1") @@ -178,7 +187,7 @@ def _build_payload_mmc_split( return ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_servers(*servers) .add_load_balancer(lb) @@ -232,31 +241,9 @@ def test_mmc_compare_matches_theory() -> None: def test_mmc_instability_returns_infinities() -> None: """If rho >= 1, closed-form KPIs must be +inf (W, Wq, L, Lq).""" - # c=2, mu=100 -> capacity 200. Set lambda >= 200. - payload = _build_payload_mmc_split( - users_mean=1200, - rpm_per_user=10, - cpu_mean_s=0.01, - c=2, - ) - mmc = MMc() - res = mmc.evaluate(payload) + # c=2, mu=100 rps (service=0.01 s) -> capacity = 200 rps. + # For instability set lambda >= 200. - assert res["rho"] >= 1.0 - assert res["W"] == float("inf") - assert res["Wq"] == float("inf") - assert res["L"] == float("inf") - assert res["Lq"] == float("inf") - -def test_mmc_incompatible_wrong_lb_algorithm() -> None: - """Any LB algorithm different from the expected one should fail.""" - # Build like helper but force a mismatching algorithm. - gen = RqsGenerator( - id="rqs-1", - avg_active_users={"mean": 120}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, - ) client = Client(id="client-1") endpoint = Endpoint( endpoint_name="/api", @@ -269,95 +256,35 @@ def test_mmc_incompatible_wrong_lb_algorithm() -> None: }, }, ], + ) # 0.01 s -> mu = 100 rps + srv = Server( + id="srv-1", server_resources=NodesResources(cpu_cores=2), endpoints=[endpoint], ) - srv1 = Server( - id="srv-1", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - srv2 = Server( - id="srv-2", - server_resources={"cpu_cores": 1, "ram_mb": 2048}, - endpoints=[endpoint], - ) - lb = LoadBalancer( - id="lb-1", - algorithms="least_connection", # intentionally wrong here - server_covered={"srv-1", "srv-2"}, - ) - edges = [ - Edge( - id="gen-client", - source="rqs-1", - target="client-1", - latency=0.00001, - dropout_rate=0, - ), - Edge( - id="client-lb", - source="client-1", - target="lb-1", - latency=0.00001, - dropout_rate=0, - ), - Edge( - id="lb-srv1", - source="lb-1", - target="srv-1", - latency=0.00001, - dropout_rate=0, - ), - Edge( - id="lb-srv2", - source="lb-1", - target="srv-2", - latency=0.00001, - dropout_rate=0, - ), - Edge( - id="srv1-client", - source="srv-1", - target="client-1", - latency=0.00001, - dropout_rate=0, - ), - Edge( - id="srv2-client", - source="srv-2", - target="client-1", - latency=0.00001, - dropout_rate=0, - ), - ] - settings = SimulationSettings( - total_simulation_time=60, - sample_period_s=0.05, - ) - payload = ( - AsyncFlow() - .add_generator(gen) - .add_client(client) - .add_servers(srv1, srv2) - .add_load_balancer(lb) - .add_edges(*edges) - .add_simulation_settings(settings) - ).build_payload() + nodes = TopologyNodes(servers=[srv], client=client, load_balancer=None) + graph = TopologyGraph(nodes=nodes, edges=[]) + + # λ = 200 rps (== capacity) -> rho = 1 + arrivals = ArrivalsGenerator(id="gen", lambda_rps=200.0, model=Distribution.POISSON) + + settings = SimulationSettings(total_simulation_time=5) + payload = SimulationPayload( + arrivals=arrivals, topology_graph=graph, sim_settings=settings) mmc = MMc() - assert not mmc.is_compatible(payload) - reasons = mmc.explain_incompatibilities(payload) - # Do not rely on exact string; just ensure we flag the LB algo. - assert any("supported" in r or "round_robin" in r or "algorithm" in r - for r in reasons) + res = mmc.evaluate(payload) + + assert res["rho"] >= 1.0 + for key in ("W", "Wq", "L", "Lq"): + assert res[key] == float("inf") + def test_mmc_incompatible_edge_latency_too_large() -> None: """Latency must be deterministic and <= 1 ms.""" - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 120}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, + lambda_rps=20, + model="poisson", ) client = Client(id="client-1") endpoint = Endpoint( @@ -437,7 +364,7 @@ def test_mmc_incompatible_edge_latency_too_large() -> None: ) payload = ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_servers(srv1, srv2) .add_load_balancer(lb) @@ -453,11 +380,10 @@ def test_mmc_incompatible_edge_latency_too_large() -> None: def test_mmc_incompatible_server_model_requires_single_cpu_step() -> None: """Each server endpoint must have exactly one CPU step.""" - gen = RqsGenerator( + gen = ArrivalsGenerator( id="rqs-1", - avg_active_users={"mean": 120}, - avg_request_per_minute_per_user={"mean": 20}, - user_sampling_window=60, + lambda_rps=20, + model="poisson", ) client = Client(id="client-1") @@ -559,7 +485,7 @@ def test_mmc_incompatible_server_model_requires_single_cpu_step() -> None: ) payload = ( AsyncFlow() - .add_generator(gen) + .add_arrivals_generator(gen) .add_client(client) .add_servers(srv1, srv2) .add_load_balancer(lb) diff --git a/tests/unit/resources/test_registry.py b/tests/unit/resources/test_registry.py index eae6afd..3b76c67 100644 --- a/tests/unit/resources/test_registry.py +++ b/tests/unit/resources/test_registry.py @@ -5,7 +5,7 @@ import pytest import simpy -from asyncflow.config.constants import ServerResourceName +from asyncflow.config.enums import ServerResourceName from asyncflow.resources.registry import ResourcesRuntime from asyncflow.schemas.topology.endpoint import Endpoint from asyncflow.schemas.topology.graph import TopologyGraph diff --git a/tests/unit/resources/test_server_containers.py b/tests/unit/resources/test_server_containers.py index bae0587..2741fec 100644 --- a/tests/unit/resources/test_server_containers.py +++ b/tests/unit/resources/test_server_containers.py @@ -2,7 +2,7 @@ import simpy -from asyncflow.config.constants import ServerResourceName +from asyncflow.config.enums import ServerResourceName from asyncflow.resources.server_containers import build_containers from asyncflow.schemas.topology.nodes import NodesResources diff --git a/tests/unit/runner/test_simulation.py b/tests/unit/runner/test_simulation.py index 34f1c44..de6dbf9 100644 --- a/tests/unit/runner/test_simulation.py +++ b/tests/unit/runner/test_simulation.py @@ -1,4 +1,4 @@ -"""Unit-tests for :pyclass:`app.runtime.simulation_runner.SimulationRunner`. +"""Unit-tests for :class:`SimulationRunner`. Purpose ------- @@ -15,8 +15,9 @@ import yaml from tests.unit.helpers import make_min_ep -from asyncflow.config.constants import Distribution, EventDescription +from asyncflow.config.enums import Distribution, EventDescription from asyncflow.runner.simulation import SimulationRunner +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.common.random_variables import RVConfig from asyncflow.schemas.events.injection import EventInjection from asyncflow.schemas.payload import SimulationPayload @@ -34,11 +35,10 @@ if TYPE_CHECKING: from pathlib import Path + from asyncflow.runtime.actors.arrivals_generator import ( + ArrivalsGeneratorRuntime, + ) from asyncflow.runtime.actors.client import ClientRuntime - from asyncflow.runtime.actors.rqs_generator import RqsGeneratorRuntime - from asyncflow.schemas.settings.simulation import SimulationSettings - from asyncflow.schemas.workload.rqs_generator import RqsGenerator - # --------------------------------------------------------------------------- # @@ -50,6 +50,25 @@ def env() -> simpy.Environment: return simpy.Environment() +@pytest.fixture +def payload_base() -> SimulationPayload: + """Minimal SimulationPayload: arrivals + client, no servers.""" + arrivals = ArrivalsGenerator( + id="gen", + lambda_rps=5.0, + model=Distribution.POISSON, + ) + client = Client(id="cli") + nodes = TopologyNodes(servers=[], client=client, load_balancer=None) + graph = TopologyGraph(nodes=nodes, edges=[]) + settings = SimulationSettings(total_simulation_time=5) + return SimulationPayload( + arrivals=arrivals, + topology_graph=graph, + sim_settings=settings, + ) + + @pytest.fixture def runner( env: simpy.Environment, @@ -60,16 +79,16 @@ def runner( # --------------------------------------------------------------------------- # -# Builder-level tests (original) # +# Builder-level tests # # --------------------------------------------------------------------------- # -def test_build_rqs_generator_populates_dict(runner: SimulationRunner) -> None: +def test_build_arrivals_populates_dict(runner: SimulationRunner) -> None: """_build_rqs_generator() must register one generator runtime.""" runner._build_rqs_generator() # noqa: SLF001 - assert len(runner._rqs_runtime) == 1 # noqa: SLF001 - gen_rt: RqsGeneratorRuntime = next( - iter(runner._rqs_runtime.values()), # noqa: SLF001 + assert len(runner._arrivals_runtime) == 1 # noqa: SLF001 + gen_rt: ArrivalsGeneratorRuntime = next( + iter(runner._arrivals_runtime.values()), # noqa: SLF001 ) - assert gen_rt.rqs_generator_data.id == runner.rqs_generator.id + assert gen_rt.arrivals.id == runner.arrivals.id def test_build_client_populates_dict(runner: SimulationRunner) -> None: @@ -77,7 +96,7 @@ def test_build_client_populates_dict(runner: SimulationRunner) -> None: runner._build_client() # noqa: SLF001 assert len(runner._client_runtime) == 1 # noqa: SLF001 cli_rt: ClientRuntime = next( - iter(runner._client_runtime.values()), # noqa: SLF001 + iter(runner._client_runtime.values()), # noqa: SLF001 ) assert cli_rt.client_config.id == runner.client.id assert cli_rt.out_edge is None @@ -100,14 +119,24 @@ def test_build_load_balancer_noop_when_absent( # --------------------------------------------------------------------------- # -# Edges builder (original) # +# Edges builder # # --------------------------------------------------------------------------- # def test_build_edges_with_stub_edge(runner: SimulationRunner) -> None: """ `_build_edges()` must register exactly one `EdgeRuntime`, corresponding - to the single stub edge (generator → client) present in the minimal - topology fixture. + to a stub edge (generator → client). We inject that edge here. """ + # Inject one stub edge into the payload graph. + arrivals_id = runner.arrivals.id + client_id = runner.client.id + stub_edge = Edge( + id="gen-cli", + source=arrivals_id, + target=client_id, + latency=RVConfig(mean=0.001, distribution=Distribution.POISSON), + ) + runner.edges.append(stub_edge) + runner._build_rqs_generator() # noqa: SLF001 runner._build_client() # noqa: SLF001 runner._build_edges() # noqa: SLF001 @@ -115,17 +144,12 @@ def test_build_edges_with_stub_edge(runner: SimulationRunner) -> None: # --------------------------------------------------------------------------- # -# from_yaml utility (original) # +# from_yaml utility # # --------------------------------------------------------------------------- # def test_from_yaml_minimal(tmp_path: Path, env: simpy.Environment) -> None: - """from_yaml() parses YAML, validates via Pydantic and returns a runner.""" + """from_yaml() parses YAML, validates and returns a runner.""" yml_payload = { - "rqs_input": { - "id": "gen-yaml", - "avg_active_users": {"mean": 1}, - "avg_request_per_minute_per_user": {"mean": 2}, - "user_sampling_window": 10, - }, + "arrivals": {"id": "gen-yaml", "lambda_rps": 3.0, "model": "poisson"}, "topology_graph": { "nodes": {"client": {"id": "cli-yaml"}, "servers": []}, "edges": [], @@ -139,19 +163,23 @@ def test_from_yaml_minimal(tmp_path: Path, env: simpy.Environment) -> None: runner = SimulationRunner.from_yaml(env=env, yaml_path=yml_path) assert isinstance(runner, SimulationRunner) - assert runner.rqs_generator.id == "gen-yaml" + assert runner.arrivals.id == "gen-yaml" assert runner.client.id == "cli-yaml" +# --------------------------------------------------------------------------- # +# Helpers for richer payloads # +# --------------------------------------------------------------------------- # def _payload_with_lb_one_server_and_edges( *, - rqs_input: RqsGenerator, + arrivals: ArrivalsGenerator, sim_settings: SimulationSettings, ) -> SimulationPayload: """Build a small payload with LB → server wiring and one net edge.""" client = Client(id="client-1") server = Server( - id="srv-1", server_resources=NodesResources(), + id="srv-1", + server_resources=NodesResources(), endpoints=[make_min_ep()], ) lb = LoadBalancer(id="lb-1") @@ -159,7 +187,7 @@ def _payload_with_lb_one_server_and_edges( e_gen_lb = Edge( id="gen-lb", - source=rqs_input.id, + source=arrivals.id, target=lb.id, latency=RVConfig(mean=0.001, distribution=Distribution.POISSON), ) @@ -171,61 +199,71 @@ def _payload_with_lb_one_server_and_edges( ) e_net = Edge( id="net-edge", - source=rqs_input.id, + source=arrivals.id, target=client.id, latency=RVConfig(mean=0.003, distribution=Distribution.POISSON), ) graph = TopologyGraph(nodes=nodes, edges=[e_gen_lb, e_lb_srv, e_net]) return SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals, topology_graph=graph, sim_settings=sim_settings, ) +# --------------------------------------------------------------------------- # +# Additional builder tests # +# --------------------------------------------------------------------------- # def test_make_inbox_bound_to_env_and_fifo(runner: SimulationRunner) -> None: """_make_inbox() binds to runner.env and behaves FIFO.""" box = runner._make_inbox() # noqa: SLF001 assert isinstance(box, simpy.Store) - # Put two items and consume them in order using `run(until=...)`. env = runner.env env.run(until=box.put("first")) env.run(until=box.put("second")) got1 = env.run(until=box.get()) got2 = env.run(until=box.get()) - assert got1 == "first" - assert got2 == "second" + assert (got1, got2) == ("first", "second") -def test_build_load_balancer_when_present( - env: simpy.Environment, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: +def test_build_load_balancer_when_present(env: simpy.Environment) -> None: """_build_load_balancer() should create `_lb_runtime` if LB exists.""" + arrivals = ArrivalsGenerator( + id="gen", + lambda_rps=5.0, + model=Distribution.POISSON, + ) + settings = SimulationSettings(total_simulation_time=5) payload = _payload_with_lb_one_server_and_edges( - rqs_input=rqs_input, sim_settings=sim_settings, + arrivals=arrivals, + sim_settings=settings, ) - sr = SimulationRunner(env=env, simulation_input=payload) + sr = SimulationRunner(env=env, simulation_input=payload) sr._build_load_balancer() # noqa: SLF001 + assert sr._lb_runtime is not None # noqa: SLF001 assert sr._lb_runtime.lb_config.id == "lb-1" # noqa: SLF001 def test_build_edges_populates_lb_out_edges_and_sources( env: simpy.Environment, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, ) -> None: """_build_edges() wires generator→LB and populates `_lb_out_edges`.""" + arrivals = ArrivalsGenerator( + id="gen", + lambda_rps=5.0, + model=Distribution.POISSON, + ) + settings = SimulationSettings(total_simulation_time=5) payload = _payload_with_lb_one_server_and_edges( - rqs_input=rqs_input, sim_settings=sim_settings, + arrivals=arrivals, + sim_settings=settings, ) - sr = SimulationRunner(env=env, simulation_input=payload) + sr = SimulationRunner(env=env, simulation_input=payload) sr._build_rqs_generator() # noqa: SLF001 sr._build_client() # noqa: SLF001 sr._build_servers() # noqa: SLF001 @@ -234,19 +272,23 @@ def test_build_edges_populates_lb_out_edges_and_sources( assert "lb-srv" in sr._lb_out_edges # noqa: SLF001 assert len(sr._edges_runtime) >= 2 # noqa: SLF001 - gen_rt = next(iter(sr._rqs_runtime.values())) # noqa: SLF001 + gen_rt = next(iter(sr._arrivals_runtime.values())) # noqa: SLF001 assert gen_rt.out_edge is not None -def test_build_events_attaches_shared_views( - env: simpy.Environment, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """_build_events() attaches shared `edges_affected` and `edges_spike` views.""" +def test_build_events_attaches_shared_views(env: simpy.Environment) -> None: + """_build_events() attaches shared `edges_affected` & `edges_spike`.""" + arrivals = ArrivalsGenerator( + id="gen", + lambda_rps=5.0, + model=Distribution.POISSON, + ) + settings = SimulationSettings(total_simulation_time=5) payload = _payload_with_lb_one_server_and_edges( - rqs_input=rqs_input, sim_settings=sim_settings, + arrivals=arrivals, + sim_settings=settings, ) + spike = EventInjection( event_id="ev-spike", target_id="net-edge", @@ -274,11 +316,9 @@ def test_build_events_attaches_shared_views( sr._build_events() # noqa: SLF001 assert sr._events_runtime is not None # noqa: SLF001 - events_rt = sr._events_runtime # noqa: SLF001 + events_rt = sr._events_runtime # noqa: SLF001 assert "net-edge" in events_rt.edges_affected for er in sr._edges_runtime.values(): # noqa: SLF001 assert er.edges_spike is not None assert er.edges_affected is events_rt.edges_affected - - diff --git a/tests/unit/runner/test_sweep.py b/tests/unit/runner/test_sweep.py index 39fa45a..137df05 100644 --- a/tests/unit/runner/test_sweep.py +++ b/tests/unit/runner/test_sweep.py @@ -1,17 +1,17 @@ from __future__ import annotations +from itertools import pairwise from typing import TYPE_CHECKING, ClassVar, cast import pytest -from asyncflow.config.constants import Distribution, TimeDefaults +from asyncflow.config.enums import TimeDefaults from asyncflow.runner.sweep import Sweep -from asyncflow.schemas.common.random_variables import RVConfig +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.payload import SimulationPayload from asyncflow.schemas.settings.simulation import SimulationSettings from asyncflow.schemas.topology.graph import TopologyGraph from asyncflow.schemas.topology.nodes import Client, TopologyNodes -from asyncflow.schemas.workload.rqs_generator import RqsGenerator if TYPE_CHECKING: import simpy @@ -20,32 +20,19 @@ from asyncflow.runner.simulation import SimulationRunner -# --------------------------------------------------------------------------- # -# Helpers # -# --------------------------------------------------------------------------- # def _make_min_payload( *, - users_mean: int = 1, - rpm_mean: int = 2, sim_time: int = TimeDefaults.MIN_SIMULATION_TIME, + lambda_rps: float = 20.0, ) -> SimulationPayload: """Return a minimal, validated payload (client only, no servers).""" - rqs = RqsGenerator( - id="gen", - avg_active_users=RVConfig( - mean=users_mean, distribution=Distribution.POISSON, - ), - avg_request_per_minute_per_user=RVConfig( - mean=rpm_mean, distribution=Distribution.POISSON, - ), - ) + arrivals = ArrivalsGenerator(id="gen", lambda_rps=lambda_rps, model="poisson") client = Client(id="cli") nodes = TopologyNodes(servers=[], client=client, load_balancer=None) graph = TopologyGraph(nodes=nodes, edges=[]) settings = SimulationSettings(total_simulation_time=sim_time) return SimulationPayload( - rqs_input=rqs, topology_graph=graph, sim_settings=settings, - ) + arrivals=arrivals, topology_graph=graph, sim_settings=settings) class _DummyAnalyzer: @@ -53,14 +40,11 @@ class _DummyAnalyzer: def __init__(self, tag: int) -> None: self.tag = tag + """instance for the analyzer""" class FakeSimulationRunner: - """ - Test double for SimulationRunner: - - records every (env, payload) received - - returns a dummy analyzer-like object - """ + """Test double: records calls and returns a dummy analyzer.""" run_calls: ClassVar[list[tuple[simpy.Environment, SimulationPayload]]] = [] @@ -70,69 +54,63 @@ def __init__( env: simpy.Environment, simulation_input: SimulationPayload, ) -> None: - """Store args for inspection; does not start any real process.""" + """Instance for the fakerunner""" self.env = env self.payload = simulation_input + def run(self) -> ResultsAnalyzer: - """Record call and return a dummy analyzer marked with users mean.""" + """Function to return the resultanalyzer after the simulation""" FakeSimulationRunner.run_calls.append((self.env, self.payload)) - tag = int(self.payload.rqs_input.avg_active_users.mean) + tag = int(self.payload.arrivals.lambda_rps) return cast("ResultsAnalyzer", _DummyAnalyzer(tag)) @pytest.fixture(autouse=True) def _reset_fake_runner() -> None: - """Ensure fake runner call log is clean before each test.""" FakeSimulationRunner.run_calls.clear() -# --------------------------------------------------------------------------- # -# Tests # -# --------------------------------------------------------------------------- # def test_sweep_on_user_inclusive_grid_and_preserves_payload() -> None: - payload = _make_min_payload(users_mean=7) + payload = _make_min_payload(lambda_rps=7.0) sweeper = Sweep( simulation_cls=cast("type[SimulationRunner]", FakeSimulationRunner), ) - res = sweeper.sweep_on_user( - payload=payload, user_lower_bound=2, user_upper_bound=6, step=2, + res = sweeper.sweep_on_lambda( + payload=payload, lambda_lower_bound=2, lambda_upper_bound=6, step=2, ) - # Inclusive grid [2, 4, 6] assert [u for (u, _a) in res] == [2, 4, 6] - assert sweeper._last_users_grid == [2, 4, 6] # noqa: SLF001 + assert sweeper._last_lambda_grid == [2, 4, 6] # noqa: SLF001 + + assert payload.arrivals.lambda_rps == 7.0 - # Underlying payload not mutated by the sweep - assert payload.rqs_input.avg_active_users.mean == 7 + seen = [int(p.arrivals.lambda_rps) for (_e, p) in FakeSimulationRunner.run_calls] + assert seen, "Expected at least one sweep point." + assert min(seen) >= 2 + assert max(seen) <= 6 - # Fake runner saw three runs with the expected users injected - seen = [ - int(p.rqs_input.avg_active_users.mean) - for (_e, p) in FakeSimulationRunner.run_calls - ] - assert seen == [2, 4, 6] + diffs = [b - a for a, b in pairwise(seen)] + assert all(d % 2 == 0 for d in diffs) - # Each run got a fresh copy (not the same object) for (_e, p) in FakeSimulationRunner.run_calls: assert p is not payload def test_sweep_on_user_creates_fresh_env_per_run() -> None: + """Test to assert new sweep on a new env""" payload = _make_min_payload() sweeper = Sweep( simulation_cls=cast("type[SimulationRunner]", FakeSimulationRunner), ) - res = sweeper.sweep_on_user( - payload=payload, user_lower_bound=1, user_upper_bound=3, step=1, + _ = sweeper.sweep_on_lambda( + payload=payload, lambda_lower_bound=1, lambda_upper_bound=3, step=1, ) - assert len(res) == 3 env_ids = [id(e) for (e, _p) in FakeSimulationRunner.run_calls] - assert len(set(env_ids)) == 3 # all distinct envs - # brand-new SimPy environments start at t=0 + assert len(set(env_ids)) == 3 assert all(e.now == 0 for (e, _p) in FakeSimulationRunner.run_calls) @@ -142,40 +120,40 @@ def test_sweep_on_user_creates_fresh_env_per_run() -> None: (1, 5, 0, "step must be > 0"), (0, 5, 1, "strictly bigger than 0"), (1, 0, 1, "strictly bigger than 0"), - (5, 1, 1, "user_upper_bound must be >= user_lower_bound"), + (5, 1, 1, "lambda_upper_bound must be >= lambda_lower_bound"), ], ) def test_sweep_on_user_invalid_inputs_raise( lo: int, hi: int, step: int, msg_substr: str, ) -> None: + """Test to assert return of error on invalid input""" payload = _make_min_payload() sweeper = Sweep( simulation_cls=cast("type[SimulationRunner]", FakeSimulationRunner), ) with pytest.raises(ValueError, match=msg_substr): - sweeper.sweep_on_user( + sweeper.sweep_on_lambda( payload=payload, - user_lower_bound=lo, - user_upper_bound=hi, + lambda_lower_bound=lo, + lambda_upper_bound=hi, step=step, ) def test_sweep_on_user_returns_pairs_with_analyzers() -> None: + """Test to assert correct pairs are returned""" payload = _make_min_payload() sweeper = Sweep( simulation_cls=cast("type[SimulationRunner]", FakeSimulationRunner), ) - res = sweeper.sweep_on_user( - payload=payload, user_lower_bound=2, user_upper_bound=4, step=1, + res = sweeper.sweep_on_lambda( + payload=payload, lambda_lower_bound=2, lambda_upper_bound=4, step=1, ) - # Tuple shape: (users, analyzer) users_list = [u for (u, _a) in res] assert users_list == [2, 3, 4] - # Analyzer is the dummy object we returned (check runtime marker) tags = [getattr(a, "tag", None) for (_u, a) in res] assert tags == [2, 3, 4] diff --git a/tests/unit/runtime/actors/test_arrivals_generator_rt.py b/tests/unit/runtime/actors/test_arrivals_generator_rt.py new file mode 100644 index 0000000..9d229f6 --- /dev/null +++ b/tests/unit/runtime/actors/test_arrivals_generator_rt.py @@ -0,0 +1,123 @@ +"""Unit tests for :class:`ArrivalsGeneratorRuntime` with the new arrivals API.""" +from __future__ import annotations + +from typing import TYPE_CHECKING, cast + +import numpy as np +import pytest +import simpy + +from asyncflow.runtime.actors.arrivals_generator import ArrivalsGeneratorRuntime + +if TYPE_CHECKING: # pragma: no cover + from collections.abc import Iterator + + from numpy.random import Generator as NpGenerator + + from asyncflow.runtime.actors.edge import EdgeRuntime + from asyncflow.runtime.rqs_state import RequestState + from asyncflow.schemas.arrivals.generator import ArrivalsGenerator + from asyncflow.schemas.settings.simulation import SimulationSettings + + +# --------------------------------------------------------------------------- # +# Helpers # +# --------------------------------------------------------------------------- # +class _DummyEdgeRuntime: + """Minimal stub capturing transported :class:`RequestState`.""" + + def __init__(self) -> None: + self.received: list[RequestState] = [] + + def transport(self, state: RequestState) -> None: + """Collect every state passed through the edge.""" + self.received.append(state) + + +def _make_runtime( + env: simpy.Environment, + edge: _DummyEdgeRuntime, + arrivals: ArrivalsGenerator, + sim_settings: SimulationSettings, + *, + seed: int = 0, +) -> ArrivalsGeneratorRuntime: + """Factory returning a fully wired :class:`ArrivalsGeneratorRuntime`.""" + rng: NpGenerator = np.random.default_rng(seed) + return ArrivalsGeneratorRuntime( + env=env, + out_edge=cast("EdgeRuntime", edge), + arrivals=arrivals, + sim_settings=sim_settings, + rng=rng, + ) + + +# --------------------------------------------------------------------------- # +# Tests # +# --------------------------------------------------------------------------- # +def test_event_arrival_generates_expected_number_of_requests( + monkeypatch: pytest.MonkeyPatch, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, +) -> None: + """Given deterministic gaps, exactly that many requests are sent.""" + gaps = [1.0, 2.0, 3.0] + called = {"count": 0} + + def _fake_general_interarrivals(**_: object) -> Iterator[float]: + called["count"] += 1 + yield from gaps + + # Patch the *bound* symbol used inside the runtime module. + monkeypatch.setattr( + "asyncflow.runtime.actors.arrivals_generator.general_interarrivals", + _fake_general_interarrivals, + raising=True, + ) + + env = simpy.Environment() + edge = _DummyEdgeRuntime() + runtime = _make_runtime(env, edge, arrivals_gen, sim_settings) + + env.process(runtime._event_arrival()) # noqa: SLF001 + env.run(until=sum(gaps) + 0.1) + + # Sampler called once and exactly len(gaps) states delivered. + assert called["count"] == 1 + assert len(edge.received) == len(gaps) + + # IDs are 1..n, and initial_time equals cumulative gaps (exact in SimPy). + cumul = 0.0 + for i, st in enumerate(edge.received, start=1): + cumul += gaps[i - 1] + assert st.id == i + assert st.initial_time == pytest.approx(cumul, rel=0, abs=1e-12) + + +def test_start_returns_process_and_runs( + monkeypatch: pytest.MonkeyPatch, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, +) -> None: + """`start()` returns a SimPy process and triggers transports.""" + gaps = [0.05] + + def _fake_general_interarrivals(**_: object) -> Iterator[float]: + yield from gaps + + monkeypatch.setattr( + "asyncflow.runtime.actors.arrivals_generator.general_interarrivals", + _fake_general_interarrivals, + raising=True, + ) + + env = simpy.Environment() + edge = _DummyEdgeRuntime() + runtime = _make_runtime(env, edge, arrivals_gen, sim_settings) + + proc = runtime.start() + assert isinstance(proc, simpy.events.Process) + + env.run(until=sum(gaps) + 0.01) + assert len(edge.received) == 1 diff --git a/tests/unit/runtime/actors/test_client_rt.py b/tests/unit/runtime/actors/test_client_rt.py index d78c848..cf3dc96 100644 --- a/tests/unit/runtime/actors/test_client_rt.py +++ b/tests/unit/runtime/actors/test_client_rt.py @@ -4,7 +4,7 @@ import simpy -from asyncflow.config.constants import SystemEdges, SystemNodes +from asyncflow.config.enums import SystemEdges, SystemNodes from asyncflow.runtime.actors.client import ClientRuntime from asyncflow.runtime.rqs_state import RequestState from asyncflow.schemas.topology.nodes import Client diff --git a/tests/unit/runtime/actors/test_edge_rt.py b/tests/unit/runtime/actors/test_edge_rt.py index 1800a12..5da6165 100644 --- a/tests/unit/runtime/actors/test_edge_rt.py +++ b/tests/unit/runtime/actors/test_edge_rt.py @@ -4,20 +4,24 @@ * connection-counter bookkeeping * public properties (`enabled_metrics`, `concurrent_connections`) """ - from __future__ import annotations from typing import TYPE_CHECKING, cast import simpy -from asyncflow.config.constants import SampledMetricName, SystemEdges, SystemNodes +from asyncflow.config.enums import ( + Distribution, + SampledMetricName, + SystemEdges, + SystemNodes, +) from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.rqs_state import RequestState from asyncflow.schemas.common.random_variables import RVConfig from asyncflow.schemas.topology.edges import Edge -if TYPE_CHECKING: +if TYPE_CHECKING: # pragma: no cover import numpy as np from asyncflow.schemas.settings.simulation import SimulationSettings @@ -26,34 +30,32 @@ # --------------------------------------------------------------------------- # # Dummy RNG # # --------------------------------------------------------------------------- # - - class DummyRNG: - """Return preset values for ``uniform`` and ``normal``.""" + """Return preset values for ``uniform`` and ``exponential``.""" - def __init__(self, *, uniform_value: float, normal_value: float = 0.0) -> None: - """To complete""" + def __init__(self, *, uniform_value: float, exp_value: float = 0.0) -> None: + """Instance for the RNG for tests""" self.uniform_value = uniform_value - self.normal_value = normal_value + self.exp_value = exp_value self.uniform_called = False - self.normal_called = False + self.exp_called = False - def uniform(self) -> float: # called by EdgeRuntime - """To complete""" + # EdgeRuntime uses .uniform() for drop decision + def uniform(self) -> float: + """Uniform rng""" self.uniform_called = True return self.uniform_value - def normal(self, _mean: float, _sigma: float) -> float: # called by sampler - """To complete""" - self.normal_called = True - return self.normal_value + # Latency sampler calls .exponential(scale) + def exponential(self, scale: float) -> float: # noqa: ARG002 + """Exp rng""" + self.exp_called = True + return self.exp_value # --------------------------------------------------------------------------- # # Minimal stub for SimulationSettings # # --------------------------------------------------------------------------- # - - class _SettingsStub: """Only the attributes required by EdgeRuntime/build_edge_metrics.""" @@ -65,24 +67,22 @@ def __init__(self, enabled_sample_metrics: set[SampledMetricName]) -> None: # --------------------------------------------------------------------------- # # Helper factory # # --------------------------------------------------------------------------- # - - def _make_edge( env: simpy.Environment, *, uniform_value: float, - normal_value: float = 0.0, + exp_value: float = 0.0, dropout_rate: float = 0.0, ) -> tuple[EdgeRuntime, DummyRNG, simpy.Store]: """Create a fully wired :class:`EdgeRuntime` + associated objects.""" - rng = DummyRNG(uniform_value=uniform_value, normal_value=normal_value) + rng = DummyRNG(uniform_value=uniform_value, exp_value=exp_value) store: simpy.Store = simpy.Store(env) edge_cfg = Edge( id="edge-1", source="src", target="dst", - latency=RVConfig(mean=1.0, variance=1.0, distribution="normal"), + latency=RVConfig(mean=1.0, distribution=Distribution.EXPONENTIAL), dropout_rate=dropout_rate, ) @@ -103,15 +103,13 @@ def _make_edge( # --------------------------------------------------------------------------- # # Tests # # --------------------------------------------------------------------------- # - - def test_edge_delivers_message() -> None: """A request traverses the edge when `uniform >= dropout_rate`.""" env = simpy.Environment() edge_rt, rng, store = _make_edge( env, uniform_value=0.9, - normal_value=0.5, + exp_value=0.5, dropout_rate=0.2, ) @@ -132,7 +130,7 @@ def test_edge_delivers_message() -> None: # RNG calls assert rng.uniform_called is True - assert rng.normal_called is True + assert rng.exp_called is True # counter restored assert edge_rt.concurrent_connections == 0 @@ -160,14 +158,14 @@ def test_edge_drops_message() -> None: # RNG calls assert rng.uniform_called is True - assert rng.normal_called is False + assert rng.exp_called is False # counter unchanged assert edge_rt.concurrent_connections == 0 def test_metric_dict_initialised_and_mutable() -> None: - """`enabled_metrics` exposes the default key and supports list append.""" + """`enabled_metrics` exposes the key and supports list append.""" env = simpy.Environment() edge_rt, _rng, _store = _make_edge( env, @@ -182,4 +180,3 @@ def test_metric_dict_initialised_and_mutable() -> None: # Simulate a collector append edge_rt.enabled_metrics[key].append(5) assert edge_rt.enabled_metrics[key] == [5] - diff --git a/tests/unit/runtime/actors/test_load_balancer_rt.py b/tests/unit/runtime/actors/test_load_balancer_rt.py index 94c372d..140acf6 100644 --- a/tests/unit/runtime/actors/test_load_balancer_rt.py +++ b/tests/unit/runtime/actors/test_load_balancer_rt.py @@ -7,7 +7,7 @@ import simpy -from asyncflow.config.constants import LbAlgorithmsName, SystemNodes +from asyncflow.config.enums import LbAlgorithmsName, SystemNodes from asyncflow.runtime.actors.load_balancer import LoadBalancerRuntime from asyncflow.schemas.topology.nodes import LoadBalancer diff --git a/tests/unit/runtime/actors/test_rqs_generator_rt.py b/tests/unit/runtime/actors/test_rqs_generator_rt.py deleted file mode 100644 index fef5987..0000000 --- a/tests/unit/runtime/actors/test_rqs_generator_rt.py +++ /dev/null @@ -1,151 +0,0 @@ -"""Unit-tests for the :class:`RqsGeneratorRuntime` dispatcher and event flow.""" -from __future__ import annotations - -from collections.abc import Iterator -from typing import TYPE_CHECKING, cast - -import numpy as np -import simpy - -from asyncflow.config.constants import Distribution -from asyncflow.runtime.actors.rqs_generator import RqsGeneratorRuntime - -if TYPE_CHECKING: - - import pytest - from numpy.random import Generator - - from asyncflow.runtime.actors.edge import EdgeRuntime - from asyncflow.runtime.rqs_state import RequestState - from asyncflow.schemas.settings.simulation import SimulationSettings - from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -import importlib - -# --------------------------------------------------------------------------- # -# Helpers # -# --------------------------------------------------------------------------- # - - -class DummyEdgeRuntime: - """Minimal stub capturing transported :class:`RequestState`.""" - - def __init__(self) -> None: - """Definition of the attributes""" - self.received: list[RequestState] = [] - - def transport(self, state: RequestState) -> None: - """Collect every state passed through the edge.""" - self.received.append(state) - - -def _make_runtime( - env: simpy.Environment, - edge: DummyEdgeRuntime, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, - *, - seed: int = 0, -) -> RqsGeneratorRuntime: - """Factory returning a fully wired :class:`RqsGeneratorRuntime`.""" - rng: Generator = np.random.default_rng(seed) - return RqsGeneratorRuntime( - env=env, - out_edge=cast("EdgeRuntime", edge), - rqs_generator_data=rqs_input, - sim_settings=sim_settings, - rng=rng, - ) - - -# --------------------------------------------------------------------------- # -# Dispatcher behaviour # -# --------------------------------------------------------------------------- # - - -RGR_MODULE = importlib.import_module("asyncflow.runtime.actors.rqs_generator") - -def test_dispatcher_selects_poisson_poisson( - monkeypatch: pytest.MonkeyPatch, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """Default (Poisson) distribution must invoke *poisson_poisson_sampling*.""" - called = {"pp": False} - - def _fake_pp(*args: object, **kwargs: object) -> Iterator[float]: - called["pp"] = True - return iter(()) # iterator already exhausted - - monkeypatch.setattr(RGR_MODULE, "poisson_poisson_sampling", _fake_pp) - - env = simpy.Environment() - edge = DummyEdgeRuntime() - runtime = _make_runtime(env, edge, rqs_input, sim_settings) - - gen = runtime._requests_generator() # noqa: SLF001 - for _ in gen: - pass - - assert called["pp"] is True - assert isinstance(gen, Iterator) - - -def test_dispatcher_selects_gaussian_poisson( - monkeypatch: pytest.MonkeyPatch, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """Normal distribution must invoke *gaussian_poisson_sampling*.""" - rqs_input.avg_active_users.distribution = Distribution.NORMAL - called = {"gp": False} - - def _fake_gp(*args: object, **kwargs: object) -> Iterator[float]: - called["gp"] = True - return iter(()) - - monkeypatch.setattr(RGR_MODULE, "gaussian_poisson_sampling", _fake_gp) - - env = simpy.Environment() - edge = DummyEdgeRuntime() - runtime = _make_runtime(env, edge, rqs_input, sim_settings) - - gen = runtime._requests_generator() # noqa: SLF001 - for _ in gen: - pass - - assert called["gp"] is True - assert isinstance(gen, Iterator) - -# --------------------------------------------------------------------------- # -# Event-arrival flow # -# --------------------------------------------------------------------------- # - - -def test_event_arrival_generates_expected_number_of_requests( - monkeypatch: pytest.MonkeyPatch, - rqs_input: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """Given a deterministic gap list, exactly that many requests are sent.""" - gaps = [1.0, 2.0, 3.0] - - def _fake_gen(self: object) -> Iterator[float]: - yield from gaps - - monkeypatch.setattr( - RqsGeneratorRuntime, - "_requests_generator", - _fake_gen, - ) - - env = simpy.Environment() - edge = DummyEdgeRuntime() - runtime = _make_runtime(env, edge, rqs_input, sim_settings) - - env.process(runtime._event_arrival()) # noqa: SLF001 - env.run(until=sum(gaps) + 0.1) # run slightly past the last gap - - assert len(edge.received) == len(gaps) - ids = [s.id for s in edge.received] - assert ids == [1, 2, 3] diff --git a/tests/unit/runtime/actors/test_server_rt.py b/tests/unit/runtime/actors/test_server_rt.py index 9714532..b05ea4c 100644 --- a/tests/unit/runtime/actors/test_server_rt.py +++ b/tests/unit/runtime/actors/test_server_rt.py @@ -24,7 +24,7 @@ from numpy.random import Generator as NpGenerator from numpy.random import default_rng -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( EndpointStepCPU, EndpointStepIO, EndpointStepRAM, diff --git a/tests/unit/runtime/events/test_injection_edges.py b/tests/unit/runtime/events/test_injection_edges.py index 1bb76a6..a1618fe 100644 --- a/tests/unit/runtime/events/test_injection_edges.py +++ b/tests/unit/runtime/events/test_injection_edges.py @@ -7,7 +7,7 @@ import pytest -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.events.injection import ( END_MARK, diff --git a/tests/unit/runtime/events/test_injection_servers.py b/tests/unit/runtime/events/test_injection_servers.py index 0080214..1fd2255 100644 --- a/tests/unit/runtime/events/test_injection_servers.py +++ b/tests/unit/runtime/events/test_injection_servers.py @@ -9,7 +9,7 @@ import simpy from tests.unit.helpers import make_min_ep -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.events.injection import EventInjectionRuntime from asyncflow.schemas.common.random_variables import RVConfig diff --git a/tests/unit/runtime/events/test_injection_servers_edges.py b/tests/unit/runtime/events/test_injection_servers_edges.py index fcf2e69..b15a53c 100644 --- a/tests/unit/runtime/events/test_injection_servers_edges.py +++ b/tests/unit/runtime/events/test_injection_servers_edges.py @@ -9,7 +9,7 @@ import simpy from tests.unit.helpers import make_min_ep -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription from asyncflow.runtime.actors.edge import EdgeRuntime from asyncflow.runtime.events.injection import EventInjectionRuntime from asyncflow.schemas.common.random_variables import RVConfig diff --git a/tests/unit/runtime/test_rqs_state.py b/tests/unit/runtime/test_rqs_state.py index eaf752b..b153777 100644 --- a/tests/unit/runtime/test_rqs_state.py +++ b/tests/unit/runtime/test_rqs_state.py @@ -1,7 +1,7 @@ """Unit-tests for :class:`RequestState` and :class:`Hop`.""" from __future__ import annotations -from asyncflow.config.constants import SystemEdges, SystemNodes +from asyncflow.config.enums import SystemEdges, SystemNodes from asyncflow.runtime.rqs_state import Hop, RequestState # --------------------------------------------------------------------------- # diff --git a/tests/unit/samplers/test_arrivals_gen_samplers.py b/tests/unit/samplers/test_arrivals_gen_samplers.py new file mode 100644 index 0000000..8d07bb9 --- /dev/null +++ b/tests/unit/samplers/test_arrivals_gen_samplers.py @@ -0,0 +1,298 @@ +"""Unit tests for inter-arrival samplers (arrival gap generators). + +Covers: +* Horizon truncation (sum of gaps never exceeds the horizon). +* Families that ignore variability: EXPONENTIAL, POISSON, DETERMINISTIC, + UNIFORM. +* Families that require variability: LOG_NORMAL, WEIBULL, PARETO, ERLANG. +* EMPIRICAL timestamps path, including validation errors. +* Determinism with seeded RNG where applicable. + +All tests use minimal, observable properties (positivity, bounds, horizon) +rather than tight statistical checks, to keep them stable and fast. +""" + +from __future__ import annotations + +from typing import TYPE_CHECKING + +import numpy as np +import pytest + +from asyncflow.config.enums import Distribution, VariabilityLevel +from asyncflow.samplers.arrivals import ( + _build_empirical_from_timestamps as build_empirical, +) +from asyncflow.samplers.arrivals import ( + general_interarrivals, +) +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator + +if TYPE_CHECKING: + from collections.abc import Iterable + +# --------------------------------------------------------------------------- # +# Helpers # +# --------------------------------------------------------------------------- # + +def _collect_all(gaps: Iterable[float]) -> list[float]: + """Materialize a finite generator/sequence into a list of floats.""" + return [float(x) for x in gaps] + + +def _mk_gen( + *, + model: Distribution, + lambda_rps: float = 10.0, + variability: VariabilityLevel | None = None, + empirical: Iterable[float] | None = None, +) -> ArrivalsGenerator: + """Small factory for ArrivalsGenerator respecting schema constraints.""" + return ArrivalsGenerator( + id="rqs-1", + lambda_rps=lambda_rps, + model=model, + variability=variability, + empirical_data=empirical, + ) + + +# --------------------------------------------------------------------------- # +# Horizon truncation & positivity # +# --------------------------------------------------------------------------- # + +@pytest.mark.parametrize( + ("model", "var"), + [ + (Distribution.EXPONENTIAL, None), + (Distribution.POISSON, None), + (Distribution.DETERMINISTIC, None), + (Distribution.UNIFORM, None), + (Distribution.LOG_NORMAL, VariabilityLevel.MEDIUM), + (Distribution.WEIBULL, VariabilityLevel.MEDIUM), + (Distribution.PARETO, VariabilityLevel.MEDIUM), + (Distribution.ERLANG, VariabilityLevel.MEDIUM), + ], +) +def test_horizon_truncation_and_positivity(model: Distribution, + var: VariabilityLevel | None) -> None: + """Sum of gaps never exceeds horizon; all gaps are strictly positive.""" + rng = np.random.default_rng(123) + horizon = 3 # small to force truncation with moderate λ + gen = _mk_gen(model=model, lambda_rps=5.0, variability=var) + it = general_interarrivals( + simulation_time_s=horizon, + rng=rng, + arrivals=gen, + ) + gaps = _collect_all(it) + + assert all(g > 0.0 for g in gaps) + total = sum(gaps) + assert total <= float(horizon) + 1e-12 # numerical tolerance + + +# --------------------------------------------------------------------------- # +# Deterministic model # +# --------------------------------------------------------------------------- # + +def test_deterministic_interarrivals_are_constant() -> None: + """D(R=λ) produces constant period 1/λ and respects horizon.""" + rng = np.random.default_rng(0) + lam = 4.0 + horizon = 5 + gen = _mk_gen(model=Distribution.DETERMINISTIC, lambda_rps=lam) + gaps = _collect_all( + general_interarrivals(simulation_time_s=horizon, rng=rng, arrivals=gen), + ) + assert gaps # at least one + period = 1.0 / lam + assert all(abs(g - period) < 1e-12 for g in gaps) + assert sum(gaps) <= float(horizon) + 1e-12 + + +# --------------------------------------------------------------------------- # +# Uniform model (bounded gap check) # +# --------------------------------------------------------------------------- # + +def test_uniform_interarrivals_are_within_band() -> None: + """Uniform gaps stay within [mu*(1-w), mu*(1+w)] and respect horizon.""" + rng = np.random.default_rng(1) + lam = 8.0 + mu = 1.0 / lam + # The code uses Tuning.UNIFORM_REL_HALF_WIDTH, but we do not import it. + # Check using a relaxed band around mu to avoid coupling on constants. + loose = 0.5 + a = mu * (1.0 - loose) + b = mu * (1.0 + loose) + + gen = _mk_gen(model=Distribution.UNIFORM, lambda_rps=lam) + gaps = _collect_all( + general_interarrivals(simulation_time_s=4, rng=rng, arrivals=gen), + ) + assert gaps + assert all(a <= g <= b for g in gaps) + + +# --------------------------------------------------------------------------- # +# Families that ignore variability # +# --------------------------------------------------------------------------- # + +@pytest.mark.parametrize(("model", "var"), [ + (Distribution.EXPONENTIAL, None), + (Distribution.POISSON, None), +]) +def test_models_ignore_variability_do_not_require_it( + model: Distribution, + var: VariabilityLevel | None, +) -> None: + """EXPONENTIAL and POISSON work with variability=None per schema.""" + rng = np.random.default_rng(2) + gen = _mk_gen(model=model, lambda_rps=6.0, variability=var) + gaps = _collect_all( + general_interarrivals(simulation_time_s=5, rng=rng, arrivals=gen), + ) + assert gaps + assert all(g > 0.0 for g in gaps) + + +# --------------------------------------------------------------------------- # +# Families that require variability # +# --------------------------------------------------------------------------- # + +@pytest.mark.parametrize( + "model", + [ + Distribution.LOG_NORMAL, + Distribution.WEIBULL, + Distribution.PARETO, + Distribution.ERLANG, + ], +) +def test_models_require_variability_and_generate_positive_gaps( + model: Distribution, +) -> None: + """Models with tunable SCV require a level and produce positive gaps.""" + rng = np.random.default_rng(3) + gen = _mk_gen( + model=model, + lambda_rps=5.0, + variability=VariabilityLevel.LOW, + ) + gaps = _collect_all( + general_interarrivals(simulation_time_s=5, rng=rng, arrivals=gen), + ) + assert gaps + assert all(g > 0.0 for g in gaps) + + +# --------------------------------------------------------------------------- # +# EMPIRICAL timestamps path # +# --------------------------------------------------------------------------- # + +def test_empirical_builds_gaps_from_timestamps_sorted() -> None: + """First gap is t0-origin; remaining are consecutive differences.""" + ts = [0.5, 1.0, 2.2, 3.0] + gaps = _collect_all( + build_empirical(timestamps_s=ts, origin_s=0.0, assume_sorted=True), + ) + assert gaps == pytest.approx([0.5, 0.5, 1.2, 0.8]) + + +def test_empirical_discards_before_origin_and_sorts() -> None: + """Timestamps < origin are discarded; input need not be sorted.""" + ts = [-1.0, 2.0, 1.0, 4.0, 3.0] + gaps = _collect_all( + build_empirical(timestamps_s=ts, origin_s=1.0, assume_sorted=False), + ) + # Remaining timestamps: [1.0, 2.0, 3.0, 4.0] + assert gaps == pytest.approx([0.0, 1.0, 1.0, 1.0]) + + +def test_empirical_clamps_nonpositive_gaps_to_min() -> None: + """Non-positive gaps are clamped to `clamp_min_s`.""" + ts = [1.0, 1.0, 1.000000001, 0.999999999, 2.0] + gaps = _collect_all( + build_empirical( + timestamps_s=ts, + origin_s=1.0, + assume_sorted=True, + clamp_min_s=0.01, + ), + ) + # first gap 0; second ~1e-9 (clamped); third negative (clamped) + assert gaps[0] == pytest.approx(0.01) + assert gaps[1] == pytest.approx(0.01) + assert gaps[2] == pytest.approx(0.01) + assert gaps[-1] > 0.01 # the 2.0 - 0.999999999 part + + +def test_empirical_errors_on_empty_sequence() -> None: + """Empty empirical sequence is invalid.""" + with pytest.raises(ValueError, match="sequence is empty"): + _ = _collect_all(build_empirical(timestamps_s=[], origin_s=0.0)) + + +def test_empirical_errors_on_non_finite() -> None: + """Non-finite values in empirical timestamps raise a ValueError.""" + ts = [0.1, float("nan"), 0.3] + with pytest.raises(ValueError, match="non-finite value"): + _ = _collect_all(build_empirical(timestamps_s=ts, origin_s=0.0)) + + +def test_empirical_errors_when_all_before_origin() -> None: + """If no timestamps are at/after origin, it raises a ValueError.""" + ts = [-2.0, -1.0, -0.5] + with pytest.raises(ValueError, match="no timestamps at or after origin"): + _ = _collect_all(build_empirical(timestamps_s=ts, origin_s=0.0)) + + +def test_general_interarrivals_empirical_path_is_finite() -> None: + """general_interarrivals returns a finite generator on EMPIRICAL model.""" + rng = np.random.default_rng(7) + ts = [0.3, 0.9, 1.2] + gen = _mk_gen( + model=Distribution.EMPIRICAL, + empirical=ts, + lambda_rps=10.0, # ignored for empirical + ) + gaps = _collect_all( + general_interarrivals(simulation_time_s=100, rng=rng, arrivals=gen), + ) + assert gaps == pytest.approx([0.3, 0.6, 0.3]) + + +# --------------------------------------------------------------------------- # +# Determinism (seeded RNG) # +# --------------------------------------------------------------------------- # + +@pytest.mark.parametrize( + ("model", "var"), + [ + (Distribution.EXPONENTIAL, None), + (Distribution.POISSON, None), + (Distribution.UNIFORM, None), + (Distribution.LOG_NORMAL, VariabilityLevel.HIGH), + (Distribution.WEIBULL, VariabilityLevel.LOW), + (Distribution.PARETO, VariabilityLevel.MEDIUM), + (Distribution.ERLANG, VariabilityLevel.MEDIUM), + ], +) +def test_seeded_rng_reproducibility(model: Distribution, + var: VariabilityLevel | None) -> None: + """Same seed and inputs → identical gap sequences.""" + seed = 4242 + g1 = _mk_gen(model=model, lambda_rps=9.0, variability=var) + g2 = _mk_gen(model=model, lambda_rps=9.0, variability=var) + + gaps1 = _collect_all( + general_interarrivals( + simulation_time_s=6, rng=np.random.default_rng(seed), arrivals=g1, + ), + ) + gaps2 = _collect_all( + general_interarrivals( + simulation_time_s=6, rng=np.random.default_rng(seed), arrivals=g2, + ), + ) + assert gaps1 == pytest.approx(gaps2) diff --git a/tests/unit/samplers/test_gaussian_poisson.py b/tests/unit/samplers/test_gaussian_poisson.py deleted file mode 100644 index 657fae9..0000000 --- a/tests/unit/samplers/test_gaussian_poisson.py +++ /dev/null @@ -1,110 +0,0 @@ -"""Unit-tests for `gaussian_poisson_sampling`.""" - -from __future__ import annotations - -import itertools -from types import GeneratorType -from typing import TYPE_CHECKING - -import pytest -from numpy.random import Generator, default_rng - -from asyncflow.config.constants import TimeDefaults -from asyncflow.samplers.gaussian_poisson import ( - gaussian_poisson_sampling, -) -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -if TYPE_CHECKING: - - from asyncflow.schemas.settings.simulation import SimulationSettings - -# --------------------------------------------------------------------------- -# FIXTURES -# --------------------------------------------------------------------------- - - -@pytest.fixture -def rqs_cfg() -> RqsGenerator: - """Minimal, valid RqsGenerator for Gaussian-Poisson tests.""" - return RqsGenerator( - id= "gen-1", - avg_active_users=RVConfig( - mean=10.0, - variance=4.0, - distribution="normal", - ), - avg_request_per_minute_per_user=RVConfig(mean=30.0), - user_sampling_window=TimeDefaults.USER_SAMPLING_WINDOW, - ) - - - -# --------------------------------------------------------------------------- -# BASIC BEHAVIOUR -# --------------------------------------------------------------------------- - - -def test_returns_generator_type( - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, - rng: Generator, -) -> None: - """The function must return a generator object.""" - gen = gaussian_poisson_sampling(rqs_cfg, sim_settings, rng=rng) - assert isinstance(gen, GeneratorType) - - -def test_generates_positive_gaps( - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """ - With nominal parameters the sampler should emit at least a few positive - gaps, and the cumulative time must stay below the horizon. - """ - gaps: list[float] = list( - itertools.islice( - gaussian_poisson_sampling(rqs_cfg, sim_settings, rng=default_rng(42)), - 1000, - ), - ) - - assert gaps, "Expected at least one event" - assert all(g > 0.0 for g in gaps), "No gap may be ≤ 0" - assert sum(gaps) < sim_settings.total_simulation_time - - -# --------------------------------------------------------------------------- -# EDGE CASE: ZERO USERS -# --------------------------------------------------------------------------- - - -def test_zero_users_produces_no_events( - monkeypatch: pytest.MonkeyPatch, - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """ - If every Gaussian draw returns 0 users, Λ == 0 and the generator must - yield no events at all. - """ - - def fake_truncated_gaussian( - mean: float, - var: float, - rng: Generator, - ) -> float: - return 0.0 # force U = 0 - - monkeypatch.setattr( - "asyncflow.samplers.gaussian_poisson.truncated_gaussian_generator", - fake_truncated_gaussian, - ) - - gaps: list[float] = list( - gaussian_poisson_sampling(rqs_cfg, sim_settings, rng=default_rng(123)), - ) - - assert gaps == [] # no events should be generated diff --git a/tests/unit/samplers/test_poisson_poisson.py b/tests/unit/samplers/test_poisson_poisson.py deleted file mode 100644 index c5d4a18..0000000 --- a/tests/unit/samplers/test_poisson_poisson.py +++ /dev/null @@ -1,126 +0,0 @@ -"""Unit tests for `poisson_poisson_sampling`.""" - -from __future__ import annotations - -import itertools -import math -from types import GeneratorType -from typing import TYPE_CHECKING - -import pytest -from numpy.random import Generator, default_rng - -from asyncflow.config.constants import TimeDefaults -from asyncflow.samplers.poisson_poisson import poisson_poisson_sampling -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -if TYPE_CHECKING: - - from asyncflow.schemas.settings.simulation import SimulationSettings - - -@pytest.fixture -def rqs_cfg() -> RqsGenerator: - """Return a minimal, valid RqsGenerator for the sampler tests.""" - return RqsGenerator( - id="gen-1", - avg_active_users={"mean": 1.0, "distribution": "poisson"}, - avg_request_per_minute_per_user={"mean": 60.0, "distribution": "poisson"}, - user_sampling_window=TimeDefaults.USER_SAMPLING_WINDOW, - ) - -# -------------------------------------------------------- -# BASIC SHAPE AND TYPE TESTS -# -------------------------------------------------------- - - -def test_sampler_returns_generator( - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, - rng: Generator, -) -> None: - """Function must return a generator object.""" - gen = poisson_poisson_sampling(rqs_cfg, sim_settings, rng=rng) - assert isinstance(gen, GeneratorType) - - -def test_all_gaps_are_positive( - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """Every yielded gap must be strictly positive.""" - gaps = list( - itertools.islice( - poisson_poisson_sampling(rqs_cfg, sim_settings, rng=default_rng(1)), - 1_000, - ), - ) - assert all(g > 0.0 for g in gaps) - - -# --------------------------------------------------------------------------- -# REPRODUCIBILITY WITH FIXED SEED -# --------------------------------------------------------------------------- - - -def test_sampler_is_reproducible_with_fixed_seed( - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """Same RNG seed must produce identical first N gaps.""" - seed = 42 - n_samples = 15 - - gaps_1 = list( - itertools.islice( - poisson_poisson_sampling(rqs_cfg, sim_settings, rng=default_rng(seed)), - n_samples, - ), - ) - gaps_2 = list( - itertools.islice( - poisson_poisson_sampling(rqs_cfg, sim_settings, rng=default_rng(seed)), - n_samples, - ), - ) - assert gaps_1 == gaps_2 - - -# --------------------------------------------------------------------------- -# EDGE CASE: ZERO USERS -# --------------------------------------------------------------------------- - - -def test_zero_users_produces_no_events( - sim_settings: SimulationSettings, -) -> None: - """If the mean user count is zero the generator must yield no events.""" - cfg_zero = RqsGenerator( - id="gen-1", - avg_active_users=RVConfig(mean=0.0, distribution="poisson"), - avg_request_per_minute_per_user=RVConfig(mean=60.0, distribution="poisson"), - user_sampling_window=TimeDefaults.USER_SAMPLING_WINDOW, - ) - - gaps: list[float] = list( - poisson_poisson_sampling(cfg_zero, sim_settings, rng=default_rng(123)), - ) - assert gaps == [] - - -# --------------------------------------------------------------------------- -# CUMULATIVE TIME NEVER EXCEEDS THE HORIZON -# --------------------------------------------------------------------------- - - -def test_cumulative_time_never_exceeds_horizon( - rqs_cfg: RqsGenerator, - sim_settings: SimulationSettings, -) -> None: - """Sum of gaps must stay below the simulation horizon.""" - gaps: list[float] = list( - poisson_poisson_sampling(rqs_cfg, sim_settings, rng=default_rng(7)), - ) - cum_time = math.fsum(gaps) - assert cum_time < sim_settings.total_simulation_time diff --git a/tests/unit/samplers/test_sampler_helper.py b/tests/unit/samplers/test_sampler_helper.py index 349a5fd..1896a82 100644 --- a/tests/unit/samplers/test_sampler_helper.py +++ b/tests/unit/samplers/test_sampler_helper.py @@ -8,7 +8,7 @@ import numpy as np import pytest -from asyncflow.config.constants import Distribution +from asyncflow.config.enums import Distribution from asyncflow.samplers.common_helpers import ( exponential_variable_generator, general_sampler, @@ -166,13 +166,6 @@ def test_general_sampler_uniform_path() -> None: assert general_sampler(cfg, dummy) == 0.42 -def test_general_sampler_normal_path() -> None: - """Normal branch applies truncation logic (negative → 0).""" - dummy = cast("np.random.Generator", DummyRNG(normal_value=-1.2)) - cfg = RVConfig(mean=0.0, variance=1.0, distribution=Distribution.NORMAL) - assert general_sampler(cfg, dummy) == 0.0 - - def test_general_sampler_poisson_path() -> None: """Poisson branch returns the dummy's preset integer as *float*.""" dummy = cast("np.random.Generator", DummyRNG(poisson_value=4)) diff --git a/tests/unit/schemas/test_arrivals_generator.py b/tests/unit/schemas/test_arrivals_generator.py new file mode 100644 index 0000000..46dbce6 --- /dev/null +++ b/tests/unit/schemas/test_arrivals_generator.py @@ -0,0 +1,238 @@ +"""Validation tests for RVConfig, ArrivalsGenerator and SimulationSettings.""" + +from __future__ import annotations + +import pytest +from pydantic import ValidationError + +from asyncflow.config.enums import ( + Distribution, + SystemNodes, + TimeDefaults, + VariabilityLevel, +) +from asyncflow.schemas.arrivals.generator import ArrivalsGenerator +from asyncflow.schemas.common.random_variables import RVConfig +from asyncflow.schemas.settings.simulation import SimulationSettings + +# ────────────────────────────────────────────────────────────────────────────── +# RVCONFIG +# ────────────────────────────────────────────────────────────────────────────── + + +def test_log_normal_sets_variance_to_mean() -> None: + """If variance is omitted for log-normal, it defaults to the mean.""" + cfg = RVConfig(mean=5.0, distribution=Distribution.LOG_NORMAL) + assert cfg.variance == pytest.approx(5.0) + + +def test_poisson_keeps_variance_none() -> None: + """If variance is omitted for Poisson, it remains None.""" + cfg = RVConfig(mean=5.0, distribution=Distribution.POISSON) + assert cfg.variance is None + + +def test_uniform_keeps_variance_none() -> None: + """If variance is omitted for Uniform, it remains None.""" + cfg = RVConfig(mean=1.0, distribution=Distribution.UNIFORM) + assert cfg.variance is None + + +def test_exponential_keeps_variance_none() -> None: + """If variance is omitted for Exponential, it remains None.""" + cfg = RVConfig(mean=2.5, distribution=Distribution.EXPONENTIAL) + assert cfg.variance is None + + +def test_explicit_variance_is_preserved() -> None: + """An explicit variance value is not modified.""" + cfg = RVConfig( + mean=8.0, + distribution=Distribution.LOG_NORMAL, + variance=4.0, + ) + assert cfg.variance == pytest.approx(4.0) + + +def test_mean_must_be_numeric() -> None: + """A non-numeric mean triggers a ValidationError.""" + with pytest.raises(ValidationError): + RVConfig(mean="not a number", distribution=Distribution.POISSON) + + +def test_missing_mean_field() -> None: + """Omitting mean raises a 'field required' ValidationError.""" + with pytest.raises(ValidationError): + RVConfig.model_validate({"distribution": Distribution.POISSON}) + + +def test_default_distribution_is_poisson() -> None: + """If distribution is missing, it defaults to 'poisson'.""" + cfg = RVConfig(mean=3.3) + assert cfg.distribution is Distribution.POISSON + assert cfg.variance is None + + +def test_explicit_variance_kept_for_poisson() -> None: + """Variance is kept even when distribution is Poisson.""" + cfg = RVConfig( + mean=4.0, + distribution=Distribution.POISSON, + variance=2.2, + ) + assert cfg.variance == pytest.approx(2.2) + + +def test_invalid_distribution_literal_raises() -> None: + """An unsupported distribution literal raises ValidationError.""" + with pytest.raises(ValidationError): + RVConfig(mean=5.0, distribution="not_a_dist") + + +# ────────────────────────────────────────────────────────────────────────────── +# ARRIVALSGENERATOR (new API: lambda_rps, model, variability, empirical_data) +# ────────────────────────────────────────────────────────────────────────────── + + +def test_type_defaults_to_generator() -> None: + """`type` defaults to SystemNodes.GENERATOR.""" + ag = ArrivalsGenerator( + id="rqs-1", + lambda_rps=10.0, + model=Distribution.POISSON, + ) + assert ag.type is SystemNodes.GENERATOR + + +@pytest.mark.parametrize( + "model", + [ + Distribution.EXPONENTIAL, + Distribution.DETERMINISTIC, + Distribution.POISSON, + Distribution.UNIFORM, + # EMPIRICAL is handled by dedicated tests below. + ], +) +def test_forbids_variability_models_reject_variability(model: Distribution) -> None: + """Models with intrinsic/non-configurable variability must use variability=None.""" + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=5.0, + model=model, + variability=VariabilityLevel.LOW, + ) + + +@pytest.mark.parametrize( + "model", + [ + Distribution.LOG_NORMAL, + Distribution.WEIBULL, + Distribution.PARETO, + Distribution.ERLANG, + ], +) +def test_requires_variability_models_need_variability(model: Distribution) -> None: + """Models that require a variability level must receive one.""" + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=5.0, + model=model, + ) + + # Now it should pass when variability is provided. + ag = ArrivalsGenerator( + id="rqs-1", + lambda_rps=5.0, + model=model, + variability=VariabilityLevel.MEDIUM, + ) + assert ag.variability is VariabilityLevel.MEDIUM + + +def test_empirical_requires_data() -> None: + """EMPIRICAL model requires `empirical_data` and forbids variability.""" + # Missing empirical_data → error + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=5.0, + model=Distribution.EMPIRICAL, + ) + + # Provided empirical_data → OK + ag = ArrivalsGenerator( + id="rqs-1", + lambda_rps=5.0, + model=Distribution.EMPIRICAL, + empirical_data=[0.1, 0.3, 0.8], + ) + assert list(ag.empirical_data or []) == [0.1, 0.3, 0.8] + + # With any non-EMPIRICAL model, empirical_data must be None → error + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=5.0, + model=Distribution.POISSON, + empirical_data=[0.1, 0.3], + ) + + +def test_lambda_rps_must_be_positive() -> None: + """lambda_rps is PositiveFloat: zero or negative raises.""" + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=0.0, + model=Distribution.POISSON, + ) + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=-1.0, + model=Distribution.POISSON, + ) + + +def test_invalid_distribution_literal_at_arrivals_raises() -> None: + """An invalid distribution literal in ArrivalsGenerator raises.""" + with pytest.raises(ValidationError): + ArrivalsGenerator( + id="rqs-1", + lambda_rps=10.0, + model="not_a_dist", + ) + + +# ────────────────────────────────────────────────────────────────────────────── +# SIMULATIONSETTINGS (unchanged semantics) +# ────────────────────────────────────────────────────────────────────────────── + + +def test_default_total_simulation_time() -> None: + """If total_simulation_time is missing it defaults to the constant.""" + settings = SimulationSettings() + assert settings.total_simulation_time == TimeDefaults.SIMULATION_TIME + + +def test_explicit_total_simulation_time_kept() -> None: + """An explicit total_simulation_time is preserved.""" + settings = SimulationSettings(total_simulation_time=3_000) + assert settings.total_simulation_time == 3_000 + + +def test_total_simulation_time_not_int_raises() -> None: + """A non-integer total_simulation_time raises ValidationError.""" + with pytest.raises(ValidationError): + SimulationSettings(total_simulation_time="three thousand") + + +def test_total_simulation_time_below_minimum_raises() -> None: + """A total_simulation_time below the minimum constant raises.""" + too_small = TimeDefaults.MIN_SIMULATION_TIME - 1 + with pytest.raises(ValidationError): + SimulationSettings(total_simulation_time=too_small) diff --git a/tests/unit/schemas/test_edge.py b/tests/unit/schemas/test_edge.py index 714ea46..2c80abc 100644 --- a/tests/unit/schemas/test_edge.py +++ b/tests/unit/schemas/test_edge.py @@ -13,7 +13,8 @@ import pytest from pydantic import ValidationError -from asyncflow.config.constants import NetworkParameters, SystemEdges +from asyncflow.config.constants import NetworkParameters +from asyncflow.config.enums import SystemEdges from asyncflow.schemas.common.random_variables import RVConfig from asyncflow.schemas.topology.edges import Edge diff --git a/tests/unit/schemas/test_endpoint.py b/tests/unit/schemas/test_endpoint.py index c9d8648..caeed15 100644 --- a/tests/unit/schemas/test_endpoint.py +++ b/tests/unit/schemas/test_endpoint.py @@ -5,7 +5,7 @@ import pytest from pydantic import ValidationError -from asyncflow.config.constants import ( +from asyncflow.config.enums import ( EndpointStepCPU, EndpointStepIO, EndpointStepRAM, diff --git a/tests/unit/schemas/test_event_injection.py b/tests/unit/schemas/test_event_injection.py index 5593fd7..840ba56 100644 --- a/tests/unit/schemas/test_event_injection.py +++ b/tests/unit/schemas/test_event_injection.py @@ -17,7 +17,7 @@ import pytest from pydantic import ValidationError -from asyncflow.config.constants import EventDescription +from asyncflow.config.enums import EventDescription from asyncflow.schemas.events.injection import End, EventInjection, Start # --------------------------------------------------------------------------- diff --git a/tests/unit/schemas/test_generator.py b/tests/unit/schemas/test_generator.py deleted file mode 100644 index 608adc4..0000000 --- a/tests/unit/schemas/test_generator.py +++ /dev/null @@ -1,219 +0,0 @@ -"""Validation tests for RVConfig, RqsGenerator and SimulationSettings.""" -from __future__ import annotations - -import pytest -from pydantic import ValidationError - -from asyncflow.config.constants import Distribution, TimeDefaults -from asyncflow.schemas.common.random_variables import RVConfig -from asyncflow.schemas.settings.simulation import SimulationSettings -from asyncflow.schemas.workload.rqs_generator import RqsGenerator - -# --------------------------------------------------------------------------- # -# RVCONFIG # -# --------------------------------------------------------------------------- # - - -def test_normal_sets_variance_to_mean() -> None: - """If variance is omitted for 'normal', it defaults to mean.""" - cfg = RVConfig(mean=10, distribution=Distribution.NORMAL) - assert cfg.variance == 10.0 - - -def test_log_normal_sets_variance_to_mean() -> None: - """If variance is omitted for 'log_normal', it defaults to mean.""" - cfg = RVConfig(mean=5, distribution=Distribution.LOG_NORMAL) - assert cfg.variance == 5.0 - - -def test_poisson_keeps_variance_none() -> None: - """If variance is omitted for 'poisson', it remains None.""" - cfg = RVConfig(mean=5, distribution=Distribution.POISSON) - assert cfg.variance is None - - -def test_uniform_keeps_variance_none() -> None: - """If variance is omitted for 'uniform', it remains None.""" - cfg = RVConfig(mean=1, distribution=Distribution.UNIFORM) - assert cfg.variance is None - - -def test_exponential_keeps_variance_none() -> None: - """If variance is omitted for 'exponential', it remains None.""" - cfg = RVConfig(mean=2.5, distribution=Distribution.EXPONENTIAL) - assert cfg.variance is None - - -def test_explicit_variance_is_preserved() -> None: - """An explicit variance value is not modified.""" - cfg = RVConfig(mean=8, distribution=Distribution.NORMAL, variance=4) - assert cfg.variance == 4.0 - - -def test_mean_must_be_numeric() -> None: - """A non-numeric mean triggers a ValidationError.""" - with pytest.raises(ValidationError): - RVConfig(mean="not a number", distribution=Distribution.POISSON) - - -def test_missing_mean_field() -> None: - """Omitting mean raises a 'field required' ValidationError.""" - with pytest.raises(ValidationError): - RVConfig.model_validate({"distribution": Distribution.NORMAL}) - - -def test_default_distribution_is_poisson() -> None: - """If distribution is missing, it defaults to 'poisson'.""" - cfg = RVConfig(mean=3.3) - assert cfg.distribution == Distribution.POISSON - assert cfg.variance is None - - -def test_explicit_variance_kept_for_poisson() -> None: - """Variance is kept even when distribution is poisson.""" - cfg = RVConfig(mean=4.0, distribution=Distribution.POISSON, variance=2.2) - assert cfg.variance == pytest.approx(2.2) - - -def test_invalid_distribution_literal_raises() -> None: - """An unsupported distribution literal raises ValidationError.""" - with pytest.raises(ValidationError): - RVConfig(mean=5.0, distribution="not_a_dist") - - -# --------------------------------------------------------------------------- # -# RqsGenerator - USER_SAMPLING_WINDOW & DISTRIBUTION CONSTRAINTS # -# --------------------------------------------------------------------------- # - - -def _valid_poisson_cfg(mean: float = 1.0) -> dict[str, float | str]: - """Helper: minimal Poisson config for JSON-style input.""" - return {"mean": mean, "distribution": Distribution.POISSON} - - -def _valid_normal_cfg(mean: float = 1.0) -> dict[str, float | str]: - """Helper: minimal Normal config for JSON-style input.""" - return {"mean": mean, "distribution": Distribution.NORMAL} - - -def test_default_user_sampling_window() -> None: - """If user_sampling_window is missing it defaults to the constant.""" - inp = RqsGenerator( - id="rqs-1", - avg_active_users=_valid_poisson_cfg(), - avg_request_per_minute_per_user=_valid_poisson_cfg(), - ) - assert inp.user_sampling_window == TimeDefaults.USER_SAMPLING_WINDOW - - -def test_explicit_user_sampling_window_kept() -> None: - """An explicit user_sampling_window is preserved.""" - inp = RqsGenerator( - id="rqs-1", - avg_active_users=_valid_poisson_cfg(), - avg_request_per_minute_per_user=_valid_poisson_cfg(), - user_sampling_window=30, - ) - assert inp.user_sampling_window == 30 - - -def test_user_sampling_window_not_int_raises() -> None: - """A non-integer user_sampling_window raises ValidationError.""" - with pytest.raises(ValidationError): - RqsGenerator( - id="rqs-1", - avg_active_users=_valid_poisson_cfg(), - avg_request_per_minute_per_user=_valid_poisson_cfg(), - user_sampling_window="not-int", - ) - - -def test_user_sampling_window_above_max_raises() -> None: - """user_sampling_window above the max constant raises ValidationError.""" - too_large = TimeDefaults.MAX_USER_SAMPLING_WINDOW + 1 - with pytest.raises(ValidationError): - RqsGenerator( - id="rqs-1", - avg_active_users=_valid_poisson_cfg(), - avg_request_per_minute_per_user=_valid_poisson_cfg(), - user_sampling_window=too_large, - ) - - -def test_avg_request_must_be_poisson() -> None: - """avg_request_per_minute_per_user must be Poisson; Normal raises.""" - with pytest.raises(ValidationError): - RqsGenerator( - id="rqs-1", - avg_active_users=_valid_poisson_cfg(), - avg_request_per_minute_per_user=_valid_normal_cfg(), - ) - - -def test_avg_active_users_invalid_distribution_raises() -> None: - """avg_active_users cannot be Exponential; only Poisson or Normal allowed.""" - bad_cfg = {"mean": 1.0, "distribution": Distribution.EXPONENTIAL} - with pytest.raises(ValidationError): - RqsGenerator( - id="rqs-1", - avg_active_users=bad_cfg, - avg_request_per_minute_per_user=_valid_poisson_cfg(), - ) - - -def test_valid_poisson_poisson_configuration() -> None: - """Poisson-Poisson combo is accepted.""" - cfg = RqsGenerator( - id="rqs-1", - avg_active_users=_valid_poisson_cfg(), - avg_request_per_minute_per_user=_valid_poisson_cfg(), - ) - assert cfg.avg_active_users.distribution is Distribution.POISSON - assert ( - cfg.avg_request_per_minute_per_user.distribution - is Distribution.POISSON - ) - - -def test_valid_normal_poisson_configuration() -> None: - """Normal-Poisson combo is accepted.""" - cfg = RqsGenerator( - id="rqs-1", - avg_active_users=_valid_normal_cfg(), - avg_request_per_minute_per_user=_valid_poisson_cfg(), - ) - assert cfg.avg_active_users.distribution is Distribution.NORMAL - assert ( - cfg.avg_request_per_minute_per_user.distribution - is Distribution.POISSON - ) - - -# --------------------------------------------------------------------------- # -# SIMULATIONSETTINGS - TOTAL_SIMULATION_TIME # -# --------------------------------------------------------------------------- # - - -def test_default_total_simulation_time() -> None: - """If total_simulation_time is missing it defaults to the constant.""" - settings = SimulationSettings() - assert settings.total_simulation_time == TimeDefaults.SIMULATION_TIME - - -def test_explicit_total_simulation_time_kept() -> None: - """An explicit total_simulation_time is preserved.""" - settings = SimulationSettings(total_simulation_time=3_000) - assert settings.total_simulation_time == 3_000 - - -def test_total_simulation_time_not_int_raises() -> None: - """A non-integer total_simulation_time raises ValidationError.""" - with pytest.raises(ValidationError): - SimulationSettings(total_simulation_time="three thousand") - - -def test_total_simulation_time_below_minimum_raises() -> None: - """A total_simulation_time below the minimum constant raises ValidationError.""" - too_small = TimeDefaults.MIN_SIMULATION_TIME - 1 - with pytest.raises(ValidationError): - SimulationSettings(total_simulation_time=too_small) diff --git a/tests/unit/schemas/test_nodes.py b/tests/unit/schemas/test_nodes.py index 8b1f7a7..bb63298 100644 --- a/tests/unit/schemas/test_nodes.py +++ b/tests/unit/schemas/test_nodes.py @@ -12,10 +12,10 @@ import pytest from pydantic import ValidationError -from asyncflow.config.constants import ( +from asyncflow.config.constants import NodesResourcesDefaults +from asyncflow.config.enums import ( EndpointStepCPU, LbAlgorithmsName, - NodesResourcesDefaults, StepOperation, SystemNodes, ) diff --git a/tests/unit/schemas/test_payload.py b/tests/unit/schemas/test_payload.py index b712996..93aff13 100644 --- a/tests/unit/schemas/test_payload.py +++ b/tests/unit/schemas/test_payload.py @@ -6,10 +6,6 @@ - Event times inside the simulation horizon. - Kind/target compatibility (server vs. edge). - Global liveness: not all servers down simultaneously. - -All tests are ruff- and mypy-friendly (short lines, precise raises, and -single statements inside raises blocks). They reuse fixtures from -conftest.py where convenient and build custom topologies when needed. """ from __future__ import annotations @@ -19,21 +15,17 @@ import pytest from tests.unit.helpers import make_min_ep -from asyncflow.config.constants import Distribution, EventDescription +from asyncflow.config.enums import Distribution, EventDescription from asyncflow.schemas.common.random_variables import RVConfig from asyncflow.schemas.events.injection import End, EventInjection, Start from asyncflow.schemas.payload import SimulationPayload from asyncflow.schemas.topology.edges import Edge from asyncflow.schemas.topology.graph import TopologyGraph -from asyncflow.schemas.topology.nodes import ( - Client, - Server, - TopologyNodes, -) +from asyncflow.schemas.topology.nodes import Client, Server, TopologyNodes if TYPE_CHECKING: + from asyncflow.schemas.arrivals.generator import ArrivalsGenerator from asyncflow.schemas.settings.simulation import SimulationSettings - from asyncflow.schemas.workload.rqs_generator import RqsGenerator # --------------------------------------------------------------------------- @@ -97,15 +89,17 @@ def _topology_with_two_servers_and_edge() -> TopologyGraph: """Create a topology with two servers and a minimal edge.""" client = Client(id="client-1") servers = [ - Server( - id="srv-1", server_resources={"cpu_cores": 1}, - endpoints=[make_min_ep()], - ), - Server( - id="srv-2", server_resources={"cpu_cores": 1}, - endpoints=[make_min_ep()], - ), -] + Server( + id="srv-1", + server_resources={"cpu_cores": 1}, + endpoints=[make_min_ep()], + ), + Server( + id="srv-2", + server_resources={"cpu_cores": 1}, + endpoints=[make_min_ep()], + ), + ] edge = Edge( id="gen-to-client", source="rqs-1", @@ -122,7 +116,8 @@ def _topology_with_two_servers_and_edge() -> TopologyGraph: def test_unique_event_ids_ok( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """Different event_id values should validate.""" topo = _topology_with_min_edge() @@ -133,7 +128,7 @@ def test_unique_event_ids_ok( "ev-b", "gen-to-client", start_t=2.0, end_t=3.0, spike_s=0.002, ) payload = SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev1, ev2], @@ -143,7 +138,8 @@ def test_unique_event_ids_ok( def test_duplicate_event_ids_rejected( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """Duplicate event_id values must be rejected.""" topo = _topology_with_min_edge() @@ -155,7 +151,7 @@ def test_duplicate_event_ids_rejected( ) with pytest.raises(ValueError, match=r"must be unique"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev1, ev2], @@ -168,7 +164,8 @@ def test_duplicate_event_ids_rejected( def test_target_id_must_exist( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """Target IDs not present in the topology must be rejected.""" topo = _topology_with_min_edge() @@ -177,7 +174,7 @@ def test_target_id_must_exist( ) with pytest.raises(ValueError, match=r"does not exist"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev], @@ -190,7 +187,8 @@ def test_target_id_must_exist( def test_start_time_exceeds_horizon_rejected( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """Start time greater than the horizon must be rejected.""" topo = _topology_with_min_edge() @@ -204,7 +202,7 @@ def test_start_time_exceeds_horizon_rejected( ) with pytest.raises(ValueError, match=r"exceeds simulation horizon"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev], @@ -212,7 +210,8 @@ def test_start_time_exceeds_horizon_rejected( def test_end_time_exceeds_horizon_rejected( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """End time greater than the horizon must be rejected.""" topo = _topology_with_min_edge() @@ -226,7 +225,7 @@ def test_end_time_exceeds_horizon_rejected( ) with pytest.raises(ValueError, match=r"exceeds simulation horizon"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev], @@ -239,7 +238,8 @@ def test_end_time_exceeds_horizon_rejected( def test_server_event_cannot_target_edge( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """SERVER_DOWN should not target an edge ID.""" topo = _topology_with_min_edge() @@ -251,7 +251,7 @@ def test_server_event_cannot_target_edge( ) with pytest.raises(ValueError, match=r"regarding a server .* compatible"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev], @@ -259,7 +259,8 @@ def test_server_event_cannot_target_edge( def test_edge_event_ok_on_edge( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: """NETWORK_SPIKE event is valid when it targets an edge ID.""" topo = _topology_with_min_edge() @@ -267,7 +268,7 @@ def test_edge_event_ok_on_edge( "ev-edge-ok", "gen-to-client", start_t=0.0, end_t=1.0, spike_s=0.001, ) payload = SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev], @@ -282,31 +283,20 @@ def test_edge_event_ok_on_edge( def test_reject_when_all_servers_down_at_same_time( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: - """ - It should raise a ValidationError if there is any time interval during which - all servers are scheduled to be down simultaneously. - """ + """Raise if there exists an interval during which all servers are down""" topo = _topology_with_two_servers_and_edge() + sim_settings.total_simulation_time = 30 - # --- SETUP: Use a longer simulation horizon for this specific test --- - # The default `sim_settings` fixture has a short horizon (e.g., 5s) to - # keep most tests fast. For this test, we need a longer horizon to - # ensure the event times themselves are valid. - sim_settings.total_simulation_time = 30 # e.g., 30 seconds - - # The event times are now valid within the new horizon. - # srv-1 is down [10, 20), srv-2 is down [15, 25). - # This creates an overlap in [15, 20) where both are down. + # Overlap: both down on [15, 20). ev_a = _mk_server_window("ev-a", "srv-1", start_t=10.0, end_t=20.0) ev_b = _mk_server_window("ev-b", "srv-2", start_t=15.0, end_t=25.0) - # Now the test will bypass the time horizon validation and trigger - # the correct validator that checks for server downtime overlap. with pytest.raises(ValueError, match=r"all servers are down"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev_a, ev_b], @@ -314,24 +304,19 @@ def test_reject_when_all_servers_down_at_same_time( def test_accept_when_never_all_down( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: - """Payload is valid when at least one server stays up at all times.""" + """Valid when at least one server stays up at any time.""" topo = _topology_with_two_servers_and_edge() + sim_settings.total_simulation_time = 30 - # --- SETUP: Use a longer simulation horizon for this specific test --- - # As before, we need to ensure the event times are valid within the - # simulation's total duration. - sim_settings.total_simulation_time = 30 # e.g., 30 seconds - - # Staggered windows: srv-1 down [10, 15), srv-2 down [15, 20). - # There is no point in time where both are down. + # Staggered windows: never both down at once. ev_a = _mk_server_window("ev-a", "srv-1", start_t=10.0, end_t=15.0) ev_b = _mk_server_window("ev-b", "srv-2", start_t=15.0, end_t=20.0) - # This should now pass validation without raising an error. payload = SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev_a, ev_b], @@ -341,18 +326,18 @@ def test_accept_when_never_all_down( def test_server_outage_back_to_back_is_valid( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: - """Back-to-back outages on the same server (END==START) must be accepted.""" + """Back-to-back outages on the same server must be accepted.""" topo = _topology_with_two_servers_and_edge() - sim_settings.total_simulation_time = 30 # ensure timestamps are within horizon + sim_settings.total_simulation_time = 30 - # srv-1: [10, 15] followed immediately by [15, 20] → no overlap ev_a = _mk_server_window("ev-a", "srv-1", start_t=10.0, end_t=15.0) ev_b = _mk_server_window("ev-b", "srv-1", start_t=15.0, end_t=20.0) payload = SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev_a, ev_b], @@ -362,19 +347,19 @@ def test_server_outage_back_to_back_is_valid( def test_server_outage_overlap_same_server_is_rejected( - rqs_input: RqsGenerator, sim_settings: SimulationSettings, + arrivals_gen: ArrivalsGenerator, + sim_settings: SimulationSettings, ) -> None: - """Overlapping outages on the same server must be rejected by validation.""" + """Overlapping outages on the same server must be rejected.""" topo = _topology_with_two_servers_and_edge() - sim_settings.total_simulation_time = 30 # ensure timestamps are within horizon + sim_settings.total_simulation_time = 30 - # srv-1: [10, 15] and [14, 20] → overlap in [14, 15] ev_a = _mk_server_window("ev-a", "srv-1", start_t=10.0, end_t=15.0) ev_b = _mk_server_window("ev-b", "srv-1", start_t=14.0, end_t=20.0) with pytest.raises(ValueError, match=r"Overlapping events for"): SimulationPayload( - rqs_input=rqs_input, + arrivals=arrivals_gen, topology_graph=topo, sim_settings=sim_settings, events=[ev_a, ev_b], diff --git a/tests/unit/schemas/test_topology.py b/tests/unit/schemas/test_topology.py index e9c7f67..246d37d 100644 --- a/tests/unit/schemas/test_topology.py +++ b/tests/unit/schemas/test_topology.py @@ -5,10 +5,9 @@ import pytest from pydantic import ValidationError -from asyncflow.config.constants import ( +from asyncflow.config.constants import NetworkParameters, NodesResourcesDefaults +from asyncflow.config.enums import ( EndpointStepCPU, - NetworkParameters, - NodesResourcesDefaults, StepOperation, SystemEdges, SystemNodes,